| WORKBOOKS FROM IDBMA, INC,

ACCESS

by Harvey Eric Rodstein

' EEREEEEEENRNENRENN N NS B B B B R B BN B BRI B BN BN RN N

Terri Hale
1213 Blue Gum Lane
Newport Beach, CA 92660

“How To”
Workbooks From
IDBMA, Inc.

ACCESS

By Harvey Eric Rodstein

© Copyright IDBMA, Inc. 1989
All rights reserved
Printed in the United States

PICK and PICK Operating System are registered trademarks of Pick Systems of Irvine, California.

Computer layout and design: S. Patrice Makovic
Copy Editor: Maureen McCarthy
Cover design: Cheri DeBusk, Chay Parra

Copyright 1989 by IDBMA, Inc. All rights reserved, including the right of reproduction in whole,
or in part, in any form without the prior written consent of the copyright owner. Published by
International Database Management Association, Inc., 10675 Treena Street, Suite 103, San
Diego, California 92131. International Spectrum is a registered trademark of IDBMA, Inc. PICK
is a registered trademark of Pick Systems, Inc. of Irvine, California. “How Tv” workbooks are
trademarks of IDBMA, Inc. of San Diego, California.

Printed in the United States of America

ISBN 0-942093-05-4

@ O O 00 0 006 © 006 06 O 0 ¢ 06 ¢ ¢ © 0O O O OO O O O G 2

® © O & 000 00 0O OO O O O OO OO OO OO OO OO O OO OO PC* >

To my wife and my best friend,
all wrapped up in one single
package... haneczka.

® ® OO 0000000 OO0 OO0 OO OO OO OO OO OO OO OO PSS O VOI O

'WEREEREEEEEEENERENENEN NI I B B B BN B ECEN BN BN BN IR I BN BN

TABLE OF
CONTENTS

ABOUT ACCESS e 1

L

SYSTEM OVERVIEW i 3

11
1.2
1.3
14

15

GETTING STARTED

21
2.2

23

THE SYSTEM

ACCOUNTS

FILES

ITEMS

14.1 Item-ids

1.4.2 Attributes.

DATA DEFINITION ITEMS

LOGGING ON

LOOKING AROUND

2.2.1 Looking at Data Files
2.2.2 Looking at Dictionaries
SETTING UP WORK FILES
2.3.1 Creating Work Files
2.3.2 Entering Sample Data

2.3.3 Entering Simple Data Definitions

THE ACCESS COMMAND SENTENCE. 23

31
3.2
3.3
34
3.5
3.6

3.7
3.8

THE VERB

THE FILENAME

ITEM-ID LIST

OUTPUT DATA FIELDS

THE SEQUENCE CLAUSE
SELECTION CLAUSE

3.6.1 Selection Clause Structure
3.6.2 Multiple Selection Clauses
3.6.3 Value String Searching
3.6.4 Wildcard Searches

3.6.5 ID Selection Criteria
OUTPUT MODIFIERS AND OPTIONS
THROWAWAY CONNECTIVES

COLUMNAR REPORTING. 45

41
4.2
4.3
4.4

4.5

THE BASICS

EXPLICIT OUTPUT FORMATTING

IMPLICIT OUTPUT FORMATTING

HANDLING MULTIVALUED OUTPUT FORMATTING
44.1 Simple Output

4.4.2 Sorted Output

CUSTOM HEADINGS AND FOOTINGS

6.

4.6 GENERATING REPORT BREAKS
4.6.1 Simple Breaks
4.6.2 Totals and Sub-Totals
4.6.3 Grand Totals
4.64 BREAK Options

4.7 OTHER OUTPUT MODIFIERS

4.8 CHOOSING THE OUTPUT DEVICE

MAILINGLABELS. e 73

51 LABEL VERBS AND PARAMETERS
5.2 USING OUTPUT MODIFIERS
5.3 USING INDENT

ACCESSLISTS i 81

6.1 SELECTING AND USING LISTS
6.2 CATALOGUED LISTS

6.2.1 Saving Lists

6.2.2 Retrieving Lists
6.3 REPORTING CATALOGUED LISTS
6.4 LIST MAINTENANCE

6.4.1 Copying Lists

6.4.2 Deleting Lists

6.4.3 Editing Lists

FORMATTING WITHDATADEFINITIONS 99
7.1 INTRODUCTION

7.2 COLUMN HEADERS

7.3 JUSTIFICATION

74 LENGTH

7.5 HIDDEN COLUMNS

CONVERSIONS AND CORRELATIVESo i iiii . 13
8.1 OVERVIEW
8.2 DATE AND TIME CONVERSIONS
82.1 The D Conversion
8.2.2 The MT Conversion
8.3 CHARACTER MASKING
83.1 The MC Conversion
8.4 STRING MASKING
8.5 MONEY (DECIMAL) MASKING
8.6 STRING EXTRACT CORRELATIVES
8.6.1 The Text Extract (T)
8.6.2 The Group Extract (G)
8.7 FILE TRANSLATE CORRELATIVE
8.7.1 The Translate Syntax
8.7.2 A Hypothetical Case
8.8 MULTIPLE CONVERSIONS AND CORRELATIVES
8.9 CONCATENATION CORRELATIVE
8.10 FUNCTION CORRELATIVE
8.10.1 The F Correlative Syntax
8.10.2 Arithmetic Scaling
8.10.3 Concatenation
8.10.4 The Simplest F Correlative
8.10.5 Other Operands and Operators

® 6 6 000606 060 © 06 ¢ 00 0066060 0 0660 000 0 0 0 06 0 0 0 ¢ o

8.11 ALGEBRAIC CORRELATIVE
8.11.1 Introduction to the A Correlative
8.11.2 The Recursive Operand
8.11.3 Other Special Operands

8.12 CALCULATIONS AT BREAK LINES

9. STORED ACCESS COMMAND SENTENCES
9.1 THE PROC ITEM

9.2 STORING AND PROCESSING COMMAND SENTENCES
9.2.1 The Primary Output Buffer

9.2.2 The Secondary Output Buffer

EXERCISE ANSWERS

ABOUT
ACCESS

ACCESS is a results oriented data retrieval language which is provided as an integral part of a
PICK-based operating system. ACCESS is classified as a non-procedural language, meaning that
you ask for what you want without telling the system the steps of how to get there. With
ACCESS, you simply enter an English-like sentence describing the content, restrictions, and
order that data is to be output. Output can be formatted as columnar reports or mailing labels
and routed to a video display terminal, system printer, or tape backup device. ACCESS can also
be used to build and save index lists to drive other ACCESS or TCL processes.

For the queezy who are new to the computer game, cheer up! Mistakes don't hurt a thing.

ACCESS is for data retrieval, not update. Any slip-ups that you might make will not hurt the
database.

COURSE OBJECTIVES .

The purpose of this workbook is to help the PICK user master the basic elements of ACCESS. It
is designed as a self-study tool, consisting of step-by-step explanations and examples. Fill-in-the-
blank and multiple choice exercises punctuate the important topics.

Students are encouraged to follow along on their systems with an already existing applications
database, or by entering the examples in this workbook. However, not all the examples are
hands-on. Please note, that those examples in the rounded-corner boxes are intended to be
interactive, and those in the square boxes are for observation only!

1.1

1.2

1.3

SYSTEM
OVERVIEW

The system, also known as the system dictionary, can be likened to a "records room" full of file
cabinets with each containing information that is logically stored by account.

The file, SYSTEM, contains elements which define all the valid accounts. Before you can do any
work, you must tell the system your account name. This process is called logging on. Logging on
unlocks the file cabinet.

An account is a directory of information and services. It can be likened to a file cabinet with a
virtually unlimited number of drawers. These "drawers" (files) hold information grouped accord-
ing to purpose (Inventory, Payables, Programs). Each department in a business may have its own
account from which to work. For example, the billing department may have an account called
BILLING, while the shipping department may work from the account called SHIPPING. The
single most important account for system operations is called SYSPROG from which all system
utilities, such as tape backup, port and printer configuration, and system verification are invoked.

Each account has a single master dictionary. The master dictionary contains elements that
define all of the files and commands which are accessible in the account.

A file is the cabinet drawer. However, this drawer will keep pulling out forever, like a Three
Stooges prop. The size of a file is limited only by the amount of disk available. A file is a set of
distinct but related elements of information and is given a name to reflect its use. For example,
orders may be kept in a file called ORDERS, while inventory data may be kept in a file called
INVENTORY.

A file is actually made up of two files or "levels.” The "upper"” level is the DICTionary level. The
"lower" level is the DATA level.

The DATA level contains the data and/or text.

The DICTionary level is exactly as it sounds, "a place to look up the meaning of words." Each
field or group of fields in the data area can be described by a word in the dictionary. These
"words" are called data definition items. These items are used by ACCESS for retrieving and for-
matting data.

14

1.4.1

ITEMS

Items are the file "folders." Each distinct element in a file is called an item.

Items contain multiple pieces of information. For example, each item in a file named CUS-
TOMERS represents a single customer. All of the information needed to process this customer is
contained within the item. This may include name, address, city, state and zip. Each piece of
information is a "field." In the PICK environment, fields are also called "attributes."

Many types of information can be stored in an item. Items can consist of fields of data (name,
address, city, etc.), lines of descriptive text, program code statements (BASIC, PROC, or ASSEM-
BLER) or data retrieval information (DICTionary Data Descriptors).

All data within an item is stored as ASCII characters. (ASCII stands for American Standard
Code for Information Interchange.) Please note that in most implementations, a maximum of
32,000 characters is allowed per item.

Item-Ids

An item is assigned a free-form name. This name (IDentifier) is not unlike a reference tab on a
file folder. Item-ids are used to uniquely identify items within a file and cannot be duplicated.
The process used to address an item in a file is called "hashing." Hashing converts the item-id
directly into location in the file. The item-id is actually used to map the physical disk address.

Be that as it may, all that you have to remember is the name of the item (item-id).

' The PICK Database

Attribute: H.E. Rodstein
Attribute: 24332 Toponas Court
Attribute: Laguna Niguel, CA 92656

QQ.O...C.QO..C‘.......OCQCOQGQ.QQ..1

14.2

Dictionary

EocE

Attributes

The fields of information which make up an item are called attributes.

Attributes vary in length.

A sample item in logical format:

There are five attributes in item 100 above.

The EDIT and COPY verbs present an item in logical format. Each attribute is displayed on a
separate, labeled line. The actual physical layout of an item is somewhat different.

Attributes are marked internally by a special reserved character. This character is called an
attribute mark. (For those who care, an attribute mark is ASCII character 254.) ACCESS allows
a name to be associated with each attribute.

Attributes can be further divided into fields called "values." An attribute containing many values
is said to be a "multivalued” attribute. Values can be further divided into "sub-values.”

Values are marked with value marks and sub-values with sub-value marks. Value and sub-value
marks display on an EDIT line as a right bracket (J) and a back-slash (\), respectively. (A value
mark is ASCII character 253 and a sub-value mark is ASCII character 252.)

The application programs already on your system take care of building these fields and keeping
track of the attributes, values and sub-values. If, however, it is necessary to repair this data
using the system editor, the delimiters must be generated from the terminal keyboard.

¢ Attribute marks are generated by a <ctl><shift><?>
*Value marks are generated by a <ctl><shift><]>
*Sub-value marks are generated by a <ctl><shift><\>

Do not confuse the display of these special characters with the normal brackets and back-slashes.
In fact, some terminals display these characters as totally different characters. For instance, the
WYSE family of terminals display an attribute mark as a tilde (~), a value mark as a brace (}),
and a sub-value mark as a broken line (/).

1.5

A data definition item resides in the file dictionary and is assigned an item-id which is used as a
descriptive word in ACCESS. The contents of the item are parameters which control the
attribute position of the data field, output masking, justification, and length, and any calcula-
tions.

Definitions are used for data retrieval and do not affect data update.

Attribute 0,
CUSTOMER.NO

The description of NAME is an item in the file dictionary which looks like this:

“A" for attribute definition.
The attribute position
to find the name fleld,
Left justify the output.
An R would indicate right.
Allow for 35 characters
as the output column.

The other descriptive items are as follows:

EXER‘CI_SE'

10.

11.

12.

13.

14.

Files are grouped by

contains the definitions of every

account.

Files and commands are defined in each account's

Files are made up of

Items are made up of lines of information called

Items are retrieved by a unique key called the

The level holds the file's data.

The level contains the data defini-
tion items.

Attributes are delimited by special characters called

How many attributes can an item hold?

The maximum number of characters per item is

Name two of the parameter functions that are stored in a
data definition item.

True or False. Data definitions change what is actually
stored on the file.

True or False. Data definition item-ids are words which
describe data held in an attribute of an item.

2.1

GETTING
STARTED

LOGGING ON

Using an account name to LOGON to the system, gives you access to the group of files defined
within that account.

LOGON to the account (in this
case HOWTOACCESS)

S IEINN
988 =~-->>>
“;;;;;i;_>>>

e s System LOGON Message

You are now at TCL (Terminal Control Language).

The greater-than symbol (>) is the TCL prompt. It tells you that the system is ready for a com-
mand sentence to be entered.

An account must exist before you can logon to the system. You may use an existing account or
have one created for you. An account is created using the CREATE-ACCOUNT verb from the
SYSPROG account. In the interest of getting to the point, the CREATE-ACCOUNT procedure is
not covered in this workbook. Please consult your manuals for further details.

The first word of a command sentence is called a verb, since it invokes action. (The word
"invoke" is used to mean "initiate.")

Some verbs may "stand alone." These are called simple TCL, or TCL-I verbs, since they invoke
action which does not involve retrieving data from a file. Such verbs include: TIME, display the
current time and date; WHO, display your port number and account name; or WHERE, list the
ports logged onto the system.

Simple TCL sentence:

>verb<r>

10

TCL-II verbs must be specified along with a target filename and a list of item-ids. These include:
EDIT, for altering data in any file; COPY, for moving items within and between files; and RUN,
for starting up a PICK/BASIC program.

TCL-II command sentence:

>verb filename item-id<r>
Finally, there are the ACCESS verbs. In their simplest form, only the verb and filename need to
be specified. ACCESS verbs include LIST, SORT, LIST-LABEL, SORT-LABEL, SELECT and
SSELECT.
Simple ACCESS command sentence:

>verdb filename<r>

When entering a command sentence longer than a few words, it helps to know the special keys
which allow the TCL sentence to be "edited."

|)] (GG g 1 PR

o 0 1 (7 10 17 0 I 7% T 17 1]F] BlIEIERISIEISYE
. Cne Cne
R IENEE gy
N N/ NN

7
I 5
IR H

Special Keys:
<return> Indicates the end of a line.
<backspace> Back up input by one character. You can't <backspace> beyond
the beginning of a line.
<tab> Advances input to the next tab stop.
<shift> Is the Shift key. Used to change the case of letters or the value of
number and punctuation.

® @ © 6 © © 0 0 0060 00 OO 0 © 00O O OO O OO OO O > O > 0 o

2.2

Control Keys:
(Control keys are generated by depressing the <ctl> key simultaneously with any other key.)
<ctl> Is the control key, used in conjunction with other keys to alter
their function.
<ctl>H Same as <backspace>.
<cth>I Same as <tab>.
<ctl>X Restarts input at the beginning of the current line.
<ct>W Backs up input to the previous word.
Be careful with these:
<ctl>S Is called X-OFF. It tells the system, "Don't send me anything
until you hear from me again with an X-ON."
<ctl>Q Is X-ON. It tells the system to start sending again!

If the <ctl>S is typed accidentally, the system appears to hang (stop processing). There is no
response. Simply type a <ct1>Q (X-ON) before calling the DP department.

Using "The Editor", typing any of the remaining control characters imbeds them within the text.
There are no equivalent display characters for them. Therefore, EDIT displays a period (.) to
mark the location of a <ctl> character. This can lead to problems since this "lint" is indistin-
guishable from an actual period.

There are a few other keys which generate characters different from the actual display. The fol-
lowing is a list of the characters which are displayed on most terminals. However, they are not
standard. If your display differs, note the characters for future reference.

ngs : G DESCRIPTION o ‘.w-::j'_:-'-' o s i e e

<escape> Displays as a left-bracket ([).

<ctl><shift>6 Generates an attribute mark. Displays as an up-arrow (*).

<ctl><shift>] The control, shifted right-bracket generates the multivalue
delimiter, a value mark. This displays as a right-bracket (J).

<ctl><shift>\ The control, shifted back-slash (\) generates the sub-value

delimiter, a sub-value mark. Displays as a back-slash (\).

Time to get your feet wet. The commands described in this section should help you navigate
within an account.

2.2.1

Looking at Data Files

Once logged on to an account, it is necessary to get a listing of the files that are available. The
verb to do this is LISTFILES.

At TCL type:

>LISTFILES<xr>

The listing may look like this:

9 ITEMS LISTED

Column header MD stands for Master Dictionary. All files are defined within an account Master
Dictionary.

The column heading CODE tells you whether the file is defined locally on your account or is being
used locally but defined on another account. The D represents a locally defined file. The Q repre-
sents a file defined on another account. The remaining columns provide information about the
location and size of each file. Please refer to your system manuals for details.

It is now necessary to get a listing of what item-ids are already in the data-level of the file of your
choice. The commands to do this are LIST and SORT.

>LIST filename<r>

or

>SORT filename<r>

'YW EEEEEENENRNNNY NN B I B B B BN B BN B B B BN B R BN B BN N

LIST generates a listing of the item-ids in random order.

SORT generates a listing of the item-ids in alphabetical or numerical sequence.

The results of any of the above commands can be sent to the printer via the system spooler by
using the option "P." Options must always be surrounded by parentheses.

>LISTFILES (P)<r>

>LIST filename (P)<r>
>SORT filename (P)<r>

13

14

222

Looking at Dictionaries

To be able to ask advanced questions about the data currently in a file, it is necessary to interro-
gate the DICTionary of the file to see what data descriptive words are available. A simple list of
the data definition item-ids can be generated by the command sentences:

>LIST ONLY DICT filename<r>

>SORT ONLY DICT filename<r>

For the sample file CUSTOMERS, the command sentence and output might look like this:

A formatted report of the data definitions can be generated by using the "canned" system verb
LISTDICT in the following format:

>LISTDICT filename<r>
or
>LISTDICT filename (P)<x>
Here is how LISTDICT looks when sent to the system printer.
CAUTION: The report may require a 132 output width defined for the printer.

SLISTDICT CUSTOMERS (P)<r>

0....OO'C...0....0‘.00....‘0.....‘.‘

N
&

23.1

Printed output:

® [)
® [)
® []
®| CUSTOMERS. CODE A/AMC S/NAME... S/AMC. CONVERSIONS....CORRELATIVES... TP MAX :
[]

® []
[] []
® []
[] []
® []
L] °
[] [)
® []
® °

Each line in the report represents a data definition item in the file dictionary. Each important
attribute in a definition item is assigned a column in the LISTDICT report.

Attribute (A) types.
A/AMC The attribute position pointer.

TP The justification -- L for left, R for right.
MAX The output length.

If you wish to follow along with the examples in the workbook, it is necessary to set up the follow-

ing work files. This set up is not required. You may use the files already available on your sys-
tem.

Creating Work Files
The files needed are named CUSTOMERS, STATES, INVOICES and REPORTS.

Files are created on the current account by invoking the verb:

CREATE-FILE

15

16

2.3.2

The specifics on creating a new file are covered within the system manuals. For now, simply
enter the following command sentences at TCL:

>CREATE-FILE CUSTOMERS 7,1 11, 1<r>

>CREATE-FILE STATES 7,1 11,1<r>

Entering Sample Data

The following sample items on page 9, plus any that you can think of, are used in the examples
throughout the workbook. EDIT examples are given, but the mechanics are not explained. If you
are not already familiar with EDIT, try the first workbook of the HOW TO series, "The Editor."

Enter the following sample item. (Remember: a rounded corner screen indicates a hands-on
exercise and <r> indicates a carriage return.)

Invoke edit for item 101 in the
CUSTOMERS file.

New Item_ Invoke Insert to
To P enter data.

JI<e>

- e f;vv."mjwmun
001+ ACME CARR°T<r> <\ COMPANY. Attribute 2,
002+ BUNNY, BUGS<r> -1— e CONTACT.

003+ 10 HOLE-IN-GROUND<r> 41' — (:}%%%%Z:)
004+ BROOKLYN<r> sy

005+ NY<r>
ar.

Attribute 8
BALANCE.

Attribute 5,
STATE

Attribute 7,
PHONE.

006+ 10090<r> o ETE
007+ 2125556666]2125556661<r>
008+ 5675<xr> .. o
009+ 7660<r>"
010+ <r>Q

Top
FI<r> Attribute 9,
DATEDUE.
'101° FILED

Press <return» to
exit ED Insert

Please note that the right bracket (]) on attribute 007, PHONE numbers, is a value mark generat-
ed by a <shift><ctl><]>. In this case, Multivalues are used to store multiple phone numbers in
the same attribute.

Notice that the PHONE is numeric only; the BALANCE contains no decimal points and the
DATE.DUE follows no obviously logical structure for a date. These are internally formatted data
fields. This is the storage format used by many applications. Don't worry about this just yet.
The subject is covered in Chapter 8, "Conversions and Correlatives."

®© © 0 060060606 0600 ¢ 0 0 © 0066 & OO0 06 ¢t o 6 & & ¢ O ¢ 0 0o

YN EEENEENENENINE N N I I B B B B BN B S BN RN N NI N BN N

Repeat the previous process for the following sample items:

001
002
003
004
005
006
007
008
009

001
002
003
004
005
006
007
008
009

001
002
003
004
005
006
007
008
009

001
002
003
004
005
006
007
008
009

106

PHINK, PHINK AND PHINK
PHINK, CLYDE

1600 PENNSYLVANIA AVE
SANTA ANA

CA

90234

2135551112

12675

8888

100

SHIPS R US
HORNBLOWER, HORATIO
1110-1 W 57TH ST

NEW YORK

NY

10019
212555767612125556666
56780

7888

103

AEROBIC DEN
PORCELANA, PORCHE
139 HOLLYWOOD BLVD
HOLLYWOOD

CA

91329

2135557777

8912

7999

105

DIABOLICAL SOFTWARE
GROG, BILL SPIDER
01100 BINARY WAY
BYTELAND

CA

90001

4085554444

456

-1000

001
002
003
004
005
006
007
008
009

001
002
003
004
005
006
007
008
009

001
002
003
004
005
006
007
008
009

107

MONA LISA LTD
DAVINCI, LEONARDO

15 CENTURY DR

VENICE BEACH

CA

97771
2135554444]12135554321
78932

8543

102

THE GUN STORE
FUDD, ELMER
30 WABBIT WAY
WEDONDO BEACH
CA

91234
2135559999
1234

-500

104

SPEAK EASY

PARTICIPLE, DANGLY

3 DAT DARE ST

GRAMMAR CITY

PA

12345
2155554433]2155556321]2155554444
2342

8555

17

2.3.3 Entering Simple Data Definitions

To begin, enter the following items into the DICTionary of the CUSTOMERS file. To be able to
duplicate the samples in the workbook, these definition items must be entered. You may choose

18

to skip this step and use your own existing database instead.

Follow this sample EDIT session.

Invoke EDit for the data definition item
CUSTNUMin the CUSTOMERS
file DiCTionary.

