

PICK­
Your SystelD

by

NicolaKitt

_IJII!!IIII ... IIIIIIIIIIIIIII
SIGMA Publishers. Wilmslow __ ililiipRESS.

HALSTED PRESS a division of JOHN WILEY & SONS
New York . Chichester . Brisbane . Toronto

Copyright © Nicola Kitt, 1986

All Rights Reserved

No part of this book may be reproduced or transmitted by any means
without the prior permission of the publisher. The only exceptions are for
the purposes of review, or as provided for by the Copyright (Photocopying)
Act or in order to enter the programs herein onto a computer for the sale use
of the purchaser of this book.

ISBN 1-85058-031-6 (Sigma Press)
ISBN 0-470-20320-X (Halsted Press)

Published by:

SIGMA PRESS
98a Water Lane
Wilmslow
Cheshire U.K.

and

HALSTED PRESS
a Division of John Wiley & Sons Inc,
New York.

Printed by: Interprint, Malta

Distributed by:

U.K., Europe, Africa:
JOHN WILEY & SONS LIMITED
Baffins Lane, Chichester
West Sussex, England

Australia: JOHN WILEY & SONS INC.
GPO Box859, Brisbane
Queensland 40001 Australia

Trademark

PICK is a registered trademark of Pick Systems Inc.

ACKNOWLEDGEMENTS

I would like to acknowledge all my friends who without exception have been
interested, amazed and supportive over this venture - without which I'd
never have finished. Many thanks to my extended family who have
unreservedly given support, advice arid criticism, thanks Dens, Kath, Peter,
Una, Andrew, Mark, Paul, Gill, Adrian and Steph.

Also many thanks to:
Chris Winters of Fletcher Compute Services
Phil and Margaret Harris of Cougar Pumps

and last but by no means least Mic Merrison and Bob Burrows, who set me
on this path!

This book is dedicated to Steve.

Nicola Kitt, 1986

CONTENTS

1. What is an Operating System? 1
Why do we need an operating system? 2
The evolution ofthe operating system 3
The User and the operating system 6
The Functions of an operating system 7
How an operating system works 9
Operating systems today 13
Industrial pressure and standardisation 14
Why were new programs needed? 16
Advantages of standardisation 16

2. Why Consider Pick? . 17
Traditional Operating Systems 17
Pick and integration 19
Integration achieved 22

3. Databases. 25
What is a database? 25
Data, database and information ... ",.""""""" 26
Types of database, , , , , , , . , , , , . , . , , , , , ... , , , . , , . , 27

Formatted or hierarchical databases , , , , .. , , , , , . , , 28
Relational databases .. , , , , , . , , , , , , . , . , , 28
Relational algebra, , , , , , , , , . , , , . , , . , , , , , , , , , 30

Hashing a database, , , , . , , .. , , . , . , , , , , .. , . , , . , . , , 31
The query language , , ... , . , , , , . , , , , , , , . , , , , , , , , , 32
Pick database processing - the advantages , , , , , ... , , . , , , , 34

4'. Files and Structures , , , , , . , . , , , , . , , , , , , , , , , , , , , , , , , , 37
The nature of a file and its structure, , , . , , , , , , .. , , , , . , . , 37
Data files , . , , . . , . , , , , , , . . . , , , , , , , , . , . 39
Record attributes, , , , , , . , , , , , , . . , , . , , , . . , . , . , , . . 41

5. Dictionary Files, . , , . , , . , . , , .. , . , ... , , , , , , . , , , , 49
Dictionary files and their structure , . , , , , . , , , . , , , , . , , , . 49
Data discovery attributes explained . , , . , , , , . , , ... , , , , . 52

6. The Master Dictionary, , , , , , . , , , , , , , . , , . , , , . , . , . , . , . . 60
What is an account ?, , , , . , . , , , , . , , , , , , . , , , . , , , , , , 60
File definition items . , , . , . , . , , .. , . , . , , . , , .. , , , ... 62
Synonyms for files . , , .. , . , , , , . , , . , . , , , , , . , , , , . , . 64

Terminals Control Language 67
Summary ofTCL 71
Procedures- PROCs 71

7. The Control of the System 77
Multiple user accounts 82
System usage accounting 83

8. The ACCESS Language 85
Life in the fast lane 85
Procedural languages 86
Using ACCESS 86
Selection of specific attributes for listing 90
Conversions . 102
Dates 106
Correlatives 108

9. The Editing Facilities 120
How the Editor works. 120
Summaryofcommands 124

10. The BASIC Language . 133
Introduction. 133
The History of BASIC 134
Why BASIC? 134
Re-entrant code. 135
Source files. 135
Interpreters and compilers . 135
Features ofthe Pick BASIC compiler 139
Executing BASIC programs . 139
File handling in BASIC . 139
Other features. 142
Multi-User File Locks 143
Structured programming 144

11. RunotT 147

Appendix A: SummaryofTCLcommands 173
Non-referencing verbs. 173
Referencing verbs . 175
Access vocabulary . 176

Appendix B: Summary of PROC Commands 175

AppendixC: Summary of System Level Verbs 191

AppendixD: Summaryofthe BASIC Language 193

What is
SysteIn?

Chapter 1

an Operating

To be able to answer the question "What is an operating system?" it is
necessary to examine the skeleton of the computer. This is comprised of a
number of electrical components which are known collectively as the
hardware. As the skeleton forms the basis for the human body, so the
hardware supports and gives the physical realisation of a computer. The
computer that we, the users, employ seems far removed from the "bones" of
the machine. We have the facilities to produce a profit and loss account at
the touch of a button and often without the realisation that these facilities
are merely flesh on top of the skeleton. Take away all the fancy functions
and the circuitry reappears.

The physical parts of a computer, known as the hardware, include the
terminal (going under various aliases such as CRT, VDU,and screen),the
disks (both fixed and removable, hard and floppy) where data is stored, and
the electronic circuitry which consists mainly of integrated circuits
commonly known as "chips". It is these chips which are capable of carrying
out the repetitive number crunching that computers are renowned for.

The hardware is fundamentally only capable of the basic arithmetic
operations for addition, subtraction and multiplication as well as the logical
evaluations for greater than, equal to and less than, represented by the
characters>, = , <.

Every computer that is manufactured and sold, whatever its size, shape and
purpose is only capable of these basic functions at skeleton level. It is the aim
of an operating system to turn the "bones" of the hardware into something
that appears to do a lot more than this so that it can be used by the ordinary
user, even the novice.

The operating system is part of a collection of software found in a computer.
This is the second part of a computer or the non- physical portion. Software
is a curious commodity, as it appears to be invisible when resident on a

1

computer but fills pages of popular magazines in the form of space invader
program listings for the BBC micro! The different types of software
programs cover a large and varied range of tasks and problems. In fact
anything which includes padding on top of the hardware. such as an arcade
game like space invaders or a stock taking system is software. Software is
comprised of programs containing instructions which are performed by the
machine. The programs use data which may already be stored permanently
within the machine either in parts of the circuitry or on magnetic disks and
tapes; this sort of storage medium may be read as and when the data is
required. Software covers many aspects of computing. which can be
categorised to include:

Operating systems
Assemblers
Compilers
Utilities
Application software.

All of these categories of software have different areas of expertise.but they
all rely on the operating system software (often know as systems software)
to form a cornerstone on which the different types of programs are built.
resulting in the different categories of software.

It is intended in this chapter to concentrate on the category of operating
systems software. This consists of special programs which control the
running and internal organisation of the computer once the human user has
relinquished control. The system software co-ordinates the different parts of
the hardware in order to get the requested job completed. The operating
system is usually the only piece of software to deal directly with the hardware
responsible for obtaining mathematical answers.

Systems software is normally provided by the supplier of the computer
hardware as it is usually integral to the operation of the machine. Very often
systems software is the part of the computer that a user is least aware of. A
user will be far more aware and interested in the profit (or loss!) figures
coming out of an accounting program than how data is handled internally by
the machine from which the results are being obtained.

Although the user may not realise it, the operating system is as important to
the operation of the machine as the hardware itself.

Why do we Need an Operating System?
An operating system is the interface between the computer user and the
machine.

The actual electronic circuitry which does the processing requires all its data
and information in sequences of O's and 1 's, this is known as binary. Binary
has two possible digits (0 or 1). a single binary digit is known as a BIT. Bits

2

are stored and processed by means of electronics. The data which a human
deals with is very rarely exclusively in 1 's and O's. Data as we know it are long
lists of names and addresses, parts in stock, order numbers, clients' credit
ratings and other such information. If a computer is to handle this data and
manipulate it as we request. it must be received by the hardware coded in
binary form, as this is the way chips store and process information most
easily.

Not only must the data be coded in binary but also the instructions which
make up a program; in order for the computer to know how the data is to be
processed. To use a computer in a skeleton state would involve translating
everything into O's and l's and feeding in the binary strings. In addition, a
knowledge of how the circuitry performs basIc mathematical functions and
operations would be necessary in order to get any results from the machine.
It goes without saying that any results would 31so be in binary. A simple
request to add two numbers together would look something like this:

00111010
01100000
00000000
01000111
00111010
01100001
00000000
10000000
00110010
01100010
00000000

A complex procedure which only the fanatical would use! So in order to
make computers available to people who don't think in terms of 1 and 0, the
operating system was invented.

The Evolution of the Operating System.
The operating system started its evolutionary path in a small way. It became
very tedious to continue inputting sequences of O's and l's in the correct
order, so operations that were used regularly by many people were created
as functions. In the case of the above example the word ADD would have
been created to instruct the operating system to fetch the program ADD (as
seen in Figure 1.1), and place it in main memory, being a sort of middleman.
The processor could then execute the program bit by bit.

Gradually all the common functions, such as adding two numbers together,
fetching data from a storage location or having something printed on the line
printer, became routines. The new vocabulary of the operating system,
although time saving, was still not giving the programmer enough scope, so
new languages appeared: including BASIC, FORTRAN, COBOL,

3

ALGOL and many many more. These use English-type words which are
translated by large specially written pieces of software into the necessary O's
and I's (apart from the already coded functions in the operating system).
The translation programs are known as compilers. a software category
mentioned earlier.

00111010
01100000
00000000
01000111
00111010
01100001
00000000
10000000
00110010
01100010
00000000

Program

Figure 1.1

I
I
I
I
I

ADD

Operating System
Command
Function

00111010
01100000
00000000
01000111
00111010
01100001
00000000
10000000
00110010
01100010
00000000

I'vtemory

The programmer would select the required translation program and read it
into the computer memory and his own program would then be read in for
the compiler to translate into l's and O's. Once translated the program was
compiled and would be run. Whenever extra data was needed these
compiled programs would stop and type out a message on the printer; all
processing ceased until a reply was given. If the programmer was out to
lunch when the stop occurred then the computer would just sit and wait
wasting processing time until an answer was received. The stop may have
been for a tape of data to be loaded; the computer needed human help as it
did not have the ability to know where data was or where to get it from.

Such dependence on human intervention only seemed to waste valuable
computing time. As a result the operating system began to undertake some
of the programmer's duties, such as locating the required compiler from tape
or disk storage, feeding data into programs as necessary and monitoring the
performance of programs. Before long the operating system was resident in
main memory on a permanent basis. Over the years more and more
functions and tasks have been added to the operating system.

At this stage in the evolutionary process of the operating system, the touch
of a button would read a compiler into main memory, read and translate the
program and place the translation onto magnetic backing storage. The
operating system then takes over from the compiler, reading the program
from storage into main memory allowing the program to run, printing any
results on the printer or sending them back to the terminal the request came
from. Programs are given permission by the operating system to do their
work, but if a program makes a fatal error, or simply runs for too long, the

4

,/ operating system then throws it out to make way for the next program
/ waiting to be processed.

This is viewed very similarly in concept to waiting to pay for groceries at a
supermarket. Very often a whole queue of people are kept waiting; the
cashier is idle while someone goes to look for the price of a tin of peaches.
The whole system is doing nothing. A computer is no different: while the
operating system goes to look for some data programs are queuing up and
the processor is idle, waiting for the operating system to return with the
information. The machine is kept waiting a long time for data to be fetched
from storage, for replies by its human masters or for the really slow printer
to finish outputting a report. All this time the processor is idle when it could
be processing thou,sands of instructions each second.

The next stage of the development of the operating system was to process
more than one task at a time. While one job was waiting for some data from
backing storage the second program could start to be processed. If one
program has to wait, another program can make use of the facilities that
would otherwise be lying idle. This is known as multiprogramming. Of
course this is much more complicated and takes up much more memory,

