
WORKBOOK~ FROM IDBMA, INC.

ACCESS
by Harvey Eric Rodstein

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•

• • • • • •
• • •
•
• • •
•
•
• • •
•
•
• •
•
•
•
•
•
•
•
•
• •
•
• •

''HowTh''
Workbooks From
IDBMA,Inc.

e Copyright IDBMA, Inc. 1989
All rights reserved
Printed in the United Ststes

ACCESS

PICK and PICK Operating System are registered trademarks of Pick Systems ofIrvine, California.

'Terri Jfafe
1213 'B[uc gum Lane

9V.fwport 'Beacfi, C:'l 92660

Computer layout and design: S. Patrice Makovic
Copy Editor: Maureen McCarthy
Cover design: Cheri DeBusk, Chay Parra

Copyright 1989 by IDBMA, Inc. All rights reserved, including the right of reproduction in whole,
or in part, in any form without the prior written consent of the copyright owner. Published by
International Database Management Association, Inc., 10675 Treena Street, Suite 103, San
Diego, California 92131. International Spectrum is a registered trademark ofIDBMA, Inc. PICK
is a registered trademark of Pick Systems, Inc. of Irvine, California. "How 'Ib" workbooks are
trademarks ofIDBMA, Inc. of San Diego, California.

Printed in the United States of America

ISBN 0-942093-05-4

•
•
•
•
•
• •
• •
•
•
•
•
• •
•
•
•
• •
•
•
•
•
• •
•
•
•
•
•
•
•
• •

•
•
• •
•
•
•
•
•
•
• • •
•
•
•
•
•
•
•
• •
• •
•
•
•
•
•
•
•
•
•
• •

'Ib my wife and my best friend,
all wrapped up in one single
package ... haneczka.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
• •

•
•
•
•
•
•
•
•
•
•
• • •
•
•
•
•
•
•
•
• • •
•
•
• • •
•
•
•
•
•
• •

TABLE OF
CONTENTS

AB01JT ACCESS. 1

L SYSTEM OVERVIEW. .. 3
1.1 THE SYSTEM
1.2 ACCOUNTS
1.3 FILES
1.4 ITEMS

1.4.1 Item-ids
1.4.2 Attributes.

1.5 DATA DEFINITION ITEMS

2. GETTING STARTED. 9
2.1 LOGGING ON
2.2 LOOKING AROUND

2.2.1 Looking at Data Files
2.2.2 Looking at Dictionaries

2.3 SETTING UP WORK FILES
2.3.1 Creating Work Files
2.3.2 Entering Sample Data
2.3.3 Entering Simple Data Definitions

3. THE ACCESS COMMAND SENTENCE. .. 23
3.1 THEVERB
3.2 THE FILENAME
3.3 ITEM-ID LIST
3.4 OUTPUT DATA FIELDS
3.5 THE SEQUENCE CLAUSE
3.6 SELECTION CLAUSE

3.6.1 Selection Clause Structure
3.6.2 Multiple Selection Clauses
3.6.3 Value String Searching
3.6.4 Wildcard Searches
3.6.5 ID Selection Criteria

3.7 OUTPUT MODIFIERS AND OPTIONS
3.8 THROWAWAY CONNECTIVES

4. COLUMNAR REPORTING. .. 45
4.1 THE BASICS
4.2 EXPLICIT OUTPUT FORMATTING
4.3 IMPLICIT OUTPUT FORMATTING
4.4 HANDLING MULTIVALUED OUTPUT FORMATTING

4.4.1 Simple Output
4.4.2 Sorted Output

4.5 CUSTOM HEADINGS AND FOOTINGS

4.6 GENERATING REPORT BREAKS
4.6.1 Simple Breaks
4.6.2 'IDtals and Sub-'IDtals
4.6.3 Grand'IDtals
4.6.4 BREAK Options

4.7 OTHER OUTPUT MODIFIERS
4.8 CHOOSING THE OUTPUT DEVICE

5. MAII.JNG IABEl.tS. .. 73
5.1 LABEL VERBS AND PARAMETERS
5.2 USING OUTPUT MODIFIERS
5.3 USING INDENT

6. ACCESS USTS .
6.1 SELECTING AND USING LISTS
6.2 CATALOGUED LISTS

6.2.1 Saving Lists
6.2.2 Retrieving Lists

6.3 REPORTING CATALOGUED LISTS
6.4 LIST MAINTENANCE

6.4.1 Copying Lists
6.4.2 Deleting Lists
6.4.3 Editing Lists

81

7. FORMATI'ING WITH DATA DEFINITIONS. 99
7.1 INTRODUCTION
7.2 COLUMN HEADERS
7.3 JUSTIFICATION
7.4 LENGTH
7.5 HIDDEN COLUMNS

8. CONVERSIONS AND CORRELATIVES. .. 113
8.1 OVERVIEW
8.2 DATE AND TIME CONVERSIONS

8.2.1 The D Conversion
8.2.2 The MT Conversion

8.3 CHARACTER MASKING
B.3.1 The MC Conversion

8.4 STRING MASKING
8.5 MONEY (DECIMAL) MASKING
8.6 STRING EXTRACT CORRELATIVES

B.6.1 The 'lext Extract (T)
8.6.2 The Group Extract (G)

8.7 FILE TRANSLATE CORRELATIVE
B.7.1 The 7ranslate Syntax
B.7.2 A Hypothetical Case

8.8 MULTIPLE CONVERSIONS AND CORRELATIVES
8.9 CONCATENATION CORRELATIVE
8.10 FUNCTION CORRELATIVE

B.1O.1 The F Correlative Syntax
B.10.2 Arithmetic Scaling
B.10.3 Concatenation
8.10.4 The Simplest F Correlative
B.1O.5 Other Operands and Operators

•
•
•
• •
•
•
•
•
•
• •
•
• •
•
•
•
•
•
• •
•
•
•
• •
•
•
•
•
•
•
• •

•
•
•
•
•
•
•
•
•
•
• • •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

8.11 ALGEBRAIC CORRELATIVE
8.11.1 Introduction to the A Correlative
8.11.2 The Recursive Operand
8.11.3 Other Special Operands

8.12 CALCULATIONS AT BREAK LINES

9. STORED ACCESS COMMAND SENTENCES. 161
9.1 THE PROC ITEM
9.2 STORING AND PROCESSING COMMAND SENTENCES

9.2.1 The Primary Output Buffer
9.2.2 The Secondary Output Buffer

EXERCISE ANSWERS. .. 173

•
•
• •
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

•
•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
• •

ABOUT
ACCESS

ACCESS is a results oriented data retrieval language which is provided as an integral part of a
PICK-based operating system. ACCESS is classified as a non-procedural language, meaning that
you ask for what you want without telling the system the steps of how to get there. With
ACCESS, you simply enter an English-like sentence describing the content, restrictions, and
order that data is to be output. Output can be formatted as columnar reports or mailing labels
and routed to a video display terminal, system printer, or tape backup device. ACCESS can also
be used to build and save index lists to drive other ACCESS or TCL processes.

For the queezy who are new to the computer game, cheer up! Mistakes don't hurt a thing.
ACCESS is for data retrieval, not update. Any slip-ups that you might make will not hurt the
database.

COURSEOBJECTIV'ES

The purpose of this workbook is to help the PICK user master the basic elements of ACCESS. It
is designed as a self-study tool, consisting of step-by-step explanations and examples. Fill-in-the­
blank and multiple choice exercises punctuate the important topics.

Students are encouraged to follow along on their systems with an already existing applications
database, or by entering the examples in this workbook. However, not all the examples are
hands-on. Please note, that those examples in the rounded-corner boxes are intended to be
interactive, and those in the square boxes are for observation only!

1

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

1.1

1.2

1.3

SYSTEM
OVERVIEW

The system, also known as the system dictionary, can be likened to a "records room" full of file
cabinets with each containing information that is logically stored by account.

The file, SYSTEM, contains elements which define all the valid accounts. Before you can do any
work, you must tell the system your account name. This process is called logging on. Logging on
unlocks the file cabinet.

An account is a directory of information and services. It can be likened to a file cabinet with a
virtually unlimited number of drawers. These "drawers" (files) hold information grouped accord­
ing to purpose (Inventory, Payables, Programs). Each department in a business may have its own
account from which to work. For example, the billing department may have an account called
BILLING, while the shipping department may work from the account called SHIPPING. The
single most important account for system operations is called SYSPROG from which all system
utilities, such as tape backup, port and printer configuration, and system verification are invoked.

Each account has a single master dictionary. The master dictionary contains elements that
defme all of the files and commands which are accessible in the account.

A file is the cabinet drawer. However, this drawer will keep pulling out forever, like a Three
Stooges prop. The size of a file is limited only by the amount of disk available. A file is a set of
distinct but related elements of information and is given a name to reflect its use. For example,
orders may be kept in a file called ORDERS, while inventory data may be kept in a file called
INVENTORY.

A file is actually made up of two files or "levels." The "upper" level is the DICTionary level. The
"lower" level is the DATA level.

The DATA level contains the data and/or text.

The DICTionary level is exactly as it sounds, "a place to look up the meaning of words." Each
field or group of fields in the data area can be described by a word in the dictionary. These
"words" are called data definition items. These items are used by ACCESS for retrieving and for­
matting data.

3

1.4

1.4.1

4

Items are the file "folders." Each distinct element in a file is called an item.

Items contain multiple pieces of information. For example, each item in a file named CUS­
TOMERS represents a single customer. All of the information needed to process this customer is
contained within the item. This may include name, address, city, state and zip. Each piece of
information is a "field." In the PICK environment, fields are also called "attributes."

Many types of information can be stored in an item. Items can consist of fields of data (name,
address, city, etc.), lines of descriptive text, program code statements (BASIC, PROC, or ASSEM­
BLER) or data retrieval information (DICTionary Data Descriptors).

All data within an item is stored as ASCII characters. (ASCII stands for American Standard
Code for Information Interchange.) Please note that in most implementations, a maximum of
32,000 characters is allowed per item.

Item-Ids
An item is assigned a free-form name. This name (IDentifier) is not unlike a reference tab on a
file folder. Item-ids are used to uniquely identify items within a file and cannot be duplicated.
The process used to address an item in a file is called "hashing." Hashing converts the item-id
directly into location in the file. The item-id is actually used to map the physical disk address.

Be that as it may, all that you have to remember is the name of the item (item-id).

Attribute: H.E. Rodstein
Attribute: 24332 ToponBII Court

Attribute: Laguna Niguel, CA 92656

•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

•
•
• •
•
•
• •
• • •
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
• •
•
•
•
• •

1.4.2 Attributes
The fields of information which make up an item are called attributes.

Attributes vary in length.

A sample item in logical format:

There are five attributes in item 100 above.

5

·1\.TAmi't·····
.1."Vl.~

6

---.,----------

The EDIT and COPY verbs present an item in logical format. Each attribute is displayed on a
separate, labeled line. The actual physical layout of an item is somewhat different.

Attributes are marked internally by a special reserved character. This character is called an
attribute mark. (For those who care, an attribute mark is ASCII character 2M.) ACCESS allows
a name to be associated with each attribute.

Attributes can be further divided into fields called "values." An attribute containing many values
is said to be a "multivalued" attribute. Values can be further divided into "sub-values."

Values are marked with value marks and sub-values with sub-value marks. Value and sub-value
marks display on an EDIT line as a right bracket G) and a back-slash (\), respectively. (A value
mark is ASCII character 253 and a sub-value mark is ASCII character 252.)

The application programs already on your system take care of building these fields and keeping
track of the attributes, values and sub-values. If, however, it is necessary to repair this data
using the system editor, the delimiters must be generated from the terminal keyboard.

-Attribute marks are generated by a <ctl><shift><">
• Value marks are generated by a <ctl><shift><]>
-Sub-value marks are generated by a <ctl><shift><\>

Do not confuse the display of these special characters with the normal brackets and back-slashes.
In fact, some terminals display these characters as totally different characters. For instance, the
WYSE family of terminals display an attribute mark as a tilde (-), a value mark as a brace 0),
and a sub-value mark as a broken line (/).

•
•
•
•
• •
•
• •
•
• •
•
•
• •
•
• •
• •
• • •
•
•
• •
•
• •
•
• • •

•
•
•
• •
•
•
• • •
• • •
• •
•
•
•
•
•
• • •
•
• •
•
• • •
• •
• • •

1.5

A data definition item resides in the file dictionary and is assigned an item-id which is used as a
descriptive word in ACCESS. The contents of the item are parameters which control the
attribute position of the data field, output masking, justification, and length, and any calcula­
tions.

Definitions are used for data retrieval and do not affect data update.

The description of NAME is an item in the file dictionary which looks like this:

The other descriptive items are as follows:

7

EXERCISE
<1···

8

1. Files are grouped by

2. contains the definitions of every
account.

3. Files and commands are defined in each account's

4. Files are made up of --------------------
5. Items are made up of lines of information called

6. Items are retrieved by a unique key called the

7. The level holds the file's data.

8. The level contains the data defini-
tion items.

9. Attributes are delimited by special characters called

10. How many attributes can an item hold?

11. The maximum number of characters per item is

12. Name two of the parameter functions that are stored in a
data definition item.

13. True or False. Data definitions change what is actually
stored on the file.

14. True or False. Data definition item-ids are words which
describe data held in an attribute of an item.

•
• •
• •
•
• •
•
•
• • •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
• •

• • •
•
•
•
•
•
•
•
• • •
• •
•
•
• • •

2.1

·NQ~E
•
•
•
•
• •
•
•
•
• •
• • •

GETTING
STARTED

Using an account name to LOGON to the system, gives you access to the group of files defined
within that account.

You are now at TCL (Terminal Control Language).

The greater-than symbol (» is the TCL prompt. It tells you that the system is ready for a com­
mand sentence to be entered.

An account must exist before you can logon to the system. You may use an existing account or
have one created for you. An account is created using the CREATE-ACCOUNT verb from the
SYSPROG account. In the interest of getting to the point, the CREATE-ACCOUNT procedure is
not covered in this workbook. Please consult your manuals for further details.

The first word of a command sentence is called a verb, since it invokes action. (The word
"invoke" is used to mean "initiate.")

Some verbs may "stand alone." These are called simple TCL, or TCL-! verbs, since they invoke
action which does not involve retrieving data from a file. Such verbs include: TIME, display the
current time and date; WHO, display your port number and account name; or WHERE, list the
ports logged onto the system.

Simple TCL sentence:

>verb<r>

9

10

TCL-II verbs must be specified along with a target filename and a list of item-ids. These include:
EDIT, for altering data in any file; COPY, for moving items within and between files; and RUN,
for starting up a PICKIBASIC program.

TCL-II command sentence:

>verb filename item-id<r>

Finally, there are the ACCESS verbs. In their simplest form, only the verb and filename need to
be specified. ACCESS verbs include LIST, SORT, LIST-LABEL, SORT-LABEL, SELECT and
SSELECT.

Simple ACCESS command sentence:

>verb filename<r>

When entering a command sentence longer than a few words, it helps to know the special keys
which allow the TCL sentence to be "edited."

Special Keys:

<return>
<backspace>

<tab>
<shift>

~ p ... Ftc! Lo", F.aId

D1DID[]
DIJI[DI]

10 . '"-~

Indicates the end of a line.
Back up input by one character. You can't <backspace> beyond
the beginning of a line.

Advances input to the next tab stop.
Is the Shift key. Used to change the case of letters or the value of

number and punctuation.

•
• •
• •
•
•
•
• • • • •
• •
•
•
•
•
•
•
• •
•
•
•
• •
•
• •
•
•
• •

•
• •
• •
•
• •
•
• • •
•
• • eliTE
•
•
•
• • •
•
•
• •
• •
• •
•
•
• • •

2.2

Control Keys:
(Control keys are generated by depressing the <ctl> key simultaneously with any other key.)

<ctl>

<ctl>H
<ctl>I
<ctl>X
<ctbW

Be careful with these:

<ctbS

<ctl>Q

Is the control key, used in conjunction with other keys to alter
their function.

Same as <backspace>.
Same as <tab>.
Restarts input at the beginning ofthe current line.
Backs up input to the previous word.

Is called X-OFF. It tells the system, "Don't send me anything
until you hear from me again with an X-ON."

Is X-ON. It tells the system to start sending again!

If the <ctl>S is typed accidentally, the system appears to hang (stop processing). There is no
response. Simply type a <ctl>Q (X-ON) before calling the DP department.

Using "The Editor", typing any of the remaining control characters imbeds them within the text.
There are no equivalent display characters for them. Therefore, EDIT displays a period (.) to
mark the location of a <ctl> character. This can lead to problems since this "lint" is indistin­
guishable from an actual period.

There are a few other keys which generate characters different from the actual display. The fol­
lowing is a list of the characters which are displayed on most terminals. However, they are not
standard. If your display differs, note the characters for future reference.

• •••• i •• • ••• OyS<.· •••. ·······/
<escape>
<ctl><shifb6
<ctl><shifb]

<ctl><shift> \

DESCRIPTION> ... ,." "." ,,"" "'" " .. "

Displays as a left-bracket (D.
Generates an attribute mark. Displays as an up-arrow (").
The control, shifted right-bracket generates the multivalue
delimiter, a value mark. This displays as a right-bracket 0).

The control, shifted back-slash (\) generates the sub-value
delimiter, a sub-value mark. Displays as a back-slash (\).

E()()KING.AROl1ND(·····························

Time to get your feet wet. The commands described in this section should help you navigate
within an account.

11

2.2.1

12

Looking at Data Files
Once logged on to an account, it is necessary to get a listing of the files that are available. The
verb to do this is LISTFILES.

AtTCLtype:

>LISTFlLES<r>

The listing may look like this:

Column header MD stands for Master Dictionary. All files are defined within an account Master
Dictionary.

The column heading CODE tells you whether the file is defined locally on your account or is being
used locally but defined on another account. The D represents a locally defined file. The Q repre­
sents a file defined on another account. The remaining columns provide information about the
location and size of each file. Please refer to your system manuals for details.

It is now necessary to get a listing of what item-ids are already in the data-level of the file of your
choice. The commands to do this are LIST and SORT.

>LIST filename<r>

or

>SORT filename<r>

•
•
•
•
• •
•
•
•
• • • •
• •
•
•
•
•
•
• •
•
•
•
• • •
•
• •
•
• • •

•
• • • •
•
• •
•
•
•
• •
•
• •
•
• •
•
• •
•
•
•
•
•
•
•
•
•
•
•
• •

LIST generates a listing of the item-ids in random order.

SORT generates a listing ofthe item-ids in alphabetical or numerical sequence.

The results of any of the above commands can be sent to the printer via the system spooler by
using the option "P." Options must always be surrounded by parentheses.

>LISTFILES (P)<r>
>LIST filename (P)<r>
>SORT filename (P)<r>

13

2.2.2

14

•
•

Looking at Dictionaries •
'lb be able to ask advanced questions about the data currently in a file, it is necessary to interro- •
gate the DICTionary of the file to see what data descriptive words are available. A simple list of
the data definition item-ids can be generated by the command sentences: •

>LIST ONLY DICT filename<r>

>SORT ONLY DICT filename<r>

For the sample file CUSTOMERS, the command sentence and output might look like this:

A formatted report of the data definitions can be generated by using the "canned" system verb
LISTDICT in the following format:

>LISTDICT filename<r>

or

>LISTDICT filename (P)<r>

Here is how LISTDICT looks when sent to the system printer.
CAUTION: The report may require a 132 output width defined for the printer.

>LISTDICT CUSTOMERS (P)<r>

•
•
•
•
• • • •
•
•
•
•
•
•
•
• • •
•
•
•
• •
• •
•
•
• • •

•
• •
•
•
•
•
•
•
•
•
• •
• •
•
•
• •
•
•
•
•
•
•
•
•
• • • •
•
•
• •

2.3

2.8.1

Printed output:

Each line in the report represents a data definition item in the file dictionary. Each important
attribute in a definition item is assigned a column in the LISTDICT report.

.·< ••••••••• conttMN,.:.,,:::.,P!SCBlP'rlOl'l? •••• ·.::: ,::.i.· ... ·.·'·····
CODE Attribute (A) types.

,. AlAMC The attribute position pointer.
TP The justification -- L for left, R for right.
MAX The output length.

If you wish to follow along with the examples in the workbook, it is necessary to set up the follow­
ing work files. This set up is not required. You may use the files already available on your sys­
tem.

Creating Work Files
The files needed are named CUSTOMERS, STATES, INVOICES and REPORTS.

Files are created on the current account by invoking the verb:

CREATE·FILE

15

2.3.2

16

The specifics on creating a new file are covered within the system manuals. For now, simply
enter the following command sentences at TCL:

>CREATE-FILE CUSTOMERS 7,1 11,1<r>

>CREATE-FILE STATES 7,1 11,1<r>

Entering Sample Data
The following sample items on page 9, plus any that you can think of, are used in the examples
throughout the workbook. EDIT examples are given, but the mechanics are not explained. If you
are not already familiar with EDIT, try the first workbook of the HOW TO series, "The Editor."