Invoke the Insert command to start
entering the definition parameters.

Pointing to Attribute 0
addresses the item-idi.

Attributes 3 thru 8 are to be null.
"x" is a flller til Insert is complets.
Right justify the output.
\TM output column width is 10.

Rip the buffer, just in case.
Replace over the next 10 lines,
the firet occurrence of an x with null.

~""End of em at fine 10,

Rie the new definition iem.

“" Enter the A definition code.

CusTuM' FILED

Repeat the above procedure for the remaining data definition items on page 19.

® & 06 © 06 6 0 0 ¢ 0 O 0000 0 © & 0O O 0 0O O O OO O O o

001
002
003
004
005
006
007
008
009
010

001
002
003
004
005
006
007
008
009
010

001
002
003
004
005
006
007
008
009
010

001
002
003
004
005
006
007
008
009
010

COMPANY
A
1

ADDRESS
A
3

PHONE

001
002
003
004
005
006
007
008
009
010

001
002
003
004
005
006
007
008
009
010

001
002
003
004
005
006
007
008
009
010

001
002
003
004
005
006
007
008
009
010

CONTACT
A
2

BALANCE

A

8

Balance Due

MR2

19

20

DATE .DUE
001 A
002 9
003
004
005
006
007 D
008
009 R
010 12

Both BALANCE and DATE.DUE have additional information in attribute 007. This is called an
output conversion. It is placed there to translate what is called "internal data" to something that
a human being can read. This is discussed further in Chapter 8, "Conversions and Correlatives.”
It's still too early in the game to talk about the care and feeding of definition items.

®© © 0 0006 06 06 006 0 0 © 00 0 0 & 0 00 O 0 0 & 0 > 0 0

A user gains access to a group of files on an account by

TCL stands for .

Words which invoke action are called

produces a listing of all the files

within an account.

produces a random listing of item-

ids in a file.

produces a sorted listing of item-

ids within a file.

Enter two command sentences to list the dictionary of the
CUSTOMERS file.

>

>

What does the ">" represent?

In the LISTDICT output, the column header A/AMC means

21

3.1

THE ACCESS
COMMAND SENTENCE

This chapter could also be entitled, "The Grammar of ACCESS," since it deals with the structural
elements which make up an ACCESS sentence.

The complete form of an ACCESS sentence:

>verb filename {item-id list}{sequence clause}{selection clause}{output-list}{modifiers}{(options)}

The basic components of an ACCESS statement are the verb and filename. As indicated by
braces ({}), the remaining elements are optional.

A verb is a word of action. The choice of verb controls the type of action; columnar reports, mail-

ing labels, and index lists. Verbs travel in pairs. One generates an ordered output and the other
generates a random output.

LIST Random coiumnar listing.
SORT Ordered columnar listing.

LIST-LABEL Random labels.
SORT-LABEL Ordered labels.

SELECT Random list selection.
SSELECT Sort and select. Ordered list selection.

COUNT The exception to the rule. Counts the number of

items which pass a certain selection criteria. No
output except for the final count.

These are the verbs used most often and concentrated on in this workbook. Please consult your
manuals for a list of all of the verbs in ACCESS.

23

24

3.2

THE FILENAME

In a sentence, a verb needs an object. Since ACCESS is used to process items in files, the object
must be a filename. An ACCESS verb must always be followed by a filename.

The filename specification is:

CUSTOMERS The data level of CUSTOMERS.

DATA CUSTOMERS Also, the data level of CUSTOMERS. The DATA
modifier is not required.

DICT CUSTOMERS The dictionary level of the CUSTOMERS file.

Try the examples presented in "Looking Around.” (See Sec. 2.2.)

>LIST CUSTOMERS
or
>SORT CUSTOMERS

Possible TCL Errors:

If you should use another word which you think is a verb and it is not, the following error mes-
sage is displayed:

[3] VERB?
If the filename you are interrogating does not exist, the following error message is displayed:
[10] FILENAME IS MISSING

In either case, check the spelling of the offending entry in the ACCESS statement. Notice that a
number in brackets often appears before the actual message. This is the item-id of the error mes-
sage in the ERRMSG file.

The simple form of the sentence has been demonstrated in Chapter 2, "Getting Started."
However, in review, here is the sample output of a simple ACCESS sentence.

>SORT CUSTOMERS<r> =~
PAGE 1
- CUSTOMERS .

100
101
102
103
- 104
105
106
107

8 ITEMS LISTED.

WM EEEENNEEN NN B B B R B I BN I B B I B BN BB BN NN N B BN BN N N 4

3.3

Here is a sample of a sentence using the COUNT verb.

ITEM-ID LIST

Normally, ACCESS samples every item in a file. That's why large files take so long to generate
output.

An ACCESS process can be restricted to a number of specific items if the item-ids are explicitly
expressed in the sentence. The only requirement is that each item-id must be surrounded by a
single quote ().

General form:

>verb filename 'item-id' 'item-id'

Possible Errors:

If you enter an item-id that is not on file, the following appears:

Notice that 333 does not
exist on file.

109:33:01 13 AUG

25

26

3.4

OUTPUT DATA FIELDS
The data to be output is listed by name within the ACCESS sentence.

>verb filename namel name2 name3 ...

This is a random report showing the company name, city, and state.

Sentence elements can be combined. Here, the item-list is combined with the output-list.

>LIST CUSTOMERS '101''105' COMPANY CITY STATE<r>

"SENTENCE ELEMENT : DESCRIPTION
LIST verb

~ CUSTOMERS filename
'101"105' item-list

COMPANY CITY STATE output-list

'WEEEEEEENENNENMNEMNE N N B B B BN B B B I BN EE BN BN BN N SN BN BN

®© © © & 060000 0 O 0O 0O O ° O 0O O O OO OO O OO O 0 0 0

3.5

Possible Errors:

If you enter a data definition item-id in the ACCESS statement, but the word is misspelled or
does not exist, the following error message displays:

[24] THE WORD ‘'word' CANNOT BE IDENTIFIED

THE SEQUENCE CLAUSE

As within English grammar, ACCESS sentences may have modifying clauses. The sequence
clause indicates the order in which data is to be output.

SORT class verbs order output by item-id unless a sequence clause is used. There is no effect
when a sequence clause is used with a LIST class verb.

A sequence clause begins with a derivative of the word BY.

ORT CONNECTIVE = DESCRIPTION: =

BY Orders output in ascending seqﬁence.

BY-DSND Orders output in descending sequence.

BY-EXP Explodes multivalues and orders in ascending sequence.
(This is covered later.)

BY-EXP-DSND Explodes multivalue attributes and orders the output in

ascending sequence.

Try the next sentence.
>SORT CUSTOMERS BY STATE COMPANY STATE CITY<r>

'SENTENCE ELEMENT - =~ DESCRIPTION

verb
CUSTOMERS filename
BY STATE sequence clause (The sequence clause which
orders the output in state sequence.)
COMPANY STATE CITY output-list

The sequence clause specifies order only. It does not indicate output. Therefore, the columns COM-
PANY, STATE, and CITY must be explicitly requested.

27

28

Notice that the output is in STATE order, but random within each state.

Sorts can be sequenced. For example, the city can be sorted within the state.

>SORT CUSTOMERS BY STATE BY CITY COMPANY STATE CITY <r>

- DESCRIPTION

SORT verb

CUSTOMERS filename

BY STATE BY CITY sequence clause (A two level sequence clause
which orders the output in city sequence

within state sequence.)
COMPANY STATE CITY output-list

¥ CITY COMPANY STAT

. SANTAH ANA

'PHINK, PHINK AND

:i’?_’!ix c

- VENICE BEACH
. . WEDONDO BEAC

© © © 0 00006006 0606000060 06 0 0 000 0 0600 5 0 0 ¢ o009

Q..O.C‘.Q...OQ........OQ.Q.......‘.!

&
o

3.6.1

Sorts can be tiered to as many levels as are required.

Try the previous examples using the BY-DSND clause modifier instead of BY. Notice how the out-
put is ordered in descending order.

SELF

A selection clause restricts the output generated by ACCESS to only those items which pass the
specified criteria.

Selection Clause Structure
The derivative of the word WITH, or some variation thereof, is used to begin a selection clause.

Specifies the inclusion of all items which pass the
criteria.

IF criteria Same as WITH. IF is a synonym.

WITHOUT criteria Specifies inclusion if the items do not pass the
criteria.

WITH NO criteria Same as WITHOUT.

The selection criteria can be a data definition name;

WITH BALANCE

to check for the existence of a BALANCE code. All items which have data in the BALANCE field
are included. Items with a null BALANCE field are excluded.

You should have previously entered the DICT definition item name BALANCE. However, there is
no data in the BALANCE attribute, (attribute 7), of any of the items.

>LIST CUSTOMERS WITH BALANCE COMPANY BALANCE<r>

. 'SENTENCE ELEMENT:
LIST verb
CUSTOMERS filename
WITH BALANCE selection clause
COMPANY BALANCE output-list

The result of which would be:

[401] NO ITEMS PRESENT

29

NOTE

30

The selection criteria can also be a comparison of the contents of the attribute to a specified value.
Review the following format:

WITH (datadef} {operator} {'value"]

The "datadef" is the data definition NAME, COMPANY, ADDRESS, etc.

The "operator” is a valid relational operator.

OPERATOR - “:..DESCRIPTION
=or EQ Equal to

#or NE Not equal to

> or GT Greater than

<orLT Less than

>=or GE Greater than or equal to
<=or LE Less than or equal to

The "value" is any literal data string surrounded by double quotes ().

The value string following the operator may be any series of letters and/or numbers that
describes the criteria of the data you are selecting.

The following rule must be followed when selecting your values:

Alphabetic values may be stored in upper or lowercase. Be sure the data matches case.

The following example generates a report of customers in the state of California, and shows the
company name and state in the output.

>LIST CUSTOMERS WITH STATE = "CA" COMPANY STATE<r>

SENTENCE ELEMENT DESCRIPTION

LIST verb

CUSTOMERS filename

WITH STATE = "CA" selection clause (The selection clause which
includes only items with a CA in the STATE
attribute.

COMPANY STATE output-list

or the alternative form:

>LIST CUSTOMERS WITH STATE "CA" COMPANY STATE<xr>

Notice that the equal sign (=) is the only optional operator. Equal is implied if not specified.

The next example generates a report of customers in states other than California.

>SORT CUSTOMER BY STATE WITH STATE # "CA" COMPANY STATE<r>

CUSTOMER filename

BY STATE sequence clause (The sequence clause which orders
output by ascending state.)
WITH STATE # "CA" selection clause (The selection clause which
excludes items that have CA in the STATE attribute.)
COMPANY STATE output-list

or in the alternative format:

>SORT CUSTOMER BY STATE WITHOUT STATE "CA" COMPANY STATE<r>

SORT

CUSTOMER

BY STATE sequence clause
WITHOUT STATE "CA" selection clause
COMPANY STATE output-list

31

32

3.6.2

Multiple Selection Clauses

Multiple selection clauses can be specified by separating them with words called Logical
Connectives (AND and OR).

>verb filename WITH criteria AND WITH criteria
or

>verb filename WITH criteria OR WITH criteria

.. LOGICAL CONNECTIVE = DESCRIPTION
AND Both criteria have to be true.
OR Either or both criteria have to be true.

Here, the output is restricted to only those customers not in California and not in Pennsylvania.
Notice that the word IF is being used in place of WITH. These words are synonyms, so it makes
no difference. It's a grammatical choice.

>LIST CUSTOMERS IF STATE # "CA" AND IF STATE # "PA" COMPANY STATE<r>

-+ SENTENCE ELEMENT =" .. " . DESCRIPTION .. -
LIST verb
CUSTOMERS filename
IF STATE # "CA" AND IF STATE # "PA" selection clause
COMPANY STATE output-list

' >LIST CUSTOMERS IF STATE

PAGE 1
| cutseund” coupanii]

101 ACME CARROT

2 ITEMS LISTED. .

Here, the output includes California and Pennsylvania, but excludes everything else:

>LIST CUSTOMERS WITH STATE = "CA" OR WITH STATE = "PA" COMPANY STATE<r>

- SENTENCE ELEMENT st oo e DESCRIPTION .
LIST verb
CUSTOMERS filename
WITH STATE ="CA" OR WITH STATE = "PA" selection clause
COMPANY STATE output-list

3.6.3

>LIST CUSTOMERS WITH STATE = "CA" OR WITH STATE = "PA" COMPANY STATE<r>

PAGE 1 16:55:47 15 AUG 1988
CUSTOMERS. COMPANY............. STATE
106 PHINK, PHINK AND PHI CA
NK
107 MONA LISA LTD Ca
102 THE GUN STORE Ca

103 AEROBIC DEN ca
104 SPEAK EASY = " PA
DIABOLICAL SOFTWARE CA

Using logical connectives requires the full WITH clause to be repeated. You can't say:
>LIST CUSTOMERS IF STATE # "CA" AND # "PA"<r>

You MUST say:
>LIST CUSTOMERS IF STATE # "CA" AND IF STATE # "PA"<r>

OR connectives can be implied if the value is being compared to the same field. The OR example
can more easily be written:

>LIST CUSTOMERS WITH STATE = "CA" "PA" COMPANY STATE<r>

This lists the CUSTOMERS file as before, with the state as either California or Pennsylvania.

Value String Searching
When the EQ (equal to) is used, the system is looking for a character-for-character match. This
sometimes presents a problem when only part of the field is being searched. You must use "string

searching" when you want to find a particular string of characters in a Data Descriptor. Brackets
([) must be used to indicate a string search.

For example, you are searching for a CONTACT in the CUSTOMERS file with the name "JOHN-
SON, BILL."

33

34

Here are several ways of searching for these people:

"[BILL"

"JOHNSONT"

"[JOHNSONT"

The following example outputs

These characters must be exactly matched. The system would not

pull, for example, "JOHNSON, BILL R." or "JOHNSON, BILL
JR." or even "JOHNSON, BILL."

Using the left bracket before "BILL" tells the system that "BILL"
may be preceded by any characters, as long as the string ends
with the characters "BILL." Therefore, you would get "JOHN-
SON, BILL" or "SMITH, BILL" or "BUFFALO, BILL."

Using the right bracket after "JOHNSON" indicates that "JOHN-
SON" may be followed by any characters as long as it begins
with "JOHNSON." Therefore, you get "JOHNSON, CARL" or
"JOHNSON, BILL" or "JOHNSON, EDNA."

Using both brackets tells the system that "JOHNSON" may be
preceded or followed by any set of characters. Therefore, you get
"JOHNSON, BILL" or "JOHNSON, BECKY" or "DAVIS, JOHN-
SON."

a report of all customers with an A in their company name.

>LIST CUSTOMERS WITH COMPANY = "[A]" COMPANY<r>
= SENTENCE ELEMENT. i+ . -.". 'DESCRIPTION:

LIST verb

CUSTOMERS filename

WITH COMPANY = "[A]" selection clause

COMPANY output-list

&>Lxsm cusronaas WITH COMPANY = "[A]" compaNy

PAGE 1

‘ji"oé*jf | »-“_PHINK, PHINK AND PHI
2107 0 MONA LISA L'I'D

2101 5 . . ACME CARROT
1103 . AEROBIC DEN

3.6.4

The following example generates a report of CUSTOMERS whose zip begins with a 9, in order of
CONTACT name. Since California's zip codes begin with a 9, the report includes all customers in
California.

>SORT CUSTOMERS BY CONTACT WITH ZIP = "9]" CONTACT COMPANY ZIP<r>
ENTENCE ELEMENT . " DESCRIPTION:

SORT verb

CUSTOMERS filename

BY CONTACT sequence clause

WITH ZIP = "9]" selection clause

CONTACT COMPANY ZIP output-list

ZIP<r>

1988

. ' 97771
 THE GUN STORE _ CA 91234
| DIABOLICAL SOFTWARE CA 90001
- PHINK, PHINK AND PHI CA 90234
NK : S

AEROBIC DEN '~ . .. CA 91329

Wildcard Searches

Wildcard searches allow the specification of a "don't care” character or series of characters in the
value string. The wildcard character is represented by a caret (#).

>LIST CUSTOMERS WITH CONTACT = " [GA" CONTACT CITY<r>
. SENTENCE ELEMENT: DESCRIPTION

LIST verb

CUSTOMERS filename

WITH CONTACT = "[GA" selection clause (Include contacts which end
in the two letter combination of a G followed
by any character.)

CONTACT CITY output-list

35

‘>LIST CUSTOMERS

PAGE 1 .

CUSTOMERS. CONTACT.....

101 BUNNY, BUGS

END OF LIST

Bugs is the only one who passes the criteria.

3.6.5 ID Selection Criteria

Selection criteria can also depend on the item-id. This can be indicated in one of two ways,
implied and specific.

The implied item-id selection criteria follows the filename. It consists of an operator and value.
The reference to the item-id is implied.

>verb filename operator 'value'

The following example outputs as a list of CONTACTS in the CUSTOMERS file whose customer-
id begins with a 1.

>SORT CUSTOMERS = 'l]' CONTACT<r>

SENTENCE ELEMENT DESCRIPTION

SORT verb
CUSTOMERS filename
="17 id selection
CONTACT output-list

The value must be surrounded by single quotes ().
Generate a listing of customer COMPANY and CITY if the customer-id has a 5 anywhere in it.
>LIST CUSTOMERS = '[5]' COMPANY CITY<r>

-~ SENTENCE ELEMENT DESCRIPTION - -

LIST verb
CUSTOMERS filename
='[5] id selection
COMPANY CITY output-list

"W EEEEEEENNNEXE NN NN N B B BN BN BN B NI BN BN BN BN BN BN B BN BN 2

3.7

MPANY CITY<r>

13:03:18 16 AUG 1988

. CITY..

IABOLICAL SOFTWARE BYTELAND

Item-id selection can also be explicit. Remember the data definition that you entered entitled
CUSTNUM. CUSTNUM points to attribute 0. Attribute 0 is the item-id.

The same two sentences in explicit format are:

>SORT CUSTOMERS WITH CUSTNUM = "[1]" CONTACT<r>

'SENTENCE ELEMENT - - DESCRIPTION

SORT verb

CUSTOMERS filename

WITH CUSTNUM = "[1]" selection clause

CONTACT output-list

>LIST CUSTOMERS WITH CUSTNUM = "[5]" COMPANY CITY<r>

- -SENTENCE ELEMENT DESCRIPTION

SORT verb
CUSTOMERS filename
WITH CUSTNUM = "[5]" selection clause
COMPANY CITY output-list

An explicit selection clause requires that the double quotes (") surround the test value.

OUTPUT MODIFIERS AND OPTIONS

The ACCESS sentence may end in a series of modifiers used to change the default output charac-
teristics. Output modifiers can be specified as words or as command sentence options.

The detailed use of each is demonstrated in the chapters, "Columnar Reporting," and "Mailing
Labels."

37

38

The list of output modifiers and their related options is as follows:

. QUTPUT MODIFIER ¢ ' DESCRIPTIO;

ID-SUPP Suppresses the automatic display of the item-id column.
Also indicated with the (I) option.
DET-SUPP Used in an ACCESS statement in which a SORT sequence

is combined with a BREAK-ON modifier. (See Chapter 4,
"Columnar Reporting.") Its function is to suppress the
display of all the detail lines contributing to a break line,
and, instead, to display the data value that caused the
break to occur. Also indicated by the (D) option.
HDR-SUPP Suppresses the default page heading that contains the
time, date, and page number. Also indicated by the (H) option.
COL-HDR-SUPP Suppresses both the default page heading which normally
includes time, date and page number, as well as the date
column headings. Also indicated by the (C) option.
NOPAGE Causes the report to display on the CRT (default) without
pausing for the user to enter a <KRETURN> between each
page of output. This is typically used when the report is
being printed on a terminal attached (slave) printer. Also
indicated by the (N) option.
LPTR Directs the report output to the spooler currently assigned to
the line printer. Also indicated by the (P) option.

Simple example of output modifier use:

The following sentence prints an ordered report of the CUSTOMERS file.

>SORT CUSTOMERS BY STATE BY COMPANY STATE COMPANY CONTACT LPTR<r>

SENTENCE ELEMENT DESCRIPTION - -
SORT verb

CUSTOMERS filename

BY STATE BY COMPANY sequence clause
STATE COMPANY CONTACT output-list

LPTR output modifier

® & 6 © 006 O 0 ¢ O ¢ & O O 0 O & 06 O O O 0 v O O OO O S 0 ¢ >

® © © &6 06006 0000 00 © O 0 0 0000 & 9 0 O OO0 0 0 % 0

3.8

THROWAWAY CONNECTIVES

The printed output is:

NTACT LPTR<r> '

5 AUG 1988

103 Ca AEROBIC DEN PORCELANA, PORCHE

STORE ~ FUDD, ELMER

102 "CA THE GUN
* 101 NY ACME CARROT BUNNY, BUGS
° 100 NY SHIPS R US HORNBLOWER, HORATIO

An equivalent sentence that outputs to the printer:

>SORT CUSTOMERS BY STATE BY COMPANY STATE COMPANY CONTACT (P)<r>

DESCRIPTION .. -
verb
CUSTOMERS filename
BY STATE BY COMPANY selection clause
STATE COMPANY CONTACT output-list
P) option

Throwaways are words which are not processed in the ACCESS sentence, but can be used to

"round out" the grammar of the sentence. The following are the available throwaways:

A AN ARE ANY FILE
FOR 1IN ITEMS OF THE

39

40

Using these throwaway connectives, an ACCESS sentence can be entered as follows:

>SORT THE CUSTOMERS FILE BY STATE COMPANY STATE<r>

! !

throwaways

New throwaways can be created by copying the existing words to new names. Since these connec-

tives reside in the master dictionary of an account, new throwaways are created by using the
COPY verb and the MD file.

>COPY MD A<r>
TO: SHOWING<r>

1 A TO SHOWING

1 ITEM COPIED

The previous statement can be re-entered as:

>SORT THE CUSTOMERS FILE BY THE STATE SHOWING THE COMPANY STATE<r>

.t 1t 11

throwaways

>SORT THE CUSTOMERS FILE BY THE STATE SHOWING THE COMPANY STATE<:r>

PAGE 1 10:10:00 08 DEC 1988
CUSTOMERS. COMPANY........c.,.. STATE
102 THE GUN STORE CA
103 AEROBIC DEN CA
105 DIABOLICAL SOFTWARE CA
106 PHINK, PHINK AND PHI CA
NK

107 MONA LISA LTD CA
100 SHIPS R US NY
101 ACME CARROT NY
104 SPEAK EASY PA

8 ITEMS LISTED.

© © 0 00 0606 60060 06060 © 0 06066 0606 090 ¢ 0 0 ¢ 0 0 0 ¢ o ¢

QO........QQ.CQ.......O.QQ...O.....

The basic components of an ACCESS command sentence are

and

Name four commonly used ACCESS verbs.

Verbs travel in pairs. One always generates a

output, while the other generates a ' output.

Which file levels do the following command sentences
report?

>LIST CUSTOMERS

>SORT DICT CUSTOMERS

>LIST ONLY CUSTOMERS

>SORT DATA CUSTOMERS

The ACCESS verb which outputs only a count of items is

The first column of a LIST or SORT output is made up of

True or False. The following ACCESS sentence lists only
three specific items.

>LIST CUSTOMERS '102''103''106"

Write an ACCESS command sentence which outputs the company

name, address and city for all entries in the CUSTOMERS
file.

