PICK:

your system

Nlicola Ki

PICK -
Your System

by

Nicola Kitt

N : B

SIGMA Publishers. Wilmslow

N PRESS I

QLSTe,

' HALSTED PRESS a division of JOHN WILEY & SONS
PRESS New York - Chichester - Brisbane - Toronto

Copyright ©) Nicola Kitt, 1986

All Rights Reserved

No part of this book may be reproduced or transmitted by any means
without the prior permission of the publisher. The only exceptions are for
the purposes of review, or as provided for by the Copyright (Photocopying)
Actorin order to enter the programs herein onto a computer for the sole use

of the purchaser of this book.

ISBN 1-85058-031-6 (Sigma Press)
ISBN 0-470-20320-X (Halsted Press)

Published by:

SIGMA PRESS
98a Water Lane
Wilmslow
Cheshire U K.

and

HALSTED PRESS
a Division of John Wiley & Sons Inc,
New York.

Printed by: Interprint, Malta
Distributed by:

U.K., Europe, Africa:

JOHN WILEY & SONS LIMITED

Baffins l.ane, Chichester
West Sussex, England

Australia: JOHN WILEY & SONS INC.

GPO Box 859, Brisbane
Queensiand 40001 Australia

Trademark

PICK is aregistered trademark of Pick Systems Inc.

ACKNOWLEDGEMENTS

I would like to acknowledge all my friends who without exception have been
interested, amazed and supportive over this venture — without which I'd
never have finished. Many thanks to my extended family who have
unreservedly given support, advice and criticism, thanks Dens, Kath, Peter,
Una, Andrew, Mark, Paul, Gill, Adrian and Steph.

Also many thanks to:
Chris Winters of Fletcher Compute Services
Phil and Margaret Harris of Cougar Pumps

and last but by no means least Mic Merrison and Bob Burrows, who set me
on this path!

This book is dedicated to Steve.

Nicola Kitt, 1986

CONTENTS

1. Whatis an OperatingSystem? 1
Whydo we need an operatingsystem? 2

The evolution of the operatingsystem 3

The User and the operatingsystem 6

The Functions of an operatingsystem 7

How anoperatingsystemworks 9
Operatingsystemstoday 13
Industrial pressure and standardisation 14

Why were new programsneeded?. 16
Advantagesofstandardisation. 16
2.WhyConsider Pick? 17
Traditional OperatingSystems 17
Pickandintegration 19
Integrationachieved. 22
3.Databases. e 25
Whatisadatabase ? L. 25

Data, database andinformation 26
Typesofdatabase. 27
Formatted or hierarchical databases 28
Relationaldatabases 28
Relationalalgebra. 30
Hashingadatabase. 31
Thequerylanguage 32

Pick database processing—the advantages 34
4.FilesandStructures 37
The nature of afileanditsstructure. 37
Datafiles 39
Recordattributes. L ... 41
S.DictionaryFiles 49
Dictionary filesand theirstructure 49

Data discovery attributesexplained 52

6. TheMaster Dictionary. 60
Whatisanaccount 2. 60
Filedefinitionitems 62

Synonymsforfileso L. 64

TerminalsControl Language. 67

Summaryof TCL i 71
Procedures—PROCs. A
7.The ControloftheSystem 77
Multipleuseraccounts. 82
Systemusageaccounting 83
8.The ACCESSLanguage, 85
Lifeinthefastlane 85
Procedural languages 86
Using ACCESS i i 86
Selection of specific attributes for listing. 90
ConVerSiONS v oot i e 102
Dates e 106
Correlatives 108
9. The Editing Facilities. 120
Howthe Editorworks 120
Summaryofcommands L oL 124
10. The BASICLanguage uuunn.. 133
Introduction. 133
TheHistoryof BASIC. 134
WhyBASIC? e 134
Re-entrantcode. 135
Sourcefiles. 135
Interpretersandcompilers L. 135
Features of the Pick BASICcompiler 139
Executing BASICprograms 139
FilehandlinginBASIC 139
Otherfeatures. 142
Multi-UserFileLocks 143
Structured programming L oL 144
ILRunoff e 147
Appendix A: Summaryof TCLcommands 173
Non-referencingverbs. L. 173
Referencingverbs 175

Accessvocabulary o o oo 176

Appendix B: Summary of PROC Commands .
Appendix C: Summary of System Level Verbs

Appendix D: Summary of the BASIC Language

Chapter 1

What is an Operating
System?

To be able to answer the question “What is an operating system?” it is
necessary to examine the skeleton of the computer. This is comprised of a
number of electrical components which are known collectively as the
hardware. As the skeleton forms the basis for the human body, so the
hardware supports and gives the physical realisation of a computer. The
computer that we, the users, employ seems far removed from the “bones” of
the machine. We have the facilities to produce a profit and loss account at
the touch of a button and often without the realisation that these facilities
are merely flesh on top of the skeleton. Take away all the fancy functions
and the circuitry reappears.

The physical parts of a computer, known as the hardware, include the
terminal (going under various aliases such as CRT, VDU ,and screen),the
disks (both fixed and removable , hard and floppy) where data is stored, and
the electronic circuitry which consists mainly of integrated circuits
commonly known as “chips”. It is these chips which are capable of carrying
out the repetitive number crunching that computers are renowned for.

The hardware is fundamentally only capable of the basic arithmetic
operations for addition, subtraction and multiplication as well as the logical
evaluations for greater than, equal to and less than, represented by the
characters >, = , <.

Every computer that is manufactured and sold, whatever its size, shape and
purpose is only capable of these basic functions at skeleton level. It is the aim
of an operating system to turn the “bones ” of the hardware into something
that appears to do a lot more than this so that it can be used by the ordinary
user, even the novice.

The operating system is part of a collection of software found in a computer.
This is the second part of a computer or the non- physical portion. Software
is a curious commodity, as it appears to be invisible when resident on a

computer but fills pages of popular magazines in the form of space invader
program listings for the BBC micro! The different types of software
programs cover a large and varied range of tasks and problems. In fact
anything which includes padding on top of the hardware, such as an arcade
game like space invaders or a stock taking system is software. Software is
comprised of programs containing instructions which are performed by the
machine. The programs use data which may already be stored permanently
within the machine either in parts of the circuitry or on magnetic disks and
tapes; this sort of storage medium may be read as and when the data is
required. Software covers many aspects of computing, which can be
categorised to include:

Operating systems
Assemblers
Compilers

Utilities

Application software.

All of these categories of software have different areas of expertise,but they
all rely on the operating system software (often know as systems software)
to form a cornerstone on which the different types of programs are built,
resulting in the different categories of software.

It is intended in this chapter to concentrate on the category of operating
systems software. This consists of special programs which control the
running and internal organisation of the computer once the human user has
relinquished control. The system software co-ordinates the different parts of
the hardware in order to get the requested job completed. The operating
system is usually the only piece of software to deal directly with the hardware
responsible for obtaining mathematical answers.

Systems software is normally provided by the supplier of the computer
hardware as it is usually integral to the operation of the machine. Very often
systems software is the part of the computer that a user is least aware of. A
user will be far more aware and interested in the profit (or loss!) figures
coming out of an accounting program than how data is handled internally by
the machine from which the results are being obtained.

Although the user may not realise it, the operating system is as important to
the operation of the machine as the hardware itself.

Why do we Need an Operating System?

An operating system is the interface between the computer user and the
machine.

The actual electronic circuitry which does the processing requires all its data
and information in sequences of 0’s and 1’s, this is known as binary. Binary
has two possible digits (0 or 1), a single binary digit is known as a BIT. Bits

are stored and processed by means of electronics. The data which a human
deals with is very rarely exclusively in 1’s and 0’s. Data as we know it are long
lists of names and addresses, parts in stock, order numbers, clients’ credit
ratings and other such information. If a computer is to handle this data and
manipulate it as we request, it must be received by the hardware coded in
binary form, as this is the way chips store and process information most
easily.

Not only must the data be coded in binary but also the instructions which
make up a program; in order for the computer to know how the data is to be
processed. To use a computer in a skeleton state would involve translating
everything into 0’s and 1’s and feeding in the binary strings. In addition, a
knowledge of how the circuitry performs basic mathematical functions and
operations would be necessary in order to get any results from the machine.
It goes without saying that any results would also be in binary. A simple
request to add two numbers together would look something like this:

00111010
01100000
00000000
01000111
00111010
01100001
00000000
10000000
00110010
01100010
00000000

A complex procedure which only the fanatical would use! So in order to
make computers available to people who don’t think in terms of 1 and 0, the
operating system was invented.

The Evolution of the Operating System.

The operating system started its evolutionary path in a small way. It became
very tedious to continue inputting sequences of 0’s and 1’s in the correct
order, so operations that were used regularly by many people were created
as functions. In the case of the above example the word ADD would have
been created to instruct the operating system to fetch the program ADD (as
seen in Figure 1.1), and place it in main memory, being a sort of middleman.
The processor could then execute the program bit by bit.

Gradually all the common functions, such as adding two numbers together,
fetching data from a storage location or having something printed on the line
printer, became routines. The new vocabulary of the operating system,
although time saving, was still not giving the programmer enough scope, so
new languages appeared: including BASIC, FORTRAN, COBOL,

ALGOL and many many more. These use English-type words which are
translated by large specially written pieces of software into the necessary 0's
and I's (apart from the already coded functions in the operating system).
The translation programs are known as compilers, a software category
mentioned earlier.

' [
00111010 | | 00111010
01100000 [I 01100000
00000000 00000000
01000111 | | 01000111
00111010 00111010
01100001 — — 01100001
00000000 | ADD 00000000
10000000 | 10000000
00110010 | 00110010
01100010 | | 01100010
00000000 | | 00000000
| |
Program Operating System Memory
Command
Function
Figure 1.1

The programmer would select the required translation program and read it
into the computer memory and his own program would then be read in for
the compiler to translate into 1’s and 0’s. Once translated the program was
compiled and would be run. Whenever extra data was needed these
compiled programs would stop and type out a message on the printer; all
processing ceased until a reply was given. If the programmer was out to
lunch when the stop occurred then the computer would just sit and wait
wasting processing time until an answer was received. The stop may have
been for a tape of data to be loaded; the computer needed human help as it
did not have the ability to know where data was or where to get it from.

Such dependence on human intervention only seemed to waste valuable
computing time. As a result the operating system began to undertake some
of the programmer’s duties, such as locating the required compiler from tape
or disk storage, feeding data into programs as necessary and monitoring the
performance of programs. Before long the operating system was resident in
main memory on a permanent basis. Over the years more and more
functions and tasks have been added to the operating system.

At this stage in the evolutionary process of the operating system, the touch
of a button would read a compiler into main memory, read and translate the
program and place the translation onto magnetic backing storage. The
operating system then takes over from the compiler, reading the program
from storage into main memory allowing the program to run, printing any
results on the printer or sending them back to the terminal the request came
from. Programs are given permission by the operating system to do their
work, but if a program makes a fatal error, or simply runs for too long, the

operating system then throws it out to make way for the next program
waiting to be processed.

This is viewed very similarly in concept to waiting to pay for groceries at a
supermarket. Very often a whole queue of people are kept waiting; the
cashier is idle while someone goes to look for the price of a tin of peaches.
The whole system is doing nothing. A computer is no different: while the
operating system goes to look for some data programs are queuing up and
the processor is idle, waiting for the operating system to return with the
information. The machine is kept waiting a long time for data to be fetched
from storage, for replies by its human masters or for the really slow printer
to finish outputting a report. All this time the processor is idle when it could
be processing thousands of instructions each second.

The next stage of the development of the operating system was to process
more than one task at a time. While one job was waiting for some data from
backing storage the second program could start to be processed. If one
program has to wait, another program can make use of the facilities that
would otherwise be lying idle. This is known as multiprogramming. Of
course this is much more complicated and takes up much more memory,

Computer Printout

\

Financial Wizardry

Computer Game

))) Word Processing
Figure 1.2 Four jobs running at the same time.

making the need for bigger memory capacity. The expansion of the
operating system has been possible due to the falling costs of very large
memory chips.

All of the tasks shown in Figure 1.2: playing a computer game , a secretary
doing word processing, the accountant doing financial forecasting and the
printer printing a report, appear to be working at the same time. This is only
possible because the operating system has been developed and expanded so
that it can switch rapidly between different programs, ensuring that none has
to wait long before getting its turn. If we look at the supermarket check-out
again, an assistant has now gone off to find out the price of the offending un-
priced article so, the next person in the queue starts to have their basket of
goods processed, but as soon as the price for customer one’s goods is found
and given to the cashier, customer two’s adding up is stopped, and a note of
the total is kept. Customer one’s basket of goods is then finished. So, instead
of being idle,the cashier has managed to process half of customer two’s
goods reducing the size of the queue. This is exactly what the operating
system does: rather than lying idle it switches to another user’s request while
the original job is waiting for some more information. This cuts down the
amount of time a user has to wait for a job to be processed. The system
program which controls this type of function is very large and complex and
is not usually found on micro computers, which normally only cater for a
single user. An operating system with the ability to process more than one
task at a time has the ability to time-share or multi-process.

As operating systems became larger and more complex a new task (a job in
its own right) emerged called systems programming. Systems programmers
need to know the internal workings of a computer and the way in which the
operating system goes about its job. They are are exclusively concerned with
keeping the operating system working and running correctly. Any new
functions which the computer manufacturer provides are installed and
tested by them so that any errors can be eliminated without the entire
computer grinding to a shuddering halt. They also help the machine to run
efficiently, not unlike a mechanic tuning a high performance car, enabling
the driver to obtain the best from the vehicle. While they are found mainly
in mainframe installations such as for banking, insurance and retailing,
minicomputers may also have some systems work, but usually only by one
person who is also a programmer. A mainframe is by far the most expensive
machine to maintain and keep up and running, so it is in this type of
installation that the systems programmer is the most cost-effective.

The User and the Operating System

By sitting at any computer terminal, the user is in fact face to face with the
operating system. As soon as the terminal is switched on, a cursor is there
waiting for a response in the form of a recognisable command, which will be
part of its vocabulary. More often than not; in order to engage the machine
in conversation a password has to be typed in.

The following sequence of events has been known to take place first thing in
the morning.

GOOD MORNING

What is your password ?

The bleary eyed user is met with this cheering message and the blinking
cursor. The next step is to enter the correct password at the prompt
provided. On entering the correct password and hitting the 'Return’ key,
communication with the operating system is taking place. To check that the
entered password is valid and correct the password received has to be input
to the hardware for it to perform a basic arithmetic function, (in this case an
equality evaluation) to see if the string of characters input as the password
corresponds with a pattern of characters already stored in a specific place by
the operating system. The sequence of activities is something like this:

“Is the input password equal to stored password ?”

“If YES pass message to opcrating system to be output to sending terminal™
WELCOME TO ABC COMPUTER

“Have all the stored passwords been looked at?”

“If NO look at the next password™

“If YES output:

INVALID PASSWORD TRY AGAIN -

While this conversation is taking place communication with the operating
system is taking place and utilising the basic functions that an operating
system performs.

The Functions of an Operating System
By looking at how the operating system came into being ,and why we need

it, the major characteristics of such a piece of software have been found to
be:

Storage

Storage can take many forms, all of which are based on saving bits on
magnetic surfaces, i.e. hard disk, floppy disk and tape.

This function looks after the storage, retrieval and maintenance of all the
data that is held . This data can be of various formats: a program or part of

software engineer in a slightly different way, using varying building
techniques. All operating systems have the same ultimate goal in mind - a
reliable piece of software which controls and sequences the processing of
programs, to enable the user to obtain a hopefully understandable response
to a question. Operating systems all fulfil this goal to differing extents, but
it results in little or no similarity between a personal computer and a
mainframe, akin to a terraced house and Buckingham Palace!

Industrial Pressure and Standardisation

The concept of a standard operating system in the computer industry is a
relatively new one. In the early 1970’s minicomputers were the fastest
growing part of the computer industry, each offering their own individually
designed, nonstandard proprietary operating systems.

While these manufacturers were developing their hardware and software
products each was claiming they should have “The Architect of the Year”
award for:

1. The best processor using the newest and fastest chips available
on the market.

2. Implementing a new language (probably invented by one of
their staff) which will sweep the world during the next few years.

3. New advances made in the design of operating systems.

The operating system was now more user friendly than ever. It had more
features than its nearest rival (if it ever had one in the first place) and it goes
without saying that the only applications that worked on the machine are the
applications produced by the manufacturer! In choosing one of these “award
winning systems” from a particular vendor a customer was inextricably tied
to that one manufacturer’s equipment, since the cost of changing to another
totally incompatible system was prohibitive. To change systems would mean
re-training staff to use possibly a new language and certainly a new series of
operating instructions. Even the accounts clerk would have to learn how the
new accounting programs worked.

Why Were New Programs Needed?

All software written for one type of operating system will be tailored to talk
to that system in the way that is peculiar to it alone. It’s like trying to talk to
a Frenchman with only a German dictionary. Some of the words are the
same or similar, but they will have different meanings in each of the two
languages. In the same way, each “make” of computer has its own language.
Try and communicate with it in another language and gross

14

misunderstanding results. As a result, each application has to be developed
for each different machine language Since every piece of software is built
slightly differently, time is needed to find your way around it. So, software
has to be compatible with the operating system. In fact we can take that one
stage further and say: as the operating system on a minicomputer is tied to
the hardware, the software has to be compatible with that hardware.

In contrast, the 1980’s gave way to the introduction of microcomputers. At
the last count there were over 200 different microcomputers, but there are
merely a handful of operating systems. The microcomputers were
dependent upon selling in bulk numbers rather than a few at high prices, and
the microcomputer manufacturers could not afford to develop their own
operating systems. The operating system began to become standardised.
CP/M, MS-DOS, and PC-DOS (enter IBM!) became the standards to be
found on any of the microcomputers. As well as the operating systems
becoming standardised the actual hardware components became
standardised. Micros were powered by chips that were made by the
semiconductor specialist “chip” manufacturers such as Intel and Motorola,
which resulted in only a small choice of components for the manufacturers.
The industry became a series of specialists making one or two components.
The actual computer manufacturer bought in the different components from
the specialists and put them into a cabinet. It has become too expensive for
one company to do all the research, development and manufacture involved
in making a computer from scratch. (Except for the blue giant. IBM)

True there are hundreds of microcomputer systems available, but each one
is powered by just a handful of standard chips.

Peripherals have become standard to a degree. Floppy disks come in
standard sizes (327, 54", and 8”) with standard capacities and standard
ways of connecting them to the main processor. Returning to the example of
a street of family dwelling units, every house had standard components,
bricks, window frames, lintels over the doors, and cement. In the same way,
computer components are standardised: there are only a limited number of
chip vendors or disk suppliers from whom to choose.

The components of an operating system are standardised but the way that
they work is different. Copying a file to disk on an IBM-PC will be done
differently than on an APPLE II. The same information will be saved in each
case but in a totally different way. The IBM-PC can not read the APPLE 1l
disk and vice versa. Not dissimilar to scientific papers published in German
and English - the same information and revelations will be present but the
English speaking people will only understand the English version.

So a large to medium sized company that decides to use a micro for word
processing, and wants to pass disks between various locations, will have to
make sure that all the offices are working with the same operating system,
often tying the company to one particular manufacturer and one particular
style of software.

15

Advantages of Standardisation

The standardisation of operating systems allows free movement of data
between different machines, rather than each one having its own version
of the same programs and data on their incompatible machines. Other
advantages of a standard operating system include:

1. The purchaser benefits because he is no longer captive to a single
manufacturer. This in effect means that if the purchaser wants or requires a
bigger capacity machine with more memory, which the current supplier is
unable to provide, he can go to another manufacturer without the expense
of having to completely redevelop or indeed purchase new applications
software.

2. Those who are involved in the development of application programs
benefit as they can offer their products to a wider number of people on a
range of differing hardware systems.

3. Indeed, the manufacturers themselves benefit from a more rapid
acceptance of their products, and reduced software development costs. A
software house is more likely to spend time. money and expertise in
developing programs for a widely available operating system than a
manufacturer’s eccentric state-of-the-art offering.

16

Chapter 2

Why Consider Pick?

Having studied the functions of a basic operating system, and what it does
for the user sitting at a terminal, we now look at the Pick operating system
and the problems of integration in the office environment today.

Traditional Operating Systems

The majority of the operating systems on minicomputers were developed for
different purposes. For example, the Digital Equipment Corporation
(DEC) designed and wrote the DEC VAX series of machines, specifically
for scientific, number crunching applications. On the other hand the Pick
operating system was designed for the more verbose information retrieval
business community. Any operating system will reflect the type of work that
the computer is used for. On a scientific machine, the commands and
functions are presented in a way that a nuclear physicist will understand and
the likes of you or me will not. If an operating system has commands which
are difficult to use and understand then the computer becomes difficult to
use and understand as this is the only facet of the computer a user will see.
An operating system that is not easy to use can result in the computer staying
in its packing case, and being a waste of time, space and money. Pick tries
to avoid this pitfall and is easy for the novice to learn and use. Pick is
designed for business use, and serves the business man better than any other
operating system currently available.

An ordinary operating system (such as has been looked at) resembles a
single part of a jigsaw - all the other pieces needed to make a complete
picture have to be matched and fitted into their correct place, often after
several false starts and a lot of trial and error! Having just purchased an Itsy
Bitsy 2000, the small businessman needs to do some programming; to do this
he needs to select and purchase a compiler, as there is not one with the
machine. If he wishes to keep all information centrally in one data-bank
another piece of software is needed, all of these “extras” being purchased
separately. Building a complete computer system in pieces can be
advantageous as it gives a wider choice of products, but the range of choice
and the selection process can be hazardous and work against the user. So,
the traditional operating system is like the first piece of a jigsaw puzzle,
which could end up giving one of many pictures!

17

()

operating

system with
basic

functions

J

Figure 2.1

Suppose the proud owner of the new Itsy Bitsy 2000 with its operating
system now wants to extend his computer to do word processing. This is no
easy task. A list of possible packages has to be made, brochures obtained
and read. salesmen need to be consulted and an evaluation of the different
packages needs to be completed to find out which particular piece best fits
the operating system that is running on his machine. There may well be a
choice of ten different word processors or jigsaw pieces:

Type-sure
Letter Fast
Tripe Writer
Auto Type
Word Help
Letter Press

Mail Friend
Post Haste
Super Sec
Media Mate

A dealer will normally stock just two or three of these packages, perhaps
those which he considers to be the best, (or perhaps those with the highest
mark up!)

Letter
Word < : Post Fact :)
Help Haste

Figure 2.2

18

The three word processing packages shown in figure 2.2 on the short-list are
Letter Fast, Word Help and Post Haste, each of which is a possible fit for the
jigsaw. Each package is a different shape, has slightly different functions
which work in slightly different ways, but will fit onto the basic operating
system supplied with the computer. Each package will use and react to the
operating system in a different way, and will be attached to the operating
system differently. Each word processor may well hold the letters in a
different format, which means that by attaching one of these packages the
computer system becomes nonstandard.

Each word processor has a different way of producing a letter by using
slightly different commands and symbols with assorted meanings, in the
same way that operating systems differ. If a company has purchased two
machines with a standard operating system, such as MS-DOS, it would
expect the two systems to be totally compatible. In our example one
computer system may be based in the Birmingham office and one in the
London office, each location having the power to purchase its own added
extras. The London secretary has worked with Post Haste before and so
recommends that particular package. Meanwhile in Birmingham the
salesman sells the most expensive, and of course best, word processor Letter
Fast to the company. Both offices have word processing capabilities, but the
two machines are now incompatible. The London office cannot send a
floppy disk to Birmingham instead of a 500 page printed document because
“Letter Fast” can not understand the way that “Post Haste” has saved the
documents on the disk.

Pick and Integration

Many data processing managers frequently assume that they must adopt this
patchwork of incompatible solutions in order to meet apparently different
information and processing needs within an organisation. This
fragmentation will inevitably lead to high cost, inflexible systems which, not
surprisingly, fail to communicate with each other physically or logically.

The Pick system offers the computer manager a way out of the above
maelstrom by serving a variety of end-user needs, from the efficient
processing of transactions to the provision of information. A single
integrated system can and is offered for both the information and the
production centres of a business. Pick is done an injustice by being called just
an operating system. It is much much more. It is an entire business system,
a complete jigsaw with a standard picture, seen in figure 2.3.

The system still does all the functions a basic operating system should,
communicating between man and machine. The extra facilities of Pick are
integrated to form an operating system giving a sleek efficiency which is
almost unobtainable with the cumbersome expensive add-on type of
computer system . Due to this ‘complete picture’ concept Pick has the ability

19

Figure 2.3The complete jigsaw.

to apply to a particular set of business requirements. Information needs
differ from company to company, person to person and often from moment
to moment, and a computer system must be able to cater for all these needs.
All computer systems, until Pick, were based on the assumption that
organisations functioned on a fixed pattern, or at least could be forced to
behave in a fixed way. Change was a nuisance, and if it did occur, a great deal
of time and expense would result because the specified procedures on which
the computer programs depended had been upset. Any business computer
system should have the ability to enhance the processing of large amounts of
available data, in order to derive the necessary information to assist with the
control and operation of the business. Having up to date information
available promptly, with the minimum of fuss, is of prime importance in
today’s business environment, where a computer should help rather than
hinder. Even if only one or two key items are required, the effort often
needed in extracting them from the total amount of information in a
traditional operating system is both time consuming and expensive.

As technology proliferates and users become more demanding in their
expectations and requirements, data processing managers are becoming
increasingly concerned about the quality of the environment they are
providing for their users. New, and in many cases untried, state-of-the-art
systems are being bolted onto other new systems or onto the existing
computing facilities. Problems are not only created by the actual hardware
system, but the data administrator has to cope with the users and their
perception of computing and what they would like it to achieve for them.
Often personnel involved in the use of machines for the first time only have
a short-sighted immediate view of what it can do. Varying requests from the

20

users come at a later date when the knowledge of the system and it’s abilities
has built up.

As aresult, end-users are faced with a number of incompatible software and
hardware components. Physical incompatibilities lead inevitably to logical
ones: data becomes fragmented; application systems fail to communicate
properly with each other; the information coming out of the system is often
not the anticipated result from the data going in! An ever increasing outlay
on expensive technicians and application development staff sometimes
manages to keep the edifice from crumbling, though from the end user’s
po{)nt of view it never appears as the single harmonious entity it was designed
to be.

The problem put in simple terms is that the manager very often does not
have the time to sort out the fundamentals of departmental problems. If he
could provide a more flexible, efficient and cost-effective service, he would
begin to convince the management that data processing could do more for
the organisation. On another level, a major problem faced by all
installations today is the ever widening gap between computer people and
the actual users. Temporary solutions such as the personal computer and the
information centre have been introduced, and found to be effective in the
short term. In the longer term, unless great care is taken (and in the real
world it rarely can be), the old incompatibilities and inflexibilities will
resurface with renewed vigour. Proliferation of product types, the splitting
of databases onto separate machines running in different environments; and
the split in the company’s staffing and orientation will come as variations on
the old theme of high cost ineffective, inflexible systems. To the poor old
end-user, who seems to be the industry scapegoat, the fragmentation not
only seems unnecessary, but confusing and irritating as well.

One of the most important requirements for successful data processing is
integration. The end-user should have one elementary system to deal with,
both in terms of its appearance and also in terms of its implications.
Sometimes an attempt is made to “bolt” different systems together and
make them all look alike, by applying interfaces between the machines and
the users. This approach only meets a small proportion of the objectives of
integration, as the user will eventually see or be affected by the high costs
and inflexibilities inherent in fragmentation and incompatibility.

If the computer manager, wanting an integrated easy-to-use system, scans
the market place for systems with integration, he is generally going to be
very disappointed. The typical traditional computing configurations do not
come anywhere near meeting the company’s need. Its complex, layered
software is a crippling drawback, which means that a large machine,
probably a mainframe, is needed to run all those layers.

If minicomputer architecture is considered for a data processing solution,
some improvements may be seen. At first glance, the traditional

21

minicomputer offers far lower acquisition and running costs, a more
interactive orientation, and it covers the small to medium sized company
profile more adequately than the mainframe does. Upon a more detailed
investigation the minicomputer loses much of its charm. Commercial
software is generally several years behind that available on the bigger
machines; many of the native hardware suppliers are commercially
unaware, and support can be poor to nonexistent.

Integration Achieved

The one system in today’s market that will meet the need for integration is
Pick. The Pick system is integrated in several dimensions, each of which is
critical to the success of data processing within an organisation. Pick will run
on machines of varying sizes. It will run compatibly on hardware from
different manufacturers. It presents only one interface to the end user,
whether he is interested in transaction processing or in the retrieval of
information. The architecture is integrated within itself, incorporating
operating system, database and enquiry language all as one unit.

By having an integrated solution the company in question effectively has
extra human resources: those that otherwise would have been engaged in
the continued maintenance, tuning and diagnosis involved in keeping a
technically over-elaborate solution on its feet.

The Pick operating system has been available on various minicomputers for
over ten years. The system has migrated up into mainframes and is now also
available on many 16 bit micros. This mature product has most of the needed
features for the new super micros but, having migrated from the larger
systems, they show a potential for providing a new generic set of standards
for creating a level of compatibility that has never before been possible.

In addition to the above advantages, Pick offers a low acquisition cost for a
given level of application throughput (because of the low software
overheads inherent in Pick, plus the fact that many implementations are
partly in firmware). The low machine resource overheads associated with
Pick can also be thought of as releasing large amounts of extra capacity. This
extra capacity can be used for further application development, or for
additional functions within the overall macﬁine budget (say, for time and
motion studies or for statistical analysis).

Pick offers a flexible, easy-to-use, remarkably powerful system that
provides each and every user with total access to vital business data, giving
full control of administrative functions. The staff employed do not need to
be capable of programming, nor even have any previous experience of
programming, to put the full capabilities of Pick to work. Often when
looking for information on a particular subject it is not immediately obvious
what information is required, yet it can be recognised when it is seen. Pick
will allow the store of gata to be browsed through and the selection of any
items of particular interest. When you decide what you want, and the

22

has been selected, it can be displayed in many ways including:

Tabular summaries
Comparisons
Additional calculations
Sorted lists

Pick contains all these facilities, allowing the user to reduce output to the
information required, not hundreds of pages of print-out which tend to end
up in the bin rather than being of any real use. The user decides on the
format: tabular, on preprinted stationery, the entire report in UPPER
CASE, or even in lower case. Once a report has been defined it can be saved
for future re-use. This means the same report can be produced next month,
or changes can be simply and easily applied. Pick gives managers (even those
with no prior computing experience) the ability to answer questions quickly
and simply, without the constraints of designing reports or sifting through a
ream of print-out, thus giving access to information in a simple yet flexible
manner.