Enter the following sample item. (Remember: a rounded corner screen indicates a hands-on
exercise and <r> indicates a carriage return.)

... ··OlO+<r>
·';rop

.FI<r>

Please note that the right bracket (]) on attribute 007, PHONE numbers, is a value mark generat­
ed by a <shift><ctl><]>. In this case, Multivalues are used to store multiple phone numbers in
the same attribute.

Notice that the PHONE is numeric only; the BALANCE contains no decimal points and the
DATE.DUE follows no obviously logical structure for a date. These are internally formatted data
fields. This is the storage format used by many applications. Don't worry about this just yet.
The subject is covered in Chapter 8, "Conversions and Correlatives."

•
• •
•
•
•
•
•
•
•
• • •
•
•
•
•
•
•
• • •
•
•
•
•
•
•
• •
•
•
•
• •

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• • •
•
•
•
•
•
•
• •
•
•
• • •

Repeat the previous process for the following sample items:

106
001 PHINK, PHINK AND PHINK
002 PHINK, CLYDE
003 1600 PENNSYLVANIA AVE
004 SANTA ANA
005 CA
006 90234
007 2135551112
008 12675
009 8888

100
001 SHIPS R US
002 HORNBLOWER, HORATIO
003 1110-1 W 57TH ST
004 NEW YORK
005 NY
006 10019
007 2125557676]2125556666
008 56780
009 7888

103
001 AEROBIC DEN
002 PORCELANA, PORCHE
003 139 HOLLYWOOD BLVD
004 HOLLYWOOD
005 CA
006 91329
007 2135557777
008 8912
009 7999

105
001 DIABOLICAL SOFTWARE
002 GROG, BILL SPIDER
003 01100 BINARY WAY
004 BYTE LAND
005 CA
006 90001
007 4085554444
008 456
009 -1000

107
001 MONA LISA LTD
002 DAVINCI, LEONARDO
003 15 CENTURY DR
004 VENICE BEACH
005 CA
006 97771
007 2135554444]2135554321
008 78932
009 8543

102
001 THE GUN STORE
002 FUDD, ELMER
003 30 WABBIT WAY
004 WEDONDO BEACH
005 CA
006 91234
007 2135559999
008 1234
009 -500

104
001 SPEAK EASY
002 PARTICIPLE, DANGLY
003 3 DAT DARE ST
004 GRAMMAR CITY
005 PA
006 12345
007 2155554433]2155556321]2155554444
008 2342
009 8555

17

2.3.3

18

Entering Simple Data Definitions
'lb begin, enter the following items into the DICTionary of the CUSTOMERS file. To be able to
duplicate the samples in the workbook, these definition items must be entered. You may choose
to skip this step and use your own existing database instead.

Follow this sample EDIT session.

Invoke EDIt for the deta deftnlUon Item
CUSTNUM In the CUSTOMERS

lie DlCTIonery.

Alp the buIfIIr, juat In

Repeat the above procedure for the remaining data definition items on page 19.

•
• • •
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
•
• •

•
• .. ,',

• SAMELE COMPANY CONTACT
001 A 001 A

• ITEMS.· 002 1 002 2
003 003

• 004 004
005 005

• 006 006
007 007

• 008 008
009 L 009 L • 010 20 010 20

•
• ADDRESS CITY

001 A 001 A

• 002 3 002 4
003 003

• 004 004
005 005

• 006 006
007 007

• 008 008
009 L 009 L

• 010 25 010 15

•
• STATE ZIP

• 001 A 001 A
002 5 002 6

• 003 003
004 004

• 005 005
006 006

• 007 007
008 008

• 009 L 009 L
010 2 010 10

•
• PHONE BALANCE • 001 A 001 A

• 002 7 002 8
003 003 Balance Due

• 004 004
005 005

• 006 006
007 007 MR2

• 008 008
009 R 009 R

• 010 12 010 12

•
•
• 19 • •

20

001
002
003
004
005
006
007
008
009
010

DATE.DUE
A

9

D

R
12

Both BALANCE and DATE.DUE have additional information in attribute 007. This is called an
output conversion. It is placed there to translate what is called "internal data" to something that
a human being can read. This is discussed further in Chapter 8, "Conversions and Correlatives."
It's still too early in the game to talk about the care and feeding of definition items.

•
• •
• • •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• • •

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
•
• •

1.

2.

3.

4.

5.

6.

7.

8.

9.

A user gains access to a group of files on an account by

TCL stands for -----------------------------------

Words which invoke action are called --------------------

produces a listing of all the files -----------------------
within an account.

_______________________ produces a random listing of item-
ids in a file.

----------------------- produces a sorted listing of item-
ids within a file.

Enter two command sentences to list the dictionary of the
CUSTOMERS file.

> ---

> ---
What does the n>n represent? ------------------------------

In the LISTDICT output, the column header A/AMC means

21

- ---------

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
• • •

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

3.1

THE ACCESS
COMMAND SENTENCE

This chapter could also be entitled, "The Grammar of ACCESS," since it deals with the structural
elements which make up an ACCESS sentence.

The complete form of an ACCESS sentence:

>¥arb filename (it .. -id liat}{aequence clauae}{aelection claua.}{output-liat}{modifiera}{(optiona)}

The basic components of an ACCESS statement are the verb and filename. As indicated by
braces (0), the remaining elements are optional.

A verb is a word of action. The choice of verb controls the type of action; columnar reports, mail­
ing labels, and index lists. Verbs travel in pairs. One generates an ordered output and the other
generates a random output.

Mailing
Labels

ACCESS
Lists

Misc.

Random columnar listing.
Ordered columnar listing.

LIST-LABEL Random labels.
SORT-LABEL Ordered labels.

SELECT
SSELECT

COUNT

Random list selection.
Sort and select. Ordered list selection.

The exception to the rule. Counts the number of
items which pass a certain selection criteria. No
output except for the final count.

These are the verbs used most often and concentrated on in this workbook. Please consult your
manuals for a list of all of the verbs in ACCESS.

23

3.2

24

•
•
•

In a sentence, a verb needs an object. Since ACCESS is used to process items in files, the object •
must be a filename. An ACCESS verb must always be followed by a filename.

The filename specification is:

CUSTOMERS
DATA CUSTOMERS

DICT CUSTOMERS

The data level of CUSTOMERS.
Also, the data level of CUSTOMERS. The DATA
modifier is not required.

The dictionary level of the CUSTOMERS file.

Try the examples presented in "Looking Around." (See Sec. 2.2.)

>LIST CUSTOMERS
or

>SORT CUSTOMERS

Possible TeL Errors:

!fyou should use another word which you think is a verb and it is not, the following error mes­
sage is displayed:

[3] VERB?

Ifthe filename you are interrogating does not exist, the following error message is displayed:

[10] FILENAME IS MISSING

In either case, check the spelling ofthe offending entry in the ACCESS statement. Notice that a
number in brackets often appears before the actual message. This is the item-id of the error mes­
sage in the ERRMSG file.

The simple form of the sentence has been demonstrated in Chapter 2, "Getting Started."
However, in review, here is the sample output of a simple ACCESS sentence.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

•
•
•
•
•
•
•
•
•
•
• ..
•
•
•
• •
•
• •
•
•
•
•
•
•
•
•
•
• •
•
•
• •

3.3

Here is a sample of a sentence using the COUNT verb.

Normally, ACCESS samples every item in a file. That's why large files take so long to generate
output.

An ACCESS process can be restricted to a number of specific items if the item-ids are explicitly
expressed in the sentence. The only requirement is that each item-id must be surrounded by a
single quote (').

General form:

>verb filename 'item-id' 'item-id'

Possible Errors:

If you enter an item-id that is not on file, the following appears:

25

3.4

The data to be output is listed by name within the ACCESS sentence.

>verb filename name1 name2 name3 ...

This is a random report showing the company name, city, and state.

Sentence elements can be combined. Here, the item-list is combined with the output-list.

>LIST CUSTOMERS '101"105' COMPANY CITY STATE<r>

SENTENCE ELEMENT> . DESCRIPTION'•.....
LIST verb
CUSTOMERS filename
'101"105' item-list
COMPANY CITY STATE output-list

26

•
•
• •
•
•
•
• •
• • • •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
• •

•
•
•
•
• •
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•

3.5

•
-N'O'l'E
• -•
•
• •

Possible Errors:

If you enter a data definition item-id in the ACCESS statement, but the word is misspelled or
does not exist, the following error message displays:

[24] THE WORD 'word' CANNOT BE IDENTIFIED

As within English grammar, ACCESS sentences may have modifying clauses. The sequence
clause indicates the order in which data is to be output.

SORT class verbs order output by item-id unless a sequence clause is used. There is no effect
when a sequence clause is used with a LIST class verb.

A sequence clause begins with a derivative of the word BY.

.i •• ·S(>ltTCQNNECTt\t.E···
BY
BY-DSND
BY-EXP

BY-EXP-DSND

Try the next sentence.

··iDESCRm'1'1:()Nn.·.·.·····.·········· .
Orders output in ascending sequence.
Orders output in descending sequence.
Explodes multivalues and orders in ascending sequence.

(This is covered later.)
Explodes multivalue attributes and orders the output in

ascending sequence.

>SORT CUSTOMERS BY STATE COMPANY STATE CITY<r>

··SENrENCEELElVlENT
SORT
CUSTOMERS
BY STATE

COMPANY STATE CITY

DESCIUPTION>
verb
filename
sequence clause (The sequence clause which

orders the output in state sequence.)
output-list

The sequence clause specifies order only. It does not indicate output. Therefore, the columns COM­
PANY, STATE, and CITY must be explicitly requested.

27

28

Notice that the output is in STATE order, but random within each state.

Sorts can be sequenced. For example, the city can be sorted within the state.

>SORT CUSTOMERS BY STATE BY CITY COMPANY STATE CITY <r>

SENTENCEELEQNT •....
SORT
CUSTOMERS
BY STATE BY CITY

COMPANY STATE CITY

verb
filename
sequence clause (A two level sequence clause
which orders the output in city sequence
within state sequence.)

output-list

•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• • •

•
•
•
•
•
•
• •
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

3.6

3.6.1

Sorts can be tiered to as many levels as are required.

Try the previous examples using the BY·DSND clause modifier instead of BY. Notice how the out­
put is ordered in descending order.

A selection clause restricts the output generated by ACCESS to only those items which pass the
specified criteria.

Selection Clause Structure
The derivative of the word WITH, or some variation thereof, is used to begin a selection clause.

.··SEl$C'l' •• CPNmCTIVE
WITH criteria

IF criteria
WITHOUT criteria

WITH NO criteria

DESCRIPTION> .
Specifies the inclusion of all items which pass the

criteria.
Same as WITH. IF is a synonym.
Specifies inclusion if the items do not pass the

criteria.
Same as WITHOUT.

The selection criteria can be a data definition name:

WITH BALANCE

to check for the existence of a BALANCE code. All items which have data in the BALANCE field
are included. Items with a null BALANCE field are excluded.

You should have previously entered the DICT definition item name BALANCE. However, there is
no data in the BALANCE attribute, (attribute 7), of any ofthe items.

>LIST CUSTOMERS WITH BALANCE COMPANY BALANCE<r>

••·• ••••• UU •••• SENrENCE··El$MENJj· ii •••• il>ESCRJPTION
LIST verb
CUSTOMERS filename
WITH BALANCE selection clause
COMPANY BALANCE output·list

The result of which would be:

[401] NO ITEMS PRESENT

29

NOTE

30

The selection criteria can also be a comparison ofthe contents of the attribute to a specified value.
Review the following format:

WITH [datadefJ [operator} f'value"

The "datadef' is the data definition NAME, COMPANY, ADDRESS, etc.

The "operator" is a valid relational operator.

OPERATOR
=orEQ
orNE
> orGT
<orLT
>= orGE
<= orLE

DESCRIPTION
Equal to
Not equal to
Greater than
Less than
Greater than or equal to
Less than or equal to

The "value" is any literal data string surrounded by double quotes (").

The value string following the operator may be any series of letters and/or numbers that
describes the criteria of the data you are selecting.

The following rule must be followed when selecting your values:

Alphabetic values may be stored in upper or lowercase. Be sure the data matches case.

•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•

The following example generates a report of customers in the state of California, and shows the •
company name and state in the output.

>LIST CUSTOMERS WITH STATE = "CA" COMPANY STATE<r>

SENTENCE ELEMENT
LIST
CUSTOMERS
WITH STATE = "CA"

COMPANY STATE

or the alternative form:

DESCRIPTION·.·· .
verb
filename
selection clause (The selection clause which
includes only items with a CA in the STATE
attribute.

output-list

>LIST CUSTOMERS WITH STATE "CA" COMPANY STATE<r>

•
•
•
•
•
•
•
•
•
•
•
• •

•
•
•
•
•
•
• •
•
•
•
• •
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
• •

Notice that the equal sign (=) is the only optional operator. Equal is implied if not specified.

The next example generates a report of customers in states other than California.

>SORT CUSTOMER BY STATE WITH STATE # "CA" COMPANY STATE<r>

SENTENCEELEMENl'
SORT
CUSTOMER
BY STATE

WITH STATE # "CA"

COMPANY STATE

or in the alternative format:

verb
filename
sequence clause (The sequence clause which orders
output by ascending state.)

selection clause (The selection clause which
excludes items that have CA in the STATE attribute.)

output-list

>SORT CUSTOMER BY STATE WITHOUT STATE "CA" COMPANY STATE<r>

SENTENCE ELEMENT
SORT
CUSTOMER
BY STATE
WITHOUT STATE "CA"
COMPANY STATE

verb
filename
sequence clause
selection clause
output-list

31

3.6.2

32

Multiple Selection Clauses
Multiple selection clauses can be specified by separating them with words called Logical
Connectives (AND and OR).

>verb filename WITH criteria AND WITH criteria
or

>verb filename WITH criteria OR WITH criteria

·tOG!CAI...CONNECTM··· DESCR.:r:Pt.tIONH •••••••••• ·.······/························· ...
AND Both criteria have to be true.
OR Either or both criteria have to be true.

Here, the output is restricted to only those customers not in California and not in Pennsylvania.
Notice that the word IF is being used in place of WITH. These words are synonyms, so it makes
no difference. It's a grammatical choice.

>LIST CUSTOMERS IF STATE # "CAli AND IF STATE # "PAil COMPANY STATE<r>

S:EN'l':ENCEELEMEN'f.
LIST

·············> •••• l)ESCR.IPTION ••••• ·· •• •••••••·•·••·•·•· ...

CUSTOMERS
IF STATE # "CA" AND IF STATE # "PA"
COMPANY STATE

. ,"."." ,"', -,."

verb
filename
selection clause
output-list

Here, the output includes California and Pennsylvania, but excludes everything else:

>LIST CUSTOMERS WITH STATE = "CA" OR. WITH STATE = "PA" COMPANY STATE<r>

.••. S:ENT:ENCE·EL:EMEN'f •••.. ·.·.·.•····••·····
LIST
CUSTOMERS
WITH STATE = "CA" OR WITH STATE = "PA"
COMPANY STATE

»ESCR.IPTIQN
verb
filename
selection clause
output-list

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

•
•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

3.6.3

Using logical connectives requires the full WITH clause to be repeated. You can't say:

>LIST CUSTOMERS IF STATE # "CA" AND # "PA"<r>

You MUST say:

>LIST CUSTOMERS IF STATE # "CA" AND IF STATE # "PA"<r>

OR connectives can be implied if the value is being compared to the same field. The OR example
can more easily be written:

>LIST CUSTOMERS WITH STATE = "CA" "PA" COMPANY STATE<r>

This lists the CUSTOMERS file as before, with the state as either California or Pennsylvania.

Value String Searching
When the EQ (equal to) is used, the system is looking for a character-for-character match. This
sometimes presents a problem when only part of the field is being searched. You must use "string
searching" when you want to find a particular string of characters in a Data Descriptor. Brackets
(m must be used to indicate a string search.

For example, you are searching for a CONTACT in the CUSTOMERS file with the name "JOHN­
SON, BILL."

33

34

Here are several ways of searching for these people:

"[BILL"

"JOHNSON]"

"[JOHNSON]"

These characters must be exactly matched. The system would not
pull, for example, "JOHNSON, BILL R." or "JOHNSON, BILL
JR." or even "JOHNSON, BILL."

Using the left bracket before "BILL" tells the system that "BILL"
may be preceded by any characters, as long as the string ends
with the characters "BILL." Therefore, you would get "JOHN­
SON, BILL" or "SMITH, BILL" or "BUFFALO, BILL."

Using the right bracket after "JOHNSON" indicates that "JOHN­
SON" may be followed by any characters as long as it begins
with "JOHNSON." Therefore, you get "JOHNSON, CARL" or
"JOHNSON, BILL" or "JOHNSON, EDNA."

Using both brackets tells the system that "JOHNSON" may be
preceded or followed by any set of characters. Therefore, you get
"JOHNSON, BILL" or "JOHNSON, BECKY" or "DAVIS, JOHN­
SON."

The following example outputs a report of all customers with an A in their company name.

>LIST CUSTOMERS WITH COMPANY = "[A]" COMPANY<r>

• SE~ENCEELEMENT ••••••••• ·•·.··•·
LIST
CUSTOMERS
WITH COMPANY = ''[A]''
COMPANY

·· .. I>1i:SCR:r:pTIQN< ...
verb
filename
selection clause
output-list

•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• 8.6.4

•
•
•
•
•
•
•
•
•
•
• •

The following example generates a report of CUSTOMERS whose zip begins with a 9, in order of
CONTACT name. Since California's zip codes begin with a 9, the report includes all customers in
California.

>SOR'l' CUS'l'OMERS BY CON'l'AC'l' WI'l'H ZIP = "9]" CON'l'AC'l' COMPANY ZIP<r>

·SENTENCF;ELF;Mtl'IT.
SORT
CUSTOMERS
BY CONTACT
WITH ZIP = "9]"
CONTACT COMPANY ZIP

Wildcard Searches

·········«DEsCttIPTION ••••••• • •••••
verb
filename
sequence clause
selection clause
output-list

Wildcard searches allow the specification of a "don't care" character or series of characters in the
value string. The wildcard character is represented by a caret (1\).

>LIS'l' CUS'l'OMERS WI'l'H CON'l'AC'l' = "[GA " CON'l'AC'l' CI'l'Y<r>

SENTENCE ELEMENT
LIST
CUSTOMERS
WITH CONTACT = "[GAil

CONTACT CITY

··DESCRiPT10N<
verb
filename
selection clause (Include contacts which end
in the two letter combination of a G followed
by any character.)

output-list

35

3.6.5

36

Bugs is the only one who passes the criteria.

ID Selection Criteria
Selection criteria can also depend on the item-id. This can be indicated in one of two ways,
implied and specific.

The implied item-id selection criteria follows the filename. It consists of an operator and value.
The reference to the item-id is implied.

>verb filename operator 'value'

The following example outputs as a list of CONTACTS in the CUSTOMERS file whose customer­
id begins with a 1.

>SORT CUSTOMERS = '1] 1 CONTACT<r>

SENTENCEELEMENT
SORT
CUSTOMERS
= '1],
CONTACT

DESCRlPTIQN
verb
filename
id selection
output-list

The value must be surrounded by single quotes n.
Generate a listing of customer COMPANY and CITY if the customer-id has a 5 anywhere in it.

>LIST CUSTOMERS = 1 [5] 1 COMPANY CITY<r>

SENTENCE ELEMENT
LIST
CUSTOMERS
= '[5]'
COMPANY CITY

DESCRIPTIQN
verb
filename
id selection
output-list

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
• • •
• •
•
• •
• •
• •
•
•
• •
• • •
•
•
•
•
•
•
•
•
•
•
• • •
• •

3.7

Item-id selection can also be explicit. Remember the data definition that you entered entitled
CUSTNUM. CUSTNUM points to attribute O. Attribute 0 is the item-id.

The same two sentences in explicit format are:

>SORT CUSTOMERS WITH CUSTNUM = "[1]" CONTACT<r>

···SENrENCEELEMENT
SORT
CUSTOMERS
WITH CUSTNUM = n[1]"
CONTACT

DESCRIPTION
verb
filename
selection clause
output-list

>LIST CUSTOMERS WITH CUSTNUM = "[5]" COMPANY CITY<r>

SEIS'rENCE ELEMENT
SORT
CUSTOMERS
WITH CUSTNUM = "[5]"
COMPANY CITY

DESCRIPTION
verb
filename
selection clause
output-list

An explicit selection clause requires that the double quotes (") surround the test value.

OUTPUT MODIFmRSANDOPTIONS

The ACCESS sentence may end in a series of modifiers used to change the default output charac­
teristics. Output modifiers can be specified as words or as command sentence options.

The detailed use of each is demonstrated in the chapters, "Columnar Reporting," and "Mailing
Labels."

37

38

The list of output modifiers and their related options is as follows:

·« ••. · •• PtJTPlrr:M:OI>:lFIEn,·.·.··.i>ltSCR)1iTtON.·.·//>··········· .•.•.•..................
ID-SUPP Suppresses the automatic display ofthe item-id column.