>

41

42

10.

11.

Write an ACCESS sentence which outputs the same informa-
tion as above, but reports only CUSTOMERS 100 and 101.

>

Match

the following connectives:

BY

WITHOUT

BY-EXP

IF

AND

BY-DSND

WITH

THE

OR

a.

Beginning of a selection
clause. Includes items
which pass the criteria.

A throwaway connective.
Sorts in ascending sequence.
A selection connective in-

dicating items which do not
pass the selection criteria.

Sorts in descending sequence.

A logical connective meaning
both selection criteria must
be true.

A synonym for WITH.
Another throwaway.

A logical connective meaning
either selection criteria
can be true.

Explodes multivalue attri-
butes for sorting.

Write the command sentence to sort the CUSTOMERS file by
contact name within state and show the contact name and

state abbreviation.

>

® 6 0 0 006 6 0606 00 06 © 0 © 06 0 ¢ © 0 ¢ 06 & ¢ & & & 0 & ¢ ¢ 0 ¢ 0

12.

13.

14.

15.

l6.

Match

the selection clause:

WITH STATE

WITH BALANCE GE "1000

IF CONTACT = "S]"

WITHOUT ADDRESS

WITH STATE "CA""TX"

WITH NO CONTACT

IF PHONE = "213]"

.0o"

b.

The wildcard search character is a

Include customers in
either California or
Texas.

Include only those
items that have a
null address attri-
bute.

Include customers
in the 213 area code.

Exclude customers
with no contact name.

Include those custo-
mers with a balance
due greater than or
equal to 1000 dollars.

Include customers
whose contact names
start with an S.

Include only those
customers with a non-
null state attribute.

Write a selection clause for the CUSTOMERS file that
includes those company names whose second to the last
character is a K.

Write a full ACCESS statement which sorts the output by
the balance due for only those customers in California in

the CUSTOMERS file.

>

The report should output both fields.

In the following ACCESS sentence, match each description
with the correct portion of the sentence.

>SORT CUSTOMERS BY STATE BY ZIP WITH BALANCE COMPANY STATE ZIP BALANCE LPTR

a. output-list
b. verb
c. output modifier

d. filename
selection clause
f. sequence clause

e.

43

4.1

COLUMNAR
REPORTING

This chapter demonstrates the techniques for formatting a columnar report. Please review
Chapter 3, "The ACCESS Command Sentence," to become familiar with the command sentence
components that are used in these report examples.

Also, make sure that your terminal characteristics are set correctly before continuing. Setting up
terminal and printer characteristics is discussed at length later in this chapter in Section 4.8,
"Choosing the Output Device." For now, just enter the following:

>TERM 79,23

This says to set the terminal width and depth to 79 columns and 23 lines.

Columnar reports are generated by the ACCESS verbs LIST and SORT.

C“VERB . " DESCRIPTION
- LIST Output a columnar report in random order.
SORT Output a columnar report in sorted order of

item-ids if no BY clause is used, or BY any
specified data definition.

The general form is:

>LIST filename<r>
or
>SORT filename<r>

For example:

SLIST CUSTOMERS<r>
PAGE 1 . 16:20:15 12 AUG 1988
- CUSTOMERS." . -

106
107
..-100
101
® '.55:102 -
103 .
“.104
~...108

'8 ITEMS LISTED.

45

46

SORT generates a listing of the item-ids in alphabetical or numerical sequence.

A SORT by company name is specified as follows:

>SORT CUSTOMERS BY COMPANY<r>

SENTENCE ELEMENT " DES

SORT verb
CUSTOMERS filename

BY COMPANY sequence clause

>SORT CUSTOMERS BY COMPANY<r>

PAGE 1.

 CUSTOMERS. -

101 .
103"
7105
107.
106
100
104
102

Notice that even though the sequence clause is used, the report still only shows the item-ids.
Read on to see how columnar output can be requested.

4.2

EXPLI

The previous ACCESS sentences haven't been much help in viewing any data other than the
item-ids. Here's where the data definition items come into play. Output data columns are speci-
fied in the following form:

>verb filename namel name2 name3

Each definition name generates a column of output.

>LIST CUSTOMERS COMPANY CONTACT CITY STATE<r>

'SENTENCEELEMENT =~ DESCRIPTION
LIST verb
CUSTOMERS filename

COMPANY CONTACT CITY STATE output-list

D PHI PHINK, CLY

- DAVINCI,

ER;;: . NEW YORK

' 'BUNNY, 'BUGS . BROOKLYN

_FUDD, .ELMER = . WEDONDO BEACH
. " PORCELANA, PORCHE = - HOLLYWOOD

PARTICIPLE, DANGLY GRAMMAR CITY
GROG, 'BILL SPIDER ' BYTELAND .

FEFEEF:

Notice that company 106 has a name wider than the current column width. The system automat-
ically wrapped the data on to the next line in the same column.

Let's take a look at the same report using the SORT verb.

>SORT CUSTOMERS COMPANY CONTACT CITY STATE<r>

~SENTENCE ELEMENT DESCRIPTION
SORT verb
CUSTOMERS filename

COMPANY CONTACT CITY STATE output-list

47

48

>SORT CUSTOMERS COMPANY CONTACT CITY STATE<T

PAGE 1

CUSTOMERS. COMPANY. aand

100
101
102
103
104
105
106

107

8 ITEMS LISTED.

SHIPS R US
ACME CARROT
THE GUN STORE
AEROBIC DEN
SPEAK EASY St
DIABOLICAL SOFTWARE

NK
MONA LISA LTD

The SORT verb orders the output by the item-ids.

Now, here is the same SORT sentence with the output in COMPANY order.

>SORT CUSTOMERS BY COMPANY COMPANY CONTACT CITY STATE<r>

SENTENCE ELEMENT DESCRIPTION ~
SORT verb

CUSTOMERS filename

BY COMPANY sequence clause

COMPANY CONTACT CITY STATE output-list

>SORT CUSTOMERS BY COMPANY COMPANY CONTACT CITY STATE<xr>

PAGE 1 13:05:51 08 SEP 1988

CUSTOMERS. COMPANY............. CONTACT........ s CITY....oevennn STATE
101 ACME CARROT BUNNY, BUGS BROOKLYN NY
103 AEROBIC DEN PORCELANA, PORCHE HOLLYWOOD CA
105 DIABOLICAL SOFTWARE GROG, BILL SPIDER BYTELAND CA
107 MONA LISA LTD DAVINCI, LEONARDO VENICE BEACH CA
106 PHINK, PHINK AND PHI PHINK, CLYDE SANTA ANA CA

NK .

100 SHIPS R US HORNBLOWER, HORATIO NEW YORK NY
104 SPEAK EASY PARTICIPLE, DANGLY GRAMMAR CITY PA
102 THE GUN STORE FODD, ELMER) WEDONDO BEACH CA

8 ITEMS LISTED.

Notice that the data definition COMPANY must be repeated in the output-list as well as within
the sequence clause. The sequence clause does not indicate output, only order.

4.3

IMPLICIT OUTPUT FORMATTING

Files can be given a group of default columns to be output whenever a simple ACCESS statement
is entered. This is called implicit formatting since the columns are implied, not explicitly
specified. All you have to do is to enter:

>LIST filename
or
>SORT filename

and a default report format will display.

Implicit columns are set up by creating special data definitions in the dictionary of the file. These
definitions are special because they are not given names. They are given sequential numbers like
1,2, 3, etc. Each number represents the default columnar position in the implicit report.

We're going to make the previous explicit example work implicitly.

If you wish, review the COPY command in your system manuals before continuing. Now, enter
the following:

_ >COPY DICT CUSTOMERS COMPANY CONTACT CITY STATE<r>

This procedure copies the DICT item COMPANY to an item called 1, CONTACT to 2, CITY to 3,
and STATE to 4.

Here's what they look like.

o IDY 1 2 3 4
001 A A A A
002 1 2 4 5
003
004
005
006
007
008 :

009 L L hry L

010 20 20 15 2

The numbered names of these dictionary definitions represent the column, NOT THE
ATTRIBUTE. Notice how column 4 is used to point to attribute 5.

49

50

Now, enter this simple command and see what happens.

! />SORT CUSTOMERS<r

CUSTOMERS . 1.,

100 . SHIPS R'US ~ =" . HORNBLOWER, HORATIO NEW YOR!
101 - ACME CARROT. -

102 . ' 'THE ‘GUN: STORE

103 . . AEROBIC DEN

104 . 'SPEAK EASY . .. PART:

105 . 'DIABOLICAL SOFTWARE GROG,

106 - PHINK, PHINK AND PHI PHIN

107 < MONA LISA LTD DAVINCI, LE

8 ITEMS LISTED.

The four columns defined by data definitions 1, 2, 3, and 4, automatically are displayed by explic-
itly requesting them in an output-list. The column headers default to the item-ids of the data
definitions.

The column headers can be changed by using attribute 3 of the data definitions. Enter the follow-
ing:

:ED DICT CUSTOMERS 1 2 3 4<r> w—o
. 3<x>

-R//Company<r> g . i o Repiace the first occurance of

003 Company ' N & null with the word company.
FI<r> : ~

'1' FILED

2
Top
. 3<x>

003
+R//Contact<r>
:003 Contact
LPI<>

'2' FILED

Now enter the same sentence and review the results.

Now try this:

HOLLYWOOD
... GRAMMAR CITY
* BYTELAND
*" SANTA ANA

 VENICE BEACH

>SORT CUSTOMERS BY COMPANY<r>

 SENTENCE ELEMENT DESCRIPTION
SORT verb
CUSTOMERS filename
BY COMPANY sequence clause

>SORT CUSTOMERS BY COMPANY<r>

PAGE 1 13:27:32 08 SEP 1988
CUSTOMERS. COMPANY............. CONTACT............. CITY...........
101 ACME CARROT BUNNY, BUGS BROOKLYN

103 AEROBIC DEN PORCELANA, PORCHE HOLLYWOOD

105 DIABOLICAL SOFTWARE GROG, BILL SPIDER BYTELAND

107 MONA LISA LTID DAVINCI, LEONARDO VENICE BEACH
106 PHINK, PHINK AND PHI PHINK, CLYDE SANTA ANA

NK

SHIPS R US. -

HORNBLOWER, - HORATIO : NEW YORK
‘'PARTICIPLE, DANGLY - . GRAMMAR CITY

'THE GUN STORE. ~ ¥UDD, ELMER' ' WEDONDO BEACH

Again, no output-list is required.

NY
NY
CA
CA
PA
CA
CA

CA

51

52

4.4

4.4.1

Implicit formatting may not be what is required for all circumstances. It can be deactivated by
using an explicit output-list.

>LIST CUSTOMERS COMPANY CONTACT<r>

'SENTENCEELEMENT ~~ DESCRIPTION =
LIST verb
CUSTOMERS filename
COMPANY CONTACT output-list

Or, implicit formatting can be deactivated by using the ONLY modifier preceding the filename.
>LIST ONLY CUSTOMERS<r>

Try these commands and note the results.

HANDLING MULTIVALUED OUTPUT FORMATTING =~
Certain attributes in an item may contain more than a single data value. Multivalued attributes
are used to hold lists of a like data. For example, an invoice item may have an attribute which is
a list of product numbers, followed by an attribute which is a list of quantities sold. In our sample
CUSTOMERS file, the PHONE attribute contains multiple phone numbers.

This section shows how multivalued attributes are reported and sorted.

Simple Output
Whenever a multivalue field is output in a columnar report, values are stacked within the column
in the order that they are stored in the attribute.

Enter the foliowing command sentence:

>LIST CUSTOMERS COMPANY CONTACT PHONE<r>

SENTENCE ELEMENT DESCRIPTION
LIST verb
CUSTOMERS filename
COMPANY CONTACT PHONE output-list

The output is as follows:

M EEERERENREREN NN N B I B B B BN B IR N BN IR B N B N R

4.4.2

Sorted Output

Sorting by multivalue attributes can create some difficulty since the BY clause uses entire
attributes as one string for sorting. To understand this a little better, enter the following sen-
tence:

SHIPS R US .

NK»AND PHI "PHINK,

CONTACT ’HONE<x>

. conwncr.is;.g\......

 HORNBLOWER HORATIO

7. ¥UDD, ELMER.
‘"’ PORCELANA;* PORCHE
~ PARTICIPLE, DANGLY

'GROG, BILL SPIDER
CLYDE

DAVINCI, LEONARDO

vf; 09 3o 15 os DEC 1988

PHONE......

2125557676
2125556666
2125556666

. 2125556661
© 2135559999

21355577717
2155554433
2155556321

2155554444

4085554444

2135551112

© 2135554444

2135554321

>SORT CUSTOMERS BY PHONE COMPANY CONTACT PHONE<r>

' SENTENCE ELEMENT DESCRIPTION
SORT verb
CUSTOMERS filename
BY PHONE sequence clause
COMPANY CONTACT PHONE output-list

'CUSTOMERS COMPANY :

101

100

106

107

T 103
102 .

104

‘;;bs

ACME CARROT

SHIPS R US

' AEROBIC DEN
THE GUN. STORE
SPEAK EASY '

"e ITEMS Lxsrmn.

DIABOLICAL SOFTWARE GROG, BILL SPIDER -

;}SORT CUSTOMERS BY PHONE COMPANY CONTACT PHONE<r>

“g*PAGE 1’ 09:30:57 08

BUNNY, BUGS

HORNBLOWER, HORATIO

PHINK, PHINK AND PHI PHINK, CLYDE
-NK ' .
'MONA LISA LTD

. DAVINCI, LEONARDO .

" PORCELANA, PORCHE ‘
FUDD, EILMER" :
PARTICIPLE, DANGLY

DEC 1988

2125556666
2125556661
2125557676

‘2125556666

2135551112

2135554444

2135554321
2135557777
2135559999
2155554433
2155556321
2155554444 -
‘4085554444

.

.

.

Don't let the extra space generated for CUSTOMERS 106 fool you. It is only a single value. The
extra line is generated because the company name wraps to the next line. This may be annoying,
but live with it for now. It will be taken care of in a later chapter.

Notice the PHONE column. The individual phone numbers are not in sorted order. This is the
reason that the BY-EXP modifier must be used. BY-EXP breaks up the value lists so that they
can be reported in the correct sequence.

Enter the following command sentence:

>SORT CUSTOMERS BY-EXP PHONE COMPANY CONTACT PHONE<r>

' SENTENCE ELEMENTS =+ DESCRIPTION:
SORT verb
CUSTOMERS filename
BY-EXP PHONE sequence clause
COMPANY CONTACT PHONE output-list

' >SORT CUSTOMERS BY-EXP ;Pnozq:ii*-cb ANYcou'r ‘
PAGE 1 : . »

CUSTOMERS. COMPANY.

101 ACME CARROT'

100 "SHIPS R US " -

101 . - . ACME CARROT .~

100 SHIPS R US :

106 PHINK, PHINK AND PHI ™

107 MONA LISA LTD -~ DAVINCI, * LEONARI
107 MONA LISA LTD ~ #DAVINCI : LEONARDC
103 . AEROBIC DEN ' PORCELANA,:

102 THE GUN STORE - FUDD, “EIMER: i
104 SPEAK EASY ‘PARTICIPLE, DANGLY :
104 SPEAK EASY PARTICIPLE, DANGLY
104 SPEAK EASY PARTICIPLE, 'DANGLY

105 DIABOLICAL SOFTWARE GROG, BILL SPIDER"

13 ITEMS LISTED.

The phone numbers are now in correctly sorted order. Note that any item which contains more
than one value for the phone number is output in an equivalent number of lines in the report. For
example, CUSTOMER 101 has two values in the PHONE field and 101 appears twice in the
report. This explains why 13 items are listed even though there are only 8 items in the entire file.

CUSTOM HEADINGS AND FOOTINGS

The system automatically places a heading on columnar reports. This default heading consists of
the system time, date and current page number. However, you have the option to override the
default heading and specify a custom report heading and footing by using the following modifiers.

“MODIFIER DESCRIPTION. . . o
HEADING Specifies that the user defined text is to be
output at the top of each output page.
FOOTING Specifies that the user defined text is to be

output at the bottom of each page.

® © © 0 00 95 0 0 ¢ 0 660 0 0000 O 0 0O % Ve O O O O C¢ ® ¢ e 0 0

HEADING and FOOTING Text:

Each of these modifiers must be followed by a literal string specifying the actual text to be used in
the Heading or Footing. The general form of the HEADING or FOOTING clause is:

HEADING "text... ‘options’ ..text... ‘option’"
or
FOOTING "text... ‘options’ ..text... ‘option’"

System level options may be included within the text. These options must be set apart by sur-
rounding them with single quote () marks.

The following is a list of options:

"DESCRIPTION-

Centers output.

Insert the value causing the report break. Must be used
in conjunction with the BREAK-ON modifier options. See
Section 4.6 "Report Breaks" for more information.

D Outputs the System Date.

F Outputs the Filename.

Fn Outputs the Filename left justified in a field of 'n' blanks.

I Outputs Item Name.

In Outputs Item Name left justified in a field of 'n' blanks.

L Outputs a linefeed and carriage return, skips a line.

P Outputs page number, right justified in a field of four blanks.
PN Outputs page number, left justified.

T Outputs time and date.

Outputs one single quote. Since single quotes are used to set
off options, this allows a single quote to be a part of the text.

Here is a simple use of the HEADING modifier.

>SORT CUSTOMERS BY COMPANY COMPANY CONTACT HEADING "COMPANY LIST ‘CL’ "<r>

 SENTENCE ELEMENT DESCRIPTION
- SORT verb
CUSTOMERS filename
BY COMPANY sequence clause
COMPANY CONTACT output-list
HEADING "COMPANY LIST'CL’" heading clause
The heading clause is:
"COMPANY LIST‘CL""

This contains the literal string (text) COMPANY LIST modified by the options, C, center the text
on this line, and L, force a line feed. The centering is based on the width of the chosen output
device, in this case, the terminal. Notice that multiple options can be specified within a single set
of single quotes.

Column numbers are provided here to make the positioning of the heading more apparent. These
do not appear on the report. The output is as follows:

55

56

SSORT cus:romzns BY COMPANY coupm con'.r

123456789012345678901234567890123456789012345678 X 8901234567890123456739 .

CUSTOMERS . COMPANY. .. & sit s

101 ACME CARROT i
103 AEROBIC DEN .. =" poacnmm pop.cxm
105 ' DIABOLICAL SOFTWARE GROG, BILL SPIDER
107 ' MONA LISA LTD - '
106 PHINK, PHINK AND PHI pnmx cmmn:

NK
100 SHIPS R US HORNBLOWER, Homvuo:
104 SPEAK EASY .~ = . PARTICIPLE, DANGLY _

102 THE GUN STORE FUDD, ELMER

Headings and footings can be used together or separately. Here is an example of both the HEAD-
ING and FOOTING modifiers in the same command sentence.

>LIST CUSTOMERS CONTACT COMPANY HEADING "CONTACTS ‘LDLL’ "FOOTING" ‘L’PAGE ‘PN’ "<r>

SENTENCE ELEMENT - .. DESCRIPTION: *
LIST verb

CUSTOMERS filename
CONTACT COMPANY output-list
HEADING "CONTACTS ‘LDLL’" heading clause
FOOTING "‘L’ PAGE ‘PN’ " footing clause

The HEADING text specifies the literal string "CONTACTS" along with a line feed, followed by
the current system date, followed by two more line feeds.

"CONTACTS ‘LDLL""

The FOOTING text specifies a line feed, followed by the literal string "PAGE" and the current
page number left justified.

"\L’ PAGE ‘PN""

>LIST CUSTOMERS CONTACT COMPANY HEADING "CONTACTS ‘LDLL’"FOOTING" ‘L’PAGE ‘PN’ "<r>

CONTACTS < Toading

06 DEC 1988 ©

CUSTOMERS. CONTACT............. COMPANY.............

106 PHINK, CLYDE PHINK, PHINK AND PHI
NK

107 DAVINCI, LEONARDO MONA LISA LTD

100 HORNBLOWER, HORATIO SHIPS R US

101 BUNNY, BUGS ACME CARROT

102 FUDD, ELMER THE GUN STORE

103 PORCELANA, PORCHE AEROBIC DEN

104 PARTICIPLE, DANGLY SPEAK EASY

105 GROG, BILL SPIDER DIABOLICAL SOFTWARE

PAGE 1 CFootne >

4.6

4.6.1

GENERATING REPORT BREAKS

In a SORTed report, the output columns normally run together without a visual break.

>SORT CUSTOMERS BY STATE STATE COMPANY CITY<r>

/1 SENTENCE ELEMENT DESCRIPTION
SORT verb
CUSTOMERS filename
BY STATE sequence clause
STATE COMPANY CITY output-list

>SORT CUSTOMERS BY STATE STATE COMPANY CITY<r>

PAGE 1 11:18:55 06 DEC 1988
CUSTOMERS. STATE COMPANY............. CITY...........
102 CA THE GUN STORE WEDONDO BEACH
103 CA AEROBIC DEN HOLLYWOOD
105 CA DIABOLICAL SOFTWARE BYTELAND
106 CA PHINK, PHINK AND PHI SANTA ANA

NK
107 CA MONA LISA LTD VENICE BEACH
100 NY SHIPS R US NEW YORK
101 NY ACME CARROT BROOKLYN
104 PA SPEAK EASY GRAMMAR CITY

8" ITEMS LISTED.

The report break modifier allows a visual break as sorted values change.

MODIFIER DESCRIPTION

BREAK-ON Used to generate a visual "break” when a change occurs in a sorted
column. The visual portion of the break is displayed as the
string "***" between two blank lines on the report. If the
TOTAL modifier is also in effect during a "break-on," the subtotal
for each Data Descriptor specified with the TOTAL modifier is
displayed at the break point.

TOTAL Produces a columnar total of specified numeric Data Descriptor.
Subtotals can be obtained by using the BREAK-ON modifier.

Simple Breaks

Enter the following sentence:

>SORT CUSTOMERS BY STATE BY COMPANY BREAK-ON STATE COMPANY CITY<r>

SENTENCE ELEMENT DESCRIPTION
SORT verb
CUSTOMERS filename

BY STATE BY COMPANY sequence clause
BREAK-ON STATE COMPANY CITY output-list

57

58

BREAK- ON STATE Generates a report break as the STATE
changes.
COMPANY CITY Outputs the COMPANY and CITY
columns.
Produces the output:

>SORI CUSTOMERS BY STAIE BY' COMPANY BREAK
'PAGE 1
CUSTOHERS STATE COMPANY

103

105
107
106

102

101

100

104

*kk

8 ITEMS LISTED.

NK ':j‘ = R
‘ THE GUN STORE - =

kkk Break indicator.
_NY = ACME CARROT
NY SHIPS B s

Break indicator.

Break indicator.

g The summary line .
g (end of report). Oy

Notice the summary line generates three asterisks (***) at the end of the report.

Breaks can be indicated at multiple levels. Try the following sentence.

>SORT CUSTOMERS BY STATE BY CITY BREAK-ON STATE BREAK-ON CITY<r>

'SENTENCE ELEMENT -“DESCRIPTION
SORT verb
CUSTOMERS filename

BY STATE BY CITY sequence clause
BREAK-ON STATE BREAK-ON CITY output-list

N CITY<r>

Second level
BREAK.