Pick, being a fully integrated system allows applications software to be
developed in the shortest possible time, requiring a minimum level of
computer expertise.

In short, business people want solutions - not problems. They want easy,
smooth information storage, retrieval and processing systems that anyone
can use. They do not want complex components of a system that only an
expensive systems analyst and senior programmer can operate, control and
maintain.

Pick also solves the novice user’s greatest headache. What exactly does he
want from the computer system? Faced with the systems analyst, historically
the new user has been pinned to the wall and been asked to specify, in
absolute detail, precisely what the system should provide. Most people have
a fairly clear idea of what they want the computer to achieve in broad
outline, but what about all the small details ? Until someone has used the
system they will not be aware of what small but important features can be
incorporated in their software, or of what the machine is actually capable.
How often has a system been set up, and mysteriously pages of
enhancements appear! Pick allows the new user to start with a basic system
which he is reasonably sure of and build upon it step by step, without
incurring the penalties of redesigning a system. This is a way of evolving a
finished system, based on experience of its operation. All these things are
cost saving and give an efficient use of time.

Pick gives a business the ability to promote computing facilities within a
company by increasing effectiveness. The user who selects Pick will
suddenly find himself with more human and machine resources than he
anticipated, and will be able to deliver better quality solutions more quickly
than otherwise expected. While no-one is (as yet) claiming that Pick is

23

perfect in all areas, it should be clear that Pick represents a sound toundation
from which to build. The core of Pick is compatible with the developments
and enhancements which take place on the basic system. Overall, it
represents probably the lowest risk proposition available to a business
today, and it is capable of a wide range of usage (which is covered in a later
chapter.)

In the following chapters we shall be looking at how Pick achieves these
claims, by looking at each piece of the Pick system jigsaw in turn.

24

Chapter 3

Databases

“Knowledge is of two kinds; we know a subject ourselves, or we know where
we can find information upon it.”

Dr Johnson

As anyone with a cluttered office knows, having large quantities of
information on hand does not guarantee ready access to any particular piece
of information.

Manual record keeping systems are limited and frequently cumbersome.
They can be organised in only one way, for example according to subject in
alphabetical order. Electronic files can be organised and used in several
ways, quickly and accurately. Perhaps most importantly, electronic filing
allows you to do more planning, book-keeping and evaluating of your
business.

In Pick, the database is at the heart of the operating system giving the ability
to handle information and make it available to anyone using the computer.

In this chapter we delve into database concepts with specific reference to
Pick, and explain in some detail the underlying software architecture. This
will allow us to discover certain issues which appear in database design and
implementation, and will explain Pick’s power in dealing with these issues.

What is a Database?

A database is, in essence, an organised, integrated collection of data. It is
also rather more than this, since a collection of data has no particular value
unless something can be done with it. The types of operation that one may
wish to carry out on a database include:

To access or retrieve particular data items from it.

To search for a particular data item or, more importantly, a
combination of data items.

25

from the third level, about actual names of Mozart’s classical works in the
collection.

JAZZ
CLASSICAL
POP {
v {
MOZART | Jazz POP
GRIEG o
HAYDN
v
v L
CONCERTO 3

OPERA

| F SYMPHONY

Figure 3.2 Scarching for Mozart’s Music

This type of system has the disadvantage that it is difficult to maintain, and
the structure becomes very complex, forcing the user to formalise his view
of the data in an artificial way. As a result, the setting up and working of this
sort of database also becomes complex. As the amount and variety of data
grows, so the hierarchy grows which often results in two pieces of data which
are related residing on two completely different paths in the hierarchy.

The result of implementing a hierarchical database usually results in
expensive and time consuming programs having to be written to keep
relevant data together. This is an important point, as it explains the
inflexibility inherent in hierarchical database design.

These systems can offer a high performance in certain limitea applications,
but do not satisfy the requirements for a flexible information resource.
Prestel is a well known hierarchical database, but is a good demonstration of
the inherent weakness of such a system.

Relational databases

On the other hand, Pick’s objective is to be an information resource which
is flexible and easy to use. This is based on the relational database model.
The relational database is modelled upon the mathematical theory of
relations, and was first developed by E. F. Codd of International Business
Machines (IBM) in about 1970. This relatively new type of database concept

28

is the subject of much interest as for the first time in computing it provides
greater flexibility than other approaches.

In the Pick database, flexibility has been achieved by abolishing the
hierarchy of levels - allowing any item of data to be used as a gateway to
further information. All the data is stored in a two dimensional table, a row
of which will contain all the information on, for example, an entry in arecord
collection.

TYPE COMPOSER TITLE
CLASSICAL MOZART CLARINET
CONCERTO
CLASSICAL GRIEG PEERGYNT
POP TEARS FOR THE HURTING
FEARS
CLASSICAL MOZART MAGICFLUTE

Figure 3.3 Two dimensional record collection.

A relational database represents the user’s view of the data. Relational
databases also represent data as flat tables with the columns known as
attributes and the rows (records) as tuples.

Databases are, by their very nature, large, so in reality vast tables are
required. Each entry in the table is made up of a list of connected items; any
subset of the items in the full list can be readily retrieved. No two rows of a
table are identical but each has the ability to be uniquely identified, in our
case by name and staff number. The rows or columns can be ordered in any
manner, providing all the elements within the column are of the same type.
The relational approach is based upon the principle that the relations
between the data elements are the object of concern when retrieving
information.

The rationalising of databases is effective and results in normalisation. For
a database to be normalised there are four requirements:

Each table contains only one record type.

All rows are distinct - no duplication is allowed.

No data items may be empty.

The sequence of rows and columns is immaterial.
In a relational database each data item needs:

A name.

29

A definition.
A representative value.
A set of allowed values.

This data description is not held in the actual database but usually in a
dictionary. The actual database contains occurrences of data, grouped into
records, and associations between these occurrences. The associations are
made using relational algebra and calculus.

Relational algebra

A relational operator takes one or more relations as its operands and from
them produces a relation. A relationship implies an association between the
attributes. There are no pointers to build and maintain, as there are in
hierarchical databases, nor are there sets of processing relationships. Rather
the data is modelled in a natural form of relations.

All operations on relations result in new relations. Thus a sequence of one
or more operations on one or several relations gives a collection or tuples,
with attribute domains. If the result has duplicate tuples, all but one of them
is deleted as duplicates are not allowed in the definition of a relation.

Relational calculus

Relational calculus is another way to logically represent database
operations. Like relational algebra, it neither depends on any particular
physical data structure nor requires artificial constructs such as logical
operators or sets. Unlike relational algebra, relational calculus is non-
procedural. The algebraic approach isolates data items by applying
operations on relations until only the desired items are left. The calculus
approach isolates data items by name or by relationships to other items.

Relational models differ in several aspects from hierarchical models. For
one, the relational model is based on a foundation of theory from relational
mathematics. Another difference is that the relational model is more
abstract. Hierarchical databases are directed at programming systems; the
step from these to a programming language is a short one. The relational
model consists of a group of concepts that are not particularly related to any
programming language.

The relational model represents data as it exists and does not force the use
of artificial constructs, rather it reduces data relationships to simpler
components and then represents the components directly.

Using the relational model, Pick can handle many differing types of request
for information simply by examining the rows and columns of data. It is this

30

design of database which gives Pick its flexible, easy-to-use and remarkably
powerful system. In other systems the otherwise independent data can now
be associated with other elements in the database so that each user can
access and retrieve information which is relevant to him and no one else ,
and not just in a format that has been predetermined by a systems designer.

Unlike the hierarchical model the internal structure and the user’s view of
the data are very similar which makes the conceptual jump between the data
in the real world and the data in the computer much less difficult for the
average user to comprehend.

Hashing a Database

The task of selecting one element from a file made up of many related
records relies on the database management system being able to retrieve the
element quickly and efficiently. There are several techniques available for
arranging and facilitating the retrieval process, but the one used by Pick is
called hashing.

Hashing involves performing an arithmetic operation on a field in the record
using the result as an address for the data. As every house in the county has
an unique address, so every line in the relational two dimensional table will
have an unique address, except that it will be numerical rather than
alphabetical.

An example of hashing is to take a simple arithmetic operation such as
adding together the digits of the key to give the location.

Staff number Department Pay Scale

903
187
743
822
771
124
555
010
001
233
421
541

SOV ONOLO N
AR NUNFRONARWLWAN

This is the original file in the two dimensional format. Adding together the
digits of the staff number will give us the actual storage address of that
particular line in the hashed file.

Forexample: Staff Number 903 = (9+0+3) = 12th position in hashing table.

31

Sta Department Pay Scale

Number
01 010 6 1
02 001 8 5
03
04
05
06
07 124 5 2
08 233 9 2
09 421 0 1
10 541 0 4
11
12 903 1 2
13 822 8 4
14 743 0 3
15 771 0 6
16 187 5 6
17 553 0 0

The hashing takes place by taking one line at a time from the original table
and calculating its address. In the case of item 010 the addition of all the
digits come to 1, so the record is placed in position 1. The next entry in the
original table is 001, which when summed is also equal to 1, but the slot 01
is already filled so it goes to the next available spare slot, in this case 02.

This technique means that only selected lines in a file need to be scanned. In
other types of retrieval process every line in a file is scanned separately,
resulting in a search of a file with 10,000 items taking 100 times longer than
for a file containing 100 items.

The latter type of searching is like going to a library to find a book and
starting the search at the bookcase nearest the door and examining each
book until the one wanted is found! The hashing routine makes sure you get
to the book you are looking for directly, for the book number gives the
bofokcase, shelf and the position on that shelf, very much like a grid
reference.

The Query Language

A database management system should also provide the ability to obtain
information from a database on an ad hoc basis. This is achieved using an
interactive “query” language. This is one of the most important parts of the
system as it makes the database both accessible and useful. The query
language in Pick gives the ability to:

32

Handle spontaneous information retrieval.

Provide a convenient English-type and non-programmer-
oriented means of using the system.

Enable the access of parts of the database which satisfy a set of
data content qualifications.

The query language (Access) has commands which are self-standing. That is
they are unrelated and processed individually by the database system. The
query language gives the ability to access data on the basis of any nominated
point as well as being able to browse through the data. The flexibility of this
query language is far beyond the limited accessing facilities provided by
programming languages using file access methods adopted on conventional
operating systems.

Database query languages can be divided into two major groups: procedural
and non-procedural. A procedural query language is one in which a list of
instructions is supplied to the computer in the form of a ‘procedure’ which
the user must supply before the problem can be solved. A non-procedural
language allows the user to request the answer without telling the computer
how to obtain that answer.

A powerful non-procedural language such as Pick’s Access can be used by
the absolute computer novice, as no understanding of the database structure
is required. An information request about members of staff might be:

LISTSTAFFWITHCHILDREN
The results might be displayed as:

STAFF CHILD

NUMBER

010 ALASTAIR
001 LuUcy

612 CHARLES

As we have seen, database access is a two-step process. Firstly the required
data must be found and secondly it must be displayed in a relevant format.

Finding this information may be difficult if the request involves several data
relationships and if the database structure is complex. Also, the user may
have several ways to request the data. To the user they are equivalent but,
to the database system, one way may result in easy access and efficient
processing, while the other may be slow and cause repetitive, wasteful, to-
and-fro-processing.

Once the data is found, it must be presented to the user in a familiar and
useful format. For example if the retrieval process produces a 10,000 item

33

list, most users would just leave it sitting on their desk and ultimately file it
in the bin! Information, such as averages and totals would probably be far
more useful and meaningful than the entire list being printed.

Such problems of database access are usually handled by the system without
the user being aware of any potential problem. You should be aware of these
functions, however, as we will discuss these topics in later chapters.

Pick Database Processing - The Advantages

Once using Pick, any operational information that an organisation has
stored on the database is in one standard and coherent format. Once this
standardisation has taken place, all data is available making it accessible and
therefore valuable as an information asset. By replacing a series of files with
a fully integrated database the task of relating all the different pieces of data
becomes much easier and less prone to error.

The time needed to develop new systems or to respond to bespoke requests
is drastically reduced. Bespoke enquiries can be performed by anyone, not
just the company “computer expert” or the “overpaid programmer”. The
result of using a database allows information to be obtained from existing
data quickly and efficiently.

Data integrity

Another important advantage of relational databases is the elimination of
data duplication. If data is recorded in two places on a system then the
database will lack integrity. Integrity refers to a variety of tasks in the
database environment, the main ones being :

The co-ordination of data accessing by different applications.
Policing the propagation of information being updated.

The preservation of a high degree of consistency and correctness
of data.

With many different users sharing various portions of the database, it is
impossible for each individual user to be responsible for the consistency of
the information. The database maintains the relationships of the user’s data
items to all other data items, some of which may be unknown to the user or
prohibited for the user to access.

If data is recorded in two places it is easy for one value to be changed and the
other not. The separate data items then disagree with each other and may be
retrieved by two people, resulting in two reports that conflict; this soon leads
to a general mistrust of the computer’s ability. One of the major objectives
of the Pick database is to maintain control and preserve the integrity of the
database.

34

Database processing can lead to better data management within an
organisation. When data is centralised in one place, keeping up with and
maintaining that information is easier.

By using the Pick database, any software programs such as stock control or
accounting will interface directly with the files. This means that any changes
in the files need to be accommodated by the software programs, and vice
versa. The Pick database will allow changes in either area with the minimum
of fuss and bother. With many other systems it can take weeks to change a
piece of software or the structure of the data. In Pick the data and the
program are independent of each other rather than being intricately tied to
each other, allowing easy maintenance for any given system.

The Need for Record Locking

When using a database, which is being shared with other users, two or more
users may want to retrieve the same data concurrently. This poses many
problems. Consider what would happen to the database if the following
sequence of events were to happen.

1. Fred retrieves staff record 010 from the database.

2. Jim retrieves staff record 010, not the real thing but just another copy.
3. Fred changes the record and replaces it in the database.

4. Jim changes the record and replaces it in the database.

The changes that Fred made will have been overwritten by Jim’s amended
record, so Fred’s changes have disappeared. To avoid this happening, the
Pick operating system has a series of levels at which a lock out of a user can
occur. The record is locked against being retrieved until it has been placed
back. But, this lock out system can lead to other problems. Let us say that
Fred exclusively locks staff record 101 and Jim locks staff record 102. Next,
Fred tries to lock record 102. Since record 102 has already been locked by
Jim the system will not give control to Fred, instead it puts Fred on a waiting
list for the record when Jim has finished with it. Now suppose Jim tries to
lock record 101. It is already locked by Fred, so the system puts Jim onto a
waiting list for 101. The result is Jim is waiting for Fred, and Fred is waiting
for Jim. The two users will never finish the tasks. The Pick Database
Management System monitors the users for a declaration of intent to modify
or delete a record, preventing this type of locking from ever occurring.

Summary

The advantages of Pick relational processing include: more timely
information; more information; less data duplication; program and data
independence; better data management and economies of scale.

35

The Pick integral relational database management, and English-like query
capability, allows several users to concurrently access a common database
and format their own reports without having to develop unique programs.
For example, since all users may share the same data base, an authorised
person in accounting can easily obtain up-to-date reports from marketing by
using simple interactive statements. Moreover, the relational database
manager provides the capability to interactively analyse data and
dynamically manipulate and manage files. As an integral part of the
operating system, its feature include:

1. Sharing of data among multiple users and departments, eliminating data
access barriers that can occur in systems where each department has its own
files.

2. Datais recorded only once, by the department that controls it, without the
need for duplication in other departments who may need to retrieve the
information.

3. Data files on the database may have the relationships between the items
of data changed or added without any impact upon existing data files.

4. An easy to use query language which is relatively free-form, giving
automatic or user specified output report formats in either columnar or non-
columnar forms. The query language also provides generalised data
selection using logical and arithmetic selection criteria.

36

Chapter 4

Files and Structures

The term ‘file’, as used in the context of the Pick operating system, refers to
the mechanism for maintaining a set of like items logically together. Files are
organised in a hierarchical structure, with files at one level pointing to
multiple files at a lower level. Four distinct file levels exist and this chapter
explains the purpose and structure of level 4.

The Nature of a File and its Structure

A file is an organised collection of related information, and any computer
system is comprised of files of information. In that respect the computer has
become an electronic filing cabinet.

In the Pick operating system all information, including the language for data
retrieval, is held in the same type and structure of files. Other operating
systems work with many different types of files, both in concept and
structure, leading to a complex and confusing lifestyle. The structure and
workings of the Pick files are central to the operation of the operating
system. As in a “paper” file, a computer file is a way of keeping similar
information together in one place. For instance, one file may contain the
census returns for all the people in one village or county. Files can be
organised in different ways. Pick files are arranged in a hierarchical manner
with four distinct levels, shown in Figure 4.1.

In Figure 4.1 it can be seen that files at one level point to multiple files at a
lower level. At each level an ‘existence’ check takes place. For instance, the
system dictionary will check for the presence of user A’s master dictionary,
before allowing the level to be traversed, and so on all the way down the
chain. An example is shown in Figure 4.2. When user A is working on the
stock files and then wishes to view the sales ledger, the path is reversed and
a new path started down the user B path from the system dictionary.

At first glance this seems like the diagrams and explanations about the
hierarchical database discussed in the last chapter, but there is one
important difference. The database consists of the lowest level of the files,
i.e. all the data files. It is these data files which are related together to form
the database facility.

37

8¢

SYSTEM

L

USER A USERB USERC USERD
STOCK CUSTOMER ACCOUNTS
DICTIONARY | | DICTIONARY DICTIONARY
STOCK CUSTOMER SALES PURCHASE
DATA DATA LEDGER LEDGIER
DATA DATA

Figure 4.1The levels of files

SYSTEM
DICTIONARY
|
f > |
USER A USERB
STOCK ACCOUNTS
DICTIONARY DICTIONARY
STOCK SALES PURCHASE
DATA LEDGER LEDGER
DATA DATA
Figure 4.2

Each of these four levels of files has a specific task and purpose within the
Pick operating system. In the rest of this book these tasks and the structure
of each of the file levels will be explained individually. We now start with the
lowest level, the data files.

Data Files

The process of handling a great many pieces of paper is common in any
business. It is these pieces of paper which contain information and data
about the organisation; the muddle that they get into sometimes seems
almost inevitable. For this reason, offices have developed various methods
for keeping all the paper in an orderly and retrievable state. Like “paper”
files, data stored on a computer file needs to be organised to enable it to be
of some use in the future. Items need to be organised in such a way as to
facilitate retrieval; there is little point in filing something if it cannot be
located again.

39

If we view a computer as an electronic filing cabinet, then the operating
system is acting as a secretary. A file is not unlike a complete card index
containing, for instance, a card for every customer. Usually the cards are
filed in some semblance of order, quite often alphabeticaliy. In Figure 4.3
the cards are filed by customer name. In other words, the customer name is
the criterion by which the card index is referenced.

Figure 4.3 A traditional card box

An item in such a file is one card containing all known information about a
customer. A computer file will have facilities for the nominated customer
name or keyword to be used as the reference point for searching, enabling

one item to be distinguished or picked out from all the other items in that
file.

If, in the card file, we wish to find out what items the brewery supplies to the
Green Man pub, the procedure would be as follows: Locate the card-box, go
through the file index to “G”. Having found the section for “G” then
individually look at every card until the one headed Green Man is found.
The word Green Man is the reference point that is used for the search
mechanism. With this type of file (which is very common in computing), the
only way to find the information on the Green Man pub is by searching
specifically for the customer name.

Pick files are not restricted to using just the customer name. If this card file
was put onto a Pick system number of keywords could be used. The three
cards that are shown in Figure 4.4 might also be selected by using the word
‘tonic’ as a selection criterion enabling all the pubs with tonic on the
“supply” line to be selected. This eliminates the need for looking at each
card sequentially and individually.

40

NHTE LIoN

s vpply: Tornic

ROSE £ COLNS

SUPP(,.., - Toru €

GREEN MAN

Sulpfalj . HM-(YH.L(\/\ Glnﬁéw’
Bittae Lemon

-
{cnic

Figure 4.4 Three individual cards

Record attributes

In a card index there is only so much room on a piece of card for putting
information. Likewise each item stored on a Pick machine has a maximum
size of 32K of data (32,267 characters). Items can be divided into fields
called attributes, and there may be as many of these as is wished within an
item.

In Figure 4.5 showing the record of the Rose & Crown pub there are six
attributes or pieces of information apart from the name of the Pub contained
on the card. They are the phone number, the items supplied to the pub,
payment terms, amount of discount allowed off list price, the salesman
responsible for the pub, and the address of the establishment in question.

In any file there will be multiple elements or components of this kind that
can be referred to as a single entity. If the yearly calendar was stored as a file,
it must be possible to refer to a single date as well as being able to refer to a
month or the entire year. In the above card this type of elemental structuring

41

Attribute

0 WHITE LION

1 01-456-7799

TONIC
2 —_— DRY GINGER
BITTER LEMON

3 36

4 12

5 MARK PRIOR

6 10THE DRIVE

CRICKLEWOOD,
Figure 4.7

44

NHITE LioN
ol - 356 - 1799

ToNIC
25 NEITE LION
0o
hasonem O - wSe - 1799

(0 THE DI ToNnIC t+ BITTER LEmoN
30
iofs

Figure 4.8 History of the White Lion

This sort of loss and fragmentation of information can be avoided by keeping
all the past and present information on one computerised “record card” as
graphically represented in Figure 4.9.

The salesmen for the White Lion pub were first Alasdair Morren, secondly
Paul Hill and thirdly Mark Prior. Each salesman has achieved different
product sales and different discount rates. In attribute 4 the first figure is the
discount that Alasdair Morren was able to offer the publican, Paul Hill
offered 10% and Mark Prior 12%. Attribute 2 shows that two of the
salesmen have managed to sell more than one product, so the multi-value is
split into sub values. This is seen in the file by the use of the character “\”.

45

Attribute 0 WHITE LION

Attribute 1 01-458-7799
BITTER TONIC
TONIC LEMON
DRY
2 TONIC GINGER
BITTER
LEMON
3 30 30 30
4 0 10 12
5 ALASDAIR PAUL MARK
MORREN HILL PRIOR
6 10THE DRIVE
CRICKLEWOOD
Note: the boxes have the following meanings.
i sub
multi value
value value

Figure 4.9

46

Where Alasdair Morren has only managed to sell one item it is represented
by an ordinary multi-value. An attribute can contain as many multi-values as
required up to a limit of 32,000 characters (which is the limit of a single
attribute). A multi-value is as elastic as is required by the user, containing
many multi-values or only a few. Multi-valued and sub-valued fields can be
manipulated by all of the components of the operating system: Access,
DATA/BASIC, PROC:s and the Editor. (Each of which will be discussed
later.) Essentially, multi-values and subvalues can be added, deleted,
located or retrieved from any giver: field with great ease. When the data is
displayed on a screen via the database query language Access, the attribute
marks “]™ are converted into carriage returns so the display is easy to read
in the form of one line entries. When the actual stored data is displayed on
the screen or printed it will be output as shown below:

OWHITE LION
101-458-7799
2TONICITONIC\BITTER LEMONITONIC\DRY
GINGER\BITTER LEMON
330130130
40110712 ,
SALASDAIRMORRENIPAUL HILLIMARK PRIOR
610 THE DRIVE CRICKLEWOOD

Notice that attribute O, the item identifier, is not given a line number.
Although it is an attribute, it has become reserved for its special purpose as
a keyword. Because the location of the data on disk is dependent on the
contents of attribute 0 it can not be altered and therefore is not given a line
number. Later in the book it will be shown how entries in the file dictionary
give special meaning to the line items for interpretation by the data retrieval
facilities and how more useful print-outs than the above can be formatted.

In the above examples we have not been at all bothered by the length of the
data. This is because the Pick file structure is dynamically variable.
Although each new attribute is stored on a new line, only the characters on
that line are held, none of the blank spaces are stored. Variable length files,
records, and fields provide efficient storage utilisation. Since there are no
fixed length fields, as in conventional computing, you only use as much
space as is needed and never have to reserve extra space ‘just in case ’ the file
you are working on becomes bigger than anticipated. The traditional
approach to attributes was to define them all in advance and to “fix”’ them
at a certain length. That is to say each field has a predefined length and
position within the item. This has the knock-on effect of the item itself being
of a fixed and standard length. The salesmens’ name attribute when held in
a fixed length format should be at least 20 characters long to ensure that 99%
(there’s always an odd one out) of possible names can be entered; however
this would involve the storing of unnecessary space characters.

47

With these salesmen’s names there are 34 characters which make up the
names (including the space character between the first and surname),
leaving 26 redundant spaces that are stored on disk as actual data - what a
waste of space. Only in the case of getting a name like Rowland
Mecklenburgh, when all twenty allocated spaces are used would this type of
fixed file be efficient. But should there be a name longer than 20 characters,
such as Rowland’s brother Jonathan, the last name will be come truncated
and cut off in its prime.

JONATHAN MECKLENBURG

In Pick this does not happen due to the variable length fields. In the data files
there are two types of variability: one in the length of the data attribute (and
therefore the item), and the other in the number of items present in a file.
In many commercial systems the size of the file is fixed, and to expand those
fixed files is quite a daunting task which needs qualified, experienced
personnel. In Pick the files grow with you, dynamically as required.

When only the salesman’s name and no spaces are stored then the length is
variable. In total, 34 characters are stored rather than 60. The variable
length attributes eliminate all the wasted space that occurs in systems using
fixed length files. The variable length file structure which is supported
provides significant savings in terms of on-line disk space requirements, by
increasing the efficient utilisation and disk access. This feature generates a
flexible data structure which is hard to match.

Conclusion

These features make the system easy to use and easy to learn. Multi-values
and subvalues generate a flexible data structure which is handled very easily
by a computer novice.

So far, there are pieces of data in variable length format, collected together
to give items, each with a unique identifier, in the data file. In the next level
up in the file hierarchy is the data dictionary file which is used to describe the
structure of the file(s) found below it. The existence of the data file and the
associated data dictionary are linked. The data can only be accessed via a
dictionary, and no single file can exist without a dictionary to define its
location and structure. In addition to storing the location of a file on disk, the
information contained in the file dictionary serves as a road map for
retrieving data from the associated data file when using the retrieval
language Access.

48

Chapter 5

Dictionary Files

Dictionary Files and Their Structure

The reporting functions achieved by the query language of the database are
achieved by associating with each data file a dictionary file which contains
coded information about each of the various data attributes and how they
are to be displayed. In a relational databasc each date item needs at least:

A name.
A definition.

and, optionally:

A representative value.
A range of allowed values.

It is important to remember that a file dictionary has the same structure as
any other file held on the Pick system; every file consists of a number of
items, each referenced by a item identifier and consisting of any number of
attributes.

So why a separate section on dictionaries, when the data file structure has
already been explained? Well, dictionary files do have the same basic struc-
ture but with certain constraints. Each item in a dictionary file must be in a
particular format in order for the system to perform data retrieval functions
for which the Pick system is renowned. Every data file is found, at the fourth
file level, as seen in the hierarchical diagram in the previous chapter.
Directly above the data file level are the data dictionaries.

Although the detail explained in this chapter on dictionary files may seem at
times somewhat tedious, it is important to understand the structure of them.
Dictionary files are one of the cornerstones in understanding how Pick
works and examples of dictionary items are used constantly in following
chapters to illustrate features not yet discussed.

Every data file needs to be associated with a dictionary. In Figure 5.1 the
customer dictionary is associated with two data files. The file dictionary con-

49

CUSTOMERS
DICTIONARY

LICENSEE

PUBDATA DATA

Figure 5.1

tains attributes which define the structure of the data and how that data is to
be presented on the screen or on paper.

For instance, to find all the customers who are privileged to have Paul Hill
as their salesman, the command:

LISTCUSTOMERS WITH SALESMAN "PAULHILL"

neceds to be entered. The word customers refers to the data file in which the
relevant data is stored. The word salesman is a label, associated with a par-
ticular attribute of the named data file. In our example, attribute 5 of every
customer card contains the salesman’s name.

NH ITE LION

ol - 4So -7199
one + BITTER LeEmonN

30

10%e

PAvL HiLL

(o, THE DRIVE, (RICKLEWOOD.

Figure 5.2

50

The label given is, in fact, the item identifier which the query language
processor uses to fetch data. The example command above looks at every
attribute 5 in the customer file, and then passes the items which have the
value “PAUL HILL” residing in that attribute back to the Pick query
language for output.

The item identifier (see previous chapter), of a dictionary item is the name
which the data attribute is associated to and is to be called when using the
guery language. The provision of a dictionary item SALESMAN in the
ictionary for the CUSTOMER file enables the query language to locate
and output the data as every item in the dictionary file is associated to one
particular attribute in every item in the data file. Thisis shown in Figure 5.3.

DICTIONARY FILE
SALESMAN |- ,
=== 1
| 1
! |
| |
1 | |
e e e — T———— 4 I
[, 4
DATAFILE
1
2
3
4
5
6
4
5
6
3
4
5
6
3
4
s PAUL
6 HILL

Figure 5.3

51

Data Dictionary Attributes Explained

The structure of the dictionary file is always the same. in that cach is
composed of a number of items. and cach item is divided into attributes. In
a dictionary, each attribute in an item has a spccific purpose. which is bricfly
explained in the following paragraphs.

Attribute 0

This, as in the data files, is the name used for retricving a spccific attribute.
It is best to think of this as a shorthand tag. For example, the attributc
representing a club membership number could be MEMNO. standing for
MEMBERSHIP NUMBER. The chosen name should be as short as
possible as well as being meaningful. The entry for the item identificr is used
by Access as an information retrieval word. For the pub’s customer file the
dictionary file might be:

PHONE
PRODUCTS
DISCOUNT
PAYMENT
SALESMAN
ADDRESS
PURCH.AMNT
DISCOUNT.AMNT

Each word describes an attribute in the data filc.