Also indicated with the (I) option.
DET-SUPP Used in an ACCESS statement in which a SORT sequence

is combined with a BREAK-ON modifier. (See Chapter 4,
"Columnar Reporting.") Its function is to suppress the
display of all the detail lines contributing to a break line,
and, instead, to display the data value that caused the
break to occur. Also indicated by the (D) option.

HDR-SUPP Suppresses the default page heading that contains the
time, date, and page number. Also indicated by the (H) option.

COL-HDR-SUPP Suppresses both the default page heading which nonnally
includes time, date and page number, as well as the date
column headings. Also indicated by the (C) option.

NOPAGE Causes the report to display on the CRT (default) without
pausing for the user to enter a <RETURN> between each
page of output. This is typically used when the report is
being printed on a tenninal attached (slave) printer. Also
indicated by the (N) option.

LPTR Directs the report output to the spooler currently assigned to
the line printer. Also indicated by the (P) option.

Simple example of output modifier use:

The following sentence prints an ordered report of the CUSTOMERS file.

>SORT CUSTOMERS BY STATE BY COMPANY STATE COMPANY CONTACT LPTR<r>

SENTENCE ELEMENT
SORT
CUSTOMERS
BY STATE BY COMPANY
STATE COMPANY CONTACT
LPTR

······DESCRIPTION
verb
filename
sequence clause
output-list
output modifier

•
•
• •
•
• •
• •
•
•
• •
•
•
• •
•
•
•
•
•
• •
• •
• • •
• •
•
•
• •

•
•
•
•
•
•
•
•
•
•
•
• •
•
•
• •
•
•
• • •
•
•
• •
•
•
•
•
•
•
•
• •

3.8

The printed output is:

An equivalent sentence that outputs to the printer:

>SORT CUSTOMERS BY STATE BY COMPANY STATE COMPANY CONTACT (P)<r>

SEN'I'ENCE··EI1El\IENT
SORT
CUSTOMERS
BY STATE BY COMPANY
STATE COMPANY CONTACT
(P)

mHROWAWAYCONNECTIVES

DESCRIPTION
verb
filename
selection clause
output·list
option

Throwaways are words which are not processed in the ACCESS sentence, but can be used to
"round out" the grammar of the sentence. The following are the available throwaways:

A AN ARE ANY
FOR IN ITEMS OF

FILE
THE

39

40

Using these throwaway connectives, an ACCESS sentence can be entered as follows:

>SORT THE CUSTOMERS FILE BY STATE COMPANY STATE<r>

t t
throwaways

New throwaways can be created by copying the existing words to new names. Since these connec­
tives reside in the master dictionary of an account, new throwaways are created by using the
COpy verb and the MD file.

The previous statement can be re-entered as:

>SORT THE CUSTOMERS FILE BY THE STATE

CUSTOMERS.

102
103
105
106

107
100
101
104

t

8 ITEMS LISTED.

t t
throwaways

SHOWING THE COMPANY STATE<r>

t j

•
• • • •
•
•
•
•
•
•
•
•
•
• •
•
•
• •
•
•
•
•
•
• •
•
•
•
•
•
• • •

•
• EXERCISE
• ·········0 ••••••• ························ • •
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
• •
•
•
• •
• •
•
•
•
•
•
• •

1.

2.

3.

4.

5.

6.

7 .

8.

The basic components of an ACCESS command sentence are

and

Name four commonly used ACCESS verbs.

Verbs travel in pairs. One always generates a ------

output, while the other generates a output.

Which file levels do the following command sentences
report?

>LIST CUSTOMERS

>SORT DICT CUSTOMERS

>LIST ONLY CUSTOMERS

>SORT DATA CUSTOMERS

The ACCESS verb which outputs only a count of items is

The first column of a LIST or SORT output is made up of

True or False. The following ACCESS sentence lists only
three specific items.

>LIST CUSTOMERS '102' '103' '106'

Write an ACCESS command sentence which outputs the company
name, address and city for all entries in the CUSTOMERS -­
file.

> --------------------------------

41

42

9. Write an ACCESS sentence which outputs the same informa­
tion as above, but reports only CUSTOMERS 100 and 101.

> --

10. Match the following connectives:

BY ---

WITHOUT ---

BY-EXP

IF

AND ---

BY-DSND ---

WITH ---

THE

A ---

OR ---

a. Beginning of a selection
clause. Includes items
which pass the criteria.

b. A throwaway connective.

c. Sorts in ascending sequence.

d. A selection connective in­
dicating items which do not
pass the selection criteria.

e. Sorts in descending sequence.

f. A logical connective meaning
both selection criteria must
be true.

g. A synonym for WITH.

h. Another throwaway.

i. A logical connective meaning
either selection criteria
can be true.

j. Explodes multivalue attri­
butes for sorting.

11. Write the command sentence to sort the CUSTOMERS file by
contact name within state and show the contact name and
state abbreviation.

> ---

•
•
•
•
•
•
•
• •
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
• •
• •
•
•
•
•
•
• •

•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
• •
• •
•
•
•
•
•
• •

12. Match the selection clause:

WITH STATE a. Include customers in
----- either California or

Texas.

WITH BALANCE GE "1000.00" b. Include only those
items that have a
null address attri­
bute.

IF CONTACT = "S]" c. Include customers
in the 213 area code.

WITHOUT ADDRESS

WITH STATE "CA""TX" ----

WITH NO CONTACT ----

IF PHONE = "213]"

d. Exclude customers
with no contact name.

e. Include those custo­
mers with a balance
due greater than or
equal to 1000 dollars.

f. Include customers
whose contact names
start with an S.

g. Include only those
customers with a non­
null state attribute.

13. The wildcard search character is a ---------------------

14. Write a selection clause for the CUSTOMERS file that
includes those company names whose second to the last
character is a K.

15. Write a full ACCESS statement which sorts the output by
the balance due for only those customers in California in
the CUSTOMERS file. The report should output both fields.

> --

16. In the following ACCESS sentence, match each description
with the correct portion of the sentence.

>SORT CUSTOMERS BY STATE BY ZIP WITH BALANCE COMPANY STATE ZIP BALANCE LPTR

a. output-list d. filename
b. ve:rb e. selection clause
c. output modifier f. sequence clause

43

•
•
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
• • •

•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
•
• •
•
•
•
•
•
•
•
• •

4.1

COLUMNAR
REPORTING

This chapter demonstrates the techniques for formatting a columnar report. Please review
Chapter 3, "The ACCESS Command Sentence," to become familiar with the command sentence
components that are used in these report examples.

Also, make sure that your terminal characteristics are set correctly before continuing. Setting up
terminal and printer characteristics is discussed at length later in this chapter in Section 4.8,
"Choosing the Output Device." For now, just enter the following:

>TERM 79,23

This says to set the terminal width and depth to 79 columns and 23 lines.

Columnar reports are generated by the ACCESS verbs LIST and SORT.

The general form is:

Output a columnar report in random order.
Output a columnar report in sorted order of
item-ids if no BY clause is used, or BY any
specified data definition.

>LIST filename<r>
or

>SORT filename<r>

For example:

102

ITEMS LISTED.

45

46

SORT generates a listing of the item-ids in alphabetical or numerical sequence.

A SORT by company name is specified as follows:

>SORT CUSTOMERS BY COMPANY<r>

SENTE:NCEELEMENT
SORT
CUSTOMERS
BY COMPANY

verb
filename
sequence clause

Notice that even though the sequence clause is used, the report still only shows the item-ids.
Read on to see how columnar output can be requested.

•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• • •

•
•
• 4.2
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
• •
•
•
•
•
• •
•
•
•
•
•
• •

E:x.BEIGrr ••. OI1TPI1TFORl\1.ATTING ·.·.·······<·/«·····

The previous ACCESS sentences haven't been much help in viewing any data other than the
item-ids. Here's where the data definition items come into play. Output data columns are speci­
fied in the following form:

>verb filename namel name2 name3

Each definition name generates a column of output.

>LIST CUSTOMERS COMPANY CONTACT CITY STATE<r>

.U$EN'I'EfiCEELEMENT ••••• •••••••········· LIST
CUSTOMERS
COMPANY CONTACT CITY STATE

DESCRIPTION
verb
filename
output-list

Notice that company 106 has a name wider than the current column width. The system automat­
ically wrapped the data on to the next line in the same column.

Let's take a look at the same report using the SORT verb.

>SORT CUSTOMERS COMPANY CONTACT CITY STATE<r>

···SENTENCEElJEMENT
SORT
CUSTOMERS

····]jESCIUPTION

COMPANY CONTACT CITY STATE

verb
filename
output-list

47

48

The SORT verb orders the output by the item-ids.

N ow, here is the same SORT sentence with the output in COMPANY order.

>SORT CUSTOMERS BY COMPANY COMPANY CONTACT CITY STATE<r>

SENTENCE ELEMENT· ••• ·•
SORT
CUSTOMERS
BY COMPANY
COMPANY CONTACT CITY STATE

verb
filename
sequence clause
output-list

Notice that the data definition COMPANY must be repeated in the output-list as well as within
the sequence clause. The sequence clause does not indicate output, only order.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
•
• •
•
• • •

•
•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
• • •

4.3

Files can be given a group of default columns to be output whenever a simple ACCESS statement
is entered. This is called implicit formatting since the columns are implied, not explicitly
specified. All you have to do is to enter:

>LIST filename
or

>SORT filename

and a default report format will display.

Implicit columns are set up by creating special data definitions in the dictionary of the file. These
definitions are special because they are not given names. They are given sequential numbers like
1,2,3, etc. Each number represents the default columnar position in the implicit report.

We're going to make the previous explicit example work implicitly.

If you wish, review the COPY command in your system manuals before continuing. Now, enter
the following:

This procedure copies the DICT item COMPANY to an item called 1, CONTACT to 2, CITY to 3,
and STATE to 4.

Here's what they look like.

008
OOg L
010 20

L
20

L
15

L
2

The numbered names of these dictionary definitions represent the column, NOT THE
ATTRIBUTE. Notice how column 4 is used to point to attribute 5.

49

50

Now, enter this simple command and see what happens.

The four columns defined by data definitions 1, 2, 3, and 4, automatically are displayed by explic­
itly requesting them in an output-list. The column headers default to the item-ids of the data
definitions.

The column headers can be changed by using attribute 3 of the data definitions. Enter the follow­
ing:

--c=:: .114 data deflnlti~

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
• •
•
•
•
•
• • •

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
• •

Now enter the same sentence and review the results.

Now try this:

>SORT CUSTOMERS BY COMPANY<r>

> SENTENGEELEMENT<·
SORT
CUSTOMERS
BY COMPANY

Again, no output-list is required.

DESCRIPTION·· .
verb
filename
sequence clause

51

4.4

4.4.1

52

Implicit formatting may not be what is required for all circumstances. It can be deactivated by
using an explicit output·list.

>LIST CUSTOMERS COMPANY CONTACT<r>

····<SENTENCEELEMENTy·····
LIST
CUSTOMERS
COMPANY CONTACT

verb
filename
output·list

Or, implicit formatting can be deactivated by using the ONLY modifier preceding the filename.

>LIST ONLY CUSTOMERS<r>

Try these commands and note the results.

Certain attributes in an item may contain more than a single data value. Multivalued attributes
are used to hold lists of a like data. For example, an invoice item may have an attribute which is
a list of product numbers, followed by an attribute which is a list of quantities sold. In our sample
CUSTOMERS file, the PHONE attribute contains multiple phone numbers.

This section shows how multivalued attributes are reported and sorted.

Simple Output
Whenever a multivalue field is output in a columnar report, values are stacked within the column
in the order that they are stored in the attribute.

Enter the following command sentence:

>LIST CUSTOMERS COMPANY CONTACT PHONE<r>

SENTENCE ELEMENT
LIST
CUSTOMERS
COMPANY CONTACT PHONE

The output is as follows:

DESCRIPTION
verb
filename
output·list

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

•
•
• •
•
•
•
•
•
• •
• •
•
•
• •
•
• •
•
• •
•
• •
•
•
•
•
•
•
• • •

4.4.2

Don't let the extra space generated for CUSTOMERS 106 fool you. It is only a single value. The
extra line is generated because the company name wraps to the next line. This may be annoying,
but live with it for now. It will be taken care of in a later chapter.

Sorted Output
Sorting by multivalue attributes can create some difficulty since the BY clause uses entire
attributes as one string for sorting. 'lb understand this a little better, enter the following sen­
tence:

>SORT CUSTOMERS BY PHONE COMPANY CONTACT PHONE<r>

SENTENCE ELEMENT
SORT
CUSTOMERS
BY PHONE
COMPANY CONTACT PHONE

DESCRIPTION
verb
filename
sequence clause
output-list

53

4.5

54

Notice the PHONE column. The individual phone numbers are not in sorted order. This is the
reason that the BY-EXP modifier must be used. BY-EXP breaks up the value lists so that they
can be reported in the correct sequence.

Enter the following command sentence:

>SORT CUSTOMERS BY-EXP PHONE COMPANY CONTACT PHONE<r>

.$EN1'ENC~ •• ~LEMEN1'S
SORT
CUSTOMERS
BY-EXP PHONE
COMPANY CONTACT PHONE

.~SORT CtlJS'l:C:>NE:RS BY:"'J:)CP

.. ··PAGE.l

107
107
103>

.lO.2
··~.04

104
104
105

OESCRIPl'tON
verb
filename
sequence clause
output-list

•
•
•
•
•
•
•
•
•
•
•
•
I)

•
•
•
•
•
•
•

13 •.• ITEMS LISTED •

• The phone numbers are now in correctly sorted order. Note that any item which contains more
than one value for the phone number is output in an equivalent number oflines in the report. For •
example, CUSTOMER 101 has two values in the PHONE field and 101 appears twice in the •
report. This explains why 13 items are listed even though there are only 8 items in the entire file.

CUSTOM HEADINGS AND FOOTINGS

The system automatically places a heading on columnar reports. This default heading consists of
the system time, date and current page number. However, you have the option to override the
default heading and specify a custom report heading and footing by using the following modifiers.

MQI)IFIER
HEADING

FOOTING

DESCRIPTION
Specifies that the user defined text is to be

output at the top of each output page.
Specifies that the user defined text is to be

output at the bottom of each page.

• •
•
•
•
•
•
•
•
• •

•
•
•
• •
•
•
• • •
•
• •
•
•
•
•
•
•
•
•
• •
•
• •
•
•
•
•
•
•
•
• •

HEADING and FOOTING Text:

Each of these modifiers must be followed by a literal string specifying the actual text to be used in
the Heading or Footing. The general form of the HEADING or FOOTING clause is:

BEADING ''text ••• 'options' •• text ••• 'option'"
or

FOOTING ''text .•. 'options' •. text ... 'option'"

System level options may be included within the text. These options must be set apart by sur­
rounding them with single quote (') marks.

The following is a list of options:

·.···· .. n·.· .. ()P'l'lON)··i············.:OE$QRlPTIO:N
C Centers output.
B Insert the value causing the report break. Must be used

D
F
Fn
I
In
L
P
PN
T
"

in conjunction with the BREAK-ON modifier options. See
Section 4.6 "Report Breaks" for more information.

Outputs the System Date.
Outputs the Filename.
Outputs the Filename left justified in a field of'n' blanks.
Outputs Item Name.
Outputs Item Name left justified in a field of'n' blanks.
Outputs a linefeed and carriage return, skips a line.
Outputs page number, right justified in a field of four blanks.
Outputs page number, left justified.
Outputs time and date.
Outputs one single quote. Since single quotes are used to set

off options, this allows a single quote to be a part of the text.

Here is a simple use ofthe HEADING modifier.

>SORT CUSTOMERS BY COMPANY COMPANY CONTACT HEADING "COMPANY LIST 'CL' "<r>

SEN'l'ENOEELEl\fEN'l'
SORT
CUSTOMERS
BY COMPANY
COMPANY CONTACT
HEADING "COMPANY LIST 'CL'"

The heading clause is:

"COMPANY LIST 'CL ' "

DESCRIPTION.
verb
filename
sequence clause
output-list
heading clause

This contains the literal string (text) COMPANY LIST modified by the options, C, center the text
on this line, and L, force a line feed. The centering is based on the width of the chosen output
device, in this case, the terminal. Notice that multiple options can be specified within a single set
of single quotes.

Column numbers are provided here to make the positioning of the heading more apparent. These
do not appear on the report. The output is as follows:

55

56

Headings and footings can be used together or separately. Here is an example of both the HEAD­
ING and FOOTING modifiers in the same command sentence.

>LIST CUSTOMERS CONTACT COMPANY BEADING "CONTACTS 'LOLL' "FOOTING" 'L' PAGE 'PN' "<r>

.. SENTENCE ELEMENT
LIST
CUSTOMERS
CONTACT COMPANY
HEADING "CONTACTS 'LDLL'"
FOOTING" '1' PAGE 'PN'"

>DESCRIPTION
verb
filename
output-list
heading clause
footing clause

The HEADING text specifies the literal string "CONTACTS" along with a line feed, followed by
the current system date, followed by two more line feeds.

"CONTACTS 'LDLL'"

The FOOTING text specifies a line feed, followed by the literal string "PAGE" and the current
page number left justified.

It'L' PAGE 'PN'"

•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

•
•
• •
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

4.6

4.6.1

G-ENERATING···REPORT·BRE.A.KS.·······

In a SORTed report, the output columns normally run together without a visual break.

>SORT CUSTOMERS BY STATE STATE COMPANY CITY<r>

SENTENCE.·ELEl\1:ENT
SORT
CUSTOMERS
BY STATE
STATE COMPANY CITY

·DESCR.1PTION
verb
filename
sequence clause
output-list

The report break modifier allows a visual break as sorted values change.

MODIFIER DESCRIPTION
BREAK-ON U sed to generate a visual "break" when a change occurs in a sorted

column. The visual portion of the break is displayed as the
string "***" between two blank lines on the report. If the
TOTAL modifier is also in effect during a "break-on," the subtotal
for each Data Descriptor specified with the TOTAL modifier is
displayed at the break point.

TOTAL Produces a columnar total of specified numeric Data Descriptor.
Subtotals can be obtained by using the BREAK-ON modifier.

Simple Breaks
Enter the following sentence:

>SORT CUSTOMERS BY STATE BY COMPANY BREAK-ON STATE COMPANY CITy<r>

··SENTENCE ELEMENT
SORT
CUSTOMERS
BY STATE BY COMPANY
BREAK-ON STATE COMPANY CITY

DESCRIPT10N
verb
filename
sequence clause
output-list

57

58

COMPANY CITY

Produces the output:

<D;tlSC:Q.mTION/<>
Generates a report break as the STATE
changes.

Outputs the COMPANY and CITY
columns.

Notice the summary line generates three asterisks (***) at the end of the report.

Breaks can be indicated at multiple levels. Try the following sentence.

>SORT CUSTOMERS BY STATE BY CITY BREAK-ON STATE BREAK-ON CITY<r>

SENTENCE ELEMENT
SORT
CUSTOMERS
BY STATE BY CITY
BREAK-ON STATE BREAK-ON CITY

>DESCRlPTION.
verb
filename
sequence clause
output-list

•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• • •

•
•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

4.6.2

This report breaks at the second level for each line since the city changes for each line.

Totals and Sub-Totals
The TOTAL output modifier generates a grand total at the end of the report. (Make sure that you
are totaling numeric fields, otherwise the result is zero.) TOTAL also automatically generates a
sub-total for each break level.

59

60

•
•
• Enter the following sentence: •

>SORT CUSTOMERS BY STATE BREAK-ON STATE COMPANY TOTAL BALANCE<r> •

····<SENTENCE[ELEMENTi
SORT
CUSTOMERS
BY STATE
BREAK-ON STATE COMPANY. ..

... TOTAL BALANCE

QIJ'l'EW-LIST>
BREAK-ON STATE

COMPANY
TOTAL BALANCE

... I>ESClUP'l'lON
verb
filename
sequence clause

output-list

··I>ESC:al:P'tldN.) ,-, .. - " ,- - " .. ", ..

Generates a report break as
the state changes.

Outputs the COMPANY name.
Generates the sum of the BALANCE
column and a sub-total as the STATE
changes.

•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
• •

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

4.6.8

4.6.4

Grand Totals
The GRAND-TOTAL modifier is used to generate text in place of the three asterisks (***) on the
final report summary line. The general form is as follows:

GRAND-TOTAL "literal string":

>SORT CUSTOMERS BY STATE BREAK-ON STATE COMPANY ...
... TOTAL BALANCE GRAND-TOTAL "FINAL BALANCE"<r>

S'.ENTENCEEL'.EMENT
SORT
CUSTOMERS
BY STATE
BREAK-ON STATE COMPANY. ..

... TOTAL BALANCE
GRAND-TOTAL "FINAL BALANCE"

BREAK Options

DESCRIPTION
verb
filename
sequence clause

output-list
grand total label

The BREAK-ON modifier also has an option string which is used in the same way that the
HEADING and FOOTING modifiers use options. The general format is as follows:

BREAK·ON dataname ''text .• 'options' text •. 'options'"

The entire option string must be surrounded by double (") quotes, and the options must be sur­
rounded by single C) quotes. A list of the options follows.