Second level
BREAK.

First level
BREAK.

This report breaks at the second level for each line since the city changes for each line.

4.6.2 Totals and Sub-Totals

The TOTAL output modifier generates a grand total at the end of the report. (Make sure that you
are totaling numeric fields, otherwise the result is zero.) TOTAL also automatically generates a
sub-total for each break level.

59

60

Enter the following sentence:

>SORT CUSTOMERS BY STATE BREAK-ON STATE COMPANY TOTAL BALANCE<r>

SENTENCE ELEMENT ~ DESCRIPTION
SORT verb
CUSTOMERS filename

BY STATE sequence clause
BREAK-ON STATE COMPANY...

...TTOTAL BALANCE output-list
OUTPUT-LIST =~ ~ DESCRIPTION
BREAK-ON STATE Generates a report break as

the state changes.
COMPANY Outputs the COMPANY name.
TOTAL BALANCE Generates the sum of the BALANCE

column and a sub-total as the STATE
changes.

>SORT cus'romsv BY s'm'rvﬁvf BREAK };-,ON' s'm'mcoupm-wru <>

PAGE 1 | 14:42:20 05 OCT 1988

CUSTOMERS. STATE COMPANY............. BALANCE DUE

102 CA THE GUN STORE 12.34

103 CA AEROBIC DEN 89.12

105 CA DIABOLICAL SOFTWARE 4.56

106 CA PHINK, PHINK AND PHI 126.75

NK
107 CA MONA LISA LTD 789.32
*hx 1022.09
100 NY SHIPS R US 567.80
101 NY ACME CARROT 56.75
*hk 624.55
104 PA SPEAK EASY 23.42
kK ~1670.06 o :

8 ITEMS LISTED.

4.6.3

4.64

Grand Totals

The GRAND-TOTAL modifier is used to generate text in place of the three asterisks (***) on the
final report summary line. The general form is as follows:

GRAND-TOTAL "literal string":

>SORT CUSTOMERS BY STATE BREAK-ON STATE COMPANY...
.. .TOTAL BALANCE GRAND-TOTAL "FINAL BALANCE"<r>

ENTENCEELEMENT . DESCRIPTION

SORT verb
CUSTOMERS filename
BY STATE sequence clause
BREAK-ON STATE COMPANY...

..TOTAL BALANCE output-list
GRAND-TOTAL "FINAL BALANCE" grand total label

ON STATE COMPANY TOTAL BALANCE GRAND-TOTAL “FINAL BALANCE'<r>
. .11:29:46 06 DEC 1988
BALANCE DUE. '

12,34

. 8912

[ABOLICAL SOFTWARE == = = - 4.56°

PHINK,PHINKAND PHI © 1126.75

107 CA :gNA LISA LTD 789.32
*kk 1022.09

100 NY SHIPS R US 567.80
101 NY ACME CARROT 56.75
*kk 624.55

104 PA SPEAK EASY 23.42
*kk 23.42

FINAL BALANCE 1670,06

8 ITEMS LISTED.
BREAK Options

The BREAK-ON modifier also has an option string which is used in the same way that the
HEADING and FOOTING modifiers use options. The general format is as follows:

BREAK-ON dataname "text.. ‘options’ text.. ‘options’"

The entire option string must be surrounded by double (") quotes, and the options must be sur-
rounded by single (') quotes. A list of the options follows.

61

62

" “OPTION

B
footing, if the HEADING or FOOTING text string contains another 'B'
option.

D This suppresses the break line if there is only a single detail to report.

L Break lines normally output a blank line before reporting the break.
This suppresses the extra line.

N Resets the page counter to one.

P Forces a new page at the end of the break line.

R Forces one or more break lines to the bottom of the same page, rather
than going to a new page.

U Underlines TOTAL columns.

\Y Prints the value of the break at the break line rather than the three

asterisks (***).
Places a literal single quote in the break text.

Re-enter the previous example using break options as follows:

>SORT CUSTOMERS BY STATE BREAK-ON STATE "TOT'‘'LU’" COMPANY TOTAL BALANCE<r>

SENTENCE ELEMENT: .-~ - - .~ = “:DESCRIPTION ... -
SORT verb
CUSTOMERS filename
BY STATE sequence clause
BREAK-ON STATE "TOT ‘LU’ "...

..COMPANY TOTAL BALANCE output-list

>SORT CUSTOMERS BY STATE BREAK-ON STATE "TOT

PAGE 1 ,

'CUSTOMERS. STATE COMPANY.............

‘102 CA THE GUN STORE

103 CA AEROBIC DEN . . .

105« . CK ! DIABOLICAL SOFTWARE - |

106 . CA PHINK, PHINK AND PHI

107 CA MONA LISA LT 789,32 TN /
100 'NY SHIPS R US ' v
101 _NY .. ACME CARROT" : { IO o

TOT is the break literal text

104

® 0 © 6 &0 & 00 00 ¢ OO OO0 O O OO OO SO OOC O OO OCE® NN

The BREAK-ON option string is as follows:
BREAK-ON STATE "TOT‘LU’"

Generates a report break when the STATE changes. At the break line print the text TOT, sup-
press the blank line, and underline the TOTAL fields.

Here is the same command sentence with a few more modifications. The break options indicate
that each STATE is to be reported on a new page with the value of the break in the heading.

Enter the following command sentence:

>SORT CUSTOMERS BY STATE BREAK-ON STATE "TOT'LUBP’" COMPANY...
...TOTAL BALANCE HEADING "BALANCE FOR ‘B’ ON '‘DL’'PAGE ‘PNL’"<r>

- © . DESCRIPTION
SORT verb
CUSTOMERS filename
BY STATE sequence clause
BREAK-ON STATE "TOT ‘LUBP’"...

...COMPANY TOTAL BALANCE output-list
HEADING "BALANCE FOR'B’...
...ON ‘DL’ PAGE‘PNL’" heading clause

The BREAK-ON option string is as follows:
BREAK-ON STATE "TOT ‘LUBP’"

The text string "TOT" is printed at the break line. The break options, ‘LUBP’, suppress the

break skip line, underline the TOTALS, place the break value in the HEADING, and force a new
page on each break, respectively.

The value of the break referenced by the option ‘B’ must have a "sister" option ‘B’ in the
HEADING statement.

HEADING "BALANCE FOR ‘B’ ON ‘DL’ PAGE ‘PNL’"

The B option accepts the break value in effect when the new page is generated. The remaining
options display the date, perform a line feed, generate the current page number and perform
another line feed. The output for the first page is as follows:

BALANCE FOR CA ON 06 DEC 1988

- PAGE 1
. CUSTOMERS. STATE COMPANY............. Balance Due.-
102 CA THE GUN STORE 12.3¢
£ 103 . 'CA AEROBIC DEN 89.12.
105 “'CA _ DIABOLICAL SOFTWARE ' - 4.56
106 T CA PHINK, PHINK AND PHI = = 126.75
107 ca 789.32

63

4.7

NOTE

64

Press <return> to see each subsequent page, or enter a <ctI>X (hold the control key, <ctl> and the

X key simultaneously) to abort and return to TCL.

OTHER OUTPUT MODIFIERS

Output modifiers are used to change the default output characteristics of ACCESS reports.

Each modifier can be replaced with a corresponding TCL option surrounded by parenthesis,

(option). The list of the additional output modifiers is as follows:

MODIFIER OPTION:

ID-SUPP (D

DET-SUPP (D)

HDR-SUPP (H)

COL-HDR-SUPP (C)

NOPAGE (N)

LPTR P)

DESCRIPTION 4 ‘

Suppresses the automatic output of the 1tem-1d
column on the report.

Used in an ACCESS statement in which a sort
sequence is combined with a BREAK-ON modifier.
This suppresses the output of all the detail lines
between each break line and, instead, displays the
data value that caused the break to occur.

Suppresses the default page heading that contains
the time, date, and page number. Please do not use
in conjunction with the HEADING or FOOTING
modifiers. That would be self defeating, to say the
least.

Suppresses both the default page heading
which normally includes time, date, and page
number, as well as the data column headings.

Causes the report to output to the terminal
display (default) without pausing for the user
to enter a <carriage return> between each
page. This has no effect if the output is directed
to the line printer via the LPTR modifier or
(P) option. NOPAGE is typically used when
the report is printed on a terminal attached
(slave) printer.

Direct output to the system printer via the
spooler. For more information see Section 4.8,
"Choosing the Output Device."

Here are samples of these modifiers. Enter the following sentence:

>SORT CUSTOMERS BY STATE BREAK-ON STATE COMPANY TOTAL BALANCE ID-SUPP<r>

SENTENCE ELEMENT: - - DESCRIPTION
SORT verb
CUSTOMERS filename
BY STATE sequence clause
BREAK-ON STATE COMPANY...

...T'OTAL BALANCE output-list
ID-SUPP output modifier

¢ © 0 ¢ 006 66866 ¢ ¢ 060 O O & & & G O 0 S 00 O & 9 C 6 0 0 0 0

'CUSTOMERS BY STATE BREAK-ON STATE COMPANY TOTAL BALANCE ID-SUPP<r>

.1253'1‘25’ 06 DEC 1988

HE GUN STORE Go12.34
AEROBIC DEN = " © 89,12
ABOLICAL SOFTWARE - =~ 4.56
HINK, PHINK AND PHI .~ 1126.75

| 789.32
Caer .. 1022.09
“wr " sHres ® vs 567.80
NY ACME CARROT 56.75
kkk 624.55
PA SPEAK EASY 23.42
kkk 23.42
1670.06

8 ITEMS LISTED.

The item-id column is not reported.
Now, enter the next sentence:

>SORT CUSTOMERS BY STATE BREAK-ON STATE TOTAL BALANCE DET-SUPP<r>

SENTENCE ELEMENT DESCRIPTION
SORT verb
CUSTOMERS filename
BY STATE sequence clause
BREAK-ON STATE...

..TOTAL BALANCE output-list
DET-SUPP output modifier

>SORT CUSTOMERS BY STATE BREAK-ON STATE TOTAL BALANCE DET-SUPP<r>
PAGE 1 12:31:39 06 DEC 1988

CUSTOMERS. STATE Balance Due.

CA 1022.09
NY 624.55
PA 23.42
kkk 1670.06

8 ITEMS LISTED.

65

Only the break lines are reported. Notice that the value of the break is automatically reported at
the break line without having to use the 'V' BREAK-ON option.

Try the rest of these modifiers on your own.

The directed output device can be a terminal or a printer, depending on whether the LPTR (or P
option) modifier is or is not used in the ACCESS sentence.

>LIST CUSTOMERS COMPANY CONTACT<xr>

sends output to the terminal screen.
>LIST CUSTOMERS COMPANY CONTACT LPTR<r>
or

>LIST CUSTOMERS COMPANY CONTACT (P)<r>

sends output to the system printer.

In the examples in this chapter so far, the sum of the width of the columns does not exceed the
width of the current output device. If, however, the sum of the column width exceeds the width of
the output device, the output is listed vertically along the side of the page.

For example:

>LIST CUSTOMERS COMPANY CONTACT ADDRESS CITY STATE<r>

SENTENCE ELEMENT : ' :DESCRIPTION
LIST verb
CUSTOMERS filename
COMPANY CONTACT...

..ADDRESS CITY STATE output-list

generates the following output to the terminal.

'>LIST CUSTOMERS COMPANY CONTACT ADDRESS CITY STATE<r>
PAGE 1 13:33:40 08 SEP 1988

CUSTOMERS : 106
COMPANY - 'PHINK, PHINK AND PHINK
" CONTACT PHINK, CLYDE
“ADDRESS 1600 PENNSYLVANIA AVE
_CITY SANTA ANA
_ STATE CA
' CUSTOMERS ': 107
‘COMPANY MONA LISA LTD -
NTACT DAVINCI, LEONARDO ..

ﬁE...] EASY

ANGLY

The total column length exceeds the width of the terminal.

The width and depth of the terminal or printer is controlled by the TCL command TERM. The
TERM command allows you to temporarily change the width and length of the terminal or print-
er for the current logon session. The minute that you log off and log back on, the TERM charac-
teristics are reset to the current system default values.

The TERM statement by itself displays the current device parameters.

67

‘PAGE WIDTH: .~
PAGE DEPTH:
LINE SKIP :

. LF DELAY

“FF DELAY . :-
'BACKSPACE &

TERM TYPE ::

Here is what each of these displayed elements mean:

PAGE WIDTH The number of columns across the page for the terminal or the
system printer.
PAGE DEPTH The number of lines per page on the terminal or printer.

Please note that the page width and depth are parameters used by the system to determine when
a line feed and carriage return is to be generated at the end of the current line (width), and when
a form feed is to be output at the end of the current page (depth). The printer must be set for the
correct form width (CPI, characters per inch), and form length (inches per page), or the page
alignment will be off. Please consult your printer manuals to set up your printer correctly.

LINE SKIP Both LINE SKIP and LF DELAY (Line Feed Delay) can be set to

LF DELAY zero. These parameters are leftovers from the early days of
PICK and have no bearing on what we are doing here.
Therefore, you can ignore them.

FF DELAY Form Feed Delay is another appendage which can, for the most
part, be overlooked. However, there is one feature which can be
invoked by using it.

If the FF DELAY is 2 or more (as usual), the screen and/or
printer are sent a form feed (go to the next page) between
each printed page.

If the FF DELAY is 1, only the printer is sent a form feed.

The terminal scrolls between pages without clearing the
screen.

If the FF DELAY is 0, both the terminal and printer scroll
between pages without generating a form feed.

"What does this have to do with ACCESS and this discussion?"

NOT MUCH! Try these parameters if you want.

Otherwise, you don't have to bother.

BACKSPACE Do not touch. This determines what your system port will recog-
nize as a backspace character. It is not needed for this discussion.
TERM TYPE The code which represents the type of terminal that you are

using. Usually, the following characters are used:
A - ADDS terminal
V - Viewpoint
D - Dec VT101 or VT102
I - IBM memory mapped monitor
W - Wyse 50
However, this should not make a difference when
generating ACCESS reports.

To prevent confusion when specifying a change to the device parameters, each position is given an
identifying letter as follows:

When changing the TERM parameters, the general form is:
>TERM a,b,c,d,e,f,g,h, t<r>
Here are some examples:

Change the terminal width to 132 columns and the terminal depth to 60 lines.

>TERM 132, 60<r>

Now verify the change.

>TERM<r>

TERMINAL PRINTER

PAGE WIDTH: 132 132
PAGE DEPTH: 60 60
LINE SKIP : 0
LF DELAY 0
FF DELAY 2
BACKSPACE : 8
TERM TYPE : I

Notice that the rest of the parameters remain unchanged.

Now change the printer width to 80 and the depth to 55. Changing the width and depth of the
printer is a bit more cumbersome. If the parameters preceding the first changed parameter are to
remain unchanged, then commas (,) must be used in their place. The (R) option requests a redis-
play of the changed parameters without having to re-enter the TERM command.

69

70

FF DELAY

Changing the terminal type is a bit easier. This parameter can "stand alone."

>TERM V<r>

This terminal is now set to emulate a Viewpoint terminal.

1. The verb which generates a columnar report in random order is

2. The verb which generates a columnar report in sorted order is

3. How many columns of output does the following ACCESS sentence
generate?

>LIST CUSTOMERS WITH STATE = "CA" COMPANY CONTACT PHONE

4, Name each output column generated by the above statement.

5. formatting allows columns to be automatically
reported.

6. Data definition items with numeric item-ids are the default

in an implicit report.

7. The modifier overrides implicit formatting so that only
the item-id column is reported.

8. Match the following modifiers with the correct description:

DET-SUPP a. Generates a visual break line when
the data definition value changes.

FOOTING b. Allows specification of a cus-
tomized report heading.

GRAND-TOTAL C. Suppresses page headers.

(P) d. Suppresses column and page headers.

HDR-SUPP e. Suppresses the default item-id
column.

BREAK-ON f. Allows specification of a cus-
tomized report footing.

(H) g. The print option. The same as the
LPTR output modifier.

TOTAL h. Suppresses detail lines on a report.

HEADING i. Generates columnar totals at the
break lines and on the grand total
line.

ID-SUPP j. Allows custom text on the grand
total line.

COL-HDR-SUPP k. The option synonym for HDR-SUPP.

72

10.

11.

12.

13.

14.

Enter the HEADING clause which says to: skip a line, center the word

HEADER, and skip two lines.

The BREAK-ON option string to print the value of the break and

underline the totals is:

Enter the ACCESS sentence for the CUSTOMERS file which sends to the
system printer the total balance due for each state without the

details.

Enter the statement to set the terminal width to 132 and depth to 65.

Enter the statement to set the line printer to a width of 80 and a
depth of 55 with an automatic re-display of the parameters.

Match the following:

GRAND-TOTAL "TOTAL BALANCE"

HEADING "A HEADING"

BREAK-ON STATE TOTAL BALANCE

BREAK-ON STATE "'PV'"

BREAK-ON STATE "'U'"
TOTAL BALANCE

FOOTING "'LC'PAGE 'PN'"

BREAK-ON STATE "'PB'"
HEADING "FOR STATE 'B'"

. Generate a page number,

centered at the bottom of
each page.

. Display the break value at

the break line and force a
new page.

. Print A HEADING at the be-

ginning of every page.

. Force a new page for each new

state and place the break
value in the heading.

. Show the balance due

for each state.

. Display the text TOTAL

BALANCE on the grand
total line.

. Underline the total

balance due for each
state.

5.1

MAILING
LABELS

LABEL VERBS AND PARAMETERS

ACCESS can be used to generate mailing labels by using either of the following verbs.

VERB DESCRIPTION _

- LIST-LABEL Generates labels from a file in random order.

- SORT-LABEL Generates labels from a file in a specified
sorted order.

Columnar ACCESS commands generate reports in the following format:

YE : °
° | | attra- attr b | | attr n *
. item 2 attr a attr b attr n °
o o
o item 3 attr a attr b attr n o
[] : : G []
o)
The LABEL verbs output data in the following format:
o °
o T) 5 ; °
5.',:item'1 : . item 2 item 3
* _attr a attr a attr a °
(] attr b attr b attr b L
[] []
° item 4 item 5 item 6 .
o T attr a attr a attra~ o
|t atte b attr b attr b’
[] []

Whenever the LABEL verbs are used, the system prompts for a set of parameters which indicate
the format of the labels on the page. THERE IS NO DEFAULT! After the command sentence is
entered, the only prompt displayed on the screen is a question (?) mark. The label parameters
must be specified in the following format:

?columns, rows, lineskip, indent, width, spacing, C<r>

73

74

These seven parameters represent the following:

"PARAMETER DESCRIPTION' :

columns The number of labels in a set across the page.

rows The number of lines per label.

lineskip The number of blank lines between each set of labels.
A vertical skip.

indent The number of spaces indented from left margin to
begin printing the labels.

width The number of character positions wide for each label.

spacing The number of spaces between each label in a set.
Horizontal spacing.

C The compress option. This compresses null values in a
label so that no blank lines appear within the body of
the label.

Here is a visual representation of the parameter meanings:

[]

. ' T
. indent - . colu;nng__i}:
. width

[]

‘ !

o rows

. '

: ¢lineskip

[J

[}

[}

[]

Enter the following command and provide the indicated parameter response:

>LIST-LABEL CUSTOMERS COMPANY CONTACT CITY STATE<r>

SENTENCE ELEMENT “ DESCRIPTION
LIST-LABEL verb
CUSTOMERS filename
COMPANY CONTACT CITY STATE output-list

Now enter the following:
”2,4,1,0,30,1,C<x>
The parameters indicate:

*2 labels across the page

*4 lines per label

*1 line vertically between labels

*0 no indent, start at the left margin
*30 characters per label line

*1 space horizontally between the labels
*C compress the null values

The output is as follows:

S COMPANY CONTACT CITY STATE<r>

114:38:22 07 DEC 1988
o to7
. /MONA LISA LTD:

DAVINCI, LEONARDO
VENICE BEACH

101

"ACME 'CARROT
BUNNY, ‘BUGS

- BROOKLYN

103 :

AEROBIC DEN

. PORCELANA, PORCHE
... HOLLYWOOD

T 105
. SPEAK EASY . . DIABOLICAL SOFTWARE
. PARTICIPLE, DANGLY GROG, BILL SPIDER -

 /GRAMMAR CITY ’ BYTELAND

Notice that the STATE is missing. This is because only four lines are allowed per label, but the
total number of output lines is five. Yes, five. The item-id is automatically output, just like a
columnar report. See section 5.2, "Using Output Modifiers," to learn how to get around this.

Possible Errors:

The label parameters used must be precisely balanced or the LIST-LABEL statement will fail.
This means that the total width of the output cannot exceed the width of the page. For example,
re-entered using the following parameters:

?3,4,1,0,30,1,C<r>

75

76

5.2

In this case, we are asking for three labels across the page with 30 columns per label. Well, 3
times 30 is 90, which is far wider than the current 79 page width. The following error message is
displayed:

[290] THE RANGE OF THE PARAMETER "1" IS NOT ACCEPTABLE.

The parameter indicated in the error message is the number of horizontal spaces between labels.
However, less than one space between labels is hard if not impossible to read. To fix this, the
label width should be reduced. 20 is a good width since 20 times 3 is 60.

?3,4,1,0,20,1,C<r>

This produces:

>LIST- -LABEL CUSTOMERS COMPANY CONTA

23,4,1, 0 20,1, C<r>

PAGE 1 ° -
: . Truncates output
v to 20 characters.

~106 .

PHINK, PHINK AND PHI MONA' LISA LTD.

PHINK, CLYDE: .»?DAVINCI LEONARDOQ

SANTA ANA - '.,VENICE BEACH ' -

101 e . 102

ACME CARROT “ THE GUN STORE

BUNNY, BUGS ‘. . FUDD, ELMER - =] P(

BROOKLYN ' WEDONDO BEACH - HOLLywoonj”"*”

104 : 105 ,

SPEAK EASY 'DIABOLICAL SOFTWARE

PARTICIPLE, DANGLY GROG, -BILL SPIDER

GRAMMAR CITY ' BYTELAND

USING OUTPUT MODIFIERS

In the above example, there is more than just the item-id which needs to be suppressed. The out-
put also has a heading, which is usually not desirable when printing mailing labels. The follow-
ing output modifiers are the most frequently used when generating labels.

MODIFIER OPTION DESCRIPTION

ID-SUPP 4] Suppresses the automatic output of the
item-id line on the label.

HDR-SUPP (H) : Suppresses both the default page heading

which normally includes time, date, and
page number, as well as the label line
headers.

LPTR (P) Send output to the system printer via the
spooler.

It is common practice to use both ID-SUPP and HDR-SUPP when generating mailing labels.