Computer
Printout

[]
Financial Wizardry

~~~~rr-
t • , , . , . , ' 
t •• I • 

AA. 4A.A 

Computer Game [] 
Figure 1.2 Four jobs running at the same time. 

Word Processing 

5 



making the need for bigger memory capacity. The expansion of the 
operating system has been possible due to the falling costs of very large 
memory chips. 

All of the tasks shown in Figure 1.2: playing a computer game, a secretary 
doing word processing, the accountant doing financial forecasting and the 
printer printing a report, appear to be working at the same time. This is only 
pQSsible because the operating system has been developed and expanded so 
that it can switch rapidly between different programs, ensuring that none has 
to wait long before getting its turn. If we look at the supermarket cheek-out 
again, an assistant has now gone off to find out the price of the offending un­
priced article so, the next person in the queue starts to have their basket of 
goods processed, but as soon as the price for customer one's goods is found 
and given to the cashier, customer two's adding up is stopped, and a note of 
the total is kept. Customer one's basket of goods is then finished. So, instead 
of being idle,the cashier has managed to process half of customer two's 
goods reducing the size of the queue. This is exactly what tne operating 
system does: rather than lying idle it switches to another user's request while 
the original job is waiting for some more information. This cuts down the 
amount of time a user has to wait for a job to be processed. The systcm 
program which controls this type of function is very large and complex and 
is not usually found on micro computers, which normally only cater for a 
single user. An operating system with the ability to process more than one 
task at a time has the ability to time-share or multi-process. 

As operatin& systems became larger and more complex a new task (a job in 
its own right) emerged called systems programming. Systems programmers 
need to know the internal workings of a computer and the way in which the 
operating system goes about its job. They are are exclusively concerned with 
keeping the operating system working and running correctly. Any new 
functions which the computer manufacturer provides are installed and 
tested by them so that any errors can be eliminated without the entire 
com{,uter grinding to a shuddering halt. They also help the machine to run 
efficiently, not urilike a mechanic tuning a high performance car, enabling 
the driver to obtain the best from the vehicle. While they are found mainly 
in mainframe installations such as for banking, insurance and retailing, 
minicomputers may also have some systems work, but usually only by one 
person who is also a programmer. A mainframe is by far the most expensive 
machine to maintain and keep up and running, so it is in this type of 
installation that the systems programmer is the most cost-effective. 

The User and the Operating System 

By sitting at any computer terminal, the user is in fact face to face with the 
operating system. A& soon as the terminal is switched on, a cursor is there 
waiting for a response in the form of a recognisable command, which will be 
part of its vocabulary. More often than not~ in order to engage the machine 
in conversation a password has to be typed in. 

6 



The following sequence of events has been known to take place first thing in 
the morning. 

GOOD MORNING 

What; s your password? 

The bleary eyed user is met with this cheering message and the blinking 
cursor. The next step is to enter the correct password at the prompt 
provided. On entering the correct password and hitting the 'Return' key, 
communication with the operating system is taking place. To check that the 
entered password is valid and correct the password received has to be input 
to the hardware for it to perform a basic arithmetic function, (in this case an 
equality evaluation) to see if the string of characters input as the password 
corresponds with a pattern of characters already stored in a specific place by 
the operating system. The sequence of activities is something like this: 

"Is the input password equal to stored password ?" 

"If YES pass message to operating system to be output to sending terminal" 

WELCOME TO ABC COMPUTER 

"Have all the stored passwords been looked at?" 

"If NO look at the next password" 

"If YES output: 

INVALID PASSWORD TRY AGAIN-

While this conversation is taking place communication with the operating 
system is taking place and utilising the basic functions that an operating 
system performs. 

The Functions of an Operating System 
By looking at how the operating system came into being ,and why we need 
it, the major characteristics of such a piece of software have been found to 
be: 

Storage 

Storage can take many forms, all of which are based on saving bits on 
magnetic surfaces, i.e. hard disk, floppy disk and tape. 

This function looks after the storage, retrieval and maintenance of all the 
data that is held. This data can be of various formats: a program or part of 

7 



software engineer in a slightly different way, using varying building 
techniques. All operating systems have the same ultimate goal in mind - a 
reliable piece of software which controls and sequences the processing of 
programs, to enable the user to obtain a hopefully understandable response 
to a question. Operating systems all fulfil this goal to differing extents, but 
it results in little or no similarity between a personal computer and a 
mainframe, akin to a terraced house and Buckingham Palace! 

Industrial Pressure and Standardisation 
The concept of a standard operating system in the computer industry is a 
relatively new one. In the early 1970's minicomputers were the fastest 
growing part of the computer industry, each offering their own individually 
designed, nonstandard proprietary operating systems. 

While these manufacturers were developing their hardware and software 
products each was claiming they should have "The Architect of the Year" 
award for: 

1. The best processor using the newest and fastest chips available 
on the market. 

2. Implementing a new language (probably invented by one of 
their staff) which will sweep the world during the next few years. 

3. New advances made in the design of operating systems. 

The operating system was now more user friendly than ever. It had more 
features than its nearest rival (if it ever had one in the first place) and it goes 
without saying that the only applications that worked on the machine are the 
applications produced by the manufacturer! In choosing one of these "award 
winning systems" from a particular vendor a customer was inextricably tied 
to that one manufacturer's equipment, since the cost of changing to another 
totally incompatible system was prohibitive. To change systems would mean 
re-training staff to use possibly a new language and certainly a new series of 
operating instructions. Even the accounts clerk would have to learn how the 
new accounting programs worked. 

Why Were New Programs Needed? 
All software written for one type of operating system will be tailored to talk 
to that system in the way that is peculiar to it alone. It's like trying to talk to 
a Frenchman with only a German dictionary. Some of the words are the 
same or similar, but they will have different meanings in each of the two 
languages. In the same way, each "make" of computer has its own language. 
Try and communicate with it in another language and gross 

14 



misunderstanding results. As a result, each application has to be developed 
for each different machine language Since every piece of software is built 
slightly differently, time is needed to find your way around it. So, software 
has to be compatible with the operating system. In fact we can take that one 
stage further and say: as the operating system on a minicomputer is tied to 
the hardware, the software has to be compatible with that hardware. 

In contrast, the 1980's gave way to the introduction of microcomputers. At 
the last count there were over 200 different microcomputers, but there are 
merely a handful of operating systems. The microcomputers were 
dependent upon selling in bulk numbers rather than a few at high prices, and 
the microcomputer manufacturers could not afford to develop their own 
operating systems. The operating system began to become standardised. 
CP/M, MS-DOS, and PC-DOS (enter IBM!) became the standards to be 
found on any of the microcomputers. As well as the operating systems 
becoming standardised the actual hardware components became 
standardised. Micros were powered by chips that were made by the 
semiconductor specialist "chip" manufacturers such as Intel and Motorola, 
which resulted in only a small choice of components for the manufacturers. 
The industry became a series of specialists making one or two components. 
The actual computer manufacturer bought in the different components from 
the specialists and put them into a cabinet. It has become too expensive for 
one company to do all the research, development and manufacture involved 
in making a computer from scratch. (Except for the blue giant. IBM) 

True there are hundreds of microcomputer systems availahle. but each one 
is powered by just a handful of standard chips. 

Peripherals have become standard to a degree. Floppy disks come in 
standard sizes (3Vc'·. SIj.j", and 8") with standard capacities and standard 
ways of connecting them to the main processor. Returning to the example of 
a street of family dwelling units, every house had standard components. 
bricks, window frames, lintels over the doors, and cement. In the same way. 
computer components are standardised: there are only a limited number of 
chip vendors or disk suppliers from whom to choose. 

The components of an operating system arc standardised but the way that 
they work is different. Copying a file to disk on an IBM-PC will be done 
differently than on an APPLE II. The same information will be saved in each 
case but in a totally different way. The IBM-PC can not read the APPLE II 
disk and vice versa. Not dissimilar to scientific papers published in German 
and English - the same information and revelations will be present but the 
English speaking people will only understand the English version. 

So a large to medium sized company that decides to use a micro for word 
processing. and wants to pass disks between various locations. will have to 
make sure that all the offices are working with the same operating system, 
often tying the company to one particular manufacturer and one particular 
style of software. 

15 



Advantages of Standardisation 
The standardisation of operating systems allows free movement of data 
b~tween different machines, rather than each one having its own version 
of the same programs and data on their incompatible machines. Other 
advantages of a standard operating system include: 

1. The purchaser benefits because he is no longer captive to a single 
manufacturer. This in effect means that if the purchaser wants or requires a 
bigger capacity machine with more memory, which the current supplier is 
unable to provide, he can go to another manufacturer without the expense 
of having to completely redevelop or indeed purchase new applications 
software. 

2. Those who are involved in the development of application programs 
benefit as they can offer their products to a wider number of people on a 
range of differing hardware systems. 

3. Indeed, the manufacturers themselves benefit from a more rapid 
acceptance of their products, and reduced software development costs. A 
software house is more likely to spend time. money and expertise in 
developing programs for a widely available operating system than a 
manufacturer's eccentric state-of-the-art offering. 

16 



Chapter 2 

Why Consider Pick? 

Having studied the functions of a basic operating system, and what it does 
for the user sitting at a terminal, we now look at the Pick operating system 
and the problems of integration in the office environment today. 

Traditional Operating Systems 
The majority of the operating systems on minicomputers were developed for 
different purposes. For example, the Digital Equipment Corporation 
(DEC) designed and wrote the DEC VAX series of machines, specifically 
for scientific, number crunching applications. On the other hand the Pick 
operating system was designed for the more verbose information retrieval 
business community. Any operating system will reflect the type of work that 
the computer is used for. On a scientific machine, the commands and 
functions are presented in a way that a nuclear physicist will understand and 
the likes of you or me will not. If an operating system has commands which 
are difficult to use and understand then the computer becomes difficult to 
use and understand as this is the only facet of the computer a user will see. 
An operating system that is not easy to use can result in the computer staying 
in its packing case, and being a waste of time, space and money. Pick tries 
to avoid this pitfall and is easy for the novice to learn and use. Pick is 
designed for business use, and serves the business man better than any other 
operating system currently available. 

An ordinary operating system (such as has been looked at) resembles a 
single part of a jigsaw - all the other picces needed to make a complete 
picture have to be matched and fitted into their correct place, often after 
several false starts and a lot of trial and error! Having just purchased an Itsy 
Bitsy 2000, the small businessman needs to do some programming; to do this 
he needs to select and purchase a compiler, as there is not one with the 
machine. If he wishes to keep all information centrally in one data-bank 
another piece of software is needed, all of these "extras" being purchased 
separately. Building a complete computer system in pieces can be 
advantageous as it gives a wider choice of products, but the range of choice 
and the selection process can be hazardous and work against the user. So, 
the traditional operating system is like the first piece of a jigsaw puzzle, 
which could end up giving one of many pictures! 

17 



Figure 2.1 

operating 
system with 

basic 
functions 

Suppose the proud owner of the new Itsy Bitsy 2000 with its operating 
system now wants to extend his computer to do word processing. This is no 
easy task. A list of possible packages has to be made, brochures obtained 
and read, salesmen need to be consulted and an evaluation of the different 
packages needs to be completed to find out which particular piece best fits 
the operating system that is running on his machine. There may well be a 
choice of ten different word processors or jigsaw pieces: 

Type-sure 
Letter Fast 
Tripe Writer 
Auto Type 
Word Help 
Letter Press 
Mail Friend 
Post Haste 
Super Sec 
Media Mate 

A dealer will normally stock just two or three of these packages, perhaps 
those which he considers to be the best. (or perhaps those with the highest 
mark up!) 

Figure 2.2 

18 



The three word processing packages shown in figure 2.2 on the short-list are 
Letter Fast, Word Help and Post Haste, each of which is a possible fit for the 
jigsaw. Each package is a different shape, has slightly dIfferent functions 
which work in slightly different ways, but will fit onto the basic operating 
system supplied with the computer. Each package will use and react to the 
operating system in a different way, and will be attached to the operating 
system differently. Each word processor may well hold the letters in a 
different format, which means that by attaching one of these packages the 
computer system becomes nonstandard. 

Each word processor has a different way of producing a letter by using 
slightly different commands and symbols with assorted meanings, in the 
same way that operating systems differ. If a company has purchased two 
machines with a standard operating system, such as MS-DOS, it would 
expect the two systems to be totally compatible. In our example one 
computer system may be based in the Birmingham office and one in the 
London office, each location having the power to purchase its own added 
extras. The London secretary has worked with Post Haste before and so 
recommends that particular package. Meanwhile in Birmingham the 
salesman sells the most expensive, and of course best, word processor Letter 
Fast to the company. Both offices have word processing capabilities, but the 
two machines are now incompatible. The London office cannot send a 
floppy disk to Birmingham instead of a 500 page printed document because 
"Letter Fast" can not understand the way that "Post Haste" has saved the 
documents on the disk. 

Pick and Integration 
Many data processing managers frequently assume that they must adopt this 
patchwork of incompatible solutions in order to meet apparently different 
information and processing needs within an organisation. This 
fragmentation will inevitably lead to high cost, inflexible systems which, not 
surprisingly, fail to communicate with each other physically or logically. 

The Pick system offers the computer manager a way out of the above 
maelstrom by serving a variety of end-user needs, from the efficient 
processing of transactions to the provision of information. A single 
mtegrated system can and is offered for both the information and the 
production centres of a business. Pick is done an injustice by being called just 
an operatin~ system. It is much much more. It is an entire business system, 
a complete Jigsaw with a standard picture, seen in figure 2.3. 

The system still does all the functions a basic operating system should, 
communicating between man and machine. The extra facilities of Pick are 
integrated to form an operating system giving a sleek efficiency which is 
almost unobtainable With the cumbersome expensive add-on type of 
computer system. Due to this 'complete picture' concept Pick has the ability 

19 



Figure 2.3The complete jigsaw. 

to apply to a particular set of business requirements. Information needs 
differ from company to company, person to person and often from moment 
to moment, and a computer system must be able to cater for all these needs. 
All computer systems, until Pick, were based on the assumption that 
organisations functioned on a fixed pattern, or at least could be forced to 
behave in a fixed way. Change was a nuisance, and if it did occur, a great deal 
of time and expense would result because the specified procedures on which 
the computer programs depended had been upset. Any business computer 
system should have the ability to enhance the processing of large amounts of 
available data, in order to derive the necessary information to assist with the 
control and operation of the business. Having up to date information 
available promptly, with the minimum of fuss, is of prime importance in 
today's business environment, where a computer should help rather than 
hinder. Even if only one or two key items are required, the effort often 
needed in extracting them from the total amount of information in a 
traditional operating system is both time consuming and expensive. 

As tech'.1ology prolife~ates and users becom~ more demanding in their 
~xpect~tlOns and reqUIrements, data pr.ocessmg managers are becoming 
mcre.a~mgly con~erned about the 9uahty of the environment they are 
provIdmg for th.eIr users. New, and m many cases untried, state-of-the-art 
systems are bemg bolted onto other new systems or onto the existing 
computing facilities. Problems are not only created by the actual hardware 
system, but the data administrator has to cope with the users and their 
perception of computing and what they would like it to achieve for them. 
Often personnel involved in the use of machines for the first time only have 
a short-sighted immediate view of what it can do. Varying requests from the 

20 



users come at a later date when the knowledge of the system and it's abilities 
has built up. 

As a result, end-users are faced with a number of incompatible software and 
hardware components. Physical incompatibilities lead inevitably to logical 
ones: data becomes fragmented; application systems fail to communicate 
properly with each other; the information coming out of the system is often 
not the anticipated result from the data going in! An ever increasing outlay 
on expensive technicians and application development staff sometimes 
manages to keep the edifice from crumbling, though from the end user's 
point of view it never appears as the single harmonious entity it was designed 
to be. 

The problem put in simple terms is that the manager very often does not 
have the time to sort out the fundamentals of departmental problems. If he 
could provide a more flexible, efficient and cost-effective service, he would 
begin to convince the management that data processing could do more for 
the organisation. On another level, a major problem faced by all 
installations today is the ever widening gap between computer people and 
the actual users. Temporary solutions such as the personal computer and the 
information centre have been introduced, and found to be effective in the 
short term. In the longer term, unless great care is taken (and in the real 
world it rarely can be), the old incompatibilities and inflexibilities will 
resurface with renewed vigour. Proliferation of product types, the splitting 
of databases onto separate machines running in different environments; and 
the split in the company's staffing and orientation will come as variations on 
the old theme of high cost ineffective, inflexible systems. To the poor old 
end-user, who seems to be the industry scapegoat, the fragmentation not 
only seems unnecessary, but confusing and irritating as well. 

9ne of ~he most important requirements for successful data processing is 
mtegr~tlOn. The end-user should have one elementary system to deal with, 
both In terms of its appearance and also in terms of its implications. 
Sometimes an attempt is made to "bolt" different systems together and 
make them all look alike, by applying interfaces between the machines and 
~he user.s. This approach \lnly meets a small proportion of the objectives of 
IntegratIon, as the user Will eventually see or be affected by the high costs 
and inflexibilities inherent in fragmentation and incompatibility. 

If the computer manager, wanting an integrated easy-to-use system, scans 
the market place for systems with integration, he is generally going to be 
very disappointed. The typical traditional computing configurations do not 
come any~here !lea~ meeting the company's need. Its complex, layered 
software IS a cnppling drawback, which means that a large machine 
probably a mainframe, is needed to run all those layers. ' 

If minicomputer architecture is considered for a data processing solution, 
some improvements may be seen. At first glance, the traditional 

21 



minicomputer offers far lower acqUIsItIon and running costs, a more 
interactive orientation, and it covers the small to medium sized company 
profile more adequately than the mainframe does. Upon a more detailed 
investigation the minicomputer loses much of its charm. Commercial 
software is generally several years behind that available on the bigger 
machines; many of the native hardware suppliers are commercially 
unaware, and support can be poor to nonexistent. 

Integration Achieved 

The one system in today's market that will meet the need for integration is 
Pick. The Pick system is integrated in several dimensions, each of which is 
critical to the success of data processing within an organisation. Pick will run 
on machines of varying sizes. It will run compatibly on hardware from 
different manufacturers. It presents only one interface to the end user, 
whether he is interested in transaction processing or in the retrieval of 
information. The architecture is integrated within itself, incorporating 
operating system, database and enquiry language all as one unit. 

By having an integrated solution the company in question effectively has 
extra human resources: those that otherwise would have been engaged in 
the continued maintenance, tuning and diagnosis involved in keeping a 
technically over-elaborate solution on its feet. 

The Pick operating system has been available on various minicomputers for 
over ten years. The system has migrated up into mainframes and is now also 
available on many 16 bit micros. This mature product has most ofthe needed 
features for the new super micros but, having migrated from the larger 
systems, they show a potential for providing a new generic set of standards 
for creating a level of compatibility that has never before been possible. 

In addition to the above advantages, Pick offers a low acquisition cost for a 
given level of application throughput (because of the low software 
overheads inherent in Pick, plus the fact that many implementations are 
partly in firmware). The low machine resource overheads associated with 
Pick can also be thought of as releasing large amounts of extra capacity. This 
extra capacity can be used for further application development, or for 
additional functions within the overall machine budget (say, for time and 
motion studies or for statistical analysis). 

Pick offers a flexible, easy-to-use, remarkably powerful system that 
provides each and every user with total access to vital business data, giving 
full control of administrative functions. The staff employed do not need to 
be capable of programming, nor even have any previous experience of 
programming, to put the full capabilities of Pick to work. Often when 
looking for information on a particular subject it is not immediately obvious 
what information is required, yet it can be recognised when it is seen. Pick 
will allow the store of data to be browsed through and the selection of any 
items of particular interest. When you decide what you want, and the 

22 



has been selected, it can be displayed in many ways including: 

Tabular summaries 
Comparisons 
Additional calculations 
Sorted lists 

Pick contains all these facilities, allowing the user to reduce output to the 
information required, not hundreds of pages of print-out which ~end to end 
up in the bin rather than being of any real use. The user decides on the 
format: tabular, on preprinted stationery, the entire report in UPPER 
CASE, or even in lower case. Once a report has been defined it can be saved 
for future re-use. This means the same report can be produced next month, 
or changes can be simply and easily applied. Pick gives managers.( even t~ose 
with no prior computing experience) the ability to answer questIOns qUIckly 
and simply, without the constraints of designing reports or sifting through a 
ream of print-out, thus giving access to information in a simple yet flexible 
manner. 

Pick, being a fully integrated system allows application ~ software to be 
developed in the shortest possible time, requiring a minimum level of 
computer expertise. 

In short, business people want solutions - not problems. They want easy, 
smooth information storage, retrieval and processing systems that anyone 
can use. They do not want complex components of a system that only an 
expensive systems analyst and senior programmer can operate, control and 
maintain. 

Pick also solves the novice user's greatest headache. What exactly does he 
want from the computer system? Faced with the systems analyst, historically 
the new user has been pinned to the wall and been asked to specify, in 
absolute detail, precisely what the system should provide. Most people have 
a fairly clear idea of what they want the computer to achieve in broad 
outline, but what about all the small details? Until someone has used the 
system they will not be aware of what small but important features can be 
incorporated in their software, or of what the machine is actually capable. 
How often has a system been set up, and mysteriously J?ages of 
enhancements appear! Pick allows the new user to start with a baSIC system 
which he is reasonably sure of and build upon it step by step, Without 
incurring the penalties of redesigning a system. This is a way of evolving a 
finished system, based on experience of its operation. All these things are 
cost saving and give an efficient use of time. 

Pick gives a business the ability to promote computing facilities within a 
company by increasing effectiveness. The user who selects Pick will 
suddenly find himself with more human and machine resources than he 
anticipated, and will be able to deliver better quality solutions more quickly 
than otherwise expected. While no-one is (as yet) claiming that Pick is 

23 



perfect in all areas, it should be clear that Pick represents a sound foundation 
from which to build. The core of Pick is compatible with the developments 
and enhancements which take place on the basic system. Overall, it 
represents probably the lowest risk proposition available to a business 
today, and It is capable of a wide range of usage (which is covered in a later 
chapter.) 

In the following chapters we shall be looking at how Pick achieves these 
claims, by looking at each piece of the Pick system jigsaw in tum. 

24 



Chapter 3 

Databases 

.. Knowledge is of two kinds; we know a subject ourselves, or we know where 
we can find information upon it . .. 

Drlohnson 

As anyone with a cluttered office knows, having large quantities of 
information on hand does not guarantee ready access to any particular piece 
of information. 

Manual record keeping systems are limited and frequently cumbersome. 
They can be organised in only one way, for example according to subject in 
alphabetical order. Electronic files can be organised and used in several 
ways, quickly and accurately. Perhaps most importantly, electronic filing 
allows you to do more planning, book-keeping and evaluating of your 
business. 

In Pick, the database is at the heart of the operating system giving the ability 
to handle information and make it available to anyone using the computer. 

In this chapter we delve into database concepts with specific reference to 
Pick, and explain in somc detail the underlying software architecture. This 
will allow us to discover certain issues which appear in database design and 
implementation, and will explain Pick's power in dealing with these issues. 

What is a Database? 
A database is, in essence, an organised, integrated collection of data. It is 
also rather more than this. since a collection of data has no particular value 
unless something can be done with it. The types of operation that one may 
wish to carry out on a database include: 

To access or retrieve particular data items from it. 

To search for a particular data item or, more importantly, a 
combination of data items. 

25 



from the third level, about actual names of Mozart's classical works in the 
collection. 

Figure 3.2 Searching for Mozart's Music 

This type of system has the disadvantage that it is difficult to maintain, and 
the structure becomes very complex, forcing the user to formalise his view 
of the data in an artificial way. As a result, the setting up and working of this 
sort of database also becomes complex. As the amount and variety of data 
grows, so the hierarchy grows which often results in two pieces of data which 
are related residing on two completely different paths in the hierarchy. 

The result of implementing a hierarchical database usually results in 
expensive and time consuming programs having to be written to keep 
relevant data together. This is an important point, as it explains the 
inflexibility inherent in hierarchical database design. 

These systems can offer a high performance in certain limited applications, 
but do not satisfy the requirements for a flexible information resource. 
Prestel is a well known hierarchical database, but is a good demonstration of 
the inherent weakness of such a system. 

Relational databases 

On the other hand, Pick's objective is to be an information resource which 
is flexible and easy to use. This is based on the relational database model. 
The relational database is modelled upon the mathematical theory of 
relations, and was first developed by E. F. Codd of International Business 
Machines (IBM) in about 1970. This relatively new type of database concept 

28 



is the subject of much interest as for the first time in computing it provides 
greater flexibility than other approaches. 

In the Pick database, flexibility has been achieved by abolishing the 
hierarchy of levels - allowing any item of data to be used as a gateway to 
further information. All the data is stored in a two dimensional table, a row 
of which will contain all the information on, for example, an entry in a record 
collection. 

TYPE COMPOSER TITLE 

CLASSICAL MOZART CLARINET 
CONCERTO 

CLASSICAL GRIEG PEER GYNT 
POP TEARS FOR THE HURTING 

FEARS 
CLASSICAL MOZART MAGIC FLUTE 

Figure 3.3 Two dimensional record collection. 

A relational database represents the user's view of the data. Relational 
databases also represent data as flat tables with the columns known as 
attributes and the rows (records) as tuples. 

Databases are, by their very nature, large, so in reality vast tables are 
required. Each entry in the table is made up of a list of connected items; any 
subset of the items in the full list can be readily retrieved. No two rows of a 
table are identical but each has the ability to be uniquely identified, in our 
case by name and staff number. The rows or columns can be ordered in any 
manner, providing all the elements within the column are of the same type. 
The relational approach is based upon the principle that the relations 
between the data elements are the object of concern when retrieving 
information. 

The rationalising of databases is effective and results in normalisation. For 
a database to be normalised there are four requirements: 

Each table contains only one record type. 

All rows are distinct - no duplication is allowed. 

No data items may be empty. 

The sequence of rows and columns is immaterial. 

In a relational database each data item needs: 

A name. 

29 



A definition. 

A representative value. 

A set of allowed values. 

This data description is not held in the actual database but usually in a 
dictionary. The actual database contains occurrences of data, grouped into 
records, and associations between these occurrences. The associations are 
made using relational algebra and calculus. 

Relational algebra 

A relational operator takes one or more relations as its operands and from 
them produces a relation. A relationship implies an association between the 
attributes. There are no pointers to build and maintain, as there are in 
hierarchical databases, nor are there sets of processing relationships. Rather 
the data is modelled in a natural form of relations. 

All operations on relations result in new relations. Thus a sequence of one 
or more operations on one or several relations gives a collection or tuples, 
with attribute domains. If the result has duplicate tuples, all but one of them 
is deleted as duplicates are not allowed in the definition of a relation. 

Relational calculus 

Relational calculus is another way to logically represent database 
operations. Like relational algebra, it neither depends on any particular 
physical data structure nor requires artificial constructs such as logical 
operators or sets. Unlike relational al~ebra, relational calculus is non­
procedural. The algebraic approach Isolates data items by appl~'ing 
operations on relations until only the desired items are left. The calculus 
approach isolates data items by name or by relationships to other items. 

Relational models differ in several aspects from hierarchical models. For 
one, the relational model is based on a foundation of theory from relational 
mathematics. Another difference is that the relational model is more 
abstract. Hierarchical databases are directed at programming systems; the 
step from these to a programming language is a short one. The relational 
model consists of a group of concepts that are not particularly related to any 
programming language. 

The relational model represents data as it exists and does not force the use 
of artificial constructs, rather it reduces data relationships to simpler 
components and then represents the components directly. 

Using the relational model, Pick can handle many differing types of request 
for information simply by examining the rows and columns of data. It is this 

30 



design of database which gives Pick its flexible, easy-to-use and remarkably 
powerful system. In other systems the otherwise independent data can now 
be associated with other elements in the database so that each user can 
access and retrieve information which is relevant to him and no one else, 
and not just in a format that has been predetermined by a systems designer. 

Unlike the hierarchical model the internal structure and the user's view of 
the data are very similar which makes the conceptual jump between the data 
;n the real world and the data in the computer much less difficult for the 
average user to comprehend. 

Hashing a Database 
The task of selecting one element from a file made up of many related 
records relies on the database management system being able to retrieve the 
element quickly and efficiently. There are several techniques available for 
arranging and facilitating the retrieval process, but the one used by Pick is 
called hashing. 

Hashing involves performing an arithmetic operation on a field in the record 
using the result as an address for the data. As every house in the county has 
an unique address, so every line in the relational two dimensional table will 
have an unique address, except that it will be numerical rather than 
alphabetical. 

An example of hashing is to take a simple arithmetic operation such as 
adding together the digits of the key to give the location. 

Staff number Department Pay Scale 

903 1 2 
187 5 6 
743 0 3 
822 8 4 
771 0 6 
124 5 2 
555 0 0 
010 6 1 
001 8 5 
233 9 2 
421 0 1 
541 0 4 

This is the original file in the two dimensional format. Adding together the 
digits of the staff number will give us the actual storage address of that 
particular line in the hashed file. 

For example: Staff Number 903 = (9+0+ 3) = 12th position in hashing table. 

31 



01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 

Staff 
Number 

010 
001 

124 
233 
421 
541 

903 
822 
743 
771 
187 
553 

Department 

6 
8 

5 
9 
o 
o 
1 
8 
o 
o 
5 
o 

Pay Scale 

1 
5 

2 
2 
1 
4 

2 
4 
3 
6 
6 
o 

The hashing takes place by taking one line at a time from the original table 
and calculating its address. In the case of item 010 the addition of all the 
digits come to 1, so the record is placed in position 1. The next entry in the 
original table is 001, which when summed IS also equal to 1, but the slot 01 
is already filled so it goes to the next available spare slot, in this case 02. 

This technique means that only selected lines in a file need to be scanned. In 
other types of retrieval process every line in a file is scanned separately, 
resulting in a search of a file with 10,000 items taking 100 times longer than 
for a file containing 100 items. 

The latter type of searching is like going to a library to find a book and 
starting the search at the bookcase nearest the door and examining each 
book until the one wanted is found! The hashing routine makes sure you get 
to the book you are looking for directly, for the book number gives the 
bookcase, shelf and the position on that shelf, very much like a grid 
reference. 

The Query Language 
A database management system should also provide the ability to obtain 
information from a database on an ad hoc basis. This is achieved using an 
interactive "query" language. This is one of the most important parts of the 
system as it makes the database both accessible and useful. The query 
language in Pick gives the ability to: 

32 



Handle spontaneous information retrieval. 

Provide a convenient English-type and non-prograM mer­
oriented means of using the system. 

Enable the access of parts of the database which satisfy a set of 
data content qualifications. 

The query language (Access) has commands which are self-standing. That is 
