. mICROPROCESSOR
OPERATING
SYSTEMS i Vo LUME 11}

Edited by John Zarrella

Featuring today’s
most important
operating systems

"MICROCOMPUTER
APPLCATIONS

3l

MICROPROCESSOR
OPERATING
SVSTemS VOI._UmE 1]

MICROPROCESSOR
OPERATING
SVSTemS VOLUME lli

€dited by John Zarrella

"MICROCOMPUTER
APPLICATIONS

3l

Suisun City, California

MICROCOMPUTER APPLICATIONS
P.O. Box E, Suisun City, California 94585

Copyright © 1984 by MICROCOMPUTER APPLICATIONS

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted,
in any form or by any means - electronic, mechanical,
photocopying, recording, or otherwise - without the prior
written permission of the publisher.

Note:

Access Manager, ASM-86, Concurrent CP/M, CP-NET, DDT-86, Digital Research C,
Display Manager, Digital Research FORTRAN-77, LIB-86, LINK-86, Pascal/MT+,
Personal BASIC, RASM-86, SID-86, and XREF-86 are trademarks of Digital Research Inc.

CP/M, CP/M-86, and CBASIC are registered trademarks of Digital Research Inc.

MS-DOS is a trademark of Microsoft, Inc.

MSP, OS/ENGINE, and MSP/68000 are trademarks of Hemenway Corporation.

PICK and ACCESS are trademarks of PICK SYSTEMS.

FORTH and polyFORTH are registered trademarks of FORTH, Inc.

p-System, Universal Operating System, and Universal Medium are trademarks of SofTech
Microsystems, Inc.

RM/COS is a registered trademark of Ryan-McFarland Corporation.

SuperDOS and CODECHEK are trademarks of Bluebird Systems.

TurboDOS is a trademark of Software 2000.

iRMX, iSBC, iSBX and the combination of iRMX, iSBC, iSBX, or MCS with a
numerical suffix are trademarks of Intel Corporation.

Intellec, MCS, and Multibus are registered trademarks of Intel Corporation.

Idris is a trademark of Whitesmiths, Ltd.

1/OS is a trademark of InfoSoft Systems, Inc.

OASIS and OASIS-16 are trademarks of Phase One Systems, Inc.

VRTX is a trademark of Hunter & Ready, Inc.

VERSAdos is a trademark of Motorola, Inc.

UNIX is a trademark of Bell Laboratories.

Ada is a trademark of the U.S. Department of Defense (Ada Joint Program Office).

Z80 is a trademark of Zilog, Inc.

DEC and PDP are trademarks of Digital Equipment Corporation.

IBM is a registered trademark of International Business Machines Corporation.

CIS COBOL and LEVEL Il COBOL are trademarks of Micro Focus, Inc.

UCSD Pascal is a registered trademark of the Regents of the University of California.

Library of Congress Cataloging in Publication Data
(Revised for Volume III)
Main entry under title:

Microprocessor operating systems.

Includes bibliographical references and index.

1. Operating systems (Computers) 2. Microprocessors.
1. Zarrella, John.
QA76.6.M486 001.64'25 81-80864
ISBN 0-935230-03-3 (pbk. : v. 1)

ISBN 0-935230-10-6

Printed in the United States of America
10987654321

CONTENTS

Preface
Introduction

The Concurrent CP/M Operating System

A Single User, Multitasking Operating System
Designed for 8086- and 8088-based Microcomputers

Gary Gysin, Digital Research Inc.
The MS-DOS Operating System

Microsoft’s Disk Operating System
Jor 16-Bit Microcomputers

Bharat Sastri, Epson America, Inc.
The MSP Operating System

A Real-time Solution for Development
and Embedded Applications

Robert D. Grappel, Hemenway Corporation
The PICK Operating System

A Multiuser, Virtual Memory Data Base
Management System

Jonathan E. Sisk, JES & Associates, inc.
William W. Walsh and Kenneth O. All, PICK SYSTEMS

vii

1-1

3-1

5-1

vi

10

The polyFORTH Operating System

A High-performance Multiuser System
for Real-time Applications

Elizabeth D. Rather, FORTH, Inc.
The p-System Operating System

The Universal Operating System

Thomas Burger, SofTech Microsystems, Inc.
The RM/COS Operating System

A Commercial Operating System for Multiuser,
Multitasking Business Computer Systems

Thomas H. Morrison and Peter H. Ziebelman,
Ryan-McFarland Corporation

The SuperDOS Operating System

A Business-oriented Multiuser Operating System
with Data Base Capabilities

Tom Lee, Bluebird Systems
The TurboDOS Operating System

Software 2000’s CP/M-compatible,
Networking Operating System

Rex Jackson, Arrow Electronics, Inc.

7-1

8-1

9-1

10-1

PREFACE

The availability of well-designed and proven system software is a
fundamental requirement for the effective utilization of today's ad-
vanced microprocessor systems. By far the most important (and visible)
system software package is the operating system—a collection of
software modules that manages system resources, permits user tasks to
interface to system hardware, and provides services that allow tasks
to interact in a straightforward, efficient, and reliable manner. This
book is the third volume in a series describing the most important
microprocessor operating systems currently available.

The Microprocessor Operating System Series is designed for system
engineers and managers who must evaluate, select, and/or design op-
erating systems to support applications software. A complete chapter
is dedicated to each operating system. In this volume, the Concur-
rent CP/M, MS-DOS, MSP, PICK, PolyFORTH, p-System, RM/COS,
SuperDOS, and TurboDOS operating systems are described. Most chap-
ters are written by an industry leader involved in the development
or implementation of the operating system, ensuring an accurate and
complete exposition. Similar chapter formats permit the systems to
be easily compared and contrasted. In addition, each chapter pre-
sents a concise functional overview of the appropriate system as well
as many user -oriented technical details.

Chapter | provides a brief introduction to the history of the systems
in this volume. Chapters 2 through 10 contain descriptions of existing
microprocessor operating systems. Most chapters also contain a num-
ber of specific references for follow-up research on the system de-
scribed in the text.

This book is intended to be used as a companion volume to Operating
Systems: Concepts and Principles. Readers unfamiliar with general
operating system concepts may wish to refer to Operating Systems:
Concepts and Principles for terminology definitions and for an
overview of operating system fundamentals.

| am extremely indebted to a number of individuals who helped to
make this book a reality, especially Mike Busch, Shel Fung, Eileen
Cagney Hemenway, and Kay Sakata. | would also like to thank the
authors of the operating system chapters for their excellent con-
tributions.

J.Z.

Chapter |

INTRODUCTION

Concurrent
CPIM

MS-DOS

PICK

polyFORTH
p-System

SuperDOS

TurboDOS

This volume describes nine popular operating systems for micro-
processor systems—the Concurrent CP/M, MS-DOS, MSP, PICK,
polyFORTH, p-System, RM/COS, SuperDOS, and TurboDOS operating
systems. The nine operating system chapters can be read in any
order. Also, to aid in obtaining additional information about the
systems described in this book, most of the chapters contain a
list of references. These references can be used as a starting
point for further research.

The remainder of this chapter provides a brief history of each
system.

The Concurrent CP/M Operating System

The history of Digital Research's operating system products dates
back to 1975 when Gary Kildall implemented an early version of CP/M
as a run-time support system for Intel's PL/M-80 high-level language.
This CP/M version was one of the first operating systems developed
for microcomputer systems. Today, the CP/M operating system has
been implemented on hundreds of different systems using 8080, 8085,
and Z80 processors.

The original CP/M operating system was followed by a multitasking
system and a networking system. More recently, in 1980, Digital
Research introduced CP/M-86—a single user/single task operating
system. Designed for the Intel 8086/8088 processor family, CP/M-86
is available for many |6-bit computers, including the IBM PC.

Finally, Concurrent CP/M was introduced by Digital Research in Oc-
tober of 1982. Concurrent CP/M expands on CP/M-86 capabilities by
allowing a single user to execute multiple tasks. In May of 1983,
the generic (OEM) version of Concurrent CP/M was released and in
July, Concurrent CP/M was updated to support the IBM PC XT.

Introduction -3

The MS-DOS Operating System

The MS-DOS operating system was originally developed by Seattle
Computer Products (under the name 86-DOS) for use with its 8086
computer systems. This operating system was designed so that ex-
isting CP/M-80 programs could be translated into 8086 programs
(via Intel's translation rules) and execute under 86-DOS without
other modifications.

In 1981, Microsoft purchased the rights to 86-DOS from Seattle Com-
puter Products and renamed the system MS-DOS. IBM adopted the
MS-DOS system for use on the IBM PC. Many other computer man-
ufacturers, in order to promote IBM compatibility, have adopted
the MS-DOS operating system for use on their hardware.

The MSP Operating System

The MSP operating system began with the production of Hemenway's
multitasking nucleus in 1979. Using the company's software ex-
pertise, the nucleus was extended into a full-featured operating
system—MSP.

The MSP operating system was initially released in January, 1981.
Since that time, Hemenway Corporation has continued to upgrade
the system by adding programming language compilers and inter-
preters.

The PICK Operating System

The PICK operating system was originally developed by Dick Pick
(while he was working at TRW in 1967) as part of the U.S. Army
GIRLS project (Generalized Information Retrieval Language System).
Pick left TRW in 1969 and continued to develop/improve his original
design.

In 1972, the first commercial implementation of the PICK operating
system was completed on a Microdata minicomputer. This imple-
mentation was known as the REALITY system. The first PICK imple-
tation on a microprocessor occurred in 1982 on the DEC LSI-11.

-4 Microprocessor Operating Systems, Vol. Il

The polyFORTH Operating System

polyFORTH is the latest in a series of FORTH-based operating
systems offered by FORTH, Inc. polyFORTH was first marketed in
1979. A substantial upgrade was made in 1982. The system is
available in several levels—from a relatively inexpensive hobby-
ist version to a complete professional system (with source code).

The polyFORTH operating system is very closely coupled to the
FORTH language—indeed the polyFORTH system provides the
required environment in which to execute FORTH programs. Devel-
opment of the FORTH language began in 1970 at a government lab-
oratory. In 1973, FORTH, Inc. was founded to continue develop-
ment of the FORTH language and execution environment.

The p-System Operating System

Development of the p-System began as the solution to a particular
problem—the University of California at San Diego needed inter-
active access to a high-level language for a computer science course.
In late 1974, Kenneth Bowles began the development of the p-System
to solve the university's problem.

The p-System project soon outgrew the university's resources. Sof Tech,
Inc. was chosen to support and develop the p-System. In 1979, Sof Tech
formed SofTech Microsystems to support p-System users and continue
development of the system.

The RM/COS Operating System

After developing a number of COBOL compilers under contract,
Ryan-McFarland designed and implemented a proprietary COBOL
compiler—RM/COBOL.

Development of RM/COBOL, along with contract work on various
operating system products, led to the development of the RM/COS
operating system. RM/COS was designed to provide an efficient
and portable business-oriented operating environment for RM/COBOL
applications.

Since it was first introduced, RM/COS has been implemented on
several 68000-based systems and on Tl 990/9900 systems.

Introduction |-5

The SuperDOS Operating System

The SuperDOS operating system is the work of two authors—Tom Lee
and David Houge. SuperDOS grew out of their consulting business. In
order to provide small business users with sophisticated application
software on low-cost microcomputer hardware, they developed the
SuperDOS operating system.

With over ten years experience in programming business software on
minicomputers, the authors designed SuperDOS for the express purpose
of supporting business software. The initial versions of SuperDOS
ran on Z80-based systems.

Bluebird Systems purchased exclusive rights to SuperDOS in 1982.
Recently, Bluebird Systems announced SuperDOS support for the
8088-based IBM PC and XT computers.

The TurboDOS Operating System

Development of TurboDOS was begun by Software 2000 in 1980. The
main goal of the design was to provide reliability and performance
for a multiple user microcomputer system in a commercial environ-
ment. The designers felt that existing systems did not provide
sufficient reliability and performance. TurboDOS was first intro-
duced in April 1981. This version allowed multiple microprocessors
to operate in a network configuration.

TurboDOS was originally developed for Z80-based microcomputers.
It is compatible with CP/M application packages, languages, and pro-
gramming tools. Recently, an expanded version of TurboDOS has been
developed that supports 8086-family microprocessors. This version
provides a software environment compatible with the CP/M-86 en-
vironment. The 8086 version includes an emulator for MS-DOS/PC-DOS
that runs many IBM PC application programs without modification.

Chapter 2

THE CONCURRENT CP/M OPERATING SYSTEM

A Single User, Multitasking Operating System
Designed for 8086- and 8088-based Microcomputers

Gary Gysin
Digital Research Inc.

CPIM

Q

Concurrent CP/M is a single user, multitasking operating system for
microcomputer systems. This operating system, developed by Digital
Research, Inc., was introduced in October of 1982. Concurrent CP/M
lets a single user run more than one program simultaneously. A typi-
cal business application of Concurrent CP/M enables a user to create
a spreadsheet, make modifications to a memo, plot the graph created
for this year's sales, and print out a previously completed document
—all at the same time. Concurrent CP/M can be configured to run
as many as 254 programs simultaneously.

At this time, Concurrent CP/M operates on 8086- and 8088-based
microcomputers. (Future versions will be available for Motorola
68000 and Intel 80286-based machines.) Digital Research offers two
Concurrent CP/M products. The first product is designed for the
IBM Personal Computer and the IBM Personal Computer XT. This
version is configured to run four simultaneous processes. The second
version is designed for any 8086- or 8088-based system, can be con-
figured to run up to 254 simultaneous processes, and is typically sold
only to hardware manufacturers. Hardware manufacturers that have
licensed Concurrent CP/M include DEC, Texas Instruments, NCR,
Olivetti, Eagle, Commodore, Fujitsu, Televideo, and Vector Graphics.

Key Features

One of Concurrent CP/M's most important multitasking features is the
"virtual console" concept. A virtual console can either be associated
with the screen that the user is viewing or can be a portion of mem-
ory that is storing an image of another screen. The user can switch
from virtual console to virtual console with the touch of a key. One
virtual console, the foreground console, is always mapped to the
physical console. The remaining virtual consoles (background consoles)
do not have access to the physical console. By pressing a function
key, the current foreground console is switched with the selected

!

Concurrent CP/M Operating System 2-3

background console. Programs will continue to execute in the individ-
ual virtual consoles whether they appear on the screen or not. In a
sense, Concurrent CP/M's virtual console environment executes in a
manner similar to a television set. Like a television set, which
lets a viewer switch between stations and view them one at a time
on a single screen, Concurrent CP/M lets the user switch to and from
several virtual consoles and view the currently executing programs.
(See Figure 2-1.)

—{ 1]
—(2]

CONCURRENTLY

OPERATING
\ 3] T {3
°°NCCPL/';REN APPLICATION
T] PROGRAMS
SINGLE
ean [n [n |
CONSOLE VIRTUAL
CONSOLES
MASS
STORAGE

PRINTER(S)

Figure 2-1 Concurrent CP/M Lets a User Connect a Single Physical Console
to One of Many Virtual Consoles.

In addition to virtual consoles, Concurrent CP/M can be configured
to display windows. A Concurrent CP/M window is a viewport to a
virtual console. By using the Concurrent CP/M windows, the user can
monitor up to 254 executing programs—on the same screen at the same
time.

Background virtual consoles operate in two distinct modes: dynamic
and buffered. When a background console is in dynamic mode, the op-
erating system does not store the output of the executing program.
Thus, dynamic mode operation is similar to switching stations on a
television set; when a viewer switches stations, programming con-
tinues but the viewer cannot see the events that occur on any of the

2-4 Microprocessor Operating Systems, Vol. Il

stations that are switched out. Buffered mode, on the other hand, lets
a user store the output of a background virtual console. Concurrent
CP/M will begin recording the program output when a program is
switched into the background. While the program remains in the
background, Concurrent CP/M records the output from the program
and stores this output in a disk file. When the user switches back to
the console, Concurrent CP/M displays (on the console screen) the
output that was stored in the disk file. The operator sees all output
generated since that task was last viewed and no information is lost.

Hardware Requirements

The hardware requirements for Concurrent CP/M include:

) An Intel 8086 or 8088 microprocessor.

2) A console device and a real-time clock.

3) At least 256K bytes of RAM.

4) | to 16 disk drives of up to 512 megabytes each.

Concurrent CP/M has been designed to run on almost any configuration
of 8086- or 8088-based hardware systems. The architecture of Con-
current CP/M promotes portability and consistency between different
hardware systems and microprocessors.

Portability

Concurrent CP/M consists of three interface levels that are respon-
sible for its high degree of portability: the user interface, the
logically invariant software interface, and the actual hardware in-
terface. The user interface, which Digital Research distributes, is
a "resident system process" called the Terminal Message Process
(TMP). (Resident system processes are programs that become part of
the operating system and reside in memory at all times.) The TMP
accepts command lines from the virtual consoles and executes the
commands.