61

62

D
L

N
P
R

U
V

"

·0·················· ·0······ DESIURTI N>
Designates that the value of the break is to be placed in the heading or
footing, if the HEADING or FOOTING text string contains another IBI
option.

This suppresses the break line if there is only a single detail to report.
Break lines normally output a blank line before reporting the break.
This suppresses the extra line.

Resets the page counter to one.
Forces a new page at the end ofthe break line.
Forces one or more break lines to the bottom of the same page, rather
than going to a new page.

Underlines TOTAL columns.
Prints the value of the break at the break line rather than the three
asterisks (***).

Places a literal single quote in the break text.

Re-enter the previous example using break options as follows:

>SORT COSTOMERS BY STATE BREAK-ON STATE "TOT 'LO'" COMPANY TOTAL BALANCE<r>

SENTENCE ELEMENT
SORT
CUSTOMERS
BY STATE
BREAK-ON STATE "TOT' LU' " ...

... COMPANY TOTAL BALANCE

verb
filename
sequence clause

output-list

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

•
•
• • •
•
• •
•
• •
•
•
•
•
•
•
•
•
• •
•
•
• • •
•
•
•
•
• •
• • •

The BREAK-ON option string is as follows:

BREAK-ON STATE "TOT 'LU'"

Generates a report break when the STATE changes. At the break line print the text TOT, sup­
press the blank line, and underline the TOTAL fields.

Here is the same command sentence with a few more modifications. The break options indicate
that each STATE is to be reported on a new page with the value ofthe break in the heading.

Enter the following command sentence:

>SORT CUSTOMERS BY STATE BREAI<:-ON STATE "TOT 'LUBP'" COMPANY •••
•.. TOTAL BALANCE HEADING "BALANCE FOR 'B' ON 'DL' PAGE 'PNL' "<r>

$ENTENCE~J:..EMEN1'<
SORT
CUSTOMERS
BY STATE
BREAK-ON STATE "TOT' LUBP' " ...

... COMPANY TOTAL BALANCE
HEADING "BALANCE FOR 'B' ...

... ON 'DL' PAGE 'PNL'''

The BREAK-ON option string is as follows:

BREAK-ON STATE "TOT 'LUBP'"

<:DESCRIPTION
verb
filename
sequence clause

output-list

heading clause

The text string "TOT" is printed at the break line. The break options, 'LUBP', suppress the
break skip line, underline the TOTALS, place the break value in the HEADING, and force a new
page on each break, respectively.

The value of the break referenced by the option 'B' must have a "sister" option 'B' in the
HEADING statement.

HEADING "BALANCE FOR 'B' ON 'DL' PAGE 'PNL'"

The B option accepts the break value in effect when the new page is generated. The remaining
options display the date, perform a line feed, generate the current page number and perform
another line feed. The output for the first page is as follows:

63

4.7

NOTE<

64

Press <return> to see each subsequent page, or enter a <ctl>X (hold the control key, <ctl> and the
X key simultaneously) to abort and return to TCL.

•
•
•
•
•

Output modifiers are used to change the default output characteristics of ACCESS reports. •

Each modifier can be replaced with a corresponding TeL option surrounded by parenthesis,
(option). The list of the additional output modifiers is as follows:

MODIFIER · ••• ···.PIITIONy •• pESGRmTtPN'U)
ID-SUPP (I) Suppresses the automatic output ofthe item-id

column on the report.
DET-SUPP (D) Used in an ACCESS statement in which a sort

sequence is combined with a BREAK-ON modifier.
This suppresses the output of all the detail lines
between each break line and, instead, displays the
data value that caused the break to occur.

HDR-SUPP (H) Suppresses the default page heading that contains
the time, date, and page number. Please do not use
in conjunction with the HEADING or FOOTING
modifiers. That would be self defeating, to say the
least.

COL-HDR-SUPP (C) Suppresses both the default page heading
which normally includes time, date, and page
number, as well as the data column headings.

NOPAGE (N) Causes the report to output to the terminal
display (default) without pausing for the user
to enter a <carriage return> between each
page. This has no effect if the output is directed
to the line printer via the LPTR modifier or
(P) option. NOPAGE is typically used when
the report is printed on a terminal attached
(slave) printer.

LPTR (P) Direct output to the system printer via the
spooler. For more information see Section 4.8,
"Choosing the Output Device."

Here are samples of these modifiers. Enter the following sentence:

>SORT CUSTOMERS BY STATE BREAK-ON STATE COMPANY TOTAL BALANCE ID-SUPP<r>

SENTENCE EtEMENT>
SORT
CUSTOMERS
BY STATE
BREAK-ON STATE COMPANY ...

... TOTAL BALANCE
ID-SUPP

OESCRIPTION
verb
filename
sequence clause

output-list
output modifier

•
•
•
•
•
•
•
•
•
•
•
•
•
• •
• •
•
•
•
• •
•
•
• •
•
• •

•
•
• •
•
~

•
•
•
• •
• •
•
•
• •
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
• •

The item-id column is not reported.

Now, enter the next sentence:

>SORT CUSTOMERS BY STATE BREAK-ON STATE TOTAL BALANCE DET-SUPP<r>

SENTENCEELEMENT
SORT
CUSTOMERS
BY STATE
BREAK-ON STATE ...

... TOTAL BALANCE
DET-SUPP

DESCRIPTION
verb
filename
sequence clause

output-list
output modifier

65

4.8

66

Only the break lines are reported. Notice that the value ofthe break is automatically reported at
the break line without having to use the 'V' BREAK-ON option.

Try the rest ofthese modifiers on your own.

The directed output device can be a terminal or a printer, depending on whether the LPrR (or P
option) modifier is or is not used in the ACCESS sentence.

>LIST CUSTOMERS COMPANY CONTACT<r>

sends output to the terminal screen.

>LIST CUSTOMERS COMPANY CONTACT LPTR<r>
or

>LIST CUSTOMERS COMPANY CONTACT (P)<r>

sends output to the system printer.

In the examples in this chapter so far, the sum of the width of the columns does not exceed the
width of the current output device. If, however, the sum of the column width exceeds the width of
the output device, the output is listed vertically along the side ofthe page.

For example:

>LIST CUSTOMERS COMPANY CONTACT ADDRESS CITY STATE<r>

SENTENCE ELEMENT
LIST
CUSTOMERS
COMPANY CONTACT ...

... ADDRESS CITY STATE

generates the following output to the terminal.

DE!SCRIPTION
verb
filename

output-list

•
• • •
•
e,

•
•
• •
• •
• •
•
•
•
•
•
• •
•
• •
• •
• •
•
•
•
•
•
• •

•
•
•
• •
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
• •

The total column length exceeds the width of the tenninal.

The width and depth of the tenninal or printer is controlled by the TeL command TERM. The
TERM command allows you to temporarily change the width and length of the tenninal or print­
er for the current logon session. The minute that you log off and log back on, the TERM charac­
teristics are reset to the current system default values.

The TERM statement by itself displays the current device parameters.

67

68

Here is what each ofthese displayed elements mean:

PAGE WIDTH

PAGE DEPTH

The number of columns across the page for the terminal or the
system printer.

The number oflines per page on the terminal or printer.

Please note that the page width and depth are parameters used by the system to determine when
a line feed and carriage return is to be generated at the end of the current line (width), and when
a form feed is to be output at the end of the current page (depth). The printer must be set for the
correct form width (CPI, characters per inch), and form length (inches per page), or the page
alignment will be off. Please consult your printer manuals to set up your printer correctly.

LINE SKIP
LFDELAY

FFDELAY

BACKSPACE

TERM TYPE

Both LINE SKIP and LF DELAY (Line Feed Delay) can be set to
zero. These parameters are leftovers from the early days of
PICK and have no bearing on what we are doing here.
Therefore, you can ignore them.

Form Feed Delay is another appendage which can, for the most
part, be overlooked. However, there is one feature which can be
invoked by using it.
If the FF DELAY is 2 or more (as usual), the screen and/or

printer are sent a form feed (go to the next page) between
each printed page.

If the FF DELAY is 1, only the printer is sent a form feed.
The terminal scrolls between pages without clearing the
screen.

If the FF DELAY is 0, both the terminal and printer scroll
between pages without generating a form feed.

"What does this have to do with ACCESS and this discussion?"
NOT MUCH! Try these parameters if you want.
Otherwise, you don't have to bother.

Do not touch. This determines what your system port will recog­
nize as a backspace character. It is not needed for this discussion.

The code which represents the type of terminal that you are
using. Usually, the following characters are used:
A - ADDS terminal
V - Viewpoint
D - Dec VTIOI or VTI02
I - IBM memory mapped monitor

W - Wyse 50
However, this should not make a difference when
generating ACCESS reports.

•
•
• • •
•
•
•
•
• •
•
•
•
•
•
•
•
•
• • •
•
•
•
•
• •
•
•
•
•
•
• •

•
•
• • •
•
•
•
• •
• •
•
•
•
•
• •
•
•
• •
•
•
• •
•
•
•
•
•
•
•
• •

Th prevent confusion when specifying a change to the device parameters, each position is given an
identifying letter as follows:

When changing the TERM parameters, the general form is:

>TERM a,b,c,d,e,f,g,h,t<r>

Here are some examples:

Change the terminal width to 132 columns and the terminal depth to 60 lines.

>TERM 132,60<r>

Now verify the change.

>TERM<r::>

TERMINAl/PRINTER
PAGE WIDTH: 132/ 132
PAGE:PEPTH ;60 EiO.
LJ:NESKIP 0
LF DELAY 0
FF DELAY 2
BACKSPACE
TERM. TYPE:

Notice that the rest of the parameters remain unchanged.

Now change the printer width to 80 and the depth to 55. Changing the width and depth of the
printer is a bit more cumbersome. If the parameters preceding the first changed parameter are to
remain unchanged, then commas (,) must be used in their place. The (R) option requests a redis­
play ofthe changed parameters without having to re-enter the TERM command.

69

Changing the tenninal type is a hit easier. This parameter can "stand alone."

>TERM V<r>

This tenninal is now set to emulate a Viewpoint tennina1.

70

•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
• •
•
•
•
•
•
• •
•
•
• •

•
•
•
•
•
•
•
• • •
•
•
•
•
•
•
• •
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
• •

1.

2.

3.

4.

5.

6.

7.

8.

The verb which generates a columnar report in random order is

The verb which generates a columnar report in sorted order is

How many columns of output does the following ACCESS sentence
generate? -----

>LIST CUSTOMERS WITH STATE = "CA" COMPANY CONTACT PHONE

Name each output column generated by the above statement.

formatting allows columns to be automatically
reported.

Data definition items with numeric item-ids are the default
in an implicit report. ---------

The modifier overrides implicit formatting so that only
the item-id column is reported.

Match the following modifiers with the correct description:

DET-SUPP

FOOTING

GRAND-TOTAL

(P)

HDR-SUPP

BREAK-ON

(H)

TOTAL

HEADING

ID-SUPP

COL-HDR-SUPP

a. Generates a visual break line when
the data definition value changes.

b. Allows specification of a cus-
tomized report heading.

c. Suppresses page headers.

d. Suppresses column and page headers.

e. Suppresses the default item-id
column.

f. Allows specification of a cus­
tomized report footing.

g. The print option. The same as the
LPTR output modifier.

h. Suppresses detail lines on a report.

i. Generates columnar totals at the
break lines and on the grand total
line.

j. Allows custom text on the grand
total line.

k. The option synonym for HDR-SUPP.
71

72

9. Enter the HEADING clause which says to: skip a line, center the word
HEADER, and skip two lines.

10.

11.

12.

13.

14.

The BREAK-ON option string to print the value of the break and
underline the totals is:

Enter the ACCESS sentence for the CUSTOMERS file which sends to the
system printer the total balance due for each state without the
details.

Enter the statement to set the terminal width to 132 and depth to 65.

Enter the statement to set the line printer to a width of 80 and a
depth of 55 with an automatic re-display of the parameters.

Match the following:

GRAND-TOTAL "TOTAL BALANCE"

HEADING "A HEADING"

BREAK-ON STATE TOTAL BALANCE

BREAK-ON STATE "'PV'"

BREAK-ON STATE "'u'"
TOTAL BALANCE

FOOTING '" LC' PAGE 'PN "'

BREAK-ON STATE "'PB'"
HEADING "FOR STATE 'B'"

a.

b.

c.

d.

e.

f.

g.

Generate a page number,
centered at the bottom of
each page.

Display the break value at
the break line and force a
new page.

Print A HEADING at the be-
ginning of every page.

Force a new page for each new
state and place the break
value in the heading.

Show the balance due
for each state.

Display the text TOTAL
BALANCE on the grand
total line.

Underline the total
balance due for each
state.

•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
• •

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
• •

·····5···· 01i «

5.1

MAILING
LABELS

ACCESS can be used to generate mailing labels by using either of the following verbs.

BItB·
LIST-LABEL
SORT-LABEL

·················<···.nrQ.tSCR.IPTION
Generates labels from a file in random order.
Generates labels from a file in a specified

sorted order.

Columnar ACCESS commands generate reports in the following format:

The LABEL verbs output data in the following format:

Whenever the LABEL verbs are used, the system prompts for a set of parameters which indicate
the format of the labels on the page. THERE IS NO DEFAULT! After the command sentence is
entered, the only prompt displayed on the screen is a question (?) mark. The label parameters
must be specified in the following format:

?columns, rows, lineskip, indent, width, spacinq,C<r>

73

74

These seven parameters represent the following:

PARAMETER
columns
rows
lineskip

indent

width
spacing

C

PESQRWTIQN
The number of labels in a set across the page.
The number oflines per label.
The number of blank lines between each set oflabels.

A vertical skip.
The number of spaces indented from left margin to
begin printing the labels.

The number of character positions wide for each label.
The number of spaces between each label in a set.

Horizontal spacing.
The compress option. This compresses null values in a

label so that no blank lines appear within the body of
the label.

Here is a visual representation of the parameter meanings:

Enter the following command and provide the indicated parameter response:

>LIST-LABEL CUSTOMERS COMPANY CONTACT CITY STATE<r>

SENTENCE ELEMENT .
LIST-LABEL
CUSTOMERS
COMPANY CONTACT CITY STATE

DESCRD>TION .
verb
filename
output-list

•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
• •
•
•
• •
•
•
•
•
• •
• •
•
•
•
• •

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• • •
•
•
•
•
•
•
•
•
•
•
• •

Now enter the following:

?2,4,1,O,30,1,C<r>

The parameters indicate:

-2 labels across the page
-4 lines per label
-1 line vertically between labels
- 0 no indent, start at the left margin
- 30 characters per label line
-1 space horizontally between the labels
-C compress the null values

The output is as follows:

Notice that the STATE is missing. This is because only four lines are allowed per label, but the
total number of output lines is five. Yes, five. The item-id is automatically output, just like a
columnar report. See section 5.2, "Using Output Modifiers," to learn how to get around this.

Possible Errors:

The label parameters used must be precisely balanced or the LIST-LABEL statement will fail.
This means that the total width of the output cannot exceed the width of the page. For example,
re-entered using the following parameters:

?3,4,1,O,30,1,C<r>

75

5.2

76

In this case, we are asking for three labels across the page with 30 columns per label. Well, 3
times 30 is 90, which is far wider than the current 79 page width. The following error message is
displayed:

[290] THE RANGE OF THE PARAMETER "1" IS NOT ACCEPTABLE.

The parameter indicated in the error message is the number of horizontal spaces between labels.
However, less than one space between labels is hard if not impossible to read. 'Ib fix this, the
label width should be reduced. 20 is a good width since 20 times 3 is 60.

?3,4,1,0,20,1,C<r>

This produces:

USING OU'l'PU'l' MODIFIERS

In the above example, there is more than just the item-id which needs to be suppressed. The out­
put also has a heading, which is usually not desirable when printing mailing labels. The follow­
ing output modifiers are the most frequently used when generating labels.

> MODrFIER
ID-SUPP

HDR-SUPP

LPTR

OPTION
(I)

(H)

(P)

DESCRIPTION
Suppresses the automatic output of the
item-id line on the label.

Suppresses both the default page heading
which normally includes time, date, and
page number, as well as the label line
headers.

Send output to the system printer via the
spooler.

It is common practice to use both ID-SUPP and HDR-SUPP when generating mailing labels.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

Enter the next command sentence along with the indicated parameter response:

>LIST-LABEL CUSTOMERS COMPANY CONTACT CITY STATE ID-SUPP HDR-SUPP<r>

?,4,1,O,30,1,C<r>

SENTENCE ELEMENT>
LIST-LABEL
CUSTOMERS
COMPANY CONTACT CITY STATE
ID-SUPP HDR-SUPP

···DESCRIPTION
verb
filename
output-list
output modifiers

Notice that suppressing the item-id allows all ofthe requested fields to be displayed. In addition,
the output has no page header.

This same command can be used to print the labels on the system printer by just including the
LPTR output modifier. Enter the following command sentence which indicates ID-SUPP, HDR­
SUPP, and LPTR, using the equivalent output options.

>LIST-LABEL CUSTOMERS COMPANY CONTACT CITY STATE (IHP)<r>

SENTENCE ELEMENT
LIST-LABEL
CUSTOMERS
COMPANY CONTACT CITY STATE
(IHP)

The output is now directed to the system printer.

DE$CRIP.TION
verb
filename
output-list
output options

77

5.3

78

USING INDENT

A non-zero indent parameter has a tendency to alter the flow of the parameter specification pro­
cess. When the value of indent is not zero, the LIST-LABEL process assumes that each row is to
have a descriptive heading as follows:

Therefore, after accepting the initial parameter string, the LIST-LABEL requests entry of a head­
er for each row. In the next example, the indent is set to ten, and the number of rows is four.
This causes four more question (?) marks prompting for operator response.

Enter the following command sentence:

>LIST-LABEL CUSTOMERS COMPANY CONTACT CITY STATE (HI)<r>

SENrENCEELEMENT
LIST-LABEL
CUSTOMERS
COMPANY CONTACT CITY STATE
(HI)

?2,4,1,lO,30,1,C<r>
?Company<r>
?Contact<r>
?City<r>
?State<r>

. DESCRIPTION
verb
filename
output-list
options

The row heading text is entered at each subsequent prompt. A <return> key should be entered
for each ofthe row headings if no text is required. The output is:

•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
• •
•
•
•
•
•
•
•
• •

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

On some implementations, the row header defaults to the standard column header used in a
columnar report. Th eliminate this, the sentence must be modified with the COL-HDR-SUPP out­
put modifier. Please consult your manuals for details.

79

EXERCISE 1.

5

2 .

3.

80

The two ACCESS verbs used for generating mailing labels
are:

Identify each element of the label parameter string:

?a,b,c,d,e,f,g

a.

b.

c.

d.

e.

f.

g.

Write the ACCESS sentence and provide the parameters to
generate mailing labels from the CUSTOMERS file using the
following requirements:

• The labels should contain company name, address, city,
state and zip on separate lines.

• The item-id, and all headings, should be suppressed.

• The output should be sent to the printer.

• Three labels across an 80 column page.

> <r> ---

? <r> ---

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

•
•
• •
•
~

•
•
•
•
• •
•
•
•
•
•
•
•
• •
•
•
•
•
• ..
• •
•
•
• • •

6.1

ACCESS
LISTS

ACCESS can be thought of as processing in three main phases. The first parses (takes apart) and
compiles the sentence so that the system understands what you want. The second performs the
data sampling, selection and sequencing. The resulting list of item-ids is used for the third phase
which generates the output. ACCESS can be intercepted at the completion of the second phase.
In this way, ACCESS is used as a pre-processor, effectively "weeding out" unwanted data before
passing the "good" items to any other TCL, ACCESS or PICKIBASIC routines for further processing.

SELECTINGANDIJSINGLISTS

Lists are the result of the SELECT and SSELECT verbs.

SELECT Generates a list of item identifiers in random order which meet the
criteria of the selection clause. This list is a subset of the total file
and may be saved and used later for other processing.

SSELECT Functionally identical to SELECT but provides for the sequencing of
item-ids by one or more sort criteria.

The general form of the SELECT verbs is as follows:

>SELECT filename {selection clause}<r>

>SSELECT filename {sequence clause} {selection clause}<r>

Enter this command sentence:

>SELECT CUSTOMERS WITH STATE = "CA"<r>

. SENTENCE ELEMENT
SELECT
CUSTOMERS
WITH STATE == "CA"

The system responds with:

.. ".,:,>:<::::'.::::::::: ::':<,., :, '::}<::">:::::<:>: '::
......... ',',',','.'., .. ': '," .. ----,", ' ,--- -., ".

DESCRIPTION
verb
filename
selection clause

>SEI..ECTCUSTOMERSWITH STATE:: "CA"<r>

[404] .. 5 ITEMS . SELECTED.

81

82

A SELECT or SSELECT generates what is called an active list. At this point, the system expects
the immediate entry of a command sentence which invokes a process using the currently active
list.