Enter the next command sentence along with the indicated parameter response:

>LIST-LABEL CUSTOMERS COMPANY CONTACT CITY STATE ID-SUPP HDR-SUPP<r>

2,4,1,0,30,1,C<x>

LIST-LABEL

CUSTOMERS

COMPANY CONTACT CITY STATE
ID-SUPP HDR-SUPP

~ “DESCRIPTION

verb

filename
output-list
output modifiers

>LIST-LABEL CUSTOMERS COMPANY CONTACT CITY STATE ID-SUPP HDR-SUPP<r>

?2,4,1,0,30,1,C<x>

PHINK, PHINK AND PHINK

MONA LISA LTD

PHINK, CLYDE DAVINCI, LEONARDO
SANTA ANA VENICE BEACH

Ca ca

SHIPS R US ACME CARROT
HORNBLOWER, HORATIO BUNNY, BUGS

NEW YORK BROOKLYN

NY NY

THE GUN STORE

AEROBIC DEN

FUDD, ELMER PORCELANA, PORCHE
s+ WEDONDO BEACH - - . HOLLYWOOD

'SPERK EASY DIABOLICAL SOFTWARE
" PARTICIPLE, DANGLY" .~~~ GROG, BILL SPIDER
' GRAMMAR CITY N .'BYTELAND Lo

Notice that suppressing the item-id allows all of the requested fields to be displayed. In addition,

the output has no page header.

This same command can be used to print the labels on the system printer by just including the
LPTR output modifier. Enter the following command sentence which indicates ID-SUPP, HDR-

SUPP, and LPTR, using the equivalent output options.

>LIST-LABEL CUSTOMERS COMPANY CONTACT CITY STATE (IHP)<r>

SENTENCE ELEMENT
LIST-LABEL

CUSTOMERS

COMPANY CONTACT CITY STATE
(IHP)

The output is now directed to the system printer.

DESCRIPTION
verb

filename
output-list

output options

7

78

5.3

USING INDENT =

A non-zero indent parameter has a tendency to alter the flow of the parameter specification pro-
cess. When the value of indent is not zero, the LIST-LABEL process assumes that each row is to
have a descriptive heading as follows:

rowhead | item 1
rowhead attr a
rowhead attr b attr b attr b

Therefore, after accepting the initial parameter string, the LIST-LABEL requests entry of a head-
er for each row. In the next example, the indent is set to ten, and the number of rows is four.
This causes four more question (?) marks prompting for operator response.

Enter the following command sentence:

>LIST-LABEL CUSTOMERS COMPANY CONTACT CITY STATE (HI)<r>

SENTENCE ELEMENT: - v " 'DESCRIPTION
LIST-LABEL verb
CUSTOMERS filename
COMPANY CONTACT CITY STATE output-list

(HI) options

22,4,1,10,30,1,C<x>
?Company<r>
?Contact<r>
?2City<r>

?State<r>

The row heading text is entered at each subsequent prompt. A <return> key should be entered
for each of the row headings if no text is required. The output is:

SANTA ANA

Company SHIPS R US

Contact HORNBLOWER, HORATIO

City NEW YORK
State NY

Company THE GUN STORE
Contact FUDD, ELMER
City WEDONDO BEACH
State Ca

Company SPEAK EASY

Contact PARTICIPLE, DANGLY

City GRAMMAR CITY
State PA

, PHINK AND PHINK

MPANY CONTACT CITY STATE (HI)<r>

MONA “LISA LTD
DAVINCI, LEONARDO

" 'VENICE BEACH
- ca

ACME CARROT
BUNNY, BUGS
BROOKLYN

NY

AEROBIC DEN
PORCELANA, PORCHE
HOLLYWOOD

ca

DIABOLICAL SOFTWARE
GROG, BILL SPIDER
BYTELAND

ca

On some implementations, the row header defaults to the standard column header used in a
columnar report. To eliminate this, the sentence must be modified with the COL-HDR-SUPP out-

put modifier. Please consult your manuals for details.

79

EXERCISE

80

5

The two ACCESS verbs used for generating mailing labels
are:

Identify each element of the label parameter string:
?a,b,c,d,e, f, g

a.

b.

g.

Write the ACCESS sentence and provide the parameters to
generate mailing labels from the CUSTOMERS file using the
following requirements:

* The labels should contain company name, address, city,
state and zip on separate lines.

* The item-id, and all headings, should be suppressed.
* The output should be sent to the printer.

e Three labels across an 80 column page.

> <r>

[2v]

<r>

WEENEEEEEENY R NN NN N B B B B BCE B B R R BN S B BN

6.1

ACCESS
LISTS

ACCESS can be thought of as processing in three main phases. The first parses (takes apart) and
compiles the sentence so that the system understands what you want. The second performs the
data sampling, selection and sequencing. The resulting list of item-ids is used for the third phase
which generates the output. ACCESS can be intercepted at the completion of the second phase.
In this way, ACCESS is used as a pre-processor, effectively "weeding out" unwanted data before
passing the "good" items to any other TCL, ACCESS or PICK/BASIC routines for further processing.

SELECTING AND USING LISTS
Lists are the result of the SELECT and SSELECT verbs.

SELECT Generates a list of item identifiers in random order which meet the
criteria of the selection clause. This list is a subset of the total file
and may be saved and used later for other processing.

SSELECT Functionally identical to SELECT but provides for the sequencing of
item-ids by one or more sort criteria.

The general form of the SELECT verbs is as follows:
>SELECT filename {selection clause}<r>
>SSELECT filename {sequence clause} {selection clause}<r>

Enter this command sentence:

>SELECT CUSTOMERS WITH STATE = "CA"<r>

SENTENCE ELEMENT DESCRIPTION

SELECT verb

CUSTOMERS filename

WITH STATE = "CA" selection clause
The system responds with:

_ >SELECT CUSTOMERS WITH STATE = "CA"<r>

©[404] 5 ITEMS SELECTED.

> - - TCL prompt.

81

82

A SELECT or SSELECT generates what is called an active list. At this point, the system expects
the immediate entry of a command sentence which invokes a process using the currently active
list.

At the TCL (>) prompt, enter the following:

>LIST CUSTOMERS COMPANY STATE<r>

The output is:

>LIST CUSTOMERS COMPANY STATE<r> =

A

CUS'I'OMERS COMPANY, .-

106

107 MONA LISA ‘LTD

102 THE GUN STORE

103 . AEROBIC DEN .
105 o DIABOLICAL somwm

5 ITEMS LISTED

Only those items selected previously are reported by the subsequent LIST command. So, using a
SELECT is a two step process. First, the active list is built via the SELECT command sentence,
and second, the list is used by the next command entered at TCL.

Once processed, the list is no longer active. Any command entered immediately after the select
(even if it doesn't use the list), deactivates the list.

Try this again. Enter the following:

>SSELECT CUSTOMERS BY STATE BY COMPANY<r>

-SENTENCE ELEMENT DESCRIPTION
SSELECT verb
CUSTOMERS filename
BY STATE BY COMPANY sequence clause

The system responds with:

>s' ELECT cus'rom-:ns BY STATE BY COMPANY<r> i;i;.

: TEMS SELECTED

TCL prompt.
The list is active.

¢ 6 6 & 06 0 5 ¢ 6 ¢ 0 06 06 00 0 O 0@ 006 6 ¢ 0 "0 0 ¢

© 00 06 00000 000 0060000600 0060 9% 00 5 00 00 0 0 0

Now immediately enter:

>LIST CUSTOMERS BREAK-ON STATE COMPANY<r>

LIST verb
CUSTOMERS filename
BREAK-ON STATE COMPANY output-list

The result is:

EN

IABOLICAL SOFTWARE
{ONA LISA LTD .

_SHIPS R US

Notice that both of the above examples display the data selected and sequenced by the previous
SELECT and SSELECT commands.

As stated above, an active list can also be passed to another TCL process other than ACCESS.
Try the following:

USTOMERS BY COMPANY WITH STATE = "CA'<r>

The list is active.

83

84

Now immediately enter the following:

>ED CUSTOMERS<r>

Notice that no item-list is required when an active list is being passed to the command sentence.

/ Edit the items on the active
list in CUSTOMERS.

>ED CUSTOMERS<:>V<(

103 :

~ TOP
L5<r> <
001 AEROBIC DEN

002 PORCELANA, PORCHE-
003 139 HOLLYWOOD BLVD
004 HOLLYWOOD ;
005 CA -
JEX<r> -

List 5 lines.

Exit to the next
item in the list.

1103' EXITED
S105 0

: L5<r> - s S in attribute 005.
001 DIABOLICAL SOFTWARE S e
002 GROG, BILL SPIDER ;
© 003 01100 BINARY WAY
004 BYTELAND
005 CA '
JEX<r> "
'105' EXITED
107
TOP
.L5<r>
001 MONA LISA LTD
002 DAVINCI, LEONARDO
003 15 CENTURY DR
004 VENICE BEACH

005 ca

Exit to TCL and
.EXK<r> = kill the list.
'107' EXITED

>

The Editor only acts upon those items in the active list in the sequence that were selected. Re-
enter the previous SELECT sentence and enter the following TCL sentence immediately after-
wards.

>SSELECT CUSTOMERS BY COMPANY WITH STATE = "CA"<r>
SORTSs and SELECTS all customers in California and orders the list by company name.

>COPY CUSTOMERS (T)<r>

Copies to the terminal all items identified in the active list.

This says to copy the item image of all of the CUSTOMERS items in the state of California to the
terminal. Observe what happens.

® 0606 0606000606 00 06 0 O° 0 ¢ 08 ¢ ¢ & O 0 00 00 ° O ¢ 0 ¢ 0 0

6.2

CATALOGUED LISTS = =

A list which is active only until the next command is invoked requires that the file be re-
SELECTed every time a new process needs the same list. This can get quite time consuming on a
large file. However, this need not be the case. A list can be built and then catalogued so that it
may be retrieved numerous times.

Catalogued (or saved) lists must be stored in a file called POINTER-FILE which resides in each
account. Before continuing, make sure that your account has a POINTER-FILE by using the fol-
lowing procedure:
Enter:

>LIST POINTER-FILE<r>
If POINTER-FILE does not exist, the system will display the following message:

[201] 'POINTER-FILE' IS NOT A FILENAME
To create a POINTER-FILE, enter these commands:

>CREATE-PFILE DICT POINTER-FILE 29, 1<r>

[417] FILE 'POINTER-FILE' CREATED; BASE = 10082, MODULO = 29, SEPAR = 1.

This shows how to create a pointer type file with a modulo of 29 and a separation of 1. If your
implementation does not have the CREATE-PFILE command, then enter the following:

>CREATE-FILE DICT POINTER-FILE 29, 1<r>

Now you must identify this file as a pointer type file. Enter the following:

- ‘. ' - Edit the pointer in the

>ED MD POINTER-FILE<r> g—- @

TR v
001D : : g

Replace the D in attribute

i S ith a DC Indicati
: .R/ D/ Dc<r> e : 00: :Io‘im:rlypo ﬁ;::hng

ooipc. -- , .
o FISE> File and exit the :
_ 'POINTER-FILE' FILED ~ . Dpome

Don't worry about the nuances of a pointer class file versus a regular file. You only have to worry
about doing what has been just described if there isn't a pointer-file already defined on your
account.

85

86

6.2.1

6.2.2

Saving Lists
A list is catalogued by entering the following verb immediately after performing a SELECT.
VERB . @977 DESCRIPTION
SAVE-LIST Saves and catalogs an active list to the POINTER-
FILE. After invocation of SAVE-LIST, the list is
no longer active.

The general form is:

SAVE-LIST listname<r>

The "listname" is any valid name (item-id) without imbedded blanks. SAVE-LIST must be per-
formed when a list is active, otherwise there is nothing to save. Enter the following:

”.,’>SSELECT CUSTOME
;”'":?"[404] 8 n'ms SELECTED
| :'>SAVE-LIS'1' cus-rs<r>

j*List 'CUSTS' haved ijii@ﬁé/é'ﬁgéd‘

: TCL prompt. The list
b ls no longer active. /-

‘>¢“f

The active list is now saved for later retrieval under the item-id CUSTS. When a list is saved to
the POINTER-FILE, a special item is written which points to the location of the list on the disk.
The message displayed after a SAVE-LIST indicates how much disk space the list uses in frames.
A frame is a measurement of disk space...well, don't worry about it!

Retrieving Lists
‘VERB "DESCRIPTION e,
GET-LIST Retrieves and activates a list stored in POINTER FILE.

The general form is:

>GET-LIST listname<r>

GET-LIST can be used just like a SELECT. The active list can now be passed to the command
invoked immediately following the GET-LIST.

Enter the following:

Now enter:

>LIST CUSTOMERS BREAK-ON STATE COMPANY<r>

The report output is:

JREAK-ON STATE COMPANY<r>

.. 14:30:01 08 DEC 1988

EROBIC. :lﬁEtiI&' e
OLICAL SOFTWARE

The BREAK-ON modifier works correctly with the LIST command because the 'CUSTS' list is
already in sorted order by state. Try this next command sequence on your own:

>GET-LIST CUSTS<r>
[404] 8 ITEMS SELECTED.

>COPY CUSTS (T)<r>

87

Since catalogued lists are represented by items in a file, POINTER-FILE to be exact, they can be
reported using an ACCESS command sentence.

To simply see what lists already exist, enter the following:

>SORT ONLY POINTER-FILE<r>

SENTENCE ELEMENT - = .DESCRIPTION:
SORT verb
ONLY modifier
POINTER-FILE filename

The output may look like:

>SORT ONLY POINTER-FILE<r>
PAGE 1

POINTER-FILE

XX
POINTER-FILE
00.FILES

HAN
WORDDUMPLIST
CUSTS

6 ITEMS LISTED.

There are six lists currently saved on my test account. Your results may vary.

This is all well and good, but it doesn't tell much about the state of the list. Sometimes, what is
needed is information like what time and date the list was catalogued, and how big the list is.
Enter the following:

>LIST-ITEM DICT POINTER-FILE 'CUSTS '<r>

SENTENCE ELEMENT DESCRIPTION
LIST-ITEM DICT verb
POINTER-FILE filename
'CUSTS' item-list

' EEREEEENEEENEKEMNEMNMW N B B B B B BN BN BN B BN RN BN B NN B N

Here is what the output looks like:

E: 4'cus'rs"<r;fj‘ iR

14:12:43 .08 DEC 1988

The layout of the above POINTER-FILE item is as follows:

G ITEMG o e i o ' DESCRIPTION - i
001 CL Always a CL for a Catalogued List.
002 Disk location The frame number on disk where the list begins.
003 Size The number of frames used.
004 Items The number of entries on the list.
005 Time/Date The time and date that the list was catalogued.

The verbs LIST-ITEM or SORT-ITEM output the entire item in logical format. Logical item for-
mat is discussed in Chapter 1, "System Overview."

To get all the list pointers, enter the following:
>SORT-ITEM DICT POINTER-FILE WITH *Al = "CL"<r>

+*SENTENCE ELEMENT DESCRIPTION

SORT-ITEM verb
DICT POINTER-FILE filename
WITH *A1 ="CL" selection clause
The selection clause WITH *al = "cL" uses a definition name of *Al. Where did *Al come

from? *Al is found in the master dictionary, MD. There are a number of default definitions in
MD which can be used to display any attribute of an item.

These display attributes 1 through 5.
*Al *A2 *A3 *A4 *A5

Definition items are looked up in MD under two circumstances:
*The ACCESS sentence is referencing the file DICT.

or

*The definition item cannot be found in the file DICT.

The literal "CL" is used because all list pointers in POINTER-FILE happen to have a CL in the
first attribute.

A report of the POINTER-FILE can also be generated by the following:

>SORT DICT POINTER-FILE *Al *A2 *A3 *Ad *AS5<r>
89

6.4

6.4.1

List maintenance consists of being able to:

*Copy a list to another name for backup or modification.
*Delete a list no longer in use.
*Revise (Edit) a list to add or remove entries manually.

Copying Lists

Copies a specified list to a new list name.

COPY-LIST is useful for backing up the current version of a list before using EDIT-LIST to alter
the contents. The COPY-LIST verb follows an identical interaction to the COPY verb, except that
the filename is defaulted to POINTER-FILE. Lists can be copied to new list names within the
POINTER-FILE or copied as items to other PICK files.

The general form to copy a list to a new list name is:

>COPY-LIST listname<r>
TO:newlistname<r>

The T0: prompt is displayed by the system as a response to the COPY-LIST command sentence.
The new list name must not already exist since, like COPY, COPY-LIST does not overwrite unless
the (O) option is used. See the section on the options a little further on in this section.

Try this:

Now, use LIST-ITEM for the POINTER-FILE as described in section 6.3, "Reporting Catalogued
Lists" and notice the components of the new list item.

>LIST-ITEM POINTER-FILE 'BAK.CUSTS'<r>

LISTITEM
POINTER-FILE filename
'BAK.CUSTS' item-list

© © 0 00 00006 ¢ 606 0000060060 000 006 006 ¢ 06 ¢ 0 o 0>

Sometimes, lists must be moved from the current POINTER-FILE into another file. The general
form is:

>COPY-LIST listname<r>
TO: (filename {newlistname}<r>

Notice that the new list name is in braces (}), indicating an optional specification. If a new list
name is not indicated, then the original list retains its name in the new file.

The filename follows the same rules as do filename specifications throughout PICK. It must be
preceded by a left parenthesis. To indicate the data level of CUSTS, the TO line reads:

TO: (CUSTOMERS
To indicate the dictionary level of the file, the TO line is specified:
TO: (DICT CUSTOMERS

Copy the CUSTS list to the dictionary of CUSTS as follows:

, L The command
TN sentence.

Copy to the dictionary
of CUSTS, retaining the
same list name.

Now, enter the following:

>LIST-ITEM DICT CUSTOMERS 'CUSTS'<r>

ENTENCE ELEMENT .. .:DESCRIPTION
LIST-ITEM verb

DICT CUSTOMERS filename

‘CUSTS' item-list

9

NOTE

92

Which generates the output:

SLIST-ITEM DICT CU

Notice that the list-type item has been converted to a regular old PICK item, no pointers, no save-
date.

Some newer PICK implementations no longer treat lists differently from items. Therefore, the list-
item formats may differ. Please consult your manuals for any discrepancies that you may discover.

More than a single list can be copied at a time. The listname can be a series of listnames separat-
ed by spaces:

>DCOPY-LIST lista listb listc

or the listname can be an asterisk (*), indicating all items on file.

>COPY-LIST *

COPY-LIST Options:

These are the options which can be used to modify the COPY-LIST verb:

OPTION - DESCRIPTION . . & = . &

D Delete the original item after copying.

0 Overwrite the new item if it already exists.

P Copy the list contents to the system printer.
T Copy the list contents to the terminal display.
N For use with the T option only. Activates the

NOPAGE mode.

Options are specified in the command sentence as all options on the system:

>COPY-LIST listname (options

The closed parenthesis is optional.

.00..0...‘0‘0.......0......000000..

6.4.2

Try to copy BAK.CUSTS to the original CUSTS list as follows:

The overwrite (O) option must be used to copy to an existing list. While you're at it, delete the
BAK.CUSTS list. The command sentence is as follows:

By the way, the commas are optional. Now, re-enter the following ACCESS sentence to confirm
that BAK.CUSTS no longer exists.

>LIST ONLY POINTER-FILE<r>

SENTENCE ELEMENT. - DESCRIPTION
LIST verb

ONLY modifier
POINTER-FILE filename

Using the P, T and N options can be done by entering each of the following commands:
>COPY-LIST CUSTS (P<r>
>COPY~-LIST CUSTS (T<r>

and finally:

>COPY-LIST CUSTS (T,N<r>

Deleting Lists
~“VERB : . DESCRIPTION :
DELETE-LIST Deletes a specified list-item.

The general form is:

>DELETE-LIST listname<r>

93

94

6.4.3

To demonstrate DELETE-LIST, first copy CUSTS back over to BAK.CUSTS as follows:

>COPY-LIST CUSTS<r>
TO:BAK.CUSTS<r>

Now list the POINTER-FILE to verify the BAK.CUSTS exists:

>SORT ONLY POINTER-FILE<r>

SENTENCE ELEMENT

SORT

ONLY modifier
POINTER-FILE filename

Finally, delete BAK.CUSTS using the DELETE-LIST command:

>DELETE—LIST BAK CUSTS<:>

[245] LIST 'BAK. cus'rs’__.,v

Verify the removal of BAK.CUSTS with:

>SORT ONLY POINTER-FILE<r>

Editing Lists
VERB DESCRIPTION _
EDIT-LIST Allows editing (alteration) of a LIST, Uses the

text editor (EDIT) commands.
The general form of the command sentence is:

>EDIT-LIST listname<r>

The number of commands and the variations thereof make SP-EDIT difficult to address in this
book. You must be familiar with Editor in order to use this verb. Ah hah! A good reason to
review "HOW TO: The Editor," by yours truly. Anyway, here is a general list of the commands to
use.

EDITOR COMMAND DESCRIPTION

DEn Delete n lines from the current line.

EX Exit without filing.

FI File the list and exit.

FD Delete the list. Like DELETE-LIST.

Gn Goto a specific line number.

I Insert a line.

Ln List n lines. Usually use L22 to list a full page.
L/string Locate the first occurrence of string in the list item.
R Replace an entire time.

®© © 0 006 0606 0606 00 0 0 06 ¢ 000 6 & 0 0 0 00 00 0 ¢ 0 0 01 s o

To "limber up," try this next sample:

The goal is to eliminate from the report a single unwanted item without re-selecting the whole
file. It just so happens that PHINK, PHINK, and PHINK, customer 106, has become a real fink
and must be removed. Enter the following:

. Locate the first occurrence
of 106.

""" 106 found In
T A attribute 004.

Delete attribute 004.

: .~ File the
Lo list item.

The list is re-catalogued when FILEd.

Now, when the GET-LIST is performed:

Magic! There is one less item in the active list. Now enter:

>LIST STAFF BREAK-ON STATE COMPANY<r>

95

EXERCISE

96

6

ACCESS has three major phases. The first phase performs

, the second phase performs

, and the third phase performs

The two verbs which perform the first two phases alone are

and

True or False. SELECT statements need an output-list.

True or False. An active list can be passed to a TCL, PICK/BASIC or
another ACCESS process.

Write the ACCESS sentence for the CUSTOMERS file to select customers
in the state of California in the order of the company name.

Match the following:

SAVE-LIST SNAMES a. Generate an active list of
customer contacts whose last
name begins with the letter S.

SSELECT CUSTOMERS BY BALANCE b. Activate the saved list
SNAMES.
SELECT CUSTOMERS WITH CONTACT = "S]" . Generate an active list of
customers in order of the
balance due.

Q

GET-LIST SNAMES d. Save the currently active
list and name it SNAMES.

DELETE-LIST SNAMES e. Delete the saved list
SNAMES.

Fill in the blanks to create an active list of all the customers in
California sorted by the balance due and save the list under the
name CALCUSTS.

> CUSTOMERS <r>

[404] 5 ITEMS SELECTED

> CALCUSTS<r>

®© © 06 006 006 06 060 0 00 06 ¢ 006 0050 00 0 00 0 3 ¢ 0 O & o o

10.

11.

12.

13.

Fill in the blanks to reactivate CALCUSTS and list resulting cus-

tomer's company name address and state.

> CALCUSTS<r>

[404] 5 ITEMS SELECTED.

>

<r>

Fill in the blanks to copy CALCUSTS to BAK.CALCUSTS in the
POINTER-FILE.

> CALCUSTS<r>

TO: <r>

Fill in the blanks to copy CALCUSTS to a file called LISTS.

> CALCUSTS<r>

TO: <r>

Enter the command to delete the CALCUSTS list.

<r>

POINTER-FILE files must have a in the file
defining the item in the MD.

Write the ACCESS sentence which sorts the catalogued list pointers
in the POINTER-FILE and shows the time and date that they were saved.