Attribute 1

This can be one of two values “A™ or “S”. The “A" defines an actual
attribute definition, i.e. that the data is in the file already and just nceds to
be located to be output. “S™ indicates that some manipulation of data necds
to be done. For instance, two data attributes are added together. Rather
than store three pieces of information, store the two relevant figures. and lct
a dictionary item add the two together. This is particularly uscful if the two
figures being added are constantly changing. Using the customer file as an
example, the amount of discount given may be needed as a figure, giving the
following attributes in the data dictionary filc.

Attribute® | DISCOUNT | PURCH.AMOUNT | DISCOUNT.AMNT
1A A)

/\\ N /
~— ~~—

52

Attribute 2

This is the Attribute Mark Counter (AMC or field number of the data file).
It keeps count of the number of fields that have been defined for a particular
file. This attribute also gives information on the attribute position in the data
file.

Att O | DISCOUNT PURCH.AMOUNT DISCOUNT.AMNT | SALESMAN
1 1A A S A
217 4 99 5
N\ /
N\ e

S ~—~

Attribute 2 ofitem DISCOUNT has the value of 4 telling us that the discount
information is to be found in attribute 4 of each item in the data file, just as
SALESMAN is always found in attribute 5. Each dictionary item represents
a column in the conceptual two dimensional table, giving the operating
system the column in which to look for the information.

DISCOUNT.AMNT, does not point directly to a piece of data, so has a false
AMC - in this case, 99. The AMC is greater than the number of attributes
present in the data file, so no association to data is immediately made. The
actual calculation of amount of discount is done in a later attribute.

This numbering of the data attributes should be unique. No other data
element should occur at the same field position, unless deliberately.
However, it is possible to use the same field position to create a synonym.
This means that the same value can be accessed in part or in whole using
different names. This can be useful when data has various aspects to various
users in an organisation. On one person’s document number could be
another person’s receipt identifier. It also allows data attributes to be
accessed using more than one language. To make a synonym you simply
define two fields in the same position, but with different item identifiers. If
the same attribute is simply being renamed it is practical to keep all other
characteristics the same; the two synonym items can be used to access the
same data, or parts of the same data. For example, the dictionary item
SALESMAN could also have a synonym REP, which would be associated
with the same data.

Attribute 0| SALESMAN{| REP
1 A A
215 5

This allows a flexible vocabulary of terms to be built up.

53

Oncce the attribute position in the data file has been-decided it should not be
altered, this is because the ficld position is used by the system as a reference
to the actual physical storage positions on disk.

Attribute 3

This may optionally contain the text which is to appcar at the hcading of the
column for the defined data field when it is displayed using the query
language. A multi-linc heading can be specified by including all the desired
characters in attribute 3, with the character *]” separating the lines.

Att © |[DISCOUNT | PURCH.AMOUNT | DISCOUNT.AMNT | SALESMAN
1T |A A S A
2 |7 4 99 5
3 [piscount DISCOUNTIAMNT | SALESMANINAME

The above contents of attribute 3 will be displayed as column headings when
uscd via the Access language. The text in this attribute may be anything, and
not nccessarily the same as the item identitier. If no text is entered then the

item identifier is automatically uscd as a column heading. The above table
will be displayed as follows:

DISCOUNT PURCH.AMOUNT DISCOUNT SALESMAN
AMNT NAME

DISCOUNT.AMNT and SALESMAN are displayed on two lines. A new
line is actioncd by the *|” character.

Attribute 4

This attribute offers the facility to define a sct of attributes that are
controlled by a single attribute. The controlling attribute is known as the
parcnt, and is used to indicatc dependency by other attributes. For any
potential valuc of the parent there arc scveral potential values of the

children. But, for one potential value of onc of the children there is only one
possiblc value of the parent.

For instance, if we examine a bank, cach branch has a scparate code to
uniqucly identify it. In the table below it has been called SORT.CODE. This
is the parent attribute, for dependent upon this valuc are the branch account
numbers. This rclationship can be represented in attribute 4. SORT.CODE
is controlling attribute 2 (ACNO) defined by C;2 and ACNO is dependent

54

upon the value of SORT.CODE detined by D;1.

This attribute is rarely used in data dictionarics.

item-id SORT.CODE ACNO
attribute 001 A A
002 1 2
003 SORTICODE ACCOUNTINUMBER
004 C;?2 D;1
Attributes 5 and 6

These are not used in the data dictionary definitions, and must be null, not
even containing any space characters. When creating a dictionary item with
the editor, the user must be carcful to create null lincs (sec editing
techniques for further information).

The data dictionary items now look as follows:

Att O DISCOUNT PURCH.AMOUNT DISCOUNT.AMNT SALESMAN
1 A A S A
217 4 99 5
3 DISCOUNT DISCOUNTIAMNT |JSALESMANINAME
A
5
6
Attributes 7 and 8

Attributes 7 and 8 include various types of code for the formatting of data for
output purposes. One of these categories is conversion codes. Conversions
are codes specified in dictionary definition which enable certain types of
data values to be converted from one format to another. A common and
most frequent use of this facility is for date and time to be converted. The
date can take many forms, including:

15 MAY 1980
15/05/1980
15-05-80

The way dates are presented differ from person to person, so the Pick system
stores dates in a standard form and allows conversion to the required form.

55

The form stored internally by the Pick system is a four figured number; each
new day the number is increased by one. For instance, 1st March 1985 is
represented by the number 6720, the 28th February would have been 6719
and the 2nd March 6721.

This date counting system used by Pick is both individual and different. The
number appears somewhat arbitrary, but is in fact the number of days
counted since 31 December 1967. This date appears a weird choice until one
of the Pick legends is told. Richard Pick set the first Pick type operating
system running on that date!

There are various date conversion codes available (for converting the
internal number to a display format and a display format in an Access
statement into an internal form):

LISTDELIVERIESWITHDATE "1 MAR1985"

The first stage of processing this command is for the date to be converted
from its external format (1 MAR 1985) to its internal format (6720). Each of
the date records are then searched for the internal date (6720) When all
those deliveries which are due at the factory on day 6720 have been found
(i.e. the attribute DATE = 1234) the output is-converted into external
format for the report. This internal number system is not only more
economical to store than the external dates, but makes the equality
operations such as, “less than” and “greater than” much easier to process.
For example:

I{égT CUSTOMER WITH LAST.VISIT BEFORE "21 OCT
5 "

This would list all the customers who were visited before 21st October 1985.

Information can become somewhat confusing when dealing with internal
dates before the 31 Dec 1967, as the number held is negative.

The storage format for times is the number of seconds from midnight of any
one day. A time value held in this form may be listed in the standard display
format by including in the dictionaty definition for that item the code MT in
attribute 7. The standard display format for the time is hh:mm, where hh is
the hour (in twenty four hour format) and the mm is the minutes past the
hour.

There are various time conversions available, differing only in the displayed
version which is specified by the user.

A further conversion code deals with numeric values. The storage medium
for numbers, including those with decimal points, parts of numbers
(fractions), and all the other types of numerical representation are applied
by using an appropriate conversion code on attribute 7 of the dictionary
definition

56

attribute O AGE DATE.OF.BIRTH

001 S A

002 99 2

003 AGE DATEOF]1BIRTH
004

005

006

go7 D2/

The conversion code D2/ outputs the date of birth data in the format 15/06/
55, AGE has no need to be formatted as it is just a figure, say 32.

Attribute 9

This attribute must contain a valid definition code which indicates the
required type of justification

L Left justify

R Right justify
T Text justify

U Unfold justify

Justification of fields defines how they will appear when displayed. It is
customary for the numeric fields to be justified to the right so that they can
be shown in columns
99.99
888.88
For letters (alphanumeric) it is usual to align to the left

Tim Blower

28 Dead End
Croydon
attribute O AGE DATE.OF.BIRTH

001 S A
002 99 2
003 AGE DATEOF]1 BIRTH
004
005
006
007 D2/
008
009 L R

57

Chapter 6

The Master Dictionary

What is an Account?

In any business there are a number of distinct functions which are performed
within an organisation. Each of these tends to utilise a different set of files.
In conventional office practice each function would have its own set of filing
cabinets. The sales office may have files on each of its customers in one
drawer, and territory records for each of the salesmen, (for measuring
performance), in the next drawer. Each drawer in a filing cabinet is
equivalent to one data file stored on the Pick system.

CUSTOMERS -
[cusTomers] | Afie

_——l|_7

I anitem AN

ACCOUNT

]

Figure 6.1 A departmental filing cabinet.

60

An account is a computerised filing cabinet, separating 'sets’ of data from
different departments. The SALES account contains two files,
TERRITORY and CUSTOMERS which are shown in figure 6.2.

| I
I

| TERRITORY CUSTOMERS |
I DICTIONARY DICTIONARY :
| |
| I
| % Y |
| |
| |
| TERRITORY CUSTOMERS |
| DATA DATA |
| !
| Account Sales !

Figure 6.2 Where ----- represents the boundary of the account

Both of the sales files reside in the same account and, in order to make them
both accessible, a master dictionary is used to control them. Figure 6.2
changes to Figure 6.3, with the master dictionary connected to the sales files.

The master dictionaries comprise the next level in the file hierarchy. Each
user account has only one of these dictionaries associated with it, and in the
majority of cases this dictionary will be unique. In some companies, the
accounts may be divided into two parts - one part containing the ledgers and
the other stock control and order entry. In this case, the master dictionaries
for the two different users would be similar rather than unique. Uniqueness
is achieved by adjusting account vocabularies to the needs of a specific user.
Any sensitive commands, such as delete, can be omitted from a given
account, effectively preventing the use of that command.

The Master Dictionary or MD as it is referred to, contains entrics that
describe all the available user commands. as well as describing the files
which can be accessed. In Figure 6.3the MD has authority to give access to
thc TERRITORY filc and the CUSTOMER filc.

61

SALES
MASTER
DICTIONARY

[il

I

I

|

|

|

I

I TERRITORY CUSTOMERS
DATA DATA

: DICTIONARY DICTIONARY

I

I

I

| TERRITORY CUSTOMERS

| DATA DATA

I

|

| SALES ACCOUNT

|

Figure 6.3

As well as the single commands (called verbs) the dictionaries can contain
procedures, which store a series of commands: the commands may include
Access language vocabulary.

As at the previous levels, the master dictionary is a file comprised of a
number of items. Each of these items consists of a number of attributes, and
all of these elements are infinitely variable in length. One of the functions of
a master dictionary is to define what files can be accessed in the lower levels
of the hierarchy. This function of the master dictionary is known as the file
definition.

File Definition Items

As in the data dictionaries, which define the data in the level below them,
the master dictionary is defining which files can be accessed in the lower
levels. As might be expected, each of the attributes in these items have
different meanings to the items in the data dictionary! So, let’s have a quick
look, just to get an appreciation of them and what they achieve. The
dictionary item below is an example of a file definition item:

62

TERRITORY
001 D

002 48480
003 7

004 1

005

006

007

008

009 L

010 10

The attributes have the following meanings:
Attribute 0

In this case the item identifier has to be the name of the file that is being
pointed to.

Attribute 1
This is the D-code attribute; it must contain a D followed optionally by a one

or two character code. When a file is first created a D is placed in this
attribute. Other forms include:

DX Do not save this file when saving the contents of an account.
DY Do not save the data but the file space and structure remains.
DC The file contains data in 0’s and 1’s (binary). Used by BASIC

files. This type of file should not be accessed unless you’re sure of
what you’re doing.

Attribute 2

This is the actual position of the file on the disk storage rather than the
relative position in the next level of file. This figure allows the operating
system to locate the position of the file ready for data retrieval.

Attributes 3 and 4

These two attributes give the internal structure of the file. Each file, when
it is created, is divided into a number of smaller units. Each of these units is
called a group, and is represented by a number in attribute 3, known as the
modulo. The fourth attribute is known as the separation. These numbers
represent the number of frames found in each group. A frame is a part of a
group consisting of 512K. It is these portions of a file that are used in Pick’s
virtual memory. Virtual memory management enables the user to work with
an area as large as all storage associated to the system. The actual core of the

63

operating system is very small, so data files and program files are transterred
in frames, as required from disk storage to main memory. This is done by the
operating system through the use of a paging technique. In the example
there are seven groups, each consisting of one frame.

The purpose of dividing a file into smaller units is to enable a search for a
single item of data to take the shortest possible time. This process of defining
modulo and separation for a file can be used to optimise the file accessing
procedure. Programs are available to help choose the optimum combination
of modulo and separation. Since the search for any one item is restricted to
a single group, it is the group size and not the file size that will determine the
speed and efficiency of data retrieval.

Attributes 5 and 6

These contain data update and retrieval passwords respectively, which are
requested when a file is first created.

Attributes 7 to 10

These are the same as the attributes described in the previous chapter on
data dictionaries. Usually only attributes 9 and 10 are used, the others being
left null.

Synonyms for Files

File synonyms are used to allow access to files in another account. For
example, the sales people may want to look at the current invoices for a
specific customer. In the traditional office this would involve looking at a file
in another filing cabinet, possibly in another office. Pick gives the ability to
look at selected information in someone else’s filing cabinet, and to set up
signposts to the required data.

By having the ability to look in someone else’s filing cabinet the objective of
“data only being recorded once and shared by the various users of the
system” is fulfilled.

These file synonyms are only found in the master dictionary. Again they
have the general structure of a data dictionary item but with a few
differences:

Attribute 1

This is still called the D-code attribute but must contain the character ‘Q’!

64

CUSTOMERS 0.0.B.

TERRITORY

[] L]

SALES ACCOUNTS

Figure 6.4 By using synonyms, accounting can make invoices available to the sales team,
without having duplication of data.

Attribute 2

This contains the name of the account in which resides the file to be
accessed.

Attribute 3

This contains the item identifier of the file to be accessed in the specified
account

Attribute 4
This attribute is not used and should be left null.
Attributes 5 to 12

These have the same attributes to those used in file definition. items.

65

For example, here is a synonym entry in the sales master dictionary:

INV
001 a
002 ADMIN
003 INVOICES
004

It permits access to the INVOICES file in the account ADMIN. by simply
using the word INV as a verb. The contents of the INVOICES file could be
looked at by using the command:

LIST INV

You may have noticed that there are only four attributes present in thisitem,
when there are a potential 12. If only the first few are present in the item, the
remaining can be omitted completely. This can be seen in dictionary item
INV. The actual file definition itcm containing the physical location.
modulo and separation is never duplicated, but always fetched from the
owning master dictionary, in this casc ADMIN.

The master dictionary not only contains file definition items for the files in
that account, but also points to other files in other accounts. If Figure 6.5 is
examined, the user of the SALES account has the ability to look at three files
- two contained in the account and one in the ADMIN account.

I
SALESMD [ADMINMD
N
oo
I
I | | |
I
TERRITORY CUSTOMERS | | INVOICES DELIVERY
piCT DICT | DICT DICT
I
|
I
A | INVOICES DELIVERY
DATA pA | DATA DATA
I
SALES ACCOUNT | ADMIN ACCOUNT
Figure 6.5

66

The file pointers can reference any data file or dictionary in the system,
making all files available to any other user given the correct permission.
Other files in the same account remain closed and secure. In the ADMIN
account while the DELIVERY file remained secure from any unauthorised
access.

The master dictionary defines the locations of files and also contains all the
commands that can be executed directly from the terminal, these commands
have been categorised and called Terminal Control Language (TCL).

Terminal Control Language

The terminal control language of the Pick operating system is the point of
contact between the terminal user and the various pieces of the Pick jigsaw,
as represented in Figure 6.6

TCLCOMMAND

oopoonooooo [=}-]
ooo oa

L

Figure 6.6 TCL, The “middleman” between the user at a terminal and Pick

TCL is present on each and every terminal at system start-up prior to a user
logging on, but until the correct password has been given no command other
than logon is valid. Once the user is logged on to his/her account, the full
TCL vocabulary is invoked and further interaction and conversation with
the machine is obtained.

67

4 N

>SP-STATUS

THE SPOOLERISACTIVE
PRINTER#1ISPARALLEL,ACTIVE + ONLINE
ASSIGNEDOUTPUTQUEUES : 1

THENUMBER OF INTER-JOBPAGES TO EJECT
IS @

_ Y

As well as decaling with peripherals. there are various user information
verbs, which come under the category of utilitics. which include:

Figure 6.7

WHO Prints the linc number that the terminal is connected to,
and the account name to which the terminal is currently
logged on. In Figurc 6.8 we can sce the various replies when
cach terminal asks WHO?

>WHO
2 FINANCE

~ W o

>WHO
4 GAMES

Figure 6.8

68

WHAT Outputs the system status and configuration information.

TIME This displays the current system time and date, as shown in
Figure 6.9.
>TIME

14:27:4215MAY 1985
>

\ J

Figure 6.9

Other utilities allow the use of the Pick operating system as an incredibly
expensive calculator. Verbs such as ADDD, MULD and SUBD are
available There are also facilities to use the machine as a hexadecimal
calculator, should the need ever arise. With these commands there is no
facility for calculations in mixed bases (e.g. adding 21 (octal) to 39C
(hexadecimal) and obtaining the answer in decimal.)

Also, messages can be sent between terminals using the command
MESSAGE.

As can be seen none of these verbs allow access to a specified file.
2. Referencing verbs.
This group of commands allows a single file to be referenced. Many of these
commands provide “gateways” into another part of the operating system.
For example:

BASICBP UPDATE

will activate the Pick DATA/BASIC compiler, compiling the item
UPDATE which is in the file BP.

EDITBP UPDATE
This invokes the editor, ready for altering item UPDATE in file BP.

69

When compilation or alteration of the item UPDATE has been completed
control will be returned to TCL, indicated by the cursor prompt ‘>’.

3. Access Vocabulary

Access statements have a very flexible and generalised syntax with the
ability only to specify a single file and to select a subset of that single file
using items defined in the data dictionary associated with that file. An
example statement would be:

SORT CUSTOMERS WITH DISCOUNT GT 5% DISCOUNT
PURCHASES

All the Access words in the statement (SORT, WITH and GT) will be
defined in the master dictionary. The others being descriptions of pieces of
data (DISCOUNT and PURCHASES) will be defined in the data dictionary
for the file CUSTOMERS.

The verb itself has to be the item identifier or attribute 0. If we look at the
contents of a master dictionary item for a Access verb, the attributes will be
as follows.

000 SORT

Attribute 1 must contain the character P followed by another alphabetic
character. This second character is used by the processor which works on the
command. For instance any Access verbs will have the letters PA.

SORT
001 PA

The SORT verb looks as shown above.

The remaining attributes define the starting point within the piece of the
operating system that is being invoked.

This type of information is often interesting to know, but must never be
altered. This is one of the reasons the EDIT command is often excluded
from a user’s master dictionary, in order to prevent loss of systems functions
and business data.

The entire master dictionary user for SORT will be:

SORT
001 PA
002 35
003 4E

70

Summary of TCL

TCL is alanguage which provides the assignment of the following resources:
Direct computation.
Processor assignment (e.g. ACCESS, EDITOR, BASIC.).
Modification of system characteristics.
Statistics on data and its distribution.
File creation.

TCL is rather like the command processor found in the operating system
such as MS-DOS. There is a great deal to TCL, including commands for
creating files and new accounts, setting the time and being better informed
of the time and date, clearing files of data and sending messages to other
users. For the user TCL does not appear as a separate entity but tends to
blend in with the PROC and ACCESS parts of the operating system.

A complete list of TCL verbs found in the master dictionary is to be found
in Appendix A

Procedures - PROCs

PROC stands for Stored Procedure. The PROC part of the operating system
allows the user to pre-store a complex sequence of operations in one item,
which can then be invoked by a single word command issued from TCL. Any
sequence of operations that can be performed in TCL can be pre-stored and
executed from a PROC. This is particularly useful for reports, where a
library of items can be built up and run when needed, without having to type
in a long string of commands, or complex Access statement.

One of the powerful features of the PROC language is a series of commands
that make it easy to set up a formatted screen. With PROCs you can set
screen characteristics, position the cursor, display screen prompts and check
that any input from the keyboard is valid.

These Procedures are usually stored in an item in the user’s master
dictionary, and are items just like any other in the Pick operating system in
that they consist of a variable number of attributes. The item-id is the name
of the procedure and attribute 1 must contain the characters “PQ”, which
signals that the following attributes are to passed to the PROC interpreter.
Once stored, the Procedure becomes a command invoked by the item- id.

71

How a PROC works
PROC:s use four buffers. These buffers are divided into two pairs, each
consisting of one input buffer and one output buffer. Only one of the pairs
are active at any one time.

These are represented diagrammatically as follows:

l | L1 Topu
U .

| B i_ ____________ i Output
) t

Primary buffers Secondary buffers

Figure 6.10

In our case the active pair of buffers has been indicated by a solid line rather
than a dotted line. Each buffer has a pointer (indicated by an arrow) which
points to the position that is currently being looked at. All the pointers are
initially set to position 0.

Each procedure is an item in a file, usually the master dictionary. Below is
item LUCKY from file MD (Master Dictionary)

LUCKY
001 PQ
002 RI
003 RO
004 HSORT
005 IP?
006 A
007 P

Let us use this example to see how the buffers actually operate.

Each PROC is stored as an individual item. In the above example the item-id
is LUCKY. The first attribute value is always the code PQ. This specifies to
the Pick system that what follows in the current item is to be handled by the
PROC part of Pick. All the other attribute values contain statements that
generate TCL comands or manipulate the contents of the buffers. PROC
statements consist of an optional numeric label, a PROC command (usually
of one or two letters), and then the data which the command is to use. Using
some of the commands in LUCKY:

RO This is just a two lettered command.

HSORT The ‘H’isthe PROC command, and SORT is the data used by ‘H’.

72

Before the procedure is executed the four buffers may contain data from the
last time they were used. There is only one set of buffers per system, looking
like:

[ABCDEFGH | L1 Input
T
[LISTFILEEF |] 1 Output
s S
Figure 6.11

RI and RO commands will clear the input and output buffers giving:

T *
| | L _________i Oupu
* 1

Figure 6.12

HSORT, causes the text SORT to be placed in the active output buffer. H
is simply the command being used.

Input

1+
Sort E—

I Sort | Output
$

Figure 6.13

IP? then outputs a prompt to the user at the terminal. The answer that is
required is the name of a file required to be sorted. This process is shown in
Figure 6.14

73

3. Pattern matching and value tests. These give the ability to test and verify
input data as it is entered from the terminal keyboard.

4. Conditional and unconditional branching using the optional labels and the
IF statement.

5. Optional command labels giving each line a special number that can be
used for locating the line quickly and easily.

6. Inter PROC linking. One PROC may call another. Once a PROC is
invoked it will remain in control until it terminates, then it returns to TCL.
This is seen in figure 6.18.

ONE
CALL — 1
TWO < TWO
CALL N
l N | THREE < |THREE
TCL
TCL
Figure 6.18

More importantly, PROC controls the system and its peripheral units by
monitoring the status codes of the system

The PROC language is used to automate repetitive and complex sequences
of interaction with various parts of the operating system. It is one of the most
important software tools available within the operating system. It allows for
speedy development of customized commands, which are especially useful
for those who are not regular computer users. A complete list of the PROC
commands is given in Appendix B

76

Chapter 7

The Control of
the System

The system dictionary is the highest level of the PICK operating system file
hierarchy. The whole hicrarchy can now be revealed as consisting of four
levels as seen in Figure 7.1.

SYSTEMLEVEL SYSTEM
e et e — - — I
_ T 1
ACCOUNT USERA
MASTER Master
LEVEL pictionary
DATA CUSTOMERS TERRITORY
DICTIONARIES DATA DATA
DICTIONARY DICTIONARY
CUSTOMERS TERRITORY
DATA DATA DATA
FILES

Figure 7.1 The four levels of files

There is only one system dictionary per operating system, which is shown on
the diagram, and has an eagle cye over cverything below it, not unlike a
managing director as representcd in an organisational chart. The major
purpose of the system dictionary is to link together all existing accounts, and
to store data about the accounts in one central place.

77

Each account has a unique identifying item stored in the system dictionary.
It is initially created when an account is placed on the machine by using the
CREATE-ACCOUNT verb.

For example, if the account ALAN was to be created the following question
and answer session would take place:

>CREATE-ACCOUNT

ACCOUNT NAME?ALAN
L/RET-CODE(S)?
L/UPD=-CODE(S)?
PRIVILEGES?SYS2

MOD, SEP?

CREATE-FILE(DICT ALAN29,1)

CL4171FILE 'ALAN' CREATED; BASE = 13534, MODULO =
29, SEPAR =1

246 ITEMS COPIED
"ALAN' ADDED
"ALAN' UPDATED
PASSWORD?AJ
FINISHED

>

In the above example:

Upper case characters = machine prompt.
Underlined characters = user reply.

No user reply = a default value has been accepted by simply pressing
carriage return.

The above creates the account ‘ALAN’ and places the following dictionary
item in the system dictionary.

78

ALAN

D
002 13534
003 29
004 1

007 oc21BB1B
SYs?

L
10
The attributes in a system dictionary item are as follows:

Attributes 1 to 4

These are the same as those found in the file dictionary definition held in the
third level down in the hierarchy. The modulo and separation used at the
point of creation are shown in attributes 3 and 4.

Attribute 5

This attribute contains a set of retrieval lock codes (enabling a file to be
read) which are associated with the user. The only restriction is that they
must be ASCII characters.

Attribute 6
This attribute contains a set of update lock-codes associated with the user.

Each file resident on the Pick operating system may be individually locked
for both update and retrieval. A particular user might be assigned multiple
codes for the set of files he is allowed to access. Using the code locking
feature, a complex sequence of security and protection can be constructed
for each user. During the use of an account, whenever a retrieval or update
code is encountered, a search is made of the user assigned codes for a match;
if no match is found then access to the file is denied.

Security codes are verified by comparing the value in the file dictionary
against the corresponding string of values in the user identification item in
the system dictionary. Characters are compared from left to right. So, we
might have an account ALAN with the entry in the system dictionary as
follows:

79

010 10

Attributes 5 and 6 cach have the update and read codes “YES™. In order to
look at a file it must also carry the same update and retricval codes in
attributes 5 and 6 of the dictionary file item.

For example. we could have two files in the account ALAN, called SALES
and CUSTOMER, with the two file definition items in the master dictionary
as follows:

SALES CUSTOMER
001 D 001 D
002 4508 002 3777
003 3343 003 223
004 1 004 1
005 NO 005 YES
006 006 YES
007 007
008 008
009 L 009 L
010 25 010 10

When user ‘“ALAN’ is trying to look at some information in the files. the
retrieval codes in his user item are checked against the user items in the
dictionary item of the file concerned. So the statement LIST SALES will
result in:

L2011 FILE "SALES' ISACCESS PROTECTED

as the two access codes do not match.

USERID CODE FILE DICT CODE RESULT
YES YES Match - access
allowed
NO YES Access denied
Y YES Access denied
YES Y Match - access
allowed

80

As can be seen from the above table, the file dictionary code only need be
part of the user identification code for the match to take place. Access is
denied if the required password is incomplete (see line 3, in the above
example).

A very complex pattern of file codes can be built up.

Attribute 7

This contains the user’s password, to allow access to the requested account.
As the account dictionary item can be looked at, the password is usually
hash-coded to prevent unauthorised access to a protected account. Earlier
when the account ALAN was being created, in answer to the password
question a reply of AJ was made. When hashed it becomes OC21BB1B. A
password is not compulsory.

Attribute 8

Contains a code indicating the level of privileges allowed to the user by the
system. In the previous example both were awarded the SYS2 level. There
are three levels of system privilege,

SYSO
SYS1
and SYS2

SYSO is the lowest form of privilege which gives the following restrictions:
1. No alteration to any Master Dictionary item. 2. No use of magnetic tape
facilities. 3. No use of the DUMP verbs. 4. No use of DEBUG facilities. 5.
No FILE-SAVE or FILE-RESTORE facilities.

This is the level of freedom that the user is automatically given, unless
otherwise specified in the account creation procedure. When one of these
categories of commands is used illegally then the following message is
displayed:

[82]1YOURSYSTEMPRIVILEGE LEVELISNOTSUFFICIENT
FORTHIS STATEMENT

Level SYS1 allows: updating and alteration of the master dictionary items.
Level SYS2 allows: the full use of all available facilities.

However, there are still some commands that can only be executed from the
system programmers account SYSPROG, and these are listed in Appendix
C.

81

Attribute 9

This may contain the code U™ which indicates that cach time the user starts
to and finishes using the system. the actual time of those two cvents 1s
recorded by the system for accounting purposcs.

Multiple User Accounts

File synonym items can be cstablished in the system dictionary to allow
multiple users to have access to the same account. In this casc the concept of
an account is a group of files, and the user is the individual with access to that
sct of files. The distinction can be used to allow multiple users. such as a
group of pcople in an accounting department. to have controlled access to
onc particular sct of files.

The file synonym dcfinition item for cach of these users points to the same
master dictionary. but cach user will have a separate password and system
privileges level. Thus, some users might be able to access all of the file in an
account while others may be restricted to two or three.

Entries in the system file define the user’s master dictionaries, but also
special files which arc needed to control the system. These special files are
known as systcm level files, and they arc:

1. ACC These files arc used for keeping track of the amount of time that
uscrs have used the machine.

2. BLOCK-CONVERT This file defines the format used when the characters
arc displayed in an cnlarged format.

3. PROCLIB This file contains all the commonly used procedures such as
LISTUSERS.

4. SYSTEM-ERRORS This filc logs all the system errors that occur on the
machinc. giving a machinc history.

There is also a special account which gives access to the user identification
storage arca. as wecll as the files containing the crror messages. called
SYSPROG.

By typing thc word SYSPROG at thc logon prompt. and the correct
password, the key account to the system can be cntered. Access to this
account should only be given to a systems administrator as the SYSPROG
account left in the hands of a novice can, and has been known to result in
disaster. The special files arc available to users when they nceed them. For
example, the BLOCK- CONVERT file can be used via thec BLOCK-PRINT
command for printing out cnlarged characters. such as:

82

44

444

4444

44 44

44 44
LLLLLLL4L4

44

44

by using the command BLOCK-PRINT 4, from the terminal.

The other files are not as directly usable, but they do come into use when a
warning message is output, or when logging on and collecting the accounting
information. The collected information must be protected from tampering.

Sys'tem Usage Accounting

One of the standard files that constitutes the operating system software is the
Accounting history file. This file is used by the operating system to
accumlate statistics on each individuals use of the system’s resources. It is
divided into two sections: one part for “active users items”, defining users
who are presently active on the system; and one part for “accounting history
items”, defining past history.