The logically invariant interface to the operating system (also supplied
by Digital Research) consists of the system calls that handle file

i

Concurrent CP/M Operating System 2-5

creation and deletion, facilitates either sequential or random file
access, and allocates and frees disk space. A module of this invari-
ant interface is called the Basic Disk Operating System (BDOS).

The third and last major component of Concurrent CP/M is the hard-
ware interface. The eXtended Input/Output System (XI0S) communi-
cates directly with the particular hardware environment. The XI0S
is composed of a set of functions that are called by processes
needing to perform physical 1/O. The XIOS is usually supplied by
the hardware manufacturer and consists of a set of 1/O drivers that
interfaces to the standard DRI-supplied operating system.

The portability of Concurrent CP/M is based upon the modularity of
these three interface levels. Every computer system that runs Con-
current CP/M has the same TMP and BDOS. Software developers need
not be concerned with which machine an individual Concurrent CP/M
application executes on. By using standard BDOS calls, a programmer
can ensure that his/her program is portable across all Concurrent
CP/M-based machines. (See Figure 2-2.)

Invariant Hardware
Interf
USER—J Use'('T:‘:,; ace Interface Interface — Hardware
(BDOS) (x|°s) Environment

Figure 2-2 Concurrent CP/M Ensures Software Portability by Providing Three
Modular Interface Levels.

The differences among Concurrent CP/M installations result from
the implementation of the XIOS by the system's hardware manu-
facturer. The device drivers that are added to the XIOS corre-
spond to the exact physical devices in the hardware system. (These
device drivers will differ from machine to machine.)

Job/Task Control

Job and task control is handled by the Real Time Monitor (RTM). The
RTM is Concurrent CP/M's real-time multitasking nucleus. The RTM
performs process dispatching, queue management, flag management,
device polling, and system timing tasks.

2-6 Microprocessor Operating Systems, Vol. Il

Although Concurrent CP/M is a multitasking operating system, at
any given time only one process has access to the processor resource.
Unless a program is specifically written to communicate or synchro-
nize execution with other processes, a process is unaware of other
processes competing for system resources. The primary task of the
RTM is to transfer (or dispatch) the processor resource from one
process to another. The RTM module called the Dispatcher performs
this task.

Concurrent CP/M is a priority-driven system. During a dispatch, the
operating system allocates the processor resource to the process with
the highest priority. Concurrent CP/M supports up to 255 priority
levels. The Dispatcher allots equal shares of the system's resources
to processes with the same priority. With priority dispatching, the
system never passes control to a lower-priority process if there is
a higher-priority process on the ready list. (A ready process is one
that is waiting for the processor.) Because high-priority, compute-
bound processes tend to monopolize the processor, it is best to re-
duce their priority to avoid degrading overall system performance.

Queue management is an integral part of the RTM. A process can use
a queue to communicate with another process, to synchronize its ex-
ecution with that of another process, and to exclude other processes
from protected system resources. A process can make, open, delete,
read from, or write to a queue with system calls similar to those
used to manage disk files. The queue manager in Concurrent CP/M sup-
ports communication among, and synchronization of, independently-
running processes.

The Real Time Monitor also performs system timing functions. The
system timing calls include keeping the time of day and delaying the
execution of a process for a specified period of time. An internal
process called CLOCK provides the time of day for the system. By
setting a series of flags using CLOCK, a process can be delayed for
any specified amount of time.

Memory Configurations

Although Concurrent CP/M is typically stored in RAM, there is nothing
in the system that precludes incorporation in silicon. CP/M-86, a
single user, single task operating system from Digital Research, has
been stored in the 80150 chip marketed by Intel. A ROM-based op-
erating system eliminates the traditional boot procedure of loading

Concurrent CP/M Operating System 2-7

an operating system disk and reading its contents into RAM. The
80150 lowers overall computer production costs because a disk drive
and attendant control circuits are replaced by a solitary chip. Con-
current CP/M, like CP/M-86, can be chosen for a ROM-based op-
erating system.

Concurrent CP/M can function in a 128K-byte system, although 256K
is recommended as a minimum. The operating system can support up
to one megabyte of main memory and functions optimally in a hard
disk-based environment.

Hardware Support

As previously stated, Concurrent CP/M supports hardware timers or
real-time clocks and can delay the execution of a process for a
specified period of time.

Concurrent CP/M can also be configured to execute in a multiprocessor
environment. A dual processor machine can utilize the capabilities
of Concurrent CP/M to run both 8-bit and |6-bit applications.

1/0 Devices

Concurrent CP/M can support up to 254 character 1/O devices. These
I/O devices are usually printers and consoles. The flexibility of
Concurrent CP/M allows any character I/O device to be added to

the operating system as long as the appropriate device drivers are
added to the XIOS.

Software Support

A series of high-level language compilers, programming tools, and
an interpreter are available for Concurrent CP/M. The high-level
language compilers that are available from Digital Research are
CBASIC, Digital Research C, Pascal MT+, PL/I, CIS COBOL, LEVEL Il
COBOL, and Digital Research FORTRAN-77. The interpreter is Per-
sonal Basic. Digital Research also supplies many programmer tools
including two subroutine library programs—Display Manager and
Access Manager—that simplify the development of commercial appli-
cations. Display Manager is a tool for designing screen displays.

2-8

Access Manager is a fast, versatile, advanced file access manager.
This program, used in conjunction with a native code compiler from
Digital Research, enables a programmer to develop programs with B-

Microprocessor Operating Systems, Vol. Il

tree index file structures.

Products that are standardly included with the purchase of Concurrent
CP/M include a relocatable assembler, an assembly language cross-
reference program, a linker, a software librarian that creates and
manages libraries, a debugger, and a line oriented editor. These
products are named RASM-86, XREF -86, LINK-86, LIB-86, DDT -86,

and ED, respectively.

1

2)

3)

4)

RASM-86. RASM-86 processes an 8086 assembly language
source file in three passes and produces an 8086 machine
language object file. RASM-86 can optionally produce
three output files from one source file: LST, OBJ, and
SYM. The LST list file contains the assembly language
listing with any error messages. The OBJ object file
contains the object code in Intel 8086 relocatable object
format. The SYM symbol file lists any user-defined
symbols.

XREF-86. XREF-86 is an assembly language cross-
reference utility program that creates a cross-reference
file showing the use of symbols throughout the pro-
gram. XREF-86 uses the LST and SYM files created by
RASM-86.

LINK-86. LINK-86 combines relocatable object files
intfo a command file that runs under any of the Digital
Research family of 8086-based operating systems. The
object files can be produced by Digital Research's
8086 language translators, the native code compilers
and relocatable assemblers, or by any other translators
that produce object files using a compatible subset of
the Intel 8086 object module format.

LIB-86. LIB-86 is a utility program for creating and
maintaining library files that contain 8086 object mod-
ules. These modules can be produced by Digital Re-
search's 8086 language translators or by any other
translators that produce modules in Intel's 8086 object
module format. LIB-86 can be used to create libraries,
as well as append, replace, select, or delete modules

Concurrent CP/M Operating System 2-9

from an existing library. LIB-86 can also be used to
obtain information about the contents of library files.

5) Debuggers. Digital Research supplies two debuggers,
DDT-86 and SID-86. DDT-86 is the standard debugger
that is supplied with Concurrent CP/M. SID-86 is a
symbolic debugger that is available separately. The
DDT-86 program allows a user to test and debug
programs interactively in a Concurrent CP/M environ-
ment. DDT-86 lets a programmer compare blocks of
memory, load a program for execution, begin exe-
cution (with optional breakpoints), search for strings,
trace program execution, and examine and modify the
processor state. SID-86, on the other hand, is a symbol-
ic instruction debugger. SID-86 expands on the features
of DDT-86, allowing users to test and debug programs
interactively. SID-86 features include symbolic assem-
bly and disassembly, permanent breakpoints with pass
counts, and trace without call. SID-86 also accepts
expressions involving hexadecimal, decimal, ASCII, and
symbolic values.

6) ED. ED is a line-oriented editor. ED allows a user to
create and alter Concurrent CP/M text files.

System Security

Concurrent CP/M supports password protection on directories and files.
If more than one person uses a system, passwords can protect files
from accidental damage by other users. Passwords also provide security
for managers and systems personnel who want to limit access to par-
ticular files. Any program, command, or data file can have individual
password protection. The PASSWORD option of the SET command lets
the user add this protection to files.

Concurrent CP/M also supports record- and file-locking. These fea-
tures are crucial in a multitasking environment where simultaneous
access of the same record would cause data integrity problems.
Record- and file-locking under Concurrent CP/M prevent a process
from deleting, renaming, or updating the attributes of another proc-
ess' open file. The lock features also prevent a process from opening
a file currently opened by another process. Record- and file-locking
can also prevent a process from resetting a drive on which another
process has an open file.

2-10 Microprocessor Operating Systems, Vol. Il|

Concurrent CP/M supports two open file modes that allow concur-
rently running processes to access common records. These two modes
are "read-only" and "unlocked." The read only mode allows multiple
processes to read from a common file; processes cannot write to a
file that has been opened in this mode. Thus, files remain static
when they are opened in read-only mode. The unlocked mode is more
complex because it allows multiple processes to read and write rec-
ords in a common file. If a file is opened in the unlocked mode,
individual records or groups of records within that file may be
temporarily locked by a user. A record may also be updated in the
unlocked mode. In this case, before an update is performed an un-
altered copy of the record in memory is compared with the record
on the disk. If the disk copy has been altered, an error message is
returned to the application program. Concurrent CP/M files can
also be set to "locked" mode. Locked mode may be used when it is
necessary to ensure that only one user may open a specific file at
a given time. Once a file is opened in the locked mode, other user
requests for that file are denied.

Application programs enable record- and file-locking by using BDOS
calls. If an application was not written to use record- and file-
locking BDOS calls, Concurrent CP/M automatically defaults to the
locked mode.

Error Recovery

The Concurrent CP/M file system has extensive error handling capa-
bilities. When an error is detected, the BDOS responds in one of
three ways:

1) By returning to the calling process with return codes
in the AX register that identify the error.

2) By displaying an error message on the console and termi-
nating the process.

3) By displaying an error message on the console and re-
turning an error code to the calling process.

The application programmer chooses the error handling method by
making BDOS calls.

Concurrent CP/M Operating System 2-11

Logical 1/0

Concurrent CP/M supports two logical devices, "CON:" and "LST:".
CON: designates the physical console device. When used as a source,
CON: is usually the keyboard; when used as a destination, CON: is
normally the display screen. LST: designates the physical listing
device—usually the printer.

System Generation

Concurrent CP/M is supplied with a sample XI0S to simplify the gen-
eration of a new system. This XIOS is configured for operation on
the IBM Personal Computer with two 5%-inch, double-density, single-
sided, flexible diskette drives and at least 256K bytes of RAM.
These XIOS subroutines can be modified to tailor the system to al-
most any 8086 or 8088 disk-based operating environment.

The steps needed to generate a Concurrent CP/M operating system are
relatively straightforward:

I) Develop the XIOS assembler routines for a particular
hardware configuration.

2) Edit the X10S source file to create a customized XI0S.

3) Assemble the XIOS using the Digital Research assembler,
ASM-86.

4) Create an executable XIOS program using the GENCMD
command.

5) Run the GENCCPM program under an existing CP/M-86
or Concurrent CP/M system to build the Concurrent
system file. This file is an image of the Concurrent
CP/M operating system.

6) Use the standard debugger, DDT-86, or Digital Re-
search's symbolic debugger, SID-86, to place the Con-
current CP/M system file in memory for debugging.

The development time will vary depending on the implementation—
development time can typically range from four to nine months.

2-12 Microprocessor Operating Systems, Vol. I

The User Interface

Upon initial cold-start, Concurrent CP/M displays a sign-on message
on the console and prompts the operator for a command. The prompt
consists of a letter and an angle bracket (e.g., "A>'). The letter
indicates the default disk drive (i.e., the drive where the operating
system first looks for executable program files when no other drive
is specified).

The command line is interpreted by the Terminal Message Processor.
The TMP is aresident system process that accepts command lines from
the virtual consoles and calls the Command Line Interpreter (CLI) to
execute the commands.

Command lines consist of a command and an optional command tail. The
command tail contains information that the command uses, such as a
file specification or options. File specification components can con-
sist of a drive specifier, a filename, a filetype, and a password.
The optional drive specifier tells a program the name of the drive
on which a file or group of files exists. In Figure 2-3, the four
components in a file specification are illustrated.

B: FILENAME. TYP; PASSWORD
Drive Filename Filetype Password

Specifier

Figure 2-3 The Four Components of a File Specification.

A filename can be one to eight characters in length. The filetype is
a one to three character family name of a file or group of files and
always follows the filename. A password can be a one to eight char-
acter word. (Passwords are required to gain access to a protected
file.) This syntax is the standard DRI operating system syntax.

Concurrent CP/M Operating System

2-13

The following list briefly describes all of the Concurrent CP/M
commands. Far a more detailed description, refer to the Concurrent
CP/M Operating System User's Guide.

D]

2)

3)

4)

5)

6)

7)

8)

9)

10)

1)

12)

13)

14)

ABORT - Stops program execution on the virtual
console that is specified in the command line.

ASM-86 - Translates 8086 assembly language source
programs into a machine-readable format.

DATE - Displays and/or sets the date and time.

DDT-86 - Helps the user examine assembly language
programs and interactively correct programming errors.

DIR - Lists the files on a specified drive or on the
default drive.

ED - Lets the user create and alter text, data, and/or
program source files.

ERA - Erases one or more files from a disk directory
and releases the disk space occupied by the file.

ERAQ - Erases one or more files from a disk directory,
as ERA does, but ERAQ asks the user to confirm the
command for each file specified.

GENCCPM - Lets the programmer adjust XIOS param-
eters, allocate memory, and select resident system
processes.

GENCMD - Uses ASM-86 output to produce an executable
command file.

HELP - Displays information on how to use Concurrent
CP/M commands.

INITDIR - Initializes a disk directory to allow date
and time stamping on that disk.

PIP - Combines and copies files.

PRINTER - Shows the current default printer and lets
the user change it.

2-14 Microprocessor Operating Systems, Vol. |l

I5) REN - Lets the user rename a file.

16) SDIR - Displays a directory of system and nonsystem
files and their attributes.

I7) SET - Lets the user specify and alter certain file
attributes.

18) SHOW - Displays information about system resources such
as the amount of usable space on a disk.

19) SUBMIT - Sends a file of commands to Concurrent CP/M
for execution.

20) SYSTAT - Displays the status of system resources (e.g.,
memory and queues) and shows currently running proc-
esses.

21) TYPE - Writes the contents of a text file to the screen.

22) USER - Displays the current user number or changes one
user number to another.

23) VCMODE - Displays and/or sets the current background
mode of the foreground virtual console.

Memory Management

Concurrent CP/M supports an extended, fixed-partition model of
memory management. The Memory Module (MEM) handles all mem-
ory management system calls and is located in the invariant inter-
face portion of the operating system. Memory is partitioned at the
time of system generation into an arbitrary number of partitions,
each ranging in size from |K bytes to one megabyte. Memory requests
are satisfied by one or more contiguous partitions on a best-fit
basis. Memory is dynamically allocated and deallocated in Concurrent
CP/M. The exact method that the operating system uses to allocate
and free memory is transparent to the application program and to
the user.

|

Concurrent CP/M Operating System 2-15

The File System

Concurrent CP/M supports from one to sixteen logical drives. Each logi-
cal drive has two regions: a directory area and a data area. The di-
rectory area defines the files that exist on the drive and identifies
the data area space that belongs to each file. The data area contains
the file data defined by the directory.

Thedirectory area consists of sixteen logically independent directories.
These directories are identified by user number 0 to |5. The user
number specifies the current active directories for all drives on the
system. For example, the Concurrent CP/M DIR utility, without the
user number option, only displays files within the directory indicated
by the current user number.

The file system automatically allocates directory and data area space
when a process creates or extends a file. And, when a process deletes
a file, the file system returns the previously allocated space to
free space. The allocation and retrieval of directory and data space
are transparent to the calling process.

An eight-character filename and a three-character filetype field
identify each file in a directory. Files with the same filename and
filetype can reside in different user directories without conflict.
Processes can also assign an eight-character password to a file to
protect the file from unauthorized access.

All system calls that involve file operations specify the requested
file by filename and filetype. For some system calls, multiple files
can be specified by a technique called ambiguous reference. This
technique uses question marks and asterisks as wild card characters
to establish a pattern for the file system to match as it searches
a directory.

Disk Drive and File Organization

The maximum file size supported on a drive is 32 megabytes. The max-
imum capacity of a drive is determined by the data block size speci-
fied for the drive in the XIOS. The data block size is the basic
unit in which the BDOS allocates space to files. Using the maximum
data block size of 16K, the maximum drive capacity is 512 megabytes.

2-16 Microprocessor Operating Systems, Vol. 1l

Each record of a file is identified by its position in the file. This
position is called the record's "random record number." If a file is
created sequentially, the first record has a position of zero, while
the last record has a position one less than the number of records
in the file. Such a file can be read sequentially beginning at record
zero, or randomly by record position. Conversely, if a file is created
randomly, records are added to the file by the specified position.