>

<r>

97

FORMATTING WITH
DATA DEFINITIONS

71

The intention of this chapter is to introduce some basic methods for effecting the output of
ACCESS by altering the contents of data definition items. The main system tool used to alter

these items is Editor. (Another good reason to be familiar with the EDIT verb and all of the asso-
ciated commands.)

The parameters contained within a definition item are actually instructions to ACCESS for data
origin, format, calculation and correlation. These parameters are dynamically processed so that
when altered, the results can be immediately tested by invoking an ACCESS sentence containing
the descriptive name of the definition item.

The layout of a data definition item is as follows:

DESCRIPTION = . :
The item-id. The descriptive name of the definition item.
The type of definition.
A - Attribute definition.
S - Synonym definition.
X - Protected.
The system doesn't care if a type is an A or an S. The
decision between the two is totally up to the user. A
protected attribute (X) causes an ACCESS request to
abort if this data definition is used in a request.

002 The attribute position of the data.

003 The optional column heading. The definition item-id is
used as a column header by default if 003 is null.

004 Associated attributes. This is used if attributes contain

multivalue lists which are correlated. That is, they are
always reported together. Don't worry about this right
now. The results are too esoteric for this discussion.

005 Not used.

006 Not used.

007 A valid data conversion or mask. Performs functions at
print time, the second phase of ACCESS.

008 A valid "formula” used to perform arithmetic, logical and

string manipulations of one or more attributes.
Performs functions at selection time, the first phase of
ACCESS.
009 Justification of data in the output column.
L - Left. Data wraps if wider than the field length.
R - Right (used for numeric attributes).
T - Text. Data wraps at a blank.
U - Unconditional left. Data does not wrap.
010 The width of the output column.

99

Each of the attributes in a definition item is described by another definition item residing in the
master dictionary (MD) of the current account. These are the descriptive names used by the
LISTDICT process discussed briefly in Chapter 2. The following is a list of the MD definition
items and the attribute positions that they address.

*DEFINITION NAME ... ATTRIBUTE POSITION
D/CODE 001
A/AMC 002
S/NAME 003
S/AMC 004
V/ICONV 007
V/CORR 008
V/TYP 009
V/MAX 010

These descriptive words can be used to generate a custom report of dictionary data definitions.

Try this:

>SORT DICT CUSTOMERS BY A/AMC BY D/CODE...
..WITH D/CODE # "D]" BREAK-ON A/AMC V/TYP V/MAX<r>

“SENTENCE ELEMENT. S L DESCRIPTION:
SORT verb
DICT CUSTOMERS filename
BY A/AMC BY D/CODE sequence clause
WITH D/CODE # "D]" selection clause
BREAK-ON A/AMC V/TYP V/MAX output-list

>SOR'I' DICT CUSTOMERS BY A/AMC ‘BY D/CODE . L T ‘
WI'I'H D/ CODE- # "p] " BREAK-ON A/AMC V/ TYP V/MAx<r> y

7pagz‘1“ | ‘_ﬁc A 1o 51 oz 13 DEC

_ CUSTOMERS. A/AMC TP MAX

0 om0
| cusTNUM OR 10
‘ ‘ Rk k
51 : 1'L720
‘COMPANY . 1L 20
*kK
'3 Tt avihe i@ a0y
CONTACT 2L 20
3 3L 20

100

7.2

COLUMN HEADERS

As has been demonstrated, column headers default to the item-id of the definition item when
attribute 003 is empty. In the section of Chapter 4 which covers implicit report formatting, the
numeric data definitions are all given alpha column headers to override the numeric item-ids.

Special column headers can be added to any data definition item. As an exercise, modify the col-
umn header for the COMPANY data definition. Instead of simply having the word COMPANY as
a column header, replace attribute 003 of the definition item with the string "Company Name"
mixing upper and lowercase.

Enter the following:

EDIT the COMPANY
‘ ‘ data definition item.

Invoke the replace
command.

101

102

Now test this change with the following sentence:

>LIST CUSTOMERS COMPANY<xr>

The output is as follows:

Notice the change in the column header for company name.

Column header text can also be stacked. That is, there can be multiple lines of column header
text. This is accomplished by using value marks (ASCII Char 253, generated by a
<ctl><shift><]>) to delimit the end of each line.

Modify the COMPANY column heading to be two lines, "Company” on the first, and "Name" on
the second, as follows:

EDIT the
definition item.
" Dispiayed by EDIT.
Use REPLACE o
ineert the valus mark.

Back at TCL.

Now, enter the same ACCESS sentence and notice the result.

o G © © ¢ 0 0 6 0 ¢ 0 0 @ ¢ ¢ 000 C O % 00 & & O & &0 0 0

Finally, column headers can be completely removed by placing a back-slash (/) in attribute 003 of
the definition item. This time, however, create a synonym definition to use so that the original
remains unchanged. To start off, COPY the item COMPANY to a new item-id, CO as follows:

Now, modify the CO definition as follows:

Replace the A with S, designating a synonym.
This is not required, but helps you keep track
of the synonym definitions. Remember, the
system doesn't care if youusse an Aoran S,

Goto attribute 003,

Replace the
entire attribute.

Enter a back-slash
and the <returns.

103

104

7.3

Now enter the following and observe the results:

Justification of the data within the column can be altered by changing parameters in the data
definition item at attribute 009. Create another synonym for COMPANY called COMP.

Now, you can attack the problem of customer 106, PHINK, PHINK and PHINK whose company
name keeps wrapping in the column.

One way to attack this is to request an unconditional (U) left justification. This states that, no
matter what the actual length, do not wrap the result. Change the justification of COMP from L
to U as follows:

.lbkoltmswby
replacing the A withan 8.

Now enter the following command sentence to list only customer 106:

>LIST CUSTOMERS '106' COMP CONTACT<r>

ENTENCE ELEMENT © ©° DESCRIPTION =

LIST verb
CUSTOMERS filename
'106' item-list
COMP CONTACT output-list

3‘530’1988

Notice that a company name that's too long runs into the next column. Not very desirable.

Another way to alleviate this problem is to use the text (T) justification parameter. As an exer-
cise, change the U on attribute 009 of COMP to a T. Now, enter the same sentence as above:

>LIST CUSTOMERS 'l106' COMP CONTACT<r>

7:'SENTENCE ELEMENT: DESCRIPTION®
LIST verb
CUSTOMERS filename
'106' item-list
COMP CONTACT output-list

06' COMP CONTACT<r>

13:09:58 13 DEC 1988

i CONTACT 't vivmunn o

PHINK, CLYDE = = . =

Notice that the T justification indicates that column wrapping should be performed at a space
and not in the middle of a word. Text (T) justification is quite useful for columnar output of com-
ments.

105

106

7.4

A final word about justification. The justification parameter also controls SORTed order if the
definition name is used in a BY clause. L, T, and U cause a sort left justified and R causes a sort

right justified. It should be noted that numeric fields (money, etc.) should always be right
justified.

For example, if an attribute containing numbers ranging from 1 to 1,000 is sorted left justified,
the output occurs in this order: ‘

110 100 100 11 110 1100 etec.

If right justified, the sort is in correct numeric sequence:

123456789 10 11 etc.

LENGTH

The length field in attribute 010 can be modified to extend the width of the output column. Note:
extending column width may make the total width of the report greater than the current width
setting in the TERM statement. Always test any changes.

Fix the problem with COMPANY, once and for all. Change the column width from 20 to 25 as fol-
lows:

(Goto attribute 010.

Notice that the company name no longer wraps.

7.5

HIDDEN COLUMNS

Columns can also be "hidden" on a report, even though the definition name is specified in the out-
put-list of an ACCESS command sentence. This is desirable when a field is being used for a
SORT and BREAK-ON with the break value being displayed at the break line via the V'
BREAK-ON option. It is redundant to also show the columnar details for the break value.

A variation of the following command sentence is to be used:

>SORT CUSTOMERS BY STATE COMPANY BREAK-ON STATE " '‘V’" TOTAL BALANCE<r>

'DESCRIPTION
verb
CUSTOMERS filename
BY STATE sequence clause
COMPANY BREAK-ON STATE...
.. 'V " TOTAL BALANCE output-list

The BREAK-ON option V' is used to display the break value at the break line. This generates
the following report:

107

108

To eliminate the redundant reporting of the STATE at each detail line, the state output column
must be hidden. A column is hidden by modifying two parameters in the definition item:

*The columnar header is suppressed by placing a back-slash (\) in attribute 003 of the
definition item.
*Use a zero (0) value for the column width in attribute 010.

First, create a synonym for STATE called HIDE.STATE as follows:

System message.

Now, as an exercise, modify the HIDE.STATE definition item to look as follows:

The previous command sentence can be rewritten as:

>SORT CUSTOMERS BY STATE COMPANY BREAK-ON HIDE.STATE "‘V’" TOTAL BALANCE<r>

SORT . verb
CUSTOMERS filename
BY STATE sequence clause
COMPANY BREAK-ON HIDE.STATE...

. 'V’ " TOTAL BALANCE output-list

Notice that the report is still being sequenced by STATE, but the output column is addressed with
the new synonym, HIDE.STATE.

The report appears as follows:

109

EXERC

110

ISE

Fill in the attribute position next to each description of an entry

in a data definition item.

Justification. L, R, T or U.

A conversion or correlative performed in the third phase of
ACCESS, print time.

The attribute position (amc) of the data.

The maximum width of the output column.

The definition type code. A, S or X.

of ACCESS, selection time.

A conversion or correlative performed during the second phase

Write an ACCESS statement to list all synonym (S) type data
definitions found in the dictionary of CUSTOMERS.

>

<r>

What keystrokes are used to form a multiple line column header?

Match the following:

L a
A b
S C
T d
\ e
R f
U g
X h

. Unconditional left.

not wrapped.

. A synonym definition

. Protected definition.

output column.

. Text justification.

a space.

. Indicates a null column header.

The data in the column is

. Right justified output.

. An attribute definition type.

type.

. Left justified. The data is wrapped in the

The data is wrapped on

Fill in the blanks for the following data definition item describing
a left justified comment field held in attribute 15 of the data item.

ID: COMMENTS
001 A
002
003
004
005
006
007
008
009
010 10

The output of the COMMENTS field looks like this:
COMMENTS. .

THIS IS TH
E ONLY COM
MENT FIELD

IN THE IT
EM.

Name two changes that can be made to the COMMENTS definition item to
make the output more readable.

Columns can be hidden on output by doing two things to the data
definition item.

Place a in attribute

Place a in attribute

® @ © 00O 060 0P OC 0 OO O OO O OO OO DO DO OO O OIS

© 60 06 0600000000600 00 0060 0 0600600000090 90 9

8.1

CONVERSIONS
AND CORRELATIVES

OVERVIEW

Here is where things can get complicated. Don't fear. This chapter covers only the most common-
ly used conversions and correlatives, and how they relate directly to the sample CUSTOMERS
file. Not every possible combination is covered. Nor is every nuance of "programming” in
ACCESS. Such an endeavor would require an entire workbook in itself. (This is on the horizon.)
However, it is important to get some basic concepts laid out.

Conversions and correlatives are the parameters which reside in either attributes 007 or 008 of
the data definition item.

Conversions are used to alter the format of the data stored in an attribute so that it is more easily
interpreted on a report. Data as it exists in an item is said to be in internal format. That is, the
data is in its most unencumbered and compact form. Conversions allow the data to be presented
in external or output format. This is a form more easily understood by human beings.

For example, the phone number attribute in the CUSTOMERS file is a 10 digit phone number
that contains no logical breaks between the area code, the prefix and the extension. To make this
data more readable on a report, it requires a conversion mask so that these elements of the data
are easily recognized.

The phone number 7145551212 should be displayed as (714) 555-1212.

The conversion mask (the actual mask parameter is discussed later in this section) reformats the
data without changing the stored data.

data att#7 print output

7145551212 |—» conversion — » (714) 555-1212

Correlatives are "formulas” which perform arithmetic, logical or string building functions on the
data. Whereas conversions simply reformat a single data element for readability, correlatives
extract and combine single or multiple data elements to produce a "virtual" data field. The word
"virtual" is used to describe data which is not actually stored in an item, but is "created" via the
dynamic process indicated in the correlative expression.

13

114

The data correlated can be retrieved from any attribute in the same item or in another item, or
the data can be system provided. For example, the number of days that payment is overdue can
be calculated by subtracting the date due from today's date. Today's date is provided by the sys-
tem. (Hopefully, the correct date has been set.)

today's date - date due

(Again, the actual formula is shown later.) This performs an arithmetic calculation based on two
separate elements of data to produce a new "virtual" data element which automatically changes
as time passes.

When using a selection clause with a test value based on the results of a correlative, it is impor-
tant to note that the placement of the correlative in attribute 007 versus 008 can affect the out-
come of the report. As the data is retrieved from an item and is tested, the process dictated by
the correlative in attribute 008 is performed. However, correlatives placed in attribute 007 are
not performed until print time, when the selection decisions have already been made.

>LIST CUSTOMERS WITH OVERDUE >= "30"

A calculation placed in attribute 008 of the overdue definition would cause the command sentence
above to perform correctly. The same calculation in attribute 007 would cause the command sen-
tence to fail.

This is a concern for correlatives only. Simple conversions can reside in attribute 007 with no
problems.

Well, the only way to really start understanding how to use conversions and correlatives is by
example. So, without further adieu:

8.2

8.2.1

The D Conversion

Dates are stored in an internal format, foreign to any traditional method of date storage. Instead
of the usual month, day and year, an internally formatted date is stored as a count of days begin-
ning at an artificial day zero.

In the PICK system, day zero is December 31, 1967. Day 1 is January 1, 1968, and day -1 is
December 30, 1967. Days prior to day zero are negative and days following day zero are positive.

Why such a strange standard? I'll answer a question with a question. Have you ever tried to sort
a date field stored in a "traditional" format? (BY YEAR BY MONTH BY DAY.) Worse yet, have
you ever tried to figure a net 30 payment within a leap year? Well, the date routines in the PICK
system make these tasks elementary.

The date conversion (D) converts an internal date to a variety of external formats.

The simple form is:

D{yl{c}

The "y" and "¢" parameters are optional and have the following meaning:

i PARAMETER St ,MEANING i
y The number of dlg’ltS in the output year (0, 2 or 4).
The absence of this parameter indicates a 4 digit year.
c A single alpha character to use as a delimiter between

the month, day and year. It can also be:
D output the day of the month only
J julian date
M output the month only
Q output the quarter
W output the day of the week
Y output the year only

The stored data values for DATE.DUE are numbers like:

8888 This is over 24 years after December 31, 1967.
-500 This is over a year before December 31, 1967.

15

116

Remember the DATE.DUE data definition?

_ ID: DATE.DUE -

Notice that the date conversion "D" is placed on attribute 007 and, therefore, it is performed at
print time. Attribute 007 is the usual home for data conversions.

Now, enter the following sentence and compare the results to the data actually stored in attribute

009 (using *A9) of each data item.

>SORT CUSTOMERS BY DATE.DUE COMPANY DATE.DUE *A9<r>

“SENTENCE ELEMENT
SORT
CUSTOMERS
BY DATE.DUE
COMPANY DATE.DUE *A9

:.f>SORT CUSTOMERS BY DATE. DUE COMPANY DATE DUE *A9<r>

PAGE 1

CUSTOMERS .

105 . DIABOLICAL SOFTWARE

102 " THE GUN STORE
o101 " 'ACME CARROT
.~ 100~ SHIPS R US
103 AEROBIC DEN
107 © MONA LISA LTD
104 . - “SPEAK EASY

. -""5;106 }if ~ PHINK, PHINK AND pHINK*;.;-.:

i :8 ITEMS LIS’I‘ED

“DESCRIPTION

verb

filename
sequence clause
output-list

10 47 58 14 DEC 1988

05 APR'1965 -1000
18 AUG 1966 -500

.20 DEC 1988 7660 .
05 AUG 1989 7888
89 7999

991 8543
2 8888

® © 0 00 006 &6 00600 06 065 00 ° 0 0 0 O O 6 ¢ ° 0 ¢ 0 0

The R in attribute 009 of the data definition insures that the numerics are kept in proper
sequence. Notice the format of the simple D conversion. Even though the date is stored in inter-
nal format, and the conversion is specified at print time, the external form can still be used in a
selection clause as follows:

>SORT CUSTOMERS BY DATE.DUE IF DATE.DUE AFTER "01/01/80" COMPANY DATE.DUE<r>

// 'SENTENCE ELEMENT " DESCRIPTION
SORT verb
CUSTOMERS filename
BY DATE.DUE sequence clause
IF DATE.DUE AFTER "01/01/80" selection clause
COMPANY DATE.DUE output-list

USTOMERS BY DATE.DUE IF DATE.DUE AFTER "01/01/80" COMPANY DATE.DUE<r>

ABOLICAL SOFTWARE ~ 05 APR 1965
Sk Sorane

Simple conversions in attribute 007 are a two-way street. When the ACCESS sentence is inter-
preted, the conversion is used to convert the selection value ("01/01/80") to the equivalent internal
format for comparison to the stored data. On output, the stored data is converted to the equiva-
lent output format.

Notice that the selection clause is specifying the date in a D2/ format, even though the conversion
in DATE.DUE is simply a D. The date conversion is intelligent enough to handle this.

7

18

822

Here are the results of different combinations of D conversion acting on the internal date -1000.

Internal Date: -1000

. CONVERSION RESUL
- D 05 APR 1965
DO 05 APR
D/ 04/05/1965
D2 05 APR 65
D2- 04-05-65
DO/ 04/05
DD 5
DM 4 (numeric month)
DMA APRIL (alphabetic month)
DW 1 (numeric day of the week)
DWA MONDAY (alphabetic day of the week)
DY 1965
D2Y 65
DJ 95
DQ 2

As an exercise, replace attribute 007 of DATE.DUE with each of these and test the result.

The MT Conversion

Time is also stored as a sequential number instead of the cumbersome base 60 system of hours,
minutes and seconds. In fact, time is stored as the number of seconds since midnight.

The MT conversion handles time and follows the format:
MT{H} (S}

Normally, the MT conversion displays a 24 hour clock. The H and S parameters are optional and
specify the following:

H 12-hour clock, AM and PM.
S Output seconds.

Here are some variations of the mask time (MT) conversion for the internal time of 67000 sec-
onds.

Internal time: 67000

~MT 18:36

MTS 18:36:40
MTH 06:36PM
MTHS 06:36:40PM

® © 0 00 060060600 06 0 0 00 0 O 0 00 00O 006 0 % 0 0 0 s

8.3

8.3.1

A string is any series of data characters. All data stored in PICK is a string. String masking
allows any string to be reformatted for output.

The MC Conversion

The first string mask conversion is the (MC) mask character which follows the general form:
MC{jc

The slash is optional and means "not." Using the variations on the "c¢" code, the mask character
conversions can be any of the following:

To mask out (remove) only certain character types:

MCA Output only the alphabetic characters.
MC/A Output all but the alphabetic characters.
MCN Output only the numerics, (0-9).

MC/N Output all but the numerics.

To change the case of the alphabetic characters:

MCL Change all alphabetics to lowercase.

MCU Change all alphabetics to uppercase.

MCT Also known as "mask character text." Capitalize the first character of
every word and convert the remaining characters to lowercase.

Other uses: (these are FYI only)

MCP Convert all control <ctl> non-display characters to periods. This is
quite helpful in weeding out garbage in attributes.

MCDX Convert decimal values to the equivalent hexadecimal.

MCXD Convert hexadecimal values to the equivalent decimal value.

Here is what each of these conversions produces when acting upon the following address: 123
MAIN street Apt. 2-a

. RESULT .
MAINstreetApta

123 .1-

1231

MAIN street Apt. -a

123 main street apt. 1-a

123 MAIN STREET APT. 1-A
123 Main Street Apt. 1-A

19

120

8.4

Alter the ADDRESS definition to display the address in a text format mixing upper and lower-

case as follows:

' >ED DICT CUSTOMERS ADDRESS<r>

‘ .G7<r>‘ H :
007 - : : Replace the null atribute '
.R//MCT<r> T\ With the MCT conversion.

007 MCT -

FI - File and exit.

'ADDRESS ' FILED

Now check the results by entering:

'>LIST CUSTOMERS CONTACT ADDRESS<r>
PAGE 1

CUSTOMERS . CONTAc'r.."...‘.‘.”‘.‘;.... ADDRESS”

106 PHINK, CLYDE ~y160 [pennsylvan;a Ave
107 DAVINCI,. LEONARDO © 18 Century Dr . .
100 HORNBLOWER, 'HORATIO ~1110-1 W 57Th §

101 BUNNY, ‘BUGS " e 100 Hole-In-Groun'

102 ~ FUDD, ELMER . 30 Wabbit Way

103 PORCELANA, PORCHE 139 Hollywood Blvd
104 PARTICIPLE, DANGLY ' 3 Dat Dare St
105 'GROG, BILL SPIDER 01100 Binary Way

8 ITEMS LISTED.

STRING MASKING

String masking allows any string to be reformatted to match a specified pattern. This is accom-

plished with the mask (M) conversion following the general format:

Mjust fill length

© © 0 00 00 0000060000606 000006000606 0 0 ¢ o 0 ¢ o o

® © 0 @ 000 066 © @ 0 0 © 00 0 © 00 0 0O 0O OO O 0 ° s 0 0

COMMAND DESCRIPTION G ey -
The justification of the output strlng, L for leﬁ: or R for nght
The single character parameter used to specify the character to use
to fill the full length of the output string. The fill parameter can be:
fill spaces
% fill zeros
* fill asterisks
length The maximum length of the output string. Unlike the column length
specification in 010, the ML and MR masks truncate the string at the
"length.”

Passing the data string "TEST" through this conversion results in the following:

' CONVERSION RESULT .~
ML#10 TEST

MR#10 TEST
ML%10 TEST000000
MR%10 000000TEST
ML*10 TEST******
MR*10 *¥kkx* TR QT

The fill asterisk and fill zero are probably more effective when outputting numerics. The number
55 is used in the following example:

ML#10 55

MR#10 55
ML%10 5500000000
MR%10 0000000055
ML*10 BBk kkkokkkk
MR*10 SkkkkkkE

The fill parameter followed by the length is a "shorthand" method for indicating an output format
mask. For example, ML#10 is equivalent to ML########## or ML(######HHHHE),

Any output format mask can be enclosed in parentheses as follows:
ML(explicit format)

An explicit format can be demonstrated by altering the PHONE definition item in the DICT of
CUSTOMERS so that it looks like this:

121

122

8.5

The output mask, ML((###) ###-####) contains literal characters, (,), <space> and -. The external
parenthesis are strictly to indicate inclusion and are not part of the output string. Every charac-
ter other than a fill parameter within the enclosure, including other parentheses, is treated as a
literal.