Active user items include the name of the user, the port he was logged onto,
and the amount of time he spent logged on. This data can be used to send
messages to a specific person by finding the port on to which he is logged.

Accounting history consists of items that include the account name of the
user as defined in the system dictionary, the channel or port number to which
the user was logged on for that session, the date and time logged on, the total
connect time, CPU charge units in tenths of a CPU second, and the number
of pages that have been routed to the line printer.

Since the account history file is structured like any other file on the PICK
system, the Access part of the system can be used to generate reports on
system loading by port number, average connect time per user, average
number of sessions per account and so on, as well as totals for customer
billing or internal charging.

On the creation of a new account the master dictionary is copied from a
limited set of the system dictionary.

The account information for each user in the system dictionary consists of

the logon name, a logon password, and the file access codes for read and
write privileges.

83

In the Pick operating system there are four distinct levels of security that
protect the system and any data stored on the data base from unauthorised
access. Each user is identified to the system by the user identification in the
system dictionary. By establishing synonym definitions in the system
dictionary, different levels of security can be assigned to different users
logging on to the same account.

Before a user can log on, a password is requested. This password is stored in
attribute 7 of the system dictionary, and can be as long or as short as
required. This type of security is nothing new and is implemented on almost
every type of computer system.

Since access is controllable on the file level as well as the system level, by the
use of the retrieval and update codes, even the most complex security
requirements can be easily satisfied by the PICK operating system. By
individual assignment of passwords on a user by user basis and a
corresponding file by file basis, careful control of the database use can be
achieved in even the most dynamic computing environment. System security
is also enhanced, in a generalised way, by the use of the three level
restriction on the sensitive commands. Very sensitive commands are only
present in the top SYSTEM level, and a password is required in order to
enter that.

84

Chapter 8

The ACCESS Language

“Organisations create themselves according to their ability to use
information.”

R Stamper 1973

As was said carlicr, information is the most important rcsource in any
company, however large or small. In a small busincss, data held on a
computer is usually financial. Even small businesscs can have problems
writing and preparing all their invoices and orders by hand, as well as
controlling credit ratings of customers and the current position of stock. An
analysis of any busincss will reveal that up to date information is the essential
ingredient in all the decisions taken by a manager. How often has the
following sccnario happencd on this high-tech fast-lane planct ?

Life in the Fast Lane

A number of managers arc in an office discussing plans and budgcting for the
company over the next couple of ycars. They need to look at some business
figurcs in order to fucl both the arguments and the proposals. The only
information these managers receive is to reconvene next week, by which time
the computer will have been persuaded to yield the required information.
Onc of two actions will take place. A dccision will be made upon less
information than is desirable, relying upon assumption rather than fact
(which can lead to managers sccking ncw places of employment), or
alternatively the meceting will be adjourned and continued a week later when
the information is available (probably not the original information, but
better this than have to wait yet another week!). This sort of prestigious
computer is spending the company’s moncy like water and providing the
company with information worth only pence.

Information must not only be up to date, accurate and relevant, but also cost
effective. A decision to raise the price of a tin of baked beans by two pence
per can by a company producing 100,000 tin of beans a week, will be
worthless if it costs the company more to produce the information in making
the price increasc decision than the revenues from the decision itself.
Information must also be well presented and accurate. This can often be a
nightmare for those personnel responsible for producing a management
report.

85

The question that needs to be asked is: what exactly does management mean
by well presented? Using Pick, obtaining a report for management
presentation is no longer a nightmare. The Pick query language called
Access, allows management to obtain reports containing the information
they want, in the required format, exactly at the time they want it (every ten
minutes if they are fanatical).

Procedural Languages

The Access query language is a non-procedural language. Retrieval
languages may also be procedural, as examplified by COBOL, PASCAL,
FORTRAN, ALGOL and BASIC (people either love or hate this type of
language). They are procedural as the programmer has to define a foolproof
sequence of events for the machine to complete. In a non-procedural
language such as Pick’s Access, the user doesn’t have to go to the detailed
lengths of writing programs, but merely expresses his wish or area of
interest, leaving the machine’s operating system to sort out the complex
programming. In effect, constantly used routines have been
preprogrammed and can be activated upon request. Another way of looking
at this is to consider the actions necessary to produce a cup of tea. The
instructions to your in-house robot might look something like this:

Pick up kettle by the handle.

Take off the lid.

Put lid down on work top.

Walk to the sink. Turn on the cold tap.
Hold kettle under the running water.
Wait 15 seconds.

Take kettle away from running water.
Turn off the cold tap.

Walk to electric socket.

Put kettle down on work surface.
Replace lid. Insert electric cable into kettle.
Switch kettle on.

This is procedural. Every time a cup of tea is requested, the robot would
need to be given this sequence of instructions. The helpfulness of the robot
would be minimal - you would be wasting more time telling the robot what
to do than actually drinking tea. Alternatively by having a tea machine
installed, and pressing the button labelled TEA, within 30 seconds or so a
cup of tea (of sorts) arrives ready for drinking. This illustrates a
non-procedural interface. You have told the machine you want a cup of tea,
and then given a list of constraints: sugar, no sugar, milk and so on.

Using ACCESS

Access is a generalised information management and data retrieval
language. A typical inquiry consists of a relatively free form sentence

86

containing appropriate verbs. file names. data sclection critcria and format
modifiers. Access is. therefore, said to be a dictionary-driven language.

User Dict. Answer
Question > File '
v A

Figure 8.1

An access command is normally entered directly from the keyboard and sent
to the processor by pressing the RETURN key. Unless otherwise specified
the answer to the request for information will come back to the terminal. As
scen in Figure 8.1 the user request travels via the data dictionary and the
data file. selecting the required information. and then formatting it. beforc
being displayed at the terminal. The structurc of Access is closc to standard
English in that the commands are called verbs and are action commands.
The most used verbs in access are:

LIST
SORT

As well as others including:

COUNT
HASH-TEST
ISTAT
LIST-LABEL
SAVE-LIST
SELECT
SORT-LABEL
SSELECT
STAT

SUM

87

The verb always has to be the first word in an access sentence. The second
word of the command is usually the name of a file.

After the file name there may be a collection of various other criteria and
commands making up a request tailored to each individual’s requirement.

The simplest command is just a verb followed by a file name.

In this section the file VEHICLE is going to be used. (A complete listing can
be found at the end of this section.)

LIST VEHICLE

This gives a display of all items in the file, listing the contents of certain pre-
selected attributes from all of the records.

PAGE1 13:00:00 24 JAN 1985
VEHICLE... REG.... SERVICE. MAKE
NO DUE
N3 A667CUA 03/01/84 10
N4 A675TYR 04/01/84 11
4613 B88OORW 04/02/85 14
6062 ABC125Y 01/03/85 44
0001 A951MBW 02/02/83 13
1097 RUR614D 24/04/85 17
N7 PLO630W 17/03/83 12
00004 LCC704P 27/06/68 19
N32 PAP121X 29/03/68 18
00007 PWW906W 01/02/83 18
N10 A735RYG 01/02/85 10
V2 B234THY 26/03/84 14
V3 JUB359V 01/06/83 44
4693 05/02/85 99

14 ITEM LISTED

The LIST verb reads items from the file in sequential order, i.e. the order
they are stored in. When the list is longer than the screen allows to be
displayed at one time, the output process will halt at the end of each page
and will not continue until the user gives the go-ahead by depressing the
RETURN key. By using the command:

88

LISTVEHICLE NOPAGE

no depression of the RETURN key is nccessary between the pages of
display: the output is continuous. This command modificr was used mainly
in the days when printing terminals were commonplace. This does not need
to be used when outputting to a printer.

Each ncw item is automatically given a new linc on the output, but to aid the
casy rcading of a report. double spacing can be requested. By using the
statcmcent,

LISTVEHICLE DBL-SP

the above listing becomes:

PAGE1 13:00:00 24 JAN 1985
VEHICLE... REG.... SERVICE. MAKE
NO DUE
N3 A667CUA 03/01/84 10
N& A675TYR 04/01/84 11
4613 B88OORW 04/02/85 14
6062 ABC125Y 01/03/85 44
0001 A951MBW 02/02/83 13
1097 RUR614D 24/04/85 17
N7 PLO630W 17/03/83 12
00004 LCC704P 27/06/68 19
N32 PAP121X 29/03/68 18
00007 PWW906W 01/02/83 18
N10 A735RYG 01/02/85 10
X B234THY 26/03/84 14
43 JUB359V 01/06/83 44
4693 05/02/85 99

14 ITEMSLISTED.

As can be scen, when cach report is activated a heading containing the page
number, the time and the date is output as well as an end of list message
containing a count of thc number of items that have been printed. These can
be suppressed using the modifier HDR-SUPP, Icaving the listing consisting
of the column headings and the lincs of data. Even the column headings can
be climinated along with the time. datc and page number by using the
modificr COL-HDR-SUPP, rcsulting in just columns of data. Thc next
examplc is produced by the statcment:

89

LISTVE'ICLEREG.NODRIVERDEPARTMENT ID-SUPP

PAGE1
REG....

A667CUA
A675TYR
B88OORW
ABC125Y

A951MBW
RUR614D
PLO630W
LCC704P
PAP121X
PWWO06W
A735RYG
B234THY
JUB359V

14 ITEMS

John Lions, who has car ABC125Y., is in a department with a name longer
than the currently assigned column width of 20 characters, so instcad of
truncating the data, Pick has continued the department’s name on the next
line. The column widths are controlled for each dictionary item by attribute
10. Below is a listing of the contents of the dictionary item DEPARTMENT

13:00:00 24 JAN 1985

DRIVER. ..o unnnnns

NAME

KEVIN BARRY
MARK SUTTON
MARY PAUL
JOHN LIONS

JEAN
NICK
MIKE

AISH
PHILLIPS
MOULTON

STEVE WHITTINGHAM
PETER STEPHENSON

CHRIS O'BYRNE
JIM LAMLEY
STEVE WALTERS
STEPHEN POTTE
MARTIN BONE

LISTED.

from the example file VEHICLE.

Attribute 001

R

S

DEPARTMENT

SALES

SALES
ENGINEERING
RESEARCH AND
DEVELOPMENT
ENGINEERING
SALES
MARKETING
SALES
MARKETING
SALES

SALES
MARKETING
SALES

SALES

DEPARTMENT

8
DEPARTMENT

TDEPARTMENT;C; ;1

T
20

92

As can be seen the value in attribute 10 of the dictionary item
DEPARTMENT contains 20 indicating the width of the column. In order to
prevent the wrap round of data, the column width can be increased by
altering attribute 10, to say 25. (The facilities of the Editor used for making
the alteration can be found in a later chapter.)

DEPARTMENT
S
8
DEPARTMENT

TDEPARTMENT;C; ;1
T

OO0 00O00000
O0O00000000o
NNV WN =

o
-
o
nN
(9]

On generating the report using the new version of the dictionary item, the
following results are obtained:

VEHICLE REG.NODRIVERDEPARTMENT ID-SUPP

PAGE1 13:00:00 24 JAN 1985

REG.... DRIVER.............. DEPARTMENT...ovceeenan.n
NAME

A667CUA KEVIN BARRY SALES

A675TYR MARK SUTTON SALES

B880OORW MARY PAUL ENGINEERING

ABC125Y JOHN LIONS RESEARCH AND DEVELOPMENT

A951MBW JEAN AISH ENGINEERING

RUR614D NICK PHILLIPS SALES

PLO630W MIKE MOULTON MARKETING

LCC704P STEVE WHITTINGHAM SALES

PAP121X PETER STEPHENSON MARKETING

PWW906W CHRIS O'BYRNE SALES

A735RYG JIM LAMLEY SALES

B234THY STEVE WALTERS MARKETING

JUB359V STEPHEN POTTER SALES
MARTIN BONE SALES

14 ITEMS LISTED.

This change to the dictionary item has resulted in the column being widened,
but the data has remained unchanged. The defined width of the output
column has no effect on the actual length of the value which is stored in the
data file. The title has acquired a few more dots which act as padding
characters to the true column width. Attribute 10 must always contain an
integer.

93

Access has the ability to be sclective. as listing the entire file in no particular
order is not tremendously informative. How docs a manager retricve
information in a more mcaningful way ? Like the tca machine mentioned
carlicr. the operating system nceds a little more information. for example
“WITH TWO SUGARS™. in order to obtain what you rcally want and not
just a cup of tasteless stcaming liquid. To clarify the request for information
the Access sentence uscs a serics of options. Being a relational database the
mechanics of the query language arc based upon relational mathematics .
which is hidden from the uscr in general. but comes to light when giving
sclection criteria. To sclect a subsct of the VEHICLE file. the WITH
modifier is used with a relational operator. Thesc are:

EQ

= EQUALTO
NULL
GT
AFTER GREATER THAN
>

LT
BEFORE LESS THAN
<

GE . GREATER THAN OR EQUAL TO
>=

LE LESS THAN OR EQUAL TO
<=

NE
NOT NOT EQUAL TO

Listed below are a few of the possible sentences that could be constructed
using the above operators.

LISTVEHICLEWITHDEPARTMENT EQ "SALES"
LISTVEHICLEIF DEPARTMENT = "SALES"
LISTVEHICLEWITHDEPARTMENT "SALES"

LIST VEHICLE IF SERVICE.DUE AFTER "1 JAN
1984"

LISTVEHICLEWITHNO REG.NO

Each of these give a sclection of the entire file based on one constraint, but
more than one item of selection may be used and combined in one sentence.

94

LISTVEHICLEWITHDEPARTMENTEQ"SALES" ANDWITHNO
REG.NO

This is achieved by using the logical connectives AND and OR which allows
several criteria to be tested for simultaneously.

In addition. Access can search for values of a particular field, consisting of
specified character or characters plus any others, by including square
brackets inside the double quotes surrounding the value that is being
searched for. This is useful on those occasions when the correct spelling is
not known.

LIST VEHICLE WITH DRIVER = "MJ1" REG.NO DRIVER
DEPARTMENT

The above example will find all drivers whose name begins with ‘M’ followed
by any other characters, giving the result below.

PAGE 1 13:00:00 24
JAN 1985
VEHICLE... REG.... DRIVER.....covvvennn
DEPARTMENT...............
NAME
N4 A675TYR MARK SUTTON SALES
4618 B88OORW MARY PAUL ENGINEERING
N7 PLO630W MIKE MOULTON MARKETING
4693 MARTIN BONE SALES

4 ITEMS LISTED.

All the examples so far merely used the verb LIST, with various selection
criteria and output modifiers to aid reporting. One of the verbs mentioned
at the beginning of the chapter was the SORT verb. The verb SORT gives
the name output as the LIST verb, as well as including the afore mentioned
facilities. In addition, the items in the file may be displayed sorted in various
ways. The command:

SORT VEHICLE
will give the same output as
LIST VEHICLE

but the records will be displayed in ascending order of value of the item
identifier:

95

VEHICLE... REG... SERVICE. MAKE

NO DUE
00001 A951MBW 02/02/83 13
00004 LCC704P 27/06/68 19
00007 PWW906W 01/02/83 18
1097 RUR614D 24/04/85 17
4613 B88OORW 04/02/85 14
4693 05/02/85 99
6062 ABC125Y 01/03/85 44
N3 A667CUA 03/01/84 10
Né& A675TYR 04/01/84 11
N7 PLO630W 17/03/83 12
N10 A735RYG 01/02/85 10
N32 PAP121X 29/03/68 18
V2 B234THY 26/03/84 14
V3 JUB359V 01/06/83 44

14 ITEMS LISTED

The item identifier has been sorted by the left most character in the vehicle
number. Whether to sort on the left-or right-most character is decided by
looking at attribute 9 of the relevant data dictionary. Shown below is the
VEHICLE item. As well as using attribute 9 for output justification it is also
uscd for defining which character to sort upon.

VEHICLE

D
42480
23

0000000000
2000000000
OVoO~NONVNIHAWN -

-

An asccending sort on valucs of any other dictionary item is achicved by
including in the command the moditicr BY . followed by the itcm name.

96

SORT VEHICLEBY REG.NO REG.NODRIVERDEPARTMENT ID-SUPP

PAGE 1 13:00:00 24 JAN 1985

REG.... DRIVER.............. DEPARTMENT...............
NAME
MARTIN BONE SALES

ABC125Y JOHN LIONS RESEARCH AND DEVELOPMENT

A667CUA KEVIN BARRY SALES

A675TYR MARKSUTTON SALES

A735RYG JIMLAMLEY SALES

A951MBW JEAN AISH ENGINEERING

B234THY STEVE WALTERS MARKETING

B880ORW MARY PAUL ENGINEERING

JUB359V STEPHEN POTTER SALES

LCC704P STEVE WHITTINGHAM SALES

PAP121X PETER STEPHENSON MARKETING

PLO630W MIKE MOULTON MARKETING

PWW906W CHRIS O+BYRNE SALES

RUR614D NICKPHILLIPS SALES

14 ITEMS LISTED.

This gives a display sorted alphabetically by registration number of the car.
Up to 15 sort criteria can be used in any Access statecment.

SORT VEHICLEBY DEPARTMENT BY REG.NODEPARTMENT REG.NO

PAGE 1 13:00:00 24 JAN 1985
VEHICLE... DEPARTMENT......... ceeees REG....
NO

00001 ENGINEERING A951MBW
4613 ENGINEERING B88OORW
V2 MARKETING B234THY
N32 MARKETING PAP121X
N7 MARKETING PLO630W
6062 RESEARCH & DEVELOPMENT ABC125Y
4693 SALES

N3 SALES A667CUA
N& SALES A675TYR
N10 SALES A735RYG
V3 SALES JUB359V
00004 SALES LCC704P
00007 SALES PWWI06W
1097 SALES RUR614D

14 ITEMS LISTED.

First, all the departments have been sorted into alphabetical order, and
secondly, within each category or department the registration numbers have
been sorted into ascending order as can be seen more clearly in the extract
below from the original report:

97

VEHICLE... DEPARTMENT..........u.... REG....

V2 MARKETING B234THY
N32M MARKETING PAP121X
N7 MARKETING PLO630W

A descending sort may be specified by using the modifier BY-DSND in
place of the BY. The BY-DSND and BY modifiers may be mixed freely in
any Access sentence.

SORT VEHICLE BY DEPARTMENT BY-DSND REG. NO.
DEPARTMENT REG. NO.

Giving:
PAGE 1 13:00:00 24 JAN 1985
VEHICLE... DEPARTMENT. ... eeeenn.n REG....
NO
4613 ENGINEERING B880OORW
00001 ENGINEERING A951MBW
N7 MARKETING PLO630W
N32 MARKETING PAP121X
V2 MARKETING B234THY
6062 RESEARCH AND DEVELOPMENT ABC125Y
1097 SALES RUR614D
00007 SALES PWWI06W
00004 SALESL CC704P
V3 SALES JUB359V
N10 SALES A735RYG
N4 SALES A675TYR
N3 SALES A667CUA
4693 SALES

14 ITEMS LISTED.

Other verbs include the COUNT verb whieh will simply give the result of
counting the number of records in a file. The sentence:

COUNT VEHICLE
will return the number of records in the VEHICLE file:

14 ITEMS COUNTED

COUNT VEHICLE
will return the number of records in the VEHICLE FILE:

98

14 ITEMS COUNTED

The the sentence:

COUNT VEHICLEWITHDRIVER="LCTTI"

will only return those items meeting the criteria of having double “T™ in the
drivers name:

3ITEMS COUNTED

The verb SUM will give the total of the values of a single clement from all
the records in the file which meet any conditions specificd in the rest of the
sentence. The command:

SUMVEHICLE COST

will return to screen the total of the COST clement for all items in the file,
whilc the command:

SUMVEHICLE COSTWITHMAKE.NAME ="FORD"

will return the total of that element only for records whose MAKE.NAME
consists of FORD.

The verb STAT will give more comprehensive calculations by giving the
total of an element, as in SUM, the count, as in T verb, and the average.

All of these reporting formats are achicved by associating with each data file
a dictionary file which contains coded information about the way various
data elements are to be displayed. Associated with each data file is a
dictionary file at the next level up in the hierarchy. The file dictionary
contains controlling records which define the structure of the data in the data
file. For example, an Access statement used earlier was:

LISTVEHICLE MAKE MAKE.NAME REG.NO

The ‘word’ MAKE refers to a particular element in the data record of the file
VEHICLE, and this is defined by an item in the dictionary file, which
specifies that MAKE is the second attribute in each data item, that it is to be
displayed left justified in a column width of four characters, and so on.

99

0000000000

000000000

OV ~NOVIHAWN =
2NV
> >
-~ -~
m m

S~

A special feature in Access is that it is possible to enter a sentence which does
not require any data elements for display to be named. The operating system
automatically outputs a default listing. In the case of

LIST VEHICLE

which was shown earlier in the chapter, the registration number, next
service due and make were displayed

This is achieved by synonym file definitions being created in the data
dictionary. These are exactly like ordinary dictionary items. Instead of
having alphabetic names as item identifiers, such as REG.NO and MAKE,
a series of numbers are used (starting from 1). On receiving the statement
LIST VEHICLE the Access processor looks for a dictionary item with the
item-id of 1, then a 2, then a 3 and so on. As soon as the next sequential
number is not found the output of data items stops. When a named
dictionary item is used, the numbered search is not actioned.

The VEHICLE file contains these three dictionary items:

1 2 3
001 A A A
002 1 3 2
003 REGINO SERVICEIDUE MAKE
004
005
006
007
008 D2/
009 L R L
010 7 8 4

100

Thesc produce the following listing from the statement:

LISTVEHICLE

PAGE 1 13:00:00 24 JAN 1985
VEHICLE... REG.... SERVICE. MAKE
NO DUE
N3 A667CUA 03/01/84 10
N4 A675TYR 04/01/84 11
4613 B880OORW 04/02/85 14
6062 ABC125Y 01/03/85 44
00001 A951MBW 02/02/83 13
1097 RUR614D 24/04/85 17
N7 PLO630W 17/03/83 12
00004 LCC704P 27/06/68 19
N32 PAP121X 29/03/68 18
0ooov PWW906W 01/02/83 18
N10 A735RYG 01/02/85 10
V2 B234THY 26/03/84 14
V3 JUB359V 01/06/83 44
4693 05/02/85 99

14 ITEMS LISTED.

This default output is useful for producing a standard report. without having
to type in all the dictionary names. Without the default, to obtain the same
output the required statcment would be:

LISTVEHICLE REG.NO SERVICE.DUE MAKE

The order of the numbers used as item identifiers does not bear any
resemblance of the way in which the data is actually stored. Thesc dictionary
items are actually duplicate items going under another item-identifier, and
arc known as synonyms.

1 REG.NO REG

001 A A A
002 1 1 1
003 REGINO REGINO REGINUMBER
004

005

006

007

008

009 L L L
010 7 7 7

101

Any number of synonyms can be created for a data item. This means that a
user is not constrained to one 'keyword’. Differcnt users may call the
registration number REG.NO, REG or even 1 and obtain the same results.
A dictionary can be a customised vocabulary for a specific user.

Conversions

Conversions are codes which are specified in the dictionary definition
enabling data values to be held in acompact storage format, while remaining
easily accessible for output in a suitable display form. The most common usc
for this facility is for storing dates and times. The way in which we express
the date and time makes arithmetic very difficult to perform, and is often
bulky to store.

Within the machine is an internal clock which counts the number of seconds
from midnight during any one period of twenty four hours. The conversion
codes refer only to the way that the data appears. They take effect at the time
of the screen display or printing.

The most common use for conversion codes is the display of data which is
entered in numeric form and must be displayed in certain format such as
pounds and pence with a sign.

The available codes are:

MR
MR?2
MR22
MR13
MR2,

The MR command justifies or aligns the numerics to the right. This is the
normal way of aligning numbers in columns although if left justification is
needed, the ML command is used instead.

The COST dictionary item gives the following output when the statement
below is used.

102

LIST VEHICLE REG.NO COST

PAGE 1 13:00:00 24 JAN 1985

VEHICLE... REG..... COST......
NO 2000
3000
3000
25550
N3 A667CUA 2000
3000
1000

N4 A675TYR
4613 B880OORW 1500
3005
2790
6062 ABC125Y 5250
1500
5250
00001 A951MBW 18679
50000
1097 RUR614D 3000
15368
1327
4576
N7 PLO630W 3500
00004 LCC704P 4500
N32 PAP121X 2398
oooov7 PWWOO6W 4500
2310
16754
10000
N10 A735RYG 23089
Ve B234THY 129733
3000
6723
8512

V3 JUB359V
4693 4500
1300

14 ITEMS LISTED

103

The following dictionary items can be associated with the VEHICLE data
file, cach showing a different output version of the COST data.

COST CoST-1
001 A 001 A
002 9 002 9
003 JOBICOST-S 003 COST-MR13
004 004
005 005
006 006
007 MR 007 MR13
008 008
009 R 009 R
010 9 010 9
COST-2 COST-3
001 A 001 A
002 9 002 9
003 COST-MR2 003 COST-MR2C
004 004
005 005
006 006
007 MR2 007 MR2
008 008
009 R 009 R
010 9 010 9

These dictionary items when used with the Access command

LISTVEHICLE COST COST-1C0ST-2CO0ST-3

result in the following output:

104

PAGE 1 13:00:00 24 JAN 1985

VEHICLE... COST..... COST-MR2. COST-MR13 COST-MR2C
2000 20.00 2.0 20.00
3000 30.00 3.0 30.00
3000 30.00 3.0 30.00
25550 255.50 25.6 255.50
N3 2000 20.00 2.0 20.00
3000 30.00 3.0 30.00
1000 10.00 1.0 10.00
Né&
4613 1500 15.00 1.5 15.00
3005 30.05 3.0 30.05
2790 27.90 2.8 27.90
6062 5250 52.50 5.3 52.50
1500 15.00 1.5 15.00
5250 52.50 5.3 52.50
00001 18679 186.79 18.7 186.79
50000 500.00 50.0 500.00
1097 3000 30.00 3.0 30.00
15368 153.68 15.4 153.68
1327 13.27 1.3 13.27
4576 45.76 4.6 45.76
N7 3500 35.00 3.5 35.00
00004 4500 45.00 4.5 45.00
N3 2239 823.98 2.4 23.98
00007 4500 45.00 4.5 45.00
2310 23.10 2.3 23.10
16754 167.54 16.8 167.54
10000 100.00 10.0 100.00
N10 230089 230.89 23.1 230.89
V2 129733 1297.33 129.7 1,297.33
3000 30.00 3.0 30.00
6723 67.23 6.7 67.23
8512 85.12 8.5 85.12
V3
4693 4500 45.00 4.5 45.00
1300 13.00 1.3 13.00

14 ITEMS LISTED.

The first column, headed COST, is the actual stored data displayed mercly
justified to the right. The other columns show alternative output formats for
numbers.

In dictionary item MR2 the figure “2” in attribute 7 indicates how many
figures will appear after the decimal point. It the data is stored to more
decimal places than is indicated, then the conversion code will automatically
round up or down before displaying the required number of decimal places.
The stored number can also be descaled, by adding another conversion
code. MR21 would divide the stored number by 10, MR22 divides the
number by 100 and MR33, would divide the stored number by 1000. The
decimal point and descaling codes work together, for instance MR13 will
display a number with one decimal point, having descaled the original

105

SERVICE.DUE
A

3
SERVICEIDUE

D2/

R
8

OO000000000
L O000000000
OVONOUVITHAWN =

By placing thc conversion code on attribute scven the specified value is
converted into storage format. compared with cvery other internal
SERVICE.DUE. and then converted into a rcadable. mcaningful output
format. In other words. the whole of the command is performed
transparently to the user. on values in storage format.

The same date conversion code could be specified instcad as a correlative.

by simply placing the code in attributc cight of the dictionary item instcad of
attributc scven.

SERVICE.DUE
A

1
2 3
z SERVICEIDUE

oo0o
00
[enRNeXo]
[o0> v R v/

Correlatives

All of thisis very well. but currently we are simply using onc file. which is not
fulfilling the promisc of a database. the relating of many files.

Where a particular data item can takc onc of only a fcw values. it would be
wasteful of space to duplicate these values. since the information would be
stored in possibly large numbers of records. For example. employce records
in a department could bc repeated thousands of times. The file translation
code enables such values to be replaced by short code letters or numbers
which arc looked up in the dictionary file when output is required. This can
be scen in the example carlier using MAKE and MAKE.NAME

108

LISTVEHICLE MAKE MAKE.NAME REG.NO

PAGE 1

VEHICLE..

N3

N4
4613
6062
00001
1097
N7
00004
N32
00007
N10
V2

V3
4693

14 ITEMSLISTED.

P mamamamamamapfhaaaa
HAPHROCOOONNWS~R~—O

O
O

FORD
MERCEDES

13:00:00 24

BRITISH LEYLAND

PEUGEOT
SAAB
CITROEN
VOLVO
RENAULT

VOLKSWAGEN
VOLKSWAGEN

FORD

BRITISHLEYLAND

PEUGEOT
SINCLAIR

JAN 1985

REG. ...
NO

A667CUA
A675TYR
B88OORW
ABC125Y
A951MBW
RUR614D
PLO630W
LCC704P
PAP121X
PWW906W
A735RYG
B234THY
JUB359V

In the dictionary file were two items MAKE and MAKE.NAME. The
dictionary item MAKE was the actual valuc that was stored in the form of a
two digit code between 00 - 99. The actual names of the make are held in
another file called MAKES. This data is retrieved using a correlative at
attribute 8 of the dictionary item, as shown below. The dictionary item
MAKE just displays the make number, the dictionary item MAKE.NAME
fetches some data from another file, relating the given number to a piecc of

text.

o
—
o
N
o
o

[en Yo Jen Jeon Y on Yoo Yoo J oo N an)
[en Yo Yoo N om J oo Y an Yoo Yoo N en)
NNV WN =

MAKE.NAME

S
2
M

AKE

TMAKES; C; ;1

T

NN NI UWN =
2> =
>
~
m

00000000 0o
-

[en Yen Y en Y en Yoo Y en Yo N oo N o N on]

o
S

So the displayed data is derived data which comes from another filc in the

system, giving "data relating’ abilities as shown in Figure 8.2

109

DATA VEHICLE
DICTIONARIES
DATAFILES VEHICLE MAKES
Figure 8.2

How the TRANSLATE correlative works

The Access processor works its way down the dictionary item
MAKE.NAME in the following way. Firstly it arrives at attribute 2. which
indicatcs in any dictionary item which attributc in the data file is to be looked
at. In this casc attribute 2, which in the instance of data item N3 is cqual to
*10". Attributc 8 is scanncd and if a corrclative is present, that is then
processed. The statecment held on attribute 8 of the dictionary item is

TMAKES;C; ;1

The “T" indicates that a translation from another filc is about to take placc.
Dircctly following this is the file name MAKES. This filc namc is the file
though which the translation takes place. The *C’ says “convert the valuce if
possible, usc the original valuc if the item in the MAKES file docs not cxist
or has a null value.” If item 10" did not cxist in thc MAKES filc the output
would be ‘10" as the translation could not take place. There arc other
alternatives to this which include having a blank output. The ‘1" indicates
which attribute in the translate file to fetch and output according to the other
output specifications given in the dictionary itcm.