they are unrelated and processed individually by the database system. The 
query language gives the ability to access data on the basis of any nominated 
point as well as being able to browse through the data. The flexibility of this 
query language is far beyond the limited accessing facilities provided by 
programming languages using file access methods adopted on conventional 
operating systems. 

Database query languages can be divided into two major groups: procedural 
and non-procedural. A procedural query language is one in which a list of 
instructions is supplied to the computer in the form of a 'procedure' which 
the user must supply before the problem can be solved. A non-procedural 
language allows the user to request the answer without telling the computer 
how to obtain that answer. . 

A powerful non-procedural language such as Pick's Access can be used by 
the absolute computer novice, as no understanding of the database structure 
is required. An information request about members of staff might be: 

LIST STAFF WITH CHILDREN 
The results might be displayed as: 

STAFF 
NUMBER 

010 
001 
612 

CHILD 

ALASTAIR 
LUCY 
CHARLES 

As we have seen, database access is a two-step process. Firstly the required 
data must be found and secondly it must be displayed in a relevant format. 

Finding this information may be difficult if the request involves several data 
relationships and if the database structure is complex. Also, the user may 
have several ways to request the data. To the user they are equivalent but, 
to the database system, one way may result in easy access and efficient 
processing, while the other may be slow and cause repetitive, wasteful, to­
and-fro-processing. 

Once the data is found, it must be presented to the user in a familiar and 
useful format. For example if the retrieval process produces a 10,000 item 

33 



list, most users would just leave it sitting on their desk and ultimately file it 
in the bin! Information, such as averages and totals would probably be far 
more useful and meaningful than the entire list being printed. 

Such problems of database access are usually handled by the system without 
the user being aware of any potential problem. You should be aware of these 
functions, however, as we will discuss these topics in later chapters. 

Pick Database Processing - The Advantages 
Once using Pick, any operational information that an organisation has 
stored on the database is in one standard and coherent format. Once this 
standardisation has taken place, all data is available making it accessible and 
therefore valuable as an information asset. By replacing a series of files with 
a fully integrated database the task of relating all the different pieces of data 
becomes much easier and less prone to error. 

The time needed to develop new systems or to respond to bespoke requests 
is drastically reduced. Bespoke enquiries can be performed by anyone, not 
just the company "computer expert" or the "overpaid programmer". The 
result of using a database allows information to be obtained from existing 
data quickly and efficiently. 

Data integrity 

Another important advantage of relational databases is the elimination of 
data duplication. If data is recorded in two places on a system then the 
database will lack integrity. Integrity refers to a variety of tasks in the 
database environment, the main ones being: 

The co-ordination of data accessing by different applications. 

Policing the propagation of information being updated. 

The preservation of a high degree of consistency and correctness 
of data. 

With many different users sharing various portions of the database, it is 
impossible for each individual user to be responsible for the consistency of 
the information. The database maintains the relationships of the user's data 
items to all other data items, some of which may be unknown to the user or 
prohibited for the user to access. 

If data is recorded in two places it is easy for one value to be changed and the 
other not. The separate data items then disagree with each other and may be 
retrieved by two people, resulting in two reports that conflict; this soon leads 
to a general mistrust of the computer's ability. One of the major objectives 
of the Pick database is to maintain control and preserve the integrity of the 
database. 

34 



Database processing can lead to better data management within an 
org.ani~a~ion. W~en data !S c~ntra~ised in one place, keeping up with and 
mamtammg that mformatton IS easier. 

By using the Pick database, any software programs such as stock control or 
!lccount.ing will interface directly with the files. This means that any changes 
m the fdes ~eed to be accommodated by the software programs, and vice 
versa. The Pick database will allow changes in either area with the minimum 
o~ fuss and bother. With many other systems it can take weeks to change a 
piece of software or the structure of the data. In Pick the data and the 
program are independent of each other rather than being intricately tied to 
each other, allowing easy maintenance for any given system. 

The Need for Record Locking 
When using a database, which is being shared with other users, two or more 
users may want to retrieve the same data concurrently. This poses many 
problems. Consider what would happen to the database if the following 
sequence of events were to happen. 

1. Fred retrieves staff record 010 from the database. 

2. Jim retrieves staff record 010, not the real thing but just another copy. 

3. Fred changes the record and replaces it in the database. 

4. Jim changes the record and replaces it in the database. 

The changes that Fred made will have been overwritten by Jim's amended 
record, so Fred's changes have disappeared. To avoid this happening, the 
Pick operating system has a series of levels at which a lock out of a user can 
occur. The record is locked against being retrieved until it has been placed 
back. But, this lock out system can lead to other problems. Let us say that 
Fred exclusively locks staff record 101 and Jim locks staff record 102. Next, 
Fred tries to lock record 102. Since record 102 has already been locked by 
Jim the system will not give control to Fred, instead it puts Fred on a waiting 
list for the record when, Jim has finished with it. Now suppose Jim tries to 
lock record 101. It is already locked by Fred, so the system puts Jim onto a 
waiting list for 101. The result is Jim is waiting for Fred, and Fred is waiting 
for Jim. The two users will never finish the tasks. The Pick Database 
Management System monitors the users for a declaration of intent to modify 
or delete a record, preventing this type of locking from ever occurring. 

Summary 
The advantages of Pick relational processing include: more timely 
information; more information; less data duplication; program and data 
independence; better data management and economies of scale. 

35 



The Pick integral relational database management, and English-like query 
capability, allows several users to concurrently access a common database 
and format their own reports without having to develop unique programs. 
For example, since all users may share the same data base, an authorised 
person in accounting can easily obtain up-to-date reports from marketing by 
using simple interactive statements. Moreover, the relational database 
manager provides the capability to interactively analyse data and 
dynamically manipulate and manage files. As an integral part of the 
operating system, its feature include: 

1. Sharing of data among multiple users and departments, eliminating data 
access barriers that can occur in systems where each department has its own 
files. 

2. Data is recorded only once, by the department that controls it, without the 
need for duplication in other departments who may need to retrieve the 
information. 

3. Data files on the database may have the relationships between the items 
of data changed or added without any impact upon existing data files. 

4. An easy to use query language which is relatively free-form, giving 
automatic or user specified output report formats in either columnar or non­
columnar forms. The query language also provides generalised data 
selection using logical and arithmetic selection criteria. 

36 



Chapter 4 

Files and Structures 

The term 'file', as used in the context of the Pick operating system, refers to 
the mechanism for maintaining a set of like items logically together. Files are 
organised in a hierarchical structure, with files at one level pointing to 
multiple files at a lower level. Four distinct file levels exist and this chapter 
explams the purpose and structure of level 4. 

The Nature of a File and its Structure 
A file is an organised collection of related information, and any computer 
system is comprised of files of information. In that respect the computer has 
become an electronic filing cabinet. 

In the Pick operating system all information, including the language for data 
retrieval, is held in the same type and structure of files. Other operating 
systems work with many different types of files, both in concept and 
structure, leading to a complex and confusing lifestyle. The structure and 
workings of the Pick files are central to the operation of the operating 
system. As in a "paper" file, a computer file is a way of keeping similar 
information together in one place. For instance, one file may contain the 
census returns for all the people in one village or county. Files can be 
organised in different ways. Pick files are arranged in a hierarchical manner 
with four distinct levels, shown in Figure 4.1. 

In Figure 4.1 it can be seen that files at one level point to multiple files at a 
lower level. At each level an 'existence' check takes place. For instance, the 
system dictionary will check for the presence of user A's master dictionary, 
before allowing the level to be traversed, and so on all the way down the 
chain. An example is shown in Figure 4.2. When user A is working on the 
stock files and then wishes to view the sales ledger, the path is reversed and 
a new path started down the user B path from the system dictionary. 

At first glance this seems like the diagrams and explanations about the 
hierarchical database discussed in the last chapter, but there is one 
important difference. The database consists of the lowest level of the files, 
i.e. all the data files. It is these data files which are related together to form 
the database facility. 

37 



(,
;J

 
r:n

 

1 2 
U

S
E

R
A

 

S
T

O
C

K
 

C
U

S
T

O
M

E
R

 

3 
D

IC
T

IO
J\

lA
R

Y
 

D
IC

T
IO

N
A

R
Y

 

S
T

O
C

K
 

C
U

S
T

O
M

E
R

 

4 
D

A
T

A
 

D
A

T
A

 

F
ig

ur
e 

4.
IT

he
 l

ev
el

s 
of

 fi
le

s 

S
Y

S
T

E
M

 

I 
l 

U
S

E
R

B
 

U
S

E
R

C
 

U
S

E
R

D
 

A
C

C
O

U
N

T
S

 
D

IC
T

IO
N

A
R

Y
 

l 
S

A
L

E
S

 
P

U
R

C
H

A
S

E
 

L
E

D
G

E
R

 
L

E
D

G
F

R
 

D
A

T
A

 
D

A
T

A
 



SYSTEM 
DICTIONARY 

I -I 

USER A USERB 

t 
STOCK ACCOUNTS 

DICTIONARY DICTIONARY 

t I 
t t 

STOCK SALES PURCHASE 
DATA LEDGER LEDGER 

DATA DATA 

Figure 4.2 

Each of these four levels of files has a specific task and purpose within the 
Pick operating system. In the rest of this book these tasks and the structure 
of each of the file levels will be explained individually. We now start with the 
lowest level, the data files. 

Data Files 
The process of handling a great many pieces of paper is common in any 
business. It is these pieces of paper which contain information and data 
about the organisation; the muddle that they get into sometimes seems 
almost inevitable. For this reason, offices have developed various methods 
for keeping all the paper in an orderly and retrievable state. Like "paper" 
files, data stored on a computer file needs to be organised to enable It to be 
of some use in the future. Items need to be organised in such a way as to 
facilitate retrieval; there is little point in filing something if it cannot be 
located again. 

39 



If we view a computer as an electronic filing cabinet, then the operating 
system is acting as a secretary. A file is not unlike a complete card index 
containing, for instance, a card for every customer. Usually the cards are 
filed in some semblance of order, quite often alphabetically. In Figure 4.3 
the cards are filed by customer name. In other words, the customer name is 
the criterion by which the card index is referenced. 

Figure 4.3 A traditional card hox 

An item in such a file is one card containing all known information about a 
customer. A computer file will have facilities for the nominated customer 
name or keyword to be used as the reference point for searching, enabling 
one item to be distinguished or picked out from all the other items in that 
file. 

If, in the card file, we wish to find out what items the brewery supplies to the 
Green Man pub, the procedure would be as follows: Locate the card-box, go 
through the file index to "G". Having found the section for "G" then 
individually look at every card until the one headed Green Man is found. 
The word Green Man is the reference point that is used for the search 
mechanism. With this type of file (which is very common in computing), the 
only way to find the information on the Green Man pub is by searching 
specifically for the customer name. 

Pick files are not restricted to using just the customer name. If this card file 
was put onto a Pick system number of keywords could be used. The three 
cards that are shown in Figure 4.4 might also be selected by using the word 
'tonic' as a selection criterion enabling all the pubs with tonic on the 
"supply" line to be selected. This eliminates the need for looking at each 
card sequentially and individually. 

40 



J.iHtT€. l..{ON 

5 uf'p ~! Io"-/c 

t( OS€. .(- ClLO w/<J 

S uppc....,· 70",1 c 

C;IZ£~"-I /'1A,N 

SVi'fI:J A f\1~Y Ie (u' GI"5i. i' 

3;tr ...... J....-e.M 0>1 
....-
fC:.11( 

Figure 4.4 Three individual cards 

Record attributes 

In a card index there is only so much room on a piece of card for putting 
information. Likewise each item stored on a Pick machine has a maximum 
size of 32K of data (32,267 characters). Items can be divided into fields 
called attributes, and there may be as many of these as is wished within an 
item. 

In Figure 4.5 showing the record of the Rose & Crown pub there are six 
attributes or pieces of information apart from the name of the Pub contained 
on the card. They are the phone number, the items supplied to the pub, 
payment terms, amount of discount allowed off list price, the salesman 
responsible for the pub, and the address of the establishment in question. 

In any file there will be multiple elements or components of this kind that 
can be referred to as a single entity. If the yearly calendar was stored as a file, 
it must be possible to refer to a single date as well as being able to refer to a 
month or the entire year. In the above card this type of elemental structuring 

41 



Attribute r--------, 

o WHITE LION 

2 

3 

4 

5 

6 

Figure 4.7 

[ 01-456-7799 I 

MARK PRIOR 

10 THE DRIVE 
CRICKLEWOOD 

EJ 
DRY GINGER 

BITTER LEMON 

44 



-IONIc.. 

30 iNtilli:. Liar" 

010 
~vAI~ 

(0 Tit€. 

o I - 4- $" b - 11 9'1 
ION I L -r B, Tr£R LEMoN 

3" 
iO;" 

Figure 4.8 History of the White Lion 

This sort of loss and fragmentation of information can be avoided by keeping 
all the past and present information on one computerised "record card" as 
graphically represented in Figure 4.9. 

The salesmen for the White Lion pub were first Alasdair Morren, secondly 
Paul Hill and thirdly Mark Prior. Each salesman has achieved different 
product sales and different discount rates. In attribute 4 the first figure is the 
discount that Alasdair Morren was able to offer the publican, Paul Hill 
offered 10% and Mark Prior 12%. Attribute 2 shows that two of the 
salesmen have managed to sell more than one product, so the multi-value is 
split into sub values. This is seen in the file by the use of the character" \ ". 

45 



AttributeD 

Attribute 1 

2 

3 

4 

5 

6 

WHITE LION 

01-458-7799 

10 THE DRIVE 
CRICKLEWOOD 

ALASDAIR 
MORREN 

Note: the boxes have the following meanings. 

value 

Figure 4.9 

46 

multi 
value 

PAUL 
HILL 

MARK 
PRIOR 

sub 
value 



Where Alasdair Morren has only managed to sell one item it is represented 
by an ordinary multi-value. An attribute can contain as many multi-values as 
required up to a limit of 32,000 characters (which is the limit of a single 
attribute). A multi-value is as elastic as is required by the user, containing 
many multi-values or only a few. Multi-valued and sub-valued fields can be 
manipulated by all of the components of the operating system: Access, 
DATA/BASIC, PROCs and the Editor. (Each of which will be discussed 
later.) Essentially, multi-values and subvalues can be added, deleted, 
located or retrieved from any given field with great ease. When the data is 
displayed on a screen via the database query language Access, the attribute 
marks "]" are converted into carriage returns so the display is easy to read 
in the form of one line entries. When the actual stored data is displayed on 
the screen or printed it will be output as shown below: 

OWHITE LION 
101-458-7799 
2TONIClTONIC\BITTERLEMONlTONIC\DRY 

GINGER\BITTER LEMON 
330]30l30 
40]1"01"12 . 
5 A LED A I R M 0 R R EN] P A U L HI L LJ MAR K P RIO R 
610 THE DRIVE CRICKLEWOOD . 

Notice that attribute 0, the item identifier, is not given a line number. 
Although it is an attribute, it has become reserved for its special purpose as 
a keyword. Because the location of the data on disk is dependent on the 
contents of attribute 0 it can not be altered and therefore is not given a line 
number. Later in the book it will be shown how entries in the file dictionary 
give special meaning to the line items for interpretation by the data retrieval 
facilities and how more useful print-outs than the above can be formatted. 

In the above examples we have not been at all bothered by the length ofthe 
data. This is because the Pick file structure is dynamically variable. 
Although each new attribute is stored on a new line, only the characters on 
that line are held, none ofthe blank spaces are stored. Variable length files, 
records, and fields provide efficient storage utilisation. Since there are no 
fixed length fields, as in conventional computing, you only use as much 
space as is needed and never have to reserve extra space 'just in case' the file 
you are working on becomes bigger than anticipated. The traditional 
approach to attributes was to define them all in advance and to "fix" them 
at a certain length. That is to say each field has a predefined length and 
position within the item, This has the knock-on effect of the item itself being 
of a fixed and standard length. The salesmens' name attribute when held in 
a fixed length format should be at least 20 characters long to ensure that 99% 
(there's always an odd one out) of possible names can be entered; however 
this would involve the storing of unnecessary space characters. 

47 



With these salesmen's names there are 34 characters which make up the 
names (including the space character between the first and surname), 
leaving 26 redundant spaces that are stored on disk as actual data - what a 
waste of space. Only in the case of getting a name like Rowland 
Mecklenburgh, when all twenty allocated spaces are used would this type of 
fixed file be efficient. But should there be a name longer than 20 characters, 
such as Rowland's brother Jonathan, the last name will be come truncated 
and cut off in its prime. 

JONATHAN MECKLENBURG 

In Pick this does not happen due to the variable length fields. In the data files 
there are two types of variability: one in the length of the data attribute (and 
therefore the item), and the other in the number of items present in a file. 
In many commercial systems the size of the file is fixed, and to expand those 
fixed files is quite a daunting task which needs qualified, experienced 
personnel. In Pick the files grow with you, dynamically as required. 

When only the salesman's name and no spaces are stored then the length is 
variable. In total, 34 characters are stored rather than 60. The variable 
length attributes eliminate all the wasted space that occurs in systems using 
fixed length files. The variable length file structure which is supported 
provides significant savings in terms of on-line disk space requirements, by 
increasing the efficient utilisation and disk access. This feature generates a 
flexible data structure which is hard to match. 

Conclusion 
These features make the system easy to use and easy to learn. Multi-values 
and subvalues generate a flexible data structure which is handled very easily 
by a computer novice. 

So far, there are pieces of data in variable length format, collected together 
to give items, each with a unique identifier, in the data file. In the next level 
up in the file hierarchy is the data dictionary file which is used to describe·the 
structure of the file(s) found below it. The existence of the data file and the 
associated data dictionary are linked. The data can only be accessed via a 
dictionary, and no single file can exist without a dictionary to define its 
location and structure. In addition to storing the location of a file on disk, the 
information contained in the file dictionary serves as a road map for 
retrieving data from the associated data file when using the retrieval 
language Access. 

48 



Chapter 5 

Dictionary Files 

Dictionary Files and Their Structure 
The reporting functions achieved by the query language of the database are 
achieved by associating with each data file a dictionary file which contains 
coded information about each of the various data attributes and how they 
are to be displayed. In a relational database each date item needs at least: 

A name. 
A definition. 

and, optionally: 

A representative value. 
A range of allowed values. 

It is important to remember that a file dictiol1ary has the same structure as 
any other file held on the Pick system; every file consists of a number of 
items, each referenced by a item identifier and consisting of any number of 
attributes. 

So why a separate section on dictionaries, when the data file structure has 
alreaay been explained? Well, dictionary files do have the same basic struc­
ture but with certain constraints. Each item in a dictionary file must be in a 
particular format in order for the system to perform data retrieval functions 
for which the Pick system is renowned. Every data file is found, at the fourth 
file level, as seen in the hierarchical diagram in the previous chapter. 
Directly above the data file level are the data dictionaries. 

Although the detail explained in this chapter on dictionary files may seem at 
times somewhat tedious, it is important to understand the structure ofthem. 
Dictionary files are one of the cornerstones in understanding how Pick 
works and examples of dictionary items are used constantly in following 
chapters to illustrate features not yet discussed. 

Every data file needs to bc associated with a dictionary. In Figure 5.1 the 
customer dictionary is associated with two data files. The file dictionary con-

49 



CUSTOMERS 
DICTIONARY 

I 
I 1--------

PUB DATA 
LICENSEE 

DATA 

Figure 5.1 

tains attributes which define the structure ofthe data and how that data is to 
be presented on the screen or on paper. 

For instance, to find ali the customers who arc privileged to have Paul Hill 
as their salesman, the command: 

LIST CUSTOMERS WITH SALESMAN "PAUL HILL" 

needs to be entered. The word cllstomers refers to the data file in which the 
relevant data is stored. The word salesman is a label, associated with a par­
ticular attribute of the named data file. In our example, attribute 5 of every 
customer card contains the salesman's name. 

iNti 11£ L-loN 

or - 4-:5b - 11Cf<l 
jt)NIC .,.. g I TrE.ft. L£f\-'\ON 

'30 
101)/0 

PA u L. +t , f-L 

(0 ""f}t-E. j)~1 V~ C~ I (.kl-' hi 00 1:>. 
I I 

Figure 5.2 

50 



The label given is, in fact, the item identifier which the query language 
processor uses to fetch data. The example command above looks at every 
attribute 5 in the customer file, and then passes the items which have the 
value "PAUL HILL" residing in that attribute back to the Pick query 
language for output. 

The item identifier (see previous chapter), of a dictionary item is the name 
which the data attribute is associated to and is to be called when using the 
query language. The provision of a dictionary item SALESMAN in the 
dictionary for the CUSTOMER file enables the query language to locate 
and output the data as every item in the dictionary file is associated to one 
particular attribute in every item in the data file. This is shown in Figure 5.3. 

DICfIONARYFlLE 
SALESMAN t-------, 

I I 
I I 
I I 

c--- -
I ~-~~-

I I 
-T-----.1 I L.. ____________ .J 

DATA FILE 

1 
2 
3 
4 

I--- 5 
6 

4 
5 
6 

3 
4 
5 
6 

3 
4 

Fig lire 5.3 

SPAULJ 
6 HILL 

51 



Data Dictionary Attributes Explained 

The structure of the dictionary file is always the same. in that each is 
composed of a number of items. and each item is divided into attributes. In 
a dictionary. each attribute in an item has a specific purpose. which is briefly 
explained in the following paragraphs. 

Attribute 0 

This, as in the data files, is the name used for rctrieving a specific attribute. 
It is best to think of this as a shorthand tag. For example. the attribute 
representing a club membership number could be MEMNO. standing for 
MEMBERSHIP NUMBER. The chosen name should be as short as 
possible as well as being meaningful. The entry for the item identifier is used 
by Access as an information retrieval word. For the pub's customer file the 
dictionary file might be: . 

PHONE 
PRODUCTS 
DISCOUNT 
PAYMENT 
SALESMAN 
ADDRESS 
PURCH.AMNT 
DISCOUNT.AMNT 

Each word describes an attribute in the data file. 

Attribute 1 

This can be one of two values "A" or "S". The" A" defines an actual 
attribute definition, i.e. that the data is in the file already and just needs to 
be located to be output. "S" indicates that some manipulation of data needs 
to be done. For instance, two data attributes are added together. Rather 
than store three pieces of information, store the two relevant figures. and let 
a dictionary item add the two together. This is particularly useful if the two 
figures being added are constantly changing. Using the customer file as an 
example, the amount of discount given may be needed as a figure, giving the 
following attributes in the data dictionary file. 

Attribute0 DISCOUNT DISCOUNT.AMNT 
1 A S 

52 



Attribute 2 

This is the Attribute Mark Counter (AMC or field number of the data file). 
I t keeps count of the number of fields that have becn defined for a particular 
file. This attribute also gives information on the attribute position in the data 
file. 

Att 0 DISCOUNT PURCH.AMOUNT DISCOUNT.AMNT SALESMAN 
1 A A S A 
2 7 4 99 5 

/ 
'\. --- / 

'\. V -......... - / 
"- ./ '"'-... / '-~ 

'\. /' ......... ,/' 

----- ~ 

Attribute 2 of item DISCOUNT has the value of4 telling us that the discount 
information is to be found in attribute 4 of each item in the data file, just as 
SALESMAN is always found in attribute 5. Each dictionary item represents 
a column in the conceptual two dimensional table, giving the operating 
system the column in which to look for the information. 

DISCOUNT.AMNT, does not point directly to a piece of data, so has a false 
AMC - in this case, 99. The AMC is greater than the number of attributes 
present in the data file, so no association to data is immediately made. The 
actual calculation of amount of discount is done in a later attribute. 

This numbering of the data attributes should be unique. No other data 
element should occur at the same field position, unless deliberately. 
However, it is possible to use the same field position to create a synonym. 
This means that the same value can be accessed in part or in whole using 
different names. This can be useful when data has various aspects to various 
users in an organisation. On one person's document number could be 
another person's receipt identifier. It also allows data attributes to be 
accessed using more than one language. To make a synonym you simply 
define two fields in the same position, but with different item identifiers. If 
the same attribute is simply being renamed it is practical to keep all other 
characteristics the same; the two synonym items can be used to access the 
same data, or parts of the same data. For example, the dictionary item 
SALESMAN could also have a synonym REP, which would be associated 
with the same data. 

Attribute a SALESMAN REP 
1 A A 
2 5 5 

This allows a flexible vocabulary of terms to be built up. 

53 



Once the attribute position in the data file has been'decided it should not be 
altered. this is because the field position is used by the system as a reference 
to the actual physical storage positions on disk. 

Attribute 3 

This may optionally contain the text which is to appear at the heading of the 
column for the defined data field when it is displayed using the query 
language. A multi-line heading can be specified by including all the desired 
characters in attribute 3. with the character"1" separating the lines. 

Att 0 DISCOUNT PURCH.AMOUNT DISCOUNT.AMNT SALESMAN 
1 A A S A 
2 7 4 99 5 
3 IlISCOUNT DISCOUNTJAMNT SALESMAN)NAME 

The above contents of attribute 3 will be displayed as column headings when 
used via the Aecess language. The text in this attribute may be anything, and 
not necessarily the same as the item identifier. If no text is entered then the 
item identifier is automatically used as a eolumn heading. The above table 
will be displayed as follows: 

DISCOUNT PURCH.AMOUNT DISCOUNT SALESMAN 
AMNT NAME 

DISCOUNT.AMNT and SALESMAN arc displayed on two lines. A new 
line is actioned by the .. r character. 

Attribute 4 

This attribute offers the faeility to define a set of attributes that are 
controlled by a single attribute. The controlling attribute is known as the 
parent, and is used to indicate dependency by other attributes. For any 
potential value of the parent there are several potential values of the 
children. But. for one potential value of one of the children there is only one 
possible value of the parent. 

For instance. if we examine a bank. each braneh has a separate eode to 
uniquely identify it. In the table below it has been called SORT.CODE. This 
is the parent attribute. for dependent upon this value are the branch account 
numbers. This relationship can be represented in attribute 4. SORT.CODE 
is controlling attribute 2 (ACNO) defined by C;2 and ACNO is dependent 

54 



upon the value of SORT.CODE defined by 0; I. 

This attribute is rarely used in data dictionaries. 

item-id SORT.CODE ACNO 
attribute 001 A A 

002 1 2 
003 SORTJCODE ACCOUNTJNUMBER 
004 C;2 D; 1 

Attributes 5 and 6 

These arc not used in the data dictionary definitions. and must be null. not 
even containing any space characters. When creating a dictionary item with 
the editor. the user must be careful to create null lines (sec editing 
techniques for further information). 

The data dictionary items now look as follows: 

Att 0 DISCOUNT PURCH.AMOUNT DISCOUNT.AMNT SALESMAN 

1 A A S A 
2 7 4 99 5 
3 DISCOUNT D IS COUNT] AMNT SALESMAN]NAME 
4 
5 
6 

Attributes 7 and 8 

Attributes 7 and 8 include various types of code for the formatting of data for 
output purposes. One of these categories is conversion codes. Conversions 
are codes specified in dictionary definition which enable certain types of 
data values to be converted from one format to another. A common and 
most frequent usc of this facility is for date and time to bc converted. The 
date can take many forms. including: 

15 MAY 1980 
15/05/1980 
15-05-80 

The way dates are presented differ from person to person. so the Pick system 
stores dates in a standard form and allows conversion to the required form. 

55 



The form stored internally by the Pick system is a four figured number; each 
new day the number is increased by one. For instance, 1st March 1985 is 
represented by the number 6720, the 28th February would have been 6719 
and the 2nd March 6721. 

This date counting system used by Pick is both individual and different. The 
number appears somewhat arbitrary, but is in fact the number of days 
counted since 31 December 1967. This date appears a weird choice until one 
of the Pick legends is told. Richard Pick set the first Pick type operating 
system running on that date! 

There are various date conversion codes available (for converting the 
internal number to a display format and a display format in an Access 
statement into an internal form): 

LIST DELIVERIES WITH DATE "1 MAR 1985" 

The first stage of processing this command is for the date to be converted 
from its external format (1 MAR 1985) to its internal format (6720). Each of 
the date records are then searched for the internal date (6720) When all 
those deliveries which are due at the factory on day 6720 have been found 
(i.e. the attribute DATE = 1234) the output is· converted into external 
format for the report. This internal number system is not only more 
economical to store than the external dates, but makes the equality 
operations such as, "less than" and "greater than" much easier to process. 
For example: 

LIST CUSTOMER WITH LAST.VISIT BEFORE "21 OCT 
1985 " 

This would list all the customers who were visited before 21st October 1985. 

Information can become somewhat confusing when dealing with internal 
dates before the 31 Dec 1967, as the number held is negative. 

The storage format for times is the number of seconds from midnight of any 
one day. A time value held in this form may be listed in the standard display 
format by including in the dictionaty definition for that item the code MT in 
attribute 7. The standard display format for the time is hh:mm, where hh is 
the hour (in twenty four hour format) and the mm is the minutes past the 
hour. 

There are various time conversions available, differing only in the displayed 
version which is specified by the user. 

A further conversion code deals with numeric values. The storage medium 
for numbers, including those with decimal points, parts of numbers 
(fractions), and all the other types of numerical representation are applied 
by using an appropriate conversion code on attribute 7 of the dictionary 
definition 

56 



attribute 0 AGE DATE.Of.BIRTH 
001 S A 
002 99 2 
003 AGE DATE OF] BIRTH 
004 
005 
006 
007 D21 

The conversion code D2/ outputs the date of birth data in the format 15/06/ 
55, AGE has no need to be formatted as it is just a figure, say 32. 

Attribute 9 

This attribute must contain a valid definition code which indicates the 
required type of justification 

L Left justify 
R Right justify 
T Text justify 
U Unfold justify 

Justification of fields defines how they will appear when displayed. It is 
customary for the numeric fields to be justified to the right so that they ean 
be shown in columns 

99.99 
888.88 

For letters (alphanumeric) it is usual to align to the left 

Tim Blower 
28 Dead End 
Croydon 

attribute 0 AGE DATE Of BIRTH . . 
001 S A 
002 99 2 
003 AGE DATE OF] BIRTH 
004 
005 
006 
007 D21 
008 
009 L R 

57 



Chapter 6 

The Master Dictionary 

What is an Account? 
In any business there are a number of distinct functions which are performed 
within an organisation. Each of these tends to utilise a different set of files. 
In conventional office practice each function would have its own set of filing 
cabinets. The sales office may have files on each of its customers in one 
drawer, and territory records for each of the salesmen, (for measuring 
performance), in the next drawer. Each drawer in a filing cabinet is 
equivalent to one data file stored on the Pick system. 

/ 

ICUSTOMERSI 

J --=:::=t7' 

[TERRITORyl 

~ 
I I 

Figure 6.1 A departmental filing cabinet. 

/ 

'-

60 

A file 
I--

an item AN 
ACCOUNT 



An account is a computerised filing cabinet, separating 'se.ts' of data f~om 
different departments. The SALES account con tams two fIles, 
TERRITORY and CUSTOMERS which are shown in figure 6.2. 

TERRITORY 
DICTIONARY 

TERRITORY 

DATA 

Account Sales 

CUSTOMERS 
DICTIONARY 

CUSTOMERS 
DATA 

Figure 6.2 Where ----- represents the houndary of the account 

Both of the sales files reside in the same account and, in order to make them 
both accessible, a master dictionary is used to control them. Figure 6.2 
changes to Figure 6.3, with the master dictionary connected to the sales files. 

The master dictionaries comprise the next level in the file hierarchy. Each 
user account has only one of these dictionaries associated with it, and in the 
majority of cases this dictionary will be unique. In some companies, the 
accounts may be divided into two parts - one part containing the ledgers and 
the other stock control and order entry. In this case, the master dictionaries 
for the two different users would be similar rather than unique. Uniqueness 
is achieved by adjusting account vocabularies to the needs of a specific user. 
Any sensitive commands, such as delete, can be omitted from a given 
account, effectively preventing the use of that command. 

The Master Dictionary or MD as it is referred to, contains entries that 
describe all the available user commands, as well as describing the files 
which can be accessed. In Figure 6.3the MD has authority to give access to 
the TERRITORY file and the CUSTOMER file. 

61 



SALES 
MASTER 

DICTIONARY 

I 

TERRITORY CUSTOMERS 
DATA DATA 

DICTIONARY DICTIONARY 

TERRITORY CUSTOMERS 
DATA DATA 

SALES ACCOUNT 

Figure 6.3 

As well as the single commands (called verbs) the dictionaries can contain 
procedures, which store a series of commands: the commands may include 
Access language vocabulary. 

As at the previous levels, the master dictionary is a file comprised of a 
number of items. Each of these items consists of a number of attributes, and 
all of these elements are infinitely variable in length. One of the functions of 
a master dictionary is to define what files can be accessed in the lower levels 
of the hierarchy. This function of the master dictionary is known as the file 
definition. 

File Definition Items 
As in the data dictionaries, which define the data in the level below them, 
the master dictionary is defining which files can be accessed in the lower 
levels. As might be expected, each of the attributes in these items have 
different meanings to the items in the data dictionary! So, let's have a quick 
look, just to get an appreciation of them and what they achieve. The 
dictionary item below is an example of a file definition item: 

62 



TERRITORY 
001 D 
002 48480 
003 7 
004 1 
005 
006 
007 
008 
009 L 
010 10 

The attributes have the following meanings: 

Attribute 0 

In this case the item identifier has to be the name of the file that is being 
pointed to. 

Attribute 1 

This is the D-code attribute; it must contain a D followed optionally by a one 
or two character code. When a file is first created a D is placed in this 
attribute. Other forms include: 

DX Do not save this file when saving the contents of an account. 

DY Do not save the data but the file space and structure remains. 

DC The file contains data in O's and 1's (binary). Used by BASIC 
files. This type of file should not be accessed unless you're sure of 
what you're doing. 

Attribute 2 

This is the actual position of the file on the disk storage rather than the 
relative position in the next level of file. This figure allows the operating 
system to locate the position of the file ready for data retrieval. 

Attributes 3 and 4 

These two attributes give the internal structure of the file. Each file, when 
it is created, is divided into a number of smaller units. Each of these units is 
called a group, and is represented by a number in attribute 3, known as the 
modulo. The fourth attribute is known as the separation. These numbers 
represent the number of frames found in each group. A frame is a part of a 
group consisting of 5I2K. It is these portions of a file that are used in Pick's 
virtual memory. Virtual memory management enables the user to work with 