At the TCL (» prompt, enter the following:

>LIST CUSTOMERS COMPANY STATE<r>

The output is:

Only those items selected previously are reported by the subsequent LIST command. So, using a
SELECT is a two step process. First, the active list is built via the SELECT command sentence,
and second, the list is used by the next command entered at TCL.

Once processed, the list is no longer active. Any command entered immediately after the select
(even ifit doesn't use the list), deactivates the list.

Try this again. Enter the following:

>SSELECT CUSTOMERS BY STATE BY COMPANY<r>

> SENTENCE ELEMENt·
SSELECT
CUSTOMERS
BY STATE BY COMPANY

The system responds with:

DESCRU>'fIQN>·····
verb
filename
sequence clause

• •
•
• •
«

•
• • •
• •
•
•
• •
•
•
• ..
•
• •
•
• •
•
•
•
• •
• • • •

• • • •
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• • •

Now immediately enter:

>LIST CUSTOMERS BREAK-ON STATE COMPANY<r>

LIST
CUSTOMERS
BREAK-ON STATE COMPANY

The result is:

DESCRIP1;'lON
verb
filename
output-list

Notice that both of the above examples display the data selected and sequenced by the previous
SELECT and SSELECT commands.

As stated above, an active list can also be passed to another TCL process other than ACCESS.
Try the following:

83

84

Now immediately enter the following:

>ED CUSTOMERS<r>

Notice that no item-list is required when an active list is being passed to the command sentence.

The Editor only acts upon those items in the active list in the sequence that were selected. Re­
enter the previous SELECT sentence and enter the following TCL sentence immediately after­
wards.

>SSELECT CUSTOMERS BY COMPANY WITH STATE = "CA"<r>

SORTs and SELECTs all customers in California and orders the list by company name.

>COPY CUSTOMERS (T)<r>

Copies to the terminal all items identified in the active list.

This says to copy the item image of all of the CUSTOMERS items in the state of California to the
terminal. Observe what happens.

• •
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
•
• •
•
•
• •

• •
• •
•
•
•
•
• •
• •
•
•
•
•
•
•
•
•
• •
•
•
• •
•
•
• • •
•
•
• •

6.2

A list which is active only until the next command is invoked requires that the file be re­
SELECTed every time a new process needs the same list. This can get quite time consuming on a
large file. However, this need not be the case. A list can be built and then catalogued so that it
may be retrieved numerous times.

Catalogued (or saved) lists must be stored in a file called POINTER-FILE which resides in each
account. Before continuing, make sure that your account has a POINTER-FILE by using the fol­
lowing procedure:

Enter:

>LIST POINTER-FILE<r>

If POINTER-FILE does not exist, the system will display the following message:

[201] 'POINTER-FILE' IS NOT A FILENAME

To create a POINTER-FILE, enter these commands:

>CREATE-PFILE DICT POINTER-FILE 29,1<r>

[417] FILE 'POINTER-FILE' CREATED; BASE = 10082, MODULO = 29, SEPAR = 1.

This shows how to create a pointer type file with a modulo of 29 and a separation of 1. If your
implementation does not have the CREATE-PFILE command, then enter the following:

>CREATE-FILE DICT POINTER-FILE 29,1<r>

Now you must identify this file as a pointer type file. Enter the following:

Don't worry about the nuances of a pointer class file versus a regular file. You only have to worry
about doing what has been just described if there isn't a pointer-file already defined on your
account.

85

6.2.1

6.2.2

86

Saving Lists
A list is catalogued by entering the following verb immediately after performing a SELECT.

VEIUI
SAVE-LIST

The general form is:

DESCRIPTION
Saves and catalogs an active list to the POINTER­
FILE. After invocation of SAVE-LIST, the list is
no longer active.

SAVE-LIST listname<r>

The "listname" is any valid name (item-id) without imbedded blanks. SAVE-LIST must be per­
formed when a list is active, otherwise there is nothing to save. Enter the following:

The active list is now saved for later retrieval under the item-id CUSTS. When a list is saved to
the POINTER-FILE, a special item is written which points to the location of the list on the disk.
The message displayed after a SAVE-LIST indicates how much disk space the list uses in frames.
A frame is a measurement of disk space ... well, don't worry about it!

Retrieving Lists

'VERB>
GET-LIST

The general form is:

I)~SCR.IPTION)···

Retrieves and activates a list stored in POINTER-FILE.

>GET-LIST listname<r>

GET-LIST can be used just like a SELECT. The active list can now be passed to the command
invoked immediately following the GET-LIST.

•
• •
•
•
• •
•
• • •
•
• •
•
•
•
•
•
•
•
•
•
• • •
• •
• •
•
•
•
• •

•
• •
• •
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
• •
•
•
• •

Enter the following:

Now enter:

>LIST CUSTOMERS BREAK-ON STATE COMPANY<r>

The report output is:

The BREAK·ON modifier works correctly with the LIST command because the 'CUSTS' list is
already in sorted order by state. Try this next command sequence on your own:

>GET-LIST CUSTS<r>

[404] 8 ITEMS SELECTED.

>COPY CUSTS (T)<r>

87

6.3

88

REPORTING CATALOGUED LISTS

Since catalogued lists are represented by items in a file, POINTER-FILE to be exact, they can be
reported using an ACCESS command sentence.

To simply see what lists already exist, enter the following:

>SORT ONLY POINTER-FILE<r>

SENTENCEELEMENT·/··
SORT
ONLY
POINTER-FILE

The output may look like:

.. .. ., .-.

:':_:-,':_ • -','0.,','

POINTER-FILE

xx
POINTER __ FILE

OO.FILES
HAN

WORDDUMPLIS'l'
CUSTS

6 ITEMS·LISTED.

DES.ClUPTION·>···············
verb
modifier
filename

There are six lists currently saved on my test account. Your results may vary.

This is all well and good, but it doesn't tell much about the state of the list. Sometimes, what is
needed is information like what time and date the list was catalogued, and how big the list is.
Enter the following:

>LIST-ITEM DICT POINTER-FILE 'CUSTS'<r>

SENTENCE ELEMENT
LIST-ITEM DICT
POINTER-FILE
'CUSTS'

DESCRIPTION
verb
filename
item-list

•
• •
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
• •
•
•
•
•
•
•
•
• •

•
• •
• •
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
• • •
•
•
• •

Here is what the output looks like:

The layout ofthe above POINTER·FILE item is as follows:

001 CL
002 Disk location
003 Size
004 Items
005 Timemate

DESCRIPTION
Always a CL for a Catalogued List.
The frame number on disk where the list begins.
The number offrames used.
The number of entries on the list.
The time and date that the list was catalogued.

The verbs LIST·ITEM or SORT·ITEM output the entire item in logical format. Logical item for­
mat is discussed in Chapter 1, "System Overview."

To get all the list pointers, enter the following:

>SORT-ITEM DICT POINTER-FILE WITH *Al = "CL"<r>

SENTENCEELEMENT
SORT·ITEM
DICT POINTER·FILE
WITH * Al = "CL"

DESCRIPTION·····
verb
filename
selection clause

The selection clause WITH *Al = "CL" uses a definition name of *Al. Where did *A1 come
from? *Al is found in the master dictionary, MD. There are a number of default definitions in
MD which can be used to display any attribute of an item.

These display attributes 1 through 5.

*A1 *A2 *A3 *A4 *A5

Definition items are looked up in MD under two circumstances:

-The ACCESS sentence is referencing the file DICT.
or

-The definition item cannot be found in the file DICT.

The literal "CL" is used because all list pointers in POINTER·FILE happen to have a CL in the
first attribute.

A report of the POINTER·FILE can also be generated by the following:

>SORT DICT POINTER-FILE *Al *A2 *A3 *A4 *A5<r>

89

6.4

6.4.1

90

List maintenance consists of being able to:

• Copy a list to another name for backup or modification.
• Delete a list no longer in use.
• Revise (Edit) a list to add or remove entries manually.

Copying List.

COPY-LIST is useful for backing up the current version of a list before using EDIT-LIST to alter
the contents. The COPY-LIST verb follows an identical interaction to the COPY verb, except that
the filename is defaulted to POINTER-FILE. Lists can be copied to new list names within the
POINTER-FILE or copied as items to other PICK files.

The general form to copy a list to a new list name is:

>COPY-L~ST liatname<r>
~:ne.liatname<r>

The~: prompt is displayed by the system as a response to the COPY-LIST command sentence.
The new list name must not already exist since, like COpy, COPY-LIST does not overwrite unless
the (0) option is used. See the section on the options a little further on in this section.

Try this:

Now, use LIST-ITEM for the POINTER-FILE as described in section 6.3, "Reporting Catalogued
Lists" and notice the components of the new list item.

>LIST-ITEM POINTER-FILE 'BAIt. COSTS '<r>

iii::: ~~~~FILE
:/: 'BAKCUSTS'

verb
filename
item-list

• • •
•
•
•
•
•
•
•
• • •
•
•
•
•
•
•
• • •
•
•
• •
•
•
• •
•
•
• • •

• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
• •

Sometimes, lists must be moved from the current POINTER-FILE into another file. The general
form is:

>COPY-LIST listname<r>
TO: (filename {newlistname}<r>

Notice that the new list name is in braces (}), indicating an optional specification. If a new list
name is not indicated, then the original list retains its name in the new file.

The filename follows the same rules as do filename specifications throughout PICK. It must be
preceded by a left parenthesis. To indicate the data level of CUSTS, the TO line reads:

TO: (CUSTOMERS

To indicate the dictionary level of the file, the TO line is specified:

TO: (DICT CUSTOMERS

Copy the CUSTS list to the dictionary of CUSTS as follows:

Now, enter the following:

>LIST-ITEM DICT CUSTOMERS 'CUSTS'<r>

.8EN'l'ENCEELEMENTnDE$CR.JI>TION>
LIST-ITEM verb
DICT CUSTOMERS filename
'CUSTS' item-list

91

N0TE<

92

Which generates the output:

Notice that the list-type item has been converted to a regular old PICK item, no pointers, no save­
date.

Some newer PICK implementations no longer treat lists differently from items. Therefore, the list­
item formats may differ. Please consult your manuals for any discrepancies that you may discover.

More than a single list can be copied at a time. The listname can be a series oflistnames separat­
ed by spaces:

>COPY-LIST lista listb listc

or the listname can be an asterisk (*), indicating all items on file.

>COPY-LIST '*

COPY· LIST Options:

These are the options which can be used to modify the COPY-LIST verb:

OPTlON
D
o
P
T
N

>.·p~SQ:n.IPTION •••• ··•·•·• .
Delete the original item after copying.
Overwrite the new item if it already exists.
Copy the list contents to the system printer.
Copy the list contents to the terminal display.
For use with the T option only. Activates the

NOPAGE mode.

Options are specified in the command sentence as all options on the system:

>COPY-LIST listname (options

The closed parenthesis is optional.

•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
• •
•
•
• • •

• •
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
• •
•
•
• •

6.4.2

Try to copy BAKCUSTS to the original CUSTS list as follows:

The overwrite (0) option must be used to copy to an existing list. While you're at it, delete the
BAKCUSTS list. The command sentence is as follows:

By the way, the commas are optional. Now, re-enter the following ACCESS sentence to confinn
that BAKCUSTS no longer exists.

>LIST ONLY POINTER-FILE<r>

SEN';lTIl:NCEE~MENT
LIST
ONLY
POINTER-FILE

DESCRIPTION
verb
modifier
filename

U sing the P, T and N options can be done by entering each of the following commands:

>COPY-LIST COSTS (P<r>

>COPY-LIST CUSTS (T<r>

and finally:

>COPY-LIST CUSTS (T,N<r>

Deleting Lists

VERB
DELETE-LIST

The general form is:

DESCRIPTION
Deletes a specified list-item.

>DELETE-LIST listname<r>

93

6.4.3

94

'lb demonstrate DELETE-LIST, first copy CUSTS back over to BAKCUSTS as follows:

>COPY-LIST CUSTS<r>
TO:BAK.CUSTS<r>

Now list the POINTER-FILE to verify the BAKCUSTS exists:

>SORT ONLY POINTER-FILE<r>

SENTENCE··ELEMENT···························· .. ·················PESCRIe'l'lQN·············i •••• ·•·•·•·•· •........

SORT verb
ONLY modifier
POINTER-FILE filename

Finally, delete BAKCUSTS using the DELETE-LIST command:

Verify the removal ofBAK.CUSTS with:

>SORT ONLY POINTER-FILE<r>

Editing Lists

VERBY
EDIT-LIST

DESCRIPTION>··
Allows editing (alteration) of a LIST. Uses the

text editor (EDIT) commands.

The general form of the command sentence is:

>EDIT-LIST listname<r>

The number of commands and the variations thereof make SP-EDIT difficult to address in this
book. You must be familiar with Editor in order to use this verb. Ah hah! A good reason to
review "HOW TO: The Editor," by yours truly. Anyway, here is a general list of the commands to
use.

DEn
EX
FI
FD
Gn
I
Ln
IJstring
R

Delete n lines from the current line.
Exit without filing.
File the list and exit.
Delete the list. Like DELETE-LIST.
Goto a specific line number.
Insert a line.
List n lines. Usually use L22 to list a full page.
Locate the first occurrence of string in the list item.
Replace an entire time.

• • •
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
• •
•
•
•
• •

•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

'lb "limber up," try this next sample:

The goal is to eliminate from the report a single unwanted item without re-selecting the whole
file. It just so happens that PHINK, PHINK, and PHINK, customer 106, has become a real fink
and must be removed. Enter the following:

The list is re-catalogued when FILEd.

Now, when the GET-LIST is performed:

Loc.te 1 OCCUlYenca
of 106.

Magic! There is one less item in the active list. Now enter:

>LIST STAFF BREAK-ON STATE COMPANY<r>

95

.. -:.... :- :-:-.-::-:.:--->

EXERCISE
1.

6

2.

3.

4.

5.

6.

7.

96

ACCESS has three major phases. The first phase performs

, the second phase performs -------------------------------

, and the third phase performs -------------------------------

The two verbs which perform the first two phases alone are

and ------------------- -------------------

True or False. SELECT statements need an output-list.

True or False. An active list can be passed to a TCL, PICK/BASIC or
another ACCESS process.

Write the ACCESS sentence for the CUSTOMERS file to select customers
in the state of California in the order of the company name.

Match the following:

SAVE-LIST SNAMES a. Generate an active list of
customer contacts whose last
name begins with the letter S.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

SSELECT CUSTOMERS BY BALANCE b. Activate the saved list •
SNAMES. • SELECT CUSTOMERS WITH CONTACT = liS] II c. Generate an active list of
customers in order of the •

GET-LIST SNAMES

DELETE-LIST SNAMES

balance due.

d. Save the currently active
list and name it SNAMES.

e. Delete the saved list
SNAMES.

Fill in the blanks to create an active list of all the customers in
California sorted by the balance due and save the list under the
name CALCUSTS.

> CUSTOMERS <r>
----------- --------------------------------------

[404] 5 ITEMS SELECTED

> CALCUSTS<r> ---------

•
•
•
•
•
•
•
•
•
•
•
• •

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

8.

9.

Fill in the blanks to reactivate CALCUSTS and list resulting cus­
tomer's company name address and state.

> CALCUSTS<r> ---------------

[404] 5 ITEMS SELECTED.

> <r> --

Fill in the blanks to copy CALCUSTS to BAK.CALCUSTS in the
POINTER-FILE.

> CALCUSTS<r> ---------------

TO: <r> --------------------

10. Fill in the blanks to copy CALCUSTS to a file called LISTS.

>_______________ CALCUSTS<r>

TO: <r> --------------------

11. Enter the command to delete the CALCUSTS list.

<r> -----------------------------------

12. POINTER-FILE files must have a in the file -------------
defining the item in the MD.

13. Write the ACCESS sentence which sorts the catalogued list pointers
in the POINTER-FILE and shows the time and date that they were saved.

> <r> --

97

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

7.1

FORMATTING WITH
DATA DEFINITIONS

The intention of this chapter is to introduce some basic methods for effecting the output of
ACCESS by altering the contents of data definition items. The main system tool used to alter
these items is Editor. (Another good reason to be familiar with the EDIT verb and all of the asso­
ciated commands.)

The parameters contained within a definition item are actually instructions to ACCESS for data
origin, format, calculation and correlation. These parameters are dynamically processed so that
when altered, the results can be immediately tested by invoking an ACCESS sentence containing
the descriptive name of the definition item.

The layout of a data definition item is as follows:

) •••••••••• .A..~mtJ'l\E! •• ~Ell.·. ·D~aCRm'tlQN······<···············
000 The item-id. The descriptive name of the definition item.
001 The type of definition.

002
003

004

005
006
007

008

009

010

A - Attribute definition.
S - Synonym definition.
X - Protected.
The system doesn't care if a type is an A or an S. The
decision between the two is totally up to the user. A
protected attribute (X) causes an ACCESS request to
abort if this data definition is used in a request.

The attribute position of the data.
The optional column heading. The definition item-id is

used as a column header by default if 003 is null.
Associated attributes. This is used if attributes contain

multivalue lists which are correlated. That is, they are
always reported together. Don't worry about this right
now. The results are too esoteric for this discussion.

Not used.
Not used.
A valid data conversion or mask. Performs functions at

print time, the second phase of ACCESS.
A valid "formula" used to perform arithmetic, logical and

string manipulations of one or more attributes.
Performs functions at selection time, the first phase of
ACCESS.

Justification of data in the output column.
L - Left. Data wraps if wider than the field length.
R - Right (used for numeric attributes).
T - Text. Data wraps at a blank.
U - Unconditional left. Data does not wrap.

The width of the output column.

99

100

Each of the attributes in a definition item is described by another definition item residing in the
master dictionary (MD) of the current account. These are the descriptive names used by the
LISTDICT process discussed briefly in Chapter 2. The following is a list of the MD definition
items and the attribute positions that they address.

•.••••••.. D~F®TJ()N·N.t\.ME
D/CODE
AlAMC
S/NAME
S/AMC
V/CONV
V/CORR
V/rYP
VIMAX

A'l".l'RmUTEPOSiTION>
001
002
003
004
007
008
009
010

These descriptive words can be used to generate a custom report of dictionary data definitions.
Try this:

>SORT DICT CUSTOMERS BY A/AMC BY D/CODE .•.
••. WITH D/CODE # "D]" BREAK-ON A/AMC V/TYP V/MAX<r>

SENTENCE ELEMENT
SORT
DICT CUSTOMERS
BY NAMC BYD/CODE
WITH D/CODE # "D]"
BREAK-ON AlAMC V/TYP VIMAX

verb
filename
sequence clause
selection clause
output-list

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

•
•
• •
•
•
•
•
•
•
•
• •
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

7.2 COLUMN ItEADERS .

As has been demonstrated, column headers default to the item-id of the definition item when
attribute 003 is empty. In the section of Chapter 4 which covers implicit report formatting, the
numeric data definitions are all given alpha column headers to override the numeric item-ids.

Special column headers can be added to any data definition item. As an exercise, modify the col­
umn header for the COMPANY data definition. Instead of simply having the word COMPANY as
a column header, replace attribute 003 of the definition item with the string "Company Name"
mixing upper and lowercase.

Enter the following:
EDIT the COMPANY
data definition ItanL

Une OO3la ampty.

101

102

Now test this change with the following sentence:

>LIST CUSTOMERS COMPANY<r>

The output is as follows:

Notice the change in the column header for company name.

Column header text can also be stacked. That is, there can be multiple lines of column header
text. This is accomplished by using value marks (ASCII Char 253, generated by a
<ctl><shift><]» to delimit the end of each line.

Modify the COMPANY column heading to be two lines, "Company" on the first, and "Name" on
the second, as follows:

Now, enter the same ACCESS sentence and notice the result.

•
• •
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• • •

•
•
• •
•
•
• •
•
•
•
• •
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
• •

Finally, column headers can be completely removed by placing a back-slash (f) in attribute 003 of
the definition item. This time, however, create a synonym definition to use so that the original
remains unchanged. To start off, COpy the item COMPANY to a new item-id, CO as follows:

Now, modify the CO definition as follows:

103

7.3

104

Now enter the following and observe the results:

Justification of the data within the column can be altered by changing parameters in the data
definition item at attribute 009. Create another synonym for COMPANY called COMP.

Now, you can attack the problem of customer 106, PIDNK, PHINK and PIDNK whose company
name keeps wrapping in the column.

One way to attack this is to request an unconditional (U) left justification. This states that, no
matter what the actual length, do not wrap the result. Change the justification of COMP from L
to U as follows:

Goto ambIM 001, ... ~

•
•
• •
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

•
•
•
•
•
•
•
•
•
•
• • •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

Now enter the following command sentence to list only customer 106:

>LIST CUSTOMERS '106' COMP CONTACT<r>

·\·)}S~m~NCE·E1JEMENT •••••• •.···
LIST
CUSTOMERS
'106'
COMP CONTACT

DESCRIPTION
verb
filename
item-list
output-list

Notice that a company name that's too long runs into the next column. Not very desirable.