105 cro

8 ITEMS LISTED.

Notice that the conversion is automatically repeated for each multivalued line.
The above format mask can also be written in shorthand as follows:

ML((#3) #3-#4)

MONEY (DECIMAL) MASKING

Monetary data is usually stored without decimal points (periods) as part of the data field. This
data is said to contain implied decimals. The central reason for storing money fields as implied
decimals is that ACCESS only performs integer arithmetic. Decimal values are truncated. A

monetary value that is stored in the customer BALANCE field has 2 implied decimal places. For
example:

STORED IMPLIED = %o
12675 126.75
78932 789.32
10000 100.00
45 0.45

© © 000 0606 060 00060000060 060 060 0 %06 006 006 0 ° 0 ¢ o9

The MR or MD Conversions

Decimal masking is performed by using either the MD or MR conversions. These are inter-
changeable. The MR conversion has the same basic format as the previously discussed string
masking conversion (Mjust) with specific extensions for formatting decimal values. The general
format is:

MR/{precision}{scaling} {Z} {,} {sign} {$}£ill length

‘OMMAND JESCR . R
precision The number of decimal places in the resulting number.
scaling The number of places to the left to move the decimal point before
rounding to the precision.
Z Suppresses leading zeros.
Places a comma (,) at the thousands, millions, etc., positions.
sign A sign code which designates how to handle negative numbers.
The values can be:
C Negative numbers are followed by the credit indicator,
"CR."
D Positive numbers are followed by the debit indicator,
"DB."
E Negative numbers are enclosed in angular brackets,
<number>.
M Negative numbers are followed by the minus sign, number-.
N The minus sign is suppressed.
$ Prefix the answer with a dollar sign.
fill and length The same as in the string ML and MR conversions.

If the scaling and precision match, then only one needs to be indicated. For example:

The conversion MR2 is identical to MR22. Redundant precision and scaling parameters need not
be specified. This states that the decimal point is to be moved 2 places to the left and the number
is to be reported with a 2 decimal precision.

When the precision and scaling are mismatched, the result is rounded. For example:

|/ /CONVERSION ' SCALED ROUNDED OUTPUT
MR24 6.7897 6.79
MR02 678.97 679

The first example moves the decimal 4 places to the left and then rounds to a 2 place precision.
The second moves the decimal 2 places to the left and reports with no decimals.

123

124

Here are a series of examples using the MR conversion.

© INTERNALVALUE ' CONVERSION OUTPUT
67897 MR2$ $678.97
67897 MR2D$ $678.97DB
-67897 MRO0,$ -$617,897
-67897 MR2E <678.97>
67897 MR2,$*12 $rH***678.97
67897 MRO04$ $7

Here is the data definition for BALANCE in the CUSTOMERS file.

Create the following synonyms in the DICT of CUSTOMERS.

ID: BALLl
0018
002 8
003
004
© 005
. 007 MR2,$
008
. 009 R :
010 12 -

Now, enter the following command sentence:

*x1.,27 000000126.75
7.89 000000789.32
x5.68 000000567 .80
.57 00000005675
.12 000000012,34
9 *xxxkk%x0 .89 000000089.12

_ *xxxxx%x%0,23 000000023.42
5 kkkkkk%%0.05 000000004.56

As in the date and time conversions, the external format of a monetary value can be specified
within an ACCESS selection clause.

>SORT CUSTOMERS BY BALANCE WITH BALANCE >= "100.00" CONTACT BALANCE<r>

“DESCRIPTION -
verb
CUSTOMERS filename
BY BALANCE sequence clause
WITH BALANCE >= "100.00" selection clause
CONTACT BALANCE output-list

NCE WITH BALANCE >= " ;,190’.'0_(‘) " _couTAci 'BALANCE<r>

13:39:03 14 DEC 1988
:’ Balance ‘Due. .
126.75

567.80 y

789.32

125

126

8.6

8.6.1

STRING EXTRACT CORRELATIVES

String extracts are used to remove portions of a data string. As with all correlatives, placement
in attribute 008 versus attribute 007 makes a difference when testing for the result in a selection
clause.

The Text Extract (T)

The text extract allows fixed length strings to be removed based on the character position. The
general form is:

Tbegpos,length

begpos The beginning character position to start the extract.
length The number of characters to extract.

For example, using a stored string of "123456789" the text extract produces the following results:

 CORRELATIVE "
T1,1
T1,5
T3,2
T35
9,1

Use the text extract to remove the area code from the phone number in attribute 7 of the data
item by creating the following data definition, AREA.CODE.

The extract begins at position 1 and removes 3 characters.

Now, enter the following command sentence:

>LIST CUSTOMERS PHONE AREA.CODE<r>

~DESCRIPTION
LIST verb
CUSTOMERS filename

PHONE AREA.CODE output-list

The text extract is automatically performed on the multivalues in the PHONE attribute.

Now, here is where the placement of the correlative makes a difference in the results of ACCESS.
Enter the following sentence:

>SORT CUSTOMERS BY CONTACT WITH AREA.CODE = "408" CONTACT PHONE<r>
©7 'SENTENCE ELEMENT"* DESCRIPTION -

SORT verb

CUSTOMERS filename

BY CONTACT sequence clause

WITH AREA.CODE = "408" selection clause

CONTACT PHONE output-list

The result is the system error message:

[401] NO ITEMS PRESENT

127

How can this be? There is at least one customer in 408. The problem is that the text extract in
AREA.CODE is in attribute 007. Attribute 007 is processed at print time, AFTER the data has
been selected. If the result of the extract is to be tested at selection time, it MUST reside in
attribute 008 of the definition item.

Change the AREA.CODE data definition as follows:

- G7<r> i Goto attribute ooi :
o7 T3 >

Make the attribute
a null value.

g Goto the next line.

Replace the line with
the text extract T1,3.

: il M5 : VvvvFllonndoxIt.‘

BackatToL Y i

Now enter the same ACCESS command sentence:

>SORT CUSTOMERS BY CONTACT WITH AREA.CODE

PAGE 1
CUSTOMERS . CONTACT............. PHONE..
105 GROG, BILL SPIDER. (408) 555-4444

END OF LIST

8.6.2 The Group Extract (G)

The group extract allows data strings to be removed based on a recognizable data pattern. For
example, a data string may look like this:

123*ABC*1S6

This data string has three "groups,” each delimited by an asterisk (*).

¢ © 6 6 0 0000 OO0 ¢ 9 006 &0 »# 0O OO %> 00 ¢ O O ¢ v 0

The group extract allows any single or series of groups to be removed from the data string. The
general format is as follows:

G{skip}delimiter segments

- DESCRIPTION S

An optional parameter wh1ch 1nd1cates how many delimiters to
skip before beginning the extract. Starting an extract at the
beginning of the string is indicated by a 0 skip value. If the skip
value is omitted, the skip defaults to 0.

delimiter A single character which is being used to separate the groups.

segments The number of sequential groups to extract.

Using the previous string, "123*ABC*1S6", possible group extracts are as follows:

JORRELATIVE ~ RESULTS

G*1 123

GO*1 123

G*2 123*ABC
G1*1 ABC

G*3 123*ABC*1S56
G2*1 156

The CONTACT attribute in CUSTOMERS contains a person's name in the following format:
Last,<space>First<space>Middle

The group extract can be used to address each element in the CONTACT field to separate the last

and first names. The last name is set apart from the rest of the attribute by a comma (,).

Therefore, a group extract which addresses a single group from the beginning of the string, using

a comma as a delimiter, is expressed like this:

GO0,1 or G,1

Enter the following definition item into the DICT of CUSTOMERS.

129

130

Notice that the group extract is placed in attribute 008 so that the last name can be used in a
selection clause.

Extracting the first name is a little trickier than grabbing the second group delimited by a comma
(,). In fact, the following group extract reports both the first name and middle initial.

G1,1

However, the comma doesn't need to be used. There is another delimiter used in this data string,
a space. The first name is always separated from the comma ending the last name and the mid-
dle name by spaces. With this in mind, enter the following data definition:

01015

When entry of these definitions is complete, enter the following command sentence:

>SORT CUSTOMERS BY LAST.NAME FIRST.NAME LAST.NAME CONTACT<r>

. SENTENCE ELEMENT - = ..
SORT
CUSTOMERS filename
BY LASTNAME sequence clause
FIRST.NAME LAST.NAME CONTACT output-list

ORT CUSTOMERS BY LAST.NAME FIRST.NAME

PAGE1l

 CUSTOMERS. FIRST.NAME,

¢ 6 © 0 0 0 © 0 0 ¢ 0 ¢ 0600 0 O & O 0 % &0 & & & ¢ 00 ¢ 0 0 0

® @ 6 & & © 0600 00 0000 O 0® 00 OO O O ° ¢ O 0 0 0 o

8.7

The file translate process uses data in the current item to read data from another item in a differ-
ent file. This helps to alleviate redundancy by allowing repetitive data to be retrieved from a
"code lookup" file, rather than having it stored in every item.

For example, in the CUSTOMERS file, the STATE field is kept as a two alphabetic character
abbreviation. The state name is kept in a "lookup” file called STATES. (STATES should have
been created in Chapter 2, "Getting Started.") The state abbreviation is the item-id for each item
in the STATES file. The contents of a STATES item might include the state name, region code,
tax structure, etc. However, for the purposes of this example, the STATES file uses the following
layout:

ID: state abbreviation
001 state name

Now it's time to add the state code items to the STATES file. Again, you must be familiar with
the Editor to be able to enter the following items.

The file translate uses the fifth attribute of a CUSTOMERS item to read the state name from the
STATES file.

The STATE.NAME path:

131

132

8.7.1

The Translate Syntax

The general form of the file translate correlative is:
T{DICT l}filename;option{n};iamc;oamc{;bamc}
Here's what the parameters mean:

' PARAMETER = = 3
.~ filename This is the target filename. The optional DICT specification
addresses the dictionary level of the target file.

option The read option. This indicates what to do if the addresses data is
there or not. The option codes can be:

C If the value being read does not exist, use the original
value.

X If the value being read does not exist, output a null.

The above options are the most frequently used. The following
options are provided strictly FYI, since they are seldom used.
(At least I've never seen them used. I tried to use them once,
but nothing seemed to work.)

V Verify existence only. The read attempt must be
successful and the targeted attribute must have a
value, otherwise an error message is displayed.

I Input verify only.

O Output verify only.

n An optional numeric value mark count which must immediately
follow the "option" code. This extracts a specific value position in
the targeted attribute.

iamc The attribute mark count to be used for the input conversion.
This is seldom used, and can remain null.

oamc The output attribute mark count. This is the attribute to be
passed back through the translation.

bamc The optional break attribute mark count. The contents of this
attribute are displayed at the break line (BREAK-ON must be
used in the command sentence) in place of the "oamc."

Confusing enough? When all of this is said and done, the only parameters that you have to deal
with are "filename," "option" and "oamec." The rest of the parameters can remain null.

The data definition, STATE.NAME, should be added to the DICT of CUSTOMERS.

B .:‘E' D STAT i NAME -3:::1 i _____ : A synonym for
HHQ0LT S e N STATE.
: E et The state abbreviation is in

The translate correlative.
filename = STATES

option = X
oamc =1

® © 6 06 0 06 06 0 © 00 0 006 0 0 & © 00 0 0 O 0 O 0 0 0 0 0 0 o

8.7.2

This definition uses attribute 5 as an item-id to read the first attribute of the STATES file. If the
read is not successful, the output is null.

Now enter the following ACCESS command sentence:

>LIST CUSTOMERS STATE STATE.NAME<r>

DESCRIPTION !
verb
CUSTOMERS filename
STATE STATE.NAME output-list

STATE.NAME<r> =

. 09:47:09 15 DEC 1988

......

As in all correlatives, if the full name needs to be tested in a selection clause, the translate correl-
ative must be placed in attribute 008. Otherwise, the translate can reside in attribute 007.

A Hypothetical Case

A more extensive implementation of a code file lookup involves using the zip code to imply the
city and state. Therefore, the zip is the only data element required in each item of the NEW.CUS-
TOMERS file. All of the possible zip codes are kept as item-ids in a special ZIPS file.

Sample item layouts:

133

The two attributes contained in the ZIPS file are the city and state. The CITY and STATE data
definition items in the dictionary of the NEW.CUSTOMERS file point to the zip code attribute
and translate to the ZIPS file to retrieve the data.

The CITY and STATE path:

“" Points to the zip attribute
in the data item.

Retrieve the first
attribute of the ZIPS file.

TZIPS;X: 1l

. Again, points o
} the zip attribute.

v Retrieve the second
attribute of the ZIPS file.

134

8.8

Multiple conversions and correlatives are used in a definition item to do multi-stage processing of
a data element. Staged processing is specified by delimiting each conversion and correlative with
value marks. The results of an entry in the multivalued list are passed to the subsequent entries
in the order of specification.

The general form is:
Conv]Conv]Convl...

The "Conv" represents any of the aforementioned conversions and correlatives. The right bracket
(1) represents a value mark. (Keyboard generated by a <ctl><shift><]>.)

For example, the definition LASTNAME uses a group extract to remove the last name from the
CONTACT attribute. Once the last name is extracted, it can be processed by a series of correla-
tives or conversions.

Modify the LAST.NAME definition item so that it looks like this:

First, do the group extract and then
mask the characters in a text
format. (The bracket is a value mark.)

Test this with the following command sentence:

>SORT CUSTOMERS BY CONTACT CONTACT LAST.NAME<r>

. SENTENCE ELEMENT = ° ‘DESCRIPTION
SORT verb
CUSTOMERS filename
BY CONTACT sequence clause
CONTACT LAST.NAME output-list

135

136

5>SORT“CU§TO¥E§S}§¥ CONTACT CONTACT
j‘”pAGE 1
| cusmonzns CONTACT

101 : J;':’__ .'B ’

207 “'vnavxncx, LEONARDO
102 . FUDD, ELMER . .
105 . GROG, BILL spxnza .

100
104
106 ° PHINK,
: 103? ,-_ ,*PORCELANA

8 ITEMS LISTED

Do the same thing for the STATE.NAME, but this time mask all of the characters to lowercase
(MCL). Modify the STATE.NAME definition as follows:

ID: STATE.NAME
001 s
002 5
003
004
005
006
007
008 TSTATES;X: ,1]MCL
009 L
- 010 15

Use this definition in the following sentence:

>LIST CUSTOMERS STATE STATE.NAME<r>

SENTENCE ELEMENT DESCRIPTION
LIST verb
CUSTOMERS filename

STATE STATE.NAME output-list

All of the state names are forced to lowercase.

Conversions and correlatives don't need to be staged in the same attribute. Since attribute 008 is
processed before attribute 007, the STATE.NAME definition could also be written:

More On the Hypothetical Case

File translates can be staged to first read from one file and subsequently use that data value to
read from another file. The lookup paths are virtually limitless.

translateAltranslateB].....

As has been described, the zip code in NEW.CUSTOMERS is used to read the item containing the
CITY and STATE from the ZIPS file. Since the STATE attribute in the ZIPS file contains a state
abbreviation, a second level of translate is required to retrieve the STATE.NAME from the
STATES file.

137

138

The STATE.NAME path:

The STATE.NAME definition item in DICT NEW.CUSTOMERS:

ID: STATE.NAME

. 001°S

Notice that the state name is passed through a mask character text (MCT) conversion at print
time.

8.9

CONCA CORRELATIVE

Concatenation is the process of tagging data strings onto the end of other data strings to produce
new, longer, data strings. The general form of the concatenate (C) correlative is:

C;parameter;parameter;...
The parameter values can be:
amc An attribute mark count. This retrieves the contents of the
indicated attribute number.
"literal" A literal data string enclosed in quotes.

Each parameter is concatenated to the end of the previously specified parameter.

The next exercise is to build a new data definition which concatenates the CITY, STATE and ZIP
attributes to produce a single string of the pattern:

city, state zip

The definition item named CITSTATZIP is added to the DICT of CUSTOMERS.

The amc is a dummy value

in this case. See below.

The concatenate correlative is the first correlative covered which combines multiple data ele-
ments to produce a compound result. In such a case, attribute 002 of the data definition becomes
irrelevant for controlling the location of data origin. Therefore, the zero in attribute 002 serves as
a "dummy" place holder.

The concatenation correlative appends a "," to the end of attribute 4, then appends attribute 5 to

that, a space " " to that, and finally, attribute 6. Enter the following command sentence to see the
results. The resulting string is then passed through a MCT to display the data in text format.

139

140

8.10

8.10.1

Enter the following command sentence:

As an independent exercise, use CITSTATZIP in a mailing label.

FUNCTION CORRELATIVE

The function (F) correlative allows arithmetic, relational, and string operations to be performed.
Since this workbook is geared to an introductory level, the arithmetic operations serve as the
focal point of the discussion.

All calculations are performed in a stack. Stack processing uses a concept which can be likened
to those old spring-loaded coin dispensers, where each new coin added pushes down the rest of
the stack of coins. The last coin added to the stack is the first coin to be removed. As each coin is
removed, the remaining coins "pop up" to fill the vacant space.

The F Correlative Syntax

The general form of the F correlative is:
F;parameterA;parameterB;parameterC;...

The command parameters in the F correlative come in two flavors: operands and operators.
Operands are data reference parameters which push a new piece of data onto the top of the stack.
Operators are commands which perform arithmetic, relational or string functions on the first two
entries in the stack to produce a result.

In a generalized form, the stack is handled as follows:

F;operandA;operandB;operator

The simple operands are:

“OPERAND 2 DESCRIPTION .. : :

amc A numeric attribute mark count. Retrieves the data in the refer-
enced attribute. For example, the number 10 retrieves the con-
tents of attribute 10 in the current data item.

Cn A numeric constant "n." C10 generates the number 10.
D The system date in internal format.

T The system time in internal format.

"literal” A literal constant. This must be enclosed in quotes.

The order of placement of operands in the F correlative is known as Postfix Polish Notation.
What this means is that all operations are performed stack2 against stackl. The result is placed
in stack 1 and all subsequent stack entries pop up one position.

Stackl = Stack2 operator Stackl

This standard follows PICK Spectrum (SMA) standard specifications for the F correlative. (Those
of you on McDonnell Douglas machines beware; this is all reversed.)

The operators covered in this section perform arithmetic and string concatenation functions.

These operators are:

PER “DESCRIPTION = v o i o i
+ Addition Stackl = Stack2 + Stackl
- Subtraction Stackl = Stack2 - Stackl
/ Division Stackl = Stack2 / Stackl
* Multiplication Stackl = Stack2 * Stackl

Concatenation Stackl = Stack2 : Stackl

141

142

Using the arithmetic operators, write an arithmetic expression to calculate the number of days
that payment of the balance is overdue. This is accomplished by determining the difference
between the system date (D) and the DATE.DUE (attribute number 9).

system date - date due

Add the following definition item, DAYS.OVERDUE, to the DICT of CUSTOMERS.

Using a value of 500 in attribute 9 and an internal system date of 9000, the F correlative (F;D;9;-)
is processed as follows:

Enter the following sentence and observe the results:

>SORT CUSTOMERS BY DAYS.OVERDUE BALANCE DATE.DUE DAYS.OVERDUE<r>

,,,SORT SR verb

CUSTOMERS filename
BY DAYS.OVERDUE sequence clause

BALANCE DATE.DUE DAYS.OVERDUE output-list

'WEEREEENEEEEREREREENEMNMNNMN N B B R B B B B B B BRI B

8.10.2

The results are based on the system date of this writing, December 15, 1988. Of course, the
results will differ on your system. Many of the due dates are in the future, making the results
negative.

To list only those days that are overdue, enter the following:

>SORT CUSTOMERS BY DAYS.OVERDUE. ..
...WITH DAYS.OVERDUE > "(0" BALANCE DAYS.OVERDUE<r>

verb

CUSTOMERS filename

BY DAYS.OVERDUE sequence clause
WITH DAYS.OVERDUE > "0" selection clause
BALANCE DAYS.OVERDUE output-list

BALANCE DAYS.OVERDUE<r>

15 DEC 1988

Arithmetic Scaling

Since all arithmetic calculations must use integer numbers, numeric values have to be scaled by
multiples of 10 to account for implied decimal precision.

For example, interest needs to be charged on the balance due. To make things simple, a straight
10.5 percent is to be added to the BALANCE field.

143

The general formula is:

Interest = Balance * (.105)
Total Balance = Balance + Interest

Add the following data definition item to the DICT of CUSTOMERS.

008

Ay
w00

Let's spend some time on this definition item.

First of all, an interest rate of .105 cannot be used in the F correlative. The interest rate must be
specified as an implied three decimal number, 105.

Let's say that the BALANCE field (attribute 8) contains 5055. This number is stored with 2
implied decimal places, and therefore, represents 55.55.

The first part of the F correlative to calculate the interest is as follows:

F;8;C105;*...

stackt | soss

stacke ———

This multiplication of a 2 implied decimal number by a 3 implied decimal number produces a
number which has 5 implied decimals (decimal places are added during multiplication).
Therefore, the interest charged is actually 5.30775.

To calculate the total balance, the interest must be added to the data value in attribute 8, BAL-
ANCE. However, a 5 implied decimal number cannot be added to a 2 implied decimal number
without first scaling the 2 decimal number up to 5 implied decimals. This is performed by multi-
plying attribute 8 by the numeric constant, 1000.

144

' EREEREREREBEMBNBEMN N N B B B B B ECEE B BN BN BN IR BN I BN BN N I

© © 00 06 00006000 0000 00 06000 06090006000 ¢ o o

8.10.3

The second part of the F correlative looks like this:

oeee 38;C1000;*;+

The stack is handled as follows:

+

| 5585775 |

The final answer, 5585775, has 5 implied decimal places. The conversion on attribute 007,
MR25,$ says to move the decimal 5 places to the left and round to 2 decimal places.

5585775 —® MR25,$ ———> $55.86

Enter the following command sentence and observe the results:

Concatenation

The F correlative also can be used to build compound strings via concatenation. The following
data definition, CSZ, generates the CITY, STATE and ZIP in the same format as is described for
the C correlative.

145

® © ©®© © © 00 600 & O 0 00009 600 O O 9 OO OO O OO O O 0

The stack is handled as follows:

Using item 104:

146

© © 0 00060 00000000000 006 00 0690 0600 0 00 00 ¢ 0

8.10.4

Enter the following command sentence and observe the results.

>LIST CUSTOMERS CSZ<r>

NTENCE ELEMENT . .. DESCRIPTION' ' -
LIST verb

CUSTOMERS filename

CSZ output-list

o6 18 DEC 1988

The Simplest F Correlative

The simplest F correlative performs no arithmetic or relational function. It simply generates a

constant literal string. For example:

Suppress the column
heading.

147

It doesn't matter if you place the correlative in attributes 007 or 008. This definition always out-
puts 5 spaces. Enter this into the DICT of CUSTOMERS and then invoke the following command
sentence:

>LIST CUSTOMERS ZIP SPACES BALANCE<r>

'SENTENCE ELEMENT
LIST

CUSTOMERS

Z1P SPACE5 BALANCE output-list

8.10.5 Other Operands and Operators

These other operands and operators are presented FYI. The following operands are used for spe-
cialized work and are not covered in this workbook.

7 OPERAND - 'DESCRIPTION :

LPV Load previous value. Thls is used when an F correlatlve exists on
attributes 008 and 007. The LPV in the F correlative in

attribute 007 retrieves the result of the F correlative in attribute

008.
NB The number of the break level.
ND The number of detail lines leading up to the break. Since detail

lines are not created until print time, this must be specified in
attribute 007. See Section 8.12, "Calculations at Break-Lines."

NI The item count.

NV The multivalue count.

NS The subvalue count.

R(R} Repeat code. Used to repeat an operation on a multivalued

attribute. Usually specified in the form: amcR. The optional
R is used to repeat subvalues.