an area as large as all storage associated to the system. The actual core of the 

63 



operating system is very small, so data files and program files are transferred 
in frames, as required from disk storage to main memory. This is done by the 
operating system through the use of a paging technique. In the example 
there are seven groups, each consisting of one frame. 

The purpose of dividing a file into smaller units is to enable a search for a 
single item of data to take the shortest possible time. This process of defining 
modulo and separation for a file can be used to optimise the file accessing 
procedure. Programs arc available to help choose the optimum combination 
of modulo and separation. Since the search for anyone item is restricted to 
a single group. it is the group size and not the file size that will determine the 
speed and efficiency of data retrieval. 

Attributes 5 and 6 

These contain data update and retrieval passwords respectively, which are 
requested when a file is first created. 

Attributes 7 to 10 

These arc the same as the attributes described in the previous chapter on 
data dictionaries. Usually only attributes 9 and 10 arc used, the others being 
left null. 

Synonyms for Files 

File synonyms are used to allow access to files in another account. For 
example, the sales people may want to look at the current invoices for a 
specific customer. In the traditional office this would involve looking at a file 
in another filing cabinet, possibly in another office. Pick gives the ability to 
look at selected information in someone else's filing cabinet, and to set up 
signposts to the required data. 

By having the ability to look in someone else's filing cabinet the objective of 
"data only being recorded once and shared by the various users of the 
system" is fulfilled. 

These file synonyms are only found in the master dictionary. Again they 
have the general structure of a data dictionary item but with a few 
differences: 

Attribute 1 

This is still called the O-code attribute but must contain the character 'Q'! 

64 



/ / / / 

ICUSTOMERSI I O.O.B. I 

j '-7 
I TERRITORY I 

I INVOICES I 

/ 
I I I I 

SALES ACCOUNTS 

Figure 6.4 By using synonyms, accounting can make invoices available to the sales team, 
without having duplication of data. 

Attribute 2 

This contains the name of the account in which resides the file to be 
accessed. 

Attribute 3 

This contains the item identifier of the file to be accessed in the specified 
account 

Attribute 4 

This attribute is not used and should be left null. 

Attributes 5 to 12 

These have the same attributes to those used in file definition. items. 

65 



For example, here is a synonym entry in the sales master dictionary: 

INV 
001 Q 
002 ADMIN 
003 INVOICES 
004 

It permits access to the INVOICES file in the account ADMIN, by simply 
using the word INV as a verb. The contents of the INVOICES file could be 
looked at by using the command: 

LIST INV 

You may have noticed that there are only four attributes present in this item, 
when there are a potential 12. If only the first few are present in the item, the 
remaining can be omitted completely. This can be seen in dictionary item 
INV. The actual file definition item containing the physical location, 
modulo and separation is never duplicated, but always fetched from the 
owning master dictionary, in this case ADMIN. 

The master dictionary not only contains file definition items for the files in 
that account, but also points to other files in other accounts. If Figure 6.S is 
examined, the user of the SALES account has the ability to look at three files 
- two contained in the account and one in the ADMIN account. 

SALESMD 

L-L 
L-

I 
I I 

TERRITORY CUSTOMERS 
DICT DICT 

L-__ D_A_T_A ____ ~I I~ __ D ___ AT_A __ ~ 
SALES ACCOUNT 

Figure 6.5 

66 

ADMINMD 

L-L-

INVOICES 
DICT 

INVOICES 

DATA 

I 
I 

DELIVERY 
DIeT 

DELIVERY 

DATA 

ADMIN ACCOUNT 



The file pointers can reference any data file or dictionary in the system, 
making all files available to any other user given the correct permission. 
Other files in the same account remain closed and secure. In the ADMIN 
account while the DELIVERY file remained secure from any unauthorised 
access. 

The master dictionary defines the locations of files and also contains all the 
commands that can be executed directly from the terminal, these commands 
have been categorised and called Terminal Control Language (TCL). 

Terminal Control Language 

The terminal control language of the Pick operating system is the point of 
contact between the terminal user and the various pieces of the Pick jigsaw, 
as represented in Figure 6.6 

T 
..,-----1 C 

L 

TCLCOMMAND 

[[W CJO 

Figure 6.6 TeL, The "middleman" between the user at a terminal and Pick 

TCL is present on each and every terminal at system start-up prior to a user 
logging on, but until the correct password has been given no command other 
than logon is valid. Once the user is logged on to his/her account, the full 
TCL vocabulary is invoked and further interaction and conversation with 
the machine is obtained. 

67 



Figure 6.7 

>SP-STATUS 

THESPOOLERISACTIVE 
PRINTER #1 IS PARALLEL, ACTIVE + ON LIN 
ASSIGNED OUTPUT QUEUES : 1 
THENUMBER OF INTER-JOB PAGES TO EJECT 
IS" 

As well as dealing with peripherals. there arc various user information 
verbs. which come under the category of utilities. which include: 

WHO 

Figure 6.8 

Prints the line number that the terminal is connected to, 
and the account name to which the terminal is currently 
logged on. In Figure 6.8 we can sec the various replies when 
each terminal asks WHO? 

>WHO 

Z FINANCE 

>WHO 

3ACCOUNTS 

>WHO 

4 GAMES 

68 

>WHO 

1ACCOUNTS 



WHAT 

TIME 

Figure 6.9 

Outputs the system status and configuration information. 

This displays the current system time and date, as shown in 
Figure 6.9. 

>TIME 
14:27:4215MAY 1985 
> 

Other utilities allow the use of the Pick operating system as an incredibly 
expensive calculator. Verbs such as ADDD, MULD and SUBD are 
available There are also facilities to use the machine as a hexadecimal 
calculator, should the need ever arise. With these commands there is no 
facility for calculations in mixed bases (e.g. adding 21 (octal) to 39C 
(hexadecimal) and obtaining the answer in decimal.) 

Also, messages can be sent between terminals using the command 

MESSAGE. 

As can be seen none of these verbs allow access to a specified file. 

2. Referencing verbs. 

This group of commands allows a single file to be referenced. Many of these 
commands provide "gateways" into another part of the operating system. 
For example: 

BASIC BP UPDATE 

will activate the Pick DATA/BASIC compiler, compiling the item 
UPDATE which is in the file BP. 

EDIT BP UPDATE 

This invokes the editor, ready for altering item UPDATE in file BP. 

69 



When compilation or alteration of the item UPDATE has been completed· 
control will be returned to TCL, indicated by the cursor prompt '>'. 

3. Access Vocabulary 

Access statements have a very flexible and generalised syntax with the 
ability only to specify a single file and to select a subset of that single file 
using items defined in the data dictionary associated with that file. An 
example statement would be: 

SORT CUSTOMERS WITH DISCOUNT 6T 5% DISCOUNT 
PURCHASES 

All the Access words in the statement (SORT, WITH and GT) will be 
defined in the master dictionary. The others being descriptions of pieces of 
data (DISCOUNT and PURCHASES) will be defined in the data dictionary 
for the file CUSTOMERS. 

The verb itself has to be the item identifier or attribute O. If we look at the 
contents of a master dictionary item for a Access verb, the attributes will be 
as follows. 

OOOSORT 

Attribute 1 must contain the character P followed by another alphabetic 
character. This second character is used by the processor which works on the 
command. For instance any Access verbs will have the letters PA. 

SORT 
001 PA 

The SORT verb looks as shown above. 

The remaining attributes define the starting point within the piece of the 
operating system that is being invoked. 

This type of information is often interesting to know, but must never be 
altered. This is one of the reasons the EDIT command is often excluded 
from a user's master dictionary, in order to prevent loss of systems functions 
and business data. 

The entire master dictionary user for SORT will be: 

SORT 
001 PA 
00235 
0034E 

70 



Summary of TCL 

TCL is a language which provides the assignment of the following resources: 

Direct computation. 

Processor assignment (e.g. ACCESS, EDITOR, BASIC.). 

Modification of system characteristics. 

Statistics on data and its distribution. 

File creation. 

TCL is rather like the command processor found in the operating system 
such as MS-DOS. There is a great deal to TCL, including commands for 
creating files and new accounts, setting the time and being better informed 
of the time and date, clearing files of data and sending messages to other 
users. For the user TCL does not appear as a separate entity but tends to 
blend in with the PROC and ACCESS parts of the operating system. 

A complete list of TCL verbs found in the master dictionary is to be found 
in Appendix A 

Procedures - PROCs 

PROC stands for Stored Procedure. The PROC part of the operating system 
allows the user to pre-store a complex sequence of operations in one item, 
which can then be invoked by a single word command issued from TCL. Any 
sequence of operations that can be performed in TCL can be pre-stored and 
executed from a PROC. This is particularly useful for reports, where a 
library of items can be built up and run when needed, without having to type 
in a long string of commands, or complex Access statement. 

One of the powerful features of the PROC language is a series of commands 
that make it easy to set up a formatted screen. With PROCs you can set 
screen characteristics, position the cursor, display screen prompts and check 
that any input from the keyboard is valid. 

These Procedures are usually stored in an item in the user's master 
dictionary, and are items just like any other in the Pick operating system in 
that they consist of a variable number of attributes. The item-id is the name 
of the procedure and attribute 1 must contain the characters "PQ", which 
signals that the following attributes are to passed to the PROC interpreter. 
Once stored, the Procedure becomes a command invoked by the item- id. 

71 



How a PROC works 

PROCs use four buffers. These buffers are divided into two pairs, each 
consisting of one input buffer and one output buffer. Only one of the pairs 
are active at anyone time. 

These are represented diagrammatically as follows: 

.-------------. 
I I Input L ________ ---J 

t i 
i - --- ------- --j 

I I Output L ____________ ...1 

t t 
Primary buffers Secondary buffers 

Figure 6.10 

In our case the active pair of buffers has been indicated by a solid line rather 
than a dotted line. Each buffer has a pointer (indicated by an arrow) which 
points to the position that is currently being looked at. All the pointers are 
initially set to position O. 

Each procedure is an item in a file, usually the master dictionary. Below is 
item LUCKY from file MD (Master Dictionary) 

LUCKY 
001 PQ 
002 RI 
003 RO 
004 HSORT 
005 IP? 
006 A 
007 P 

Let us use this example to see how the buffers actually operate. 

Each PROC is stored as an individual item. In the above example the item-id 
is LUCKY. The first attribute value is always the code PQ. This specifies to 
the Pick system that what follows in the current item is to be handled by the 
PROC part of Pick. All the other attribute values contain statements that 
generate TCL comands or manipulate the contents of the buffers. PROC 
statements consist of an optional numeric label, a PROC command (usually 
of one or two letters), and then the data which the command is to usc. Using 
some of the commands in LUCKY: 

RO This is just a two lettered command. 

H SORT The 'H' is the PROCcommand, and SORT is the data used by 'H'. 

72 



Before the procedure is executed the four buffers may contain data from ~he 
last time they were used. There is only one set of buffers per system, lookmg 
like: 

ABCDEFGH 
I-----------~I 

I I Input L ___________ J 

LIST FILE EF 
f---- ---- - --, 
l.. ____________ ! Output 

Figure 6.11 

R I and R 0 commands will clear the input and output buffers giving: 

r - -- - -- -- -----r 
I I Input L _____________ ..1 

t t 
:-------------; Output 
L _____________ 1 

t 

Figure 6.12 

HSORT, causes the text SORT to be placed in the active output buffer. H 
is simply the command being used. 

Sort 

Figure 6.13 

'"7------.....11 Input 
l' 

I"-:;S:::--o_rt ____ .....lIOutput .,. 

I P? then outputs a prompt to the user at the terminal. The answer that is 
required is the name of a file required to be sorted. This process is shown in 
Figure 6.14 

73 



3. Pattern matching and value tests. These give the ability to test and verify 
input data as it is entered from the terminal keyboard. 

4. Conditional and unconditional branching using the optional labels and the 
IF statement. 

5. Optional command labels giving each line a special number that can be 
used for locating the line quickly and easily. 

6. Inter PROC linking. One PROC may call another. Once a PROC is 
invoked it will remain in control until it terminates, then it returns to TCL. 
This is seen in figure 6.18. 

ONE 

CAll 
TWO TWO 

CAll 

1 
.... , THREE .... lTHR EE 

TCl 

1 I .... 
TCl 

" I ... 

Figure 6.18 

More importantly, PROC controls the system and its peripheral units by 
monitoring the status codes of the system 

The PROC language is used to automate repetitive and complex sequences 
of interaction with various parts of the operating system. It is one of the most 
important software tools available within the operating system. It allows for 
speedy development of customized commands, which are especially useful 
for those who are not regular computer users. A complete list of the PROC 
commands is given in Appendix B 

76 



Chapter 7 

The Control of 
the SysteDl 

The system dictionary is the highest level of the PICK operating system file 
hierarchy. The whole hierarchy can now be revealed as consisting of four 
levels as seen in Figure 7.1. 

SYSTEM LEVEl 

ACCOUNT 
MASTER 
LEVEL 

DATA 
DICTIONARIES 

DATA 
fILES 

Figure 7.1 The four levels of files 

There is only one system dictionary per operating system, which is shown on 
the diagram, and has an cagle eye over everything below it, not unlike a 
managing director as represented in an organisational chart. The major 
purpose of the system dictionary is to link together all existing accounts, and 
to store data about the accounts in one central place. 

77 



Each account has a unique identifying item stored in the system dictionary. 
It is initially created when an account is placed on the machine by using the 
C REA T E - A C C 0 U N T verb. 

For example, if the account ALAN was to be created the following question 
and answer session would take place: 

>CREATE-ACCOUNT 

ACCOUNT NAME?ALAN 

L/RET-CODE(S)? 

L/UPD-CODE(S)? 

PRIVILEGES?SYS2 

MOD, SEP? 

CREATE-FILE(DICT ALAN 29,1) 

[417JFILE 'ALAN' CREATED; BASE = 13534, MODULO = 
29,SEPAR=1 

246 ITEMS COPIED 

'ALAN' ADDED 

'ALAN' UPDATED 

PASSWORD?M 

FINISHED 

> 

In the above example: 

Upper case characters = machine prompt. 
Underlined characters = user reply. 
No user reply = a default value has been accepted by simply pressing 

carriage return. 

The above creates the account 'ALAN' and places the following dictionary 
item in the system dictionary. 

78 



ALAN 
001 D 
002 13534 
003 29 
004 1 
005 
006 
007 OC21BB1B 
008 SYS2 
009 L 
010 10 

The attributes in a system dictionary item are as follows: 

Attributes 1 to 4 

These are the same as those found in the file dictionary definition held in the 
third level down in the hierarchy. The modulo and separation used at the 
point of creation are shown in attributes 3 and 4. 

Attribute 5 

This attribute contains a set of retrieval lock codes (enabling a file to be 
read) which are associated with the user. The only restriction is that they 
must be ASCII characters. 

Attribute 6 

This attribute contains a set of update lock-codes associated with the user. 

Each file resident on the Pick operating system may be individually locked 
for both update and retrieval. A particular user might be assigned multiple 
codes for the set of files he is allowed to access. Using the code locking 
feature, a complex sequence of security and protection can be constructed 
for each user. During the use of an account, whenever a retrieval or update 
code is encountered, a search is made of the user assigned codes for a match; 
if no match is found then access to the file is denied. 

Security codes are verified by comparing the value in the file dictionary 
against the corresponding string of values in the user identification item in 
the system dictionary. Characters are compared from left to right. So, we 
might have an account ALAN with the entry in the system dictionary as 
follows: 

79 



A LAN 
001 D 
002 3622 
003 29 
004 1 
005 YES 
006 YES 
007 
008 SYS2 
009 L 
010 10 

Attributes 5 and 6 each have the update and read codes "YES". In order to 
lonk at a file it must also carry the same update and retrieval codes in 
attrihutes 5 and 6 of the dictionary file item. 

For example. we could have two files in the account ALAN. called SALES 
and CUSTOMER, with the two file definition items in the master dictionary 
as follows: 

SALES CUSTOMER 
001 D 001 D 
002 4508 002 3777 
003 3343 003 223 
004 1 004 1 
005 NO 005 YES 
006 006 YES 
007 007 
008 008 
009 L 009 L 
010 25 010 10 

When user 'ALAN' is trying to look at some information in the files. the 
retrieval codes in his user item are checked against the user items in the 
dictionary item of the file concerned. So the statement LIS T SAL E Swill 
result in: 

[201] FILE' SALES' IS ACCESS PROTECTED 

as the two access codes do not match. 

USERIDCODE 
YES 

NO 
Y 
YES 

FILE DICTCODE 
YES 

YES 
YES 

Y 

80 

RESULT 
Match - access 

allowed 
Access denied 
Access denied 
Match - access 

allowed 



As can be seen from the above table, the file dictionary code only need be 
part of the user identification code for the match to take place. Access is 
denied if the required password is incomplete (see line 3, in the above 
example). 

A very complex pattern of file codes can be built up. 

Attribute 7 

This contains the user's password, to allow access to the requested account. 
As the account dictionary item can be looked at, the password is usually 
hash-coded to prevent unauthorised access to a protected account. Earlier 
when the account ALAN was being created, in answer to the password 
question a reply of AJ was made. When hashed it becomes OC21BBIB. A 
password is not compulsory. 

Attribute 8 

Contains a code indicating the level of privileges allowed to the user by the 
system. In the previous example both were awarded the SYS2 level. There 
are three levels of system privilege, 

SYSO 
SYSI 

and SYS2 

SYSO is the lowest form of privilege which gives the following restrictions: 

1. No alteration to any Master Dictionary itcm. 2. No use of magnetic tape 
facilities. 3. No use of the DUMP verbs. 4. No use of DEBUG facilities. 5. 
No FILE-SAVE or FILE-RESTORE facilities. 

This is the level of freedom that the user is automatically given, unless 
otherwise specified in the account creation procedure. When one of these 
categories of commands is used illegally then the following message is 
displayed: 

[82JYOUR SYSTEM PRIVILEGE LEVEL IS NOT SUFFICIENT 
FOR THIS STATEMENT 

Level SYSI allows: updating and alteration of the master dictionary items. 

Level SYS2 allows: the full use of all available facilities. 

However, there are still some commands that can only be executed from the 
system programmers account SYSPROG, and these are listed in Appendix 
C. 

81 



Attribute 9 

This mav contain the code "U" which indicates that each time the user starts 
to and finishes using the system. the actual time of those two events is 
reeorded by the system for accounting purposes. 

Multiple User Accounts 

File synonym items can be established in the system dictionary to allow 
multiple users to have access to the same account. In this case the concept of 
an account is a group of files, and the user is the individual with access to that 
set of files. The distinction can be used to allow multiple users. such as a 
group of people in an accounting department. to have controlled access to 
one particular set of files. 

The file synonym definition item for each of these users points to the same 
master dictionarv. but each user will have a separate password and system 
privileges level. thus, some users might be able to access all of the file in an 
account while others may be restricted to two or three. 

Entries in the system file define the user's master dictionaries, but also 
special files whieh are needed to control the system. These special files arc 
known as system level files. and they arc: 

l. ACC These files are used for keeping track of the amount of time that 
users have used the machine. 

2. BLOCK-CONVERT This file defines the format used when the characters 
are displayed in an enlarged format. 

3. PROCLIB This file contains all the commonly used procedures such as 
LISTUSERS. 

4. SYSTEM-ERRORS This file logs all the system errors that oecur on the 
machine. giving a machine history. 

There is also a special account which gives access to the user identification 
storage area. as well as the files containing the error messages. called 
SYSPROG. 

By typing the word SYSPROG at the logon prompt. and the corre~t 
password. the key account to the system can be entered. Access to this 
account should only be given to a systems administrator as the SYSPR09 
account left in the hands of a novice can. and has been known to result III 
disaster. The special files are available to users when they need them. For 
example. the BLOCK- CONVERT file can be used via the BLOCK-PRINT 
command for printing out enlarged characters. such as: 

82 



44 
444 

4444 
44 44 

44 44 
444444444 

44 
44 

by using the command BLOCK-PRINT 4, from the terminal. 

The other files are not as directly usable, but they do come into use when a 
warning message is output, or when logging on and collecting the accounting 
information. The collected information must be protected from tampering. 

System Usage Accounting 
One of the standard files that constitutes the operating system software is the 
Accounting history file. This file is used by the operating system to 
accumlate statistics on each individuals use of the system's resources. It is 
divided into two sections: one part for "active users items", defining users 
who are presently active on the system; and one part for "accounting history 
items" , defining past history. 

Active user items include the name of the user, the port he was logged onto, 
and the amount of time he spent logged on. This data can be used to send 
messages to a specific person by finding the port on to which he is logged. 

Accounting history consists of items that include the account name of the 
user as defined in the system dictionary, the channel or port number to which 
the user was logged on for that session, the date and time logged on, the total 
connect time, CPU charge units in tenths of a CPU second, and the number 
of pages that have been routed to the line printer. 

Since the account history file is structured like any other file on the PICK 
system, the Access part of the system can be used to generate reports on 
system loading by port number, average connect time per user, average 
number of sessions per account and so on, as well as totals for customer 
billing or internal charging. 

On the creation of a new account the master dictionary is copied from a 
limited set of the system dictionary. 

The account information for each user in the system dictionary consists of 
the logon name, a logon password. and the file access codes for read and 
write privileges. 

83 



In the Pick operating system there are four distinct levels of security that 
protect the system and any data stored on the data base from unauthorised 
access. Each user is identified to the system by the user identification in the 
system dictionary. By establishing synonym definitions in the system 
dictionary, different levels of security can be assigned to different users 
logging on to the same account. 

Before a user can log on, a password is requested. This password is stored in 
attribute 7 of the system dictionary, and can be as long or as short as 
required. This type of security is nothing new and is implemented on almost 
every type of computer system. 

Since access is controllable on the file level as well as the sys~em level, by the 
use of the retrieval and update codes, even the most complex security 
requirements can be easily satisfied by the PICK operating system. By 
individual assignment of passwords on a user by user basis ~nd a 
corresponding file by file basis, careful control of the database use can be 
achieved in even the most dynamic computing environment. System security 
is also enhanced, in a generalised way, by the use of the three level 
restriction on the sensitive commands. Very sensitive commands are only 
present in the top SYSTEM level, and a password is required in order to 
enter that. 

84 



Chapter 8 

TJle ACCESS Language 

"Organisations create themselves according to their ahility to lise 
in/ormation . .. 

R Stamper 1973 

As was said earlier, information is the most important resource in any 
company, however large or small. In a small business, data held on a 
computer is usually financial. Even small businesses can have problems 
writing and preparing all their invoices and orders by hand, as well as 
controlling credit ratings of customers and the current position of stock. An 
analysis of any business will reveal that up to date information is the essential 
ingredient in all the decisions taken by a manager. How often has the 
following scenario happened on this high-tech fast-lane planet? 

Life in the Fast Lane 
A number of managers are in an office discussing plans and budgeting for the 
company over the next couple of years. They need to look at some business 
figurcs in order to fuel both the arguments and the proposals. The only 
information these managers receive is to reconvene next week, by which time 
the computcr will have been pcrsuaded to yield the requircd information. 
One of two actions will take place. A decision will be made upon less 
information than is desirable, relying upon assumption rather than fact 
(which can lead to managers seeking new places of employment), or 
alternativcly the mceting will be adjourncd and continued a wcek latcr whcn 
the information is available (probably not the original information, but 
bettcr this than have to wait yet another wcek!). This sort of prestigious 
computer is spending the company's money like water and providing the 
company with information worth only pcnce. 

Information must not only be up to date, accurate and relevant, but also cost 
effectivc. A decision to raise the price of a tin of bakcd bcans by two pcnce 
pcr can by a company producing 100,000 tin of beans a week, will be 
worthless if it costs the company more to produce thc information in making 
the pricc increasc dccision than the revenues from the decision itself. 
Information must also be well prcscnted and accurate. This can often be a 
nightmare for those personnel rcsponsible for producing a management 
report. 

85 



The question that needs to be asked is: what exactly does management mean 
by well presented? Using Pick, obtaining a report for management 
presentation is no longer a nightmare. The Pick query language called 
Access, allows management to obtain reports contaming the information 
they want, in the required format, exactly at the time they want it (every ten 
minutes if they are fanatical). 

Procedural Languages 
The Access query language is a non-procedural language. Retrieval 
languages may also be procedural, as examplified by COBOL, PASCAL, 
FORTRAN, ALGOL and BASIC (people either love or hate this type of 
language). They are procedural as the programmer has to define a foolproof 
sequence of events for the machine to complete. In a non-procedural 
language such as Pick's Access, the user doesn't have to go to the detailed 
lengths of writing programs, but merely expresses his wish or area of 
interest, leaving the machine's operating system to sort out the complex 
programming. In effect, constantly used routines have been 
preprogrammed and can be activated upon request. Another way of looking 
at this is to consider the actions necessary to produce a cup of tea. The 
instructions to your in-house robot might look something like this: 

Pick up kettle by the handle. 
Take off the lid. 
Put lid down on work top. 
Walk to the sink. Turn on the cold tap. 
Hold kettle under the running water. 
Wait 15 seconds. 
Take kettle away from running water. 
Turn off the cold tap. 
Walk to electric socket. 
Put kettle down on work surface. 
Replace lid. Insert electric cable into kettle. 
Switch kettle on. 

This is procedural. Every time a cup of tea is requested, the robot would 
need to be given this sequence of instructions. The helpfulness of the robot 
would be minimal- you would be wasting more time telling the robot what 
to do than actually drinking tea. Alternatively by having a tea machine 
installed, and pressing the button labelled TEA, within 30 seconds or so a 
cup of tea (of sorts) arrives ready for drinking. This illustrates a 
non-procedural interface. You have told the machine you want a cup of tea, 
and then given a list of constraints: sugar, no sugar, milk and so on. 

Using ACCESS 
Access is a generalised information management and data retrieval 
language. A typical inquiry consists of a relatively free form sentence 

86 



containing appropriate verbs. file names. data selection criteria and format 
modifiers. Access is. therefore. said to be a dictionary-driven language. 

r 
r-...._./ 

User Die t. Answer 
Question ... , F i l e ... 

....... ./ -

" I~ 

r i--
........ 

....... r--

D TA 
FILE 

....... _/ 

Figure 8.1 

An access command is normally entered directly from the keyboard and sent 
to the processor by pressing the RETURN key. Unless otherwise specified 
the answer to the request for information will come back to the terminal. As 
seen in Figure 8.1 the user request travels via the data dictionary and the 
data file. selecting the required information. and then formatting it, before 
being displayed at the terminal. The structure of Access is close to standard 
English in that the commands are called verbs and are action commands. 
The most used verbs in access are: 

LIST 
SORT 

As well as others including: 
COUNT 
HASH-TEST 
ISTAT 
LIST-LABEL 
SAVE-LIST 
SELECT 
SORT-LABEL 
SSELECT 
STAT 
SUM 

87 



The verb always has to be the first word in an access sentence. The second 
word of the command is usually the name of a file. 

After the file name there may be a collection of various other criteria and 
commands making up a request tailored to each individual's requirement. 

The simplest command is just a verb followed by a file name. 

In this section the file VEHICLE is going to be used. (A complete listing can 
be found at the end of this section.) 

LIST VEHICLE 

This gives a display of all items in the file, listing the contcnts of ccrtain pre­
selected attributes from all of the records. 

PAGE1 13:00:00 24 JAN 1985 

VEHICLE. •. REG .•.• SERVICE. MAKE 
NO DUE 

N3 A667CUA 03/01/84 10 
N4 A675TYR 04/01/84 1 1 
4613 B8800RW 04/02/85 14 
6062 ABC125Y 01/03/85 44 
0001 A951MBW 02/02/83 13 
1097 RUR614D 24/04/85 17 
N7 PL0630W 17/03/83 12 
00004 LCC704P 27/06/68 19 
N32 PAP121X 29/03/68 18 
00007 PWW906W 01/02/83 18 
N10 A735RYG 01/02/85 10 
V2 B234THY 26/03/84 14 
V3 JUB359V 01/06/83 44 
4693 05/02/85 99 

14 ITEM LISTED 

The LIST verb reads items from the file in sequential order, i.e. the order 
they are stored in. When the list is longer than the screen allows to be 
displayed at one time, the output process will halt at the end of each page 
and will not continue until the user gives the go-ahead by depressing the 
RETURN key. By using the command: 

88 



LIST VEHICLE NOPAGE 

no depression of the RETURN key is necessary hetween the pages of 
display: the output is continuous. This command modifier was used mainly 
in the days when printing terminals were commonplace. This docs not need 
to he used when outputting to a printer. 

Each new item is automatically given a new line on the output. hut to aid the 
easy reading of a report. douhle spacing can be requested. By using the 
statement. 

LIST VEHICLE DBL-SP 

the ahove listing hecomes: 

PAGE1 13:00:00 24 JAN 1985 

VEHICLE ••. REG •••. SERVICE. MAKE 
NO DUE 

N3 A667CUA 03/01/84 10 
N4 A675TYR 04/01/84 1 1 
4613 B8800RW 04/02/85 14 
6062 ABC125Y 01/03/85 44 
0001 A951MBW 02/02/83 13 
1097 RUR614D 24/04/85 17 
N7 PL0630W 17/03/83 12 
00004 LCC704P 27/06/68 19 
N32 PAP121X 29/03/68 18 
00007 PWW906W 01/02/83 18 
N10 A735RYG 01/02/85 10 
V2 B234THY 26/03/84 14 
43 JUB359V 01/06/83 44 
4693 05/02/85 99 

14 ITEMS LISTED. 

As can he seen. when each report is activated a heading containing the page 
numher. the time and the date is output as well as an end of list message 
containing a count of the numher of items that have heen printed. These can 
be suppressed using the modifier HD R-SUPP. leaving the listing consisting 
of the column headings and the lines of data. Even the column headings can 
be eliminated along with the time. date and page numher hy using the 
modifier COL-HDR-SUPP. resulting in just columns of data. The next 
example is produced hy the statement: 

89 



LIST VE"ICLE REG.NO DRIVER DEPARTMENT ID-SUPP 

PAGE1 13:00:00 24 JAN 1985 

REG ...• DRIVER .•.•••••..•.•• DEPARTMENT 
NAME 

A667CUA KEVIN BARRY 
A675TYR MARK SUTTON 
B8800RW MARY PAUL 
ABC125Y JOHN LIONS 

A951MBW JEAN AISH 
RUR614D NICK PHILLIPS 
PL0630W MIKE MOULTON 
LCC704P STEVE WHITTINGHAM 
PAP121X PETER STEPHENSON 
PWW906W CHRIS O'BYRNE 
A735RYG JIM LAMLEY 
B234THY STEVE WALTERS 
JUB359V STEPHEN POTTER 

MARTIN BONE 

14 ITEMS LISTED. 

SALES 
SALES 
ENGINEERING 
RESEARCH AND 
DEVELOPMENT 
ENGINEERING 
SALES 
MARKETING 
SALES 
MARKETING 
SALES 
SALES 
MARKETING 
SALES 
SALES 

John Lions, who has car ABCI25Y, is in a department with a name longer 
than the currently assigned column width of 20 characters. so instead of 
truncating the data, Pick has continued the department's name on the next 
line. The column widths arc controlled for each dictionary item by attribute 
10. Below is a listing of the contents of the dictionary item DEPARTMENT 
from the example file VEHICLE. 

DEPARTMENT 
Attribute 001 S 

002 8 
003 DEPARTMENT 
004 
005 
006 
007 
008 TDEPARTMENT;C;;1 
009 T 
010 20 

92 



As can be seen the value in attribute 10 of the dictionary item 
DEPARTMENT contains 20 indicating the width of the column. In order to 
prevent the wrap round of data, the column width can be increased by 
altering attribute 10, to say 25. (The facilities of the Editor used for making 
the alteration can be found in a later chapter.) 

DEPARTMENT 
001 S 
002 8 
003 DEPARTMENT 
004 
005 
006 
007 
008 TDEPARTMENTiCii1 
009 T 
010 25 

On generating the report using the new version of the dictionary item, the 
following results are obtained: 

VEHICLE REG.NO DRIVER DEPARTMENT ID-SUPP 

PAGE1 

REG •••• DRIVER •••••••••••••• 
NAME 

A667CUA KEVIN BARRY 
A675TYR MARK SUTTON 
B8800RW MARY PAUL 
ABC125Y JOHN LIONS 
A951MBW JEAN AISH 
RUR614D NICK PHILLIPS 
PL0630W MIKE MOULTON 
LCC704P STEVE WHITTINGHAM 
PAP121X PETER STEPHENSON 
PWW906W CHRIS O'BYRNE 
A735RYG JIM LAMLEY 
B234THY STEVE WALTERS 
JUB359V STEPHEN POTTER 

MARTIN BONE 

14 ITEMS LISTED. 

13:00:00 24 JAN 1985 

DEPARTMENT ••••••••••••••• 

SALES 
SALES 
ENGINEERING 
RESEARCH AND DEVELOPMENT 
ENGINEERING 
SALES 
MARKETING 
SALES 
MARKETING 
SALES 
SALES 
MARKETING 
SALES 
SALES 

This change to the dictionary item has resulted in the column being widened, 
but the data has remained unchanged. The defined width of the output 
column has no effect on the actual length of the value which is stored in the 
data file. The title has acquired a few more dots which act as padding 
characters to the true column width. Attribute 10 must always contain an 
integer. 

93 



Access has the ahility to he selective. as listing the entire file in no particular 
order is not tremendously informative. How does a manager retrieve 
information in a more meaningful way? Like the tea machine mentioned 
earlier. the operating system needs a little more information. for example 
"WITH TWO SUGARS". in order to ohtain what you really want and not 
just a cup of tasteless steaming liquid. To clarify the request for information 
the Access sentence uses a series of options. Being a relational datahase the 
mechanics of the query language are hased upon relational mathematics. 
which is hidden from the user in general. hut comes to light when giving 
selection criteria. To select a suhset of the VEHICLE file. the WITH 
modifier is used with a relational operator. These arc: 

EQ } 
EQUAL TO 

NULL 

GT 

} AFTER 
> 

GREATER THAN 

LT } BEFORE 
< 

LESS THAN 

GE l 
>= J 

GREATER THAN OR EQUAL TO 

) 
LE 

J <= 
LESS THAN OR EQUAL TO 

NE } NOT NOT EQUAL TO 

Listed below are a few of the possihle sentences that could be constructed 
using the above operators. 

LIST VEHICLE WITH DEPARTMENT EQ "SALES" 

LIST VEHICLE I F DEPARTMENT = "SALES" 

LIST VEHICLE WITH DEPARTMENT "SALES" 

LIST VEHICLE IF SERVICE.DUE AFTER "1 JAN 
1984" 

LIST VEHICLE WITH NO REG.NO 

Each of these give a selection of the entire file hased on one constraint. hut 
more than one item of selection may be used and combined in one sentence. 

94 



LIST VEHICLE WITH DEPARTMENT EQ "SALES" AND WITH NO 
REG.NO 

This is achieved by using the logical connectives AND and OR which allows 
several criteria to be tested for simultaneously. 

In addition. Access can search for values of a particular field, consisting of 
specified character or characters plus any others, by including square 
brackets inside the double quotes surrounding the value that is being 
searched for. This is useful on those occasions when the correct spelling is 
not known. 

LIST VEHICLE WITH DRIVER = "M]" REG.NO DRIVER 
DEPARTMENT 

The above example will find all drivers whose name begins with 'M' followed 
by any other characters, giving the result below. 

PAGE 1 
JAN 1985 

VEHICLE... REG •••• 
DEPARTMENT ••••••••••••••• 

N4 
4618 
N7 
4693 

NAME 
A675TYR MARK SUTTON 
B8800RW MARY PAUL 
PL0630W MIKE MOULTON 

MARTIN BONE 

4 ITEMS LISTED. 

13:00:00 24 

DRIVER •••••••••••••• 

SALES 
ENGINEERING 
MARKETING 
SALES 

All the examples so far merely used the verb LIST, with various selection 
criteria and output modifiers to aid reporting. One of the verbs mentioned 
at the beginning of the chapter was the SORT verb. The verb SORT gives 
the name output as the LIST verb, as well as including the afore mentioned 
facilities. In addition, the items in the file may be displayed sorted in various 
ways. The command: 

SORT VEHICLE 

will give the same output as 

LIST VEHICLE 

but the records will be displayed in ascending order of value of the item 
identifier: 

95 



VEHICLE. .. REG ••• SERVICE. MAKE 
NO DUE 

00001 A951MBW 02/02/83 13 
00004 LCC704P 27/06/68 19 
00007 PWW906W 01/02/83 18 
1097 RUR614D 24/04/85 17 
4613 B8800RW 04/02/85 14 
4693 05/02/85 99 
6062 ABC125Y 01/03/85 44 
N3 A667CUA 03/01/84 10 
N4 A675TYR 04/01/84 1 1 
N7 PL0630W 17/03/83 12 
N10 A735RYG 01/02/85 10 
N32 PAP121X 29/03/68 18 
V2 B234THY 26/03/84 14 
V3 JUB359V 01/06/83 44 

14 ITEMS LISTED 

The item identifier has heen sorted hy the left most character in the vehicle 
numher. Whether to sort on the left-or right-most character is decided hy 
looking at attrihutc <) of the relevant data dictionary. Shown helow is the 
VEHICLE item. As well as using attrihute <) for output justification it is also 
used for defining which character to sort upon. 

VEHICLE 
001 D 
002 42480 
003 23 
004 