Another way to alleviate this problem is to use the text (T) justification parameter. As an exer­
cise, change the U on attribute 009 ofCOMP to a T. Now, enter the same sentence as above:

>LIST CUSTOMERS '106' COMP CONTACT<r>

SENTENCEELEMENT·
LIST
CUSTOMERS
'106'
COMP CONTACT

verb
filename
item-list
output-list

Notice that the T justification indicates that column wrapping should be performed at a space
and not in the middle of a word. Text (T) justification is quite useful for columnar output of com­
ments.

105

7.4

106

A final word about justification. The justification parameter also controls SORTed order if the
definition name is used in a BY clause. L, T, and U cause a sort left justified and R causes a sort
right justified. It should be noted that numeric fields (money, etc.) should always be right
justified.

For example, if an attribute containing numbers ranging from 1 to 1,000 is sorted left justified,
the output occurs in this order: .

1 10 100 100 11 110 1100 etc.

If right justified, the sort is in correct numeric sequence:

1 2 3 4 5 6 7 8 9 10 11 etc.

The length field in attribute 010 can be modified to extend the width of the output column. Note:
extending column width may make the total width of the report greater than the current width
setting in the TERM statement. Always test any changes.

Fix the problem with COMPANY, once and for all. Change the column width from 20 to 25 as fol­
lows:

Now enter the same ACCESS sentence as before:

Notice that the company name no longer wraps.

•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
• •

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

7.5 ::mnDEN.cOLUMNS··:.··j··r·················.·.·.·.·.·.·

Columns can also be "hidden" on a report, even though the definition name is specified in the out­
put-list of an ACCESS command sentence. This is desirable when a field is being used for a
SORT and BREAK-ON with the break value being displayed at the break line via the 'V'
BREAK-ON option. It is redundant to also show the columnar details for the break value.

A variation ofthe following command sentence is to be used:

>SORT CUSTOMERS BY STATE COMPANY BREAK-ON STATE" 'V'" TOTAL BALANCE<r>

... " 'V' " TOTAL BALANCE

verb
filename
sequence clause

output-list

The BREAK-ON option 'V'is used to display the break value at the break line. This generates
the following report:

107

108

'lb eliminate the redundant reporting of the STATE at each detail line, the state output column
must be hidden. A column is hidden by modifying two parameters in the definition item:

-The columnar header is suppressed by placing a back-slash (\) in attribute 003 ofthe
definition item.

-Use a zero (0) value for the column width in attribute 010.

First, create a synonym for STATE called HIDE. STATE as follows:

Now, as an exercise, modify the HIDE. STATE definition item to look as fonows:

The previous command sentence can be rewritten as:

>SORT CUSTOMERS BY STATE COMPANY BREAK-ON HIDE. STATE "'V'" TOTAL BALANCE<r>

·····SENTENCEEl.,EMENT
SORT
CUSTOMERS
BY STATE
COMPANY BREAK-ON HIDE.STATE ...

... " 'V' " TOTAL BALANCE

DESCa:tM'ION<.)i}
verb
filename
sequence clause

output-list

Notice that the report is still being sequenced by STATE, but the output column is addressed with
the new synonym, HIDE.STATE.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

The report appears as follows:

109

EXERcrrSE 1.

7 •• i

2.

3.

4.

no

Fill in the attribute position next to each description of an entry
in a data definition item.

Justification. L, R, T or U. --

A conversion or correlative performed in the third phase of

•
•
•
•
•

-- ACCESS, print time. •

__ The attribute position (arnc) of the data.

The maximum width of the output column. --

-- The definition type code. A, S or X.

A conversion or correlative performed during the second phase --
of ACCESS, selection time.

Write an ACCESS statement to list all synonym (S) type data
definitions found in the dictionary of CUSTOMERS.

> <r> ---

What keystrokes are used to form a multiple line column header?

Match the following:

L a. Indicates a null column header.

A b. Unconditional left. The data in the column is
not wrapped.

S c. Right justified output.

T d. An attribute definition type.

\ e. A synonym definition type.

R f. Protected definition.

U g. Left justified. The data is wrapped in the
output column.

X h. Text justification. The data is wrapped on
a space.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

•
• •
•
• •
•
•
• •
•
• •
•
•
•
•
•
• • •
•
•
•
•
•
•
•
•
•
•
•
• • •

5.

6.

7.

Fill in the blanks for the following data definition item describing
a left justified comment field held in attribute 15 of the data item.

ID: COMMENTS
001 A
002
003
004
005
006
007
008
009

--

--
010 10

The output of the COMMENTS field looks like this:

COMMENTS ..

THIS IS "TH
E ONLY COM
MENT FIELD

IN THE IT
EM.

Name two changes that can be made to the COMMENTS definition item to
make the output more readable.

Columns can be hidden on output by doing two things to the data
definition item.

Place a in attribute ---------------- -------------------

Place a in attribute
---------------- -------------------

ill

•
•
•
•
•
•
•
• •
•
•
• •
•
•
•
• •
• •
•
•
• •
•
•
• •
• • •
•
• • •

•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
• •
•
•
•
•
•
•
•
• •

8.1

CONVERSIONS
AND CORRELATIVES

Here is where things can get complicated. Don't fear. This chapter covers only the most common­
ly used conversions and correlatives, and how they relate directly to the sample CUSTOMERS
file. Not every possible combination is covered. Nor is every nuance of "programming" in
ACCESS. Such an endeavor would require an entire workbook in itself. (This is on the horizon.)
However, it is important to get some basic concepts laid out.

Conversions and correlatives are the parameters which reside in either attributes 007 or 008 of
the data definition item.

Conversions are used to alter the format of the data stored in an attribute so that it is more easily
interpreted on a report. Data as it exists in an item is said to be in internal format. That is, the
data is in its most unencumbered and compact form. Conversions allow the data to be presented
in external or output format. This is a form more easily understood by human beings.

For example, the phone number attribute in the CUSTOMERS file is a 10 digit phone number
that contains no logical breaks between the area code, the prefix and the extension. To make this
data more readable on a report, it requires a conversion mask so that these elements of the data
are easily recognized.

The phone number 7145551212 should be displayed as (714) 555-1212.

The conversion mask (the actual mask parameter is discussed later in this section) reformats the
data without changing the stored data.

Correlatives are "formulas" which perform arithmetic, logical or string building functions on the
data. Whereas conversions simply reformat a single data element for readability, correlatives
extract and combine single or multiple data elements to produce a "virtual" data field. The word
"virtual" is used to describe data which is not actually stored in an item, but is "created" via the
dynamic process indicated in the correlative expression.

113

114

The data correlated can be retrieved from any attribute in the same item or in another item, or
the data can be system provided. For example, the number of days that payment is overdue can
be calculated by subtracting the date due from today's date. 'lbday's date is provided by the sys­
tem. (Hopefully, the correct date has been set.)

today's date - date due

(Again, the actual formula is shown later.) This performs an arithmetic calculation based on two
separate elements of data to produce a new "virtual" data element which automatically changes
as time passes.

When using a selection clause with a test value based on the results of a correlative, it is impor­
tant to note that the placement of the correlative in attribute 007 versus 008 can affect the out­
come of the report. As the data is retrieved from an item and is tested, the process dictated by
the correlative in attribute 008 is performed. However, correlatives placed in attribute 007 are
not performed until print time, when the selection decisions have already been made.

>LIST CUSTOMERS WITH OVERDUE >= "30"

A calculation placed in attribute 008 of the overdue definition would cause the command sentence
above to perform correctly. The same calculation in attribute 007 would cause the command sen­
tence to fail.

This is a concern for correlatives only. Simple conversions can reside in attribute 007 with no
problems.

Well, the only way to really start understanding how to use conversions and correlatives is by
example. So, without further adieu:

•
•
•
•
•
•
•
•
•
• • •
•
• •
•
•
•
•
•
• •
•
•
•
•
• •
•
•
•
•
• • •

• •
•
• •
•
• •
• •
• • •
•
•
•
•
•
•
•
• •
•
•
• • •
•
• •
•
•
• • •

8.2

8.2.1 The D Conversion
Dates are stored in an internal fonnat, foreign to any traditional method of date storage. Instead
of the usual month, day and year, an internally fonnatted date is stored as a count of days begin­
ning at an artificial day zero.

In the PICK system, day zero is December 31, 1967. Day 1 is January 1, 1968, and day -1 is
December 30,1967. Days prior to day zero are negative and days following day zero are positive.

Why such a strange standard? I'll answer a question with a question. Have you ever tried to sort
a date field stored in a "traditional" fonnat? (BY YEAR BY MONTH BY DAY.) Worse yet, have
you ever tried to figure a net 30 payment within a leap year? Well, the date routines in the PICK
system make these tasks elementary.

The date conversion (D) converts an internal date to a variety of external fonnats.

The simple fonn is:

D{y}{c}

The "y" and "c" parameters are optional and have the following meaning:

y

c

The number of digits in the output year (0, 2 or 4).
The absence ofthis parameter indicates a 4 digit year.

A single alpha character to use as a delimiter between
the month, day and year. It can also be:

D output the day of the month only
J julian date '
M output the month only
Q output the quarter
W output the day of the week
Y output the year only

The stored data values for DATE.DUE are numbers like:

8888
·500

This is over 24 years after December 31, 1967.
This is over a year before December 31,1967.

115

116

Remember the DATE.DUE data definition?

Notice that the date conversion "D" is placed on attribute 007 and, therefore, it is performed at
print time. Attribute 007 is the usual home for data conversions.

Now, enter the following sentence and compare the results to the data actually stored in attribute
009 (using * A9) of each data item.

>SORT CUSTOMERS BY DATE.DUE COMPANY DATE.DUE *A9<r>

·····SENrENCE ELEMENT> . DESCRIPTION·· \ < ••••••.•••
SORT
CUSTOMERS
BYDATE.DUE
COMPANY DATE.DUE * A9

verb
filename
sequence clause
output-list

•
•
•
•
•
• • • •
•
• •
• •
•
•
•
•
•
•
• • •
•
• •
•
•
•
•
•
•
•
• •

•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• • •
•
•
•
•
•
• • •

The R in attribute 009 of the data definition insures that the numerics are kept in proper
sequence. Notice the format of the simple D conversion. Even though the date is stored in inter­
nal format, and the conversion is specified at print time, the external form can still be used in a
selection clause as follows:

>SORT COST~ BY DATE.DOE IF DATE.DOE AFTER "01/01/80" COMPANY DATE.DOE<r>

) •••• SENTENCE··itI..itMEN'lt)) ••••• ·.<·.·}···.·········· ··· •• <·.DESCRIPTION
SORT verb
CUSTOMERS filename
BY DATE.DUE sequence clause
IF DATE.DUE AFTER "01/01/80" selection clause
COMPANY DATE.DUE output-list

Simple conversions in attribute 007 are a two-way street. When the ACCESS sentence is inter­
preted, the conversion is used to convert the selection value ("01/01/80") to the equivalent internal
format for comparison to the stored data. On output, the stored data is converted to the equiva­
lent output format.

Notice that the selection clause is specifying the date in a D2I format, even though the conversion
in DATE.DUE is simply a D. The date conversion is intelligent enough to handle this.

117

8.2.2

118

Here are the results of different combinations ofD conversion acting on the internal date -1000.

Internal Date: -1000

••••••.. ··•.· •• CONVERSION.··· ·.·<!U:SJ,.JL'l')H ••• ··.<}··
D 05 APR 1965
DO 05 APR
DI 04105/1965
D2 05 APR 65
D2- 04-05-65
DOl 04105
DD 5
DM 4 (numeric month)
DMA APRIL (alphabetic month)
DW 1 (numeric day of the week)
DWA MONDAY (alphabetic day ofthe week)
DY 1965
D2Y 65
DJ 95
DQ 2

As an exercise, replace attribute 007 of DATE. DUE with each of these and test the result.

The MT Conversion
Time is also stored as a sequential number instead of the cumbersome base 60 system of hours,
minutes and seconds. In fact, time is stored as the number of seconds since midnight.

The MT conversion handles time and follows the format:

MT(H}(S}

Normally, the MT conversion displays a 24 hour clock. The H and S parameters are optional and
specify the following:

H
S

12-hour clock, AM and PM.
Output seconds.

Here are some variations of the mask time (MT) conversion for the internal time of 67000 sec­
onds.

Internal time: 67000

CONVERSION •. ····· .•... »RESULT < > •••..•.•...•....
MT 18:36
MTS 18:36:40
MTH 06:36PM
MTHS 06:36:40PM

•
• • • •
•
•
•
• •
• •
•
•
•
•
•
•
•
•
•
•
•
• • • •
•
•
•
•
•
• • •

•
• • • •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
• • •
•
•
• •
•
•
• •

8.3

8.8.1

A string is any series of data characters. All data stored in PICK is a string. String masking
allows any string to be reformatted for output.

The MC Conversion
The first string mask conversion is the (MC) mask character which follows the general form:

Me{/}e

The slash is optional and means "not." Using the variations on the "c" code, the mask character
conversions can be any ofthe following:

'lb mask out (remove) only certain character types:

MCA Output only the alphabetic characters.
MC/A Output all but the alphabetic characters.
MCN Output only the numerics, (0-9).
MCIN Output all but the numerics.

'lb change the case of the alphabetic characters:

MCL Change all alphabetics to lowercase.
MCU Change all alphabetics to uppercase.
MCT Also known as "mask character text." Capitalize the first character of

every word and convert the remaining characters to lowercase.

Other uses: (these are FYI only)

MCP Convert all control <ctb non-display characters to periods. This is
quite helpful in weeding out garbage in attributes.

MCDX Convert decimal values to the equivalent hexadecimal.
MCXD Convert hexadecimal values to the equivalent decimal value.

Here is what each of these conversions produces when acting upon the following address: 123
MAIN street Apt. 2-a

••••••• UJJONVRRSION>·········
MCA
MC/A
MCN
MCIN
MCL
MCU
MCT

·RESPL11·.····· ... •········
MAINstreetApta
123 . 1-
1231
MAIN street Apt. -a
123 main street apt. I-a
123 MAIN STREET APT. I-A
123 Main Street Apt. l·A

119

8.4

120

Alter the ADDRESS definition to display the address in a text fonnat mixing upper and lower­
case as follows:

N ow check the results by entering:

STRINGIVIASKING

String masking allows any string to be refonnatted to match a specified pattern. This is accom­
plished with the mask (M) conversion following the general fonnat:

Mjust fill length

•
• •
• •
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
• •
•
•
• •

•
•
• •
•
•
•
•
• •
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

::::::::::C()M~ :ll!$QROOION<U···
just The justification of the output string, L for left or R for right.
fill The single character parameter used to specify the character to use

to fill the full length of the output string. The fill parameter can be:
fill spaces
% fill zeros
* fill asterisks

length The maximum length of the output string. Unlike the column length
specification in 010, the ML and MR masks truncate the string at the
"length."

Passing the data string "TEST" through this conversion results in the following:

ML#lO
MR#lO
ML%lO
MR%lO
ML*lO
MR*lO

TEST
TEST

TESTOOOOOO
OOOOOOTEST
TEST******
******TEST

The fill asterisk and fill zero are probably more effective when outputting numerics. The number
55 is used in the following example:

ML#lO 55
MR#lO 55
ML%lO 5500000000
MR%lO 0000000055
ML*lO 55********
MR*lO ********55

The fill parameter followed by the length is a "shorthand" method for indicating an output format
mask. For example, ML#10 is equivalent to ML########## or ML(##########).

Any output format mask can be enclosed in parentheses as follows:

ML(explicit format)

An explicit format can be demonstrated by altering the PHONE definition item in the DICT of
CUSTOMERS so that it looks like this:

121

8.5

122

The output mask, ML«###) ###-####) contains literal characters, (,), <space> and -. The external
parenthesis are strictly to indicate inclusion and are not part of the output string. Every charac­
ter other than a fill parameter within the enclosure, including other parentheses, is treated as a
literal.

Notice that the conversion is automatically repeated for each multivalued line.

The above format mask can also be written in shorthand as follows:

ML«#3) #3-#4)

MONEY (DECIMAL) MASKING

Monetary data is usually stored without decimal points (periods) as part of the data field. This
data is said to contain implied decimals. The central reason for storing money fields as implied
decimals is that ACCESS only performs integer arithmetic. Decimal values are truncated. A
monetary value that is stored in the customer BALANCE field has 2 implied decimal places. For
example:

STOREQ
12675
78932
10000
45

•
•
•
•
• •
•
•
•
•
• •
•
•
•
•
•
•
•
•
• •
•
•
•
• •
•
•
•
•
•
•
• •

•
•
•
•
•
•
•
•
• • •
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
• •

The MR or MD Conversions
Decimal masking is performed by using either the MD or MR conversions. These are inter­
changeable. The MR conversion has the same basic format as the previously discussed string
masking conversion (Mjust) with specific extensions for formatting decimal values. The general
format is:

MR(precision} (scaling) (Z) (,) (sign) ($}filliength

.. ·· ... C()~ ?···· ·i ••• DESCRIPTION···.·····
precision
scaling

z
sign

$
fill and length

The number of decimal places in the resulting number.
The number of places to the left to move the decimal point before
rounding to the precision.

Suppresses leading zeros.
Places a comma (,) at the thousands, millions, etc., positions.
A sign code which designates how to handle negative numbers.

The values can be:
C Negative numbers are followed by the credit indicator,

"CR."
D Positive numbers are followed by the debit indicator,

"DB."
E Negative numbers are enclosed in angular brackets,

<number>.
M Negative numbers are followed by the minus sign, number-.
N The minus sign is suppressed.

Prefix the answer with a dollar sign.
The same as in the string ML and MR conversions.

If the scaling and precision match, then only one needs to be indicated. For example:

oomtNALyAJ..PE·····
67897

CONVERSION ••• ··· ·· •••••• YOtlTPUT
MR2 678.97

The conversion MR2 is identical to MR22. Redundant precision and scaling parameters need not
be specified. This states that the decimal point is to be moved 2 places to the left and the number
is to be reported with a 2 decimal precision.

When the precision and scaling are mismatched, the result is rounded. For example:

·IN'llERNAl.ZVAll0E
67897
67897

... ,',

CONVERSION$CAtwU ·ROIJNDEDOUTlt01'<
MR24 6.7897 6.79
MR02 678.97 679

The first example moves the decimal 4 places to the left and then rounds to a 2 place precision.
The second moves the decimal 2 places to the left and reports with no decimals.

123

124

Here are a series of examples using the MR conversion.

····.lNTl~RNAL.VALliE.···.·))········
67897
67897
-67897
-67897
67897
67897

·CON\TER$fON)· •••••• ·· ·····nt.n'»UT
MR2$ $678.97
MR2D$ $678.97DB
MRO,$ -$67,897
MR2E <678.97>
MR2,$*12 $*****678.97
MR04$ $7

Here is the data definition for BALANCE in the CUSTOMERS file.

Create the following synonyms in the DICT of CUSTOMERS.

•
• •
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
• •

•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

Now, enter the following command sentence:

As in the date and time conversions, the external format of a monetary value can be specified
within an ACCESS selection clause.

>SORT CUSTOMERS BY BALANCE WITH BALANCE >= "100.00" CONTACT BALANCE<r>

SENfE'NOEELEMENT·
SORT
CUSTOMERS
BY BALANCE
WITH BALANCE >= "100.00"
CONTACT BALANCE

verb
filename
sequence clause
selection clause
output-list

125

8.6

8.6.1

126

String extracts are used to remove portions of a data string. As with all correlatives, placement
in attribute 008 versus attribute 007 makes a difference when testing for the result in a selection
clause.

The Text Extract (T)
The text extract allows fixed length strings to be removed based on the character position. The
general form is:

Tbegpos,length

begpos
length

The beginning character position to start the extract.
The number of characters to extract.

For example, using a stored string of "123456789" the text extract produces the following results:

""""'" ·"'CORR.Et..AT1VE·:'"
T1,1
T1,5
T3,2
T3,5
T9,1

.·REStrtTS'·'·'··'·'
1
12345
34
34567
9

Use the text extract to remove the area code from the phone number in attribute 7 of the data
item by creating the following data definition, AREA.CODE.

The extract begins at position 1 and removes 3 characters.

•
• • •
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
• •

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

Now, enter the following command sentence:

>LXST CUSTOMERS PHONE AREA.CODE<r>

···.sE~ENCS.·E~NT·····
LIST
CUSTOMERS
PHONE AREA.CODE

DESCRIP'J:ION.············
verb
filename
output-list

The text extract is automatically performed on the multivalues in the PHONE attribute.

Now, here is where the placement of the correlative makes a difference in the results of ACCESS.
Enter the following sentence:

>SORT CUSTOMERS BY CONTACT WITH AREA. CODE = "408" CONTACT PHONE<r>

. SENTENCE ELEMENT» .
SORT
CUSTOMERS
BY CONTACT
WITH AREA.CODE = "408"
CONTACT PHONE

The result is the system error message:

[401] NO ITEMS PRESENT

DESCRIPTION
verb
filename
sequence clause
selection clause
output-list

127

8.6.2

128

How can this be? There is at least one customer in 408. The problem is that the text extract in
AREA.CODE is in attribute 007. Attribute 007 is processed at print time, AFTER the data has
been selected. If the result of the extract is to be tested at selection time, it MUST reside in
attribute 008 of the definition item.