110

DATAFILE VEHICLE

N3 V2
A677CUA B234THY
10 \ 14

RN

MAKE.NAME
5

2
MAKE

TMAKES:
C;37

T
20

item-id 99 14 10
SINCLAIR BRITISH FORD
LEYLAND

DATAFILEMAKES

Figure 8.3

By using this translate facility, data duplication is avoided and changes in
data can be made centrally in onc file. An advantage of this facility is the
saving of storage space. If, for example, credit ratings arc kept on
individuals in a file, many may well be repeated. Typical examples arc:

30 days net
60 days net
Pro Forma

No Trading

111

Rather than have the phrase “30 days net” stored 80 times at 11 characters
each, store a code, say 2. This will save 800 characters being stored. The two
can then be translated to the full text on output.

A correlated attribute can be thought of as a ghost item. It does not occupy
an attribute in its own right because the output value is borrowed. A
correlative borrows data from elsewhere and in some cases derives a further
value by manipulating the borrowed data. The correlated file derives its own
value and does not need a value to be entered though the keyboard.

Summary

It can be seen that Access is a generalised information management and data
retrieval language. A typical inquiry consists of a relatively free form
sentence containing the appropriate verbs, files names, data selection
criteria, and control modifiers. Access is a dictionary driven language with
the following features:

1. The vocabulary used in composing an English-like sentence is contained
in several dictionaries, each user’s vocabulary being individually tailored.

2. Data files consist of a data section and a dictionary section.

3. The dictionary section contains the structural definition of the data
section.

4. The Query language references the dictionary section for data field
descriptions (hence the name dictionary!). These descriptions specify
mnemonic names of data elements, functional calculations, inter-file
retrieval operations, display formats and more. The Query language allows
for selective or conditional retrieval of information.

5. Output reports are automatically formatted according to the user’s
specification and may appear on either a display terminal or a printer. The
output may be sorted into any sequence defined by the user and includes the
following extended features:

(a) Relatively free-form input of word order.

(b) Automatic or user specified output report formats in
columnar or non-columnar forms.

(c) Generalised data selection using relational and arithmetic
relationships.

(d) Sorting capability on a variable number of descending and
ascending data items.

112

(e) Generation and retention of specially selected and/or sorted
lists for future use.

(f) The ability of the user to define variables which are derived
from the stored data, and then to search, select, sort total and
output on the basis of the selection.

(g) Selection of subvalues within items containing multiple unit
items.

(h) Generation of statistical information concerning the files held
on the database.

A complete Access vocabulary list is to be found in Appendix A.

113

VEHICLE File Listing

The following pages show a complete listing of the VEHICLE file and
related files that have been used in examples in this chapter.

VEHICLE FILE.
N3

001 A677CUA

002 10

003 5847

004 1234

005

006

007 KEVINBARRY

008 1

009 20001300011000
N&

001 A675TYR

002 11

003 5848

004 4321

005

006

007 MARKSUTTON

008 1

009
4613

001 B8BOORW

002 14

003 6245

004 7654

005

006

007 MARY PAUL

008 3

009 150013005312790
6062

001 ABC125Y

002 44

003 6270

004 4567

005

006

007 JOHNLIONS

008 2

009 52501150015250

114

00001
001 A951MBW
002 13
003 5512
004 5847
005
006
007 JEAN AISH
008 3
009 1879150000
1097
001 RUR614D
002 17
003 6324
004 6624
005
006
007 NICK PHILLIPS
008 1
009 30001153681132714576
N7
001 PLO360W
002 12
003 5555
004 6212
005
006
007 MIKE MOULTON
008 4
009 3050
00004
001 LCC704P
002 19
003 179
004 479
005
006
007 STEVEWHITTINGHAM
008 1
009 4500

115

OO00000000
O0O00000000
NNV WN =

o
RN

O0O00000000

o000 000o
Voo~V W

N32
PAP121X

ZETER STEPHENSON
3298

00007

PWWIO6W

18

5511

6041
%HRISO'BYRNE
450012310116754110000
N10

A735RYG

10

6242

6342
%IMLAMLEY
23089

V2

B234THY

14

5930

6210

ZTEVE WALTERS

129733130001672318512

116

V3
001 JUB359Y

002 44
003 5631
004 5645
005
006
007 STEPHENPOTTER
008 1
009
4693
001
002 99
003 6246
004 6301
005
006
007 MARTINBONE
008 1
009 4500311300

The above listing is how the items are displayed to the user on the screen, the
listing below is how the data is actually stored, with no display spaces. Each
“~» character that marks the end of an attribute causes a new line to be
printed when being displayed.

N3"A667CUA~10"584771234"""KEVIN BARRY"1720001300011000
N4"8675TYR"117°584874321"""MARK SUTTON"1
4613°B8800BW"14"624577654"""MARY PAUL"3715001300512790
6062"ABC125Y°4476270"4567"""JOHN LIONS"2"52501150015250
00001°951MBW"13"5512"""JEAN AISH"3718679150000
N7"PLO630W"12712"555576216"""MIKE MOULTON"4"3050
00004°LCC704P" 1971797479 ""STEVE WHITTINGHAM"1°4500
N32"PAP121X"18°897410"""PETER STEPHENSON"473298
?ggg?“PHH906H“18'5511'6041‘“'CHRIS O0'BRYNE“174500123101167541
N10"A735RYG"1076242°6342"""JIM LAMLEY" 1723089

V2°B234THY 147593076210 ""STEVE WALTERS"47129733130001672318512
V3"JUB359Y"447°563175645"""STEPHEN POTTER"1
4693°7°99°624676301"""MARTIN BONE~"17450011300

117

REG.NO MAKE SERVICE.DUE
A A A

1 2 4
003 REG.NO MAKE SERVICE.DUE

008 b2/
010 7 4 8

Fig. 8.4 Contents of dictionary file VEHICLE

DRIVER COST FLEET.NO
001 A A S
002 7 9 0
003 DRIVER COST FLEETINUMBER
004
005
006
007
008 b2/
009 L R R
010 20 5 10

Fig. 8.5 Contents of dictionary file VEHICLE

EPARTMENT

D
)
8
DEPARTMENT
S
)
S
)

TDEPARTMENT;C; ;1
T

2000000000
ovo~NOoVNIA~UWN =

O OO00000000O0
N
o

ATAFILEDEPARTMENT

1"SALES
2"RESEARCH AND DEVELOPMENT

3"ENGINEERING
4"MARKETING

118

TAX.DUE.DATE

TAX.DUEIDATE

D2/

MAKE.NAME
S

2
MAKEINAME

THAMES;C; ;1
T
20

DATA FILE MAKES

“FORD

“MERCEDES
“BRITISHLEYLAND
“PEUGEOT

“SAAB

“CITROEN
“RENAULT
"VOLKSWAGEN
“SINCLAIR

119

Chapter 9

The Editing Facilities

One of the most useful facilities for program development is an editor. An
editor permits the insertion, amendment and deletion of individual
characters, groups of characters or entire lines of a program. Editing in
traditional computing is usually only applied to the source code of a
program, but with the Pick operating system the editor can alter any item in
any file which the user’s account has access to.

Unless a series of BASIC programs are written to initially input data items,
and then to update them when necessary, any alteration of data has to be
done manually from the editor. This is dangerous as an inexperienced user
can accidently corrupt data making the system useless. Even dictionary
items have to be set up via the editor using insertion mode. But, since the
editor can be controlled by a PROC, simple file alterations and dictionary
creations can be quickly programmed and made almost idiot proof!

The editor is invoked by using the EDIT verb at TCL. All editor commands

consist of one or two literal mnemonies followed by data for using with the
command.

How the Editor Works

When the editor is first invoked from TCL, two images of the item
concerned are created. To make this a lot clearer, let’s look at an example:

SERVICE.DUE
A

3
SERVICEIDUE

D2/

NNV WN =

000000000
-

0000000000

o
o]

This is a dictionary item called SERVICE.DUE in the dictionary portion of
the file VEHICLE.

120

MAKE. NO

COST
VEHICLE DATA DRIVER
DICTIONARY MAKE A
REG. NO 3
SERVICE.DUE SERVICE|DUE
D21
VEHICLE DATA R
8
Figure 9.1

To alter it, for example to output a different date format of DD MMM
YYYY rather than DD/MM/YY the contents of attribute 8 need to be
changed.

To do this the following command would be entered at TCL.:
EDITDICT VEHICLE SERVICE.DUE

This creates the two versions of the item, one version being ‘current’ and
accessible via the terminal keyboard, and a second is stored by the machine
keeping track of any alterations to the item.

After the original edit command the screen will be as seen in Figure 9.2

e N

EDITDICTVEHICLESERVICE.DUE
SERVICE.DUE
TOP

. /

Figure 9.2

121

The two versions of the items look as follows:

current version second, machine
onscreen, held version.

SERVICE.DUE SERVICE.DUE
001 A 001 A

002 SERVICEIDUE 003 3
003 SERVICEIDUE 003 SERVICEIDUE

D2/

OO000000
000000
OO 00NNV

coo o

To be able to see the changes that have been made the current version and
the machine held second version have to be swapped. This is achieved by
using the command ‘F* which copies the second version onto the screen
‘current version'.

All editing must continue in ascending line number sequence until an ‘F’
command is entered. automatically updating the existing item and
initialising the current to line 0 again.

The editor offers many facilities including the merging of lines from the same
or other items; the location of a string in an item followed by the
replacement of that string. The insertion and deletion of lines, and the
storing of complex editing commands for use time and time again. The
summary below gives an explanation of each of the available editor
commands.

Summary of Commands

Editor commands consist of one or two lettered mnemonics each of which is
briefly explained below to give a new user or a potential user an idea of what
facilities are available.

A -Again. This command repeats the last locate (L) command that was
issued.

AS -Alternate This command acts as an alternating switch

Switch. which turns the Assembly listing format either on or off. Very
rarely used except by expert programmers.

124

B-Bottom. This command takes the current line pointer and assigns it to
the last attribute in the item being edited. For our example
SERVICE.DUE the following is shown to happen in Figure
10.7. Ten lines of the attribute are listed, go to the beginning
of the item, go to the bottom of the item. The EOI comment
(End Of Item) indicates that the end of the item has been
reached and the last attribute number is displayed, although
the actual contents of the line are not.

.l
Top \
.L10
093 4
002
00%
SERVICEIDUE
9G4
005
008
Q07
Q08
009 R
010 8
E01010
TgP
\1_501010 /

Figure 9.7

C-Column This command prints out a list of column numbers
number so that the user can readily determine a columnar
list. position of data in any given line.

DE - Delete. This command allows the deletion of a single line or a number
of lines. The simplest form of the command is simply DE. This
deletes the line currently being pointed to, as seen in Figure
9.8.

/ror N

.L9
001A

0023

003 SERVICEIDUE
004

00s

006

007

008»p

009R

\C /

Figure 9.8

125

On inputting F, and then looking at the second version, it can be
seen that the attribute where ‘R’ resided has been deleted and the
remaining attributes re-numbered. Another command prompt is
output. This sequence of events is displayed in Figure 9.9.

ﬂag

. F
TOP
.LI0

Figure 9.9

The complex form of this command involves searching for a
specified string, and then when the string is found the attribute
concerned is deleted. If Figure 9.10 is studied the deleting
command is . DE99/R/, entered at the top of the item. This
command will search the next 99 lines, in our case, the entire
item, for the string —R+. There are two such occurrences
which when found are deleted. The line numbers deleted are
displayed before the next command prompt.

.T

TOP \

.B

EOID10

LG4

004

.DE

.F

ToP

.DE99/R/

003

.F

\ y
Figure 9.10

126

EX-Exit. This command quits the editor without saving any alterations
that may have been done on the item. Invaluable when the
wrong lines have been accidently deleted!

F This command switches the current screen version and the
machine held second version of the item being edited. This
allows the user to see what changes he has made, what affect
they have had and what they actually look like. This is one of
the basic commands needed for use of the editor.

FD-File This deletes an entire item in a file. For this reason, the editor
should not be available for general use, in order to protect a
business from either accidental or deliberate loss of data.
Alteration of items is usually only allowed via a PROC or a
BASIC program which is password protected.

In Figure 9.11 the deletions via the editor are shown, followed by
an Access statement asking for a list of items in the dictionary,
SERVICE.DUE is no longer present.

//:;ITDICTVEHICLESERVICE.DUE i\\w

SERVICE.DUE

TOP

.FD
LISTONLYDICTVEHICLE
REGNO.

MAKE

DRIVER

- J

Figure 9.11
FI-File The item that is currently being edited is made permanent and
item filed away on disk, replacing the old version or, if it is a newly
created item, creating a first version. The terminal returns to
a TCL prompt as the editor is exited.
FS-File The item that is currently being edited is made permanent by
save being filed away as in the command FI. The difference is that

the user is still in the editor, with the current line set to the
beginning of an item.

127

G - Goto. This command must be followed by the number of the line that
you wish to make current, shown in Figure 9.12.

4 N

EDIT DICT VEHICLE SERVICE.DUE
SERVICE.DUE
TOoP

.63
003 SERVICEIDUE

N J

Figure 9.12

I-Insert. This command will insert any number of lines after the line
that is currently active.

SERVICE.DUE
ToP

.G3
0?3 SERVICEIDUE

003+THIS IS AN EXAMPLE
003+0F

003+AN INSERT

003+

__ J

Figure 9.13

In Figure 9.13 three lines have been inserted. The insert is
terminated by <CR>. The new version is seen in Figure 9.14
afteran 'F'anda 'L6' command.

128

P

(]

1A

23

3 SERVICEIDUE

4 THISISANEXAMPLE
5 OF

6 AN INSERT

//fi . cooOCOOr o
0000 oOorom

Figure 9.14

There are two versions of LIST:

1.L-List. This command will list the specified number of lines. (See
Figure 9.15)

ﬁRVICE]DUE
TOP

. L1

001 A

L

23
002 SERVICEIDUE

D
R
8
010

Figure 9.15

1.L-Conditional The LIST command contains a sequence of characters
list. for which the command searches the item, and then lists
the attributes containing that sequence. In Figure 9.16,
the current line is at the fop of the item when the
command L99/R/ is entered. This searches the next
99 lines for the character R, those found are then listed.

The current line is the bottom of the item.

129

Figure 9.16

/:;;VICE.DUE ‘\\

TOP

.L99/R/

003 SERVICEIDUE
009 R

EOI 010

N J

ME -Merge. This command allows a specified number of lines to be copied

N - Next.

Figure 9.17

P - Prestore
and
prestore
recall.

into the item being edited, from any other item on the Pick
system.

This command increases the current line pointer by the
number of specified lines, shown in Figure 9.17.

(e

S
T

ITDICT VEHICLE SERVICE.DUE
RVICE

P
1

001 A

3

D
E
0
. N
0
.N
00%

\ J

The PRESTORE command allows a sequence of commands
to be stored for repeated use. Up to 10

prestored sequences are allowed at any one time,

very much like having ten memories on a calculator.

P or PO is preprogrammed on every new Pick machine with the

command L22, which displays a screen-full of attributes from
the item.

130

Figure 9.18

R - Replace.

Figure 9.19

T -Top.

To recall a sequence of commands that are already stored
merely type in the command P followed by the number
assigned to that sequence of prestored commands.

Any prestored commands can be displayed using PD

(1o A

.PD

POL22
.:1RU99/E/e

TOP

.P1

003 SERVICEIDUE
EOI 010

.PD
PO L22

(RU??/E/e j

In Figure 9.18 the current prestored items are displayed, and
then P1, a replace command is input.

Replace has the ability to change an entire line or just a
specified part of the line. In Figure 9.19 a replacement is made
to the column heading in attribute 3. The character | is
replaced by [NEXT, with / being used as the delimiter. The
delimiter can be any non alphanumeric character, usuallya ?,
/ or *. An asterisk replacement can be seen in Figure 9.5.

0P.93
003 SERVICEIDUE
R

003 DATEOFISERVICE

.F

Top

.93

003 DATE OFISERVICE
R/1/INEXT

003 DATE OFINEXT SERVICE
ToP

.L3

001 A

002 3
v03 DATE OFINEXT SERVICE

This takes you to the top of the item, ready to edit the attribute
lines in ascending order.

131

Figure 9.20

TB - Tabs.

U-Up.

X-Delete
effect

Figure 9.21

GRVICE.DUE \

TOP

.L4

001 A

002 3

003 SERVICEIDUE
004

.T
TOP

N J

Tabs for spacing and easy editing can be preset. There can be
up to 15 different tab settings across one line. This command
is often used in conjunction with the C command. The
prestored tabs are only usable in the insert mode, using the
command ‘I’

TB 1 10 20 30

Will set tabs at columns 1, 10, 20 and 30. This is particularly
useful when updating screen layouts in a PROC.

This command moves the current line pointer back by the
number of specified lines.

The effect of the last Input, Insert, Delete or

Replace is nullified. This is seen in Figure 9.21, when areplace
statement has been wrongly entered. The delete effect will not
work if an ‘F’ (File) command has taken place.

ﬂERVICE.DUE \
TOP

~N

132

Chapter 10

The BASIC Language

’

“A language is a system of signs or symbols used for conveying information.’
Oxford English Dictionary.

Introduction

The Pick operating system includes a BASIC language processor as a
general purpose programming tool. The Pick operating system BASIC is an
extended version of standard Dartmouth BASIC, the very popular
programming language. Since most computer professionals are at least
acquainted with BASIC, and many documents discuss the features of this
versatile language, this section will cover only those features of the Pick
operating system BASIC that are specifically unique, or are otherwise
standard functions that strongly interact with other Pick operating system
unique software or hardware.

The History of BASIC

The BASIC language was developed in 1965 by John G Kemey and Thomas
E Kurtz of Dartmouth College USA, primarily as a language for
introductory courses in computer science for non science students. BASIC
is one of a number of high level languages. These languages fall into one of
two categories, general purpose and specific. FORTRAN (Formula
Translation) was specifically designed for scientific number crunching tasks
and is used extensively in scientific research; while COBOL (Common
Business Orientated Language) is for business and information retrieval
purposes. General purpose languages include:

PL/1
ADA
ALGOL 68

Since its conception BASIC has fallen from favour in the academic world,
but has become popular in other spheres. The objective of BASIC was for
it to be easy to use and learn, which has resulted in a simply yet versatile
programming language suitable for expressing a wide range of problems.

133

Why BASIC?

When the Pick operating system was first designed, BASIC was the only
high level language that was both suitable and available for use. Richard
Pick, the designer of the operating system named after him, originally
wanted to use APL (Advanced Programming Language), which is a more
theoretical than practical language. Some people are put off BASIC by the
reputation it has earned as a home computer buff’s language, and it tends
not to be taken seriously by professionals, as they believe it to be too
elementary. But, Pick BASIC is different. It has the ability to write
structured code, to talk and communicate with peripherals such as a tape
deck, and to chain subroutines together, as well as sophisticated file
handling facilities. Admittedly, the Pick operating system is tied to a single
language, but that language is fully integrated with all the other parts of the
system. By being so tightly integrated, BASIC can use the system’s other
facilities to full advantage from within any program. This gives advance
knowledge to the programmer of any Pick machine, what the data structures
are and how they are handled by DATA/BASIC.

By using a high level language, total machine independence can and should
be achieved. This is found to be the case on any Pick machine. A program
developed on one Pick machine will run on another. This is a great
advantage over a traditional computing environment where there are as
many variations in the BASIC language as there are in regional dialects in
the English language. This is because there has been no industry standard,
an each manufacturer has put in their own slight, but annoying,
modifications. Annoying that is for a programmer, and annoying for a
business man with PC DOS and CP/M who will need two different versions
of a single package just to accommodate the different versions of BASIC.
Perhaps the biggest reason for the Pick system to be tied to one language is
standardisation. In advance of using any Pick machine, the programmer is
aware of how Pick BASIC integrates with the other parts of the system and
what, therefore, can be achieved. Pick BASIC also gives the following
advantages:

1. More convenient descriptions of the tasks which are to be performed.

2. More efficient program writing with less time spent debugging the
program and more time solving the problem in hand.

3. More productivity. High level languages make programs easier and faster
to write! about ten times faster than using assembly code.

4. Easier documentation. As the code is more readable, some simple
programs can be almost self-documenting. This means that programs now
need very little effort to achieve traditional longhand documentation.

5. Standard syntax. Most high level languages have ani nternational set of
standards, setting out the meaning and functionality of each ‘word’.

134

Additional words are often added by individual manufacturers; in the Pick
world the Ultimate range of computers has enhanced Pick BASIC.

6. Portabilty. As long as the same version of the compiler and the same or
standard syntax is used, the code will be portable to other machines using the
same combination.

Re-entrant Code.

The BASIC processor generates re-entrant codes which can be shared
among a number of users. In practice, this means that if a program is used
by a number of users simultaneously, only one copy of the program needs to
be present in memory.

Source Files

Pick BASIC source files, like all files on the system, consist of a number of
items. Each program is an item in a file. The typical user will have one file
for all programs and each item will contain one program. The item identifier
is the name of the program and each complete line of the program is an
attribute.

Interpreters and compilers

BASIC, being a high level language, needs to be translated into a form that
the computer will understand. There are two processes of translation, one is
interpretation, the other is compilation. Interpretation and compilation are
two entirely different approaches to obtaining the human type input in
machine format, which in turn allows the program to be executed.

An interpreter does not generate a complete set of object code for a
program. As each source statement is looked at by the interpreter, it is
immediately analysed followed by execution. If one statement is found to be
incorrect the interpreter will stop there and issue a pertinent error message.
If there are many errors it can take some time to correct all the mistakes one
by one, whereas with a compiler all the mistakes are listed in one go and
need to be corrected before execution can be repeated. The interpretation
technique is represented in Figure 10.1. The major advantage of an
interpreter is that it offers an easier, more gentle, learning curve for the first
time programmer. With an interpreter there is no need to learn about the
process of compiling and syntax is checked automatically for each
statement.

A simple compiler translates the input text (known as the source code) into
an equivalent machine code, leaving two versions of the program. The first
is the source code and the second, unreadable machine code, (known as
object code). This is seen in Figure 10.2. The translation process takes place

135

Y

Takc one
source
statement

translatc

Can the
statecment be
exccuted?

Output rclevant there any
statcments

CITOT MCssage "
left?

Output

Results

Figure 10.1

136

on all of the source code, in onc fell swoop. It is the object code that the
opcrating system actually uscs in order to exccute or run a program, but,
take the source file away, lcaving just the object code and the program will
still be able to continue running as if nothing had happencd. Many software
packages dcliberately carry only the object code. By removing the source
code the program becomes protected, first from the software pirate and
secondly from unauthorised alteration of the program, thereby making a
standard piece of software nonstandard.

Source
Savedin
Backing

.'\ Store
Program Programstorediin
written computer via key LET A=A+ B|source
ape board. Thisis the el
onpaper. source progran LETC=C—A| Code

81000101 | Opject
p1001081@ | Code

Figure 10.2A compiler reads the high level source statements and translates them into machine
code, which is stored for future use.

Pick uscs the compilation method of translation mainly because compilation
has the advantage of speed. Even when the program is functioning perfectly,
an interpreter still carries on checking each and every line, so the interpreted
language is almost incvitably slower. The compilation process is more suited
to the multi-user environment for which all Pick machines are designed.

The object code that is produced by Pick BASIC is written to disk, and a
special pointer is then written to the dictionary of the source file. This

pointer contains the location of the object code on disk. this is shown in
Figure 10.3.

137

1. A Pick operating system file contains one or more items. These items are
identified by an item identifier. Items contain one or more attributes and an
attribute can contain one or more values. Finally, values can contain one or
more subvalues. Attributes, values and subvalues arc all delimited by
special markers.

2. An item is a string consisting of combinations of these elements and can
be up to 32K bytes in length. In Pick BASIC, this string can be loaded into
a dynamically dimension array.

Dynamic Array handling Functions

A dynamic array is data held in the same format as a file item, i.e. any
number of attributes separated by special markers. A dynamic array has a
single variable name, individual elements of the array being referenced by
special Pick BASIC functions, provided for the purpose. There are also
statements for reading and writing an item from backing store into a
dynamic array and vice versa. Once an item has been loaded into a dynamic
array, there are various functions for extracting the contents of a specific
attribute, value, or subvalue; replacing attributes, values and subvalues, and
counting the numbers of attributes within an item. These features are
particularly powerful when used to read and write items directly to or from
a disk.

For example the following data item:

WHITE LION
001 01-456-7799
002 TONICIDRY GINGERIBITTER LEMON
003 30
004 12
005 MARKPRIOR
006 10 THE DRIVE CRICKLEWOOD

can be read from disk by using the statement:

READ EXAMPLE FORM CUSTOMER, 'WHITE LION' ELSE STOP

After the execution of this statement the variable EXAMP LE will contain
the dynamic array value

01-456-7799"TONICIDRY GINGERIBITTER
LEMON"30"12"MARK PRIOR"10 THE DRIVE
CRICKLEWOOD

The form of the data storage is known as ‘item-format’. The term dynamic
is used because the shape and size of the array is not fixed, and may be
altered frecly by other statements and functions in the rest of the program.

140

These dynamic arrays interface well with the filc item. as an cntirc item can
be read or written and individual valucs can be casily accessed. The
dimensioned arrays arc morc advantagcous when a large number of
clements are being accessed or if processing large items as cach ficld is
placed in a scparatc variable location.

Oncc anitem has been loaded into a dynamic array the EXTRACT function
can return the contents of a specific attribute. valuc or subvalue. The
EXTRACT function then specifies the dynamic array. the attribute
number. the value number and the subvalue number to be extracted. For
instance:

OPEN'','EXAMPLE' TOTEMP ELSE STOP
READ ITEM FROM 'TEMP' , "WHITE LION' ELSE STOP
X=EXTRACT (ITEM,2,2,0)

The first paramecter in the function gives the name of the dynamic array that
is going to have data extracted. The sccond parameter gives the attribute.
the third the number of a valuc in the attribute (a multivalue) and the forth
a subvalue. The above command will extract the second value of the second
attribute in the specified array. The extracted valuc of DRY GINGER is
then assigned to variable X.

The REPLACE function provides the corresponding capability to change
the valuc of the contents of a valuc in the array. For instance. DRY
GINGER could be replaced by PINEAPPLE JUICE using the following
scquence of statcments:

OPEN'', "EXAMPLE' TO TEMP ELSE STOP

READ ITEM FROM '"TEMP' , '"WHITE LION' ELSE STOP
ITEM = REPLACECITEM,2,2,0;'PINEAPPLE JUICE')
WRITE ITEMON 'EXAMPLE"

The item WHITE LION has been read from the database and placed in the
dynamic array ITEM. The sccond valuc of the sccond attribute is then
replaced, and written back to the file EXAMPLE.

DELETE allows for delction of a spccific attribute, valuc or subvaluc.
INSERT allows the inscrtion of a new attributc, value or subvaluc. A more
detailed description can be found in Appendix D.

The LOCATE statement is used to find a specified value (if present) in a
dynamic array. The statement would be used for the location and/or

insertion of controlling and dependant attributes within the dictionary
items. For instancc:

LOCATE(C'D' ,ITEM,4;VAR) ELSE ITEM= INSERT (ITEM,4,VAR,0,'D")

141

the fourth attribute of the dynamic array ITEM is searched for the
alphabetic literal ‘D" and the location of the array when the literal is found
is placed in the variable VAR. If the *D" is not found the location of the
beginning of the fourth attribute is returncd in VAR giving the position
where ‘D’ should be. If it is not found, control is passed to the ELSE clause.
which will insert the missing ‘D’ in the correct place. by using the “*should be
here™ marker in VAR. This single statement can often climinate the need
for a loop, which may have had to specifically extract and test the attribute
and provide alternative routes before the next item could be scarched.

The COUNT function will count the number of occurrences of a specified
string within attributes. values or subvalues of an item.

Using these functions, the full range of database facilitics available on the
Pick opcrating system are also available to the BASIC programmer. Not
only simplifying the BASIC program itself, but ensuring compatibility with
the Access Processor, for reporting at a later date.

Other features.

The MATCH statement provides pattern matching facilitics in BASIC
similar to those available in the PROC processor. These include testing for
a number of alpha or numeric characters and literal string comparison.

The CHAIN function will transfer control to another BASIC program or
any valid TCL command including-a PROC. Variables can be passed to the
chained program.

The PRINTER ON, PRINTER OFF, and PRINTER CLOSE statements
cause output to be directed to the spooler or the user’s terminal. When the
program is finished. the spooled file will become cligible for printing. If
spooling prior to the end of the program is desired, the PRINTER CLOSE
statement will immediately spool the accumulated output.

Output functions, similar to the modifier functions found in the Access
query language, include justification, both left and right, specification of the
number of digits to the right of the decimal point, descaling of numbers, the
suppression of leading zeros,the insertion of commas, printing of “DB™ or
the minus sign after necgative numbers, printing “CR™ after positive
numbers, appending currcncy signs to numbers, and filling a
predetermined length ficld with any specified character.

The HEADING and FOOTING functions, similar to the same functions in
the Access query language, help output pages to be formatted when output
is being prepared for reports. A heading or footing is stored using the
relevant BASIC function, and is actually actioned by the use of the PAGE
statement in a program. PAGE also accepts a variable from the program as
a parameter, to set a page number counter. Optional parameters for the

142

HEADING and FOOTING functions will automatically incorporate the
time and date, assign page numbers, centre text, and insert blank lines.