The File Control Block

The File Control Block (FCB) is a system data structure that serves
as an important channel for information exchange between a process
and the BDOS file-access system calls. A process initializes an FCB
to specify the drive location, filename and filetype fields, and other
information that is required to make a file-access call. The file
system also uses the FCB to maintain the current state and rec-
ord position of an open file.

Before opening a file, a program must build a 36-byte data structure
—the FCB. The address of the FCB is passed to the operating system
to specify the file affected by the operation. (See Figure 2-4a.) The
calling process must initialize the referenced FCBs before making
file-access system calls.

The file system includes three special types of FCBs: the directory
label, the XFCB, and the SFCB. The directory label specifies whether
password support is to be activated for the drive on which the di-
rectory resides. The directory label also specifies whether file date/
time stamping is to be performed. The format of the directory
label is shown in Figure 2-4b. Only one directory label can exist
in a drive's directory area.

The XFCB is an extended FCB that can optionally be associated with
a file in the directory. If present, it contains the file's password
and password mode. The format of the XFCB is shown in Figure 2-4c¢.
An XFCB can only be created on a drive that has a directory label,
and only if the directory label enables password protection.

The Concurrent CP/M file system uses a special type of directory
entry called an SFCB to record date and time stamps for files. When
a directory has been initialized for date and time stamping, SFCBs
reside in every fourth position of the directory. Each SFCB maintains

the date and time stamps for the previous three directory entries.
(See Figure 2-4d.)

Concurrent CP/M Operating System 2-17
s
T~ [
§ ‘E s3 83
g £ 822 3z gE SE
- s 8338 g5 42 2
(3] L} - ° €T
¢ H P 580,853 e S% 8%
: 2 e 583328 g2 38 5%
o [y i wWZu>con « -47) ox 44
r——_ —— e, —— — e,
A) |dr| 1] f2 18 |t1 (t2 [t3 |ex |cs|rs | rc |dO(d1 . |d15/ cr | rO | r1| r2
0 1 2 37 8 9 10 11 12 13 14 15 16 17 18-30 31 32 33 34 35
FILE CONTROL BLOCK (FCB)
® T @
2 -1 2 2 ®
o 3 3 3 8o - E > E3Z
T 2 > > i 23 ek Fi
o K] L L2 ZE ag La 2a
® e o ©0f 5o oo SE SE
z $2E ga 2= 2% gog] Bs
4 - - > =" D 5 c o2 p.] al
=] oz QF (=R -] -3 wa i on =71
—e—
B) |DR| NAME | TYPE | DL S1 S2 | RC |Password| TS1 TS2
0 1-8 9-11 12 13 14 15 16-24 25-28 29-32
DIRECTORY LABEL FORMAT
]
°
£
[
2 e T 3§ B 35
o E M g 2% a g e
3 €T 2o H g@ E‘a'_o 3@
£ 29 £3 s 359 cne 358
o i [o x2S waic xs23
— .. — e
C) |[DR| FILE TYPE | PM S1 S2 | RC |Password| TS1 TS2
0 1-8 9-11 12 13 14 15 16-24 25-28 29-32
EXTENDED FILE CONTROL BLOCK (XFCB)
FCB 1
D) FCB 2
FCB3
SFCB
Identifier Date arLTlme Stamps Reserved
b,
Stamps for Stamps for Stamps for
21 FCB 1 FCB 2 FCB3 Reserved
0 1-10 11-20 21-30 31-32

DIRECTORY RECORD WITH SFCB

Figure 2-4 Concurrent CP/M File Control Blocks and Directory Records.

2-18 Microprocessor Operating Systems, Vol. Il

Multisector 1/O

The BDOS file system provides the capability to read or write multi-
ple 128-btye records in a single BDOS system call. This multisector
facility can be visualized as a BDOS burst mode, enabling a process
to complete multiple 1/O operations in a single system call. By using
multisector I/O, an application program can improve its performance
and also enhance overall system throughput, particularly when per-
forming sequential 1/0O.

Under Concurrent CP/M, the logical record size for disk 1/O is 128
bytes. This is the basic unit of data transfer between the operating
system and running processes. However, on disk, the record size is
not restricted to 128 bytes. These records, called physical records,
can range from 128 bytes to 4K bytes in size.

Hash Tables and Record Buffering

Along with multisector I/O, Concurrent CP/M also supports hashed
directory access, and least-recently-used (LRU) record buffering.
Concurrent CP/M uses a hashing technique to directly access di-
rectory information, eliminating the need for directory searching.
Record buffers maintained in memory on a LRU scheme give the appli-
cation program fast access to a working set of directory and data
records.

Compatibility

Concurrent CP/M is data and file structure compatible with all Digital
Research operating systems. The wide popularity of CP/M applications
offers the user access to thousands of applications and ensures that
most of the popular programs are available for Concurrent CP/M.
Digital Research has maintained this data and file structure consist-
ency to ensure that applications migrate across microprocessors and
that the software developer has a consistent and simple porting
process.

Summary

Small business machines and personal computers have become increas-
ingly powerful, with low-cost memory storage and high-performance

Concurrent CP/M Operating System 2-19

microprocessors. The challenge for system software developers has
been to match the increasing capabilities of the hardware with the
appropriate operating system software. Digital Research has met
this challenge through the development of Concurrent CP/M, a
single user, multitasking operating system for 8086- and 8088--based
microcomputers. Being able to perform more than one task concur-
rently maximizes the efficiency of the user while taking full ad-
vantage of the current hardware technology.

More importantly, Concurrent CP/M has been designed to ease the
porting and development time of software developers through its sys-
tem architecture and its data and file structure compatibility with
the Digital Research family of operating systems. This compatibility
lets a software developer easily transport programs to different
microprocessor systems. In addition, the same programs can function
in single task, multitask, multiuser, and network environments.

References

Concurrent CP/M-86 Operating System Programmer's Reference
Guide, Digital Research, Inc., 1983.

Concurrent CP/M-86 Operating System Programmer's Utilities
Guide, Digital Research, Inc., 1983.

Concurrent CP/M-86 Operating System System Guide, Digital
Research, Inc., 1983.

Concurrent CP/M-86 Operating System User's Guide, Digital
Research, Inc., 1983.

Gary Gysin received a B.A. in Economics from the University of
California, Santa Cruz, in 1982. He was the first student of Ec-
onomics at UCSC to write a senior thesis. While attending school,
Gary served as a consultant and developed a detailed study of sales,
marketing, and finance for Side Band Engineering, Inc. Gary joined
Digital Research in 1982 as a technical support representative in
the Customer Support Department. He currently is the product line
manager for Concurrent CP/M in the Product Marketing Group at
Digital Research. Gary's hobbies include playing all sports; he is
a member of the Professional Beach Volleyball Association Circuit.

Chapter 3

THE MS-DOS OPERATING SYSTEM

Microsoft’s Disk Operating System
for 16-Bit Microcomputers

Bharat Sastri
Epson America, Inc.

5

Microsoft's MS-DOS operating system is a general purpose disk op-
erating system designed for the [6-bit microprocessor environment.
This operating system provides a single user, single task interactive
environment that facilitates diverse applications from word proc-
essing to program development.

The MS-DOS system is currently designed for use with the Intel 8086/
8088 microprocessor family. While the operating system itself requires
32K bytes of memory, practical usage requires at least 64K bytes for
flexible diskette systems and 128K bytes for hard disk systems.

Many hardware manufacturers offer MS-DOS 2.0 as an option on their
machines. This action has led to the availability of a large pool of
applications and systems software that is largely portable between
different hardware.

Operating System Overview

There are three primary building blocks that are required for the
implementation or customization of the MS-DOS system on a specific
vendor's hardware. These blocks or modules are:

I) The Disk Operating System (DOS).
2) The Basic Input Output Section (BIOS).
3) The Command Processor (COMMAND).

The DOS module is hardware-independent and is provided by Microsoft.
The DOS implements a hierarchical disk file system and provides a
user interface through a set of 72 separate system primitives or sys-
tem functions. Application programs interface with the DOS in a
standard manner and are thus portable between different machines
running the same version of MS-DOS.

MS-DOS Operating System 3-3

The BIOS module is the hardware-dependent module. This module pro-
vides the link between the DOS module and the particular hardware
on which the operating system is implemented.

The BIOS consists of two components: the ROM resident code that
provides the lowest level of control over the hardware and the in-
stallable device drivers that provide a higher level of abstraction
from the actual hardware. These components are discussed in more de-
tail later in the chapter.

The COMMAND module is also hardware-independent and is pro-
vided by Microsoft. This module is the link between the console user
and the operating system (embodied in the DOS module). The COM-
MAND module is memory-resident and contains a host of directive
functions (commands) known as the "internal commands." An ex-
ample of an internal command is DIR—the directive that displays
the directory of a disk.

In addition to these modules, the implementation of the operating
system requires the writing of several utilities that perform various
specialized tasks such as formatting and copying disks. Utilities and
other special commands, which are implemented to complement the
operating system software, are in essence application programs that
make use of operating system facilities through the standard
DOS interface.

The DOS Module

As mentionedearlier, the DOS module provides a hardware-independent
file system implementation. In addition, the DOS also implements
other system functions (e.g., memory allocation and deallocation).

The MS-DOS operating system provides two types of interfaces to the
DOS module: interrupts and function requests. Interrupts 28H through
40H are reserved by the system. User programs may issue interrupts
20H, 21H, 25H, 26H and 27H only. Table 3-1 lists the interrupts in
numeric order.

Function requests are invoked by loading a function number into a
designated register and causing interrupt 2IH. A list of DOS func-
tions is provided in Table 3-2.

3-4 Microprocessor Operating Systems, Vol. |

The majority of the DOS function requests in Table 3-2 require
parameters that must be passed to the DOS. There are three prescribed
methods of invoking these functions. The most commonly-used method
requires application programs to set up the parameters in the appro-
priate processor registers, set the desired function number in regis-
ter AH, and call the reserved software interrupt number 21H.

The BIOS

The BIOS contains the code that insulates the DOS module from the
hardware. The BIOS, in general, is composed of two parts: a ROM-
resident module that provides the lowest level of code necessary
to manipulate the various VLSI chips and a RAM-based module that
provides the link between the DOS and the ROM-based routines.

The first BIOS module is entirely ROM based and is therefore re-
ferred to as the ROM BIOS. The ROM BIOS is implemented as a group
of interrupt service routines that support the system hardware.
Each interrupt service routine may be invoked by executing the
8086/8088 INT instruction. Some of the interrupt routines require
parameters in order to execute correctly. All parameters are passed

Interrupt Number Description
20H Program terminate.
21H Function request.
22H Terminate address.
23H Control-C exit address.
24H Fatal error abort address.
25H Absolute disk read.
26H Absolute disk write.
27H Terminate but stay resident.
28H-40H Reserved.

Table 3-1 MS-DOS 2.0 Interrupts.

MS-DOS Operating System

Function Number

00H
0IH
02H
03H
04H
05H
06H
07H
08H
09H
0AH
0BH
0CH
0DH
O0EH
OFH
10H
I1H
12H
I3H
144
I5H
l6H
I7H
19H
I AH
2IH
22H
23H
24H
25H
27H
28H
29H
2AH
2BH

3-5

Action

Terminate program.
Read keyboard and echo.
Display character.
Auxiliary input.
Auxiliary output.

Print character.

Direct console 1/0.
Direct console input.
Read keyboard.

Display string.

Buffered keyboard input.
Check keyboard status.
Flush buffer, read keyboard.
Disk reset.

Select disk.

Open file.

Close file.

Search for first entry.
Search for next entry.
Delete file.

Sequential read.
Sequential write.
Create file.

Rename file.

Current disk.

Set disk transfer address.
Random read.

Random write.

File size.

Set relative record.

Set vector.

Random block read.
Random block write.
Parse filename.

Get date.

Set date.

Table 3-2 MS-DOS 2.0 Function Requests.

Microprocessor Operating Systems, Vol. Ili

Function Number Action
2CH Get time.
2DH Set time.
2EH Set/reset verify flag.
2FH Get disk transfer address.
30H Get DOS version number.
3IH Keep process.
33H Control-C check.
35H Get interrupt vector.
36H Get disk free space.
38H Return country dependent information.
39H Create subdirectory.
3AH Remove a directory entry.
3BH Change current directory.
3CH Create a file.
3DH Open a file.
3EH Close a file.
3FH Read from a file/device.
40H Write to a file/device.
41H Delete a directory.
42H Move a file pointer.
43H Change attributes.
44H I/0 control for devices.
45H Duplicate a file/handle.
46H Force a duplicate of a handle.
47H Return text of current directory.
48H Allocate memory.
49H Free allocated memory.
4AH Modify allocated memory blocks.
4BH Load and execute a program.
4CH Terminate a process.
4DH Retrieve and return code of child.
4EH Find match file.
4FH Step through directory, matching files.
54H Return current setting of verify.
56H Move a directory entry.
57TH Get/set date/time of file.

Table 3-2 (continued) MS-DOS 2.0 Function Requests.

MS-DOS Operating System 3-7

in processor registers. Parameters and/or status information are also
returned in processor registers.

The second part of the BIOS module is implemented as a group of
logical device driver routines that provide the bridge between the
DOS and the physical devices they access. Table 3-3 contains a list
of the valid logical devices, their physical images, and the device
drivers that provide the link between the two.

A device driver is a binary file that contains the code necessary
to manipulate the hardware. A device driver has a well-defined
structure under MS-DOS. A special header at the beginning of the
file identifies the code as a device driver. The header also defines
the entry points for the device driver routines and the attributes
of the device.

There are two types of device drivers: character device drivers and
block device drivers. Character devices are designed to perform ser-
ial character input and output. Examples of character devices are
the console, the printer, and the serial |/O port. Each character
device has a name associated with it. Devices with identical func-
tions but different names may utilize the same driver routines by
providing different headers—even though the entry points to the
routines are the same. For example, both the COM: device and the
AUX: device manipulate the same hardware (i.e., the serial communi-
cations hardware). Although both devices have different headers, the
headers map to the same service routines.

Logical Device Function Physical Device Device Driver
CON: Console 1/0 CRT, Keyboard CONSOLE
AUX: Serial 1/0 RS-232-C Device AUXILIARY
PRN: Parallel 1/0 Printers PRINTER
TIM: Time of Day Clock CLOCK
DSK: Disk R/W Disk Drives DISK
COMI: Serial 1/0 RS-232-C Device AUXILIARY
LPTI: Parallel 1/0 Printers PRINTER

Table 3-3 BIOS Function and Device Driver Map.

3-8 Microprocessor Operating Systems, Vol. I

Block devices, on the other hand, may perform random input and output
in multibyte "blocks." Disk drives are the typical block devices in
any system. Thus, the block size is usually the size of one physical
sector on the disk. Unlike character devices, block devices do not
have names and may not be opened directly for input and output. Block
devices are identified by the drive letters A:, B:, C:, etc.

A single driver may be responsible for one or several drives. For ex-
ample, if one disk driver can control up to four disk drives, the driver
is said to control four "units" (humbered 0, |, 2, and 3) identified
by A: B: C:, and D:. The next disk driver controls the units with
identifiers starting at E:, and so on. The theoretical limit is é4
block device units. However, only the first 26 units are identified
by the letters of the alphabet.

The Device Header

The primary BIOS data structure is the device header, which is manda-
tory for every device. The device drivers are implemented as a linked
list of device headers. Each device header points to the next device
header in the list. The last device is identified by "-I" in its
pointer field. The exact structure is shown in Figure 3-1.

Pointer to next device

Attributes

Strategy

Interrupt

Name

Figure 3-1 The Device Driver Header.

The pointer field is a double word field that points to the next driver
in the system list at the time the driver is loaded. |f the current
driver is the last one in the list, the offset portion of the pointer
is set equal to "-I".

The attribute field is a word field used to identify the device as
either a character or a block device. Each bit in the field signi-

MS-DOS Operating System 3-9

fies the presence or absence of a specific attribute of that driver.
Some of the important attributes are:

I) Whether the device is a character device or a block
device.

2) Whether the device is the current standard input and
standard output for the system. The standard input and
standard output in the system are defined as the default
devices for console input and output (normally the CON:
device).

3) Whether the device is the NUL device. The NUL device
is actually a garbage bin to which unwanted output is
sent. The NUL device cannot be reassigned.

4) Whether the device is the current clock device.

5) Whether a disk device is recorded in an IBM PC for-
mat. This information is used to control the execution
of certain disk driver commmands.

The strategy and inferrupt fields are pointers to the entry points
of the strategy and interrupt routines, respectively, for that de-
vice.

The name field is an 8-byte field that contains the name of a char-
acter device or the number of units for a block device.

The Request Header

The second important data structure is the request header. The request
header is a fixed-length header followed by data pertinent to the
operation to be performed.

When DOS calls a device driver to perform a function, it makes a
call to the strategy routine of that driver and passes a pointer to
the request header. A typical request header is shown in Figure 3-2.