Change the AREA.CODE data definition as follows:

Now enter the same ACCESS command sentence:

The Group Extract (G)
The group extract allows data strings to be removed based on a recognizable data pattern. For
example, a data string may look like this:

123* ABC*lS6

This data string has three "groups," each delimited by an asterisk (*).

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

•
• • •
•
•
• •
•
• •
•
•
•
•
•
•
•
•
• •
•
•
•
• •
• •
•
• •
•
• • •

The group extract allows any single or series of groups to be removed from the data string. The
general format is as follows:

G{skip} delimiter segments

skip An optional parameter which indicates how many delimiters to
skip before beginning the extract. Starting an extract at the
beginning of the string is indicated by a 0 skip value. If the skip
value is omitted, the skip defaults to O.

delimiter
segments

A single character which is being used to separate the groups.
The number of sequential groups to extract.

Using the previous string, "123*ABC*IS6", possible group extracts are as follows:

•••· ••• ·.·.CQItREtATf\TE
G*1
GO*1
G*2
Gl*1
G*3
G2*1

RESULTS>
123
123
123*ABC
ABC
123* ABC*IS6
186

The CONTACT attribute in CUSTOMERS contains a person's name in the following format:

Last,<space>First<space>Middle

The group extract can be used to address each element in the CONTACT field to separate the last
and first names. The last name is set apart from the rest of the attribute by a comma (,).
Therefore, a group extract which addresses a single group from the beginning of the string, using
a comma as a delimiter, is expressed like this:

GO,1 or G,1

Enter the following definition item into the DICT of CUSTOMERS.

129

130

Notice that the group extract is placed in attribute 008 so that the last name can be used in a
selection clause.

Extracting the first name is a little trickier than grabbing the second group delimited by a comma
(,). In fact, the following group extract reports both the first name and middle initial.

Gl,l

However, the comma doesn't need to be used. There is another delimiter used in this data string,
a space. The first name is always separated from the comma ending the last name and the mid­
dle name by spaces. With this in mind, enter the following data definition:

When entry of these definitions is complete, enter the following command sentence:

>SORT CUSTOMERS BY LAST.NAME FIRST.NAME LAST.NAME CONTACT<r>

SENTENCE ELEMENT<>
SORT
CUSTOMERS
BY LAST.NAME
FIRST.NAME LAST. NAME CONTACT

verb
filename
sequence clause
output-list

•
•
•
•
• •
•
•
•
•
• •
•
•
•
•
•
•
• ..
•
•
•
6

•
• •
•
•
• •
•
•
• •

•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
• •
•
•
•
• •

8.7

The file translate process uses data in the current item to read data from another item in a differ­
ent file. This helps to alleviate redundancy by allowing repetitive data to be retrieved from a
"code lookup" file, rather than having it stored in every item.

For example, in the CUSTOMERS file, the STATE field is kept as a two alphabetic character
abbreviation. The state name is kept in a "lookup" file called STATES. (STATES should have
been created in Chapter 2, "Getting Started.") The state abbreviation is the item-id for each item
in the STATES file. The contents of a STATES item might include the state name, region code,
tax structure, etc. However, for the purposes of this example, the STATES file uses the following
layout:

10: state abbreviation
001 state name

Now it's time to add the state code items to the STATES file. Again, you must be familiar with
the Editor to be able to enter the following items.

The file translate uses the fifth attribute of a CUSTOMERS item to read the state name from the
STATES file.

The STATE.NAME path:

131

8.7.1

132

The Translate Syntax
The general fonn of the file translate correlative is:

T (DIeT)filename;option In) ;iamc;oamc (;bamc)

Here's what the parameters mean:

<PA"R..AMETER •••• < ••••• U ••• ••• DE$CRlPTIQN ••• ····<·················

filename

option

n

iamc

oamc

bamc

This is the target filename. The optional DICT specification
addresses the dictionary level of the target file.

The read option. This indicates what to do if the addresses data is
there or not. The option codes can be:

C Ifthe value being read does not exist, use the original
value.

X If the value being read does not exist, output a null.
The above options are the most frequently used. The following
options are provided strictly FYI, since they are seldom used.
(At least I've never seen them used. I tried to use them once,
but nothing seemed to work.)

V Verify existence only. The read attempt must be
successful and the targeted attribute must have a
value, otherwise an error message is displayed.

I Input verifY only.
o Output verifY only.

An optional numeric value mark count which must immediately
follow the "option" code. This extracts a specific value position in
the targeted attribute.

The attribute mark count to be used for the input conversion.
This is seldom used, and can remain null.

The output attribute mark count. This is the attribute to be
passed back through the translation.

The optional break attribute mark count. The contents of this
attribute are displayed at the break line (BREAK-ON must be
used in the command sentence) in place of the "oamc."

Confusing enough? When all of this is said and done, the only parameters that you have to deal
with are "filename," "option" and "oamc." The rest of the parameters can remain null.

The data definition, STATE.NAME, should be added to the DICT of CUSTOMERS.

•
•
•
•
•
•
•
•
•
• •
•
• •
•
•
•
•
• •
•
•
•
•
• •
•
•
• •
•
•
•
• •

•
• • •
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• • 8.7.2

•
•
• •
•
•
•
•
•
•
•
• •

This definition uses attribute 5 as an item-id to read the first attribute of the STATES file. If the
read is not successful, the output is null.

Now enter the following ACCESS command sentence:

>LIST CUSTOMERS STATE STATE.NAME<r>

··/ •••••••. SEN;rENCE.·ELE:MENr\ •••.• • •.
LIST
CUSTOMERS
STATE STATE.NAME

DESCRIPTION
verb
filename
output-list

As in all correlatives, if the full name needs to be tested in a selection clause, the translate correl­
ative must be placed in attribute 008. Otherwise, the translate can reside in attribute 007.

A Hypothetical Case
A more extensive implementation of a code file lookup involves using the zip code to imply the
city and state. Therefore, the zip is the only data element required in each item ofthe NEW.CUS­
TOMERS file. All of the possible zip codes are kept as item-ids in a special ZIPS file.

Sample item layouts:

133

134

The two attributes contained in the ZIPS file are the city and state. The CITY and STATE data
definition items in the dictionary of the NEW.CUSTOMERS file point to the zip code attribute
and translate to the ZIPS file to retrieve the data.

The CITY and STATE path:

The following are the definition items which perform the described translation.

Retrieve the nrat
attribute of the ZIPS nle.

Again, poInta to
the zip attribute.

Retrleva the aecond
attribute of the ZIPS file.

• •
• •
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
• •
•
•
•
•
•
•
•
• •

•
•
• • 8.8

•
•
•
•
•
•
• •
•
•
•
•
• •
•
•
• •
•
•
• • •
•
•
•
•
•
•
• •

1\1BI:tnmEEOONVERSIONS •• ·AND.iCORREEATIVES ••• ·••••·•···········

Multiple conversions and correlatives are used in a definition item to do multi-stage processing of
a data element. Staged processing is specified by delimiting each conversion and correlative with
value marks. The results of an entry in the multivalued list are passed to the subsequent entries
in the order of specification.

The general form is:

Conv]Conv]Conv] •••

The "Conv" represents any of the aforementioned conversions and correlatives. The right bracket
(]) represents a value mark. (Keyboard generated by a <ctl><shifb<]>.)

For example, the definition LAST. NAME uses a group extract to remove the last name from the
CONTACT attribute. Once the last name is extracted, it can be processed by a series of correla­
tives or conversions.

Modify the LAST.NAME definition item so that it looks like this:

Test this with the following command sentence:

>SORT CUSTOMERS BY CONTACT CONTACT LAST.NAME<r>

.···SENTENCE··ELEMENT
SORT
CUSTOMERS
BY CONTACT
CONTACT LAST. NAME

DESCRIPTION>
verb
filename
sequence clause
output-list

135

136

Do the same thing for the STATE.NAME, but this time mask all of the characters to lowercase
(MCL). Modify the STATE.NAME definition as follows:

Use this definition in the following sentence:

>LIST CUSTOMERS STATE STATE.NAME<r>

SENTENCE··ELEMENT.·.··.·····
LIST
CUSTOMERS
STATE STATE.NAME

DESCRIPTION
verb
filename
output-list

•
•
• • •
•
• •
• •
•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
• •

•
• • • •
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

All of the state names are forced to lowercase.

Conversions and correlatives don't need to be staged in the same attribute. Since attribute 008 is
processed before attribute 007, the STATE.NAME definition could also be written:

More On the Hypothetical Case
File translates can be staged to first read from one file and subsequently use that data value to
read from another file. The lookup paths are virtually limitless.

translateA] translateB]

As has been described, the zip code in NEW.CUSTOMERS is used to read the item containing the
CITY and STATE from the ZIPS file. Since the STATE attribute in the ZIPS file contains a state
abbreviation, a second level of translate is required to retrieve the STATE.NAME from the
STATES file.

137

138

The STATE.NAME path:

The STATE.NAME definition item in DICT NEW.CUSTOMERS:

Notice that the state name is passed through a mask character text (MCT) conversion at print
time.

•
• • • •
•
• •
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

•
• •
• 8.9

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

Concatenation is the process of tagging data strings onto the end of other data strings to produce
new, longer, data strings. The general fonn of the concatenate (C) correlative is:

C;parameter;parameter; ..•

The parameter values can be:

ame An attribute mark count. This retrieves the contents ofthe
indicated attribute number.

"literal" A literal data string enclosed in quotes.

Each parameter is concatenated to the end of the previously specified parameter.

The next exercise is to build a new data definition which concatenates the CITY, STATE and ZIP
attributes to produce a single string of the pattern:

city, state zip

The definition item named CITSTATZIP is added to the DICT of CUSTOMERS.

The concatenate correlative is the first correlative covered which combines multiple data ele­
ments to produce a compound result. In such a case, attribute 002 of the data definition becomes
irrelevant for controlling the location of data origin. Therefore, the zero in attribute 002 serves as
a "dummy" place holder.

The concatenation correlative appends a "," to the end of attribute 4, then appends attribute 5 to
that, a space" " to that, and finally, attribute 6. Enter the following command sentence to see the
results. The resulting string is then passed through a MCT to display the data in text fonnat.

139

8.10

8.10.1

140

Enter the following command sentence:

As an independent exercise, use CITSTATZIP in a mailing label.

FUNCTION CORRELATIVE

The function (F) correlative allows arithmetic, relational, and string operations to be performed.
Since this workbook is geared to an introductory level, the arithmetic operations serve as the
focal point of the discussion.

All calculations are performed in a stack. Stack processing uses a concept which can be likened
to those old spring-loaded coin dispensers, where each new coin added pushes down the rest of
the stack of coins. The last coin added to the stack is the first coin to be removed. As each coin is
removed, the remaining coins "pop up" to fill the vacant space.

The F Correlative Syntax
The general form of the F correlative is:

F;parameterA;parameterB;parameterC; ...

The command parameters in the F correlative come in two flavors: operands and operators.
Operands are data reference parameters which push a new piece of data onto the top of the stack.
Operators are commands which perform arithmetic, relational or string functions on the first two
entries in the stack to produce a result.

•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

In a generalized form, the stack is handled as follows:

F;operandA;operandB;operator

The simple operands are:

OPERAND ·········<pESCRlPl.'ION
arnc A numeric attribute mark count. Retrieves the data in the refer-

enced attribute. For example, the number 10 retrieves the con­
tents of attribute 10 in the current data item.

Cn A numeric constant "n." C10 generates the number 10.
D The system date in internal format.
T The system time in internal format.
"literal" A literal constant. This must be enclosed in quotes.

The order of placement of operands in the F correlative is known as Postfix Polish Notation.
What this means is that all operations are performed stack2 against stack1. The result is placed
in stack 1 and all subsequent stack entries pop up one position.

Stack! = Stack2 operator Stack!

This standard follows PICK Spectrum (SMA) standard specifications for the F correlative. (Those
of you on McDonnell Douglas machines beware; this is all reversed.)

The operators covered in this section perform arithmetic and string concatenation functions.

These operators are:

·.·.>.···.·.···OPERt\'i'QR············ I>ESCRIPTION>
+ Addition Stack1 = Stack2 + Stack1

Subtraction Stack1 = Stack2 - Stack1
I Division Stack! = Stack2 I Stack1

* Multiplication Stack! = Stack2 * Stack1
Concatenation Stack! = Stack2 : Stack1

141

142

Using the arithmetic operators, write an arithmetic expression to calculate the number of days
that payment of the balance is overdue. This is accomplished by determining the difference
between the system date (D) and the DATE.DUE (attribute number 9).

system date - date due

Add the following definition item, DAYS.OVERDUE, to the DICTofCUSTOMERS.

Using a value of 500 in attribute 9 and an internal system date of9000, the F correlative (F;D;9;-)
is processed as follows:

•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Enter the following sentence and observe the results: •

>SORT CUSTOMERS BY DAYS. OVERDUE BALANCE DATE. DUE DAYS. OVERDUE<r> •

····S~l'tl'ENCE ELEMENT
SORT
CUSTOMERS
BY DAYS. OVERDUE
BALANCE DATE.DUE DAYS. OVERDUE

DESCRIPTION
verb
filename
sequence clause
output-list

•
•
•
•
•
• •

•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
• • •

8.10.2

The results are based on the system date of this writing, December 15, 1988. Of course, the
results will differ on your system. Many of the due dates are in the future, making the results
negative.

Th list only those days that are overdue, enter the following:

>SORT CUSTOMERS BY DAYS. OVERDUE ..•

. • • WITH DAYS. OVERDUE > .. 0" BALANCE DAYS. OVERDUE<r>

:S}:N'l\ENCEEI$MEN'l'<
SORT
CUSTOMERS
BY DAYS. OVERDUE
WITH DAYS. OVERDUE > "0"
BALANCE DAYS. OVERDUE

Arithmetic Scaling

verb
filename
sequence clause
selection clause
output-list

Since all arithmetic calculations must use integer numbers, numeric values have to be scaled by
multiples oflO to account for implied decimal precision.

For example, interest needs to be charged on the balance due. Th make things simple, a straight
10.5 percent is to be added to the BALANCE field.

143

144

The general formula is:

Interest = Balance * (.105)
Total Balance = Balance + Interest

Add the following data definition item to the DICT of CUSTOMERS.

Let's spend some time on this definition item.

First of all, an interest rate of .105 cannot be used in the F correlative. The interest rate must be
specified as an implied three decimal number, 105.

Let's say that the BALANCE field (attribute 8) contains 5055. This number is stored with 2
implied decimal places, and therefore, represents 55.55.

The first part of the F correlative to calculate the interest is as follows:

F;8;C105;* •••

This multiplication of a 2 implied decimal number by a 3 implied decimal number produces a
number which has 5 implied decimals (decimal places are added during multiplication).
Therefore, the interest charged is actually 5.30775.

To calculate the total balance, the interest must be added to the data value in attribute 8, BAL­
ANCE. However, a 5 implied decimal number cannot be added to a 2 implied decimal number
without first scaling the 2 decimal number up to 5 implied decimals. This is performed by multi­
plying attribute 8 by the numeric constant, 1000.

• •
•
•
•
•
•
• • • •
• • •
•
•
• • •
•
•
•
• •
•
•
•
•
•
•
• •
•
• •

•
•
•
•
•
•
•
•
• •
• • •
•
•
•
•
•
•
• • •
•
•
• •
•
•
•
•
•
•
•
• •

8.10.3

The second part ofthe F correlative looks like this:

•... ;8;CIOOO;*;+

The stack is handled as follows:

The final answer, 5585775, has 5 implied decimal places. The conversion on attribute 007,
MR25,$ says to move the decimal 5 places to the left and round to 2 decimal places.

5585775 ---I.~ MR25, $ ---I.~ $55.86

Enter the following command sentence and observe the results:

Concatenation
The F correlative also can be used to build compound strings via concatenation. The following
data definition, CSZ, generates the CITY, STATE and ZIP in the same format as is described for
the C correlative.

145

Using item 104:

The stack is handled as follows:

146

• • • •
•
•
•
•
•
•
• • •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
• •

•
• • •
•
•
•
•
•
•
• •
•
•
• •
•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
• •

8.10.4

Enter the following command sentence and observe the results.

>LIST CUSTOMERS CSZ<r>

.SEN'l'liJNCEECEMENT.
LIST
CUSTOMERS
CSZ

/])ESCRIPTIQN
verb
filename
output-list

The Simplest F Correlative
The simplest F correlative performs no arithmetic or relational function. It simply generates a
constant literal string. For example:

147

8.10.5

148

It doesn't matter if you place the correlative in attributes 007 or 008. This definition always out­
puts 5 spaces. Enter this into the DICT of CUSTOMERS and then invoke the following command
sentence:

>LIST CUSTOMERS ZIP SPACES BALANCE<r>

LIST
CUSTOMERS
ZIP SPACE5 BALANCE

verb
filename
output-list

Other Operands and Operators
These other operands and operators are presented FYI. The following operands are used for spe­
cialized work and are not covered in this workbook.

NB
ND

NI
NV
NS
R{R}

Load previous value. This is used when an F correlative exists on
attributes 008 and 007. The LPVin the F correlative in
attribute 007 retrieves the result of the F correlative in attribute
008.

The number of the break level.
The number of detail lines leading up to the break. Since detail
lines are not created until print time, this must be specified in
attribute 007. See Section 8.12, "Calculations at Break-Lines."

The item count.
The multivalue count.
The subvalue count.
Repeat code. Used to repeat an operation on a multivalued
attribute. Usually specified in the form: arncR. The optional
R is used to repeat subvalues.

•
• • •
•
•
•
•
•
•
• • • • •
•
•
•
•
•
• •
•
•
•
• •
•
•
•
•
•
• • •

•
•
•
• •
•
•
• •
•
• •
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
• •

8.11

8.11.1

The realtional operators vary according to implementation. Both possibilities are shown. It is up
to you to verify these.

OPElt.AtOR(UDESGRIPTION···
= Equal to

If Stack2=Stack1 then Stack1 =1 else Stackl =0
If Stack1=Stack2 then Stack1=1 else Stack1=0

Not equal to
If Stack2#Stack1 then Stack1=1 else Stack1=0
IfStack1#Stack2 then Stack1=1 else Stack1=0

> Greater than
IfStack2>Stack1 then Stack1=1 else Stack1=0
If StackbStack2 then Stack1=1 else Stack1=0

< Less than
If Stack2<Stack1 then Stack1 =1 else Stackl =0
If Stackl <Stack2 then Stack1 =1 else Stackl =0

[Greater than or equal to
If Stack2>=Stack1 then Stack1=1 else Stack1=0
If Stackl >=Stack2 then Stack1 =1 else Stack1 =0

] Less than or equal to

Special Function Operators:

> •• < o.PElt.ATOR < .••••••...•

R
S
P

-
[]

(conv)

If Stack2<=Stack1 then Stack1=1 else Stack1=0
IfStackl<=Stack2 then Stack1=1 else Stackl=O

<DESCRIPTION
Remainder of the division: Stack2/Stack1
Sum of multi values in Stackl.
Push Stack2 onto the top of the Stack.
Switch Stack1 and Stack2.
Extract a fixed length string.

Stackl = Stack3[Stack2,Stack1]
Stack2 is the starting character position.
Stack1 is the number of characters to extract.

Any valid conversion enclosed in parentheses.
Stack1 = conv(Stack1)

Introduction to the A Correlative
The algebraic (A) correlative performs all the functions available to the F correlative specified as
an algebraic formula, rather than as Post-Fixed Polish stack parameters.

The general format of the A correlative is:

A;algebraic expression

All of the operands and operators are the same as those described for the F correlative.

149

150

OK, so why use it? Because it is far easier to read and to subsequently support algebraic fonnu­
las.

Is there any difference in speed? Not noticeably. You see, A correlatives are just a simpler way of
expressing F correlatives. In fact, the system internally converts A's to F's during the first stage
(parse and compile) of ACCESS processing.

For example, take the DAY.OVERDUE F correlative:

F;D;9;.

This can be rewritten in an A correlative as:

A;D.9

Look at a more complex example: the calculation ofthe NEW. BALANCE based on 10.5% interest.
The F correlative used in the NEW.BALANCE definition is:

F;8;CI05;*;8;CIOOO;*;+

This can now be rewritten as follows:

A;(B*''105'')+(B*''lOOO'')

Notice that parentheses are used to group the precedence of arithmetic calculations:

(8*''105',)
(8*''1000'')

Calculates the interest.
Scales the BALANCE to match 5 implied decimals.

These are considered two separate expressions. When they are added,

expression1 +expression2
(8*''105")+(8*''1000")

the result is considered a compound expression.

Replace the F correlatives in DAYS.OVERDUE and NEW.BALANCE with the corresponding A
correlatives and see if there is any difference. There should be none.

Concatenation can be performed with an A correlative. Compare the city, state and zip F correla­
tives to the equivalent A correlative.

F;4;", ";:;5;:;" ";6;:

versus

A;4-" "-5-" "-6 ., .. .
Which would you rather read?