148

® © 0 00 © 0 060 60 6 06 00 060 ¢ © 0 00 OO OO O O ° O S O 0 0

8.1
8.11.1

The realtional operators vary according to implementation. Both possibilities are shown. It is up
to you to verify these.

“DESCRIPTION - -+ -
Equal to
If Stack2=Stackl then Stackl=1 else Stackl=0
If Stack1=Stack2 then Stackl=1 else Stackl1=0
Not equal to
If Stack2#Stackl then Stackl=1 else Stackl=0
If Stack1#Stack2 then Stackl=1 else Stack1=0
> Greater than
If Stack2>Stackl then Stackl=1 else Stack1=0
If Stack1>Stack2 then Stackl=1 else Stackl1=0
< Less than
If Stack2<Stackl then Stackl=1 else Stackl=0
If Stackl <Stack2 then Stackl=1 else Stack1=0
[Greater than or equal to
If Stack2>=Stackl then Stackl=1 else Stack1=0
If Stackl>=Stack2 then Stackl=1 else Stack1=0
1 Less than or equal to
If Stack2<=Stackl then Stackl=1 else Stack1=0
If Stackl <=Stack2 then Stackl=1 else Stack1=0

Special Function Operators:

OPERATOR ' © - DESCRIPTION -

R Remainder of the division: Stack2/Stackl
S Sum of multivalues in Stackl.

P Push Stack2 onto the top of the Stack.

_ Switch Stackl and Stack2.

f Extract a fixed length string.

Stackl = Stack3[Stack2,Stack1]
Stack?2 is the starting character position.
Stack1 is the number of characters to extract.

(conv) Any valid conversion enclosed in parentheses.
Stackl = conv(Stackl)

L_GEBRAIC CORRELATIVE

Introduction to the A Correlative

The algebraic (A) correlative performs all the functions available to the F correlative specified as
an algebraic formula, rather than as Post-Fixed Polish stack parameters.

The general format of the A correlative is:
Ajalgebraic expression
All of the operands and operators are the same as those described for the F correlative.

149

150

OK, so why use it? Because it is far easier to read and to subsequently support algebraic formu-
las.

Is there any difference in speed? Not noticeably. You see, A correlatives are just a simpler way of
expressing F correlatives. In fact, the system internally converts A's to F's during the first stage
(parse and compile) of ACCESS processing.
For example, take the DAY OVERDUE F correlative:

F;D;9;-
This can be rewritten in an A correlative as:

A;D-9

Look at a more complex example: the calculation of the NEW.BALANCE based on 10.5% interest.
The F correlative used in the NEW.BALANCE definition is:

F;8;C105;*;8;C1000;*;+
This can now be rewritten as follows:
A;(B*'"105")+(B*"1000")
Notice that parentheses are used to group the precedence of arithmetic calculations:

(8*"105") Calculates the interest.
(8*'1000") Scales the BALANCE to match 5 implied decimals.

These are considered two separate expressions. When they are added,

expressionl+expression2
(8*"105")+(8*"1000")

the result is considered a compound expression.

Replace the F correlatives in DAYS.OVERDUE and NEW.BALANCE with the corresponding A
correlatives and see if there is any difference. There should be none.

Concatenation can be performed with an A correlative. Compare the city, state and zip F correla-
tives to the equivalent A correlative.

Fi45", "553555" 365
versus
A;4:", ":5:" ":6

Which would you rather read?

® 0 0060 00 6 © © 6 6 0 0 © 000 O ¢ O 00O 0 O O O O 0 0 00

8.11.2

The Recursive Operand

There is one extension to the A correlative which is not available to the F correlative. This
operand within the expression provides the capability to make recursive references to other data
definition items. In simpler terms, instead of directly pointing to the balance attribute using the
numeric amc reference 8, the A correlative can use the actual data definition name, BALANCE.

The format of this special operand is:

N(definition name)

The NEW.BALANCE definition can be altered as follows:

The N(BALANCE) operand retrieves the data value addressed by the BALANCE definition item.
In addition, any conversions and correlatives in attribute 008 of the referenced definition item are
processed. Therefore, the recursive operand can use definition items which contain any combina-
tion of conversions and correlatives in attribute 008, including other A or F correlatives.

Recursive operands do not process any conversions or correlatives in attribute 007 of the definition
item being referenced.

The CSZ definition can also be rewritten as follows:

151

152

8.11.3

8.12

Other Special Operands

These are provided FYI, only.

OPERAND
S(expression)
"expression."
R(expressiona,expressionb) Produces the remainder of the division of
expressiona by expressionb.
expression[expressiona,expressionb] Performs a string extract on the original

expression beginning at the position
value indicated by expressiona for a
length indicated by expressionb.
expression(conv]convl]..) Any expression can be passed through a
series of conversions. See section 8.12 for
a demonstration of how this can be used.

CALCULATIONS AT BREAK LINES |

There are just a couple of things to remember when trying to do calculations at the BREAK and
TOTAL lines of a report. First:

ALWAYS PUT THE CORRELATIVE ON ATTRIBUTE 007 OF THE DEFINITION ITEM.

BREAK and TOTAL lines are not generated until print time, and are therefore not yet available
to line 008.

One more rule: NEVER USE RECURSIVE OPERANDS IN AN A CORRELATIVE!

The next and last correlative formula calculates the average balance due for each state. Thisis a
calculation heavily dependent on the correct ACCESS command sentence being entered. The

- data definition that you are to enter needs to be tagged on to the following command sentence:

>SORT CUSTOMERS BY STATE BREAK-ON STATE TOTAL BALANCE<r>

*+"SENTENCE ELEMENT = - " DESCRIPTION" "0
SORT verb
CUSTOMERS filename
BY STATE sequence clause
BREAK-ON STATE TOTAL BALANCE output-list

Try this:

The average value for each state is based on the number of detail lines output for each state.
This value is available at print time by using the ND operand.

Enter the following data definition into the DICT of CUSTOMERS:

The A correlative follows the format that allows any expression to be passed through a conver-
sion.

Asexpression(conversion)

153

154

The expression divides the value in attribute 8 by the number of detail lines for each BREAK and
TOTAL line and the result is then passed through the MR2 conversion.

This same correlative written as an F correlative is as follows:
F;8;ND;/;(MR2)

Now enter the previous command sentence including the request to TOTAL AVG.BALANCE:

>SORT CUSTOMERS BY STATE BREAK-ON STATE TOTAL BALANCE TOTAL AVG.BALANCE<r>

CUSTOMERS filename

BY STATE sequence clause
BREAK-ON STATE TOTAL BALANCE TOTAL AVG.BALANCE output-list

Notice the redundant average balances on the detail lines. These can be removed by using the
DET-SUP modifier on the command sentence. DET-SUPP suppresses all of the detail lines.
However, what if the detailed BALANCESs need to be shown? This can be taken care of by using

any value other than zero as the dummy amc in attribute 002 of the AVG.BALANCE definition
item. Try 99.

® © 0 0 0 60 00060 00 © 0 00 © 9 0 © 0 00 000 O 0 0 & 0 o 0

Now enter the previous command sentence and observe the output.

There is one more problem. Double check the arithmetic at the BREAK and TOTAL lines. Notice
that the CA value "204.41" is not quite right. The total, 1022.09, divided by 5 detail lines, gives a
result of "204.418". The correctly rounded response should be "204.42".

Here is where scaling becomes necessary to give the correct result. Change the AVG.BALANCE
definition item to the following:

155

156

The BALANCE in attribute 8 is scaled up an extra 2 decimal places:
(8*'100")
This provides more precision to the calculation:

(8*'"100")/ND

Attribute 8 already has two implied decimals. This produces an integer with 4 implied decimals.

The output conversion must also be changed to match the scaling.
(average calculation)(MR24)
The decimal is scaled by 4 and rounded to 2.

Now enter the exact same command sentence and observe the correct results.

are used to alter the printed format of the
data so that it is easier to read.

are formulas which perform arithmetic, logi-

cal or string functions.

Correlatives create data.
The conversion changes internal dates to external
format.

The "real time" internal day zero is

Internal date 6768 is actually July the 5th, 1986. Match the follow-
ing date conversions:

_ D2- a. 1986
D b. 6

____ Dwa c. 12
D/ d. 07-12-86
DM e. 12
_____DW £. 86
Dby g. 07
) h. SATURDAY
D2y i. 1986
) j. JULY
Internal time is kept as the number of from

Identify the correct time mask:

_ 14:55:40 a. MTHS

_ 02:55pM b. MTS

_ 14:55 Cc. MTH
02:55:40PM d. MT

157

158

10.

11.

Using the data string:

77-1/2 SUNSET STRIP

Fill in the corresponding mask character (MC) conversions.

7712

77-1/2 Sunset Strip

77-1/2

SUNSETSTRIP

77-1/2 sunset strip

-/ sunset strip

Match the string masking conversion with the output:

Stored Format Output Format Conversion
999999999 999-99-9999 a. MR%5
234567 **xx52,345.67 b. MR2$
55 00055 c. MR4
123456 1234.56 d. MR24
123456789 1234 e. ML(#3-#2-#4)
555 $0.55 f. ML#4
123456 12.3456 g. MR2
123456 12.35 h. MR2,$*12
Fill in the corresponding text extract (T) or group extract (G)
correlatives:

Stored Format Output Format Conversion
THIS IS A TEST IS

12/20/52 20/52

2125551212 212

SMITH, JOHN JOHN

12. The items in the file called INVOICES are identified by a unique
invoice number and contain two main attributes, NAME and ZIP as
follows:

FILE: INVOICES

ID: 1001 ID: 1002
001 WANSAKRAKA, POLLY 001 TUTIRIBA, DON
002 92713 002 10019

The sales tax charged is stored by zip code in the ZIPS file. Each zip
item contains the STATE and the SALES.TAX as follows:

FILE: ZIPS

ID: 92713 ID: 10019
001 ca 001 NY
002 060 002 085

Complete the amc count and file translate portions of the STATE data
definition item found in the dictionary of INVOICES.

ID: STATE
001 S
002
003
004
005
006
007
008
009 L
010 2

13. Assuming that the tax rate has three implied decimals, what would be
the file translate correlative and output conversion in the data
definition item?

ID: TAX.RATE
001 S
002
003
004
005
006
007
008
009 L
010 2

159

14. Using the following stored string:
Version 1/Test 3/10019

Fill in the results of the conversions. The bracket (]) is a value
mark.

Conversion Results

GO/IMCU

G/3]TZIPS;X;;1IMCT

G2 1]MCN

15. Match the following F correlatives to the corresponding result
using the following item.

ID: 23-1
001 2000
002 1000
Result Correlative
3000 a. F;2;1;-
2000000 b. F;1;2;/
2000 c. F;1;2;-
10002000 d. F;1;C1000;*
2 e. F;1;2;+
-1000 f. F:2;1;:

16. Re-write each of the above F correlatives as an equivalent A
correlative.

160

9.1

STORED ACCESS
COMMAND SENTENCES

This chapter is intended to give you the minimal amount of information to enable you to write
very simple PROCs to store your ACCESS commands. Command sentences, normally invoked at
TCL, can be written in an item as a stored procedure — PROC for short. This allows modifications
to be made and output generated without having to re-enter the entire command sentence.

All PROC items must have a special PROC indicator, PQ, in the first attribute. (This is not
unlike the requirement of an A or S in the first attribute of a data definition item.) The remain-
ing attributes in the item contain the PROC commands.

PROC commands are usually single alphabetic characters placed at the beginning of each
attribute. For example, the command 0 stands for output and uses the form:

Otext Output the "text" string to the terminal display.

A PROC cannot be initiated from TCL unless the PROC item is stored in the master dictionary,
MD. The PROC item in the MD automatically becomes a verb, and the item-id is the name of the
verb. PROC verbs are usually used to transfer control to PROCs stored in other files. The func-
tional PROC items are then stored in a file created specifically to hold them. (Whenever you get a
chance, check out PROCLIB, the shared system PROC library. Short PROCs in the MD transfer
control to the complete PROCs in PROCLIB. LISTFILES is a good example to peruse on your
own.) However, to keep things as simple as possible, the PROCs discussed in this chapter are
stored directly in the MD.

Enter the following:

: T . EDIT the item TEST.PROC
SN in the master dictionary.
Begin an insert

S PROCS siways begin
e with a PQ,
Output the string
THISIS A TEST.

161

162

9.2

9.2.1

(This is the last time that I show you the Editor.)

Now invoke the PROC by entering its name at TCL.

STORING AND PROCESSING COMMAND SENTENCES

The Primary Output Buffer

Displayed by
the PROC.

PROC has two internal storage areas called the primary and secondary output buffers. The word
"output” is not as descriptive as it could be. For the benefit of the subject at hand, you can think
of these as the primary and secondary "command" buffers. ACCESS command sentences are
placed in these buffers for subsequent processing.

When a PROC is initiated, both the primary and secondary output buffers are cleared and the
primary buffer is active. For simple command sentences, the secondary buffer is not required.

The PROC commands used to fill and process the output buffers are:

. COMMAND = @ i

Hcommand sentence

P(c)

Place the command sentence following the "H" into the
current buffer pointer position of the currently active
output buffer.

Process the output buffers. This invokes the command
sentences stored in the primary and secondary output
buffers. The primary is invoked first and then the
secondary. The optional "c" parameter can be any one
of the following:

P The PP command means "process and display the
output buffers.” This helps you see if you've made
any mistakes building the output buffers.

W The PW command means "process and wait." The
output buffers are displayed, but the PROC
waits for a response from the keyboard before
continuing. Responses can be:

<return> Process the command.

X Exit the PROC.
S Continue the PROC, but skip this
command.

@ © 006 &6 © 0 00 &0 0000 O 0 0O OO > 00 OO OO O QO 0

The primary output buffer on PROC initialization:

Modify TEST.PROC in MD so that it looks like this:

Output the text string.

Place the command sentence
Into the primary output butfer.

Shown below is the primary output buffer resulting from attribute 003 of the above PROC, just
prior to processing:

Now, invoke the PROC by entering its name at TCL.

163

164

Any ACCESS command sentence can be stored and invoked in this manner.

The entire command sentence need not be placed in a single attribute of the PROC. The PROC
output buffer pointer keeps track of the position of the last text string placed in the output buffer.
Therefore, multiple H commands keep tagging onto the end of the buffer.

Enter TEST.PROC.2 into the MD:

fizn TEST PROC 2

001 PQ s =
002 HSORT cusrouzns‘

~'003 H BY STATE g

output buffer.
‘ b i Kb.ﬁm the
| od micommny _:
005 H CONTACT = T

006 H BREAK-ON STATE g

Process and display
007 PP the output butfer.

The primary output buffer as each H command is processed:

HSORT CUSTOMERS R

 '$0RT CUSTOMERS .

Current pointer
position.

aconpm .
i,sonw CUSTOMERS BY STATE 1 SORT*CUSTOMERS‘BYJSTATE
s coupm : .| COMPANY CONTACT

 : HBREAK-ON STA’I‘E P (process the buffer) =

WQSORT CUSTOMERS BY STATE | | -
.| COMPANY CONTACT BREAK -ON '
| stame

® © 0 000606 00 ¢ 0 060 0 ¢ ¢ 00 ° 0 6 0O O 06 s 00 0 0 0 0o

9.2.2

Now invoke TEST.PROC.2.

Displayed by the
PP command.

' HORNBLOWER, HORATIO |
+ BUNNY,. BUGS e : NY i

kkk
| PARTICIPLE, DANGLY PA

* %k

The Secondary Output Buffer

The output buffers are processed in sequence, primary before secondary. The secondary output
buffer is also called the "stack” because it is where you stack (store) responses to the questions
that will be asked by the process invoked in the primary buffer.

The commands to activate and deactivate the secondary output buffer are:

(. ‘COMMAND. - :DESCRIPTION S TN : i
- STON Stack on. Actlvates the secondary output buﬁ'er All subsequent
H commands place the text in the secondary buffer.
STOFF Stack off. Deactivates the secondary output buffer. This is
seldom used since the P command automatically deactivates
the secondary.
P Process the buffers and activate the primary output buffer

upon completion.

165

166

The STON command is useful when storing mailing label command sentences. The label param-
eter response can be stored in the secondary output buffer.

Add the following PROC to the MD.

The primary buffer is
automatically active.

The label parameters. The “less-than”
sign acts as a carriage return.

Process, clear the buffers
and activate the primary.

Just prior to processing, the output buffer contents are:

© © 00 0006060600 060 06060 0600 0600606006 6 ¢ 0 0 0 68 o0 009

® © 06 0 060 0O 60 O 00 0 00 © 00 O° O O 0O O OO O O 0 9 0

The "less-than" sign (<) at the end of attribute 009 indicates an internal carriage return. Each
new entry is "pushed" onto the stack with this indicator. Multiple stack entries answer multiple
input requests from the sentence executed in the primary buffer.

For example, if the LIST-LABEL indent parameter is non-zero, the process requires input of label
text for each row label. (See Chapter 5, "Mailing Labels.") To perform automatic processing, each
response must be pushed on the secondary buffer stack.

Alter the CUSTOMER.LABELS PROC to match the following:

Stack the responee to
the LIST-LABEL process.

Just prior to processing, the output buffer contents are:

167

168

This generates the output:

The secondary output buffer can also be used to stack other TCL or ACCESS command sentences
which use an active list generated by the command in the primary output buffer. For example,
add the following PROC to the MD.

GET-UST In the
primary buffer.

g Activate the secondary
buffer.

This PROC has two main steps. First, it selects and saves the OVERDUES list, and second, it
retrieves the OVERDUES list and performs the ACCESS sentence LIST.

®© © 0 00 © 6 0 06 00 060 006000 © 0 0 © 0 & 06 006 0 ¢ 0 0 & ¢ ¢

Here's what the output buffers look like for each step.

Now. invoke SAVE.OVERDUE.

169

170

The first line of a PROC is always

PROCS must be initiated by an item in the file.
There are output buffers. The

and the

The command places text in the currently active

output buffer.

The command to process the output buffers is

Finish the PROC to perform the following ACCESS sentence.
SORT CUSTOMERS BY STATE BY BALANCE COMPANY STATE BALANCE
ID: BALANCE.REPORT

001

002

003

004 P

The command which activates the secondary buffer is

Finish the PROC to perform the following commands in sequence.
SSELECT CUSTOMERS WITH BALANCE >= "10000.00"

SAVE-LIST DEAD.BEATS

ID: SAVE.DEADBEATS

001

002

003

004

005 P

® © © 0 0 60 00 00 00 © 9 008 © 006 © 00 © 06 © 0 0 00 0 s o

EXERCISE
ANSWERS

EXERCISE 1

CR AR e

accounts

System Dictionary
Master Dictionary
items

attributes

item-id

lower (DATA)
upper (DICT)
attribute mark

. unlimited

32,000

. output masking, attribute position,

justification, column header, column width

. false

true

EXERCISE 2

R S

© x

logging on

Terminal Control Language
verbs

LISTFILES

LIST filename

SORT filename

LIST ONLY DICT CUSTOMERS, or
LISTDICT CUSTOMERS, or
SORT ONLY DICT CUSTOMERS
TCL prompt

attribute position pointer

EXERCISE 3

1.
2.

16.

verb, filename

LIST, SELECT, VERB, COUNT, SORT,

LIST-LABEL, SORT-LABEL, SSELECT

ordered, random

data level

dictionary level

data level

data level

COUNT

item-ids

true

LIST CUSTOMERS COMPANY CITY STATE

LIST CUSTOMERS '100"101' COMPANY CITY STATE

) d,j: & f: e, a, b) h: i

SORT CUSTOMERS BY CONTACT BY STATE...
...CONTACT STATE

g6 f» b) a, d» c

. caret (A)

LIST CUSTOMERS WITH COMPANY = "[KA" COMPANY
SORT CUSTOMERS BY BALANCE...

...WITH STATE = "CA" BALANCE COMPANY STATE, or
SORT CUSTOMERS BY BALANCE...

...WITH STATE "CA" BALANCE COMPANY STATE, or
SORT CUSTOMERS BY BALANCE...

..WITH STATE EQ "CA" BALANCE COMPANY STATE
b,d,f,e,a,c

EXERCISE 4

[y

2
3.
4

LIST

SORT

4

COMPANY, CONTACT, PHONE, and the ITEM-ID

=l ~ R A R

-o

12.
13.

14,

implicit

output columns

only

h,f,j, 8¢ a,ki,b,ed

HEADING "LC’ HEADER ‘LL"

vU'

SORT CUSTOMERS BY STATE BREAK-ON...
...STATE TOTAL BALANCE DET-SUPP LPTR, or

SORT CUSTOMERS BY STATE BREAK-ON...
...STATE TOTAL BALANCE (D) (P)

TERM 132,65

TERM»»))80)55

f,c,e,b,g,a,d

EXERCISE 5

1.
2.

LIST-LABEL, SORT-LABEL

a - columns

b - rows

c - lineskip

d - indent

e - width

f - spacing

g - C (compress)

LIST-LABEL CUSTOMERS COMPANY ADDRESS...
...CITY STATE ZIP (IHP)

23,5,1,0,30,1,C

EXERCISE 6

1.

N oUe N

d

10.

11.
12
13.

1st - parses and compiles the sentence

2nd - data sampling, selection, sequencing

3rd - output

SELECT and SSELECT

false

true

SELECT CUSTOMERS WITH STATE = "CA" BY COMPANY
d,c,a,b,e

SELECT CUSTOMERS WITH STATE = "CA" BY BALANCE
SAVE.LIST

GET-LIST

LIST CALCUSTS COMPANY ADDRESS STATE
COPY-LIST

BAK.CALCUSTS

COPY.LIST

(LISTS

DELETE-LIST CALCUSTS

DC

SORT DICT POINTER-FILE *A5

EXERCISE 7

1.

R

=~

009

007

002

010

001

008

LIST DICT CUSTOMERS WITH D/CODE = "S"
<ctl><shift><]>, an ASCII character 253
g.d,e,h,a,cb,f

015,L

extend the width of the output column, and
text justification

\ (backslash) in attribute 003, and

0 (value) in attribute 010

173

174

EXERCISE
ANSWERS continued

EXERCISE 8

© ™0 Ok o

—
-o

12.

13.

14.

15.
. A2-1

E
1
2.
3.
4
6
6

® =

conversions
correlatives

virtual

D (date)

December 31,1967
d,c,h,a,gb,i,ef,j
seconds, midnight

b,c,d,a

MCN, MCT, MC/A, MCL, MC/N
e.h.a»&f»b, C,d
Gl,1

G1/2

T1,3

Gl,1

2

TZIPS;X;;1

2

MR3

TZIPS;X;;2
VERSION 1

Ny

310019

e, d,c,f,b,a

A12
A1%2
A;1*"1000"
A;142
A;21

XERCISE 9

PQ
MD

2, primary, secondary
H
P

PQ
HSORT CUSTOMERS BY STATE BY BALANCE
H COMPANY STATE BALANCE

STON

PQ
H SSELECT CUSTOMERS WITH BALANCE>="10000.00"
STON

H SAVE-LIST DEAD .BEATS<

® © O 0 0 6 6 06 06 0 0 06 0 & 0600 0 "0 O O 0 0 O 0 o

o O 9 @ O O O OO OO OO DO O OO O OO DO OO PSS ODO®O® OO VPO PG

A
T

; . %y I1SBN 0-942093-05-4 o8
PRiE o ol - ’):}_’- ‘! Ta AN T o L
- AL R, i b R e