The unit code field defines the device unit to which the request ap-
plies. The command code field identifies the command to be executed.
There are thirteen valid commands such as Init, Input, Input Status,
Output, and Output Status.

3-10 Microprocessor Operating Systems, Vol. Il

Length of this Request Header

Unit code

Command code

Status

Reserved

Figure 3-2 The Request Header.

The status word of the request header reflects the result of the re-
quest. On entry to the device driver, the status is 0; the status is
set to a result value by the driver. Errors that are reported through
the status word include write protect violations, unknown units, seek
errors, etc.

Installable Device Drivers

In addition to the default device drivers, MS-DOS provides a facility
to install additional device drivers dynamically at boot time. At boot-
strap time, the MS-DOS operating system checks for the existence of
a file called CONFIG.SYS, which contains a list of device drivers o
be installed dynamically. Since MS-DOS always processes installable
drivers prior to the default device drivers, it is easy to install a
new console device by simply naming it CON and setting the standard
input and output bits in the attribute word. The scanning of the de-
vice driver list terminates at the first match and hence the install-
able driver overrides the default.

The Command Processor

The COMMAND processor module controls the MS-DOS human-
machine interface. It processes commands that are entered by the
user and invokes the appropriate programs.

There are two types of commands that exist under MS-DQOS: internal
or "built-in" commands and external or "transient" commands. Internal

MS-DOS Operating System 3-11

commands are an integral part of the COMMAND processor and are al-
ways available in memory as long as the COMMAND module was loaded
during the system bootstrap. Transient commands, on the other hand,
are resident on disk and are loaded into memory by the COMMAND
module when required. Some transient commands, however, have the
ability to remain memory-resident after they are loaded. Some of the
most commonly-used commands are listed in Table 3-4.

The Command Interface

The normal system prompt is the default drive letter followed by
">" in the form of "A>". This sequence may be altered by a
system command called PROMPT.

Commands and parameters may be entered in both upper and lower
case. The parameters must be separated by a delimiter such as a space,
semicolon, comma, etc. Commands become effective only after a
carriage return is entered.

When command execution is complete, the prompt reappears. Any error
is reported on the screen by means of a message; the absence of an
error message signifies successful command completion.

Command Type Description

DIR Internal Displays a disk directory.
DEL Internal Deletes a file from a directory.
COPY Internal Duplicates a file.

TYPE Internal Prints a file to the screen.
MKDIR Internal Creates a new directory.
RMDIR Internal Removes a directory.

CHDIR Internal Changes present directory.
FORMAT External Formats a flexible diskette.
DISKCOPY External Duplicates a flexible diskette.
MORE External Outputs to console by pages.
PRINT External Starts background printing.

Table 3-4 Commonly Used MS-DOS Commands.

3-12 Microprocessor Operating Systems, Vol. Il

Commands may be aborted by entering control-C during execution. It
is also possible to suspend large output displays (by entering control-
S) and restart the display (by entering control-Q). These inputs must
be supplied from the keyboard.

The command processor recognizes all ASCIl characters. The characters
* and ? are treated as wild cards for filenames. However, the char-
acters <,>,| have special meaning and will be described later in
the section on special features.

In addition, the command processor can also execute commands in a
batch mode. This facility permits automatic execution of programs.

The File System

The MS-DOS operating system implements a hierarchical file system.
When a diskette is created, a single directory is placed on it. This
directory is called the system or root directory. The directory's
location and the number of entries in the directory are functions
of the disk media.

In addition to containing filenames, the root directory contains the
names of other directories. These directories, called subdirectories,
are treated like ordinary files and hence do not suffer from the
size restrictions of the root directory. In fact, subdirectory size
is limited only by the available disk space. Subdirectories may them-
selves contain other subdirectories.

All filenames and subdirectory names have the same format—a one
to eight character name followed by a period and an optional three
character extension. For example, "MYFILE.DOC" is a valid name.

The MS-DOS operating system supports the concept of a "current di-
rectory," which is analogous to the current drive. The current di-
rectory is defined as the directory that DOS will search for a file
if no directory is specified. A user may change the current directory
by invoking the CHDIR command.

The concept of a "pathname" is closely connected to the concept of
a hierarchical file system. To create, to search for, or to alter
a file, DOS needs three coordinates: the drive, the name of the file,
and the name of the directory in which the file resides. The "path-
name" consists of a series of directory names separated by backslashes
("\"). If the file name is included in the pathname, it must be

MS-DOS Operating System 3-13

separated from the last directory name by a backslash. If a pathname
begins with a backslash, DOS starts its search from the root directory;
otherwise the search originates at the current directory.

DOS Disk Allocation

MS-DOS supports several types of storage media including flexible
diskettes and hard disks. Disks may be formatted in a number of dif-
ferent formats but most personal computers use either 8 or 9 sectors
per track. Obvious differences in the storage space affect the size
of the reserved space and the data space available. Figure 3-3 illus-
trates a typical disk layout.

MS-DOS disks are usually created with a sector size of 512 bytes.
All space allocation is performed dynamically and is not preallocated.
Space is allocated in units called "clusters;" one cluster is allo-
cated at a time. A cluster is a collection of one or more contiguous
sectors on the disk. All clusters for a file are chained together in
a data structure called the File Allocation Table or FAT.

Clusters are arranged to minimize head travel on multisided media.
All of the space on a cylinder must be allocated prior to moving to
the next cylinder. This goal is achieved by allocating sequential
sectors on the lowest number head, followed by sectors of the next
higher number head, and so on until all space on a cylinder is allo-
cated.

Reserved (usually BOOT code) - variable size

First copy of file allocation table (FAT) - variable size

Second copy of FAT - variable size

Additional copies of FAT (optional) - variable size

Root Directory - variable size

File data area

Figure 3-3 Disk Layout.

3-14 Microprocessor Operating Systems, Vol. Il

Files are not written on the disk in one continous block; instead,
the data space is allocated one cluster at a time, skipping clusters
that are already allocated. The command CHKDSK is used to determine
how many contiguous disk areas are allocated to a file. Greater
fragmentation leads to poorer performance. To reduce the number of
fragments in a file, the file must be copied to a new disk using the
COPY command.

A typical 5%-inch 40 track/inch double-sided diskette formatted
with 9 sectors per track has 360K bytes of data space. The root di-
rectory size is |12 entries and the cluster size is 2 sectors.

Data required to allow different manufacturers to read each other's
media is stored on the boot track of the media. The data permits the
reconstruction of a data structure called the BIOS Parameter Block
(BPB) for a particular media. The data describes parameters such as
the sector size, the number of FATs, the number of root directories,
etc. The BPB is used by the block device drivers to access the physi-
cal disk device.

The file system supports all standard operations such as open, close,
create, delete, and supports both sequential and random file access.
File access protection is implemented in the sense that a file may be
declared to be a "system'" file or a "read-only" file. System files
are invisible to users and read-only files cannot be overwritten.

MS-DOS does not require an application to construct any special con-
trol blocks before opening or creating files. Instead, an ASCII
string consisting of the drive, the pathname, and the filename may
be passed to the DOS. The DOS locates an existing file or creates
a new file and returns a |6-bit binary value referred to as the file
"handle." All subsequent references to the file can use the handle
as the file identifier.

The number of files that MS-DOS can open simultaneously is eight
(by default) and can be changed at bootstrap time. The file system
also uses cache buffers. Normally, MS-DOS allocates two cache
buffers, but the number may be changed dynamically at bootstrap time.

Software Tools

MS-DOS provides the software tools required to develop and debug
assembly language programs. These tools are the line text editor

MS-DOS Operating System 3-15

(EDLIN), the macroassembler (MASM), the linker (LINK), and the
debugger (DEBUG).

EDLIN is used to create source files and delete, edit, insert, and
display lines. The editor can also operate on text within one or more
lines.

MASM is a macroassembler that creates non-executable object files
from source programs.

LINK is used to combine object modules and create relocatable ex-
ecutable files from the output of MASM. The output of the linker is
a file with an extension of ".EXE".

The DEBUG program provides a controlled environment for the testing
and development of a program. The debugger has several features such
as the ability to set breakpoints and load, alter, or display mem-
ory. DEBUG has a set of commands that allow in-line assembly and
disassembly of code.

Special System Features

Programs executing under the MS-DOS operating system can receive
input from a source other than the keyboard (the standard input de-
vice) or direct output to a device other than the console (the standard
output device). This capability is called 1/O redirection. The special
characters that identify |/O redirection to the command processor
are "<", ">"; and ">>". For example, ">PROG.LOG" on the command
line directs the output to the file PROG.LOG. ">>PROG.LOG"
appends the program output to the file PROG.LOG. In a similar
manner, "<SCRIPT" dictates that keyboard input is to be read
from the file SCRIPT.

Another important MS-DOS feature is the ability to create "pipes."
A pipe allows the screen output of one program to be used as the key-
board input of the next program. The two programs to be piped together
are separated by the vertical bar ("|") on the command line (e.g.,
"PROGRAMI | PROGRAM?2").

The MS-DOS system also allows the operating environment to be
modified at bootstrap time. The parameters that can be changed are
the number of disk buffers, the device drivers, the number of files
that can be opened for simultaneous access, and even the command

3-16 Microprocessor Operating Systems, Vol. Il

processor. To change the operating environment, the user creates a
file called CONFIG.SYS in the root directory. CONFIG.SYS contains
text information that sets values for all new parameters. For ex-
ample, "DEVICE=NEWCON.COM" will cause NEWCON to be in-
stalled as a device driver.

Summary

The MS-DOS operating system has found favor with a wide spectrum of
personal computer manufacturers. Because of this fact, a large num-
ber of applications programs are available under the MS-DOS system.
In addition, the machine-independent implementation of the operating
system ensures software portability between machines executing
MS-DOS on 8086 family processors.

References
IBM PC-DOS 2.0 Manual, IBM Corporation.
IBM PC Technical Reference Manual, IBM Corporation.
Microsoft MS-DOS 2.0 Programmers Reference, Microsoft, Inc.

Microsoft MS-DOS 2.0 Users Reference, Microsoft, Inc.

Bharat Sastri is currently manager of operating systems and languages
at the Advanced Products Division of Epson America, Inc. Prior to
joining Epson, he was the software project manager for the Osborne PC
product. Bharat was also involved in networking and communications
software at Zilog, Inc. He has graduate degrees in Computer Science
and Electrical Engineering from the Indian Institute of Science,
Bangalore, India.

Chapter 4

THE MSP OPERATING SYSTEM

A Real-time Solution for Development
and Embedded Applications

Robert D. Grappel
Hemenway Corporation

4

The Hemenway Corporation MSP (Multitasking System Program) op-
erating system combines the essential ingredients needed for both
development and execution of real-time applications. MSP systems
can be configured "a la carte" to include only those features re-
quired by a particular application. MSP configurations range from
embedded ROM-based systems to complete development stations.

MSP systems are available for the 68000 and Z8002 processors. Ranging
in size from approximately 8K bytes to 24K bytes (depending on the
configuration), MSP is compact and efficient. MSP systems are fully
ROMable. In addition, a wide variety of hardware can be accommodated
since all the hardware dependencies are separated into linkable "device
drivers."

The MSP systems present the user with a hierarchical structure as
illustrated in Figure 4-1. At the center of this structure is the actual
hardware—including the processor, memory, |/O devices, mass stor-
age, and any special-purpose components needed for the application.
Each successive layer of MSP wraps the lower layer with a further
level of functionality, thereby creating an increasingly powerful
virtual machine. However, unlike many operating systems in which
the application can address only the outermost layer, MSP gives the
user access to all layers of the system through over 70 system calls.

The Kernel

Six optimized kernel routines supply the key services needed in a
real-time multitasking system for mutual exclusion and task synchro-
nization. The MSP kernel uses the monitor concept introduced by
C.A.R. Hoare and elaborated by P.B. Hansen to provide task synchro-
nization and mutual exclusion. In a monitor, all the critical sections
of code for a particular set of shared data are collected into one
module. Each critical section becomes an entry point to the monitor.
Whenever one of the entries is invoked, exclusive access to the shared

=
nn
~
System Utllitles and Products 9
3
File Manager Command Line Interpreter g
Q
D 1%
e 5
Nucleus v Nucleus &
I 3
C
e
Kernel D Kernel
r
i
v
e
r
s
Real
Hardware | keal-
: Time
L Clock
User Applications

Figure 4-1 The Hierarchical Structure of the MSP Operating System.

€%

4-4 Microprocessor Operating Systems, Vol. Il|

data is automatically provided. Thus, enforcement of mutual exclusion
is implicit—a programmer need only invoke the appropriate entry.
Monitors are the fundamental synchronization construct in MSP and
are used to build other synchronization primitives such as mailbox
mechanisms. Five monitor primitives provide an application with di-
rect control over tasks and resources:

I) Entermon - Enter a critical section.

2) Exitmon - Leave a critical section.

3) Wait - Block a task awaiting a resource.

4) Signal - Run a blocked task.

5) Unblock - Place a blocked task on the ready queue.

In addition, a real-time clock interrupt handler in the kernel pro-
vides a second means of task control. A check of the task queue is
performed at each clock "tick," preventing any task from monopoliz-
ing. the system. Moreover, the task queue is prioritized, with tasks
of equal priority running in a round-robin fashion.

One significant feature of the monitor design is the ease with which
it may be extended to support multiprocessor hardware. All the neces-
sary extensions can be embedded in the kernel; the rest of MSP need
not change at all.

MSP Task Control

A set of system calls in the MSP kernel provides for dynamic task
control. These include:

1) GETPCB - Start a task by acquiring a Process Control
Block (PCB).

2) GIVPCB - Kill a task by relinquishing the PCB to the
system.

3) GSTAT - Get the current state of a task.

4) SETPRI - Change the priority of a task.

MSP Operating System 4-5

5) DELAY - Cause a task to stop running for a given period.

6) WAKEUP - Cause a delayed task to resume running.

Tasks may be created and controlled in response to events. There
is no need to sysgen tasks into the system; tasks can be started
and controlled by any application program. Moreover, task priorities
may be altered based on real-time system constraints.

Intertask Communication
The monitor primitives provide a very efficient control mechanism for
tasks and resources, but they do not directly provide an intertask
message-passing facility. MSP adds a set of mailbox system calls
that address this common multitasking requirement. Any pair of tasks
in the system can use MSP mailboxes to exchange variable-length
messages. Also, tasks can inquire about the availability of messages
directed to them and can determine the identity of the sending task.
The mailbox system calls are:

1) GETBOX - Acquire the use of a mailbox.

2) GIVBOX - Relinquish the use of a mailbox.

3) MSTAT - Determine the status of a mailbox.

4) SEND - Send a message to another task.

5) RECVE - Receive a message from another task.

6) CKMAIL - Inquire about mail for a task.

7) CKINAM - Check the identity of a sending task.

Memory Management

MSP also provides memory management facilities. Memory within an
MSP system is divided into a transient space and a managed space.
The transient space allows absolute programs (e.g., programs stored

4-6 Microprocessor Operating Systems, Vol. Il

in ROM) to be used. The managed space allows applications to acquire
blocks of memory for use and to subsequently release the blocks
back to the system. The development configuration dynamically relo-
cates programs or allows programs to be fixed into the transient
space. Memory management is done in 2K-byte blocks. The manage-
ment algorithm is performed in software—no MMU hardware is re-
quired.

MSP can manage the entire addressing range of the system processor. In
addition, code and data areas can be loaded into separate memory
blocks.

1/0 Support

The nucleus (see Figure 4-1) surrounds the kernel with I/O support.
MSP provides application programs with several levels of |/O system
calls. The most basic I/O system call is IOHDLR. IOHDLR is a
device-independent service that provides buffered I/O for any named
device in the system. IOHDLR includes the necessary monitor calls to
control task access to |/O devices. Standard MSP devices include:

) CON - Main console.

2) LPT - Line printer.

3) TTY - Alternate console (external serial line).

4) DSK - Mass storage (flexible diskettes, hard disks, etc.)
5) NUL - "Bit-bucket."

MSP also supports a set of user-definable devices. System calls
SETDEV and RESDEV allow a user to add special-purpose device drivers
to the system. These drivers enjoy the same overall structure and
protection afforded to the standard device drivers. Note that it is
not necessary to regenerate the system to add or delete drivers.

Device drivers in MSP are interrupt driven. Therefore, MSP tasks do
not waste processor time waiting for |/O devices. In addition, type-
ahead is supported for the CON and TTY devices.

MSP Operating System 4-7

Nucleus System Calls

The nucleus also contains routines that are very useful in applica-
tions. Many of these are made available to the user as system calls.
The most basic set of these system calls are:

1) PRTMSG - Print a line on the console.
2) PRTERR - Print a standard error message on the console.

3) GTCMD - Read a line from the console (or from a SUBMIT
file).

4) NXTOK - Parse a text line into lexigraphical tokens.

5) FMTFCB - Parse, error check, and reformat a file speci-
fication.

6) LOADB - Load a binary file into memory.
7) LOADR - Relocate and load a task image.