005 
006 
007 
008 
009 L 
010 10 

An ascending sort on values of any other dictionary item is achieved hy 
including in the command the modifier BY, followed hy the item name. 

96 



SORT VEHI C LE BY REG. NO REG. NO DRIVER DEPARTMENT I D-SUPP 

PAGE 13:00:00 24 JAN 1985 

REG .... DRIVER ............. . DEPARTMENT •.............. 

SALES 
NAME 
MARTIN BONE 

ABC125Y JOHN LIONS 
A667CUA KEVIN BARRY 
A675TYR MARK SUTTON 
A735RYG JIM LAM LEY 
A951MBW JEAN AISH 
B234THY STEVE WALTERS 
B8800RW MARY PAUL 
JUB359V STEPHEN POTTER 
LCC704P STEVE WHITTINGHAM 
PAP121X PETER STEPHENSON 
PL0630W MIKE MOULTON 
PWW906W CHRIS O+BYRNE 
RUR614D NICK PHILLIPS 

14 ITEMS LISTED. 

RESEARCH AND DEVELOPMENT 
SALES 
SALES 
SALES 
ENGINEERING 
MARKETING 
ENGINEERING 
SALES 
SALES 
MARKETING 
MARKETING 
SALES 
SALES 

This gives a display sorted alphabetically by registration number of the car. 
Up to 15 sort criteria can be used in any Access statement. 

SORT VEHICLE BY DEPARTMENT BY REG.NO DEPARTMENT REG.NO 

PAGE 13:00:00 24 JAN 1985 

VEHICLE ••. DEPARTMENT ••••••••..••.•• 

00001 
4613 
V2 
N32 
N7 
6062 
4693 
N3 
N4 
N10 
V3 
00004 
00007 
1097 

ENGINEERING 
ENGINEERING 
MARKETING 
MARKETING 
MARKETING 
RESEARCH & DEVELOPMENT 
SALES 
SALES 
SALES 
SALES 
SALES 
SALES 
SALES 
SALES 

14 ITEMS LISTED. 

REG .... 
NO 
A951MBW 
B8800RW 
B234THY 
PAP121X 
PL0630W 
ABC125Y 

A667CUA 
A675TYR 
A735RYG 
JUB359V 
LCC704P 
PWW906W 
RUR614D 

First, all the departments have been sorted into alphabetical order, and 
secondly, within each category or department the registration numbers have 
been sorted into ascending order as can be seen more clearly in the extract 
below from the original report: 

97 



VEHICLE ••• 

V2 
N32M 
N7 

DEPARTMENT ••••••••••••••• 

MARKETING 
MARKETING 
MARKETING 

REG •••• 

B234THY 
PAP121X 
PL063QW 

A descending sort may be specified by using the modifier BY-DSND in 
place of the BY. The BY-DSND and BY modifiers may be mixed freely in 
any Access sentence. 

SORT VEHICLE BY DEPARTMENT BY-DSND REG. NO. 
DEPARTMENT REG. NO. 

Giving: 

PAGE 13:00:00 24 JAN 1985 

VEHICLE ••• DEPARTMENT ••••••.••••.••• REG .... 

4613 
00001 
N7 
N32 
V2 
6062 
1097 
00007 
00004 
V3 
N10 
N4 
N3 
4693 

ENGINEERING 
ENGINEERING 
MARKETING 
MARKETING 
MARKETING 
RESEARCH AND 
SALES 
SALES 
SALESL 
SALES 
SALES 
SALES 
SALES 
SALES 

14 ITEMS LISTED. 

NO 
B8800RW 
A951MBW 
PL0630W 
PAP121X 
B234THY 

DEVELOPMENT ABC125Y 
RUR614D 
PWW906W 
CC704P 
JUB359V 
A735RYG 
A675TYR 
A667CUA 

Other verbs include the COUNT verb whieh will simply give the result of 
counting the number of records in a file. The sentence: 

COUNT VEHICLE 

will return the number of records in the VEHICLE file: 

14 ITEMS COUNTED 

COUNT VEHICLE 

will return the number of records in the VEHICLE FILE: 

98 



14 ITEMS COUNTED 

The the sentence: 

COUNT VEHICLE WITH DRIVER = "[TT]" 

will only return those items meeting the criteria of having double "T" in the 
drivers name: 

3 ITEMS COUNTED 

The verb SUM will give the total of the values of a single clement from all 
the records in the file which meet any conditions specified in the rest of the 
sentence. The command: 

SUM VEHICLE COST 

will return to screen the total of the COST clement for all items in the file, 
while the command: 

SUM VEHICLE COST WITH MAKLNAME = "FORD" 

will return the total of that element only for records whose MAKE.NAME 
consists of FO RD. 

The verb STAT will give more comprehensive calculations by giving the 
total of an clement, as in SUM, the GOunt, as in T verb. and the average. 

All of these reporting formats are achieved by associating with each data file 
a dictionary file which contains coded information about the way various 
data elements are to be displayed. Associated with each data file is a 
dictionary file at the next level up in the hierarchy. The file dictionary 
contains controlling records which define the structure ofthe data in the data 
file. For example, an Access statement used earlier was: 

LIST VEHICLE MAKE MAKE.NAME REG.NO 

The 'word' MAKE refers to a particular element in the data record of the file 
VEHICLE, and this is defined by an item in the dictionary file, which 
specifies that MAKE is the second attribute in each data item, that it is to be 
displayed left justified in a column width of four characters, and so on. 

99 



MAKE 
001 A 
002 2 
003 MAKE 
004 
005 
006 
007 
008 
009 L 
010 4 

A special feature in Access is that it is possible to enter a sentence which does 
not require any data elements for display to be named. The operating system 
automatically outputs a default listing. In the case of 

LIST VEHICLE 

which was shown earlier in the chapter, the registration number, next 
service due and make were displayed 

This is achieved by synonym file definitions being created in the data 
dictionary. These are exactly like ordinary dictionary items. Instead of 
having alphabetic names as item identifiers, such as REG.NO and MAKE, 
a series of numbers are used (starting from 1). On receiving the statement 
LIST VEHICLE the Access processor looks for a dictionary item with the 
item-id of 1, then a 2, then a 3 and so on. As soon as the next sequential 
number is not found the output of data items stops. When a named 
dictionary item is used, the numbered search is not actioned. 

The VEHICLE file contains these three dictionary items: 

001 
002 
003 
004 
005 
006 
007 
008 
009 
010 

1 
A 
1 
REGJNO 

D2/ 
L 
7 

2 
A 
3 
SERVICEJDUE 

R 
8 

100 

3 
A 
2 
MAKE 

L 
4 



These produce the following listing from the statement: 

LIST VEHICLE 

PAGE 1 13:00:00 24 JAN 1985 

VEHICLE •.• REG .... SERVICE. MAKE 
NO DUE 

N3 A667CUA 03/01/84 10 
N4 A675TYR 04/01/84 11 
4613 B8800RW 04/02/85 14 
6062 ABC125Y 01/03/85 44 
00001 A951MBW 02/02/83 13 
1097 RUR614D 24/04/85 17 
N7 PL0630W 17/03/83 12 
00004 LCC704P 27/06/68 19 
N32 PAP121X 29/03/68 18 
00007 PWW906W 01/02/83 18 
N10 A735RYG 01/02/85 10 
V2 B234THY 26/03/84 14 
V3 JUB359V 01/06/83 44 
4693 05/02/85 99 

14 ITEMS LISTED. 

This default output is useful for producing a standard report. without having 
to type in all the dictionary names. Without the default. to obtain the same 
output the required statement would be: 

LIST VEHICLE REG.NO SERVICE. DUE MAKE 

The order of the numbers used as item identifiers does not bear any 
resemblance of the way in whieh the data is actually stored. These dictionary 
items arc actually duplicate items going under another item-identifier, and 
arc known as synonyms. 

001 
002 
003 
004 
005 
006 
007 
008 
009 
010 

1 
A 
1 
REGJNO 

L 
7 

REG.NO 
A 
1 
REGJNO 

L 
7 

101 

REG 
A 
1 
REGJNUMBER 

L 
7 



Any number of synonyms can be created for a data item. This means that a 
user is not constrained to one 'keyword'. Different users may call the 
registration number REG.NO, REG or even 1 and obtain the same results. 
A dictionary can be a customised vocabulary for a specific user. 

Conversions 

Conversions are codes which are specified in the dictionary definition 
enabling data values to be held in a compact storage format, while remaining 
easily accessible for output in a suitable display form. The most common use 
for this facility is for storing dates and times. The way in which we express 
the date and time makes arithmetic very difficult to perform, and is often 
bulky to store. 

Within the machine is an internal clock which counts the number of seconds 
from midnight during anyone period of twenty four hours. The conversion 
codes refer only to the way that the data appears. They take effect at the time 
of the screen display or printing. 

The most common use for conversion codes is the display of data which is 
entered in numeric form and must be displayed in certain format such as 
pounds and pence with a sign. 

The available codes are: 

MR 
MR2 
MR22 
MR13 
MR2, 

The MR command justifies or aligns the numerics to the right. This is the 
normal way of aligning numbers in columns although if left justification is 
needed, the ML command is used instead. 

The COST dictionary item gives the following output when the statement 
below is used. 

102 



LIST VEHICLE REG.NO COST 

PAGE 1 13:00:00 24 JAN 1985 

VEHICLE •.. 

N3 

N4 
4613 

6062 

00001 

1097 

N7 
00004 
N32 
00007 

N10 
V2 

V3 
4693 

REG •...• 
NO 

A667CUA 

A675TYR 
B8800RW 

ABC125Y 

A951MBW 

RUR614D 

PL0630W 
LCC704P 
PAP121X 
PWW906W 

A735RYG 
B234THY 

JUB359V 

14 ITEMS LISTED 

COS T ...••. 
2000 
3000 
3000 

103 

25550 
2000 
3000 
1000 

1500 
3005 
2790 
5250 
1500 
5250 

18679 
50000 

3000 
15368 

1327 
4576 
3500 
4500 
2398 
4500 
2310 

16754 
10000 
23089 

129733 
3000 
6723 
8512 

4500 
1300 



The following dictionary items can be associated with the VEHICLE data 
file, each showing a different output version of the COST data. 

COST COST-1 
001 A 001 A 
002 9 002 9 
003 JOBJCOST-S 003 COST-MR13 
004 004 
005 005 
006 006 
007 MR 007 MR13 
008 008 
009 R 009 R 
010 9 010 9 

COST-2 COST-3 
001 A 001 A 
002 9 002 9 
003 COST-MR2 003 COST-MR2C 
004 004 
005 005 
006 006 
007 MR2 007 MR2 
008 008 
009 R 009 R 
010 9 010 9 

These dictionary items when used with the Access command 

LIST VEHICLE COST COST-1 COST-2 COST-3 

result in the following output: 

104 



PAGE 1 13:00:00 24 JAN 1985 

VEHICLE. .• COST ..... COST-MR2. COST-MR13 COST-MR2C 
2000 20.00 2.0 20.00 
3000 30.00 3.0 30.00 
3000 30.00 3.0 30.00 

25550 255.50 25.6 255.50 
N3 2000 20.00 2.0 20.00 

3000 30.00 3.0 30.00 
1000 10.00 1.0 10.00 

N4 
4613 1500 15.00 1.5 15.00 

3005 30.05 3.0 30.05 
2790 27.90 2.8 27.90 

6062 5250 52.50 5.3 52.50 
1500 15.00 1.5 15.00 
5250 52.50 5.3 52.50 

00001 18679 186.79 18.7 186.79 
50000 500.00 50.0 500.00 

1097 3000 30.00 3.0 30.00 
15368 153.68 15.4 153.68 

1327 13.27 1.3 13.27 
4576 45.76 4.6 45.76 

N7 3500 35.00 3.5 35.00 
00004 4500 45.00 4.5 45.00 
N3 2239 823.98 2.4 23.98 
00007 4500 45.00 4.5 45.00 

2310 23.10 2.3 23.10 
16754 167.54 16.8 167.54 
10000 100.00 10.0 100.00 

N10 230089 230.89 23.1 230.89 
V2 129733 1297.33 129.7 1,297.33 

3000 30.00 3.0 30.00 
6723 67.23 6.7 67.23 
8512 85.12 8.5 85.12 

V3 
4693 4500 45.00 4.5 45.00 

1300 13.00 1.3 13.00 
14 ITEMS LISTED. 

The first column, headed COST, is the actual stored data displayed merely 
justified to the right. The other columns show alternative output formats for 
numbers. 

In dictionary item MR2 the figure "2" in attribute 7 indicates how many 
figures will appear after the decimal point. It the data is stored to more 
decimal places than is indicated, then the conversion code will automatically 
round up or down before displaying the required number of decimal places. 
The stored number can also be descaled, by adding another conversion 
code. MR21 would divide the stored number by 10, MR22 divides the 
number by 100 and MR33, would divide the stored number by 1000. The 
decimal point and descaling codes work together, for instance MR13 will 
display a number with one decimal point, having descaled the original 

105 



SERVICE.DUE 
001 A 
002 3 
003 SERVICEJDUE 
004 
005 
006 
007 D21 
008 
009 R 
010 8 

By placing the conversion code on attribute sevcn the specified value is 
converted into storage format, compared with every other internal 
SERVICE.DUE. and then converted into a readable. meaningful output 
format. In other words. the whole of the command is performed 
transparently to the user. on values in storage format. 

The same date conversion code could be specified instead as a correlative. 
by simply placing the code in attribute eight of the dictionary item instead of 
attribute seven. 

SERVICE.DUE 
001 A 
002 3 
003 SERVICEJDUE 
004 
005 
006 
007 
008 021 
009 R 
010 8 

Correlatives 
All of this is very well, but currently we are simply using one file. which is not 
fulfilling the promise of a database. the relating of many files. 

Where a particular data item can take one of only a few values. it would be 
wasteful of space to duplicate these values. since the information would be 
stored in possibly large numbers of records. For example. employee records 
in a department could be repeated thousands of times. The file translation 
code enables such values to be replaced by short code letters or numbers 
whieh are looked up in the dictionary file when output is required. This can 
be seen in the example earlier using MAKE and MAKE. NAME 

108 



LIST VEHICLE MAKE MAKE.NAME REG.NO 

PAGE 1 13:00:00 24 JAN 1985 

VEHICLE ••. MAKE •............... REG .•.. 
NO 

N3 10 FORD A667CUA 
N4 11 MERCEDES A675TYR 
4613 14 BRITISH LEYLAND B8800RW 
6062 44 PEUGEOT ABC125Y 
00001 13 SAAB A951MBW 
1097 17 CITROEN RUR614D 
N7 12 VOLVO PL0630W 
00004 19 RENAULT LCC704P 
N32 18 VOLKSWAGEN PAP121X 
00007 18 VOLKSWAGEN PWW906W 
N10 10 FORD A735RYG 
V2 14 BRITISH LEYLAND B234THY 
V3 44 PEUGEOT JUB359V 
4693 99 SINCLAIR 

14 ITEMS LISTED. 

In the dictionary file were two items MAKE and MAKE.NAME. The 
dictionary item MAKE was the actual value that was stored in the form of a 
two digit code between 00 - 99. The actual names of the make are held in 
another file called MAKES. This data is retrieved using a correlative at 
attribute 8 of the dictionary item, as shown below. The dictionary item 
MAKE just displays the make number, the dictionary item MAKE.NAME 
fetches some data from another file, relating the given number to a piece of 
text. 

MAKE.NAME MAKE 
001 S 001 A 
002 2 002 2 
003 MAKE 003 MAKE 
004 004 
005 005 
006 006 
007 007 
008 TMAKES;C;;1 008 
009 T 009 L 
010 200 010 4 

So the displayed data is derived data which comes from another file in the 
system, giving 'data relating' abilities as shown in Figure 8.2 

109 



DATA 
DICTIONARIES 

DATA FILES 

Figure 8.2 

VEHICLE 

---- 1------ - -

I 

VEHICLE MAKES 

How the TRANSLATE correlative works 

- -

The Access processor works its way down the dictionary item 
MAKE. NAME in the following way. Firstly it arrives at attribute 2, which 
indicates in any dictionary item which attribute in the data file is to be looked 
at. In this case attribute 2, which in the instance of data item N3 is equal to 
'Hl'. Attribute H is scanned and if a correlative is present, that is then 
processed. The statement held on attribute H of the dictionary item is 

TMAKES;C;;1 

The 'T indicates that a translation from another file is about to take place. 
Directly following this is the file name MAKES. This file name is the file 
though which the translation takes place. The 'C says "convert the value if 
possible, use the original value if the item in the MAKES file does not exist 
or has a null value." If item' 10' did not exist in the MAKES file the output 
would be '10' as the translation could not take place. There arc other 
alternatives to this which include having a blank output. The T indicates 
which attribute in the translate file to fetch and output according to the other 
output specifications given in the dictionary item. 

110 



DATA FII.E VEIIIClE 

N3 ~V~2 ____ ~ 

A677CUA 

10 

item-id ,..:.99'--__ --, 14 

Figure 8.3 

SINCLAIR BRITISH 
LEYLAND 

DATA FILE MAKES 

FORD 

2 
MAKE 

TMAKES: 
C;;7 

T MAKE ...... . 
FORD 
BRITISII 
LEYLAND 

By using this translate facility, data duplication is avoided and changes in 
data can be made centrally in one file. An advantage of this facility is the 
saving of storage space. If, for example. credit ratings arc kept on 
individuals in a file. many may well be repeated. Typical examples arc: 

30 days net 
60 days net 
Pro Forma 
No Trading 

111 



Rather than have the phrase "30 days net" stored 80 times at 11 characters 
each, store a code, say 2. This will save 800 characters being stored. The two 
can then be translated to the full text on output. 

A correlated attribute can be thought of as a ghost item. It does not occupy 
an attribute in its own right because the output value is borrowed. A 
correlative borrows data from elsewhere and in some cases derives a further 
value by manipulating the borrowed data. The correlated file derives its own 
value and does not need a value to be entered though the keyboard. 

Summary 
It can be seen that Access is a generalised information management and data 
retrieval language. A typical inquiry consists of a relatively free form 
sentence containing the appropriate verbs, files names, data selection 
criteria, and control modifiers. Access is a dictionary driven language with 
the following features: 

1. The vocabulary used in composing an English-like sentence is contained 
in several dictionaries, each user's vocabulary being individually tailored. 

2. Data files consist of a data section and a dictionary section. 

3. The dictionary section contains the structural definition of the data 
section. 

4. The Ouery language references the dictionary section for data field 
descriptions (hence the name dictionary!). These descriptions specify 
mnemonic names of data elements, functional calculations, inter-file 
retrieval operations, display formats and more. The Ouery language allows 
for selective or conditional retrieval of information. 

5. Output reports are automatically formatted according to the user's 
specification and may appear on either a display terminal or a printer. The 
output may be sorted into any sequence defined by the user and includes the 
following extended features: 

(a) Relatively free-form input of word order. 

(b) Automatic or user specified output report formats in 
columnar or non-columnar forms. 

(c) Generalised data selection using relational and arithmetic 
relationships. 

(d) Sorting capability on a variable number of descending and 
ascending data items. 

112 



(e) Generation and retention of specially selected and/or sorted 
lists for future use. 

(f) The ability of the user to define variables which are derived 
from the stored data, and then to search, select, sort total and 
output on the basis of the selection. 

(g) Selection of subvalues within items containing multiple unit 
items. 

(h) Generation of statistical information concerning the files held 
on the database. 

A complete Access vocabulary list is to be found in Appendix A. 

113 



VEHICLE File Listing 
The following pages show a complete listing of the VEHICLE file and 
related files that have been used in examples in this chapter. 

VEHICLE FILE. 
N3 

001 A677CUA 
002 10 
003 5847 
004 1234 
005 
006 
007 KEVIN BARRY 
008 1 
009 2000J3000J1000 

N4 
001 A675TYR 
002 11 
003 5848 
004 4321 
005 
006 
007 MARK SUTTON 
008 1 
009 

4613 
001 B800RW 
002 14 
003 6245 
004 7654 
005 
006 
007 MARY PAUL 
008 3 
009 1500J3005J2790 

6062 
001 ABC125Y 
002 44 
003 6270 
004 4567 
005 
006 
007 JOHN LIONS 
008 2 
009 5250J1500J5250 

114 



00001 
001 A951MBW 
002 13 
003 5512 
004 5847 
005 
006 
007 JEAN AISH 
008 3 
009 1879]50000 

1097 
001 RUR614D 
002 17 
003 6324 
004 6624 
005 
006 
007 NICK PHILLIPS 
008 1 
009 3000]15368]1327]4576 

N7 
001 PL0360W 
002 12 
003 5555 
004 6212 
005 
006 
007 MIKE MOULTON 
008 4 
009 3050 

00004 
001 LCC704P 
002 19 
003 179 
004 479 
005 
006 
007 STEVE WHITTINGHAM 
008 1 
009 4500 

115 



N32 
001 PAP121X 
002 18 
003 89 
004 410 
005 
006 
007 PETER STEPHENSON 
008 4 
009 3298 

00007 
001 PWW906W 
002 18 
003 5511 
004 6041 
005 
006 
007 CHRISO'BYRNE 
008 1 
009 4500]2310]16754]10000 

N10 
001 A735RYG 
002 10 
003 6242 
004 6342 
005 
006 
007 JIMLAMLEY 
008 1 
009 23089 

V2 
001 B234THY 
00"2 14 
003 5930 
004 6210 
005 
006 
007 STEVE WALTERS 
008 4 
009 129733]3000]6723]8512 

116 



V3 
001 JUB359Y 
002 44 
003 5631 
004 5645 
005 
006 
007 STEPHEN POTTER 
008 1 
009 

4693 
001 
002 99 
003 6246 
004 6301 
005 
006 
007 MARTIN BONE 
008 1 
009 4500]1300 
The above listing is how the items are displayed to the user on the screen, the 
listing below is how th~ data is actually stored, with no display spaces. Each 
" ~ " character that marks the end of an attribute causes a new line to be 
printed when being displayed. 

117 



REG.NO MAKE SERVICE. DUE 
001 A A A 
002 1 2 4 
003 REG.NO MAKE SERVICE.DUE 
004 
005 
006 
007 
008 D21 
009 L L R 
010 7 4 8 

Fig. 8.4 Contents of dictionary file VEHICLE 

DRIVER COST FLEET.NO 
001 A A S 
002 7 9 0 
003 DRIVER COST FLEETlNUMBER 
004 
005 
006 
007 
008 D21 
009 L R R 
010 20 5 10 

Fig. 8.S Contents of dictionary file VEHICLE 

DEPARTMENT 
001 S 
002 8 
003 DEPARTMENT 
004 S 
005 S 
006 S 
007 S 
008 TDEPARTMENT;C;;1 
009 T 
010 20 

DATA FILE DEPARTMENT 

1 A SALES 
2 A RESEARCH AND DEVELOPMENT 

3 A ENGINEERING 
4 A MARKETING 

118 

TAX.DUE.DATE 

TAX.DUE]DATE 

D2I 
R 
8 

MAKE. NAME 
S 
2 
MAKE]NAME 

THAMES;C;;1 
T 
20 



DATA FILE MAKES 

10-FORD 
11-MERCEDES 
14-BRITISH LEYLAND 
44-PEUGEOT 
13-SAAB 
17-CITROEN 
12-VOLVO 
19-RENAULT 
1S-VOLKSWAGEN 
99-SINCLAIR 

119 



Chapter 9 

The Editing Facilities 

One of the most useful facilities for program development is an editor. An 
editor permits the insertion, amendment and deletion of individual 
characters, groups of characters or entire lines of a program. Editing in 
traditional computing is usually only applied to the source code of a 
program, but with the Pick operating system the editor can alter any item in 
any file which the user's account has access to. 

Unless a series of BASIC programs are written to initially input data items, 
and then to update them when necessary, any alteration of data has to be 
done manually from the editor. This is dangerous as an inexperienced user 
can accidently corrupt data making the system useless. Even dictionary 
items have to be set up via the editor using insertion mode. But, since the 
editor can be controlled by a PROC, simple file alterations and dictionary 
creations can be quickly programmed and made almost idiot proof! 

The editor is invoked by using the EDIT verb at TCL. All editor commands 
consist of one or two literal mnemonies followed by data for using with the 
command. 

How the Editor Works 
When the editor is first invoked from TCL, two images of the item 
concerned are created. To make this a lot clearer, let's look at an example: 

SERVICE. DUE 
001 A 
002 3 
003 SERVICEJDUE 
004 
005 
006 
007 
008 D2/ 
009 R 
010 8 

This is a dictionary item called SERVICE. DUE in the dictionary portion of 
the file VEHICLE. 

120 



VEHICLE DATA 

DICTIONARY 

VEHICLE DATA 

Figure 9.1 

COST 
DRIVER 
MAKE 
REG. NO 
SERVICE. DUE 

A 
3 
SERVICEJDUE 

D21 
R 
8 

To alter it, for example to output a different date format of DD MMM 
YYYY rather than DD/MM/YY the contents of attribute 8 need to be 
changed. 

To do this the following command would be entered at TeL: 

EDIT DICT VEHICLE SERVICE. DUE 

This creates the two versions of the item, one version being 'current' and 
accessible via the terminal keyboard, and a second is stored by the machine 
keeping track of any alterations to the item. 

After the original edit command the screen will be as seen in Figure 9.2 

Figure 9.2 

EDITDICTVEHICLESERVICE.DUE 
SERVICE. DUE 
TOP 

121 



The two versions of the items look as follows: 

current version 
on screen, 

SERVICE.DUE 
001 A 
002 SERVICEJDUE 
003 SERVICEJDUE 
004 
005 
006 
007 
008 D2/ 
009 R 
010 8 

second, machine 
held version. 

SERVICE.DUE 
001 A 
003 3 
003 SERVICEJDUE 
004 
005 
006 
007 
008 D 
009 R 
019 8 

To he ahle to see the changes that have been made the current version and 
the machine held second version have to be swapped. This is achieved by 
using the command 'F' which copies the second version onto the screen 
'current version'. 

All editing must continue in ascending line number sequence until an 'F' 
command is entered, automatically updating the existing item and 
initialising the current to line 0 again. 

The editor offers many facilities including the merging of lines from the same 
or other items; the location of a string in an item followed by the 
replacement of that string. The insertion and deletion of lines, and the 
storing of complex editing commands for use time and time again. The 
summary below gives an explanation of each of the available editor 
commands. 

Summary of Commands 

Editor commands consist of one or two lettered mnemonics each of which is 
briefly explained he low to give a new user or a potential user an idea of what 
facilities are available. 

A - Again. This command repeats the last locate (L) command that was 
issued. 

AS -Alternate This command acts as an altcrnating switch 
Switch. which turns the Assembly listing format either on or off. Very 

rarely used except by expert programmers. 

124 



B - Bottom. This command takes the current line pointer and assigns it to 
the last attribute in the item being edited. For our example 
SERVICE. DUE the following is shown to happen in Figure 
10.7. Ten lines of the attribute are listed, go to the beginning 
of the item, go to the bottom of the item. The EOI comment 
(End Of Item) indicates that the end of the item has been 
reached and the last attribute number is displayed, although 
the actual contents of the line are not. 

Figure 9.7 

TOP 
. L 10 
001 A 
002 3 
003 
SERVICEJDUE 
gg~ 
006 
007 
008 D 
009 R 
010 8 
EOI010 
• T 
TOP 
.8 
~OI010 

C - Column This command prints out a list of column numbers 
number so that the user can readily determine a columnar 
list. position of data in any given line. 

DE - Delete. This command allows the deletion of a single line or a number 
of lines. The simplest form of the command is simply DE. This 
deletes the line currently being pointed to, as seen in Figure 
9.8. 

Figure 9.8 

TOP 
.L9 
001A 
0023 
003 SERVICE]DUE 
004 
005 
006 
007 
008 D 
009R 
.DE 

125 



Figure 9.9 

Figure 9.10 

On inputting F, and then looking at the second version, it can be 
seen that the attribute where 'R' resided has been deleted and the 
remaining attributes re-numbered. Another command prompt is 
output. This sequence of events is displayed in Figure 9.9 . 

• DE 
• F 
TOP 
.LIO 
001 A 
002 3 
003 SERVICEJDUE 
004 
005 
006 
007 
008 D 
009 8 
EOI009 

The complex form of this command involves searching for a 
specified string, and then when the string is found the attribute 
concerned is deleted. If Figure 9.10 is studied the deleting 
command is • DE 99/ R / , entered at the top of the item. This 
command will search the next 99 lines, in our case, the entire 
item, for the string - R +. There are two such occurrences 
which when found are deleted. The line numbers deleted are 
displayed before the next command prompt. 

.T 
TOP 
.B 
EOI010 
.G4 
004 
.DE 
• F 
TOP 
.DE99/RI 
003 
• F 
.L10 

126 



EX-Exit. 

F 

FD-File 

Figure 9.11 

FI-File 
item 

FS-File 
save 

This command quits the editor without saving any alterations 
that may have been done on the item. Invaluable when the 
wrong lines have been accidently deleted! 

This command switches the current screen version and the 
machine held second version of the item being edited. This 
allows the user to see what changes he has made, what affect 
they have had and what they actually look like. This is one of 
the basic commands needed for use of the editor. 

This deletes an entire item in a file. For this reason, the editor 
should not be available for general use, in order to protect a 
business from either accidental or deliberate loss of data. 
Alteration of items is usually only allowed via a PROC or a 
BASIC program which is password protected. 

In Figure 9.11 the deletions via the editor are shown, followed by 
an Access statement asking for a list of items in the dictionary, 
SERVICE.DUE is no longer present. 

EDIT DICTVEHICLE SERVICE. DUE 
SERVICE. DUE 
TOP 
• F D 
LI ST ONLY DICT VEH I C LE 
REGNO. 
!'lAKE 
DRIVER 

The item that is currently being edited is made permanent and 
filed away on disk, replacing the old version or, if it is a newly 
created item, creating a first version. The terminal returns to 
a TCL prompt as the editor is exited. 

The item that is currently being edited is made permanent by 
being filed away as in the command FI. The difference is that 
the user is still in the editor, with the current line set to the 
beginning of an item. 

127 



G-Goto. 

Figure 9.12 

I - Insert. 

Figure 9.13 

This command must be followed by the number of the line that 
you wish to make current, shown in Figure 9.12. 

EDIT DICT VEHICLE SERVICE.DUE 
SERVICE. DUE 
TOP 
.63 
003 SERVICE]DUE 

This command will insert any number of lines after the line 
that is currently active. 

SERVICE. DUE 
TOP 
.G3 
003 SERVICE]DUE 
. I 
003+THIS IS AN EXAMPLE 
003+0F 
003+AN INSERT 
003+ 

In Figure 9.13 three lines have been inserted. The insert is 
terminated by <CR>. The new version is seen in Figure 9.14 
after an I F I and a I L6 I command. 

128 



Figure 9.14 

• F 
TOP 
.L6 
001 A 
002 3 
003 SERVICE]DUE 
004 THISISANEXAMPLE 
005 OF 
006 AN INSERT 

There are two versions of LIST: 

1. L - List. This command will list the specified number of lines. (See 
Figure 9.15) 

Figure 9.15 

l.L-Conditional 
list. 

SERV1CE]DUE 
TOP 
• L 1 
001 A 
• L9 
002 3 
003 SERV1CE]DUE 
004 
005 
006 
007 
008 D 
009 R 
010 8 
E01 010 

The LIST command contains a sequence of characters 
for which the command searches the item, and then lists 
the attributes containing that sequence. In Figure 9.16, 
the current line is at the top of the item when the 
command L 9 9/ R / is entered. This searches the next 
99 lines for the character R, those found are then listed. 
The current line is the bottom of the item. 

129 



Figure 9.16 

SERVICE. DUE 
TOP 
.L99/RI 
003 SERVICEJDUE 
009 R 
EOI 010 

ME -Merge. This command allows a specified number of lines to be copied 
into the item being edited, from any other item on the Pick 
system. 

N -Next. 

Figure 9.17 

This command increases the current line pointer by the 
number of specified lines, shown in Figure 9.17. 

EDITDICT VEHICLE SERVICE. DUE 
SERVICE. DUE 
TOP 
• N 1 
001 A 
.N3 
004 

P - Prestore The PRESTO RE command allows a sequence of commands 
and to be stored for repeated use. Up to 10 
prestore prestored sequences are allowed at anyone time, 
recall. very much like having ten memories on a calculator. 

P or PO is preprogrammed on every new Pick machine with the 
command L22, which displays a screen-full of attributes from 
the item. 

130 



Figure 9.18 

To recall a sequence of commands that are already stored 
merely type in the command P followed by the number 
assigned to that sequence of prestored commands. 

Any prestored commands can be displayed using PD 

TOP 
.PD 
POl22 
.P1RU991E1e 
• F 
TOP 
• P 1 
003 SERVICEJOUE 
EOI 010 
.PO 
PO l22 
P1 RU99/E/e 

In Figure 9.18 the current prestored items are displayed, and 
then PI, a replace command is input. 

R· Replace. Replace has the ability to change an entire line or just a 
specified part of the line. In Figure 9.19 a replacement is made 
to the column heading in attribute 3. The character] is 
replaced by ]NEXT, with / being used as the delimiter. The 
delimiter can be any non alphanumeric character, usually a ?, 
/ or *. An asterisk replacement can be seen in Figure 9.5. 

Figure 9.19 

T-Top. 

OP.93 
003 SERVICEJOUE 
• R 003 DATEOFJSERVICE 
• F TOP 
.93 
003 DATE OFJSERVICE 
R/J/JNEXT 
003 DATEOFJNEXT SERVICE 
• F TOP 
.l3 
001 A 
002 3 
003 DATE OFJNEXTSERVICE 

This takes you to the top of the item, ready to edit the attribute 
lines in ascending order. 

131 



Figure 9.20 

TB-Tabs. 

U-Up. 

X-Delete 
effect 

Figure 9.21 

SERVICE.DUE 
TOP 
• L4 
001 A 
002 3 
003 SERVICE]DUE 
004 
• T 
TOP 

Tabs for spacing and easy editing can be preset. There can be 
up to 15 different tah settings across one line. This command 
is often used in conjunction with the C command. The 
prestored tabs are only usable in the insert mode, using the 
command T 

TB 1 10 20 30 

Will set tabs at columns 1, 10, 20 and 30. This is particularly 
useful when updating screen layouts in a PROC. 

This command moves the current line pointer back by the 
number of specified lines. 

The effect of the last Input, Insert, Delete or 
Replace is nullified. This is seen in Figure 9.21, when a replace 
statement has been wrongly entered. The delete effect will not 
work if an 'F' (File) command has taken place. 

SERVICE. DUE 
TOP 
. L2 
001 A 
002 3 
.R/3/6 
002 6 
.X 
• F 
TOP 
.L2 
001 A 
002 3 

132 



Chapter 10 

The BASIC Language 

"A language is a system of signs or symbols used for conveying information." 
Oxford English Dictionary. 

Introduction 
The Pick operating system includes a BASIC language processor as a 
general purpose programming tool. The Pick operating system BASIC is an 
extended version of standard Dartmouth BASIC, the very popular 
programming language. Since most computer professionals are at least 
acquainted with BASIC, and many documents discuss the features of this 
versatile language, this section will cover only those features of the Pick 
operating system BASIC that are specifically unique, or are otherwise 
standard functions that strongly interact with other Pick operating system 
unique software or hardware. 

The History of BASIC 
The BASIC language was developed in 1965 by John G Kemey and Thomas 
E Kurtz of Dartmouth College USA, primarily as a language for 
introductory courses in computer science for non science students. BASIC 
is one of a number of high level languages. These languages fall into one of 
two categories, general purpose and specific. FORTRAN (Formula 
Translation) was specifically dcsigncd for scientific number crunching tasks 
and is used extensively in scientific research; while COBOL (Common 
Business Orientated Language) is for business and information retrieval 
purposes. General purpose languages include: 

PLil 
ADA 
ALGOL 68 

Since its conception BASIC has fallen from favour in the academic world, 
but has become popular in other spheres. The objective of BASIC was for 
it to be easy to use and learn, which has resulted in a simply yet versatile 
programming language suitable for expressing a wide range of problems. 

133 



Why BASIC? 
When the Pick operating system was first designed, BASIC was the only 
high level language that was both suitable and available for use. Richard 
Pick, the designer of the operating system named after him, originally 
wanted to use APL (Advanced Programming Language), which is a more 
theoretical than practical language. Some people are put off BASIC by the 
reputation it has earned as a home computer buff's language, and it tends 
not to be taken seriously by professionals, as they believe it to be too 
elementary. But, Pick BASIC is different. It has the ability to write 
structured code, to talk and communicate with peripherals such as a tape 
deck, and to chain subroutines together, as well as sophisticated file 
handling facilities. Admittedly, the Pick operating system is tied to a single 
language, but that language is fully integrated with all the other parts of the 
system. By being so tightly integrated, BASIC can use the system's other 
facilities to full advantage from within any program. This gives advance 
knowledge to the programmer of any Pick machine, what the data structures 
are and how they are handled by DAT AIBASIC. 

By using a high level language, total machine independence can and should 
be achieved. This is found to be the case on any Pick machine. A program 
developed on one Pick machine will run on another. This is a great 
advantage over a traditional computing environment where there are as 
many variations in the BASIC language as there are in regional dialects in 
the English language. This is because there has been no industry standard, 
an each manufacturer has put in their own slight, but annoying, 
modifications. Annoying that is for a programmer, and annoying for a 
business man with PC DOS and CP/M who will need two different versions 
of a single package just to accommodate the different versions of BASIC. 
Perhaps the biggest reason for the Pick system to be tied to one language is 
standardisation. In advance of using any Pick machine, the programmer is 
aware of how Pick BASIC integrates with the other parts of the system and 
what, therefore, can be achieved. Pick BASIC also gives the following 
advantages: 

1. More convenient descriptions of the tasks which are to be performed. 

2. More efficient program writing with less time spent debugging the 
program and more time solving the problem in hand. 

3. More productivity. High level languages make programs easier and faster 
to write! about ten times faster than using assembly code. 

4. Easier documentation. As the code is more readable, some simple 
programs ean be almost self-documenting. This means that programs now 
need very little effort to achieve traditional longhand documentation. 

S. Standard syntax. Most high level languages have ani nternational set of 
standards, setting out the meaning and functionality of each 'word'. 

134 



Additional words are often added by individual manufacturers; in the Pick 
world the Ultimate range of computers has enhanced Pick BASIC. 

6. Portabilty. As long as the same version of the compiler and the same or 
standard sY!lt~ is used, the code will be portable to other machines using the 
same combmatlOn. 

Re-entrant Code. 
The BASIC processor generates re-entrant codes which can be shared 
among a number of users. In practice, this means that if a program is used 
by a number of users simultaneously, only one copy of the program needs to 
be present in memory. 

Source Files 
Pick BASIC source files, like all files on the system, consist of a number of 
items. Each program is an item in a file. The typical user will have one file 
for all programs and each item will contain one program. The item identifier 
is the name of the program and each complete line of the program is an 
attribute. 

Interpreters and compilers 
BASIC, being a high level language, needs to be translated into a form that 
the computer will understand. There are two processes of translation, one is 
interpretation, the other is compilation. Interpretation and compilation are 
two entirely different approaches to obtaining the human type input in 
machine format, which in turn allows the program to be executed. 

An interpreter does not generate a complete set of object code for a 
program. As each source statement is looked at by the interpreter, it is 
immediately analysed followed by execution. If one statement is found to be 
incorrect the interpreter will stop there and issue a pertinent error message. 
If there are many errors it can take some time to correct all the mistakes one 
by one, whereas with a compiler all the mistakes are listed in one go and 
need to be corrected before execution can be repeated. The interpretation 
technique is represented in Figure 10.1. The major advantage of an 
interpreter is that it offers an easier, more gentle, learning curve for the first 
time programmer. With an interpreter there is no need to learn about the 
process of compiling and syntax is checked automatically for each 
statement. 

A simple compiler translates the input text (known as the source code) into 
an equivalent machine code, leaving two versions of the program. The first 
is the source code and the second, unreadable machine code, (known as 
object code). This is seen in Figure 10.2. The translation process takes place 

135 



N 

Output relevant 

error message 

Figur~ 10.1 

translate 

N 

Output 

Results 

STOP 

136 

y 

arc 
there any 
statements 

Icft'l 



on all or the source code, in one fell swoop. It is the object code that the 
operating system actually uses in order to execute or run a program, but, 
take the source file away, leaving just the object code and the program will 
still be able to continue running as if nothing had happened. Many software 
packages deliberately carry only the object code. By removing the source 
code the program becomes protected, first from the software pirate and 
secondly from unauthorised alteration of the program, thereby making a 
standard piece of software nonstandard. 

LET A=A + B Source 
LETC=C-A Code 

01000101 Object 

01001010 Code 

Source 
Savctl in 
Backing 
Store 

Object 
Saved in 
Racking 
Store 

Figure 10.2/\ compiler reads the high level source statements and translates them into machine 
code. which is stored forfuture use. 

Pick uses the compilation method of translation mainly because compilation 
has the advantage of speed. Even when the program is functioning perfectly, 
an interpreter still carries on checking each and every line. so the interpreted 