The PROMPT statement selects a character to be printed at the user’s
terminal whenever the program stops for input. (Usually when the INPUT
statement is used). For example:

PROMPT "+"

will cause a ‘plus sign’ to be displayed as the prompt character at the user’s
terminal.

The READNEXT statement reads a list of item ids from a list supplied by
the Access processor SELECT or SSELECT. These items can then be
brought into a dynamic array for processing. READNEXT statements can
continue until the list is exhausted.

BASIC also has access to the magnetic tape or floppy disk unit by the use of
READT, WRITET, WEOF) write end of file mark) and REWIND
statements.

Multi-User File Locks

If one or more BASIC programs are running concurrently, and they access
the same file, multi user lock-out protection is necessary in order to prevent
the two programs from writing to the same data without co-ordination. Even
a simple accounting system cannot allow two clerks to run the same ledger
program at the same time unless this protection is available. This problem is
somewhat compounded in a database oriented system, since an attribute
like ACCOUNT NUMBER might exist in only one file, but be accessed by
several programs. Without file lockout protection, the entire accounting
system might be accessible to only one user at a time. The Pick operating
system BASIC offers a sophisticated set of locks to co-ordinate multiple user
access to the same files.

File locking is implemented with modified versions of the READ and
WRITE statements. When one of these modified statements is executed,
the group (defined in the modulo and separation of the file concerned) in
which the read takes place is “locked” or placed out of bounds, to other
programs until released by the locking program.

For the most part, a group is a user transparent concept. It is, however, the
fundamental block of data which the Pick operating system uses internally
for reading and writing. Since a group is a subset of an entire file, two users
will still be able to access the file at the same time; they just can’t access items
in the same group at the same time.

143

If a program attempts to rcad data from. or writc data to. a group that is
locked by another program. the program will wait until the group becomes
unlocked. Usc of conditional parameters with modified READ and WRITE
statements can be used to gracetully branch to another part of the program
to dcal with a lockout situation. The RELEASE statement unlocks groups.
and all locked groups locked by a specific BASIC program arc unlocked
when that program ends. The Pick operating system can keep track of up to
62 locked groups at a time.

Structured Programming

Unlike most other versions of BASIC, the Pick BASIC contains all the
commands that are nceded to write structured code. Onc of the complaints
from academics about BASIC has been its unstructured form. The term
‘structure’” is onc of those words which tend to occur in conversation between
programmers. It refers to a set of rules and regulations set down by a
collection of influential high level language writers. The term structure also
comes in uscful for consultants and those well versed in criticism. in that a
program which works well and is quite acceptable can be condemned for
‘poor structurc™. A well structured language means it is casy to design and
follow the solution to a problem. and the code of such a solution does not
cnd up resembling a pile of spaghetti (one big muddle)! Structured
programs in ordinary BASIC are somewhat difficult to write, but the
modifications carried out on Pick BASIC have madec structuring a lot casier.
It is very casy when programming in any BASIC to build up a program
without giving much thought to its overall structurc. The fact that rigid
restrictions are not imposed upon the programmer allows the program to be
tested and amcnded over and over again. While a program is under
development this can be both a blessing and a curse. It is a blessing when
offering frcedom and flexibility, but a curse when giving a muddled
appcarance. Lack of structurc makes crror finding and correction a
nightmare. therefore Pick BASIC contains all the constraints nceded to
write highly structured code. Among the commands available are:

CASE

COMMON
IF...THEN....ELSE
FOR....NEXT

FOR....UNTIL
FOR....WHILE
LOOP....WHILE
LOOP....UNTIL

Thesc arc all fully explained in Appendix D.

144

Summary

One of Pick’s strong points is that it makes applications easy to writc. Many
time consuming chores that are found in other languages, such as writing
complex input output routines and complex data file manipulations, are
either not necessary with Pick or can be done with existing system utilities in
another part of the operating system but integrated allowing use. In addition
Pick BASIC has a powertful facility to automatically generate a program map
and variable cross reference tables upon compilation of the program.

The BASIC language as implemented on the PICK machines is a simple
programming language cnabling casy manipulation of numbers and
character strings. That is why it is particularly suitable as a language for
implementing management/database applications. It is particularly ecasy for
the beginner to master. This was one of the primary objectives when it was
first written. BASIC programs can be stored, compiled, tested and executed
on the system through any terminal, at the same time other users may
develop programs or execute existing programs, thus giving total interactive
computing.

BASIC operates on variables of any length, type or number. It can call on
subroutine sequences or on system utilitics, enabling control as well as

efficient organisation of data allowing straight forward interrogation via
screens oOr printers.

The processes which are included in the Pick operating system include a
compiler, a syntax checker, error analyser, a number of diagnosis and test
utilities, and a trace function which enables the monitoring of program
execution. The constraints of a multiprocessing environment are resolved
through the use of locks and individual work-files.

The Pick BASIC language was specifically designed with PICK in mind and
features:

1. A set of file access and update statements.

2. String and file processing items.

3. A clear language structure allowing structured programming.
4. Error finding aids.

5. Access to magnetic tape commands.

6. Ability to integrate external subroutines.

145

The BASIC processor complements the Pick operating system with this
popular procedural programming language. Since the full range of data base
management functions are available to the BASIC programmer, as
implemented in the Access processor, the complementary combination ot
capabilities of these two processors can be used to bring new applications on-
line faster than would be the case using conventional file structures and
totally procedural languages.

146

Chapter 11

Runoff

This chapter deals with “Runoff” - that part of the Pick operating system
designed to help with the production of the inevitable manual which
accompanies each and every piece of software. Runoff was originally a
simple word processor, but the advances in the quality and facilities offered
by word processing packages has pushed runoff into insignificance and to
being classified as a text processor.

A runoff document has two parts. First, the actual text of the document and,
secondly, the commands to format that text as required. These formatting
commands take the form of “dot commands” similar to those found in
Wordstar, a popular word processor for microcomputers.

As in all other parts of the Pick operating system, each document is held in
an item in a file, shown in Figure 11.1.

ITEMSTARS
. 001
File REPORT 002
STARS 003
STRIPES :
010
N

Figure 11.1

Runoff will number pages automatically, print text headers and footers,
perform tabulations, centre a piece of text and select right or left justification
at a tabulation stop. And, when writing an entire publication, the indexing
may be done at the press of a button.

147

Shown below is a basic example of a runoff item:

STARS

001 .BP

002 .LINE LENGTHS55

003 .J

004 .PARAGRAPH4

005 Aquarius....... Abright future ahead, withanexpansionof
ambitions, andplentyof social opportunities. You'llbe
fairlyunruffledby today's

006 restless conditions.

007 .BREAK

008 PisceS.ceancene Neptune, your ruler, isstrongly aspected

009 raisingcontroversyinfinancial affairs.

010 Make time for checkingaccounts.

011 .BREAK

012 ArieSeceenncesns Anedgy phase if youarerelyingonthe co-
operationof companions.

013 Goods andservicesmightnot comeup toscratch.

014 .BREAK

015 Taurus.........Noteasy tofeel enthusiasticabout

016 routinechores,soaimforvariationandgetout andabouta
bit.

017 Freshsenseswill sparkoff newideas.

018 .BREAK

019 Gemini..oocuenns Groupactivitiesneedorganisingif youdon't
want torunroundincircles

020 and then find yourselfoutof pocket.

The above example shows a source document complete with all the
formatting commands such as:

.BREAK Start a new line
.BP Begin a new page

On issuing the command:

RUNOFF REPORT STARS

which consists of the command RUNOFF, the file name and the item name
held within that file, the source document is fed into the processor and the
formatting commands applied to the text giving the output:

Aquarius....... Abright future ahead, with anexpansionof
ambitions, and plenty of social opportunities. You'll be
fairlyunruffledby today'srestlessconditions.
PisceS..ueccunnan Neptune, your ruler, is strongly aspected
raising controversy in financial affairs. Make time for
checkingaccounts.

Aries.....e.... An edgy phase if you are relying on the co-
operation of companions. Goods and services might not come up
toscratch.

Taurus....-..... Noteasytofeel enthusiasticaboutroutine
chores, soaim for variationandget out and about abit. Fresh
senseswill sparkoff newideas.

Gemini...sess.. Group activities need organising if you
donLtwanttorunroundincircles.Andthenfindyourselfoutof
pocket.

148

Each line in the file is treated as a straightforward and simple output of text,
unless the first character on the line is a full stop (period). The command
lines, as they are known, may contain more than one formatter. For example
the first few lines of the example can be reduced to one line as shown.

STARS
001 .BP.LINELENGTH55.J.PARAGRAPH 4

002 Aquarius....... Abright future ahead, with
anexpansionof ambitions, andplentyof social opportunities.
You'll be

This will give exactly the same output as shown above, but puts all the
formatting commands in one place.

Each of the runoff commands are listed below, showing their effect on the
document called STARS. As many or as few of these commands as are
needed can be used in a single document.

*

Any text that follows the . * tells the runoff processor that a comment is
about to follow. This allows the purpose of the document to be explained in
the item. This facility can be very useful particularly if each document has
the first line as a descriptive comment. A dictionary item can then be set up
and used via the Access language to obtain a description of each of the runoff
items in a particular file.

For example:

STARS

001 .*TODAY'S HORRORSCOPE !!

002 .BP.LINELENGTHS55.J.PARAGRAPH 4

003 Aquarius....... Abright future ahead, with
anexpansionof ambitions, andplentyof
social opportunities. You'llbe fairly
unruffledby today's

004 restlessconditions.

In the dictionary of the file REPORT the following item is present:

149

DESCRIPTION

O =

ESCRIPTION

000000000
OO0 000000
NVOONONVNIEAWN =

o
-
o
Wrr
i

When an Access command using the dictionary item DESCRIPTION is
used, the first attribute of each item in the REPORT file is output as a piece
of data, allowing a list of names and descriptions of each report to be output.
The following command

LIST REPORT DESCRIPTION

gives the output:

PAGE 1 13:00:00 24 JAN 1985
REPORT....DESCRIPTION. ..cucecrernccacacannn .-
STARS TODAY'S HORROR SCOPE !!

1ITEMS LISTED.

.BPor .BEGIN PAGE

The textual output is halted, and the screen or the printer advances to the
top of the next page, giving output as seen in Figure 11.2.

STARS

001 .* TODAY+S HORROR SCOPE !!

002 .BP.LINELENGTHS55.J.PARAGRAPH 4

003 Aquarius....... Abright future ahead, with an expansion of
ambitions, and plenty of social opportunities. You'll be
fairly unruffled by today's

ggg restless conditions.

006 Pisces........Neptune, your ruler, is strongly aspected

007 raising controversz in financial affairs.

ggg Make time for checking accounts.

010 Aries.......... An edgy phase if you are relying on the co-
operation of companions.

81; Goods and services might not come up to scratch.

013 Taurus......... Not easy to feel enthusiastic about

014 rogtine chores, so aim for variation and get out and about
a bit.

015 Fresh senses will spark off new ideas.

016 .BP

017 Gemini......... Group activities need organising if you
don't want to run round in circles

018 and then find yourself out of pocket.

150

O| Pisces.ee.a.|O
0 O
o O
C @]
O O
O
@]
O|Aries...... (@)
(@] @]
(@] (@]
Figure 11.2
.BOX

This is a graphic presentation device, which encloses a piece of text in a box.
This command works with an on/off switch. The first . BOX command
switches the facility on, the second switches it off.

STARS

001 .* TODAY'S HORROR SCOPE !!

002 .BP.LINELENGTH55.J.PARAGRAPH 4

003 .BOX6,55.CENTER

004 The Horror Scope for Today

005 .BOX

006 Aquarius....... Abright futureahead, with
anexpansionof ambitions, andplentyof
social opportunities. You'll be

151

Which gives :

AQUAriuUS.eeecaaass Abright future ahead, with anexpansionof ambitions,
and plenty of social opportunities. You'll be fairly unruffled by
today'srestless conditions.

BREAK

This command causes the previous line not to be right justified. The next line
of text starts on a new line at the left margin. This can be seen in the example:

STARS

001 .BP

002 .LINELENGTHS5S

003 .J

004 .PARAGRAPH 4

005 Aquarius...... Abright future ahead, withanexpansionof
ambitions, andplenty of social opportunities. You'll be
fairlyunruffledby today's

006 restlessconditions.

007 .BREAK

008 PisceS.uuauncns Neptune, your ruler, isstrongly aspected

009 raisingcontroversy infinancialaffairs.

010 Make time for checkingaccounts.

011 .BREAK

012 Aries..e.ccecenns Anedgy phase if youarerelyingonthe co-
operationof companions.

013 Goods andservicesmight not comeup toscratch.

014 .BREAK

015 Taurus..eaeeaa- Not easy to feel enthusiastic about

016 r%utine chores,soaimforvariationandgetout andabout
abit.

017 Freshsenseswill sparkoff new ideas.

018 .BREAK

019 Gemini..oweeeen Groupactivities needorganisingif you
don'twant torunroundincircles

020 and then findyourselfoutof pocket.

152

Giving:

Aquarius....... Abright future ahead, with an expansion of
ambitions, and plenty of social opportunities. You'll be
fairlyunruffledby today'srestlessconditions.
Pisces......... Neptune, your ruler, is strongly aspected
raising controversy in financial affairs. Make time for
checkingaccounts.

Aries.......... An edgy phase if you are relying on the co-
operation of companions. Goods and services might not come up
toscratch.

Taurus......... Not easy to feel enthusiastic about routine
chores, soaimfor variation and get out and senses will spark
off new ideas.
Gemini.........Groupactivitiesneedorganisingifyoudon't
want to run round in circles. And then find yourself out of
pocket.

-.CENTER

This command retains the American spelling. The line of text following this
command is placed in the centre of the page.

Example:
STARS
001 .* TODAY'S HORROR SCOPE !!
002 .BP.LINELENGTHS55.J.PARAGRAPH 4
003 .BOX6,55.CENTER
004 The Horror Scope for Today
005 .BOX
006 Aquarius....... Abright futureahead, withanexpansionof

ambitions, andplenty of social opportunities. You'llbe
fairlyunruffledby today's

007 .CENTER

008 restless conditions.

009 .BREAK

010 PisceS.eeununanns Neptune, your ruler, is
strongly aspected

011 raisingcontroversy infinacialaffairs.

153

Giving:

CHAPTER 1
THEDAILY PREDICTIONS

Aquarius....... Abright futureahead, withan
expansionof ambitions, andplentyof social
opportunities. You'llbe fairlyunruffledby today's
restless conditions.
Pisces......... Neptune, yourruler, isstrongly
asEected raisingcontroversy infinancialaffairs.
etime for checkingaccounts.
Aries..........Anedgyphaseifyouarerelyingon
the co-operationof companions. Goods andservices
might not come up toscratch.
Taurus......... Noteasy tofeel enthusiastic about
routinechores,soaimforvariationandgetout and
aboutabit. Fresh senseswill sparkoff new ideas.
Gem1n1.........Groupact1v1t1esneedorgamsmg1fyou
don'twant torunroundincircles. And then find
yourself out of pocket.

--- (New page)
TABLE OF CONTENTS

SECTION PAGE

1 THEDAILYPREDICTIONS 1

-FILL

This command means that each line that is output is automatically filled to
capacity, without overflowing. If justification mode is switched on, runoff
will insert spaces in the line at random to make the right hand margin line up.
- FILL is astandard setting.

-FOOTING

This command prints the next line of text as a footer to each page. For
example:

STARS

001 .* TODAY'S HORROR SCOPE !!

002 .BP LINE LENGTH55.J.PARAGRAPH 4

003 .FOOTING

004 Sponsoredby THE STARAT NIGHT

005 .CENTER

006 .CHAPTERTHEDAILY PREDICTIONS

007 .BOX6,55.CENTER

008 The Horror Scope for Today 009 .BOX

010 A?uarius.......Abright future ahead, withanexpansion

ambitions, andplenty of social opportunities. You'll

be fairlyunruffledby today's

156

Giving the output shown in Figure 11.3.

0000000,
0000000]

Sponsored by
THE STAR AT
NIGHT

Figure 11.3

-HEADING

The same function as footing except that the text is output at the top of each
new page. Asinthe . FOOT ING command, the text is output from the left
margin. No centering will automatically take place. Top get the heading
centred, use:

.CENTER.HEADING

Giving the following item, and output as in figure 11.4

157

STARS

001 .*TODAY'S HORROR SCOPE !!

002 .BP.LINELENGTHS55.J.PARAGRAPH 4

003 .CENTER.HEADING

004 Thisisbrought toyouusingthe latest technology

005 .FOOTING

006 Sponsoredby THE STARATNIGHT

007 .CENTER

008 .CHAPTERTHEDAILYPREDICTIONS

09 .BOX6,55.CENTER

10 The Horror Scope for Today

11 .BOX

12 Aquarius....... Abright futureahead, withanexpansion
of ambitions, andplentyof social opportunities. You'll
be fairlyunruffledby today's

O ! Thisisbrought
| toyouusing the
Q| latest
o technology
| Aquarius

(@]

Sp
THE STAR AT
NI

1
|
|
|
|
|
Figure 11.4 /\/\/\/\/\/\/\/

-.INDENT

The next line of text will be indented by the required number of column
positions from the left margin, which in our case is presently set to zero.

158

STARS

001 .* TODAY'S HORRORSCOPE !'!

002 .BP.LINELENGTH55.J.PARAGRAPH 4

003 .CENTER

004 .CHAPTERTHEDAILYPREDICTIONS

005 .BOX6,55.CENTER

006 The Horror Scope for Today

007 .BOX

008 Aquarius..... ..Abright future ahead, withanexpansion
of ambitions, andplenty of social opportunities. You'll
be fairlyunruffledby today's

009 restlessconditions.
010 .BREAK
011 PisceS.........Neptune, yourruler, isstrongly aspected
012 raisingcontroversy infinancial affairs.
013 Make time for checkingaccounts.
014 .BREAK)
015 Aries.cececnaass An edgy phase if youarerelyingonthe co-
operationof companions.
016 Goods andservicesmight not comeup toscratch.
017 .BREAK
018 Taurus....co... Not easy to feel enthusiastic about
019 .INDENTS
020 Eout'lne chores, soaimforvariationandget out and about a
it.
021 .INDENT 10
022 Freshsenseswill sparkoffnewideas.
023 .BREAK
024 Gemini...... ... Groupactivitiesneedorganisingif you
don't want torunroundincircles
025 and then find yourself out of pocket.
Giving:
CHAPTER 1
THE DAILY PREDICTIONS
H The Horror Scope for Today H
Aquarius....... Abright future ahead, with an

expansionof ambitions, andplenty of social
opportunities. You'll be fairlyunruffledby today's
restless conditions.
PiSC€Sesrcnnnna Neptune, your ruler, isstrongly
aspectedraisingcontroversy infinancial affairs.
Make time for checkingaccounts.
Aries.......... Anedgy phaseif youarerelyingon
the co-operationof companions. Goods and services
might not comeup toscratch.
Taurus......... Noteasy tofeel enthusiastic about
routinechores,soaimforvariationandgetout and
aboutabit.

L Freshsenseswill sparkoff newideas.
Gemini.........Groupactivitiesneedorganisingif you
don't want torunroundincircles. And then find
yourself out of pocket.

159

«.IMnor .INDENT MARGINN

The width of the left margin is increased by the given number, and the length
of the line decreased by the same amount.

STARS 001 .* TODAY'S HORROR SCOPE !!

.BP.LINE LENGTH55.J.PARAGRAPH 4

.CENTER

~.CHAPTER THEDAILY PREDICTIONS

.BOX6,55.CENTER

The Horror Scope for Today

.BOX

Aquarius....... Abright future ahead, withanexpansion
of ambitions, andplenty of social opportunities. You'll
be fairlyunruffledby today's

o000 000
o000 0O00o
XNONVIHSWN

009 restless conditions.
010 .BREAK
011 PisceScaananans Neptune, your ruler, isstrongly
aspected
012 raisingcontroversy infinancial affairs.
013 Make time for checkingaccounts.
014 .BREAK
015 Aries.......... Anedgyphaseif youarerelyingonthe
co-operationof companions.
016 Goods andservicesmight not comeup toscratch.
017 .BREAK
018 TaurusS..ocaeass Not easy to feel enthusiastic about
019 .INDENT MARGINS
020 tr;out‘ine chores,soaimfor variationandget out and about a
it.
021 .INDENT MARGIN 15
022 Freshsenseswill sparkoff newideas.
023 .BREAK
024 Gemini......... Groupactivities needorganisingif you
don+t want torunroundincircles
025 and thenfindyourselfoutof pocket.
Giving:
CHAPTER 1
THEDAILYPREDICTIONS
H The Horror Scope for Today :
Aquarius....... Abright future ahead, withan

expansionof ambitions, andplentyof social

opportunities. You'll be fairlyunruffledby today+s

restless conditions.

PisCe€S.uucenans Neptune, your ruler,isstrongly

aspectedraisingcontroversy infinancial affairs.

Make time for checkingaccounts.

Aries.caacacans An edgy phase if youarerelyingon

the co-operationof companions. Goods andservices

might not comeup toscratch.

Taurus.....Noteasy tofeel enthusiasticabout
routinechores, soaimforvariationandgetout
and aboutabit.

Freshsenseswill sparkoff new ideas.
Gemini..... ...« Groupactivities need
organising if youdon'twant torun
roundincircles. And then find
yourself out of pocket.

160

As can be seen the new margin applies to any following text, until the next
margin statement is applied.

-INDEX

This again is helpful when compiling a large document which requires an
index. Just type . INDEX and the term required:

.INDEX Aquarius

Then, the page number(s) where that word appears is/are stored, and
subsequently listed by using the . PRINT INDEX command.

. INPUT

This command allows runoff to take text from the user’s terminal rather than
from the current file item. A prompt is output to the terminal, and the reply
is inserted into the item without causing a break to occur.

Consider the following example:

STARS

.* TODAY'S HORROR SCOPE !!
.BP.LINELENGTH55.J.PARAGRAPH 4

.CENTER

.CHAPTER THEDAILY PREDICTIONS

.BOX 6,55.CENTER

The Horror Scope for Today

.BOX

A?uarius. Abright future ahead, withanexpansion
o

00000000
00000000
NI WN -

ambitions, andplenty of social opportunities. You'llbe
fairlyunruffledby today's

restless conditions.

-BREAK

PisceS<ees..... Neptune, your ruler, isstrongly
aspected

raisingcontroversy infinancialaffairs.

Make time for checking accounts.

«BREAK

Aries..eeeeeecens An edgy phase if youarerelyingon the
co-operationof companions.

. INPUT

Goods and servicesmight not comeup toscratch.

o0 0000 000
Ao aao
-0V

-
~NOoN s

Giving a prompt, at the terminal:

161

CUNOFF REPORT STARS

THISISANINSERT
>

N J

Figure 11.5

Which results in the output:
CHAPTER1
THEDAILY PREDICTIONS

AquariuS....eas Abright future ahead, with an
expansionof ambitions, andplentyof social
opportunities. You'll be fairlyunruffledby today's
restless conditions.

PisceS.auaeunaann Neptune, your ruler, isstrongly
aspectedraisingcontroversy infinancial affairs.
Make time for checkingaccounts.

Aries...ceeeeaas An edgy phase if-youarerelyingon
the co-operationof companions. THIS IS AN INSERT
Goods and servicesmight not comeup toscratch.

-JUSTIFYor .J

As each line is filled, . JUSTIFY makes sure that each margin has a
character flush against it, as seen in all the examples so far. As a result,
spaces are inserted giving uneven text. This is similar to the technique used
in a newspaper with justified columns.

162

-.LEFTMARGINN

The left margin indicates the number of spaces that need to be indented from
the edge of the paper. In the case of item STARS the left margin has not
been set, so has defaulted to zero. The left margin and the line length when
added together must not exceed the maximum number of characters allowed
across the page. Again, in our example, the page width has defaulted to 70.
By altering the format line at the beginning of the item STARS a margin can
be created.

STARS

001 .* TODAY'S HORROR SCOPE !!

002 .BP LINE LENGTH55.J.PARAGRAPH 4.LEFT MARGIN 10

007 .CENTER

008 .CHAPTERTHE DAILYPREDICTIONS

009 .BOX6,55.CENTER

010 The Horror Scope for Today

011 .BOX

012 Aquarius.....Abright future ahead, withanexpansionof
ambitions, andpLentyofsoc1alopportun1t1es You'll be
fa1rLyunruffLedbytoday s

14restless conditions.

15.BREAK

Giving:-
CHAPTER1
THEDAILY PREDICTIONS
H The Horror Scope for Today :
Aquarius....... Abright futureahead, with an
expansionof ambitions, andpLentyofsoc1al
opportunities. You'llbefa1rlyunruffledbytoday's
restless conditions.
| S —
10

163

.LOWER CASEor .LC

All letters are converted into lower case. Self explanatory really!

STARS

001 .*TODAY+S HORROR SCOPE !'!

002 .BP.LINELENGTHS55.J.PARAGRAPH 4.LEFTMARGIN 10.LC

003 .CENTER

004 .CHAPTERTHEDAILYPREDICTIONS

005 .BOX6,55.CENTER

006 The Horror Scope for Today

007 .BOX

008 Aquarius.......Abright futureahead,withanexpansion
of ambitions, andplenty of social opportunities. You'll
be fairlyunruffledby today's

009 restless conditions.

CHAPTER 1
THEDAILYPREDICTIONS

aquariuS.......Abright futureahead, withan
expansionof ambitions, andplentyofsoc1al
opportunities. You'll.befa1rlyunruffledbytoday's
restless conditions.

PisceS.ceaeeace Neptune, your ruler, isstrongly
aspectedraising controversy infinancial affairs.

10

As can be seen, the first letter of a sentence is still a capital letter. The text
inside the box has been converted into lower case, and as a result “aquarius”
is not considered to be the beginning of a sentence.

.LPTR

The output is sent to the line printer rather than to the screen when the
runoff command is issued.

164

-NOJUSTIFY

The justify command in the opening format line is reset, giving output of
ragged right hand margin.

oo
oo
WN

000000
—_,_—_—_-_L00
W =000

o
-
w

STARS 001 .*> TODAY'S HORROR SCOPE !!
.BP.LINELENGTH55.PARAGRAPH 4.LEFT MARGIN 10
-NOJUSTIFY

.CENTER

.CHAPTER THE DAILY PREDICTIONS

.BOX6,55.CENTER

The Horror Scope for Today

.BOX

Aquarius..... Abright future ahead, withanexpansionof
ambitions, andplenty of social opportunities. You'll be
fairlyunruffledby today's

restless conditions.

Giving:-

CHAPTER 1
THEDAILY PREDICTIONS

AquUarius....... Abright future ahead, withan
expansionof ambitions, andplentyof social
opportunities. You'll be fairlyunruffledby today's
restless conditions.

e g—

10

As can be seen, only one space is left between words, except at the end of a
sentence when two spaces are left. The words are no longer spaced so that
the line starts and ends flush against the two margins.

«.PAGE NUMBER n

The page number is automatically incremented at each . BP command or

automatic page throw. At the beginning of each document the 'n’ is set to 1
and incremented from there on.

165

-PAPER LENGTH nn

The length of the form being used can be varied, by using the . PAPER
LENGTH command. As a default the paper length is set to 66, the standard
number of lines that can be printed on continuous stationery. Often for
statements, special reports or letters the length needed is only 55, which is
when you use this command.

.PARAGRAPH n

This command starts a new paragraph any time that the first character on a
line is a space. An optional number may follow the command to indicate the
number of spaces the paragraph is to be indented from the left hand margin.
A gap of one blank line is also inserted into the text.

STARS

001 .*TODAY'S HORROR SCOPE !!

002 .BP.LINELENGTHS55.J..PARAGRAPH 4.LEFT MARGIN 10

003 .CENTER

004 .CHAPTERTHE DAILYPREDICTIONS

005 .BOX6,55.CENTER

006 The Horror Scope for Today

007 .BOX

008 Aquarius....... Abright future ahead, withanexpansionof
ambitions,andplenty of social opportunities. You'll be
fairlyunruffledby today's

009 restless conditions.

010 .BREAK

011 Pisces..... Neptune, yourruler, isstronglyaspected

The Horror Scope for Today
Aquarius...a.... Abright future ahead, with anexpansion

of ambitions, andplentyof social
opportunities. You'llbefairlyunruffled
by today's restless conditions.

166

-PRINT

The line of text following the . PRINT command is output to the user’s
terminal. (i.e. the terminal that the runoff command was originally issued
from.)

STARS

001 .*TODAY'S HORROR SCOPE !!

002 .BP.LINE LENGTHS55.J.PARAGRAPH4.LEFTMARGIN 10

007 .CENTER

008 .CHAPTERTHE DAILY PREDICTIONS

009 .BOX6,55.CENTER

010 The Horror Scope for Today 011 .BOX

012 .PRINT

013 Aquarius....... Abright future ahead, withanexpansion
of ambitions, andplenty of social opportunities. You'll
be fairlyunruffledby today's

015 restless conditions.

This will result in the prediction for Aquarius being output on screen, but
excluded from a print-out.

CHAPTER 1
THE DAILY PREDICTIONS

PiSC€Sancunnnnn Neptune, your ruler, isstrongly
aspectedraisingcontroversy infinancialaffairs.
Make time for checkingaccounts.

Aries...ceaasn- An edgy phase if youarerelyingon

.READNEXT

This, as indicated earlier, is used in conjunction with the .CHAIN
command. . READNEXT reads the next piece of data in a list, which
enables data to be inserted in a standard letter, giving a personal touch. Let’s
look at a complete example. Here is the runoff item:

167

LETTER

.*Thisisastandard letter for WHICH COMPUTER?

.‘Il.EFTMARGINwBP

.PARAGRAPH S
Dear

006 .READNEXT

007 We arepleased toannounce thatwewill beexhibiting
onourownstandat WHICH COMPUTER? SHOW.

008 We havepleasureininvitingyoutovisitusandenclose
two tickets for your use.

009 Youwill findusontheground floor, adjacent to the

bar area.

UgKlgok forward toseeing you there.

Yours faithfully,

.SK 6

N.Kitt

.BREAK

Forandonbehalf of

.BREAK

MEGA COMPUTER SYSTEMS.

.CHAINLETTER

0000000000
PO O G G I G Y
NVONOVMISEWN-20

In the above item a letter is being written to each potential customer, asking
them to attend the WHICH COMPUTER? SHOW. The READNEXT
command will read from an available file the potential customer’s name and
insert it into the text. The . CHAIN command starts the production of
another letter if a piece of data is still available in the ‘read’ list.