Use of GTCMD lets any application receive commands from an active
SUBMIT file. Parameter substitution is performed automatically by
MSP. If there is no active SUBMIT file, GTCMD prompts and accepts
input from the console. GTCMD automatically expands tabs and re-
sponds to console SET values. PRTERR outputs a standardized error
message for any type of MSP 1/O. NXTOK parses a line of text into
a set of tokens. (While NXTOK is usually used to parse command
lines, it may also be used to parse text within an application pro-
gram.) The following tokens can be isolated by NXTOK:

) Word - An alphanumeric string. NXTOK returns the
string's address and length.

2) Number - A decimal or hexadecimal integer. NXTOK
returns the binary value.

3) Delimiter - A standard delimiter, such as a comma, a
period, a carriage return, etc.).

4) Wild card - A word containing "*" or "?".
NXTOK is very useful to any application program that must accept text

commands. Finally, FMTFCB is a high-level system call that parses a
file specification and reformats the specification as required by MSP.

4-8 Microprocessor Operating Systems, Vol. Il

OS/ENGINE

The minimal configuration of MSP described in the preceding sections
can be used to solve a large class of real-time problems. This MSP
configuration forms a fully-functional execution vehicle for ROM-
based embedded applications. Stripped down to this level, MSP becomes
OS/ENGINE. As a proper subset of MSP, OS/ENGINE applications can
be developed and tested under MSP. The system calls and structures
of OS/ENGINE match those of MSP. OS/ENGINE, with drivers for CON,
TTY, and LPT devices, requires less than 8K bytes.

Debugging a real-time application on the target hardware can be dif-
ficult. Conventional debugging techniques are often useless for isolat-
ing and solving multitask problems. Therefore, OS/ENGINE includes a
debugger that may be used to probe the hardware and software state
of the machine without disrupting the application tasks. OS/ENGINE's
debugger is similar to the task debugger available on the development
configuration of MSP. Access to machine registers, memory, and 1/O
devices is provided.

The debugger runs as a task under OS/ENGINE. If required, a user
may "kill" the debugger and allow the application tasks to completely
control the machine. Also, a target configuration of OS/ENGINE is
available without the debugger.

The FILE System

The File Manager layer of MSP gives the user control over a powerful
and flexible file system. The DSK device is treated as a set of
logical drives. Each drive consists of N logical sectors (num-
bered 0 through N-1). All considerations of device-specific param-
eters, such as track/sector/cylinder mapping and interleave factors,
are left to the DSK device driver. Any combination of drives, including
flexible diskettes (single/double-sided, single/double-density), hard
disks, etc., can be used. The MSP interface to the DSK driver has
only three entries.

1) INTDK - Initialize the drives and configure DSK tables.
2) RDSEC - Read a logical sector.

3) WTSEC - Write a logical sector.

MSP Operating System 4-9

Each logical drive has a file directory. A directory entry for a file
contains the file name, the extension, the file type, the access code,
the file size, and a time-stamp. Wild card directory searches permit
selection of file classes based on name or extension. In addition,
system calls are provided to address and modify directories.

The basic MSP file (sequential file) consists of a linked-list of
logical sectors. The list is constructed during disk initialization
and the list is maintained by MSP system calls. The linked-list
structure provides fast, dynamic control of variable-length files. In
addition, sequential file I/O system calls provide character and line
protocols. Text files automatically compress runs of blanks to sin-
gle characters when writing and expand them back to blanks when
reading. Moreover, mutual exclusion monitors prevent conflicts when
several tasks try to access the same directory. Finally, MSP allows
multiple tasks to read the same file simultaneously.

In addition to sequential files, MSP also supports an area on each
logical drive in which contiguous file allocation and deallocation
is performed. The MSP system calls for contiguous files allow appli-
cations to load and store data more rapidly than is possible with
sequential files. Single system calls allow tasks to read or write
large amounts of data in a single operation.

The contiguous area supports random-access files. A random-access
file is defined as a set of N fixed-length records. Positioning of
a random-access file to any arbitrary record requires only a single
disk access. System calls to read or write a file record are pro-
vided. Moreover, records may be updated in place.

Since reclaiming space after a contiguous or random-access file
has been deleted is a time-consuming operation, this reclamation
is performed by the system task, COMPRESS, which may be run as
time permits. COMPRESS runs in the background, allowing other tasks
to continue executing.

The Human Interface

The user of MSP interacts most directly with the layer called the
Command Line Interpreter (CLI). The CLI is actually a task running
under control of the kernel. (In OS/ENGINE the debugger takes the
place of the CLI task.) CLI accepts commands from the console or
from a batch file (SUBMIT command). CLI carries out commands by

4-10 Microprocessor Operating Systems, Vol. Il

dispatching them to lower level routines, by loading and executing
transient commands from disk, or by loading task images. CLI uses
a straightforward, consistent syntax typical of that used on mini-
computers.

Table 4-1 gives the command set mnemonics for MSP/68000. (The
78002 set is similar.) Note that there are CLI commands corresponding
to some of the system calls described previously:

Command Mnemonic Equivalent System Call
RUN GETPCB
KILL GIVPCB
TASKS GSTAT
SUSPEND DELAY
RESUME WAKEUP
PRIOR SETPRI

The CLI allows users to abbreviate commands to their first three
characters. Transient programs are run by simply using their file
specification as a command. (Transient programs are executed as ex-
tensions of the CLI task.) Only the PIP and the INIT commands are
transients; the rest of the commands are resident in the CLI. The
following paragraphs describe some of the most powerful CLI com-
mands.

PIP (Peripheral Interchange Program) is a workhorse data transfer
command. PIP transfers information from any device or file to another
device or file. This command can be used to copy complete disks or
individual files. In addition, files may be concatenated with PIP.
PIP can also be used to create text files, to print files, and to
reformat files. Moreover, PIP can convert MSP's internal binary
format to hexadecimal (ASCII) format and back again. This feature
is useful when transfering files between different systems. For ex-
ample, coupled with the TTY device's type-ahead buffer, the PIP
command,

PIP MYFILE.IN=TTY

will build MYFILE from the serial port at transfer rates up to
9600 baud—handshaking protocols are not needed.

The LINK command allows a user to create a system boot file from any
binary file on a disk. This facilitates system modifications and
turn-key applications. MSP can also access a batch file on start-up.

MSP Operating System 4-11

This file can be used to initially configure an application by auto-
matically entering a set of predefined CLI commands. The SUBMIT
command also uses a file as a source of CLI commands for the system.
In addition, SUBMIT supports a macro-like facility that allows a user

ASSIGN Assigns a logical device name to a physical device.
CCONT Creates a contiguous file.

CRAND Creates a random file.

DELETE Removes a file from the disk.

DENSITY Changes the density parameters of a specified disk.
DIR Prints the directory of the specified disk drive.
EXIT Passes control to the hardware debug monitor.
INIT Initializes the specified diskette.

JUMP Passes control to an absolute address.

KILL Removes a task from the system.

LINK Makes a diskette bootable.

LOAD Loads a binary program.

PIP Loads and executes the Peripheral Interchange Program.
PRIOR Changes the priority of a task

RENAME Changes the name of a disk file.

RESUME Resumes a task.

RUN Loads and starts a task.

SAVE Saves an area of memory as a binary file.
SECURE Sets a file's access codes.

SET Changes the console or line printer parameters.
STATUS Lists the present device assignments.

SUBMIT Executes commands from a command file.
SUSPEND Suspends a task.

TASK Displays status of all tasks in system.

TIME Displays and sets the real-time clock.

Table 4-1 MSP Command Summary.

4-12 Microprocessor Operating Systems, Vol. Il

to specify parameters on the command line. SUBMIT inserts these
parameters into the proper locations within the file's commands before
passing the commands to CLI.

CLI commands that affect tasks use alphanumeric names to refer to the
appropriate tasks. The task name is usually the file name of the task
image. The mapping from task name to the internal PCB address is done
automatically in CLI. Also, like files, tasks are time-stamped.

Error Reporting

Since the user has the most contact with CLI, many human interface
errors are detected at this level. CLI responds to erroneous commands
with English messages. For instance, 1/O errors report the name of
the device in use. In addition, most errors permit a retry of the
command.

Run-time errors are especially hard to handle in a multitask environ-
ment. MSP builds on the error trapping inherent in the processor and
in the system hardware. Traps such as "invalid address," "divide by
zero," etc., are handled by MSP. When an error is detected, MSP
prints a debug dump that includes the name of the task that caused
the error, the error type, and the register contents at the time of the
error. In addition, the system will close any currently open files
and reinitialize itself.

Operation Without CLI

As was the case with OS/ENGINE's debugger task, MSP can run without
an active CLI task. If desired, CL! can be used to set up the system
for an application. The user can subsequently KILL or SUSPEND the
CLI task. This action leaves the user's applications in control of
the machine. Running without CLI lets the user test applications that
are destined for OS/ENGINE.

MSP's Utilities and Products

The outer shell of MSP includes a large number of utilities and pro-
grams that allow MSP to support software development. For example,

MSP Operating System 4-13

a text editor and a macro-assembler run under MSP. (The 68000
assembler is source-compatible with Motorola's assembly language
syntax, while the Z8002 assembler follows Zilog's syntax.) Both the
editor and assembler are tasks—a user can edit one file while
assembling another. The assemblers feature conditional assembly and
cross-reference generation.

MSP supports a PLMH language compiler for both the 68000 and the
728002 processors. The PL/M language was developed by Intel and the
MSP compilers are source compatible with Intel's PL/M-80 language.
PLMH is a systems programming language. |t is a fully structured
high-level language that permits reentrant procedures, interrupt han-
dling, pointer manipulation, etc. In addition, libraries to interface
PLMH tfo all MSP system calls are provided.

MSP /68000 supports an extended BASIC interpreter whose primary
features are execution speed and source compatibility with 8-bit
BASIC dialects. HC-BASIC supports 16- and 32-bit integers, 32- and
6L4-bit reals, and variable-length character strings. Output format-
ting via the PRINT USING statement, as well as full random-access
and sequential file capabilities are also included. HC-BASIC can
call assembly language routines and pass any number of parameters
(by address or value). HC-BASIC is extensible—up to 255 new key-
words can be added.

MSP/68000 also supports a Pascal compiler. This compiler produces
either P-code (for interpretation) or native code (for direct ex-
ecution). Separate compilation, double-precision reals, extensive
optimization, and libraries to interface Pascal programs to all MSP
system calls are provided.

MSP includes a linker and a librarian that can combine object modules
from assemblers or compilers. The MSP locater program binds a linked
program to absolute addresses, while the MSP task-builder program
converts a program into task-image form.

A task debugger (similar to the debugger in OS/ENGINE) is supplied as
a linkable module. The debugger is linked into the task to be tested
and does not affect other tasks in the system. The debugger allows a
user to display and alter the contents of processor registers and
memory locations. In addition, users can set breakpoints in the task
being debugged. Also, a set of relocation registers makes it easy to
reference locations in blocks of memory acquired through the memory
management functions of MSP.

4-14 Microprocessor Operating Systems, Vol. Il

A simple print-spooler task is also provided with MSP as an example
of how to write an MSP task. Source code of the spooler (in assembly
language) may be found in the MSP Advanced User's Guide.

Two additional disk utilities depend on the capabilities of the disk
controller hardware. The FORMAT utility formats and initializes
disks. FORMAT can handle single- and double-density, as well as
single- and double-sided flexible diskettes. The FCOPY utility per-
forms fast disk copies. FCOPY reads and writes entire disk tracks
and can duplicate a flexible diskette in about 45 seconds. (For com-
parison, PIP requires several minutes to copy the same amount of
data.)

The SPLIT utility divides a binary file into high and low bytes in
preparation for PROM programming. MIKSPLIT downloads the pro-
gram into a PROM programmer.

Finally, floating-point math and scientific function packages are
available for both single-precision (32-bit) and double-precision
(64-bit) computations. The floating point operations include basic
math, trigonometric functions, logarithms, exponentials, and format
conversions.

Summary

Hemenway Corporation's MSP operating system is a configurable and
extensible system that covers the spectrum from embedded appli-
cations to development systems. Starting from a small but efficient
kernel, MSP grows in power as operating system layers are added. For

each user, MSP may be customized to meet his/her specific needs and
challenges.

References
MSP Operating System User Guide, Hemenway Corporation, 1981.

MSP Operating System Advanced User Guide, Hemenway Corporation,
1981.

MSP /68000 Nucleus User Guide, Hemenway Corporation, 1983.

MSP Operating System 4-15

MSP /68000 File Manager User Guide, Hemenway Corporation, 1983.
MSP /68000 System Configuration Guide, Hemenway Corporation, 1982.
MSP Debugger Reference Manual, Hemenway Corporation, 1982.

MSP Link, Locate, Library Manager User Guide, Hemenway Corpora-
tion, 1982.

Robert D. Grappel is currently vice-president at Hemenway Cor-
poration. He previously worked at MIT's Lincoln Laboratory as a
senior research staff member. He has M.S. and B.S. degrees in
Physics and Computer Science.

Chaopter 5

THE PICK OPERATING SYSTEM

A Multiuser, Virtual Memory Data Base
Management System

Jonathan E. Sisk
JES & Associates, Inc.

William W. Walsh
Kenneth O. All
PICK SYSTEMS

5

The PICK operating system is a multiuser, virtual memory database
management system that provides consistent operational character-
istics on a wide range of micro, mini, super-mini, and mainframe com-
puters. The system's first microprocessor implementation occurred in
1982 on Digital Equipment Corporation's LSI-11. The PICK operating
system is now also available on the Zilog Z8000, the Motorola 68000,
and the Intel 8086/8088 microprocessors.

This operating system is not available to end users directly from
PICK SYSTEMS; rather, PICK SYSTEMS relies on distribution
through licensees. These licensees are typically OEMs, system inte-
grators, or VARs, and they serve both vertical and territorial end user
markets through direct sales representatives, independent sales or-
ganizations, and dealerships. PICK operating system licensees include
companies such as Microdata, Applied Digital Data Systems, Altos
Computer Systems, General Automation, Ultimate Corporation, Pertec
Computer Corporation, Computer Distributors, Inc., and Systems Man-
agement, Inc.

In the 1970s, the PICK operating system was normally sold under
aname supplied by the licensee, such as "REALITY" (Microdata Corpo-
ration) and "Ultimate" (Ultimate Corporation). Today, PICK op-
erating system implementations are often identified as "PICK"
systems, regardless of the bundled system name or hardware.

Among the many features of the PICK operating system are:

1) A virtual memory management scheme that utilizes the
entire hard disk as though it were main memory. This
scheme efficiently schedules and controls the actual
contents of RAM through a page swapping technique
that is based on the least-frequently-used page algorithm.

2) A unique file structure that supports variable-length
files, items (records), attributes (fields), values (portions
of fields) and subvalues (portions of values).

PICK Operating System 5-3

3) A dictionary-based data retrieval language.

4) A sophisticated data base management scheme that pro-
vides automatic space allocation for dynamic files.

5) An English-like, ad hoc, data retrieval language.
6) A stored procedure language.
7) A multilevel security system.

8) A sophisticated print spooler capable of addressing up
to twenty different printer devices and managing over
six hundred print image reports.

9) Support for up to 128 terminals, many types of parallel
and serial printers, and a wide variety of ASCII
terminals.

Hardware Environment

The minimum PICK execution environment requires at least 32K bytes
of RAM, one asynchronous ASCII| terminal, a timer for the genera-
tion of interrupts, a hard disk, and at least one backup device.

The maximum configurations are implementation dependent, ranging
from table top systems to the IBM 4300 mainframe.

The PICK operating system provides an efficient means of sharing
and reusing main memory. Most PICK configurations include from 64K
to 512K bytes of main memory and 10-200 megabytes of disk storage.
The actual physical maximum of the main memory address space is de-
pendent on the system processor (| -64 megabytes).

Job/Task Control

Process scheduling is provided by memory-resident monitor software.
Each process is allocated a time slice (measured in milliseconds)
prior to deactivation. The monitor further assigns priorities to a
process, depending on whether the process is interactive (e.g., a

5-4 Microprocessor Operating Systems, Vol. Il

data entry process) or noninteractive (e.g, a sort or report gen-
eration process). Scheduling is transparent to the user, but may be
altered by the user depending on his/her particular needs.

The PICK monitor code determines the priority status of a port
or process by determining whether or not the terminal is interactive
or noninteractive. Process priority is dynamic and a process is auto-
matically "bubbled up" the priority queue upon keyboard input.

Portability

For most PICK implementations, application software can be ported
by simply recompiling the PICK/BASIC programs that make up the
application. In a few cases, minor syntactic modifications are also
needed in order to transport the application software.

Operating system software is written in PICK assembler and is
implementation independent. The operational characteristics remain
the same on virtually all PICK implementations.

PICK SYSTEMS also compiles its assembler source into object code
for the target processor. This capability greatly reduces the amount of
code that must be written for a new implementation and allows PICK
programmers to focus primarily on machine-dependent software (such
as 1/O drivers). Once the I/O drivers and the necessary supporting
structures and translators are in place, the object code can be
downloaded from the PICK host to the target system.