language is almost inevitably slower. The compilation process is more suited 
to the multi-user environment for which all Pick machines are designed. 

The object code that is produced by Pick BASIC is written to disk, and a 
special pointer is then written to the dictionary of the source file. This 
pointer contains the location of the object code 011 disk, this is shown in 
Figure 10.3. 

137 



1. A Pick operating system file contains one or more items. Thesc items are 
identified by an item identifier. Items contain one or more attributes and an 
attribute can contain one or more values. Finally, values can contain one or 
more subvalues. Attributes, values and subvailles arc all delimited by 
special markers. 

2. An item is a string consisting of combinations of these elements and can 
be up to 32K bytes in length. In Pick BASIC this string can bc loaded into 
a dynamically dimension array. 

Dynamic Array handling Functions 

A dynamic array is data held in the same format as a file item, i.e. any 
number of attributes separated by special markers. A dynamic array has a 
single variable name, individual elements of the array being referenced by 
special Pick BASIC functions, provided for the purpose. There are also 
statements for reading and writing an item from backing store into a 
dynamic array and vice versa. Once an item has becn loaded into a dynamic 
array, thcre are various functions for extracting the contents of a specific 
attribute, value, or subvalue; replacing attributes, values and subvalues, and 
counting the numbers of attributes within an item. These features are 
particularly powerful when used to read and write items directly to or from 
a disk. 

For example the following data item: 

WHITE LION 
001 01-456-7799 
002 TONICJDRY GINGERJBITTER LEMON 
003 30 
004 12 
005 MARK PRIOR 
006 10 THE DRIVE CRICKLEWOOD 

can be read from disk by using the statement: 

READ EXAMPLE FORM CUSTOMER, 'WHITE LION' ELSE STOP 

After the execution of this statcment the variable E X AMP L E will contain 
the dynamic array value 

01-456-7799 A TONICJDRY GINGERJBITTER 
LEMON A 30 A 12 A MARK PRIOR A 10 THE DRIVE 
CRICKLEWOOD 

The form of the data storage is known as 'item-format'. The term dynamic 
is used because the shape and size of the array is not fixed. and may be 
altered freely by other statcments and functions in the rest of the program. 

140 



These dynamic arrays interface well with the file item, as an entire item can 
be read or written and individual values can be casilv accessed. The 
dimensioned arrays are more advantageous when a l~lfge number of 
elements are being accessed or if processing large items as each field is 
placed in a separate variable location. 

Once an item has been loaded into a dynamic array the EXTRACT function 
can return the contents of a specific attribute, value or subvalue. The 
EXTRACT function then specifies the dynamic array, the attribute 
number, the value number and the subvalue number to be extracted. For 
instance: 

OPEN 1 I, I EXAMPLE I TO TEMP ELSE STOP 
READ ITEM FROM 'TEMP ' , 'WHITE LION ' ELSE STOP 
X = EXTRACT (ITEM,2,2,O) 

The first parameter in the function gives the name of the dynamic array that 
is going to have data extracted. The second parameter gives the attributc, 
the third the number of a value in the attribute (a multivalue) and the forth 
a subvalue. The above command will extract the second value of the second 
attribute in the specified array. The extracted value of DRY GINGER is 
then assigned to variable X. 

The REPLACE function provides the corresponding capability to change 
the value of the contents of a value in the arrav. For instance, DRY 
GINGER could be replaced by PINEAPPLE JUICE using the following 
sequence of statements: 

OPEN 1 I, I EXAMPLE I TO TEMP ELSE STOP 
READ ITEM FROM 'TEMP ' , 'WHITE LION ' ELSE STOP 
ITEM = REPLACE<ITEM,2,2,O;'PINEAPPLE JUICE ' ) 
WRITE ITEM ON I EXAMPLE I 

The item WHITE LION has been read from the database and placed in the 
dynamic array ITEM. The second value of the second attribute is then 
replaced, and written back to the file EXAMPLE. 

DELETE allows for deletion of a specific attribute, value or subvalue. 
INSERT allows the insertion of a new attribute, value or subvalue. A more 
detailed description can be found in Appendix D. 

The LOCATE statement is used to find a specified value (if present) in a 
dynamic array. The statement would be used for the location and/or 
insertion of controlling and dependant attrihutes within the dictionary 
items. For instance: 

LOCATE(' D' ,ITEM,4;VAR) ELSE ITEM = INSERT (ITEM,4,VAR,O,' D') 

141 



the fourth attribute of the dynamic array ITEM is searched for the 
alphabetic literal '0' and the location of the array when the literal is found 
is placed in the variable V AR. If the '0' is not found the location of the 
beginning of the fourth attribute is returned in V AR giving the position 
where '0' should be. If it is not found, control is passed to the ELSE clause, 
which will insert the missing 'D' in the correct place. by using the "should be 
here" marker in VAR. This single statement can often eliminate the need 
for a loop, which may have had to specifically extract and test the attribute 
and provide alternative routes before the next item could be searched. 

The COUNT function will count the number of occurrences of a specified 
string within attributes, values or subvalues of an item. 

Using these functions, the full range of database facilities available on the 
Pick operating system are also available to the BASIC programmer. Not 
only simplifying the BASIC program itself. but ensuring compatibility with 
the Access Processor. for reporting at a later date. 

Other features. 

The MATCH statement provides pattern matching facilities in BASIC 
similar to those available in the PROC processor. These include testing for 
a number of alpha or numeric characters and literal string comparison. 

The CHAIN function will transfer control to another BASIC program or 
any valid TCL command including a PROC. Variables can be passed to the 
chained program. 

The PRINTER ON, PRINTER OFF, and PRINTER CLOSE statements 
cause output to be directed to the spooler or the user's terminal. When the 
program is finished, the spooled file will become eligible for printing. If 
spooling prior to the end of the program is desired. the PRINTER CLOSE 
statement will immediately spool the accumulatcd output. 

Output functions, similar to the modifier functions found in the Access 
query language, include justification, both left and right. specification of the 
number of digits to the right of the decimal point, descaling of numbers. the 
suppression of leading zeros,the insertion of commas, printing of "DB" or 
the minus sign after negative numbers, printing "CR" after positive 
numbers, appending currency signs to numbers, and filling a 
predetermined length field with any specified character. 

The HEADING and FOOTING functions, similar to the same functions in 
the Access query language, help output pages to be formatted when output 
is being prepared for reports. A heading or footing is stored using the 
relevant BASIC function, and is actually actioned by the use of the PAGE 
statement in a program. PAGE also accepts a variable from the program as 
a parameter. to set a page number counter. Optional parameters for the 

142 



HEADING and FOOTING functions will automatically incorporate the 
time and date, assign page numbers, centre text, and insert blank lines. 

The PROMPT statement sclects a character to be printed at the user's 
terminal whenever the program stops for input. (Usually when the INPUT 
statement is used). For example: 

PROMPT "+" 

will cause a 'plus sign' to be displayed as the prompt character at the user's 
terminal. 

The READ NEXT statement reads a list of item ids from a list supplied by 
the Access processor SELECT or SSELECT, These items can then be 
brought into a dynamic array for processing. READNEXT statements can 
continue until the list is exhausted. 

BASIC also has access to the magnetic tape or floppy disk unit by the use of 
READT, WRITET, WEOF) write end of file mark) and REWIND 
statements, 

Multi-User File Locks 
If one or more BASIC programs arc running concurrently. and they access 
the same file, multi user lock-out protection is necessary in order to prevent 
the two programs from writing to the same data without co-ordination, Even 
a simple accounting system cannot allow two clerks to run the same ledger 
program at the same time unless this protection is available. This problem is 
somewhat compounded in a database oriented system, since an attribute 
like ACCOUNT NUMBER might exist in only one file, but be accessed by 
several programs. Without file lockout protection, the entire accounting 
system might be accessible to only one user at a time. The Pick operating 
system BASIC offers a sophisticated set of locks to co-ordinate multiple user 
access to thc same files. 

File locking is implemented with modified versions of the READ and 
WRITE statements. When one of these modified statements is executed, 
the group (defined in the modulo and separation of the file concerned) in 
which the read takes place is "locked" or placed out of bounds, to other 
programs until released by the locking program. 

For the most part, a group is a user transparent concept. It is, however, the 
fundamental block of data which the Pick operating system uses internally 
for reading and writing. Since a group is a subset of an entire file, two users 
will still be able to access the file at the same time; they just can't access items 
in the same group at the same time. 

143 



If a program attempts to read data from. or write data to. a group that is 
locked hy another program. the program will wait until the group hecomes 
unlocked. Usc of conditional parameters with modified READ and WRITE 
statements can be used to gracefully hranch to another part of the program 
to deal with a lockout situation. Thc RELEASE statcment unlocks groups. 
and all locked groups locked hy a specific BASIC program arc unlocked 
when that program ends. The Pick operating system can keep track of up to 
62 locked groups at a time. 

Structured Programming 

Unlike most other versions of BASIC, the Pick BASIC contains all the 
commands that arc needed to write structured code. One of the complaints 
from academics ahout BASIC has been its unstructured form. The term 
'struct ure' is one of those words which tend to occur in conversation between 
programmers. It refcrs to a set of rules and regulations set down by a 
collection of influential high level language writers. The term structure also 
comes in useful for consultants and those well versed in criticism. in that a 
program which works well and is quite acceptahle can be condemned for 
'poor structure'. A wcll structured language means it is easy to design and 
follow the solution to a problem. and the code of such a solution docs not 
end up resembling a pile of spaghetti (one big muddle)! Structured 
programs in ordinary BASIC arc somewhat difficult to write. but the 
modifications carricd out on Pick BASIC h,rve made structuring a lot easier. 
It is very easy when programming in any BASIC to build up a program 
without giving much thought to its overall structure. The fact that rigid 
restrictions arc not imposed upon the programmer allows the program to be 
tested and amended over and over again. While a program is under 
development this can be both a blessing and a curse. It is a blessing when 
offering freedom and flexibility. but a curse when giving a muddled 
appearance. Lack of structure makes error finding and correction a 
nightmare. therefore Pick BASIC contains all the constraints needed to 
write highly structured code. Among the commands available arc: 

CASE 
COMMON 
IF ••• THEN •••• ELSE 
FOR ..•• NEXT 
FOR •••. UNTIL 
FOR .•.. WHILE 
LOOP .••• WHILE 
LOOP .••. UNTIL 

These arc all fully explained in Appendix D. 

144 



Summary 

One of Pick's strong points is that it makes applications easy to write. Many 
time consuming chores that are found in other languages. such as writing 
complex input output routines and complex data file manipulations. are 
either not necessary with Pick or can be done with existing system utilities in 
another part of the operating system but integrated allowing use. In addition 
Pick BASIC has a powerful facility to automatically generate a program map 
and variable cross reference tables upon compilation of the program. 

The BASIC language as implemented on the PICK machines is a simple 
programming language enabling easy manipulation of numbers and 
character strings. That is why it is particularly suitable as a language for 
implementing management/database applications. It is particularly easy for 
the beginner to master. This was one of the primary objectives when it was 
first written. BASIC programs can be stored, compiled, tested and executed 
on the system through any terminal, at the same time other users may 
develop programs or execute existing programs, thus giving total interactive 
computing. 

BASIC operates on variables of any length, type or number. It can call on 
subroutine sequences or on system utilities, enabling control as well as 
efficient organisation of data allowing straight forward interrogation via 
screens or printers. 

The processes which are included in the Pick operating system include a 
compiler, a syntax checker, error analyser, a number of diagnosis and test 
utilities, and a trace function which enables the monitoring of program 
execution. The constraints of a multiprocessing environment are resolved 
through the usc of locks and individual work-files. 

The Pick BASIC language was specifically designed with PICK in mind and 
features: 

1. A set of file access and update statements. 

2. String and file processing items. 

3. A clear language structure allowing structured programming. 

4. Error finding aids. 

5. Access to magnetic tape commands. 

6. Ability to integrate external subroutines. 

145 



The BASIC processor complements the Pick operating system with this 
popular procedural programming language. Since the full range of data base 
management functions are available to the BASIC programmer, as 
implemented in the Access processor, the complementary combinatIon ot 
capabilities of these two processors can be used to bring new applications on­
line faster than would be the case using conventional file structures and 
totally procedural languages. 

146 



Chapter 11 

Runoff 

This chapter deals with "Runoff' - that part of the Pick operating system 
designed to help with the production of the inevitable manual which 
accompanies each and every piece of software. Runoff was originally a 
simple word processor, but the advances in the quality and facilities offered 
by word processing packages has pushed runoff into insignificance and to 
being classified as a text processor. 

A runoff document has two parts. First, the actual text of the document and, 
secondly, the commands to format that text as required. These formatting 
commands take the form of "dot commands" similar to those found in 
Wordstar, a popular word processor for microcomputers. 

As in all other parts of the Pick operating system, each document is held in 
an item in a file, shown in Figure 11.1. 

Figure 11.1 

ITEM STARS 

001 
002 
003 

Runoff will number pages automatically, print text headers and footers, 
perform tabulations, centre a piece of text and select right or left justification 
at a tabulation stop. And, when writing an entire publication, the indexing 
may be done at the I'ress of a button. 

147 



Shown below is a basic example of a runoff item: 

STARS 
001 .BP 
002 • LINE LENGTH 55 
003 • J 
004 • PARAGRAPH 4 
005 Aquari us ••••.•. A bri ght future ahead, wi th an expansion of 

ambitions,andpLentyof sociaLopportunities. You'LLbe 
fairlyunruffLedbytoday's 

006 restLess conditions. 
007 .BREAK 
008 Pi sces ••••••••• Neptune, your ru Ler, is st rong Ly aspected 
009 raising controversy in financiaL affai rs. 
010 Make time for checking accounts. 
011 .BREAK 
012 Aries •.•••••••• Anedgyphase if youare reLyingon the co-

operation of companions. 
013 Goods and servi ces mi ght not come up to scratch. 
014 . BREAK 
015 Taurus ••••••.•. Not easy to fee l enthusi asti c about 
016 rout i ne chores, so ai m for vari at i on and get out and about a 

bi t. 
017 Fresh senses wi L L spark off new ideas. 
018 .BREAK 
019 Gemini ••••••••• Groupactivitiesneedorganisingifyoudon't 

want to run round in ci rc les 
020 and then find yourseLf out of pocket. 

The above example shows a source document complete with all the 
formatting commands such as: 

.BREAK 

.BP 
Start a new line 
Begin a new page 

On issuing the command: 

RUNOFF REPORT STARS 

which consists ofthe command RUNOFF, the file name and the item name 
held within that file, the source document is fed into the processor and the 
formatting commands applied to the text giving the output: 

Aquarius ••••.•• A bright future ahead, with an expansion of 
ambitions, and pLenty of sociaL opportunities. You'LL be 
fa i r L y un ruff Led by t od a y , s res t L e s s c ond i t i on s • 
Pisces ••.•••.•• Neptune, your ruLer, is strongLy aspected 
raising controversy in financiaL affairs. Make time for 
checking accounts. 
Ari es.......... An edgy phase if you are re Lyi ng on the co­
operation of companions. Goods and services might not come up 
toscratch. 
Taurus ••..••.•. Not easy to feeL enthusiastic about routine 
chores, so aim for variation and get out and about a bit. Fresh 
senses wi L L spark off new ideas. 
Gemini ••.•••.•• Group activities need organising if you 
don'twanttorunroundincircLes.AndthenfindyourseLfoutof 
pocket. 

148 



Each line in the file is treated as a straightforward and simple output of text, 
unless the first character on the line is a full stop (period). The command 
lines, as they are known, may contain more than one formatter. For example 
the first few lines of the example can be reduced to one line as shown. 

STARS 
001 .BP.LINELENGTH55.J.PARAGRAPH4 
002 Aquarius ••••••• A bright future a.head, wi th 

anexpansionofambitions,andpLentyof sociaLopportunities. 
You' LL be 

This will give exactly the same output as shown above, but puts all the 
formatting commands in one place. 

Each of the runoff commands are listed below, showing their effect on the 
document called STARS. As many or as few of these commands as are 
needed can be used in a single document . 

. * 
Any text that follows the • * tells the runoff processor that a comment is 
about to follow. This allows the purpose of the document to be explained in 
the item. This facility can be very useful particularly if each document has 
the first line as a descriptive comment. A dictionary item can then be set up 
and used via the Access language to obtain' a description of each of the runoff 
items in a particular file. 

For example: 

STARS 
001 • * TODAY' S HORROR SCOPE! ! 
002 • BP. LINE LENGTH 55. J • PARAGRAPH 4 
003 Aquarius ••••••• A bright future ahead, wi th 

an expansion of ambi tions, and pLenty of 
so cia L oppo r t un i tie s. You • L L be fa i r L y 
un ruff Led by today' s 

004 restLess conditions. 

In the dictionary of the file REPORT the following item is present: 

149 



DESCRIPTION 
001 A 
002 1 
003 DESCRIPTION 
004 
005 
006 
007 
008 
009 L 
01035 

When an Access command using the dictionary item DESCRIPTION is 
used, the first attribute of each item in the REPORT file is output as a piece 
of data, allowing a list of names and descriptions of each report to be output. 
The following command 

LIST REPORT DESCRIPTION 
gives the output: 

PAGE 13:00:00 24 JAN 1985 

REPORT •••• DESCRIPTION •••••••••••••••••••••••• 
STARS TODAY' S HORROR SCOPE! ! 

1 ITEMS LISTED • 

• BP or .BEGIN PAGE 

The textual output is halted, and the screen or the printer advances to the 
top of the next page, giving output as seen in Figure 11.2. 

001 
002 
003 

004 
005 
006 
007 
008 
009 
010 

011 
012 
013 
014 

015 
016 
017 

018 

STARS 
.* TODAY+S HORROR SCOPE!! 
.BP.LINELENGTH55.J.PARAGRAPH 4 
Aquarius ••••••• Abright future ahead, with an expansion of 
ambitions, and plenty of social opportunities. You'll be 
fairly unruffLed by today's 
restless conditions. 
.BP 
Pisces •••••••• Neptune, your ruler, is strongly aspected 
raisin~ controversy in financial affairs. 
Make t1me for checking accounts. 
.BP 
Aries •••••••••• An edgy phase if you are relying on the co­
operation of companions. 
Goods and services might not come up to scratch. 
.BP 
Taurus ••••••••• Not easy to feel enthusiastic about 
routine chores, so aim for variation and get out and about 
a bit. 
Fresh senses will spark off new ideas. 
.BP 
Gemini ••••••••• Group activities need organising if you 
don't want to run round in circles 
and then find yourself out of pocket. 

150 



Figure 11.2 

.BOX 

o Pisces ..•••• 0 
() 0 

o 0 
c 0 
o 0 

o 
o 

o Aries...... 0 
o 0 
o 0 

This is a graphic presentation device, which encloses a piece of text in a box. 
This command works with an on/off switch. The first. BOX command 
switches the facility on, the second switches it off. 

STARS 
001 .* TODAY'S HORROR SCOPE!! 
002 .BP.LlNE LENGTH 55.J.PARAGRAPH 4 
003.BOX6,55.CENTER 
004 The Horror Scope for Today 
005 • BOX 
006 Aquarius ••••••• A bright future ahead, wi th 

an expansionof ambitions, and plentyof 
social opportunities. You'LL be 

151 



Which gives: 

The Horror Scope for Today 

Aq u a r ius ••••••• A b rig h t f u t u rea he ad, wit han ex pan s ion 0 f am bit ion s , 
and pLenty of sociaL opportunities. You'LL be fairLy unruffLed by 
today's restLess conditions. 

BREAK 

This command causes the previous line not to be right justified. The next line 
of text starts on a new line at the left margin. This can be seen in the example: 

STARS 
001 • BP 
002 • LINE LENGTH 55 
003 • J 
004 • PARAGRAPH 4 
005 Aquarius •••••• Abrightfutureahead,withanexpansionof 

ambitions,andpLentyofsociaLopportunities.You'LLbe 
fai rLy unruff Led by today's 

006 restLess conditions. 
007 • BREAK 
008 Pi sces ••.•••• Neptune, your ruLer, is strong Ly aspected 
009 raisingcontroversyinfinanciaLaffairs. 
010 Make time for checking accounts. 
011 .BREAK 
012 Ari es ••••••••.• An edgy phase if you are re Lying on the co-

operation of companions. 
013 Goods and servi ces might not come up to scratch. 
014 .BREAK 
015 Taurus ••••••••• Not easy to fee L enthusi ast i c about 
016 routine chores, so ai m for vari at i on and get out and about 

a bit. 
017 Fresh senses wi L L spark off new ideas. 
018 .BREAK 
01 9 Gem in; ••••••••• Group act i vi tie s need 0 r 9 ani sin 9 i f you 

don I t want to run round in ci rc Les 
020 and then findyourseLf out of pocket. 

152 



Giving: 

Aquarius .....•• A bright future ahead, with an expansion of 
ambitions, and plenty of social opportunities. You'll be 
fai rlyunruffled by today's restless conditions. 
Pisces ••••••••• Neptune, your ruler, is strongly aspected 
raising controversy in financial affairs. Make time for 
checking accounts. 
Aries •••••••.•• An edgy phase if you are relying on the co­
operation of companions. Goods and services might not come up 
toscratch. 
Taurus ••••••••• Not easy to feel enthusiastic about routine 
chores, so aim for variation and get out and senses wi II spark 
offnewideas. 
Gemini ••....... Groupactivitiesneedorganisingifyoudon't 
want to run round in circles. And then find yourself out of 
pocket . 

• CENTER 

This command retains the American spelling. The line of text following this 
command is placed in the centre of the page. 

Example: 

001 
002 
003 
004 
005 
006 

007 
008 
009 
010 

011 

STARS 
. * TODAY' S HORROR SCOPE I I 

.BP.LlNE LENGTH 55.J .PARAGRAPH 4 

.BOX6,55.CENTER 
The Horror Scope for Today 
.BOX 
Aquarius ••••••• A bright future ahead, with an expansion of 
ambitions, and pLentyof sociaL opportunities. You'LL be 
fairLyunruffLedbytoday's 
.CENTER 
restLess conditions. 
.BREAK 
Pi sces ...•••.•• Neptune, your ru Ler, is 
strong Ly aspected 
raising controversy in finaciaL affai rs. 

153 



Giving: 

CHAPTER 1 

THE DAILY PREDICTIONS 

The Horror Scope for Today 

Aquari us ••••••• A bri ght future ahead, wi th an 
expansionof ambitions, and plentyof social 
oppo r tun i tie s. You'll be fa i r l y un r u 11 led by t oda y , s 
rest less condi t ions. 
Pisces ••••••••• Neptune, your ruler, is strongly 
aspected rai si ng cont roversy in fi nanci a l affai rs. 
Make time for checking accounts. 
Aries •••••••••• Anedgyphaseifyouarerelyingon 
the co-operation of companions. Goods and servi ces 
might not come up to scratch. 
Taurus ••••••••• Not easy to feel enthusiastic about 
routine chores, so aim for variation and get out and 
about a bi t. Fresh senses wi II spark off new ideas. 
Gemini ••••••••• Groupactivities needorganising if you 
don't want to run round in ci rcles. And then find 
yourself out of pocket. 

---------------------------------------------(Newpage) 

SECTION 
1 

. FILL 

TABLE OF CONTENTS 

THEDAILYPREDICTIONS •••••••••• 
PAGE 

1 

This command means that each line that is output is automatically filled to 
capacity, without overflowing. If justification mode is switched on, runoff 
will insert spaces in the line at random to make the right hand margin line up . 
• F ILL is a standard setting . 

. FOOTING 

This command prints the next line of text as a footer to each page. For 
example: 

STARS 
001 .*TODAY'SHORRORSCOPE!! 
002 .BP.LINE LENGTH 55.J .PARAGRAPH 4 
003 • FOOTING 
004 Sponsored by THE STAR AT NIGHT 
005 .CENTER 
006 • CHAPTER THE DAILY PREDICTIONS 
007 • BOX 6,55. CENTER 
008 TheHorrorScopeforToday009.BOX 
010 Aquarius ••••••• A bright future ahead, wi th an expansion 

of am bit i on s, and p len t y 0 f so ci a l 0 ppo r tun i tie s. You'll 
befairlyunruffledbytoday's 

156 



Giving the output shown in Figure 11.3. 

0 
0 
0 
0 
0 
0 
0 

Figure 11.3 

.HEADING 

Aquarius ••••• 

Sponsored by 
THE STAR AT 
NIGHT 

0 
0 
0 
0 
0 
0 
0 

The same function as footing except that the text is output at the top of each 
new page. As in the. F 0 0 TIN G command, the text is output from the left 
margin. No centering will automatically take place. Top get the heading 
centred, use: 

.CENTER.HEADING 

Giving the following item, and output as in figure 11.4 

157 



STARS 
001 .*TODAY'SHORRORSCOPE!! 
002.BP.LINELENGTH55.J.PARAGRAPH4 
003 .CENTER.HEADING 
004 This is brought toyou using the Latest technology 
005 .FOOTING 
006 Sponsored by THE STAR AT NIGHT 
007 .CENTER 
008 .CHAPTER THE DAILY PREDICTIONS 
009.BOX6,55.CENTER 
010 T'he Horror Scope for Today 
011 .BOX 
012 Aquarius ••••••• A bright future ahead, wi th an expansion 

of a mb i t i on s, and p len t y 0 f soc i a l oppo r tun i tie s. You'll 
be fai r ly unruff led by today' s 

Figure 11.4 

.INDENT 

I 
I 
I 
I 
I 
I 

I I 
- -l---------------o Thi sis brought 0 

to you usi ng the 
o latest 0 
O technoLogy 0 

Aquarius 
o 0 
o 0 

Sponsored by 
THE STAR AT 
NIGHT I 

- ~ - - - - - - - - - -I--
I 

The next line of text will be indented by the required number of column 
positions from the left margin, which in our case is presently set to zero. 

158 



STARS 
001 • * TODAY' S HORROR SCOPE I I 
002 .BP.LlNE LENGTH 55.J.PARAGRAPH 4 
003 .CENTER 
004 • CHAPTER THE DAILY PREDICTIONS 
005 .BOX 6,55.CENTER 
006 The Horror Scope for Today 
007 .BOX 
008 Aquar;us ••••••• A br; ght future ahead, w; th an expans; on 

of am b; t; on s, and p Len t y 0 f soc i a Lop po r tun; t; e s. You' L L 
be fa; r Ly unruff Led by today' s 

009 restLess conditions. 
010 .BREAK 
o 11 Pi s c e s ••.•••••• Neptune, you r r u L e r , iss t ron 9 L y asp e c ted 
012 raising controversy in financiaL affai rs. 
013 Make time for checking accounts. 
014 .BREAK 
015 Aries •••••••••• AnedgyphaseifyouarereLyingontheco-

ope ra t i on of compani ons. 
016 Goods and servi ces mi ght not come up to scratch. 
017 .BREAK 
018 Taurus ••••••••• Not easy to fee L enthusi ast i c about 
019 .INDENT 5 
020 routlnechores,soaimforvariationandgetoutandabouta 

bi t. 
021 • INDENT 10 
022 Fresh senses wi LL spark off new ideas. 
023 .BREAK 
024 Gemini ••••••••• Groupactivitiesneedorganisingifyou 

don't want to run round in ci rc Les 
025 and then find yourseLf out of pocket. 

Giving: 

CHAPTER 1 

THE DAILY PREDICTIONS 

The Horror Scope for Today 

Aquari us ••••••• A bright future ahead, wi th an 
expansion of ambi tions, and pLenty of sociaL 
oppo r t un i tie s. You' L L be fa i r L y un r u f fLed by t od a y , s 
restLess conditions. 
Pisces ••••••••• Neptune, your ruLer, is strongLy 
aspected raising controversy in financiaL affai rs. 
Make time for checking accounts. 
Ari es •••••••••• An edgy phase if you are re Lyi ng on 
the co-ope rat i on of companions. Goods and servi ces 
might not come up to scratch. 
Taurus ••••••••. Not easy to fee L enthusi asti c about 

routine chores, so aim for variation and get out and 
aboutabit. 

Fresh senses w; L l spa rk off new ideas. 
Gemini ••••••••• Groupactivities needorganising if you 
don't want to run round in ci rcLes. And then find 
yourseLf out of pocket. 

159 



• I M n or • I N 0 E N T MAR GIN n 
The width of the left margin is increased by the given number, and the length 
of the line decreased by the same amount. 

STARS001.*TODAY'SHORRORSCOPE !! 
002 .BP.LINE lENGTH 55.J .PARAGRAPH 4 
003 .CENTER 
004 • CHAPTER THE DAllY PREDICTIONS 
005 .BOX6,55.CENTER 
006 The Horror Scope for Today 
007 .BOX 
008 Aquari us ••••••• A bright future ahead, wi th an expansi on 

of a mb i t i on s, and p len t y 0 f soc i a l oppo r tun i tie s. Yo u ' l l 
be fai r ly unruff led by today' s 

009 restless conditions. 
010 .BREAK 
011 Pisces ••••••••• Neptune, your ruler, is strongly 

aspected 
012 raising controversy in financial affai rs. 
013 Make time for checking accounts. 
014 .BREAK 
015 Aries •••••••••• Anedgyphaseifyouarerelyingonthe 

co-operation of companions. 
016 Goodsandservicesmightnotcomeuptoscratch. 
017 .BREAK 
018 Taurus ••••••••• Not easy to fee l enthusi asti c about 
019 .INDENT MARGIN 5 
020 routine chores, so aim for variation and get out and about a 

bi t. 
021 • INDENT MARGIN 15 
022 Fresh senses wi II spa rk off new ideas. 
023 .BREAK 
024 Gemi ni ••••••••• Group acti vi ti es need organi si ng if you 

don+t want to run round in ci rc les 
025 and then fi nd yourself out of pocket. 

Giving: 

CHAPTER 1 

THE DAILY PREDICTIONS 

The Horror Scope for Today 

Aquari us ••••••• A bri ght future ahead, wi th an 
ex pa n s ion 0 f am bit i on s, and p len t y 0 f soc i a l 
oppo r tun i tie s. You' l l be fa i r l y un ru f fled by t od a y+ s 
restless conditions. 
Pisces ••••••••• Neptune, your ruler, is strongly 
aspected rai si ng controversy in f i nanci a l affai rs. 
Make ti me for checki ng accounts. 
Ari es •••••••••• An edgy phase if you are re lyi ng on 
the co-operation of companions. Goods and services 
might not come up to scratch. 
Tau r us ••••••••• No tea s y to fee len t h u s i as tic a bou t 

routine chores, so aim for variation and get out 
and about a bi t. 

Fresh senses wi II spark off new ideas. 
Gemini ••••••••• Groupactivitiesneed 
organisingifyoudon'twanttorun 
round in ci rc les. And then find 
yourself out of pocket. 

160 



As can be seen the new margin applies to any following text, until the next 
margin statement is applied . 

• INDEX 

This again is helpful when compiling a large document which requires an 
index. Just type. IN D E X and the term required: 

• INDEX Aqua r; us 

Then, the page number(s) where that word appears is/are stored, and 
subsequently listed by using the. P R I NT IN D E X command . 

• INPUT 

This command allows runoff to take text from the user's terminal rather than 
from the current file item. A prompt is output to the terminal, and the reply 
is inserted into the item without causing a break to occur. 

Consider the following example: 

001 
002 
003 
004 
005 
006 
007 
008 

009 
010 
011 

012 
013 
014 
015 

016 
017 

STARS 
.* TODAY I S HORROR SCOPE!! 
• B P. Ll N E L ENG T H 55. J • PA RAG RA PH 4 
• CENTER 
.CHAPTER THE DAILY PREDICTIONS 
.BOX6,55.CENTER 
The Horror Scope for Today 
.BOX 
~~uarius ••••••• A bright future ahead, with an expansion 

a mb i t i on s, and p len t y 0 f soc i a l oppo r t un i tie s. You I II be 
fai r Ly un ruff led by today I s 
restless conditions. 
.BREAK 
Pisces ••••••••• Neptune, your ruler, is strongly 
aspected 
raisingcontroversyinfinancialaffairs. 
Make time for checking accounts. 
.BREAK 
A r i e s •••••••••• A n edgy ph a s e if you are r ely i ng on the 
co-ope ra t i on of compani ons. 
.INPUT 
Goods and servi ces might not come up to scratch. 

Giving a prompt, at the terminal: 

161 



Figure 11.5 

>RUNOFFREPORTSTARS 
THIS IS AN INSERT 
> 

Which results in the output: 

CHAPTER 1 

THE DAILY PREDICTIONS 

The Horror Scope for Today 

Aquarius ••••••• Abrightfutureahead,withan 
expansi on of ambi ti ons, and pLenty of soc i a L 
oppo r tun i tie s. You 'LL be fa i r l y un r u f fled by t od a y I S 
restLess conditions. 
Pisces •••••••.. Neptune, your ruLer, is strongly 
aspected raising controversy in financiaL affai rs. 
Make time for checking accounts. 
Ari es •.••.....• An edgy phase i f·you are re Lyi ng on 
the co-operation of companions. THIS IS AN INSERT 
Goods and servi ces mi ght not come up to scratch • 

• JUSTIFYor .J 

As each line is filled, • JUS T IF Y makes sure that each margin has a 
character flush against it, as seen in all the examples so far. As a result, 
spaces are inserted giving uneven text. This is similar to the technique used 
in a newspaper with justified columns. 

162 



.LEFTMARGINn 

The left margin indicates the number of spaces that need to be indented from 
the edge of the paper. In the case of item STARS the left margin has not 
been set, so has defaulted to zero. The left margin and the line length when 
added together must not exceed the maximum number of characters allowed 
across the page. Again, in our example, the page width has defaulted to 70. 
By altering the format line at the beginning of the item STARS a margin can 
be created. 

STARS 
001 .*TODAY'SHORRORSCOPE!! 
002 .BP.LlNE LENGTH 55.J .PARAGRAPH 4. LEFT MARGIN 10 
007 .CENTER 
008 • CHAPTER THE DAILY PREDICTIONS 
009.BOX6,55.CENTER 
010 The Horror Scope for Today 
011 .BOX 
012 Aquarius ••••• A bri ght future ahead, wi th an expansi on of 

amb i t ion s, and p Len t y of soc i a l oppo r t un i tie s. You'll be 
fa i r ly un ruff Led by today' s 

014 rest less condi ti ons. 
015.BREAK 

Giving:-

10 

CHAPTER1 

THE DAILY PREDICTIONS 

The Horror Scope for Today 

Aquari us ••••••• A bri ght future ahead, wi th an 
elfpansion ofambi tions, and plenty of social 

oppo r t un it i e s. Yo u ' l L be fa i r l y un ruff led by t od ay , s 
restLess conditions. 

163 



• LOWER CASE or . LC 

All letters are converted into lower case. Self explanatory really! 

STARS 
001 .* TODAY+S HORROR SCOPE!! 
002 .BP.LlNE LENGTH 55.J .PARAGRAPH 4.LEFTMARGIN 10.LC 
003 .CENTER 
004 • CHAPTER THE DAILY PREDICTIONS 
005 .BOX6,55.CENTER 
006 The Horror Scope for Today 
007 • BOX 
008 Aquarius. _ ••••• A bright future ahead, with an expansion 

of am bit ion s, and p len t y of so cia l op po r tun i tie s. You I II 
be fa i r l y un ruff led by t oda y I s 

009 restless conditions. 

10 

CHAPTER 1 

THE DAI LY PREDICTIONS 

The horror scope for today 

aquari us ••••••• A bri ght future ahead, wi th an 
ex pa n S i on of am bit i on s, and p len t y 0 f soc i a l 
o ppo r t un i tie s. You' II be fa i r l y un r u f fled by t od a y I S 
restless conditions. 
Pisces ••••••••• Neptune,your ruler, is strongly 
aspectedraisingcontroversyinfinancialaffairs. 

As can be seen, the first letter of a sentence is still a capital letter. The text 
inside the box has been converted into lower case, and as a result "aquarius" 
is not considered to be the beginning of a sentence . 

• LPTR 

The output is sent to the line printer rather than to the screen when the 
runoff command is issued. 

164 



.NOJUSTIFY 

The justify command in the opening format line is reset, giving output of 
ragged right hand margin. 

002 
003 
008 
009 
010 
011 
012 
013 

015 

STARS 001 • * TODAY' S HORROR SCOPE! ! 
• BP. LINE LENGTH 55. PARAGRAPH 4. LEFT MARGIN 10 
• NOJ USTI FY 
• CENTER 
• CHAPTER THE DAI LY PREDICTIONS 
• BO X 6,55 • C E N TE R 
The Horror Scope for Today 
.BOX 
Aquari us ...•• A bri ght future ahead, wi th an expansi on of 
ambitions, and plentyof social opportunities. You'll be 
fai r ly unruff led by today' s 
restless conditions. 

Giving:-

'--_-oJ 

10 

CHAPTER 1 

THE DAI LY PREDICTIONS 

The Horror Scope for Today 

Aquarius ••••••• A bright future ahead, wi th an 
expansion of ambi ti ons, and plenty of soci a l 
o ppo r t un i tie s. You I II De fa, r l y un r u f fLed by t od a y I S 
restLess conditions. 

As can be seen, only one space is left between words, except at the end of a 
sentence when two spaces are left. The words are no longer spaced so that 
the line starts and ends flush against the two margins . 

• PAGE NUMBER n 

The page number is automatically incremented at each • B P command or 
automatic page throw. At the beginning of each document the 'n' is set to 1 
and incremented from there on. 

165 



• PAPER LENGTH nn 

The length of the form being used can be varied, by using the • PAP E R 
LEN G T H command. As a default the paper length is set to 66, the standard 
number of lines that can be printed on continuous stationery. Often for 
statements, special reports or letters the length needed is only 55, which is 
when you use this command . 

• PARAGRAPH n 

This command starts a new paragraph any time that the first character on a 
line is a space. An optional number may follow the command to indicate the 
number of spaces the paragraph is to be indented from the left hand margin. 
A gap of one blank line is also inserted into the text. 

001 
002 
003 
004 
005 
006 
007 
008 

009 
010 
011 

STARS 
· * TODAY' S HORROR SCOPE! ! 
• BP. LINE LENGTH 55. J •• PARAGRAPH 4. LEFT MARGIN 10 
.CENTER 
• CHAPTER THE DAILY PREDICTIONS 
.BOX6,55.CENTER 
The Horror Scope for Today 
.BOX 
Aquarius ••••••• A bright future aheld, wi th an expansion of 
1mb i t ion s, and p len t y of so cia l oppo r t un i ties. You'll be 
fairlyunruffledbytoday's 
restless conditions. 
.BREAK 
Pisces ••••• Neptune, your ruler, is stronglyaspected 

-----------------------------------------------
The Horror Scope for Today : 

-----------------------------------------------
Aquarius ••••••• A bright future ahead, wi th an expansion 

of amb it i on s, and p len t y of so c ill 
opportunities. You'llbefairlyunruffled 
by todlY's restless conditions. 

166 



.PRINT 

The line of text following the • P R I NT command is output to the user's 
terminal. (i.e. the terminal that the runoff command was originally issued 
from.) 

001 
002 
007 
008 
009 
010 
012 
013 

015 

STARS .* TODAY' S HORROR SCOPE! ! 
• BP. LI N E L ENG T H 55. J • PA RAG RA PH 4. LE F T MA RG I N 10 
.CENTER 
• CHAPTER THE DAILY PREDICTIONS 
.BOX 6,55.CENTER 
The Horror Scope for Today 011 .BOX 
.PRINT 
Aquari us ••••••• A bright future ahead, wi th an expansi on 
of a mb it i on s, and p len t y of soc i a l 0 ppo r tun i tie s. You'll 
befairlyunruffledbytoday's 
restless conditions. 

This will result in the prediction for Aquarius being output on screen, but 
excluded from a print-out. 

CHAPTER 1 

THE DAILY PREDICTIONS 

Horror Scope for Today 

Pisces ••••••••• Neptune, your ruler, is strongly 
aspected raising controversy in financial affai rs. 
Make ti me for checki ng accounts. 

Aries ••••••••• Anedgyphase if you are relyingon 

.READNEXT 

This, as indicated earlier, is used in conjunction with the • C H A I N 
command. • REA D N EXT reads the next piece of data in a list, which 
enables data to be inserted in a standard letter, giving a personal touch. Let's 
look at a complete example. Here is the runoff item: 

167 



LETTER 
001 .*Thi sis a standard letter for WHICH COMPUTER? 
002.LEFTMARGIN10BP 
003 .J 
004 • PARAGRAPH 5 
005 Dear 
006 • READNEXT 
007 We are pleased to announce that we wi II be exhibiting 

on our own stand at WHICH COMPUTER? SHOW. 
008 WehavepLeasureininvitingyoutovisitusandencLose 

two ti ckets for your use. 
009 YouwiLLfindusonthegroundfLoor,adjacenttothe 

bar area. 
010 We Look forward to seeing you there. 