The ‘read’ list is obtained by using the SSELE CT verb found in Access. To
select the name of each potential client, found on the CONTACT file, the
following would be entered at TCL:

SSELECT CONTACT NAME

RUNOFF REPORT LETTER

The dictionary item NAME would select the name of each potential client
from the file CONTACT, and make a list of them. The list may consist of:

Mr A Jackett
Mr P Harris
Mr M Bone

In which case three letters will be produced.

168

169

.SECTION

This is used in conjunction with the .CHAPTER command, allowing section
headings to appear in the contents list.

.SETTABSn,n,n.....

This sets up automatic tab stops, as found on any modern typewriter. Any
previous tabs that may have been set will be cancelled. Tabs only work in
NOFILL mode The tabs are activated by using the symbols> and < within
the text.

STARS
001 .* TODAY'S HORROR SCOPE !!
002 .BP.LINELENGTHS55.J.PARAGRAPH 4.LEFTMARGIN 10
003 .CENTER
004 .CHAPTERTHEDAILY PREDICTIONS
005 .BOX6,55.CENTER
006 The Horror Scope for Today
007 .BOX
008 A>g>u>a>r>i>u>s.......Abright future ahead,

withanexpansionof ambitions, andplentyof
social opportunities.
You'llbe fairlyunruffledby today's

009 restlessconditions.

CHAPTER 1
THEDAILY PREDICTIONS

A g U a r i U S.......Abrightfutureahead,
withanexpansionof ambitions, andplenty of social

opportunities. You'llbe fairlyunruffledby today's
restless conditions.

170

.SKIPnNn

A break in the text is actioned and then ’n’ blank lines are left blank before
resuming the output of text. This can be seen in the document LETTER in

the . READNEXT example. . SK 6 outputs six blank lines, to leave space
for a signature

.STANDARD

This automatically sets up a whole series of formatting commands. The
settings are:

[R %]

LL

.
cemno
o

.LEFTMARGIN®
.HEADING
.FOOTING
-PARAGRAPH 5
.LINELENGTH70

STARS

001 .* TODAY'S HORROR SCOPE !'!

002 .STANDARD

003 .CENTER

004 .CHAPTERTHE DAILY PREDICTIONS

005 .BOX 6,55.CENTER

006 The Horror Scope for Today

007 .BOX

008 Aquarius...... Abright futureahead,withanexpansionof
ambitions, andplenty of social opportunities. You'llbe
fairlyunruffledby today's

171

CHAPTER 1
THEDAILY PREDICTIONS

AQUAriuS..essass Abright future ahead, with an
expansionof ambitions, andplentyof social
opportunities. You'llbe fairlyunruffledby today's
restless conditions.

PiscesS.ceececee Neptune, your ruler, isstrongly

-UC

Runoff is put into UPPER CASE mode as seen in the example for
.STANDARD

172

Appendix A

Summary of TCL

Commands

Non Referencing Verbs

ADDD

ADDX

BLOCK-PRINT

CHARGES

CHOO-CHOO

CREATE-FILE

DIVD

DIVX

This verb adds together two decimal numbers
and displays the result on the terminal screen in
decimal.

This verb adds together two hexadecimal
numbers and displays the result in hexadecimal.

Outputs block letters of text on the terminal or
the printer. For cxample the command

BLOCK-PRINT "ABC'" would be output:

A BBBBBB cccc
AAA BB BB cC Cc
AA AA BB BB CC
AA AA BBBBBB cC
AAAAAAA BB BB CC
AA AA BB BB cC CcC
AA AA BBBBBB cccc

This verb displays the total time that a uscr has
uscd the machine, as well as the usage of the
CPU.

A picturc of Cascy Jones’ train is displayed!

Creates a new file name and scts up all the
nccessary pointers.

Two dccimal numbers arc divided and the
result is displayed in decimal.

Divide two hexadecimal numbers and display
the result in hexadecimal.

173

ECHO-ON/OFF

LISTFILES

LISTPEQS
LISTPROCS

LISTUSERS

MSG

OFF

SLEEP

SP-ASSIGN
SP-CLOSE

SP-STATS

T-ATT

T-FWD

T-DUMP

T-EOD
T-READ

An on/off switch which, when in the ON
position, displays every character entered from
the keyboard on the screen.

All the files of the account the user is currently
logged onto are listed in tabular format.

A listing of the spooler information is produced.
Outputs all the procedures (i.e. all items for
which attribute 1 contains the letters “PQ™) in a
named dictionary. Will automatically default to
the user account master dictionary.

Output of information about who is currently
using the machine: line number, time of logon,
date of logon, and the account being used.

Sending of messages to a single user, a group of
users or all users.

This will terminate the use of an account taking
the user back to the logon prompt.

Further processing is halted while the machine
takes as many winks as are specified in seconds.

Makes ready the printer for receiving output.

Reverses the previous statement (SP-
ASSIGN).

Displays the current status of all the devices
used by the spooler.

Attaches the tape unit ready for reading from or
writing to a loaded tape.

The attached tape is moved forward to the next
end of file mark or skips a specified number of
records.

Dumps to magnetic tape the items specified
after the verb.

Move the tape forward to the end of the data.

Read a block of data from the loaded tape.

174

TERM

TIME

WHAT
WHO

This verb sets the terminal and printer
characteristics.

Displays the current time and date on the user’s
terminal.

Outputs system status and configuration.

Outputs the account that the terminal is
currently logged onto.

Referencing Verbs

BASIC

CATALOG

CLEAR-FILE

COPY

CREATE-FILE

DELETE-FILE

EDIT

GROUP
ISTAT

ITEM

RUN

Calls the Pick DATA/BASIC compiler into
action.

Creates an entry in the current account’s master
dictionary of the specified program.

The data section of the.specified file is cleared
completely.

Copies a specified file to another file in the same
account or, by using a ‘Q’ pointer, copies a file
to another account.

Creates a new file of the specified name in the
account which the user is currently logged onto.

Deletes the file and removes all evidence of its
existence.

This verb enters the editor, allowing alteration
or creation of any item in any file that the user is
authorisgd to use.

Outputs hashing information on a specified file.

Outputs hashing information about the
distribution based upon the current modulo and
scparation of the named file.

Outputs the base frame identification number
of the group which the specified item hashes.
Also alist of all other items that are contained in
that group.

To execute a compiled DATA/BASIC
program.

175

RUNOFF

To output to screen or to printer a document
created with the RUNOFF processor.

Access Vocabulary

Verbs
COPY-LIST

EDIT-LIST

QSELECT

COUNT

DELETE-LIST

GET-LIST

This verb allows the user to copy a saved
selected list to the terminal, to another selected
list, or to an item in a file.

The EDIT-LIST verb allows the editing of a
saved selected list.

Allows the creation of a select list from
attributes in an item or items in a file.

The verb COUNT will simply give the result of
counting all the items in a file which meet any
given condition specified in the rest of the
command. The most basic form of the
command is COUNT VEHICLE which will
count the number of customer items in the file
VEHICLE. The command

LIST CUSTOMERSWITHDISCOUNTGT
"10" ANDWITHLOCATION "BUCKS"

will return the number of records which give the
specified criteria.

When a list of selected items from a file has been
saved a pointer to that selected list has been
created. The delete-list verb removes that
pointer and frees the space in storage which was
used to hold the list.

When a list of selected items from a file has been
saved on disk, this verb is used to retrieve that
list. When it is retrieved, a message is output to
the terminal, giving the number of items that
are present on the saved list. Once this verb has
been issued any of the processors may use the
information held in the special list. This
statement is mostly used in PROCEDURES for
passing data to BASIC programs or printing
labels, using the LABEL command.

176

HASH-TEST

ISTAT

LIST

LIST-ITEM

This is more of a technical verb, used for
determining the best size and shape for a file. It
shows how any or all of the items in a file would
hash into groups. The verb allows the user to
enter several different file sizes and to see how
the machine would organise the frames and
groups. Many machines have a graphical
representation of the results.

Again a technical verb, which provides a file
hashing histogram for the selected items in a
selected file, as well as an item count, the total
number of bytes in all the items that have been
tested, the average number of bytes per item
and the average number of items per group. On
the surface, this verb does not seem very useful,
but is invaluable for calculating how much disk
space may be required in the future. It also
shows, to the experienced eye, how well the file
space is being utilized. It may be that the file
sizes are affecting the efficiency of the machine.
Not often used on a day to day basis, but the sort
of verb a technical guru will use to impress a
potential purchaser.

This is the simplest, and probably the most
used, Access verb. LIST CUSTOMERS will
give a display on the terminal from which the
request was issued with a display of all the items
held on the file CUSTOMERS. Automatically
a predetermined selection of attributes are
displayed from every item. Other combinations
of output can be specified by using the data
dictionary definitions that have been set up for
the file in question.

This verb combines the format of the COPY
command with the selection powers of Access.
The same type of format is used as for the LIST
or SORT verbs, except that no output
specifications are given, as all the items
requested are printed on the terminal or line
printer, just as the COPY verb would produce
them, complete with three digit line numbers on
the left of each line. Heading and footing text
can be used as well as selection criteria (LT,
GT, EQ, and so forth).

177

LIST-LABEL

REFORMAT

SAVE-LIST

This facility cnables the printing of standard
labels. The command has the same cffect on the
data as the LIST command, except the output is
formatted into a label shape and size. After
issuing the LIST-LABEL command, the
operator is prompted at the screen for a number
of pieces of information, which includes:

1. Number of labels across a page.
2. Number of possiblc print lines on cach label.
3. Number of blank lines between cach label.

4. Number of spaces the display is to be
indented (from the left margin).

5. Maximum number of characters across the
label that can be printed.

6. The number of spaces between the labels
(across the page).

All this information is nccessary because sheets
of labels vary cnormously from company to
company. Although very time consuming to
work out for the first time, once donc this
command is very easy and useful to use. Also
the labelling commands should not be used
straight from the terminal as the answers to the
questions get forgotten, or the person who
knows the answers is on holiday. This type of
complex command should be placed in a
procedure for instant hassle-frec use.

The REFORMAT verb is equivalent to a LIST
verb except that the resulting output is directed
to magnetic tape or another file already sct up in
the system, rather than to the terminal or linc
printer. The most common use for this verb is to
use the data in another file for updating parts of
the database.

This verb provides the facility to make a
permanent saved list of a temporary list
produced by the SELECT, SSELECT, and
QSELECT verbs. These permanent lists arc
made available by the GET-LIST verb, and
deleted by DELETE-LIST. If a SAVE-LIST is

178

SELECT

SORT

SORT-ITEM

entered at TCL it must follow immediately after
a SELECT or SSELECT command which
generated the required list.

The SELECT verb gives the facility to pick out
a set of items or attributes from any given file
and generate a list which is temporarily stored.
The next command entered at TCL (or the next
instruction in a procedure) will act upon this
temporary list rather than the entire database.
SELECT has exactly the same actions on the
required file as the LIST command, with the
difference that the data is not displayed but
stored. These lists are available to the different
parts of the Pick operating system and can be
used by BASIC, ACCESS, RUNOFF, and the
SAVE-LIST verb.

The verb SORT gives basically the same output
as LIST but in addition the items may be
displayed sorted in various ways.

SORT CUSTOMERS

will give the same output as LIST
CUSTOMERS except the output will be
displayed in ascending order of value of the item
identifier. An ascending sort on values of any
other field is achieved by including in the
command a modifier followed by the item name
that needs to be sorted.

SORT CUSTOMERS BY SALESMAN

will give a display of all the customers sorted
alphabetically by the salesman’s name. A
descending sort may be produced by using the
modifier BY-DSND:

SORT CUSTOMERS BY-DSND
SALESMAN

Up to 15 of these sort keys may be used,
producing a sort within a sort within a sort......

This verb has the same functions as LIST-ITEM
with the exception that the items are sorted
rather than just listed. For a more detailed
explanation see LIST-ITEM.

179

SORT-LABEL

SREFORMAT

SSELECT

STAT

SUM

T-DUMP

This verb gives the same output as the SORT
verb except that the data is displayed in label
format. See LIST-LABEL for more
information.

Again, the REFORMAT verb with a sort rather
than a list function.

The SELECT verb with a sort option rather
than merely a list function.

The verb STAT will give the total of a single
item (as in SUM), and the average. For
cxample:

STAT VEHICLE COST WITH MAKE.
NAME = "BRITISH LEYLAND"

This will give the total cost of maintenance of
British Leyland vehicles as well as the average
amount spent on cach of the British Leyland
vehicles in the fleet.

The verb SUM will give the total of the values of
a single attribute from all the attributes in the
named file, and/or which meet any conditions
specified in the rest of the command, for
cxample:

SUMCUSTOMERDISCOUNT

This will return the total of the discount field for
all the items in the file. The command:

SUMVEHICLE COSTWITH MAKE.NAME
="BRITISHLEYLAND"

will return the sum of the records whose make
namc item contains the string of characters
“BRITISH LEYLAND"

This verb decals with dumping data from the
databasc to magnetic tape. Selection criteria
may bc uscd but output formatters may not
(such as totals and breaks in the listings). The
tapc unit has to be made ready for the Pick
machine by “attaching™ it to the processor
before it will operate.

180

T-LOAD

This verb fetches data from a magnetic tape,
doing the reverse of the verb T-DUMP. Only
data which has been written to the tape using
the T-DUMP verb can be retrieved using the T-
LOAD facility.

Modifiers and output formatters for the Access verbs

BREAK-ON

BY

BY-DSND

BY-EXP

BY-EXP-DSND

COL-HDR-SUPP

This modifier is used to give a more readable
sectioned listing. Rather than having one
continuous piece of paper, the data can be split
up into sections. Each time the value of the
specified attribute changes, a break in the listing
occurs. This feature is usually only used in
conjunction with the sort verb.

SORT CUSTOMER BY SALESMAN
BREAK-ON SALESMAN

If the break attribute name is followed by text in
double quotes, the text specified will be printed
on each line where the break in the printing
occurs.

This tells the processor which attribute is to be
the sort key.

SORT CUSTOMERS BY NAME

The following attribute is the criteria by which
the sort is to take place. Only used with the
SORT verb.

Specifies that the sort is to be in descending
order rather than in default value of ascending
order.

Sorts by exploding attribute values. This is for
use with multi-valued attributes. The result is
multiple lines for each item, sorted in ascending
order.

The same as for BY-EXP, multivalue attributes
sorted, but the order is descending rather than
ascending.

In every Access command a time and date

heading is automatically output. This command
suppresses the time and date headings as well as

181

DBL-SPC

DET-SUPP

DICT

EACH

EVERY

FOOTING

GRAND-TOTAL

the column headings for each of the attributes
and the end of list message.

This output formatter causes an extra line to be
inserted between each item, to double space a
listing, making it easier to read, mark and write
comments on.

This suppresses all detail lines when used with
TOTAL or BREAK-ON. Only subtotal, grand-
total and break lines are displayed. This
command allows summary information to be
output exclusively, rather than all the individual
items in a file. Particularly useful for accounting
purposes.

This specifies that the dictionary portion of the
file is to be listed or sorted as opposed to the
data file. The processor assumes that the data
portion is being looked at, so if you want
anything else, specify it.

See EVERY as these two verbs are
interchangeable.

This modifier is for use with multi valued fields.
When selection criteria are being made, it
makes sure that every value in a multi-valued
attribute meets those specified criteria. Without
each of the multivalues being true the item
cannot be true. If this modifier is not used, and
just one of the multivalues matches the criterion
then a successful match is presumed, which can
lead to misleading information. Much care
needs to be taken over multivalue attributes.

The same as a HEADING except at the bottom
of a page. See HEADING for more detail.

This modifier outputs text on a total line. An
example is:

SORT CUSTOMERS TOTAL DISCOUNT
GRAND-TOTAL "THE TOTAL
DISCOUNTIS"

As with all text output, it is enclosed in double
quotes. Other options which can be used with
this include underlining all the total fields in the
ACCESS statement, and forced new pages.

182

HDR-SUPP

HEADING

ID-SUPP

IF

LPTR

NOPAGE

ONLY

This suppresses the time and date information
which is output automatically at the top of every
page of every ACCESS report.

This modifier acts on a ACCESS report to
produce a heading. This is achieved by
including in the command the word
“HEADING” followed, in quotes, by the text
that is required at the top of each page. Special
options are available for inserting the current
date, a file name, a page number, or the current
machine time. These special options have to be
surrounded by single quotes:

LIST CUSTOMER HEADING
"CUSTOMER INFORMATION FOR
I’:I.?ONE PRINTED FROM 'F' FILE AT
T "

The above example will give a heading
containing the filename (‘F’) and the time and
date of the report (‘T")

This modifier suppresses the item-identifier
from being output with the rest of the requested
data. The item-identifier is automatically
output unless suppressed.

The word IF in an ACCESS sentence indicates
that the following attribute name is a criterion
for making a selection. This modifier is totally
interchangeable with the WITH modifier.

By using this the output is directed to the line
printer rather than to the terminal.

When output is being directed to the terminal,
this modifier prevents a pause of output at the
end of each page.

This displays the item-identifier only,
suppressing any display items. For example:

LIST ONLY CUSTOMERS WITH
SALESMAN "MARKPRIOR"

It is also useful for looking at the data dictionary
files to see what ‘keywords’ exist.

183

TOTAL

USING

WITH

LISTONLYDICT CUSTOMERS

The above command would give a list of the
names of the dictionary items present in the
dictionary portion of the customer file.

The TOTAL facility gives the total of the listed/
selected values in a particular attribute. The
TOTAL is printed at the end of the listing.

LIST CUSTOMERS NAME TOTAL
PURCHASE.AMNT

In the above example there will be columns for
NAME and DISCOUNT, with a total at the
bottom of the DISCOUNT column.

This is a special word that allows for test data or
dictionary file when a database is first set up.
This facility is used during system development
and enhancement.

See IF.

184

Appendix B

Summary of
PROC Commands

This command moves data from input buffers to
output buffers.

Input Buffer Output Buffer
NKPHAJ A PH
1 4

The A moves to the output buffer the string of
characters being currently pointed to in the
input buffer.

The pointer in the current input buffer is moved
backward by one group of characters.

Input Buffer Output Buffer
NKPHAJ B before command
E T
NKPHAJ B after command
* 4

185

The pointer in the current output buffer is
moved backward by one group of characters.

Input Buffer Output Buffer
NKPHAJ MHAM before command
K B L 3
NKPHAJ MHAM after command
<+ K
This command does not have any effect on any
of the input or output buffers, but merely
provides a documentary capability, helping to
make the finished procedure more readable.
The current parameter (group of characters)
being pointed to in the currently active input
buffer is output to a terminal.
The input buffer pointer is moved forward by
one parameter.
NKPHAJ MH AM Before
. r 3
NKPHAJ MH AM After
K] 2

This command causes a transfer of control to a
line other than the next in the procedure.

001 PQ
002 RI
003 RO
004 1 OHELLO, HELLO, HELLO
00561
ooé P

In the above example the output line “HELLO,
HELLO, HELLO?” will be output on the screen
continuously. (The letter 'O’ is the output
command). Each time the command GI1 is
reached the operating system goes to the line
labelled ‘1’ and repeats that line. The next line is
G1, which transfers control to the line labelled

186

IF

IH

‘1’ and the output statement is executed..... add
infinitum.

This moves a string of characters, forming text,
from a terminal to the currently active input
buffer as one parameter. For example:

Before
1+
LISTSALES After
1

This is a conditional command, which
introduces basic decision making capability to
the procedures. For example:

IFA5G015

The above statement will look for the presence
of a fifth parameter (represented by AS) in the
currently active input buffer.

NKPHAJ

InputB

IP

As a fifth parameter does exist (PH), the
procedure goes to the line with label 15."If the
condition is found to be false, i.e. there is no
second parameter in the input buffer, then the
GO 15 i1s ignored and the next statement in the
PROC is executed.

This replaces the parameter being pointed to in
the currently active input buffer. For example,
if the buffers are initially:

OutputB

NKPHAJ

N

Then the command IH LC will produce the
following result in the above input buffer:

Input B Output B

NKLCMHAJ

t

187

1P

IS

IT

This command allows input of data from the
terminal keyboard into the currently active
input buffer.

NKPHAJ

~

The command IP, with response from the
terminal of MH results in:

NKMHAJ

4

The data that is input overwrites the data
currently being pointed at, in our case “PH”.

This is the same as IP, except that the data is
placed in the secondary input buffer.

The IT command clears the currently active
input buffer and then inputs the tape label from
an attached tape into the input buffer.

O stands for OUTPUT, in this case to the
terminal from the procedure. Text that follows
the O is output. For example:

002 O SCREEN HEADING

This will give the following output on the terminal when the procedure is

run:

This will give the following output on the
terminal when the procedure is run:

SCREEN HEADING

1. PLEASETYPE INYOUR NAME

188

RI and RO

SP

SS

STON

The ‘+’ sign stops the cursor from moving to the
beginning of the next line, giving a prompt
cursor at the end of the output text.

Process the commands (as if still at TCL) that
are currently held in the active output buffer.
This, in effect executes the commands that have
been stacked in the output buffer.

Other options include:

PH - all terminal output is suppressed.

PP - The output buffers are displayed.

PW - waits for the user to respond with

PW - before proceeding, after having displayed
PW - the contents of the current output buffer.
PX - returns to the TCL prompt rather than
PX - continuing the procedure.

These two commands are concerned with
resetting the buffers to a null state (i.e.
absolutely empty). Rl is for the input buffers
and RO for the output buffers.

It is advisable to use both of these commands at
the beginning of a procedure to clear out any
existing information in the system buffers.

This command, when followed by an integer
value, positions or repositions the pointer in the
currently active input buffer. For example, S2
will move the pointer, in the diagram below, to
the second parameter.

NKPHAJ

after 52 NKPHAJ

/r

T

By using this command the primary input buffer
is selected, and the pointer is set to the
beginning.

This command is as above except the secondary
input buffer is made active and the pointer set to
the beginning.

The secondary output buffer is selected;, and
made active.

189

LOCK-FRAME

SEL-RESTORE

STRIP-SOURCE

UNLOCK-FRAME
VERIFY-SYSTEM

WHAT

WHERE

destroyed. For example:
LINK-WS 1~-3

will link workspace for lines one, two and three
only.

This verb is used to hold a frame in main
memory; it will remain there until the
UNLOCK-FRAME verb is used.

This allows the selective restoration of named
accounts from a system save.

This is used with Assembly language program
only, to remove the source, freeing large areas
of disk space. The assembled code remains.

A frame locked in main memory is released.

This checks to see if the system software is
correct. Each frame in the operating system is
checked, and any that are found incorrect are
listed by their frame number. This verb is
actioned automatically on some versions of Pick
when the machine is switched on.

This verb is used to display the system
configuration, the current status of all its locks
and tables, and the location of the processes
that are logged on. The WHERE verb is a
subset of the WHAT verb.

WHERE displays data for all channels that are
currently logged. For example:

WHERE "ALAN'

will display information for all lines logged onto
account ALAN.

192

Appendix D

Summary of the
BASIC language

BASIC Functions

(@(expression)
This peculiar part of the DATA/BASIC language generates
terminal controlling codes when the cursor needs to be
positioned other than at the left hand side of the screen. The
majority of screens have a width of 72 characters, each of those
characters being placed in a column. The expression:

PRINT @10: " HAVE ANICE DAY"

will result in the cursor travelling to column 10 on the screen
(current line) and then printing the message contained in quotes.
The line on which the output should appear can also be specified

PRINT @(10/10): "THIS IS THE WINTER OF OUR
DISCONTENT"

The specified phrase will start being printed at column 10 row 10.
If you are going to draw a picture or create a whole screen full of
printing, it is best to lay it all out on a piece of graph paper first.

ABS(X) The ABS function returns the absolute value of its argument.

For example:

ABS(5) =5
ABS(-22) = 22
ABS(100-50) = 50

There are no special restrictions on the range of numbers that can
be used as arguments for this function, apart from the limit on the
size of the numbers which can be represented by the particular
computer.

ALPHA (expression)

This statement is not found in ordinary BASIC and is a true or
false function. ALPHA tests for an alphabetic string. If the

193

expression evaluates to an alphabetic string a value of true is
returned (i.e. a value 1), a zero (U) is returned if any
nonalphabetic characters are found in the string. For example:

ALPHA("LES COTTCON") 1 (True)
ALPHA(C"ABC 123") 0 (False)

X="THEPICKOPERATINGSYSTEM"
IF ALPHA(X) THENGOTO 25

In the last example, control is transferred to statement 25 if the
variable X is found to be alphabetic.

CHAR(expression)

COL1()

COL2()

The CHAR function converts a numeric value specified by the
following expression to a corresponding ASCII (American
Standard Code for Information Interchange) character string.
For instance,

EX =CHAR(33)

This assigns the character number 33 (an exclamation mark) to
the variable EX. The argument of the function must be a integer.
The command

PRINT CHAR(33)

should result in the output of an explanation mark on the screen.
The CHAR function is often used in conventional computing to
change upper case letters to lower case letters using a small
routine. In Pick this sort of thing can be done but is not necessary
due to the ease with which upper and lower case may be
displayed using attribute 7 or 8 of the data dictionaries. The
expression in a CHAR function must be numeric.

Returns (numeric) column positions of the character preceding
the sub-string retrieved in the most recently executed FIELD
function.

Returns (numeric) column positions of the character following
the sub-string retrieved in the most recently executed FIELD
function.

COS(expression)

The COS function returns the cosine of its argument. The
argument is expressed in degrees. There are no special
restrictions on the values of the argument of this function.

194

COUNT (string,sub-string)

DATE()

This function counts the number of occurrences of a sub-string
within a string. For example:

X =COUNT ("MISSISSIPPI','SS")

X will equal 2
Y = COUNT ("MISSISSIPPI','I")

Y will equal 4

In both these cases MISSISSIPPI is the string, and ‘SS’ and ‘T’ are
the sub-strings.

The current system date is returned in the internal format, that
is a whole number counting the number of days from 31st
December 1967.

DCOUNT (expression,expression)

This function counts the number of values that exist separated by
a specified delimiter. This function differs from the COUNT
function in that it counts the number of values by using a
delimiter. This is especially useful when counting occurrences of
a multivalued item. For example:

FRED ="ABC"DEF~"GHI“JKL"MNO"

X =COUNTC(FRED,"'" ")

will give the answer 4

X =DCOUNTC(FRED,"'"")

will give the answer 5

DELETE(expression,expression,expression,expression)

The DELETE function deletes an attribute, value or subvalue
from a dynamic array. The first expression in the function gives
the dynamic array on which deletion will take place. The second
expression specifies the attribute, the third a specific value within
that attribute (a multivalue) and the fourth a subvalue. For
example:

OPEN'"','CUSTOMERS' ELSE STOP
READ VALUE FROM "WHITE LION' ELSE STOP
VALUE=DELETE(VALUE,2,3,1)

will delete the value TONIC from item WHITE LION in the file
CUSTOMER, shown below.

195

WHITE LION

01-428-1423

TONICITONIC\BITTER LEMONITONIC\DRY GINGER\BITTER
LEMON

30130130

0110112

ALASDAIRMORRENIPAUL HILLIMARKPRIOR

10 THE DRIVE CRICKLEWOOD

o000 OO

01
02
03
04
05
06

EBCDIC(expression)

This function performs the inverse of the ASCII function,
converting an EBCDIC (Extended Binary-Coded Decimal
Interchange Code) code to an ASCII code.

EXP(expression)

This is a mathematical function which calculates the exponential
by raising the number ‘e’ (2.7183) to the value of the given
number or expression.

EXTRACT((expression,expression,expression,expression)

The EXTRACT function fetches an attribute, a value or a
subvalue from a dynamic array. The first expression in the
function gives the dynamic array from which it is to be extracted.
The second expression specifies the attribute, the third a specific
value within that attribute (a multivalue) and the fourth a
subvalue. For example:

OPEN'','CUSTOMERS' ELSE STOP

READ VALUE FROM 'WHITE LION' ELSE STOP
PART = EXTRACT(VALUE,2,2,2)

PRINT PART

will extract the value BITTER LEMON from item WHITE

LION in the file CUSTOMER, shown below, and hold it in
variable PART. PART is then printed.

RLEMONITONIC\DRY GINGER\BITTER
IRMORRENIPAULHILLIMARK PRIOR
EWOOD

FIELD(expression,expression,expression)

This is a string handling function, which selects a sub-string from
a string when given certain criteria.

FIELD("ABC/EFG/123/HIJ/456","/" ,4)
There are three parts to the command:

1. The original string which in our case is:

196

"ABC/EFG/123/HIJ/456"
2. The delimiting character, “/”.

3. The n’th sub string that is to be found, in our case the fourth.

In the above example there are five sub strings delimited by the
‘/’ symbol, the FIELD command will return the sub-string HIJ.
The delimiters may be any ASCII characters. For example:

B=FIELD("MISSISSIPPI" , "I",1)

B will contain the character “M”.
ICONYV(expression,expression)

This function is peculiar to the Pick operating system as it
provides the programmer with certain conversion facilities. The
second expression specifies the type of input conversion to be
applied to the string value resulting from the first expression.

DATE=ICONV("01-03-85","D")

This converts the date into internal format and assigns it to the
variable DATE. DATE will have the value 6270,as this is the
number of days since 31st December 1967. Also available are the
time and a call to a user-written or already-provided assembler
routine.

INDEX((expression,expression,expression)

This function searches a string for a defined sub- string and
returns the starting column of that sub- string. For example:

PLACE = INDEX("MISSISSIPPI", '"SS" ,2)

Above we are looking for the second occurrence of the string
“SS” in the string “MISSISSIPPI”

As can be seen there are two occurrences of the specified sub-
string. We are looking at the second, which starts at column 6, so
the answer that will be returned to the variable PLACE, is 6.