Memory Organization

The PICK operating system is implemented in two forms, firmware
and software. In most mainframe and minicomputer implementa-
tions, the system is implemented in firmware—at the microinstruc-
tion level in ROM.

In microprocessor-based machines, the functions of the micropro-
grammed firmware are emulated in software. Software implemen-
tations generally require 32K bytes of RAM for storage of the
memory-resident code and tables. In both types of implementations,
a process control table and a memory management table are present
in main memory.

PICK Operating System 5-5

The memory resident software includes the following:

1) The "monitor" code. This software controls process
scheduling and provides an |/O request interface.

2) Out-of-line firmware emulation code. This code emu-
lates the PICK functions that are normally imple-
mented in microinstruction ROM. This code, occupying
roughly 6000 bytes of storage, is only present on soft-
ware implementations.

3) Memory and process management code. This code pro-
vides functions such as memory management and
process scheduling. This software occupies approxi-
mately 6000 bytes of storage.

4) Implementation-dependent routines and 1/O drivers.
These routines are specific to a particular processor
and typically require from two to three thousand bytes
of storage.

1/0 Devices

The PICK operating system normally interfaces to asynchronous
ASCIl terminals, hard disks and flexible diskettes (both 5%- and
8-inch), half-inch magnetic tapes, quarter-inch streaming cartridge
tapes, serial printers, and parallel printers.

Field-developed interfaces include optical character recognition
(OCR) devices, automated teller machines (ATM), point of sale (POS)
terminals, high-speed synchronous modems, and various multiplexers
and concentrators.

I/O device drivers are dependent on the choice of system hardware
and are not provided by PICK SYSTEMS. PICK SYSTEMS provides
the ported virtual operating system code and some device driver de-
sign assistance.

Software Support

PICK assembler language is the heart of the PICK system. A
translator—for generating object code for the target system processor

5-6 Microprocessor Operating Systems, Vol. Il

from PICK assembler source programs—is developed for each PICK
operating system implementation. This language allows a programmer
to address every critical element in the system. Licensees do not
normally provide the PICK assembler language to end users in order
to prevent misuse.

The PICK/BASIC language is a superset of standard Dartmouth
BASIC. PICK/BASIC is ideally suited to dynamic array manage-
ment of variable-length items (records) and files. This language is
included with all PICK implementations and is an integral part of
the system. Virtually all applications are written in PICK/BASIC,
ensuring a high degree of compatibility among PICK systems,
regardless of manufacturer.

The PROC interpreter is analogous to the Job Control Language (JCL)
interpreter on a mainframe, allowing procedure definitions to be
executed. For example, through PROC a user can control system
reporting, system backup, and batch processing. PROC provides a
high-level language with the capability of interactive (terminal
formatting, input, and validation) or noninteractive execution modes.

ACCESS, an English-like retrieval language, provides a means of
extracting, manipulating, and formatting output from dictionary-
based files through a free-form English sentence structure. Each
ACCESS input sentence is immediately compiled and interpreted,
totally fransparent to the operator. ACCESS also provides the
capabilities for performing special operations on data, such as the
application of algebraic formulae or the conversion of text strings
to alternate formats.

The editor provides a means of entering documents, source programs,
and stored procedures. The editor may also be used to update any data
item on the system. Normally, however, this update function is man-
aged by programs written in PICK/BASIC.

RUNOFF serves as the system's text formatter and document processor.
In conjunction with the editor, RUNOFF is used to prepare docu-
mentation, manuals, letters, and other text-oriented materials. RUN-
OFF supports automatic headings and footings, page numbering, column
alignment, centering, index preparation, and underline/boldface type.
In addition, RUNOFF can merge data from other files into the text.

PICK Operating System 5-7

System Security

Security is provided at an account level. Each user account on the
system may contain an encrypted password that will be requested by
the system each time a user logs onto the account. File-level security
is discussed in the File Access and Protection section.

Libraries

Several files containing procedures, programs, and data are provided
with the PICK operating system. These files include:

) PROCLIB - Procedure library.

2) SYSPROG-PL - Procedure/program library.
3) ERRMSG - The text of error messages.

4) ACC - Accounting (usage) history.

5) POINTER-FILE - Lists data storage file.

6) SYSPROG - Maintenance account.

7) SYSTEM - Account definition file.

8) NEWAC - Verb/command definition file.

Diagnostics

The diagnostics process for PICK operating system software is a
set of programs called Automated Test Procedures (ATP). This package
exercises each function of the operating system and is typically
used by PICK SYSTEMS as the acceptance criteria for a correct im-
plementation.

5-8 Microprocessor Operating Systems, Vol. Il

System Generation

The PICK system is typically transported to a computer by means of
a sysgen tape or diskette. This tape/diskette contains the following
items:

I) Bootstrap section. This section provides enough infor-
mation to start the monitor software and read the code
that will load the rest of the media. This portion of
generation also includes the function of "sensing'" all
attached hardware—including disks, /O ports, and main
memory—to establish the necessary tables and "work-
space" areas needed for operation.

2) ABS section. ABS is an abbreviation for the absolute
address of the virtual code that normally resides in the
first 400 logical frames of the hard disk. Each frame of
the operating system is loaded into its corresponding
ABS address during the initial start-up procedure.
Normally, the ABS section does not have to be reloaded
during system operation.

3) FILE-SAVE section. This section contains the support-
ing accounts and files needed for operation. This section
is structured in the same manner as the user's backup
media. The system generation procedure pauses between
each of the loading phases, prompting the operator to
mount the appropriate tape or diskette. (During sys-
tem generation, a user may replace the standard PICK
FILE-SAVE tape with his/her own backup media in order
to generate a customized system.) The process of re-
loading the data area from a FILE-SAVE tape or disk-
ette is referred to as a "full restore." Users are advised
to perform a full restore occasionally, as this procedure
reorganizes the disk files and applies any "reallocation
parameters" that may have been designated prior to
the creation of the FILE-SAVE tape.

User Interface

All operations begin at a level referred to as the Terminal Control
Language (TCL) level. This level is indicated to the user by means
of the ">'" prompt character.

PICK Operating System 5-9

Each user-entered instruction or command sequence is parsed by the
TCL processor to separate and interpret the various parameters.
Depending on the class of the command, several subsequent processes
are activated.

Each "verb" (command) is stored in a file called the master dictionary
(MD). The verb definition indicates the absolute address of the
virtual code that supports the requested function. When a user enters
a command, the command verb definition is found in the MD. (MD
entries are hashed to improve speed.) Control is then transferred to
the code specified in the verb definition. Some commands require an
item name specification—in the form of an item identifier or a list
of item identifiers. (An item identifier is the PICK equivalent of
a key.)

PICK commands can be extremely simple. For example, the TIME com-
mand requires only one parameter:

>TIME <CR>
| 1:00:00 07 DEC 1983

More complex commands can be specified to ACCESS, the dictionary-
driven, English-like data retrieval language processor. The generalized
sentence structure for ACCESS allows the specification of the
following:

1) A verb. An action-oriented command defining which
ACCESS process to activate. Verbs include LIST, SORT,
LIST-LABEL, SORT-LABEL, T-DUMP, COUNT, etc.

2) A filename. The name of the file from which the data
is to be retrieved.

3) Selection criteria. A set of parameters to limit the
set of data to be retrieved.

4) Sequence criteria. For sorting commands, the sequence
criteria specify the sort key or keys for producing the
data in a specific sequence.

5) Output fields. The name or names of the data fields
(called "attributes") to output. These names are de-
fined by the user and stored in the dictionary level of
the previously-specified filename. These items define
both the location of a data item and any special
functions to perform on the data prior to output.

5-10 Microprocessor Operating Systems, Vol. Il

6) Modifiers. Modifiers allow a user to specify special
reporting functions, such as the definition of report
headings and/or footings, columnar totals, and output
device routing.

7) Options. Options allow the user to specify functional
operations (e.g., directing the output to the terminal
or printer). Most of the options have an "English-like"
equivalent in the form of a modifier. Modifier vs. option
use is left to the user's personal preference.

For example, the following is a valid ACCESS command containing
a verb, filename, selection criteria, sequence criteria, report out-
put attributes, and modifiers:

>SORT CUSTOMER-FILE WITH INVOICE.AMOUNT > "O" AND WITH
RECEIPT.AMOUNT = "0" BY CUSTOMER.NAME BREAK-ON CUSTOMER.NAME
INVOICE .DATE TOTAL INVOICE.AMOUNT TOTAL RECEIPT.AMOUNT CONTACT.NAME
PHONE . # HEADING "PAGE 'P' CUSTOMERS WITH INVOICES DUE PRINTED AT
'DL'" LPTR

The Virtual System Debugger

The system debugger is capable of addressing and updating/displaying
any element of data on disk or in memory. Data elements can be speci-
fied symbolically or directly, by address.

The debugger also supports breakpoints, traces, iteration control,
and direct program instruction address branching.

The PICK/BASIC Symbolic Debugger

The PICK/BASIC debugger allows a user to debug application soft-
ware written in PICK/BASIC source code. Through this debugger,
every program vdriable is accessible to the programmer for interro-
gation and/or modification.

The PICK/BASIC debugger supports breakpoints, traces, interactive
and symbolic debugging, iteration control, display of program source
text, and direct program instruction address branching.

PICK Operating System 5-11

Data Structures

The PICK operating system organizes data into logical pages (or
"frames"), typically in increments of 512 bytes per page. Each of these
512-byte pages stores 500 bytes of data, including the special system
delimiters used to define the beginning and the end of items and at-
tributes. The first |2 bytes of each data frame are reserved as a
linkage field. The linkage field contains "forward" and/or "backward"
linkage pointers to other frames when data crosses a frame boundary.

Data (record) storage supports variable length files, items (records),
attributes (fields), values (portions of an attribute), and subvalues
(portions of a value).

The File System

Files are defined by pointers to absolute locations on the physical
disk drive and stored as descriptive item identifiers in a user's
master dictionary. There are two types of file pointers. The first,
and most frequently used, is referred to as a "D" pointer. A "D"
pointer indicates that the file was created from the current account
name. The second type of file pointer is a "Q" pointer. This file
pointer allows an account to access a file that was created on a
different account. This file pointer differentiation is fransparent
to the user. The difference is only important to the backup processor,
which saves all of the "real" (D-type) files for a particular account.

Every item written to, or retrieved from, disk goes through the PICK
"hashing algorithm." Using this algorithm, each item identifier (key)
is "hashed" into a group (a portion of a file) and then added as the
last item in the group.

As an item is written to disk, the system calculates the size of the
item (in bytes) and appends a 4-byte "byte count" field to the begin-
ning of the item. This byte count field defines not only the item's
size, but exactly where the beginning of the next item in the group
will be found.

The variable-length, three-dimensional record structure is imple-
mented by using a special set of characters as reserved system de-
limiters. These characters define the separation of attributes (fields),
values, and subvalues. By using a delimiter to define the end of a
field, the system does not have to store any more data (i.e., pad char-
acters) than is actually defined in the field.

5-12 Microprocessor Operating Systems, Vol. Il

Scheduling Techniques

Each process is allocated a "time slice" whenever the process is acti-
vated. Normally, the time slice for an interactive process is several
times greater than the time slice for a batch process. This difference
prevents batch processes from degrading system throughput.

An interactive process is deactivated when any of the following con-
ditions exist:

I) A disk request is issued. The process is reactivated as
soon as the requested frame is found.

2) The time slice is exhausted.

3) The user voluntarily terminates a time slice.

Memory and Resource Management

The PICK operating system automatically keeps track of unused
system disk space in the "overflow" table. This table contains the
disk locations at which contiguous and/or linked frames of avail-
able space are located. In allocating space, the system depletes
whichever overflow block is closest to the requirements of the re-
questing process.

The PICK operating system uses a virtual memory management
scheme. In this scheme, the disk is divided into 512-byte pages that
can be "paged in" to a main memory buffer.

Each 512-byte page allows the storage of 500 bytes of data, including
system-supplied delimiters. The first 12 bytes of a frame are re-
served for "linkage" fields. When a record does not physically reside
in a frame, the system automatically "attaches" a frame (called a
"linked" frame) and updates the "forward" link in the first frame,
and a "backward" link in the (overflow) frame. This process is re-
peated as necessary. As such, there is no limit to the number of
items that can be stored in a file.

When a process requests a record from a disk file, the system hashes
the item identifier to the "group" in which the item (record) will
be found. Having found the actual disk address of the group, the
system accesses the Hash Address Table (HAT), to see if the frame

PICK Operating System 5-13

is already in main memory. If the frame is already in memory, the
data is made available to the requesting process. If the frame is
not in memory, it must be brought into memory from the disk. (If
main memory is physically full, the system automatically "flushes"
the least-frequently accessed frame that is currently resident in
main memory.)

In the event that the data item is not main memory resident, and
the item was not found in the first frame of the group, the system
begins a lateral, sequential search of each item identifier in the
designated group, by paging in another data frame. If the specified
record is found in the frame, the user's process is reactivated, al-
lowing further processing on the data. If the record is not found,
the "forward link" field is checked, and the frame specified in the
linkage is paged into main memory, if it is not already present.

Garbage Collection

The only process that requires garbage collection is PICK/BASIC.
Each variable in a program is assigned a storage location, normally
requiring less than 50 bytes. As a string or variable increases in
size, it is automatically moved to either a 150- or 250-byte storage
area. If a string or variable increases in size beyond 250 bytes,
it is automatically moved to a "free storage" area where it can con-
tinue to grow—+to a maximum of 32,000 bytes.

Resource Management
The operating system supports device-independent software by al-

lowing a user to direct the output from a process to a device by
simply naming the device prior to execution of the process.

The File System
The PICK operating system has four file levels:
SYSTEM

MD (Master Dictionary)

5-14 . Microprocessor Operating Systems, Vol. |

Dictionary
Data

Each level of this file structure defines the next lower level and
has certain features and functions:

) SYSTEM. This file level defines the disk locations
of each individual "account" on the system—along with
the associated access and retrieval codes, the password,
the privilege level and the accounting history update
options.

2) Master Dictionary. This file level defines all files
associated with an account—verb definitions, pointers
to any files "outside" of the account, and pointers to
procedures that function like verbs.

3) Dictionary. This file level defines the location of the
individual fields within a data file, along with a pointer
to where the data file is located.

4) Data. This file level is where data actually resides,
stored in the PICK file structure format.

File Definition

Files are defined under the TCL processor by means of the CREATE -
FILE command. In the creation of a file, several parameters must
be specified. These parameters include:

) Filename. Any combination of alphanumeric characters,
with a maximum length of 50 characters.

2) Modulo. The number of contiguous groups (frames) to
allocate to the file. The current maximum modulo is 32K.
This parameter may be changed at any time for a more
efficient "distribution" of items in a file.

3) Separation. The number of frames per group, normally one.

Note that the modulo and separation parameters are specified indi-
vidually for both the dictionary and the data levels of a new file.

PICK Operating System 5-15

File Access and Protection

All PICK files support random access operations. Files are main-
tained from TCL with the following commands:

>CREATE-FILE
>DELETE-FILE
>CLEAR-FILE

TCL commands that access files automatically open and close files as
needed during processing.

The PICK operating system provides an access/update protective
mechanism for data files. This scheme defines whether a user may "ac-
cess only" or "access and update" a file from a particular account.

References

The IDBMA Directory of PICK/Reality Hardware Systems and
Services, International Data Base Management Association,
1983.

The IDBMA Directory of PICK/Reality Software, International
Data Base Management Association, 1983.

Operating Software by PICK SYSTEMS: An Overview of the PICK
Operating System, PICK Systems, 1983.

The Second Decade: Move Over Herman, PICK Systems, 1983.

Sisk, J., The PICK Pocket Guide, PICK Systems, 1982.

Sisk, J., The Reality Pocket Guide, JES & Associates, Inc., 1982.

Truax, P., "Generic Operating Systems: Bringing the Pieces
Together in Office Systems," Computerworld, November 29,
1982.

5-16 Microprocessor Operating Systems, Vol. Ill

Jonathan Sisk began working with the PICK Operating System in 1979,
in the area of applications programming. He joined the technical
support staff of Microdata Corporation in late 1979 and provided
technical support and presentations to end users, dealers, and di-
rect sales outlets. In 1981, Jonathan formed JES & Associates, Inc.,
specializing in services and software for the PICK Operating System.
Since then, Jonathan has written the PICK Pocket Guide and the
REALITY Pocket Guide, and now provides technical training seminars
to end users and many of the PICK Licensees.

William W. Walsh serves as marketing vice president and is also
responsible for planning and product implementation. He has been
involved with the PICK Operating System since 1971 when, at
Microdata, he was instrumental in the development of the PICK-
based REALITY system. He holds a B.S. degree in Electrical
Engineering from the University of Notre Dame, an M.B.A. in Finance
from Saint Louis University, and an M.S. degree in Management Science
from United States International University.