011 .SK2 
012 Yours faithfuLLy, 
013 .SK6 
014 N.Kitt 
015 .BREAK 
016 ForandonbehaLfof 
017 • BREAK 
018 MEGA COMPUTER SYSTEMS. 
019 .CHAIN LETTER 

In the above item a letter is being written to each potential customer, asking 
them to attend the WHICH COMPUTER? SHOW. The READNEXT 
command will read from an available file the potential customer's name and 
insert it into the text. The • C H A I N command starts the production of 
another letter if a piece of data is still available in the 'read' list. 

The 'read' list is obtained by using the SSE L E C T verb found in Access. To 
select the name of each potential client, found on the CONTACT file, the 
following would be entered at TCL: 

SSELECT CONTACT NAME 

RUNOFF REPORT LETTER 

The dictionary item NAME would select the name of each potential client 
from the file CONTACT, and make a list of them. The list may consist of: 

Mr A Jackett 
MrPHarris 
MrMBone 

In which case three letters will be produced. 

168 



Dear Mr PHarris 

We arc pleased to announce that w '11 b h'b' . 

r:". SHOW COMPUT". , 
, ., "" "m, 0, '" ow, "'" " WIITC" 

W, h." P''''"', " ,,"",' Y', '" ",', ., '"' '0".", Iw. ""'" ,., Yo., .", 

Yo. Will fi" "'" /h, g'"Ood n",,,, "j;",", '"/h, II,,,,,, 
We lOok forward to Seeing You thcre. YOurs faithfUlly, 

N. kitt 
For and on behalf of MEGA COMPUTER SYSTEMS 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

S 

, 

",,, .00. , ,,<' ,"' 

, 

,. 
". ,« ,0'" ,.,,0 

'I 

~~ ~ \0 0"'" 'u 
C'-

~,>' "" ,S" ,.", "." 

, 

v d' ,,,, ,.,,0< "00'" 

, 

.' \l< '.' •• ' 

, 

"" -".", 0' 

, 

CO" " ,<' 

, 

,," .,\<,. 

, 

~ ~ 

, 

~e . ~u. 

~~\~~ r-----------------------------------~~ ______________________ _JI 

-{OU 

Dear Mr M Bone 

We lOok forward tosecing yuu there. Yours faithfully. 
N. kitt 

For and un beha/fo{ MEGA COMPUTER SYSTEMS. 

169 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



.SECTION 

This is used in conjunction with the. CHAPTER command, allowing section 
headings to appear in the contents list. 

.SET TABS n,n,n ..... 

This sets up automatic tab stops, as found on any modern typewriter. Any 
previous tabs that may have been set will be cancelled. Tabs only work in 
NOFILL mode The tabs are activated by using the symbols> and < within 
the text. 

001 
002 
003 
004 
005 
006 
007 
008 

009 

STARS 
.* TODAY' S HORROR SCOPE! ! 
.BP.LINE LENGTH 55.J .PARAGRAPH 4.LEFTMARGIN 10 
.CENTER 
• CHAPTER THE DAILY PREDICTIONS 
• BOX 6,55. CENTER 
The Horror Scope for Today 
.BOX 
A>q>u>a>r>i >u>s •••••.• A bri ght future ahead, 
with anexpansionof ambitions, and pLentyof 
sociaL opportunities. 
You' L L be fai r Ly un ruff Led by today' s 
rest Less condi t ions. 

CHAPTER 1 

THE DAILY PREDICTIONS 

The Horror Scope for Today 

A qua r ius ••••••• A bright future ahead, 
wi th an expansi on of ambi ti ons, and pLenty of soci a L 
opportuni ties. You' L L be fai r Ly unruff Led by today I s 
rest Less condi tions. 

170 



.SKIPn 

A break in the text is actioned and then 'n' blank lines are left blank before 
resuming the output of text. This can be seen in the document LETTER in 
the. REA D N EXT example .• S K 6 outputs six blank lines, to leave space 
for a signature 

.STANDARD 

This automatically sets up a whole series of formatting commands. The 
settings are: 

STARS 

• C S 
• FILL 
• J 
.UC 
.LEFTMARGIN0 
.HEADING 
.FOOTING 
• PARAGRAPH 5 
• LINE LENGTH 70 

001 • * TODAY' S HORROR SCOPE! ! 
002 • STANDARD 
003 • CENTER 
004 • CHAPTER THE DAI LY PRED I ClIONS 
005 • BOX 6,55. CENTER 
006 The Horror Scope for Today 
007 • BOX 
008 Aquarius .••••. Abrightfutureahead,withanexpansionof 

ambitions,andpLentyofsociaLopportunities.You'LLbe 
fai rLy unruff Led by today' s 

171 



CHAPTER 1 

THE DAILY PREDICTIONS 

The Horror Scope for Today 

Aquarius ••••••• Abrightfutureahead,withan 
expansi on of ambi t ions, and plenty of soc i a l 
oppo r t un i tie s. You I II be fa i r l y un ruff led by t od a y I S 
restless conditions. 
Pisces ••••••••• Neptune, your ruler, is strongly 

.uc 
Runoff is put into UPPER CASE mode as seen in the example for 
.STANDARD 

172 



Appendix A 

SUmInary of TCL 
ComInands 

Non Referencing Verbs 
ADDD 

ADDX 

BLOCK-PRINT 

CHARGES 

CHOO-CHOO 

CREATE-FILE 

DIVD 

DIVX 

This verb adds together two decimal numbers 
and displays the result on the terminal screen in 
decimal. 

This verb adds together two hexadecimal 
numbers and displays the result in hexadecimal. 

Outputs block letters of text on the terminal or 
the printer. For{!xample the command 

B LO e K- PR I NT" A Be" would be output: 

A 
AAA 

AA AA 
AA AA 
AAAAAAA 
AA AA 
AA AA 

BBBBBB 
BB BB 
BB BB 
BBBBBB 
BB BB 
BB BB 
BBBBBB 

ecce 
ee ee 

ee 
ee 
ee 

ee ee 
ecce 

This verb displays the total time that a user has 
used the machine. as well as the usage of the 
CPU. 

A picture of Casey Jones' train is displayed! 

Creates a new file name and sets up all the 
necessary pointers. 

Two decimal- numbers arc divided and the 
result is displayed in decimal. 

Divide two hexadecimal numbers and display 
the result in hexadecimal. 

173 



ECHO-ON/OFF 

LISTFILES 

LISTPEQS 

LISTPROCS 

LISTUSERS 

MSG 

OFF 

SLEEP 

SP-ASSIGN 

SP-CLOSE 

SP-STATS 

T-ATT 

T-FWD 

T-DUMP 

T-EOD 

T-READ 

An on/off switch which, when in the ON 
position, displays every character entered from 
the keyboard on the screen. 

All the files of the account the user is currently 
logged onto are listed in tabular format. 

A listing of the spooler information is produced. 

Outputs all the procedures (i.e. all items for 
which attribute 1 contains the letters "PO") in a 
named dictionary. Will automatically default to 
the user account master dictionary. 

Output of information about who is currently 
using the machine: line number, time of logon, 
date of logon, and the account being used. 

Sending of messages to a single user, a group of 
users or all users. 

This will terminate the use of an account taking 
the user back to the logon prompt. 

Further processing is halted while the machine 
takes as many winks as arc specified in seconds. 

Makes ready the printer for receiving output. 

Reverses the previous statement (SP­
ASSIGN). 

Displays the current status of all the devices 
used by the spooler. 

Attaches the tape unit ready for reading from or 
writing to a loaded tape. 

The attached tape is moved forward to the next 
end of file mark or skips a specified number of 
records. 

Dumps to magnetic tape the items specified 
after the verb. 

Move the tape forward to the end of the data. 

Read a block of data from the loaded tape. 

174 



TERM 

TIME 

WHAT 

WHO 

This verb sets the terminal and printer 
characteristics. 

Displays the current time and date on the user's 
terminal. 

Outputs system status and configuration. 

Outputs the account that the terminal IS 

currently logged onto. 

Referencing Verbs 

BASIC 

CATALOG 

CLEAR-FILE 

COpy 

CREATE-FILE 

DELETE-FILE 

EDIT 

GROUP 

ISTAT 

ITEM 

RUN 

Calls the Pick DATA/BASIC compiler into 
action. 

Creates an entry in the current account's master 
dictionary of the specified program. 

The data section of the.specified file is cleared 
completely. 

Copies a specified file to anotherfile in the same 
account or, by using a 'Q' pointer, copies a file 
to another account. 

Creates a new file of the specified name in the 
account which the user is currently logged onto. 

Deletes the file and removes all evidence of its 
existence. 

This verb enters the editor, allowing alteration 
or creation of any item in any file that the user is 
authoris<;d to usc. 

Outputs hashing information on a specified file. 

Outputs hashing information about the 
distribution based upon the current modulo and 
separation of the named file. 

Outputs the base frame identification number 
of the group which the specified item hashes. 
Also a list of all other items that are contained in 
that group. 

To execute a compiled DA T A/BASIC 
program. 

175 



RUNOFF To output to screen or to printer a document 
created with the RUNOFF processor. 

Access Vocabulary 

Verbs 

COPY-LIST 

EDIT-LIST 

QSELECT 

COUNT 

DELETE-LIST 

GET-LIST 

This verb allows the user to copy a saved 
selected list to the terminal, to another selected 
list, or to an item in a file. 

The EDIT-LIST verb allows the editing of a 
saved selected list. 

Allows the crcation of a selcct list from 
attributes in an item or items in a file. 

The verb COUNT will simply give the result of 
counting all the items in a file which meet any 
given condition specified in the rest of the 
command. The most basic form of the 
command is CO UN T V E H I C L E which will 
count the number of customer items in the file 
VEHICLE. The command 

LIST CUSTOMERS WITH DISCOUNT GT 
"10" AND WITH LOCATION "BUCKS" 

will return the number of records which give the 
specified criteria. 

When a list of selected items from a file has been 
saved a pointer to that selected list has been 
created. The delete-list verb removes that 
pointer and frees the space in storage which was 
used to hold the list. 

When a list of selected items from a file has been 
saved on disk, this verb is used to retrieve that 
list. When it is retrieved, a message is output to 
the terminal, giving the number of items that 
are present on the saved list. Once this verb has 
been issued any of the processors may use the 
information held in the special list. This 
statement is mostly used in PROCEDURES for 
passing data to BASIC programs or printing 
labels, using the LABEL command. 

176 



HASH-TEST 

ISTAT 

LIST 

LIST-ITEM 

This is more of a technical verb, used for 
determining the best size and shape for a file. It 
shows how any or all of the items in a file would 
hash into groups. The verb allows the user to 
enter several different file sizes and to see how 
the machine would organise the frames and 
groups. Many machines have a graphical 
representation of the results. 

Again a technical verb, which provides a file 
hashing histogram for the selected items in a 
selected file, as well as an item count, the total 
number of bytes in all the items that have been 
tested, the average number of bytes per item 
and the average number of items per group. On 
the surface, this verb does not seem very useful, 
but is invaluable for calculating how much disk 
space may be required in the future. It also 
shows, to the experienced eye, how well the file 
space is being utilized. It may be that the file 
sizes are affecting the efficiency of the machine. 
Not often used on a day to day basis, but the sort 
of verb a technical guru will use to impress a 
potential purchaser. 

This is the simplest, and probably the most 
used, Access verb. LI S T C U S TOM E R Swill 
give a display on the terminal from which the 
request was issued with a display of all the items 
held on the file CUSTOMERS. Automatically 
a predetermined selection of attributes are 
displayed from every item. Other combinations 
of output can be specified by using the data 
dictionary definitions that have been set up for 
the file in question. 

This verb combines the format of the COPY 
command with the selection powers of Access. 
The same type of format is used as for the LIST 
or SORT verbs, except that no output 
specifications arc given, as all the items 
requested are printed on the terminal or line 
printer, just as the COPY verb would produce 
them, complete with three digit line numbers on 
the left of each line. Heading and footing text 
can be used as well as sclection criteria (LT, 
GT, EQ, and so forth). 

177 



LIST·LABEL 

REFORMAT 

SAVE· LIST 

This facility enables the printing of standard 
labels. The command has the same effect on the 
data as the LIST command, except the output is 
formatted into a label shape and size. After 
issuing the LIST-LABEL commaml. the 
operator is prompted at the screen for a number 
of pieces of information. which includes: 

1. Number of labels across a page. 

2. Numberof possible print lines on each label. 

3. Number of blank lines between each label. 

4. Number of spaces the display is to be 
indented (from the left margin). 

5. Maximum number of characters aeross the 
label that can be printed. 

6. The number of spaces between the labels 
(across the page). 

All this information is necessary because sheets 
of labels vary enormously from company to 
company. Although very time consuming to 
work out for the first time. once done this 
command is very casy and useful to usc. Also 
the labelling commands should not be used 
straight from the terminal as the answers to the 
questions get forgotten, or the person who 
knows the answers is on holiday. This type of 
complex command should be placed in a 
procedure for instant hassle-free usc. 

The REFORMAT verb is equivalent to a LIST 
verb except that the resulting output is directed 
to magnetic tape or another file already set up in 
the system, rather than to the terminal or line 
printer. The most common usc for this verb is to 
usc the data in another file for updating parts of 
the database. 

This verb provides the facility to make a 
permanent saved list of a temporary list 
produced by the SELECT. SSELECT, and 
QSELECT verbs. These permanent lists are 
made available by the GET-LIST verb. and 
deleted by DELETE-LIST. If a SA VE-LIST is 

178 



SELECT 

SORT 

SORT-ITEM 

entered at TCL it must follow immediately after 
a SELECT or SSELECT command which 
generated the rcquired list. 

The SELECT verb gives the facility to pick out 
a sct of itcms or attributes from any givcn file 
and generate a list which is temporarily stored. 
The next command entered at TCL (or the next 
instruction in a procedure) will act upon this 
tcmporary list rather than the entire database. 
SELECT has exactly the same actions on the 
required file as the LIST command, with the 
difference that the data is not displayed but 
stored. These lists are available to thc different 
parts of the Pick operating system and can be 
used by BASIC, ACCESS, RUNOFF, and the 
SAVE-LIST verb. 

Thc verb SORT gives basically the same output 
as LIST but in addition the items may be 
displayed sorted in various ways. 

SORT CUSTOMERS 

will give the same output as LIS T 
C US TOM E R S except the output will be 
displayed in ascending order of value of the itcm 
identifier. An ascending sort on values of any 
other field is achieved by including in the 
command a modifier followed by the item name 
that needs to be sorted. 

SORT CUSTOMERS BY SALESMAN 

will give a display of all the customcrs sorted 
alphabetically by the salesman's name. A 
descending sort may be produced by using the 
modifier BY-DSND: 

SORT CUSTOMERS BY-DSND 
SALESMAN 

Up to 15 of these sort keys may be used, 
producing a sort within a sort within a sort. ..... 

This verb has the same functions as LIST-ITEM 
with the exception that the items are sorted 
rather than just listed. For a more dctailed 
explanation see LIST-ITEM. 

179 



SORT-LABEL 

SREFORMAT 

SSELECT 

STAT 

SUM 

T-DUMP 

This verb gives the same output as the SORT 
verb exeept that the data is displayed in label 
format. See LIST-LABEL for more 
information. 

Again, the REFO RMA T verb with a sort rather 
than a list function. 

The SELECT verb with a sort option rather 
than merely a list function. 

The verb STAT will give the total of a single 
item (as in SUM), and the average. For 
example: 

STAT VEHICLE COST WITH MAKE. 
NAME = "BRITISH LEYLAND" 

This will give the total cost of maintenance of 
British Leyland vehicles as well as the average 
amount spent on each of the British Leyland 
vehicles in the neet. 

The verb SUM will give the total of the values of 
a single attribute from all the attributes in the 
named file, and/or whieh meet any conditions 
specified in the rest of the command, for 
example: 

SUM CUSTOMER DISCOUNT 

This will return the total of the discount field for 
all the items in the file. The command: 

SUM VEHICLE COST WITH MAKE.NAME 
= "BRITISH LEYLAND" 

will return the sum of the records whose make 
name item contains the string of characters 
"BRITISH LEYLAND" 

This verb deals with dumping data from the 
database to magnetic tape. Selection criteria 
may be used but output formatters may not 
(such as totals and breaks in the listings). The 
tape unit has to be made ready for the Pick 
machine by "attaching" it to the processor 
before it will operate. 

180 



T-LOAD This verb fetches data from a magnetic tape, 
doing the reverse of the verb T-DUMP. Only 
data which has been written to the tape using 
the T-DUMP verb can be retrieved using the T­
LOAD facility. 

Modifiers and output formatters for the Access verbs 

BREAK-ON 

BY 

BY-DSND 

BY-EXP 

BY-EXP-DSND 

COL-HDR-SUPP 

This modifier is used to give a more readable 
sectioned listing. Rather than having one 
continuous piece of paper, the data can be split 
up into sections. Each time the value of the 
specified attribute changes, a break in the listing 
occurs. This feature is usually only used in 
conjunction with the sort verb. 

SORT CUSTOMER BY SALESMAN 
BREAK-ON SALESMAN 

If the break attribute name is followed by text in 
double quotes, the text specified will be printed 
on each line where the break in the printing 
occurs. 

This tells the processor which attribute is to be 
the sort key. 

SORT CUSTOMERS BY NAME 

The following attribute is the criteria by which 
the sort is to take place. Only used with the 
SORT verb. 

Specifies that the sort is to be in descending 
order rather than in default value of ascending 
order. 

Sorts by exploding attribute values. This is for 
use with multi-valued attributes. The result is 
multiple lines for each item, sorted in ascending 
order. 

The same as for BY-EXP, multivalue attributes 
sorted, but the order is descending rather than 
ascending. 

In every Access command a time and date 
heading is automatically output. This command 
suppresses the time and date headings as well as 

181 



DBL-SPC 

DET-SUPP 

DICT 

EACH 

EVERY 

FOOTING 

GRAND-TOTAL 

the column headings for each of the attributes 
and the end of list message. 

This output formatter causes an extra line to be 
inserted between each item, to double space a 
listing, making it easier to read, mark and write 
comments on. 

This suppresses all detail lines when used with 
TOTAL or BREAK-ON. Only subtotal, grand­
total and break lines are displayed. This 
command allows summary information to be 
output exclusively, rather than all the individual 
items in a file. Particularly useful for accounting 
purposes. 

This specifies that the dictionary portion of the 
file is to be listed or sorted as opposed to the 
data file. The processor assumes that the data 
portion is being looked at, so if you want 
anything else, specify it. 

See EVERY as these two verbs are 
interchangea ble. 

This modifier is for use with multi valued fields. 
When selection criteria are being made, it 
makes sure that every value in a multi-valued 
attribute meets those specified criteria. Without 
each of the multivalues being true the item 
cannot be true. If this modifier is not used, and 
just one of the multivalues matches the criterion 
then a successful match is presumed, which can 
lead to misleading information. Much care 
needs to be taken over multivalue attributes. 

The same a.s a HEADING except at the bottom 
of a page. See HEADING for more detail. 

This modifier outputs text on a total line. An 
example is: 

SORT CUSTOMERS TOTAL DISCOUNT 
GRAND-TOTAL "THE TOTAL 
DISCOUNT IS" 

As with all text output, it is enclosed in double 
quotes. Other options which can be used with 
this include underlining all the total fields in the 
ACCESS statement, and forced new pages. 

182 



HDR-SUPP 

HEADING 

ID-SUPP 

IF 

LPTR 

NOPAGE 

ONLY 

This suppresses the time and date information 
which is output automatically at the top of every 
page of every ACCESS report. 

This modifier acts on a ACCESS report to 
produce a heading. This is achieved by 
including in the command the word 
"HEADING" followed, in quotes, by the text 
that is rcquired at the top of each page. Special 
options are available for inserting thc current 
date, a file name, a pagc numbcr, or the current 
machine time. These special options have to be 
surrounded by single quotes: 

LIST CUSTOMER HEADING 
"CUSTOMER INFORMATION FOR 
M.BONE PRINTED FROM' F' FILE AT 
, T' " 

The above example will give a heading 
containing the filename ('F') and the time and 
date of the report ('T') 

This modifier suppresses the item-identifier 
from being output with the rest of the requested 
data. The item-identifier is automatically 
output unless supprcssed. 

The word IF in an ACCESS sentence indicates 
that the following attribute name is a criterion 
for making a selection. This modifier is totally 
interchangeable with the WITH modifier. 

By using this the output is directed to the line 
printer rather than to the terminal. 

When output is being directed to the terminal, 
this modifier prevents a pause of output at the 
end of each page. 

This displays thc item-identifier only, 
suppressing any display items. For example: 

LIST ONLY CUSTOMERS WITH 
SALESMAN "MARK PRIOR" 

It is also useful for looking at the data dictionary 
files to see what 'keywords' exist. 

183 



TOTAL 

USING 

WITH 

LIST ONLY DICT CUSTOMERS 

The above command would give a list of the 
names of the dictionary items present in the 
dictionary portion of the customer file. 

The TOTAL facility gives the total of the listed/ 
selected values in a particular attribute. The 
TOTAL is printed at the end of the listing. 

LIST CUSTOMERS NAME TOTAL 
PURCHASE.AMNT 

In the above example there will be columns for 
NAME and DISCOUNT, with a total at the 
bottom of the DISCOUNT column. 

This is a special word that allows for test data or 
dictionary file when a database is first set up. 
This facility is used during system development 
and enhancement. 

See IF. 

184 



A 

B 

AppendixB 

SumlDaryof 
PROC COlDlDands 

This command moves data from input buffers to 
output buffers. 

Input Buffer Output Buffer 

NK PH AJ 

... 

I nput Buffer 

~ 
I NK PH AJ 

1" 

A ~ 
The A moves to the output buffer the string of 
characters being currently pointed to in the 
input buffer. 

The pointer in the current input buffer is moved 
backward by one group of characters. 

Output Buffer 

B P before command 

B P after command 

185 



BO 

c 

D 

F 

G 

Input Buffer 

~ 
I NK PH AJ .. 

NK PH AJ 

+ 

The pointer in the current output buffer is 
moved backward by one group of characters. 

Output Buffer 

~ before command 

~ after command 

This command does not have any effect on any 
of the input or output buffers, but merely 
provides a documentary capability, helping to 
make the finished procedure more readable. 

The current parameter (group of characters) 
being pointed to in the currently active input 
buffer is output to a terminal. 

The input buffer pointer is moved forward by 
one parameter. 

~ Before 

MH AM After 

+ 
This command causes a transfer of control to a 
line other than the next in the procedure .. 
001 PQ 
002 RI 
003 RO 
004 1 OHELLO, HELLO, HELLO 
005 G 1 
006 P 
In the above example the output line "HELLO, 
HELLO, HELLO" will be output on the screen 
continuously. (The letter '0' is the output 
command). Each time the command G1 is 
reached the operating system goes to the line 
labelled '1' and repeats that line. The next line is 
G 1. which transfers control to the line labelled 

186 



H 

IF 

IH 

'1' and the output statement is executed ..... add 
infinitum. 
This moves a string of characters, forming text, 
from a terminal to the currently active input 
buffer as one parameter. For example: 

Before 

IllS T SAL E S After 

l' 
This is a conditional command, which 
introduces basic decision making capability to 
the procedures. For example: 
IFA5G015 
The above statement will look for the presence 
of a fifth parameter (represented by AS) in the 
currently active input buffer. 

I NKPHAJ 

InputB 

1" 
As a fifth parameter does exist (PH), the 
procedure goes to the line with label 15. If the 
condition is found to be false, i.e. there is no 
second parameter in the input buffer, then the 
GO 15 is ignored and the next statement in the 
PROC is executed. 

This replaces the parameter being pointed to in 
the currently active input buffer. For example, 
if the buffers are initially: 

OutputB 

NKPHAJ I 
+ 

Then the command IH LC will produce the 
following result in the above input buffer: 

InputB OutputB 

187 



IP 

IS 

IT 

o 

This command allows input of data from the 
terminal keyboard into the currently active 
input buffer. 

NKPHAJ I 
'" The command IP, with response from the 

terminal of MH results in: 

NKMHAJ I 
it 

The data that is input overwrites the data 
currently being pointed at, in our case "PH". 

This is the same as IP, except that the data is 
placed in the secondary input buffer. 

The IT command clears the currently active 
input buffer and then inputs the tape label from 
an attached tape into the input buffer. 

o stands for OUTPUT, in this case to the 
terminal from the procedure. Text that follows 
the 0 is output. For example: 

001 PG 
002 0 
003 0 
004 0 
005 0 
IN YOUR NAME+ 
006 IP 
007 P 

SCREEN HEADING 

1. PLEASE TYPE 

This will give the following output on the terminal when the procedure is 
run: 

This will give the followin$ output on the 
terminal when the procedure IS run: 

SCREEN HEADING 

1. PLEASE TYPE IN YOUR NAME 

188 



p 

RIandRO 

S 

SP 

SS 

STON 

The '+' sign stops the cursor from moving to the 
beginning of the next line, giving a prompt 
cursor at the end of the output text. 

Process the commands (as if still at TCL) that 
are currently held in the active output buffer. 
This, in effect executes the commands that have 
been stacked in the output buffer. 

Other options include: 

PH - all terminal output is suppressed. 
PP - The output buffers are displayed. 
PW - waits for the user to respond with 
PW - before proceeding, after having displayed 
PW - the contents of the current output buffer. 
PX - returns to the TCL prompt rather than 
PX - continuing the procedure. 

These two commands are concerned with 
resetting the buffers to a null state (i.e. 
absolutely empty). RI is for the input buffers 
and RO for the output buffers. 

It is advisable to use both of these commands at 
the beginning of a procedure to clear out any 
existing information in the system buffers. 

This command, when followed by an integer 
value, positions or repositions the pointer in the 
currently active input buffer. For example, S2 
will move the pointer, in the diagram below, to 
the second parameter. 

N K PH A J I after 52 

-t 
I NKPHAJ 

1" 

By using this command the primary input buffer 
is selected, and the pointer is set to the 
beginning. 

This command is as above except the secondary 
input buffer is made active and the pointer set to 
the beginning. 

The secondary output buffer is selected~ and 
made active. 

189 



LOCK-FRAME 

SEL-RESTORE 

STRIP-SOURCE 

UNLOCK-FRAME 

VERIFY -SYSTEM 

WHAT 

WHERE 

destroyed. For example: 

LINK-WS 1-3 

will link workspace for lines one, two and three 
only. 

This verb is used to hold a frame in main 
memory; it will remain there until the 
UNLOCK-FRAME verb is used. 

This allows the selective restoration of named 
accounts from a system save. 

This is used with Assembly language program 
only, to remove the source, freeing large areas 
of disk space. The assembled code remains. 

A frame locked in main memory is released. 

This checks to see if the system software is 
correct. Each frame in the operating system is 
checked, and any that are found incorrect are 
listed by their frame number. This verb is 
actioned automatically on some versions of Pick 
when the machine is switched on. 

This verb is used to display the system 
configuration, the current status of all its locks 
and tables, and the location of the processes 
that are logged on. The WHERE verb is a 
subset of the WHAT verb. 

WHERE displays data for all channels that are 
currently logged. For example: 

WHERE 'ALAN' 

will display information for all lines logged onto 
account ALAN. 

192 



AppendixD 

Summary of the 
BASIC language 

BASIC Functions 
@(expression) 

This peculiar part of the DATAIBASIC language generates 
terminal controlling codes when the cursor needs to be 
positioned other than at the left hand side of the screen. The 
majority of screens have a width of 72 characters, each of those 
characters being placed in a column. The expression: 

PRINT@10: "HAVE A NICE DAY" 

will result in the cursor travelling to column 10 on the screen 
(current line) and then printing the message contained in quotes. 
The line on which the output should appear can also be specified 

PRINT @(10/10): "THIS IS THE WINTER OF OUR 
DISCONTENT" 

The specified phrase will start being printed at column 10 row 10. 
If you are going to draw a picture or create a whole screen full of 
printing, it is best to lay it all out on a piece of graph paper first. 

ABS(X) The ABS function returns the absolute value of its argument. 
For example: 

ABS(S) 
ABS(-22) 
ABS(100-50) 

= 5 
= 22 
= 50 

There are no special restrictions on the range of numbers that can 
be used as arguments for this function, apart from the limit on the 
size of the numbers which can be represented by the particular 
computer. 

ALPHA( expression) 

This statement is not found in ordinary BASIC and is a true or 
false function. ALPHA tests for an alphabetic string. If the 

193 



expression evaluates to an alphabetic string a value of true is 
returned (i.e. a value 1), a zero (0) is returned if any 
non alphabetic characters are found in the string. For example: 

ALPHA("LES COTTON") 
ALPHA("ABC 123") 

= 1 (True) = 0 (FaLse) 

x = "THE PICK OPERATING SYSTEM" 
IF ALPHA(X) THEN GOTO 25 

In the last example, control is transferred to statement 25 if the 
variable X is found to be alphabetic. 

CHAR(expression) 

The CHAR function converts a numeric value specified by the 
following expression to a corresponding ASCII (American 
Standard Code for Information Interchange) character string. 
For instance, 

EX = CHAR(33) 

This assigns the character number 33 (an exclamation mark) to 
the variable EX. The argument ofthe function must be a integer. 
The command 

PRINT CHAR(33) 

should result in the output of an explanation mark on the screen. 
The CHAR function is often used in conventional computing to 
change upper case letters to lower case letters using a small 
routine. In Pick this sort of thing can be done but is not necessary 
due to the ease with which upper and lower case may be 
displayed using attribute 7 or 8 of the data dictionaries. The 
expression in a CHAR function must be numeric. 

COLIO Returns (numeric) column positions of the character preceding 
the sub-string retrieved in the most recently executed FIELD 
function. 

COL20 Returns (numeric) column positions of the character following 
the sub-string retrieved in the most recently executed FIELD 
function. 

COS(expression) 

The COS function returns the cosine of its argument. The 
argument is expressed in degrees. There. are n? special 
restrictions on the values of the argument of thIS functIOn. 

194 



COUNT(string,sub-string) 
This function counts the number of occurrences of a sub-string 
within a string. For example: 

X = COUNT ('MISSISSIPPI',' SS') 

Y = COUNT ('MISSISSIPPI',' I') 
X will equal 2 

Y will equal 4 

In both these cases MISSISSIPPI is the string, and 'SS' and 'I' are 
the sub-strings. 

DATEO The current system date is returned in the internal format, that 
is a whole number counting the number of days from 31st 
December 1967. 

DCOUNT( expression, expression) 

This function counts the number of values that exist separated by 
a specified delimiter. This function differs from the COUNT 
function in that it counts the number of values by using a 
delimiter. This is especially useful when counting occurrences of 
a multivalued item. For example: 

FRED = "ABC-DEF-GHI-JKL -MNO" 

X=COUNT(FRED,'~') 

will give the answer 4 

X = DCOUNT( FRED,' -') 

will give the answer 5 

D ELETE( expression,expression,expression,expression) 

The DELETE function deletes an attribute, value or subvalue 
from a dynamic array. The first expression in the function gives 
the dynamic array on which deletion will take place. The second 
expression specifies the attribute, the third a specific value within 
that attribute (a multivalue) and the fourth a subvalue. For 
example: 

OPEN' ',' CUSTOMERS' ELSE STOP 
READ VALUE FROM 'WHITE LION' ELSE STOP 
VALUE = DELETE(VALUE,2,3,1) 

will delete the value TONIC from item WHITE LION in the file 
CUSTOMER, shown below. 

195 



WHITE LION 
001 01-428-1423 
002 TONICJTONIC\BITTER LEMON1TONIC\DRY GINGER\BITTER 

LEMON 
003 30]30]30 
004 0110112 
005 ALASDAIRMORRENJPAUL HILL1MARKPRIOR 
006 10 THE DRIVE CRICKLEWOOD 

EBCDIC(expression) 

This function performs the inverse of the ASCII function, 
converting an EBCDIC (Extended Binary-Coded Decimal 
Interchange Code) code to an ASCII code. 

EXP(expression) 

This is a mathematical function which calculates the exponential 
by raising the number 'e' (2.7183) to the value of the given 
number or expression. 

EXTRACT( expression,expression ,expression,expression) 

The EXTRACT function fetches an attribute, a value or a 
subvalue from a dynamic array. The first expression in the 
function gives the dynamic array from which it is to be extracted. 
The second expression specifies the attribute, the third a specific 
value within that attribute (a multivalue) and the fourth a 
subvalue. For example: 

OPEN' ',' CUSTOMERS' ELSE STOP 
READ VALUE FROM 'WHITE LION' ELSE STOP 
PART = EXTRACT(VALUE,2,2,2) 
PRINT PART 

will extract the value BITTER LEMON from item WHITE 
LION in the file CUSTOMER, shown below, and hold it in 
variable PART. PART is then printed. 

WHITE LION 
00101-428-1423 
002TONIC1TONIC\BITTERLEMONJTONIC\DRYGINGER\BITTER 

LEMON 003 30]30]30 
0040] 10] 12005 A LAS DA I R MORR EN] PAU L H ILL] MARK PR I OR 
00610 THE DRIVE CRICKLEWOOD 

FIELD( expression,expression ,expression) 

This is a string handling function, which selects a sub-string from 
a string when given certain criteria. 

FIELD("ABC/EFG/123/HIJ/456","/",4) 

There are three parts to the command: 

1. The original string which in our case is: 

196 



"ABC/EFG/123/HIJ/456" 

2. The delimiting character, "/". 

3. The n'th sub string that is to be found, in our case the fourth. 

In the above example there are five sub strings delimited by the 
'/' symbol, the FIELD command will return the sub-string HU. 
The delimiters may be any ASCII characters. For example: 

B= FIELD("MISSISSIPPI","I",1) 

B will contain the character "M". 

ICONV(expression,expression) 

This function is peculiar to the Pick operating system as it 
provides the programmer with certain conversion facilities. The 
second expression specifies the type of input conversion to be 
applied to the string value resulting from the first expression. 

DATE = ICONV("01-03-85" ,"D") 

This converts the date into internal format and assigns it to the 
variable DATE. DATE will have the value 6270,as this is the 
number of days since 31st December 1967. Also available are the 
time and a call to a user-written or already-provided assembler 
routine. 

INDEX( expression ,expression,expression) 

This function searches a string for a defined sub- string and 
returns the starting column of that sub- string. For example: 

PLACE = INDEX("MISSISSIPPI" ,"SS" ,2) 

Above we are looking for the second occurrence of the string 
"SS" in the string "MISSISSIPPI" 

As can be seen there are two occurrences of the specified sub­
string. We are looking at the second, which starts at column 6, so 
the answer that will be returned to the variable PLACE, is 6. 

INSERT 
(expression,expression,expression,expression,expression) 

This function is used with dynamic arrays, and is part of a family 
of commands which includes DELETE and EXTRACT dealing 
with dynamic arrays. This function places a new attribute, value 
or subvalue into a dynamic array. For example: 

197 



becomes: 

OPEN I I, I CUSTOMERS I ELSE STOP 
READ VALUE FROM I WHITE LION I ELSE STOP 
VALUE = INSERT (VALUE,2, 1,2, I DRY GINGER I) 

will insert the value 'DRY GINGER', in expression 5, into 
attribute 2 (expression 2). The text will be placed in the second 
subvalue (expression 4) of the first multivalue (expression 3), . 
The item below: 

WHITE LION 
001 01-428-1423 
002 TONIC)TONIC\BITTERLE~ONJTONIC\DRY GINGER\ 

BITTER LE~ON 
003 30)30]30 
004 0)10)12 
005 ALASDAIR MORRENJPAUL HILLJMARK PRIOR 
006 10 THE DRIVE CRICKLEWOOD 

WHITE LION 
001 01-428-1423 
002 TONIC\DRY GINGERJTONIC\BITTER LEMONJTONIC\ 

DRY GINGER\BITTERLEMON 
00330]30]30 
004 OJ10)12 
005 ALAS DAI R MORRENJ PAU L HI LLJMARK PR I OR 
006 10 THE DRIVE CRICKLEWOOD 

INT( expression) 

Returns an integer value for any expression. 

ANSWER = INT(47.6744)The variable ANSWER will contain 

the value 47 

ONE=1.34 
TWENTY = 20.577 
ANSWER = INT(ONE + TWENTY) 

The variable ANSWER will contain the value 21, as only the 
portion before the decimal point is considered by this function. 
There are no special restrictions on the range of numbers that can 
be used in this function. A popular use of the function is to round 
a number to the nearest integer. 

ANSWER = INT(TWENTY + 0.5) 
ANSWER = 22 

LEN(expression) 
Finds the length of a string of characters. For example: 

WORD = "MISSISSIPPI" 
ANSWER = LEN(WORD) 

198 



The number contained in the variable ANSWER will be 11. 

LN( expression) 

This is a trigonometric function which produces the natural 
logarithm of the argument given. The logarithm of a number X is 
the power to which the base (in this case e) must be raised to 
produce the number X. e as in EXP is the number 2.7183. 

LNC2. 7183) = 1 

The argument must be greater than or equal to zero. 

NOT(expression) 

Returns the logical inverse of its argument. Recalling that 1 = 
true, 0 = false, then for example: 

ANSWER = NOT C 1) 

The contents of variable ANSWER will be O. 

NUM( expression) 

The NUM function tests any given string for a numeric value, in 
the same way that the function ALPHA tests for alphabetic 
characters. The value that is returned is either a 1 (true) or a 0 
(false) 

NUMBERS = NUMC"123GT") 

The variable NUMBERS will hold the value 0 indicating that the 
string that has been tested ("123GT")does not consist entirely of 
numeric characters. 

OCONV( expression ,expression) 

This function does the inverse of ICONV. It converts machine 
format data into human format for display purposes. An 
internally held date, which is merely a four digit number will be 
converted into a recognisable date. Also available are time 
conversions. 

PWR( expression, expression) 

This is a mathematical function which raises the value contained 
in expression 1 to the power of the value held in expression 2: 

ANSWER = PWRC8+2,5+5) 

199 



The contents of the variable ANSWER will be 10 to the 
100,000,000,000, or one hundred thousand million. 

REPLA CE( expression,expression,expression ,expression,expre ssion) 

This function locates and then replaces a single element in a 
dynamic array. For example: 

OPEN",' CUSTOMERS' ELSE STOP 
READ VALUE FROM' WH ITE LION' ELS ESTOP 
VA LU E = REP LA C E (VA LU E, 2,1 ,2, , ARE P LA C EM E NT' ) 

will replace the value 'DRY GINGER' with the text 'A 
REPLACEMENT', in expression 5. The item below: 

WHITE LION 
001 01-428-1423 
002 TONIC\DRYGINGERlTONIC\BITTERLEMONlTONIC\DRY 

GINGER\BITTER LEMON 
003 30]30]30 
OIM Ol10l12 
005 ALASDAIR MORRENlPAUL HILLlMARKPRIOR 
006 10 THE DRIVE CRI CKLEWOOD 

becomes: 

001 
002 

003 
004 
005 
006 

WHITE LION 
01-428-1423 
TONIC\~IEPLACEMENTlTONIC\BITTERLEMONlTONIC\DRY 
GINGER IllER LEMON 
30]30]30 
Ol10l12 
ALASDAIR PIIORRENJPAUL HILLJMARK PRIOR 
10 THE DRIVE CRICKLEWOOD 

RND( expression) 

This is a mathematical function which generates random 
numbers. The numbers are between 0 and the number specified 
in the expression minus one. The number contained in the 
expression must be positive. 

RANDOM = RND(91) 

The above example will generate a number at random in the 
range 0 to 9@inciusive, and place it in the variable RANDOM. In 