INSERT)
(expression,expression,expression,expression,expression)

This function is used with dynamic arrays, and is part of a family
of commands which includes DELETE and EXTRACT dealing
with dynamic arrays. This function places a new attribute, value
or subvalue into a dynamic array. For example:

197

becomes:

OPEN'','CUSTOMERS' ELSE STOP
READ VALUE FROM "WHITE LION' ELSE STOP
VALUE = INSERT(VALUE,2,1,2,"'DRY GINGER"')

will insert the value 'DRY GINGER’, in expression 5, into
attribute 2 (expression 2). The text will be placed in the second
subvalue (expression 4) of the first multivalue (expression 3), .
The item below:

WHITE LION

001 01-428~1423

002 TONICITONIC\BITTER LEMONITONIC\DRY GINGER\
BITTER LEMON

003 30130130

0110112

005 ALASDAIR MORRENIPAUL HILLIMARK PRIOR

10 THE DRIVE CRICKLEWOOD

WHITE LION

001 01-428-1423

002 TONIC\DRY GINGERITONIC\BITTER LEMONITONIC\
DRY GINGER\BITTER LEMON

003 30130130

004 0110112

005 ALASDAIRMORRENIPAUL HILLIMARK PRIOR

006 10 THEDRIVE CRICKLEWOOD

INT(expression)

Returns an integer value for any expression.
ANSWER = INT(47.6744)The variable ANSWER will contain
the value 47

ONE =1.34
TWENTY =20.577
ANSWER = INT(ONE + TWENTY)

The variable ANSWER will contain the value 21, as only the
portion before the decimal point is considered by this function.
There are no special restrictions on the range of numbers that can
be used in this function. A popular use of the function is to round
a number to the nearest integer.

ANSWER = INT(TWENTY +0.5)
ANSWER =22

LEN(expression)

Finds the length of a string of characters. For example:

WORD = "MISSISSIPPI"
ANSWER = LEN(WORD)

198

The number contained in the variable ANSWER will be 11.
LN(expression)

This is a trigonometric function which produces the natural
logarithm of the argument given. The logarithm of a number X is
the power to which the base (in this case) must be raised to
produce the number X. e as in EXP is the number 2.7183.

LN(2.7183) =1
The argument must be greater than or equal to zero.

NOT (expression)

Returns the logical inverse of its argument. Recalling that 1 =
true, 0 = false, then for example:

ANSWER =NOT(1)

The contents of variable ANSWER will be 0.
NUM(expression)

The NUM function tests any given string for a numeric value, in
the same way that the function ALPHA tests for alphabetic
characters. The value that is returned is either a 1 (true) or a 0
(false)

NUMBERS = NUM("123GT")

The variable NUMBERS will hold the value O indicating that the
string that has been tested (“123GT”)does not consist entirely of
numeric characters.

OCONY(expression,expression)

This function does the inverse of ICONV. It converts machine
format data into human format for display purposes. An
internally held date, which is merely a four digit number will be
converted into a recognisable date. Also available are time
conversions.

PWR(expression,expression)

This is a mathematical function which raises the value contained
in expression 1 to the power of the value held in expression 2:

ANSWER = PWR(8+2,5+5)

199

The contents of the variable ANSWER will be 10 to the
100,000,000,000, or one hundred thousand million.

REPLACE((expression,expression,expression,expression,expre ssion)

This function locates and then replaces a single element in a
dynamic array. For example:

OPEN'','CUSTOMERS' ELSESTOP
READ VALUE FROM '"WHITE LION' ELSE STOP
VALUE = REPLACE(VALUE,2,1,2,'AREPLACEMENT')

will replace the value ‘DRY GINGER’ with the text ‘A
REPLACEMENT’, in expression 5. The item below:

WHITE LION
001 01-428-1423

002 TONIC\DRYGINEER]TONIC\BITTERLEHON]TONIC\DRY
GINGER\BI LEMON
003 30130130

005 ALASDAIR MORRENIPAUL HILLIMARKPRIOR
006 10 THEDRIVE CRICKLEWOOD

becomes:

WHITE LION
001 01-428-1423

002 TONIC\AREPLACEMENTITONIC\BITTER LEMONITONIC\DRY
GINGER\BITTER LEMON
003 301 30

RMORRENIPAUL HILLIMARK PRIOR
006 10 THEDRIVE CRICKLEWOOD

RND(expression)

This is a mathematical function which generates random
numbers. The numbers are between 0 and the number specified
in the expression minus one. The number contained in the
expression must be positive.

RANDOM = RND (91)

The above example will generate a number at random in the
range 0 to 90 inclusive, and place it in the variable RANDOM. In
practice it is impossible for a computer to produce perfectly
random numbers but the numbers generated are as even a
distribution as is possible.

200

SEQ(expression)

This function performs the inverse of the CHAR function, by
turning the character of a string into its equivalent numeric
ASCII value.

ANSWER =SEQ('MISSISSIPPI')

The above will result in the number 77 being placed in the
variable ANSWER. 77 Is the decimal number for the letter M.

SIN(expression)

This is another trigonometric function producing the sine of its
argument. The result is expressed in degrees.

SPACE(expression)

This function creates a string with the number of blank spaces
specified by the argument.

SSTRING = SPACE(20)

SSTRING contains 20 blank spaces. These string are invaluable
for formatting a special print out

PRINT SPACE(20):"TAKE ME TO YOUR LEADER"
This creates 20 blank spaces followed by the text.

SQRT(expression)

A mathematical function producing the positive square root of
the given argument.

ANSWER = SQRT(25)

The number returned to the variable ANSWER will be 5. The
number supplied to this function must be a positive number or
zero.

STR(expression,expression)

This function generates a string containing the first argument
times. The integer is the second argument. For example:

ANSWER =STR("%" ,3)
ANSWER will contain a string “% % %"

201

ANSWER =STR("HELLO" ,10)
Answer will now contain the string :

"HELLOHELLOHELLOHELLOHELLOHELLOHELLOHE
LLOHELLOHELLO".

TAN(expression)

The TAN function produces the tangent of its argument. The
argument is expressed in degrees. The value of the tangent
function is undefined for angles® 90,270,450 degrees and for
negative angles of the same magnitude. Accordingly, these
values must not be presented as arguments to the TAN function.

TIME()
This function returns the string value containing the internal
machine time of day in seconds past midnight.

TIMEDATE()

This function returns the string value which contains the current
time and date in external human format. The format is:

12:34:22 05 JAN 1895

BASIC Statements

ABORT{error numberparameter,parameter,...}}

Terminates a program designating the logical end returning
control to TCL.

CALL name (argument list)

CASE

This statement calls a subroutine from the current program. For
example:

CALLSUB1T (X, Y, REPLY)
will CALL subroutine SUB1 and execute it in place of the given

statement, using, X, Y and REPLY to pass values to the
subroutine.

This provides the conditional execution of a sequence of BASIC
statements. For example:

202

CHAIN

CLEAR

BEGIN CASE
CASE NUMBER < 100
PRINT 'NUMBER IS LESS THAN 100’
CASE NUMBER < 200
PRINT ' NUMBER IS LESS THAN 200 BUT
GREATER THAN 100" CASE NUMBER < 300
PRINT 'NUMBER IS LESS THAN 300 BUT
GREATER THAN 200'

END CASE

If NUMBER = 99 then the first print statement will be actioned
as the first condition has been satisfied. If NUMBER = 199 then
the second print statement is actioned, and so on through the
statement. There may be any number of CASE statements
enclosed in the mandatory BEGIN CASE and END CASE lines.

This statement allows a BASIC program to execute any valid
TCL command, including the ability to pass values to a
separately compiled BASIC program which is executed during
the same terminal session. For example:

CHAIN "RUNBP ABC"
will cause the previously compiled program ABC, held in the file

BP to be executed. CHAIN cannot be used as a variable name.

This will set all possible variables in a program to the value zero.

CLEARFILE

DATA

Clears the data portion of the specified file. For example:

OPEN'','CUSTOMERS' TO EXAMPLE ELSE STOP
CLEARFILE EXAMPLE

When the CLEARFILE statement is executed the file that is
gssllgngd to the file variable EXAMPLE will have all its data
eleted.

Stores data for future input requests when using the CHAIN
statement. For example:

DATA X
DATAY
CHAIN "RUNBP ABC"

Program ABC in file BP will be caused to start executing, when
an request for data is issued. The stored data Y will be taken
followed by X., and used in the program.

203

DELETE

DIM

END

ENTER

EQUATE

Deletes a specified item in a file. For example:

OPEN '','CUSTOMERS' TO EXAMPLE ELSE STOP
DELETE EXAMPLE, "WHITE LION"

will delete the item with an identifier of “WHITE LION” which
is located in the file assigned to the specified file variable in the
OPEN statement.

Multiple valued variables are called arrays. Before arrays can be
used within a BASIC program their dimensions must be declared
by using a DIM statement. For instance:

DIMVECTOR (10)
DIMMATRIX (10 10)

This gives a one dimensional array called VECTOR with 10
elements, and a two dimensional array called MATRIX.

This indicates the end, physically, of a program, and must be the
last statement in the program

Transfer of control form one catalogued program to another. All
variables that are to be passed between programs must be
declared in a COMMON declaration in all the program segments
concerned.

Allows one variable to be the equivalent of another. For
example:

DM EXAMPLE (10)

EQUATE SURNAME TO EXAMPLE(3)
EQUATE FIRSTNAME TO EXAMPLE (4)
EQUATE GROSSPAY TO EXAMPLE(8)

In this case the variables SURNAME, FIRSTNAME and
GROSSPAY are made equivalent to elements 3, 4 and 8 in the
array EXAMPLE. The EQUATE statement differs from the
normal assignment statement, where a variable is assigned a
value by using an equals sign, in that there is no storage location

204

generated for the variable. The advantage that this offers is that
the value is compiled directly into the object-code item at
compile time and does not need to be reassigned every time the
program is executed.

FOOTING

FOR

Specifies a piece of text that is output at the end of every page.
Also includes the output of page numbers, current time and date,
and a carriage return.

This feature of the BASIC language has the following general
form:

FORvariable=expression1TO expression?2
statement
statement
statement
statement

NEXT variable
Which in real life will look something as follows:

FORCOUNT=1T010
PRINT VECTOR (COUNT)
NEXT COUNT

This sets the value of the variable COUNT to the value of 1,
executes the statements down to the NEXT COUNT statement;
increases the value of COUNT by 1; and executes the loop again;
and so on, until the value of COUNT exceeds the value of
expression2 (10). Then, control is passed to the program line
mmediately after the NEXT COUNT statement.

FOR.....NEXT loops may be nested:

FOR COUNT=1T010
FORA=1T010
PRINT MATRIX (COUNT A)
NEXTA
NEXT COUNT

205

giving the ability, in the above example, to output the contents of
a two dimensional array.

These loops may include branching statements which transfer
control out of the loop; but loops must not be entered except by
the initial FOR statement.

GOSUB
Transfer of control to a subroutine. The general form of the
statement is:
GOSUB 25
which will transfer control to the subroutine starting at line 25 in
the current program.
GOTO
Transfer to another statement in the same program indicated by
the following statement number, for example:
GOTO 12
will transfer control to line 12 of the current program.
HEADING
Specifies a piece of text that is output at the beginning of every
page. Also includes the output of page numbers, current time
and date, and a carriage return.
IF

IF NUMBER > 200 AND NUMBER < 300 THEN
PRINT'ﬁﬂa?FRISGREATERTHANZOOANDLESSTHAN

GOTO 330
END

The abov&; lines constitute IF statement. The IF statement can
take a variety of forms, the simplest of which is:

IF condition THEN statement

206

INPUT

LOCATE

LOOP

This causes a single statement to be executed if, and only if, the
logical value of the ‘condition’ is found to be true. The THEN
statement can be comprised of a number of parts, finished by the
END statement as seen in the above example.

An IF statement may also be provided, after the THEN clause,
with an ELSE clause which contains a statement or statements to
be executed if, and only if, the condition is false. ELSE clauses
may also be single lined, or multi-lined (terminated by an END
statement). The possible combinations of single-line and multi-
line THEN ELSE statements give rise to a fair number of forms
of this statement.

This is used to request input of data from the user’s terminal. For
example:

INPUT EXAMPLE ?

This will output the prompt character (?) at the user’s terminal.

The data which the user inputs will be assigned to the variable
EXAMPLE.

This statement is used to find the location of an attribute, a value
or a subvalue within a dynamic array.

LOCATE('101' ,POST,2;VAR) ELSEPOST =
INSERT(POST,2,VAR,0,'101")

In the above example the dynamic array called POST is being
searched for the string *101” in the second attribute of each item.
VAR receives answers. If the item is located then it holds the
location (similar to the gostcode) of the attribute, if the attribute
with that string cannot be located then the location of the item if
it were there is returned. If the item is not located the ELSE
clause is executed, and the item is inserted.

An alternative to the statement FOR, allowing the repetition of
a number of statements a specified number of times. For
instance:

207

COUNT =1
LoOP
PRINT VECTOR (COUNT)
COUNT = COUNT +1
WHILE COUNT <10 DO REPEAT

MAT
Assigns a value to each element of an array.
A=1
B=9C=5

MAT MATRIX = A+B-C

In the above example each element of the array call MATRIX
has been assigned the value 5.

MATREAD

Reads a database item into an array, and assigns each attribute to
consecutive vector elements.

DIMEXAMPLE (6)

OPEN'','CUSTOMERS' TOTEMP ELSE STOP
MATREAD EXAMPLE FROM TEMP, 'WHITE LION'
ELSESTOP

The MATREAD statement reads the file item ‘WHITE LION’
from the data file named CUSTOMERS and assigns the string
value of each attribute to consecutive elements of the vector
EXAMPLE, starting with the first element.

MATREADU

This provides the facility to lock a group of items prior to
updating an item in that group. The group remained locked until
one of its items is updated, or a RELEASE statement unlocks
the group. The format of the statement is the same as in
MATREAD.

MATWRITE

Transfers the contents of an array to a file item in the database.
The reverse of the statement MATREAD.

DIMEXAMPLE (6)

OPEN'','CUSTOMERS' ELSESTOP

FORCOUNT=1T06
EXAMPLECCOUNT)'"COUNT*10

NEXT COUNT

MATWRITE EXAMPLE ON "RUBBISH"

208

MATWRITEU

NEXT

NULL

OPEN

The same as MATWRITE but with the addition of record
locking.

The last statement needed in a program loop. The function of the
NEXT statement is to return control to the beginning of the loop
after a new value of the variable has been computed. For an
example see the description of FOR.

A non operation. Used when a BASIC statement is required, but
no operation or action is needed. For example:

IFREPLY ="YES" THENNULL ELSE GOTO 45

The above will cause the control of the program to go to line 45
when reply is not equal to YES. When REPLY is equal to YES
then no action is taken, and the program control will be
transferred to the next sequential statement.

Selects a specified file for subsequent input, output, or update.
Before a MATREAD, MATWRITE, DELETE, or WRITEV
statement is issued the file concerned must be made available by
the OPEN statement. There is no limit on the number of files that
may be opened at any given time.

DIMVECTOR (10)
OPEN'','CUSTOMERS', TOVECTORELSE STOP

The above statement opens the data section of the file
CUSTOMERS and assigns it to variable VECTOR. If the file
CUSTOMERS does not exist, the program terminates message
before the program is terminated:

OPEN '','CUSTOMERS', TOVECTORELSE
PRINT "NO FILE CUSTOMERS"
STOP
END

As can be seen the END statement is used to terminate a multi-
lined ELSE part of the OPEN statement.

209

PAGE

Contacts the current output device, throws a new page and prints
the text contained in the most recent HEADING and
FOOTING statements.

HEADING "ATTENTION : THE CREDIT
CONTROLLER"
FOOTING "PROPERTY OF THE GOVERNMENT"

The above sequence of statements will cause both the specified
HEADING and FOOTING to be printed out when the PAGE
command is executed.

PRECISION n

PRINT

PRINTER

PROMPT

Allows the user to select the number of decimal places required
on all calculations. Only one PRECISION statement is allowed
per program. The n is a number between 0 and 4. Setting a
precision of zero implies that all values are treated as integers.
Changing the precision changes the atceptable form of a
number; a number is defined as having a maximum of ‘n’
fractional digits, where ‘n’ is the precision value.

Therefore, the value

56.345

isalegal number if the precisionis 3 or 4, but illegal if it is 0,1 or 2.

The PRINT statement outputs specified data to the peripheral
currently selected by the PRINTER statement.

This statement selects either the user’s terminal or the line
printer for any subsequent output. There are three forms of the
PRINTER statement:

PRINTER ON - Output directed to the line printer.

PRINTER OFF - Output directed to the user’s terminal.
PRINTER CLOSE - All data stored in the printer buffer (held by
the operating system) is immediately printed.

This selects the character to be used as a prompt at the user’s
terminal when the INPUT statement is used. For example:

210

PROMPT "+"

will cause a ‘plus sign’ to be the prompt character. No more than
one character or digit can be used for the prompt.

READ
Reads a file item and assigns it to a variable. For instance:
OPEN'','CUSTOMERS' TOTEMP ELSE STOP
READ EXAMPLE FROM TEMP, 'WHITE LION' ELSE
STOP
will open READ item WHITE LION from the file opened and
assigned to variable TEMP, and assign its value to variable
EXAMPLE. IF the item WHITE LION does not exist the
program stops.
READNEXT
Reads the next item in a pre- selected list. For example:
READNEXT EXAMPLE FROMSECTION ELSE
PRINT "UNABLE TO READ NEXT ITEM"
GOTO 100
END
specifies the list selected and assigned to the select- variable
SECTION. Assigns the value of that list’s next item identifier to
variable EXAMPLE. If the item identifier list is empty (or if no
SSELECT verb has been executed), the program will output the
unable-to- read message and GOTO the statement with label
100.
READT
Reads the next item from the magnetic tape unit.
READU

This statement is functionally the same as the READ statement,
except that the additional facility of locking the group from which
the item is being read. A group lock prevents the access of items
in the locked group by other BASIC programs using the
READU, READVU, and MATREADU statements, also the
update by any other program of any item in the locked group.

211

READV

Reads a single attribute from an item in a file. For example:

OPEN'"" ,"CUSTOMERS" TO TEMP ELSE STOP
READV EXAMPLE FROM TEMP, "WHITE LION",1
ELSESTOP

will read the first attribute of item WHITE LION (in the file
opened and assigned to variable TEMP) and assigns the value to
variable EXAMPLE. If item WHITE LION does not exist, then
the program stops.

RELEASE

REPEAT

REM

RETURN

Unlocks any file groups still locked by the current program.

Used as part of the LOOP statement. (See LOOP)

Indicates a remark. Everything following the word REM is
ignored by the compiler. For example:

REMThis statement, andall
*others that followit,
'!'willbetotally ignoredby the
REM compiler.

As can be seen, a remark statement is specified by REM, * or !

Returns control to the body of the main program. The RETURN
statement will transfer control from the subroutine back to the
statement immediately following the GOSUB statement within
the basic main program having the specified statement label.

100 GosuB 150
*RETURNS TO HERE

150 * THE SUBROUTINE

s 8 8 8 5§ =—js 8§

RETURN

212

REWIND

SELECT

STOP

WEOF

WRITE

WRITET

WRITEU

WRITEV

Rewinds the currently loaded magnetic tape back to the
beginning.

This statement selects a set of item identifiers or attributes which,
when used in conjunction with the READNEXT statement, is
then used to access single or multiple file item identifiers or
attributes from a BASIC program.

Terminates a program designating the logical end returning
control to TCL. (Also see ABORT).

Writes an end of file marker on the currently attached magnetic
tape.

Updates a file item on the database. For example:
WRITE "NEWENTRY"ONA, "WHITE LION"
will replace the current content of item WHITE LION (in the file

already opened and assigned to the variable A) with the text
NEW ENTRY.

Writes a record to magnetic tape, using the same format as found
in WRITE.

Writes a record to the database with the group the itemisin being
locked.

Updating of an attribute value within an item. For example:

WRITEV '"01-234-7788"ONA, "WHITELION",1

213

will replace attribute 1 of item WHITE LION (in the file opened
and assigned to variable A) with the new phone number 01-234-
7788.

WRITEVU

Updating of an attribute value within an item, complete with
locking of the group that the item is in.

214

@ . 193
AL e 124,185
ABOR . .. 202
ABS. . 193
ACCESSvocabulary 70
ACCESS. e 33,47,70,85
ACCOUNT-RESTORE.ttt 191
ACCOUNT-SAVE e e 191
ACCOUNE . . o oo e 60
ACCOUNING 83
Accounts, multipleuser e 82
ADDD . . . 173
ADDX . . . e 173
Algebra e e 30
ALPHA . . 193
APL. . 134
Arrayhandling 140

.. 124
Attribute,D-code 64
Attributes 29 41,52,63,64
B 125,185
BASICfunctions. 193
BASIC . . . e 11,47,133,175,193
Binary e 2
BIT oo 2
BLOCK-PRINT e e s 173
BO . e e e 185
BOX . . e 151
BP . e 150
BREAK-ON e e e 181
BREAK 148,152
BSYM L 139
Buffers e 72
BY-DSND. e e 181
BY-EXP-DSND e 181
BY-EXP . . . e 181
BY . 181
Gt e e 125,186
Calculus e 0
CALL . .o e 202
CASE. . . 202
CATALOG. . . .\t 139,175
CENTERt e e e e e e 154
Central processingunitttt 1
CHAIN . e 142,154,202
CHAPTER 154
CHAR . . e e 194
CHARGES. 173,191

215

CHOO-CHOO. e 173

CLEAR-FILE e e e e 175
CLEAR . . . e 202
CLEARFILE. e e e 203
COL-HDR-SUPP e e e e 181
COLT. . e e 194
COL2. . 194
Compiler. e 4,135
CONTENTS e e e e e e e e 155
(@7) 115 ¢) PSP 8
CONVETSIONS . & & . v v ittt e e e e e e e et e e e e e e e e 102
COPY-LIST . . .o e e e e e 176
COPY . e 175
CorTelatives o o e e e e 108
COS . . e 194
COUNT . . e e e e 98,176, 195
CP/ M . e e 15
CPU. . e 11
CREATE-ACCOUNT. e e e e e e e 191
CREATE-FILE e e e e e e e 173,175
D-codeattribute e 64

... 186
DataDictionaryot e e 49
Datafiles. e e e 39
DATA/BASIC. . . e 47,134
DAT A e e e 203
Data. e e e e e 26
Database managementsystem 26
Database, hierarchical 27
Database, relational. e 28
Databases e e 25
DATE . .. e e 195
Dates e e e e e e e e 106
DBL-SPC e 182
DBMS . e 26
DCOUNT . .. e e e e e e e e 195
DE . . e 125
DEC . . 17
DELETE-ACCOUNTot e e e e e e e e e e e 191
DELETE-FILE e e e e e e e e 175
DELETE-LISTttt e et e e e e e e e e e 176
DELETEttt e e e e e 141,195,203
DET-SUPP e e e 182
DICT . . o e e e e e 182
Dictionary, Master.ot e e 61
DiCtiONaTYo e e e e 49,182
DIM. . e e 203
DIV D, . . e e e 173
DIV X, o e e e e 173
DUMP . . . e e e 191
EACH . . . e e e 182
EBC DIo e e e e e e e e 196
ECHO . . . e e e 173
EDTT-LIST . . .ttt e e e e e e e e 176
BT . . o e e e 120,175
Editingo e e 120

Editor. . ..o 120
END . . e 203
ENTER . . e 203
EQUATE e e 203
EVERY . . . e 182
EX e 127
EXP. o e 196
EXTRACT . .. e 141,196
F oo e 124,124,127,186
B o 127
S 127
FIELD . . . o 196
Filedefinition. e 61
Filehandling e 139
Filelocking e 143
Filestructure e e 37
FILE-SAVE . . . e 191
Files. . .o e 37
Filing . .o 9
FILL . . 156
FOOTING e e e 142,182,204
FOR . o e 205
Formatted 27
Frame. 63
B e 127
Functions, BASIC. e 193
Gt 122,128,186
GET-LIST. . . ot e e e e e e e 176
GOTO . .ot e 206
GRAND-TOTAL.ot e e e e e e e e e e e 182
GROUP . . . e 175
GUSUB . . . e 206
5 187
HASH-TESTo e e e e e e e 176
Hashing e 31
HDR-SUPP. . . . e 183
HEADING e e e e 142,183,206
Hierarchicaldatabase. e 28
Hierarchy e e 77
) Ot 128
IBM . . 15
TCONV . e 197
ID-SUPP. . . . e e 183
TF e 183,187,206
TH . o 187
IM . 158
INDENT . . . e e e 158
INDEX. . . e 161,197
INPUT . . e e e e e e 161,207
Input . . . e 8
INSER T . . . e e e 141,197
INT L e e e 198
INtegration e e 19

217

Interpreter. e 135
TP 188
IS 188
IS T AT . 175
T 188
ITEM. e 175
Ttems . . o 62
JUSTIFY . o e e e e 162
Lecommand e 122,129

.. 122,129
Language, QUeTy e 32
Language 67
Languages,procedural 86
Languages. 3
L. 164
LEN. L 198
LINK-WS . 191
LIST-ITEM. . ..o e e e e 176
LIST-LABEL 178
LIST . . 87,176
LISTFILES e e e 174
Listing 90
LISTPEQS 174
LISTPROCS e e e e 174
LISTUSERS e 174
LN e 199
LOCATE 141,207
LOCK-FRAME 192
Locking,file. 143
Locking,record 35
LOOP . . . e 207
LPTR. . e 165, 183
Masterdictionary e 61
M AT e e 207
MATCH. . .. 142
MATREAD e 207
MATREADU e 208
Matrixhandling e 207
MATWRITE. . .. e e e 209
MATWRITEU. e e e 209
ME | 130
MR e 102
MS-DOS . . o e 15
MSG . . e 174
Multi-processingo it e 6
Multi-programming e 5
Muiti-userfilelocks L e e 143
Multipleuseraccounts N 82
Multiplevalues. e e 43
N e 130
NEXT .t e e e e e e e e e 209
NOJUSTIFY . . ot et e e et et e e e 165

218

NOPAGE 183
NOT . 199
NULL . . 209
O, e 188
Objectcode e 135
OCONYV . 199
OFF . . 174
ONLY . 183
OPEN e 141,209
Operatingsystem 1
OUPUL . . o e e e e 8
P e 130, 189
PAGENUMBER. e e e 166
PAGE 142,210
Paging 64
PAPERLENGTH e e it 166
PARAGRAPH 166
Password. 6
PC-DOS . . . e 15
PRECISION 210
PRINT . . 167,210
PRINTERCLOSE i e e 142
PRINTEROFF i e 142
PRINTERON e e 142
PRINTER. 210
PROC . .. 59,71
Procedurallanguages 86
Procedures !
Processing. e e 8
PROMPT . . . e 143,210
PWR . 199
QSELECT 176
Querylanguage. 32
R e 123,131
Re-entrant. e 135
READ 140,211
READNEXT. 167,211
READT . . . 211
READU. 211
READV . . . 212
Recordattributes e 41
Recordlocking o e 35
Referencingverbs e 69,175
REFORMAT. e 178
Relationaldatabase 28
Relationships (betweendata) e 26
RELEASE 144,212
REM . L 212
REPEAT e 212
Replace e 123
REPLACE 141,200
RETURN e 212

219

REWIND e 213
RI e 189
RN . 200
RO . e 189
RUN . e 175
RUNOFF . . . e e e 147,175
S e 189
SAVE-LIST. . . . e 178
SECTION . . . o e 170
SeCUMItY e 9
SEL-RESTORE.. e e 192
SELECT e 179,213
SEQ. . e 201
Sequencing e e 8
SET TABS . . e 170
SIN L e 201
SKIP . . e 17
SLEEP. e 174
Software e 2
SORT-ITEM e e e 179
SORT-LABEL. e 180
SORT. . o e 87,95.179
Sourcefile e 135
SP-ASSIGN. . . e 174
SP-CLOSE e 174
SP-STATS. . e 174
SP e 189
SPACE. . . 201
SORT . . . e 201
S 189
SSELECT e 168, 180
STANDARD. 17
Standards e 14
ST AT . e 180
STOFF . . . 189
STON. . 189
STOP . . 213
SlOTAgE o e e 7
STR . . 201
STRIP-SOURCE e e e 192
Structureoffiles L e 37
Structured programming. L 144
SUM e 99,180
S MONYMI. . . 64
Systemlevelverbs 191
Systemlevel. e 82
SyStems programmingttt e e e 6
Systemssoftware. e e 2
Teommand e 123
T-ATT e 174
T-DUMP . . e 174,180
T-EOD . . . 174
T-LOAD. . . . 181
T-READ. . . . e 174
T 123,131,190
TAN 202

220

TCL. . 67.173
TERM .. e 175
Terminal Control Language. i 67
Time-sharing e 6
TIME . L e 175,202
TIMEDATE e 202
TOP. . e 121
TOTAL e 183
TRANSLATE 110
Tuple . . .o e e 29
U 132
UC 172
UNLOCK-FRAME. i i 192
USING. . . . 183
Verbs,non-referencing. oL 173
Verbs,referencing. e e 69,175
Verbs,systemlevel L 191
VERIFY-SYSTEM 192
Virtualmemory 63
Vocabulary e 70
WEOF . . 213
WHAT . e 175,192
WHERE. 192
WHO . .. 175
WITH .. e 183
WRITE 141,213
WRITET 213
WRITEU 213
WRITEV . .. 213
WRITEVU 214
X 132,190

221

the very few books about the PICK operatmg system —-a strong nva] to . .

is and powerful mlcrocomputers

- But PICK isfar more than just an operating system. lt provndes the user WIth a complete' - ;'

~ business environment, strongly oriented towards information storage and retrieval.

This is achieved with an easy-to-use query Ianguage and a relational database structure. .
PICK users can, if they wish, write programs in DATA-BASIC, a specialised dlalect; of
this popular Ianguage adapted for data retrieval operatlons

This book is of interest to two types of reader. Professmnals, already farmhar w1th .
computer concepts, will find it to be an invaluable introduction to PICK concepts.

Those with little computer knowledge, but an understanding of business procedures,
will find valuable insights into computing in general, together with strong endorsements
for selecting PICK as their first operating system

About the Author

 Nicola Kitt has worked for national and multmatlonal corporatlons in solving business
computing problems. She acquired her PICK experience whilst working for a major
UK software house, and is now a freelance consultant and technlcal wnter .

Publlshed in the UK by SIGMA PRESS Wllmslow, Cheshlre

Publzshed in the USA and Canada by HALSTED PRESS a dlwsuon of
John Wiley & Sons
- New York - Chxchester Brlsbane Toronto '

Sigma Press Edition ISBN I-85058-03|-6
Halsted Press Edition ISBN 0-470-20320-X