Kenneth O. All is director of corporate communications at PICK
SYSTEMS. He gained his first experience with the PICK operating
system while serving as an agency public relations account manager
for Microdata in 1976. Prior to joining PICK in 1982, Kenneth held
management and creative positions in advertising and public relations
with firms such as Control Data, International Rectifier, and Gen-
eral Dynamics.

Chapter 6

THE polyFORTH OPERATING SYSTEM

A High-performance Multiuser System
for Real-time Applications

Elizabeth D. Rather
FORTH, Inc.

polyFORTH

6

The polyFORTH system is a complete, integrated programming en-
vironment that includes a multiprogrammed operating system, a
FORTH high-level language compiler, a resident assembler, and many
utilities. polyFORTH combines the concept of a fully-integrated
programming environment with the high performance required for
demanding real-time applications.

polyFORTH is available in two versions. polyFORTH Il executes on
most 8- and 16-bit processors; polyFORTH/32, available for the
Motorola 68000 and the NCR 9300, is an enhanced version that fea-
tures 32-bit addressing and 32-bit-wide stacks. These systems, in-
troduced in 1982, represent the fourth generation of systems of-
fered by FORTH, Inc. since the company was founded in 1973 by the
original developers of the FORTH language.

Some key features of polyFORTH are:

I) Hardware requirements. Development systems require
only 32K bytes of memory, with nearly 16K available for
user programs. Disk drives are required for program sup-
port, but not for PROM-based applications. The run-time
nucleus may be as small as IK bytes.

2) Multiprogramming support. Any number of asynchronous
tasks can run concurrently. These tasks may support mul-
tiple users on even the smallest hardware configurations.

3) Real-time performance. Real-time performance is
achieved by a fast event-driven scheduling algorithm,
zero-overhead interrupt processing, and the use of as-
sembly language code for all time-critical operations.

4) Market applications. polyFORTH is designed to be used
in all real-time applications, including process control,
robotics, data acquisition/analysis, scientific/medical in-
strumentation, and communications.

polyFORTH Operating System 6-3

5) PROMable code. polyF ORTH Level 4 systems may run in
PROM. Target applications may include any subset of
polyFORTH features, such as the disk handler, the serial
/O device drivers, the interactive human interface,
over 400 primitive operations, and even (under special
license) the FORTH compiler and assembler—to provide
end user programmability.

6) Compatibility. polyFORTH contains all the principal
features of the FORTH-83 international standard.
polyFORTH Il systems are mutually compatible on all
processors; polyFORTH/32 systems are also mutually
compatible. Moreover, polyFORTH/32 systems can ex-
ecute polyFORTH Il applications with minor modifi-
cations.

7) Size. The minimum polyFORTH Il target nucleus re-
quires only IK bytes while the minimum polyF ORTH/32
nucleus needs |.5K bytes. The full nucleus requires 8K
bytes and | 6K bytes for polyF ORTH Il and polyF ORTH/32,
respectively. A complete polyFORTH Il system typically
uses |0K-12K bytes of memory while a polyF ORTH/32
system uses approximately 32K bytes. Finally, polyF ORTH
Il requires at least 32 bytes of RAM per task; poly-
FORTH/32 requires 48 bytes.

polyFORTH is a multiuser, multitasking operating system. Program-
ming is supported by a FORTH high-level language compiler, a FORTH
assembler, and a bi-level interpreter. The system also includes a
string-oriented editor, a disk copy utility, and a program listing
utility. Over 400 resident commands are supplied as standard equip-
ment, along with a math library and a data base support system.

In addition to more than 1000 pages of printed documentation, the
system supports on-line interactive documentation. Sixty days of free
hot-line support are included when the system is purchased. A poly-
FORTH user can optionally obtain a one year support contract (with
system upgrades), introductory FORTH courses, advanced FORTH
courses, and consulting/programming services.

Memory Organization

Figure 6-1 contains a diagram of the memory organization for a typ-
ical multiuser polyFORTH system. The actual sizes of the various

6-4 Microprocessor Operating Systems, Vol, |11

components are user-configurable to suit the demands of a particular
application.

The nucleus of a FORTH system requires 8K bytes on 8- and |6-bit
processors and (6K bytes on 32-bit processors. The nucleus—the
only portion of the system that is normally stored in binary form—
is either PROM-resident or booted from disk. The nucleus contains
the FORTH compiler, the text interpreter, the address interpreter,
severol hundred elementary operators (for common functions such as
arithmetic), disk and terminal drivers, the multiprogrammer, the
text editer, and (on most systems) the assembler. These routines are

LOw
MEMORY -
USER
PRE-COMPILED
FORTH DICTIONARY
SYSTEM
VARIABLES
ELECTIVE
DEFINITIONS
User Area -
PORNEIERSIARE {Terminal task)
USER AREA 1 INPUT ME SSAGE
(lerminal task) BUFFER
USER AREA 2 /
(terminal task) H‘H“"“‘-x_
\
FETURMN STACK
USER AREA 3
{terminal task) USER
VARIABLES
) ——
USER AREA 4
{conirol task) \Eﬂ
PARAMETER 5TACK —_—
OPERATOR - ser Area -
. {Control task)
BLOCK RETURN STACK
3 e UseA
HIGH
MEMOCRY BUFFERS _ VARIABLES

Figure 6-1 The Memory Organization of a Typical Multiuser polyF CRTH System.

polyFORTH Operating System 6-5

all reentrant and are globally available. The source code for the
nucleus is written in FORTH and its assembly language. (This source
is available at extra cost.)

Following power-up or a bootstrap load, a set of commonly-used rou-
tines is loaded. These "elective" routines contain such functions as
extended precision arithmetic, clock and calendar support, the def-
initions of the specific multiprogrammed tasks in use, and applica-
tion routines that are available to all system users. Routines in this
section are fully reentrant and globally available. Source for these
elective routines is included on all polyFORTH systems.

A small region of RAM contains a global set of vectors that control
central system functions, such as disk 1/O. In high memory, there
are four 1024-byte buffers used for disk I/O. (The number of buffers
may be adjusted by the user.)

User Dictionary, Scratch Pad, Stacks, and Variables

Each user in the system has a private dictionary of routines, which
is linked to the dictionary of globally available nucleus routines
and elective routines. In a software development environment, this
dictionary would contain the routines that are under development by
a programmer; in @ multiuser application, these routines might be a
subset of the application software (organized as an overlay). Rou-
tines in a user dictionary are not normally accessible to other users
in the system.

Each user also has a local "scratch pad" region (named PAD) that is
used by most string handling operations. The string editor uses this
region to hold several buffers during operation.

All tasks have a pair of push-down stacks that control task functions.
The "parameter stack" is the main set of working registers—used
to pass parameters between FORTH routines. The "return stack" con-
trols the logical program flow through FORTH routines, loops, etc.

Each task also has a region of variables used by routines in the re-
entrant shared dictionary. Some of these variables control hardware
operation (e.g., special VDT functions), while other variables con-
trol software or system functions (e.g., number conversions or file
accesses). About one-fourth of this variable region is available for
application-specific user variables.

6-6 Microprocessor Operating Systems, Vol. |l

Disk 1/0

One of FORTH's key features is its simple and efficient standard
virtual memory format that maximizes transportability across many
different types of mass storage devices. Central to this standard
is the organization of mass storage media into 1024-byte blocks.
Blocks normally reside on disk devices. The system provides two or
more memory-based disk buffers; blocks are automatically read into
these buffers when the blocks are referenced. Each block has a fixed
block number, which is a direct function of the block's physical lo-
cation on the mass storage media. If a block is modified in a memory
buffer, the block will automatically be replaced on disk before
the buffer is reused. In this manner, explicit reads and writes are
not required; the programmer may presume that data is in memory
when referenced. The common block size helps make applications
easily transportable.

A block is analogous to a standard sector in a CP/M file. Since the
block number maps directly to the physical location, however, block
access doesn't require a directory or chaining logic. The poly-
FORTH system disk drivers also optimize sector mapping to provide
high-speed sequential block accesses. As a result, polyFORTH
offers better disk performance than many conventional operating
systems.

The |K-byte block size is a convenient unit. For example, FORTH
source code is stored in blocks and the standard editor formats this
text into |6 lines of 64 characters each for display and editing.
Blocks usually contain several related routines, forming a syntactic
unit that roughly corresponds to a paragraph of prose. Groups of
blocks are "loaded" together to comprise an application. This load-
ing process simply directs the text interpreter to process the spec-
ified application text and compile the results into memory in a
directly executable form.

Blocks are also used to store data. A programmer can combine small
records into a block or spread large records over several blocks.
The data base support system (described in a later section) provides
a convenient vocabulary for defining and accessing such records.

~

Serial 1/0

The standard serial 1/O protocol in polyFORTH allows applications
to communicate with printers, printing terminals, "intelligent" tfer-

polyFORTH Operating System 6-7

minals, "dumb" terminals, modems, etc. This protocol assumes mini-
mal intelligence in the external device. The protocol also provides
a list of vectored routines so that the task supporting each serial
port may have its own private set of hardware-specific functions
(fransparent to the software). The serial 1/O functions include:

Command Description

c EMIT Transmits an ASCIl character ("c")
to the task's serial port.

an TYPE Transmits a string (of length "n"
at address "a") to the task's port.

KEY Awaits one keystroke from the task's
keyboard and returns the received
ASCII code on the stack.

an EXPECT Awaits a string (of length "n") from
the keyboard and places the re-
ceived characters in memory (at ad-

dress "a").

CR Performs a "new-line" function (car-
riage return and line feed, or equiv-
alent).

PAGE Performs a "new-page" function (clear

screen, form feed, or equivalent).

rc TAB Positions the cursor to row "r'", col-
umn "'c."

Actual processing of incoming and outgoing characters is normally
interrupt-driven. In this manner, when a task is inactive waiting
for an 1/O interrupt, other tasks can execute.

Multitasking and Multiprogramming

polyFORTH is designed to support any number of concurrently-
executing asynchronous processes. The entity executing a process is
called a task. Each task has its own stacks and user variables. De-
pending on the task's particular needs, the stacks and user variables

6-8 Microprocessor Operating Systems, Vol. Il

may be defined to have different sizes; the minimum total task size
is approximately 32 bytes. The number of tasks that may be defined
is limited only by the available hardware resources (e.g., memory).

There are two types of tasks: terminal tasks and background tasks.
Terminal tasks can support a serial I/O port, and hence a human user.
These tasks require a larger user area than background tasks require.
Terminal tasks can also have a private dictionary of commands.
Background (or '"control") tasks, on the other hand, do not have ac-
cess to a serial 1/O port. Background tasks have smaller and simpler
user areas. Background tasks are normally used to control hardware
functions.

Tasks are linked in a round-robin fashion. Normally, all tasks oper-
ate with the same priority. Access to the processor is granted on
an event-driven basis. A task that is running will continue to run
until it requests an I/O operation, requests a specified time delay,
or executes the word PAUSE, which temporarily relinquishes the
processor. If a task is awaiting 1/O, the interrupt that signals
I/O completion will mark the task "ready" and the task will be
activated on its next round-robin turn.

This algorithm was designed to maximize service to all tasks. The
round-robin polling cycle requires only one machine instruction per
task. Similarly, the process of activating and deactivating tasks
is extremely simple; Table 6-1 lists the number of instructions re-
quired for some typical microprocessors.

. Number of Machine Instructions
Microprocessor

Activate Deactivate
8080/780 17 16
8086/88 9 5
LSI-11 7 4
6800 19 12
6809 9 4
68000 9 5
1802 15 10
Table 6-1 The Number of Instructions Needed to Activate and Deactivate

polyFORTH Tasks for Some Common Microprocessors.

polyFORTH Onerating System 6-9

Since all tasks share the same routines in the reentrant dictionary,
all tasks have equal access to application variables that influence
their actions. No special structures are needed for inter-task com-
munication. The principal commands for task control are:

Command Description
t ACTIVATE Starts the task (hamed "t").
PAUSE Deactivates the current task for one

pass through the round-robin queue
and allows other tasks to run. This
command is used in processor-in-
tensive routines to optimize overall
performance.

n MS Deactivates the current task for
a specified number of milliseconds.

STOP Deactivates the current task indefi-
nitely (i.e., until an interrupt or
ACTIVATE awakens the task).

Interrupts

The polyFORTH system includes a standardized method for servicing
hardware interrupts. There is no software interposed between the
occurrence of the interrupt and execution of the interrupt service
code except when the hardware supports only a single interrupt and
the interrupting device must be identified by polling. In this case,
a standard polling routine is executed to transfer control to the
device-specific code.

Device drivers assume that tasks, executing high-level FORTH
routines, are responsible for device control and that these tasks will
request device action. A device request is normally made by a code
routine that terminates with a call to the "deactivating" code in the
multiprogrammer. The task will remain inactive until the device has
signaled completion by means of an interrupt. The interrupt code
performs any necessary immediate action and "wakes" the inactive
task (see Figure 6-2). The awakened task will continue executing its
routine and complete any additional processing that is required.
Typical interrupt latency (from the interrupt until the task resumes
execution) is less than a millisecond.

6-10 Microprocessor Operating Systems, Vol. Il

\ \ WAKE
\a
user 1 //////
interrupt
code \/1
Time-critical

functions performed Task (shaded box) awakens
without delay when polled and performs less
urgent high-level functions.

Task Round-robin

Figure 6-2 Example of a Timer Interrupt Waking a Task.

Some devices (such as disk drives) must be shared by several tasks.
A simple protocol is used to resolve potential conflicts between
these tasks. This protocol preserves the identity of the task cur-
rently using the device so that the interrupt code will always wake
the correct task.

Target Compiling

polyFORTH supports two methods for preparing a binary object
program for future execution. Both methods assume that the entire
program is to be saved—compilation in FORTH is fast enough that
the effort required to maintain libraries of precompiled routines
on disk is not justified.

The turnkey compiler, shown in Figure 6-3, saves (on disk) a binary
image of the program (polyFORTH plus the application) that is cur-
rently compiled and executing. The saved program may subsequently
be booted and run. The program's image necessarily includes all of
the polyFORTH operating system. The program is not ROMable be-
cause the variables and defined commands are intermingled.

The target compiler, on the other hand, compiles the object program
entirely from source, starting with those FORTH primitives that will
be required for the program's execution. (See Figure 6-4.) FORTH
routines required for development support need not be included in

polyFORTH Operating System 6-11

the resulting object code—complete applications may run in under
IK bytes. The object code is ROMable and may run in a hardware en-
vironment that is quite different from the host system.

The target compiler includes the complete source for the polyFORTH
system. Thus, a developer may use the target compiler to recompile
polyFORTH with modifications such as a different disk driver or a
modified multiprogramming algorithm. For example, the target com-
piler is commonly used to modify polyFORTH to execute on custom
hardware.

The User Interface

A polyFORTH user may interact with the system in one of two ways:
indirectly through an application written in FORTH and running in

Turnkey
Compiler

Bootable object disk
Running program (identical to running program)

Figure 6-3 The Turnkey Compiler Saves a Bootable Image of an Executing
Program.

Target
Compiler

Source on disk Object on disk Object may be
(May omit unnecessary put in ROM
polyFORTH functions)

Figure 6-4 The Target Compiler Translates FORTH Source into ROMable Ob-
ject Code.

6-12 Microprocessor Operating Systems, Vol. Il

the polyFORTH environment or directly by means of FORTH com-
mands. The first method is entirely under the control of the pro-
grammer and may involve any combination of function keys, menus,
or—the preferred method—a special vocabulary of English com-
mands specific to the application.

The programmer communicates with polyFORTH by using commands
or "words" found in a dictionary. These words are, in fact, elements
of the FORTH language. As shipped, polyFORTH systems include
about 500 such words. Typically, a programmer will add many more
words in the course of developing an application. The finished appli-
cation will be fully controlled by a relatively few commands at the
top of a pyramid of defined words. During development, all words are
accessible at all times. The developer, however, can restrict the end
user to a small dictionary subset.

In FORTH, a word is any string of characters bounded by spaces.
Any character can be included in a word or can begin a word; there
are no "special characters" whose use is restricted. Thus, characters
that represent arithmetic operators or resemble punctuation can be

words if bounded by spaces. For example, the following line contains
seven FORTH words:

FORTH begin + ? 3.14 (CR) EMPTY-BUFFERS

The FORTH Language

The polyFORTH operating system and the FORTH language are in-
timately connected. The system, the compiler, and the application
commands_are indistinguishable and follow the same simple, consist-
ent syntax. The following paragraphs provide a brief overview of the
FORTH language.

The FORTH Dictionary:

The FORTH dictionary is a threaded list of variable-length items.
The dictionary is extensible and grows toward high memory as new
words are added. Terminals may have private dictionaries as men-
tioned in a previous section.

Special "defining words" are used to add new words to the dictionary.
The most common defining word is ":" (colon). The execution of ":"

polyFORTH Operating System 6-13

causes FORTH to construct a dictionary entry for the word following
the colon, as shown in Figure 6-5. The definition of this new word,
in the form of pointers to previously-defined words, is also placed
in the dictionary. A definition is terminated by ";" (semicolon).
Words such as "ABC" in Figure 6-5 act as verbs, causing FORTH ac-
tions. (Definitions can also name variables or constants.)