practice it is impossible for a computer to produce perfectly 
random numbers but the numbers generated are as even a 
distribution as is possible. 

200 



SEQ( expression) 

This function performs the inverse of the CHAR function, by 
turning the character of a string into its equivalent numeric 
ASCII value. 

ANSWER = SEQ( 'MISSISSIPPI') 

The above will result in the number 77 being placed in the 
variable ANSWER. 77 Is the decimal number for the letter M. 

SIN (expression) 

This is another trigonometric function producing the sine of its 
argument. The result is expressed in degrees. 

SPA CE( expression) 

This function creates a string with the number of blank spaces 
specified by the argument. 

SSTRING = SPACE(20) 

SSTRING contains 20 blank spaces. These string are invaluable 
for formatting a special print out 

PRINT SPACE(20): "TAKE ME TO YOUR LEADER" 

This creates 20 blank spaces followed by the text. 

SQRT( expression) 

A mathematical function producing the positive square root of 
the given argument. 

ANSWER = SQRT(2S) 

The number returned to the variable ANSWER will be 5. The 
number supplied to this function must be a positive number or 
zero. 

STR( expression, expression) 

This function generates a string containing the first argument 
times. The integer is the second argument. For example: 

ANSWER = STR("%" ,3) 

ANSWER will contain a string "% % %" 

201 



ANSWER = STR("HELLO" ,10) 

Answer will now contain the string: 

"HELLOHELLOHELLOHELLOHELLOHELLOHELLOHE 
LLOHELLOHELLO". 

TAN(expression) 

TIMEO 

The TAN function produces the tangent of its argument. The 
argument is expressed in degrees. The value of the tangent 
function is undefined for angle SO 90,270,450 degrees and for 
negative angles of the same magnitude. Accordingly, these 
values must not be presented as arguments to the TAN function. 

This function returns the string value containing the internal 
machine time of day in seconds past midnight. 

TIMEDATEO 

This function returns the string value which contains the current 
time and date in external human format. The format is: 

12:34:2205 JAN 1895 

BASIC Statements 
ABORT { error numberparameter ,parameter, ... } } 

Terminates a program designating the logical end returning 
control to TCL. 

CALL name (argument list) 

CASE 

This statement calls a subroutine from the current program. For 
example: 

CALL SUB1 (X, Y, REPLY> 

will CALL subroutine SUBI and execute it in place of the given 
statement, using, X, Y and REPLY to pass values to the 
subroutine. 

This provides the conditional execution of a sequence of BASIC 
statements. For example: 

202 



CHAIN 

CLEAR 

BEGIN CASE 
CASE NUMBER < 100 
PRINT 'NUMBER IS LESS THAN 100' 
CASE NUMBER < 200 
PRINT ' NUMBER IS LESS THAN 200 aUT 
GREATER THAN 100' CASE NUMBER < 300 
PRINT 'NUMBER IS LESS THAN 300 BUT 
GREATER THAN 200' 

END CASE 

If NUMBER = 99 then the first print statement will be actioned 
as the first condition has been satisfied. If NUMBER = 199 then 
the second print statement is actioned, and so on through the 
statement. There may be any number of CASE statements 
enclosed in the mandatory BEGIN CASE and END CASE lines. 

This statement allows a BASIC program to execute any valid 
TCL command, including the ability to pass values to a 
separately compiled BASIC program which IS executed during 
the same terminal session. For example: 

CHAIN "RUN BP ABC" 

will cause the previously compiled program ABC, held in the file 
BP to be executed. CHAIN cannot be used as a variable name. 

This will set all possible variables in a program to the value zero. 

CLEARFILE 

DATA 

Clears the data portion of the specified file. For example: 

OPEN I I, I CUSTOMERS I TO EXAMPLE ELSE STOP 
CLEARFILE EXAMPLE 

When the CLEARFILE statement is executed the file that is 
assigned to the file variable EXAMPLE will have all its data 
deleted. 

Stores data for future input requests when using the CHAIN 
statement. For example: 

DATA X 
DATA Y 
CHAIN "RUN BP ABC" 

Program ABC in file BP will be caused to start executing, when 
an request for data is issued. The stored data Y will be taken 
followed by X., and used in the program. 

203 



DELETE 

DIM 

END 

ENTER 

EQUATE 

Deletes a specified item in a file. For example: 

OPEN I I, I CUSTOMERS I TO EXAMPLE ELSE STOP 
DELETE EXAMPLE, "WHITE LION" 

will delete the item with an identifier of "WHITE LION" which 
is located in the file assigned to the specified file variable in the 
OPEN statement. 

Multiple valued variables are called arrays. Before arrays can be 
used within a BASIC program their dimensions must be declared 
by using a DIM statement. For instance: 

DIMVECTOR (10) 
DIM MATRIX (10 10) 

This gives a one dimensional array called VECTOR with 10 
elements, and a two dimensional array called MATRIX. 

This indicates the end, physically, of a program, and must be the 
last statement in the program 

Transfer of control form one catalogued program to another. All 
variables that are to be passed between programs must be 
declared in a COMMON declaration in all the program segments 
concerned. 

Allows one variable to be the equivalent of another. For 
example: 

DM EXAMPLE (10) 
EQUATE SURNAME TO EXAMPLE(3) 
EQUATE FIRSTNAME TO EXAMPLE(4) 
EQUATE GROSSPAY TO EXAMPLE(8) 

In this case the variables SURNAME, FIRSTNAME and 
GROSSPAY are made equivalent to elements 3, 4 and 8 in the 
array EXAMPLE. The EQUATE statement differs from the 
normal assignment statement, where a variable is assigned a 
value by using an equals sign, in that there is no storage location 

204 



FOOTING 

FOR 

generated for the variable. The advantage that this offers is that 
the value is compiled directly into the object-code item at 
compile time and does not need to be reassigned every time the 
program is executed. 

Specifies a piece of text that is output at the end of every page. 
Also includes the output of page numbers, current time and date, 
and a carriage return. 

This feature of the BASIC language has the following general 
form: 

FOR variable = expression1 TO expression2 
statement 
statement 
statement 
statement 

. 
NEXTvariable 

Which in real life will look something as follows: 

FOR COUNT = 1 TO 10 
PRINT VECTOR (COUNT) 

NEXT COUNT 

This sets the value of the variable COUNT to the value of 1, 
executes the statements down to the NEXT COUNT statement; 
increases the value of COUNT by 1; and executes the loop again; 
and so on, until the value of COUNT exceeds the value of 
expression2 (10). Then, control is passed to the program line 
mmediately after the NEXT COUNT statement. 

FOR ..... NEXT loops may be nested: 

FOR COUNT = 1 TO 10 
FOR A = 1 TO 10 

PRINT MATRIX (COUNT A) 
NEXT A 

NEXT COUNT 

205 



GOSUB 

GOTO 

giving the ability, in the above example, to output the contents of 
a two dimensional array. 

These loops may include branching statements which transfer 
control out of the loop; but loops must not be entered except by 
the initial FOR statement. 

Transfer of control to a subroutine. The general form of the 
statement is: 

GOSUB 25 

which will transfer control to the subroutine starting at line 25 in 
the current program. 

Transfer to another statement in the same program indicated by 
the following statement number, for example: 

GOTO 12 

will transfer control to line 12 of the current program. 

HEADING 

IF 

Specifies a piece of text that is output at the beginning of every 
page. Also includes the output of page numbers, current time 
and date, and a carriage return. 

I F NUMBER> 200 AND NUMBER < 300 THEN 

END 

PRINT' NUMBER IS GREATER THAN 200 AND LESS THAN 
'300' 

GOTO 330 

The above lines constitute IF statement. The IF statement can 
take a variety of forms, the simplest of which is: 

IF condition THEN statement 

206 



INPUT 

LOCATE 

LOOP 

This causes a single statement to be executed if, and only if, the 
logical value of the 'condition' is found to be true. The THEN 
statement can be comprised of a number of parts, finished by the 
END statement as seen in the above example. 

An IF statement may also be provided, after the THEN clause, 
with an ELSE clause which contains a statement or statements to 
be executed if, and only if, the condition is false. ELSE clauses 
may also be single lined, or multi-lined (terminated by an END 
statement). The possible combinations of single-line and multi­
line THEN ELSE statements give rise to a fair number of forms 
of this statement. 

This is used to request input of data from the user's terminal. For 
example: 

INPUT EXAMPLE? 

This will output the prompt character (?) at the user's terminal. 
The data which the user mputs will be assigned to the variable 
EXAMPLE. 

This statement is used to find the location of an attribute, a value 
or a subvalue within a dynamic array. 

LOCATE( '101' ,POST ,2;VAR) ELSE POST = 
INSERT(POST,2,VAR,0,'101') 

In the above example the dynamic array called POST is being 
searched for the string '101' in the second attribute of each item. 
V AR receives answers. If the item is located then it holds the 
location (similar to the postcode) of the attribute, if the attribute 
with that string cannot be located then the location of the item if 
it were there is returned. If the item is not located the ELSE 
clause is executed, and the item is inserted. 

An alternative to the statement FOR, allowing the repetition of 
a number of statements a specified number of times. For 
instance: 

207 



MAT 

COUNT = 1 
LOOP 

PRINT VECTOR (COUNT) 
COUNT = COUNT + 1 

WH I LE COUNT < 10 DO REPEAT 

Assigns a value to each element of an array. 

A = 1 
B=9C=5 
MAT MATRIX = A+B-C 
In the above example each element of the array call MATRIX 
has been assigned the value 5. 

MATREAD 
Reads a database item into an array, and assigns each attribute to 
consecutive vector elements. 

DIM EXAMPLE (6) 
OPEN' , " CUSTOMERS' TO TEMP ELSE STOP 
MATREAD EXAMPLE FROM TEMP, 'WHITE LION' 
ELSE STOP 

The MA TREAD statement reads the file item 'WHITE LION' 
from the data file named CUSTOMERS and assigns the string 
value of each attribute to consecutive elements of the vector 
EXAMPLE, starting with the first element. 

MATREADU 

This provides the facility to lock a group of items prior to 
updating an item in that group. The group remained locked until 
one of its items is updated, or a RELEASE statement unlocks 
the group. The format of the statement is the same as in 
MATREAD. 

MATWRITE 
Transfers the contents of an array to a file item in the database. 
The reverse of the statement MA TREAD. 

DIM EXAMPLE (6) 
OPEN' , " CUSTOMERS' ELSE STOP 
FOR COUNT = 1 TO 6 

EXAMPLE(COUNT)"COUNT*10 
NEXT COUNT 
MATWRITE EXAMPLE ON "RUBBISH" 

208 



MATWRITEU 

NEXT 

NULL 

OPEN 

The same as MA TWRITE but with the addition of record 
locking. 

The last statement needed in a program loop. The function of the 
NEXT statement is to return control to the beginning of the loop 
after a new value of the variable has been computed. For an 
example see the description of FOR. 

A non operation. Used when a BASIC statement is required, but 
no operation or action is needed. For example: 

IF REPLY = "YES" THEN NULL ELSE GOTO 45 

The above will cause the control of the program to go to line 45 
when reply is not equal to YES. When REPLY is equal to YES 
then no action is taken, and the program control will be 
transferred to the next sequential statement. 

Selects a specified file for subsequent input, output, or update. 
Before a MATREAD, MATWRITE, DELETE, or WRITEV 
statement is issued the file concerned must be made available by 
the OPEN statement. There is no limit on the number of files that 
may be opened at any given time. 
DIM VECTOR (10) 
OPEN I I, I CUSTOMERS I, TO VECTOR ELSE STOP 

The above statement opens the data section of the file 
CUSTOMERS and assigns it to variable VECTOR. If the file 
CUSTOMERS does not exist, the program terminates message 
before the program is terminated: 

OPEN I I, I CUSTOMERS I, TO VECTOR ELSE 
PRINT "NO FILE CUSTOMERS" 
STOP 
END 

As can be seen the END statement is used to terminate a multi­
lined ELSE part of the OPEN statement. 

209 



PAGE 

Contacts the current output device, throws a new page and prints 
the text contained in the most recent HEADING and 
FOOTING statements. 

HEADING "ATTENTION: THE CREDIT 
CONTROLLER" 
FOOTING "PROPERTY OF THE GOVERNMENT" 

The above sequence of statements will cause both the specified 
HEADING and FOOTING to be printed out when the PAGE 
command is executed. 

PRECISIONn 

PRINT 

PRINTER 

PROMPT 

Allows the user to select the number of decimal places required 
on all calculations. Only one PRECISION statement is allowed 
per program. The n is a number between 0 and 4. Setting a 
precision of zero implies that all values are treated as integers. 
Changing the precision changes the acceptable form of a 
number; a number is defined as having a maximum of 'n' 
fractional digits, where 'n' is the precision value. 
Therefore, the value 

56.345 

is a legal number if the precision is 3 or 4, but illegal if it is 0,1 or 2. 

The PRINT statement outputs specified data to the peripheral 
currently selected by the PRINTER statement. 

This statement selects either the user's terminal or the line 
printer for any subsequent output. There are three forms of the 
PRINTER statement: 

PRINTER ON - Output directed to the line printer. 
PRINTER OFF - Output directed to the user's terminal. 
PRINTER CLOSE - All data stored in the printer buffer (held by 
the operating system) is immediately printed. 

This selects the character to be used as a prompt at the user's 
terminal when the INPUT statement is used. For example: 

210 



READ 

PROMPT "+" 

will cause a 'plus sign' to be the prompt character. No more than 
one character or digit can be used for the prompt. 

Reads a file item and assigns it to a variable. For instance: 

OPEN' ',' CUSTOMERS' TO TEMP ELSE STOP 
READ EXAMPLE FROM TEMP, 'WHITE LION' ELSE 
STOP 

will open READ item WHITE LION from the file opened and 
assigned to variable TEMP, and assign its value to variable 
EXAMPLE. IF the item WHITE LION does not exist the 
program stops. 

READ NEXT 

READT 

READU 

Reads the next item in a pre- selected list. For example: 

READNEXT EXAMPLE FROM SECTION ELSE 
PRINT "UNABLE TO READ NEXT ITEM" 
GOTO 100 
END 

specifies the list selected and assigned to the select- variable 
SECTION. Assigns the value of that list's next item identifier to 
variable EXAMPLE. If the item identifier list is empty (or if no 
SSELECT verb has been executed), the program will output the 
unable-to- read message and GOTO the statement with label 
100. 

Reads the next item from the magnetic tape unit. 

This statement is functionally the same as the READ statement, 
except that the additional facility of locking the group from which 
the item is being read. A group lock prevents the access of items 
in the locked group by other BASIC programs using the 
READU, READVU, and MATREADU statements, also the 
update by any other program of any item in the locked group. 

211 



READV 

RELEASE 

REPEAT 

Reads a single attribute from an item in a file. For example: 

OPEN "" ,"CUSTOMERS" TO TEMP ELSE STOP 
READV EXAMPLE FROM TEMP, "WHITE LION",1 
ELSESTOP 

will read the first attribute of item WHITE LION (in the file 
opened and assigned to variable TEMP) and assigns the value to 
variable EXAMPLE. If item WHITE LION does not exist, then 
the program stops. 

Unlocks any file groups still locked by the current program. 

Used as part of the LOOP statement. (See LOOP) 

REM 

RETURN 

Indicates a remark. Everything following the word REM is 
ignored by the compiler. For example: 

REM Thi s statement, and aLL 
*others that foLLow it, 
! wi LL be totally ignored by the 
REM compi Ler. 

As can be seen, a remark statement is specified by REM, * or ! 

Returns control to the body of the main program. The RETURN 
statement will transfer control from the subroutine back to the 
statement immediately following the GOSUB statement within 
the basic main program having the specified statement label. 

100 GOSUB 150 
*RETURNS TO HERE 

. 
150 * THE SUBROUTINE 

RETURN 

212 



REWIND 

SELECT 

STOP 

WEOF 

WRITE 

WRITET 

WRITEU 

WRITEV 

Rewinds the currently loaded magnetic tape back to the 
beginning. 

This statement selects a set of item identifiers or attributes which, 
when used in conjunction with the READNEXT statement, is 
then used to access single or multiple file item identifiers or 
attributes from a BASIC program. 

Terminates a program designating the logical end returning 
control to TCL. (Also see ABORT). 

Writes an end of file marker on the currently attached magnetic 
tape. 

Updates a file item on the database. For example: 

WRITE "NEW ENTRY" ON A, "WHITE LION" 

will replace the current content of item WHITE LION (in the file 
already opened and assigned to the variable A) with the text 
NEW ENTRY. 

Writes a record to magnetic tape, using the same format as found 
in WRITE. 

Writes a record to the database with the group the item is in being 
locked. 

Updating of an attribute value within an item. For example: 

WRITEV "01-234-7788" ON A, "WHITE LION",1 

213 



will replace attribute 1 of item WHITE LION (in the file opened 
and assigned to variable A) with the new phone number 01-234-
7788. 

WRITEVU 

Updating of an attribute value within an item, complete with 
locking of the group that the item is in. 

214 



INDEX 

@ .........•...•.......................................... 193 
A ...................................................... 124,185 
ABOR ..................................................... 202 
ABS ....................................................... 193 
ACCESS vocabulary ............................................. 70 
ACCESS ............................................... 33,47,70,85 
ACCOUNT-RESTORE .......................................... 191 
ACCOUNT-SAVE ............................................. 191 
Account ..................................................... 60 
Accounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ . . . . . . . . . 83 
Accounts, multiple user ........................................... 82 
AOOD ..................................................... 173 
AOOX ..................................................... 173 
Algebra ..................................................... 30 
ALPHA .................................................... 193 
APL ....................................................... 134 
Array handling ....... ' ......................................... 140 
AS ........................................................ 124 
Attribute,O-code ............................................... 64 
Attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2941,52,63,64 

B ...................................................... 125,185 
BASIC functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 
BASIC ........................................... 11,47,133,175,193 
Binary ....................................................... 2 
BIT ......................................................... 2 
BWCK-PRINT ............................................... 173 
BO ........................................................ 185 
BOX ...................................................... 151 
BP ........................................................ 150 
BREAK-ON ................................................. 181 
BREAK ................................................. 148,152 
BSYM ..................................................... 139 
Buffers ...................................................... 72 
BY-OSND ................................................... 181 
BY-EXP-OSNO ............................................... 181 
BY-EXP .................................................... 181 
BY ........................................................ 181 

C ...................................................... 125,186 
Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 
CALL ..................................................... 202 
CASE ...................................................... 202 
CATALOG ............................................... 139,175 
CENTER ................................................... 154 
Central processing unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
CHAIN .............................................. 142,154,202 
CHAPTER .................................................. 154 
CHAR ..................................................... 194 
CHARGES ............................................... 173,191 

215 



CHOO-CHOO ................................................ 173 
CLEAR-FILE ................................................ 175 
CLEAR .................................................... 202 
CLEARFILE ................................................. 203 
COL-HDR-SUPP .............................................. 181 
COLI ...................................................... 194 
COL2 ...................................................... 194 
Compiler ................................................... 4, 135 
CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 
Control ....................................................... 8 
Conversions .................................................. 102 
COPY-LIST ................................................. 176 
COPY ..................................................... 175 
Correlatives .................................................. 108 
COS ....................................................... 194 
COUNT .............. ' ................................. 98,176,195 
Cp/M ....................................................... 15 
CPU ........................................................ 11 
CREATE-ACCOUNT ........................................... 191 
CREATE-FILE ............................................ 173,175 

D-code attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 
D ......................................................... 186 
Data Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 
Datafiles ..................................................... 39 
DATAIBASIC .............................................. 47,134 
DATA ..................................................... 203 
Data ........................................................ 26 
Database management system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 
Database, hierarchical ............................................ 27 
Database, relational. ............................................. 28 
Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
DATE ..................................................... 195 
Dates ...................................................... 106 
DBL-SPC ................................................... 182 
DBMS ...................................................... 26 
DCOUNT ................................................... 195 
DE ....................................................... 125 
DEC ....................................................... 17 
DELETE-ACCOUNT ........................................... 191 
DELETE-FILE ....•........................................... 175 
DELETE-LIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 
DELETE ............................................. 141,195,203 
DET-SUPP .................................................. 182 
DICT ...................................................... 182 
Dictionary. master. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 
Dictionary ................................................. 49,182 
DIM ....................................................... 203 
DIVD ...................................................... 173 
DIVX ...................................................... 173 
DUMP ..................................................... 191 

EACH ..................................................... 182 
EBCDIC .................................................... 196 
ECHO ..................................................... 173 
EDIT-LIST .................................................. 176 
EDIT ................................................... 120,175 
Editing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 

216 



Editor. ..................................................... 120 
END ................................................... " .203 
ENTER ............................. , ...................... 203 
EQUATE ................................................... 203 
EVERY .............................. '" ................... 182 
EX ........................................................ 127 
EXP ....................................................... 196 
EXTRACT ............................................... 141,196 

F ................................................ 124,124,127,186 
FD ........................................................ 127 
FI ........................................................ 127 
FIELD ..................................................... 196 
File definition .................................................. 61 
File handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 
File locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 143 
File structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 
FILE-SAVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 
Files ........................................................ 37 
Filing ........................................................ 9 
FILL ...................................................... 156 
FOOTING ............................................ 142,182,204 
FOR ...................................................... 205 
Formatted .................................................... 27 
Frame ....................................................... 63 
FS ........................................................ 127 
Functions, BASIC .............................................. 193 

G ................................................... 122,128,186 
GET-LIST ................................................... 176 
GOTO ..................................................... 206 
GRAND-TOTAL .............................................. 182 
GROUP .................................................... 175 
GUSUB .................................................... 206 

H .............................................. , .......... 187 
HASH-TEST ................................................. 176 
Hashing ..................................................... 31 
HDR-SUPP .................................................. 183 
HEADING ............................................ 142,183,206 
Hierarchical database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 
Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 

I ......................................................... 128 
IBM ........................................................ 15 
ICONV ....... , ............................................. 197 
ID-SUPP .................................................... 183 
IF .................................................. 183,187,206 
IH . ....................................................... 187 
1M ........................................................ 158 
INDENT .................................................... 158 
INDEX .................................................. 161,197 
INPUT .................................................. 161,207 
Input ........................................................ 8 
INSERT ................................................. 141,197 
INT ........................................................ 198 
Integration ................................................... 19 

217 



Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 
Interpreter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ................... 135 
IP ........................................................ 188 
IS ........................................................ 188 
ISTAT ..................................................... 175 
IT ........................................................ 188 
ITEM ...................................................... 175 
Items ....................................................... 62 

JUSTIFY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 

Lcommand ............................................... 122,129 
L ...................................................... 122,129 
Language, query ................................................ 32 
Language .................................................... 67 
Languages, procedural ............................................ 86 
Languages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
LC ........................................................ 164 
LEN ....................................................... 198 
LINK-WS ................................................... 191 
LIST-ITEM .................................................. 176 
LIST-LABEL ................................................ 178 
LIST .................................................... 87,176 
LISTFILES .................................................. 174 
Listing ...................................................... 90 
LISTPEQS .................................................. 174 
LISTPROCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 
LISTUSERS ................................................. 174 
LN ........................................................ 199 
LOCATE ................................................ 141,207 
LOCK-FRAME ............................................... 192 
Locking, file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 
Locking, record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 
LOOP ..................................................... 207 
LPTR ................................................... 165,183 

Masterdictionary ............................................... 61 
MAT ...................................................... 207 
MATCH .................................................... 142 
MA TREAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 
MATREADU ................................................ 208 
Matrix handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 
MA TWRTTE ................................................. 209 
MATWRTTEU ................................................ 209 
ME ....................................................... 130 
MR ....................................................... 102 
MS-DOS ..................................................... 15 
MSG ...................................................... 174 
MUlti-processing ................................................. 6 
MUlti-programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
Multi-user file locks ............................................. 143 
Multiple user accounts ............................................ 82 
Multiple values ................................................. 43 

N ......................................................... 130 
NEXT ..................................................... 209 
NOJUSTTFY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 

218 



Non-referencingverbs ........................................... 173 
NOPAGE ................................................... 183 
NOT ...................................................... 199 
NULL ..................................................... 209 

O ......................................................... 188 
Object code .................................................. 135 
OCONV .................................................... 199 
OFF ....................................................... 174 
ONLY ..................................................... 183 
OPEN .................................................. 141,209 
Operating system ................................................ 1 
Output ....................................................... 8 

P ...................................................... 130,189 
PAGE NUMBER .............................................. 166 
PAGE .................................................. 142,210 
Paging ...................................................... 64 
PAPER LENGTI-I ............................................. 166 
PARAGRAPH ............................................... 166 
Password ...................................................... 6 
PC-DOS ..................................................... 15 
PRECISION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 
PRINT .................................................. 167,210 
PRINTER CLOSE ............................................. 142 
PRINTER OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 
PRINTER ON ................................................ 142 
PRINTER ................................................... 210 
PROC .................................................... 59,71 
Procedural languages ............................................. 86 
Procedures ................................................... 71 
Processing ..................................................... 8 
PROMPT ................................................ 143,210 
PWR ...................................................... 199 

QSELECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 
Query language ................................................. 32 

R ...................................................... 123,131 
Re-entrant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 
READ .................................................. 140,211 
READNEXT .............................................. 167,211 
READT .................................................... 211 
READU .................................................... 211 
READV .................................................... 212 
Record attributes ............................................... 41 
Record locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 
Referencingverbs ............................................ 69,175 
REFORMAT ................................................. 178 
Relational database .............................................. 28 
Relationships (between data) ........................................ 26 
RELEASE ............................................... 144,212 
REM ...................................................... 212 
REPEAT ................................................... 212 
Replace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 
REPLACE ............................................... 141,200 
RETURN ................................................... 212 

219 



REWIND ................................................... 213 
RI ........................................................ 189 
RND ...................................................... 200 
RO ....................................................... 189 
RUN ...................................................... 175 
RUNOFF ................................................ 147.175 

S ......................................................... 189 
SAVE-LIST .................................................. 178 
SECfION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 
Security ...................................................... 9 
SEL-RESTORE ............................................... 192 
SELECf ................................................. 179.213 
SEQ ....................................................... 201 
Sequencing ................................... _ ................ 8 
SETTABS .................................................. 170 
SIN ....................................................... 201 
SKIP ...................................................... 171 
SLEEP ..................................................... 174 
Software ...................................................... 2 
SORT-ITEM ................................................. 179 
SORT-LABEL. ............................................... 180 
SORT .................................................. 87.95.179 
Source file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 
SP-ASSIGN .................................................. 174 
SP-CLOSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 
SP-STATS ................................................... 174 
SP ........................................................ 189 
SPACE ................................. , ................... 201 
SQRT ...................................................... 201 
SS ........................................................ 189 
SSELECf ................................................ 168.180 
STANDARD ................................................. 171 
Standards .................................................... 14 
STAT ...................................................... 180 
STOFF ..................................................... 189 
STON ...................................................... 189 
STOP ...................................................... 213 
Storage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . : . . . . . . . . . . . . . . . . . . . . . 7 
STR ....................................................... 201 
STRIP-SOURCE .............................................. 192 
Structure offi1es ................................................ 37 
Structured programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 
SUM .................................................... 99.180 
Synonym ..................................................... 64 
System level verbs .............................................. 191 
System level ................................................... 82 
Systems programming ............................................. 6 
Systems software ................................................. 2 

Tcommand .................................................. 123 
T-ATT ..................................................... 174 
T-DUMP ................................................ 174,180 
T-EOD ..................................................... 174 
T-LOAD .................................................... Hil 
T-READ .................................................... 174 
T ................................................... 123,131.190 
TAN ...................................................... 202 

220 



TB ........................................................ 132 
TCL ..................................................... 67.173 
TERM ..................................................... 175 
Terminal Control Language ......................................... 67 
Time-sharing ................................................... 6 
TIME ................................................... 175.202 
TIMEDA TE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 
TOP ....................................................... 121 
TOTAL .................................................... 183 
TRANSLATE ................................................ 110 
Tuple ....................................................... 29 

U ......................................................... 132 
UC ....................................................... 172 
UNLOCK-FRAME ............................................. 192 
USING ..................................................... 183 

Verbs, non-referencing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 
Verbs, referencing ............................................ 69. 175 
Verbs, system level ............................................. 191 
VERIFY-SYSTEM ............................................. 192 
Virtual memory .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 
Vocabulary ................................................... 70 

WEOF ..................................................... 213 
WHAT .................................................. 175.192 
WHERE .................................................... 192 
WHO ...................................................... 175 
WITH . .................................................... 183 
WRITE ................................................. 141.213 
WRITET ................................................... 213 
WRTTEU ................................................... 213 
WRTTEV ................................................... 213 
WRTTEVU .................................................. 214 

X ...................................................... 132,190 

221 