• •
•
•
•
•
• •
• •
• •
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
• •
•
• • •

•
•
•
•
•
•
•
•
•
•
• • •
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
• •

8.11.2 The Recursive Operand
There is one extension to the A correlative which is not available to the F correlative. This
operand within the expression provides the capability to make recursive references to other data
definition items. In simpler terms, instead of directly pointing to the balance attribute using the
numeric arnc reference 8, the A correlative can use the actual data definition name, BALANCE.

The format of this special operand is:

N(definition name)

The NEW.BALANCE definition can be altered as follows:

The N(BALANCE) operand retrieves the data value addressed by the BALANCE definition item.
In addition, any conversions and correlatives in attribute 008 of the referenced definition item are
processed. Therefore, the recursive operand can use definition items which contain any combina­
tion of conversions and correlatives in attribute 008, including other A or F correlatives.

Recursive operands do not process any conversions or correlatives in attribute 007 of the definition
item being referenced.

The CSZ definition can also be rewritten as follows:

151

8.11.3

8.12

152

Other Special Operands

These are provided FYI, only.

···············QpE~ ············>·······DE$Ctu:l'TIPN::U«<···················
S(expression) Sums the multivalues referenced by

"expression."
R(expressiona,expressionb) Produces the remainder of the division of

expressiona by expressionb.
expression[expressiona,expressionb] Performs a string extract on the original

expression beginning at the position
value indicated by expressiona for a
length indicated by expressionb.

expression(conv]conv] ..) Any expression can be passed through a
series of conversions. See section B.12 for
a demonstration of how this can be used.

.c······ .·AL······C· .. IJlJN· ... ? T····I···O···· N·S······W.···T····· .. ···• .. ··B·······R··· .. EA.K ···.····.L·······I·NE ... · ··S············ / ..•.•.•.•. / .. '-' ',,"-:, ' --, ,-,-: ':':. , -:»»>: -...
;.'"

There are just a couple of things to remember when trying to do calculations at the BREAK and
TOTAL lines of a report. First:

ALWAYS PUT THE CORRELATIVE ON ATTRIBUTE 007 OF THE DEFINITION ITEM.

BREAK and TOTAL lines are not generated until print time, and are therefore not yet available
to line OOB.

One more rule: NEVER USE RECURSIVE OPERANDS IN AN A CORRELATIVE!

The next and last correlative formula calculates the average balance due for each state. This is a
calculation heavily dependent on the correct ACCESS command sentence being entered. The
data definition that you are to enter needs to be tagged on to the following command sentence:

>SORT CUSTOMERS BY STATE BREAK-ON STATE TOTAL BALANCE<r>

SENTENCE ELEMENT
SORT
CUSTOMERS
BY STATE
BREAK-ON STATE TOTAL BALANCE

<··P:ESCRIPTION>
verb
filename
sequence clause
output-list

•
•
•
•
•
•
•
•
• •
•
• •
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
• • •

•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
• • •
•
•
•
•
•
•
•
•
•
•
•
• •

Try this:

The average value for each state is based on the number of detail lines output for each state.
This value is available at print time by using the ND operand.

Enter the following data definition into the DICT of CUSTOMERS:

The A correlative follows the format that allows any expression to be passed through a conver­
sion.

A;expression(conversion)

153

154

The expression divides the value in attribute 8 by the number of detail lines for each BREAK and
TOTAL line and the result is then passed through the MR2 conversion.

This same correlative written as an F correlative is as follows:

F;8;ND;I;(MR2)

Now enter the previous command sentence including the request to TOTAL AVG.BALANCE:

>SORT COSTOIIICRS BY STAB BREAlt-ON STATZ TOTAL BALANCE TOTAL AVG.BALANCE<r>

SORT
CUSTOMERS
BY STATE
BREAK-ON STATE TOTAL BALANCE TOTAL AVG.BALANCE

sequence clause
output-list

Notice the redundant average balances on the detail lines. These can be removed by using the
DET-SUP modifier on the command sentence. DET-SUPP suppresses all of the detail lines.
However, what if the detailed BALANCEs need to be shown? This can be taken care of by using
any value other than zero as the dummy amc in attribute 002 of the AVG.BALANCE definition
item. Try 99.

• •
• •
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
• • •
•
•
•
•
•
•
•
•
•
•
•
• •

•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
• • •
•
•
•
• •
•
•
•
•
•
• •

Now enter the previous command sentence and observe the output.

There is one more problem. Double check the arithmetic at the BREAK and TOTAL lines. Notice
that the CA value "204.41" is not quite right. The total, 1022.09, divided by 5 detail lines, gives a
result of "204.418". The correctly rounded response should be "204.42".

Here is where scaling becomes necessary to give the correct result. Change the AVG.BALANCE
definition item to the following:

155

156

The BALANCE in attribute 8 is scaled up an extra 2 decimal places:

(8*'100")

This provides more precision to the calculation:

(8""100")1ND

Attribute 8 already has two implied decimals. This produces an integer with 4 implied decimals.
The output conversion must also be changed to match the scaling.

(average calculation)(MR24)

The decimal is scaled by 4 and rounded to 2.

Now enter the exact same command sentence and observe the correct results.

•
•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
• • • •
•
•
•
•
•
•
•
•
•
• •
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

1.

2.

3.

4.

5.

6.

7.

8.

are used to alter the printed format of the --------------------
data so that it is easier to read.

are formulas which perform arithmetic, logi---------------------
calor string functions.

Correlatives create data. ---------------------
The _________ conversion changes internal dates to external
format.

The "real time" internal day zero is --------------------

Internal date 6768 is actually July the 5th, 1986. Match the follow­
ing date conversions:

D2- a. 1986 --

D b. 6 --

DWA c. 12 --

__ D/ d. 07-12-86

__ DM e. 12

DW f. 86 --

DY -- g. 07

DD h. SATURDAY --

D2Y i. 1986 --

DMA -- j. JULY

Internal time is kept as the number of from -------------

Identify the correct time mask:

14:55:40 a. MTHS

02: 55PM b. MTS --

14:55 c. MTH
--

__ 02:55:40PM d. MT

157

158

9. Using the data string:

77-1/2 SUNSET STRIP

Fill in the corresponding mask character (Me) conversions.

7712

77-1/2 Sunset Strip

77-1/2

SUNSETSTRIP

77-1/2 sunset strip

-/ sunset strip

10. Match the string masking conversion with the output:

Stored Format Output Format Conversion

999999999 999-99-9999 a. MR%5

234567 ***$2,345.67 b. MR2$

55 00055 c. MR4

123456 1234.56 d. MR24

123456789 1234 e. ML (#3-*2 -#4)

555 $0.55 f. ML#4

123456 12.3456 g. MR2

123456 12.35 h. MR2,$*12 --

11. Fill in the corresponding text extract (T) or group extract (G)
correlatives:

Stored Format

THIS IS A TEST

12/20/52

2125551212

SMITH, JOHN

Output Format

IS

20/52

212

JOHN

Conversion

•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

12. The items in the file called INVOICES are identified by a unique
invoice number and contain two main attributes, NAME and ZIP as
follows:

FILE: INVOICES

ID: 1001
001 WANSAKRAKA, POLLY
002 92713

ID: 1002
001 TUTIRIBA, DON
002 10019

The sales tax charged is stored by zip code in the ZIPS file. Each zip
item contains the STATE and the SALES.TAX as follows:

FILE: ZIPS

ID: 92713
001 CA
002 060

ID: 10019
001 NY

002 085

Complete the arnc count and file translate portions of the STATE data
definition item found in the dictionary of INVOICES.

ID: STATE
001 S
002 ______ _
003
004
005
006
007
008 _________ _
009 L
010 2

13. Assuming that the tax rate has three implied decimals, what would be
the file translate correlative and output conversion in the data
definition item?

ID: TAX. RATE
001 S
002
003
004
005
006
007
008

---------009 L

010 2

159

160

14. Using the following stored string:

Version l/Test 3/10019

•
•
•
•

Fill in the results of the conversions. The bracket (]) is a value •
mark.

Conversion Results

GO/]MCU

G/3]TZIPS;X;;1]MCT

G2 l]MCN

15. Match the following F correlatives to the corresponding result
using the following item.

ID: 23-1
001 2000
002 1000

Result

3000
--

2000000 --
2000

--

10002000 --

2

-1000

Correlative

a. F;2;1;-

b. F;1;2;/

c. F;1;2;-

d. F;1;C1000;*

e. F;li2;+

f. F;2i1;:

16. Re-write each of the above F correlatives as an equivalent A
correlative.

a.

b.

c.

d.

e.

f.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

•
•
•
•
•
• •
• •
•
•
•
•
•
• •
•
•
•
•
• •
•
•
• •
•
•
•
• •
• • • •

. -. -- ---

;IJlllili;

9.1

STORED ACCESS
CO~DSENTENCES

This chapter is intended to give you the minimal amount of information to enable you to write
very simple PROCs to store your ACCESS commands. Command sentences, normally invoked at
TCL, can be written in an item as a stored procedure - PROC for short. This allows modifications
to be made and output generated without having to re-enter the entire command sentence.

THERROC···ITEM·····

All PROC items must have a special PROC indicator, PQ, in the first attribute. (This is not
unlike the requirement of an A or S in the first attribute of a data definition item.) The remain­
ing attributes in the item contain the PROC commands.

PROC commands are usually single alphabetic characters placed at the beginning of each
attribute. For example, the command 0 stands for output and uses the form:

Otext Output the "text" string to the terminal display.

A PROC cannot be initiated from TCL unless the PROC item is stored in the master dictionary,
MD. The PROC item in the MD automatically becomes a verb, and the item-id is the name of the
verb. PROC verbs are usually used to transfer control to PROCs stored in other files. The func­
tional PROC items are then stored in a file created specifically to hold them. (Whenever you get a
chance, check out PROCLIB, the shared system PROC library. Short PROCs in the MD transfer
control to the complete PROCs in PROCLIB. LISTFILES is a good example to peruse on your
own.) However, to keep things as simple as possible, the PROCs discussed in this chapter are
stored directly in the MD.

Enter the following:

. '-,'"':,",,' <>::::::::;:::::,- .. :.:'.':, ".--/:':':. ":'--.-',".'.

· · .•.•.. >EJ) •••• Ml)· •••• ¥l!:~T •. :PR.6c<r>····::.:..· -~-,
EDIT the item TEST.PROC
in the maate, dictionary.

:!lit11'~~:~~~
002fOTHISISA TE:ST•.•.......••••..•.•....

iqll~~
'TE:ST.l?RQC'FJ;J:.EI>

Output the atring
THIS IS A TEST.

161

9.2

9.2.1

162

(This is the last time that I show you the Editor.)

Now invoke the PROC by entering its name at TCL.

The Primary Output Buffer

DI.PI.yed~
thePROC.

PROC has two internal storage areas called the primary and secondary output buffers. The word
"output" is not as descriptive as it could be. For the benefit of the subject at hand, you can think
of these as the primary and secondary "command" buffers. ACCESS command sentences are
placed in these buffers for subsequent processing.

When a PROC is initiated, both the primary and secondary output buffers are cleared and the
primary buffer is active. For simple command sentences, the secondary buffer is not required.

The PROC commands used to fill and process the output buffers are:

>COMMAND···
Hcommand sentence

P(c)

lJ~SCRlln'I()N>············

Place the command sentence following the "H" into the
current buffer pointer position ofthe currently active
output buffer.

Process the output buffers. This invokes the command
sentences stored in the primary and secondary output
buffers. The primary is invoked first and then the
secondary. The optional "c" parameter can be anyone
of the following:
P The PP command means "process and display the

output buffers." This helps you see if you've made
any mistakes building the output buffers.

W The PW command means "process and wait." The
output buffers are displayed, but the PROC
waits for a response from the keyboard before
continuing. Responses can be:
<return> Process the command.
X Exit the PROC.
S Continue the PROC, but skip this

command.

•
•
• • •
• •
• •
•
•
•
• •
•
•
• •
• • •
•
•
•
• •
•
•
•
•
•
• •
• •

•
• •
•
•
•
•
• •
•
• • •
•
•
• •
•
•
•
•
• •
•
•
•
• •
•
•
•
•
• • •

The primary output buffer on PROC initialization:

Modify TEST.PROC in MD so that it looks like this:

Shown below is the primary output buffer resulting from attribute 003 of the above PROC, just
prior to processing:

Now, invoke the PROC by entering its name at TCL.

163

164

Any ACCESS command sentence can be stored and invoked in this manner.

The entire command sentence need not be placed in a single attribute of the PROC. The PROC
output buffer pointer keeps track of the position ofthe last text string placed in the output buffer.
Therefore, multiple H commands keep tagging onto the end of the buffer.

Enter TEST.PROC.2 into the MD:

The primary output buffer as each H command is processed:

•
•
• •
•
•
• •
• •
• • •
•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
• • •

•
•
•
• • •
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
•
• •
•
• • •

9.2.2

Now invoke TEST.PROC.2.

The Secondary Output Buffer
The output buffers are processed in sequence, primary before secondary. The secondary output
buffer is also called the "stack" because it is where you stack (store) responses to the questions
that will be asked by the process invoked in the primary buffer.

The commands to activate and deactivate the secondary output buffer are:

STOFF

P

DESCRIPTION· ,,'/ , ,
Stack on. Activates the secondary output buffer. All subsequent
H commands place the text in the secondary buffer ..

Stack off. Deactivates the secondary output buffer. This is
seldom used since the P command automatically deactivates
the secondary.

Process the buffers and activate the primary output buffer
upon completion.

165

166

The STON command is useful when storing mailing label command sentences. The label param­
eter response can be stored in the secondary output buffer.

Add the following PROC to the MD.

Just prior to processing, the output buffer contents are:

This generates the output:

• • •
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
••
•
•
•
•
•
•
•
•
•
•
• • •

•
•
•
•
•
•
•
•
• •
• • •
•
•
•
•
•
•
•
•
•
•
•
• •
• •
•
•
•
•
• • •

The "less-than" sign «) at the end of attribute 009 indicates an internal carriage return. Each
new entry is "pushed" onto the stack with this indicator. Multiple stack entries answer multiple
input requests from the sentence executed in the primary buffer.

For example, if the LIST-LABEL indent parameter is non-zero, the process requires input of label
text for each row label. (See Chapter 5, "Mailing Labels.") 'Ib perform automatic processing, each
response must be pushed on the secondary buffer stack.

Alter the CUSTOMER. LABELS PROC to match the following:

Just prior to processing, the output buffer contents are:

167

168

This generates the output:

The secondary output buffer can also be used to stack other TeL or ACCESS command sentences
which use an active list generated by the command in the primary output buffer. For example,
add the following PROC to the MD.

This PROC has t~o main steps. First, it selects and saves the OVERDUES list, and second, it
retrieves the OVERDUES list and performs the ACCESS sentence LIST.

• •
• •
•
•
• •
• •
• • •
• • • •
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
• • •

• •
• •
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
• •
•
•
•
•
• • •

Here's what the output buffers look like for each step.

Now. invoke SAVE. OVERDUE.

169

...

EXEll~I§B
····>9

1.

2.

3.

4.

5.

6.

7.

8.

170

The first line of a PROC is always ------------------------
PROCS must be initiated by an item in the file. -----------------
There are ___________ output buffers. The -----------------

and the -------------------
The _______________ command places text in the currently active
output buffer.

The conunand to process the output buffers is ________________ _

Finish the PROC to perform the following ACCESS sentence.

SORT CUSTOMERS BY STATE BY BALANCE COMPANY STATE BALANCE

ID: BALANCE.REPORT

001 --------------------
002 --------------------

003 --------------------

004 P

The conunand which activates the secondary buffer is ------------

Finish the PROC to perform the following conunands in sequence.

SSELECT CUSTOMERS WITH BALANCE >= "10000.00"

SAVE-LIST DEAD.BEATS

ID: SAVE.DEADBEATS

001 -------------------------
002 -------------------------
003 -------------------------
004 ______________________ _

005 P

•
• • •
• •
•
• • •
•
•
•
•
•
•
•
•
•
•
• • •
•
•
•
•
•
• •
•
•
• • •

•
• • • •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
• • •

•
• • •
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
• •
•
•
• •
•
•
• • •

•
• •
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
• • •
•
•
•
•
•
•
•
•
•
•
• • •

EXERCISE
ANSWERS
EXERCISE!
1. accounts
2. System Dictionary
3. Master Dictionary
4. items
5. attributes
6. item·id
7. lower (DATA)
8. upper (DICT)
9. attribute mark
10. unlimited
11. 32,000
12. output masking, attribute position,

justification, column header, column width
13. false
14. true

EXERCISE 2
1. logging on
2. Terminal Control Language
3. verbs
4. LISTFILES
5. LIST filename
6. SORT filename
7. LIST ONLY DICT CUSTOMERS, or

LISTDICT CUSTOMERS, or
SORT ONLY DICT CUSTOMERS

8. TCL prompt
9. attribute position pointer

EXERCISE 3
1. vern, filename
2. LIST, SELECT, VERB, COUNT, SORT,

LIST· LABEL, SORT· LABEL, SSELECT
3. ordered, random
4. data level

dictionary level
data level
data level

5. COUNT
6. item·ids
7. true
8. LIST CUSTOMERS COMPANY CITY STATE
9. LIST CUSTOMERS '100"101' COMPANY CITY STATE
10. c, d,j, g, f, e, a, b, h, i
11. SORT CUSTOMERS BY CONTACT BY STATE ...

... CONTACT STATE
12. g, e, f, b, a, d, c
13. caret (")
14. LIST CUSTOMERS WITH COMPANY = "[K"" COMPANY
15. SORT CUSTOMERS BY BALANCE ...

... WITH STATE = "CAN BALANCE COMPANY STATE, or
SORT CUSTOMERS BY BALANCE ...

... WITH STATE "CAN BALANCE COMPANY STATE, or
SORT CUSTOMERS BY BALANCE. ..

... WITH STATE EQ "CA" BALANCE COMPANY STATE
16. b, d, f, e, a, c

EXERCISE 4
1. LIST
2. SORT
3. 4
4. COMPANY, CONTACT, PHONE, and the ITEM·ID

5. implicit
6. output columns
7. only
8. h, f,j, g, c, a, k, i, b, e, d
9. HEADING "'Le' HEADER 'LL'"
10. 'VU'
11. SORT CUSTOMERS BY STATE BREAK·ON ...

... STATE TOTAL BALANCE DET·SUPP LPTR, or
SORT CUSTOMERS BY STATE BREAK-ON ...

... STATE TOTAL BALANCE (D) (P)
12. TERM 132,65
13. TERM"",,80,55
14, f, c, e, b, g, a, d

EXERCISES
1. LIST-LABEL, SORT·LABEL
2. a· columns

b·rowB
c .lineskip
d· indent
e - width
f· spacing
g. C (compress)

3. LIST· LABEL CUSTOMERS COMPANY ADDRESS ...
... CITY STATE ZIP (IHP)

?3,5,l,0,30,l,C

EXERCISE 6
1. 1st • parses and compiles the sentence

2nd· data sampling, selection, sequencing
3rd· output

2. SELECT and SSELECT
3. false
4. true
5. SELECT CUSTOMERS WITH STATE = "CAN BY COMPANY
6. d, c, a, b, e
7. SELECT CUSTOMERS WITH STATE = "CAN BY BALANCE

SAVE·LIST
8. GET.LlST

LIST CALCUSTS COMPANY ADDRESS STATE
9. COpy·LIST

BAKCALCUSTS
10. COPY· LIST

(LISTS
11. DELETE-LISTCALCUSTS
12. DC
13. SORT DICT POINTER-FILE .A5

EXERCISE 7
1. 009

007
002
010
001
008

2. LIST DICT CUSTOMERS WITH D/CODE = "S"
3. <ctl><shift><]>, an ASCII character 253
4. g, d, e, h, a, c, b, f
5. 015, L
6. extend the width of the output column, and

text justification
7. \ (backslash) in attribute 003, and

o (value) in attribute 010

173

174

EXERCISE
ANSWERS continued

EXERCISE 8
1. conversions
2. correlatives
3. virtual
4. D(date)
5. December 31,1967
6. d, c, h, a, g, b, i, e, f,j
7. seconds, midnight
8. b,c,d,a
9. MCN, MCT, MClA, MCL, MCIN
10. e, h, a, g, f, b, c, d
11. Gl,l

G1I2
Tl,3
G1,l

12. 2
TZ1PS;X;;1

13. 2
MR3
TZ1PS;X;;2

14. VERSION 1
Ny
310019

15. e, d, c, f, b, a
16. A;2-1

A;112
A;1*2
A;l*"lOOO"
A;1+2
A;2:1

EXERCISE 9
1. PQ
2. MD
3. 2, primary, secondary
4. H
5. P
6. PQ

HSORT CUSTOMERS BY STATE BY BALANCE
H COMPANY STATE BALANCE

7. STON
8. PQ

H SSELECT CUSTOMERS WITH BALANCE>."l0000.00"
STON
H SAVE-LIST DEAD.BEATS<

• • •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• • •
•
•
•
•
•
•
•
•
•
•
•
• •

•