One of FORTH's most powerful and unusual features is the language's
extensibility. Users can not only extend the language by adding
new commands, but they can also define new types of commands. This
capability is similar to the data type definition facility in the
Pascal and Ada languages. And, unlike most other languages, new
FORTH definitions are not constrained in any way. For example, a
user can define a special type of automatically indexed array. Or, a
word that "names" the bits of an I/O interface port can be defined
so that whenever the name is used, the correct bit values are read
and returned.

Relative
byte
Pointer to next word
0,1 link ———— in dictionary search
order
2,3 3 A

Name field

4,5 B C

Address of code to

6,7 code field —— start address

interpreter

8,9 a(A)

Parameter field -
addresses of

each word in
10,11 a (B) definition
12,13 a(C) Ends with EXIT

(compiled by ;)
which exits

address interpreter
14,15 a (EX|T) for this wordp

Figure 6-5 An Example of a FORTH Dictionary Entry.

6-14 Microprocessor Operating Systems, Vol. |l

FORTH Interpreters

FORTH is primarily an interpretive language—program execution
is controlled by data items rather than by machine code. Although
many interpreters are slow, FORTH avoids interpreter speed bottle-
necks by maintaining two levels of interpretation.

The first level is the text interpreter. The text interpreter oper-
ates in a conventional manner, parsing text strings from terminals
or mass storage devices and looking up each word in the dictionary.
When a word is found, its definition is executed (unless the task
is operating in the compile mode as discussed below) by invoking the
address interpreter.

The address interpreter interprets strings of addresses by executing
the definition pointed to by each address. Most dictionary defini-
tions contain addresses of previously-defined words, which are, in
turn, executed by the address interpreter. This mode of execution
requires no additional dictionary searches, since the previously-
defined words have already been compiled. (The dictionary entry for
each previously-defined word already contains addresses. When the
word was defined, the text interpreter searched the dictionary for
each word used in the definition and placed the resulting addresses
in the dictionary entry.)

The address interpreter has several important properties. First, the
address interpreter is fast. On many processors, the interpreter ex-
ecutes only one or two overhead machine instructions per word (in
addition to the code implied by the word itself). On some processors,
the address interpreter is slightly faster than a subroutine call
—and because of the pushdown stack, there is no additional call-
ing sequence overhead.

Second, the address interpreter uses compact definitions. Each word
used in a definition is compiled into a single 16-bit cell (32 bits
in polyFORTH/32). This size compares favorably with the code size
generated by an assembler macro. For example, a 20 byte macro that
is used 10 times requires 200 bytes of memory. In FORTH, this rou-
tine would be assembled into the same 20 bytes plus a [0-byte dic-
tionary entry. In FORTH, however, each use requires only two bytes.
So, the total memory needed for 10 uses in FORTH is 50 bytes (20 +
10 + 10¥2)—a 4:1 memory savings. In addition, because FORTH sup-
ports the definition of large vocabularies in a natural and easy way,
FORTH can be easier to use than a large library containing hundreds
of small assembly language subroutines.

polvFORTH Operating System 6-15

Finally, FORTH high-level definitions are machine-independent, since
the definition of one word in terms of other previously-defined words
does not depend on the processor that interprets the definition. As
a result, most words in a FORTH application are defined by "' and
interpreted by the address interpreter. In fact, the address inter-
preter itself is defined in this manner.

Structured Programming

FORTH is a highly-modular, totally structured language that strictly
adheres to the following principles:

) All words must be defined before the words are subse-
quently referenced. This rule holds for operations, con-
stants, variables, etc.

2) FORTH programming techniques encourage top-down
design and bottom-up coding/testing to ensure maxi-
mum reliability.

3) Logical program flow is restricted to sequential, condi-
tional, and iterative patterns. Predefined words are
provided to implement the most useful program control
structures.

4) FORTH encourages the programmer to work with many
small, independent modules for maximum testability and
reliability.

A FORTH Programming Example

The following FORTH definition is extracted from an actual telescope
control application:

: TRACKING TRACKER ACTIVATE REFRESH BEGIN
HA WANTED DC WANTED
CHANGED @ IF O CHANGED ! REFRESH THEN
SLOWLY LOWER EXECUTE 10 O DO FAST LOOP AGAIN ;

This text comprises the highest level definition that prescribes the
behavior of the TRACKER task. This task is responsible for tracking

6-16 Microprocessor Operating Systems, Vol. lli

the telescope and maintaining a real-time VDT display showing the
status of both the telescope and its data system. The word TRACKING
is executed as part of the startup sequence for this system. This
word REFRESHes the display and enters an infinite loop that:

) Computes new WANTED positions for each of the tel-
escope's two coordinates of motion, hour-angle (HA) and
declination (DC). These desired coordinates are used
to update the telescope's actual position.

2) Checks the variable CHANGED for a nonzero value. This
variable will be set by any other task that changes a
major observing function. For example, CHANGED will
be set if a new data acquisition mode is selected or if a
new telescope position is requested. If CHANGED is
nonzero, the screen is REFRESHed again to display the
new information and CHANGED is reset. The FORTH
words "@" and "!" fetch and store values, respectively.

3) Finally, the display is updated. SLOWLY changing items
are updated and a vectored routine that displays data
system information in the LOWER portion of the screen
is EXECUTED. Next, the FAST changing items are dis-
played ten times—resulting in a 10:1 ratio in display
rates.

Most of the words in this example are part of the application vo-
cabulary. Each word can be executed directly from a terminal during
testing. And, in fact, each component of these words can be sim-
ilarly tested interactively—without any need for special testing
"harnesses" or separate debugging packages. Moreover, the application
can easily be changed. Yet, this simple task definition is one of the
longest and most complex definitions in the entire telescope control
application!

Data Base Support

Many data base management packages provide a predefined structure
of files and index methods into which the user must fit his/her data.
This approach often imposes some performance penalties when com-
pared with a structure designed specifically to support the intrinsic
organization of the original data. The data base support system in-
cluded with polyFORTH provides a set of tools that a programmer

polyFORTH Operating System

can use to define an efficient, customized data base. First developed
in 1974, the data base system has been used on some extremely large
and complex data bases—such as one with 600 megabytes of data and
32 simultaneous users. The polyF ORTH data base management system

provides the following features:

D)

2)

3)

4

5)

6)

7)

Named files. A file is a contiguous region of disk blocks
whose size and location are controlled by the programmer.
Contiguous files improve performance by minimizing disk
head motion and eliminating unnecessary disk accesses for
directory look-ups. A file becomes a "current file" when
its name is invoked. No "open'" or "close' procedures are
necessary.

Records. Each file is organized into records of a fixed
length. The effect of variable-length records may be
achieved by chaining multiple short records. At any time,
a "current record" is selected. Actual access to the
data in a record is accomplished by referencing named
record fields. Field accesses always reference the cur-
rent record of the current file.

Record layout. A list of named record fields is compiled
as a "record layout." Each field definition contains the
field's offset from the beginning of the record. This tem-
plate may be applied to any record for which the template
is suitable. All record data is accessed by field name.
Field names are independent of the actual relative loca-
tion of the field within the record.

Field type. Several field types are available—8-, 16-, and
32-bit binary integers and fixed-length strings.

Report generation. A report generator is included. The
report generator provides automatic pagination, dating,
line control, headings, columnar alignment, and sub-
totaling.

File sharing. The data base is shared by all tasks on the
system through reentrant accessing routines and com-
mon data buffers. Only one copy of a record may exist at
one time. Sensitive processes such as index manipulation
are protected by a lockout feature.

Error checking. The system checks for errors such as
invalid or missing parameters, requests for records that

6-18 Microprocessor Operating Systems, Vol. |

are not within the file, non-existent operators, missing
keys, redundant entries, disk errors, etc. Application-
dependent checks may also be added.

File Access Methods

FORTH provides the flexibility to define file structures and accessing
techniques that are appropriate to the natural relations within the data
base. The following techniques are commonly used with polyF ORTH:

) Direct access. All files may be treated as direct access
files. Given a record number, the user may obtain access
to that record "directly," without searches, directory
references, or other intermediate steps.

2) Sequential access. All files may also be accessed sequen-
tially—to take advantage of the natural record order.
Since records are contiguous (there are no record links to
process), this access method is fast.

3) Ordered index. An "ordered index" is maintained (sorted
by key) for the file. Simpler than the ISAM access method,
this access method provides a high-speed binary search
capability. In addition, sequential reports can be ob-
tained from ordered index files without sorting.

4) Hierarchical index. Multiple hierarchical indexes may be
established for a file. Each hierarchical level may be di-
rect or ordered (depending on the nature of the file data).

5) Hashing. Simple hashing algorithms may be used to pro-
vide very high-speed searches.

6) Chaining. Data records (e.g., all measurements for a
given sample or all line items for an order) may be
linked in any number of chains. Chains may be linked
either in order of entry or by key—to provide ordered
reporting without sorting.

polyFORTH Operating System 6-19

References

Brodie, L., "FORTH Offers Unique Solutions to Many Software
Programs," Computer Technology Review, Spring/Summer 1981.

Brodie, L., Starting FORTH, Prentice-Hall, New Jersey, 1981.

Dessey, R., and M. Starling, "Fourth Generation Languages for
Laboratory Applications," American Laboratory, February 1980.

Harris, K., "The FORTH Philosophy," Dr. Dobbs Journal,
September 1981.

Kogge, P.M., "An Architectural Trail to Threaded Code Systems,"
Computer, March 1982.

Moore, C.H., "The Evolution of FORTH - An Unusual Language,"
Byte, August 1980.

Pearlman, D., "FORTH Inspires a Fanatic Following," Personal
Computing, September 1983.

Rather, E.D., "Controlling the Escalating Costs of Software
Development," Defense Science 2001+, June 1983.

Ting, C.H., "Formal Definition of FORTH as a Programming
Language," Dr. Dobbs Journal, February 1982.

Elizabeth D. Rather is president of FORTH, Inc. She has over twenty
years experience in the computer industry. In 1970-1971 she assisted
C. Moore with the initial development of the FORTH language at a
government laboratory. In 1973, she was one of the co-founders of
FORTH, Inc.

Chapter 7

THE p-System OPERATING SYSTEM

The Universal Operating System

Thomas Burger
SofTech Microsystems, Inc.

7

The p-System is a general-purpose, interactive, single-user, multi-
tasking operating system that runs on many popular 8- and |6-bit
microcomputers.

The object code portability provided by the p-System is so different
from that achieved by other systems that the term "universality" is
used to emphasize the distinction. System software and application
programs generated by a p-System compiler can run without recom-
pilation or modification on almost any microcomputer system that in-
cludes an 8080, a Z80, an 8086/8088, a 68000, a 6809, a 6502, or a
9900 processor. In addition, p-System software runs on HP87 and on
LSI-11/PDP-11 computer systems.

The minimum configuration needed to support the p-System is 64K
bytes of contiguous RAM, a console (keyboard and screen), and at
least one disk drive. ROM-based versions of the system have been
produced that eliminate the requirement for a disk drive, but, in
general, at least one disk drive is required.

System Organization

The architecture of the p-System consists of three primary modules:
the operating system, the p-machine emulator, and the Basic 1/O
System (BI0S).

The operating system and utilities are written in UCSD Pascal. The
Pascal compiler translates these programs into machine code for a hy-
pothetical processor called the p-machine. To install the operating
system on an actual microprocessor, a p-machine emulator and a BIOS
are written in the microprocessor's native code. The operating system
and all its utilities are then ready to be run—without modification
or recompilation. (The operating system and utilities can be trans-
ported without modification to any computer for which a p-machine
emulator and a BIOS are available.)

p-System Operating System 7-3

As mentioned above, the p-machine emulator is written in the native
code of the host CPU. The machine code for the p-machine (called
p-code) is a binary code close to the native code of many common
microprocessors; thus, p-code programs execute on the emulator faster
than many source-code programs that run under an interpreter. The p-
machine instruction set is compact, so p-code programs often use
less memory than native code, particularly when the native code is
produced by a high-level language compiler.

The p-machine emulator is independent of the 1/O configuration of
the particular system; thus, the p-machine emulator is transportable
to any system that uses the same processor. For example, all 8086/
8088-based machines use the same p-machine emulator.

The BIOS handles all low-level 1/O services for the p-machine. The
BIOS is written in the native code of the host computer and must
be modified only when peripheral devices are changed.

Language Support

Compilers for UCSD Pascal, FORTRAN 77, BASIC, and LISP cur-
rently exist for the p-System. The UCSD Pascal, FORTRAN 77, and
BASIC compilers form the '"integrated languages." Each of these
compilers supports separate compilation. This feature allows a pro-
gram to be divided into separately compiled modules—each of which
provides a set of services to the user—for easier development and
maintenance. Programs can easily be constructed from these sepa-
rately compiled modules (called units). The separate compilation
feature allows users to modify or enlarge existing programs without
recompiling all the units making up the program. p-System units
provide the same benefits as Ada "packages" and Modula2 "modules."
Moreover, the units from which a program is constructed may be
written in any combination of Pascal, FORTRAN, or BASIC. In this
way, each unit may be written in the language most appropriate for
the task that the unit is to perform.

A unit is divided into two portions. One portion, the "interface sec-
tion," declares the services provided by the unit. This information
is needed by users of the unit. The other portion, the "implementa-
tion section," contains the internal implementation details of the
unit. A user doesn't need to know these internal details in order
to use the unit. In this manner, the implementation part of a unit
can be modified without requiring recompilation of any programs that
use the unit.

7-4 Microprocessor Operating Systems, Vol. Il

The p-code generated by the p-System compilers is very compact.
For many processors, it occupies much less memory than either source
code or machine code. The compute-bound portions of a program in p-
code will execute more slowly than equivalent native code. But, over-
all performance may be better with p-code. For example, a large
native code program may run more slowly than an equivalent p-code
program if, because of its increased size, the native code program
must frequently load overlays from the disk.

In many cases, only a small section of a program is critical to achiev-
ing performance objectives. What is needed is a means to use native
code only in those critical sections and to use p-code for the remain-
der of the program. A set of utilities called native code generators
are available for use in such situations.

A native code generator translates a p-code program into a mixture
of p-code and native code. Once a p-code program has been translated
intfo native code, universality has been sacrificed for performance
efficiencies. The native code generators can be run on any processor,
but the native code that they generate can run only on the target
processor for which the code was generated.

In order to use the native code generators, native code generator
information must be included with the program. This information is
included by using compiler directives to indicate the portions of
the program that are to be translated to native code. In many cases,
the developer will include native code generator information with
the program but will not perform the actual translation. This way,
a single version of the program is distributed and the end user can
apply the appropriate native code generator if he/she so desires.

Even though native code generator information may be included with
a program, the program is still a machine independent p-code program
until it is translated by a native code generator. The developer may
selectively translate only parts of the program into native code—to
optimize certain time-critical portions while retaining the more
compact p-code for the remainder. Although native code may ex-
ecute faster than p-code, it typically occupies |.5 to 3 times as much
memory.

Assemblers are available for each of the processors on which the
p-System is supported. Like the native code generators, the assemblers
can be run on any processor, but the code that an assembler generates
will execute only on a single type of host processor. The assemblers
can generate either relocatable or absolute object code. Relocatable

p-System Operating System 7-5

code contains information that allows the system to place the code
in any available area of memory; absolute code must be loaded into
a specific area of memory.

A linkage-editor utility is used to link assembly language routines
into high-level language units. Linking is only necessary for units
or programs that use assembly language routines.

Units are compiled in such a way that it is unnecessary to link or
bundle them together when forming a complete program. Units are
called in as needed by means of a virtual reference scheme. Each
unit contains a table indicating the names and virtual numbers of
all the units it references. When a program is invoked, the operating
system searches these unit-reference tables and locates the appro-
priate units. Tables, which map virtual numbers into physical unit
locations, are then constructed in main memory. These tables allow
calls and other inter-unit references to reach the correct destinations.

Each unit may directly reference up to 255 other units or segments,
but there is no limit on the total number of units that can be em-
ployed in a given program. Since the units that make up a program
do not have to be bundled together, sharing a single copy of a unit
among several programs is a common and useful practice. All the units
that make up a given program must be present when the program is
invoked. But, all these units need not be located on the same 1/O
device as the program.

Another advantage of this virtual reference scheme can be seen when
acommonly-used unit must be changed. Assuming that the change does
not affect the interface portion of the unit, all programs that ref-
erence the changed unit will automatically use the new version as
soon as the unit has been recompiled.

Command Format

The operating system and the system utilities are all menu driven.
A prompt line is always presented at the top of the screen and all
commands are invoked by single keystrokes. The organization of the
commands is hierarchical; each command will either cause an action
to occur or bring forth a new prompt line (at a lower level in the
hierarchy). For example, the main system prompt presents the menu:

Command: E(dit, R(un, F(ile, C(omp, L(ink, X(ecute, A(ssem, D(ebug,? [IV.2 R1.2]

7-6 Microprocessor Operating Systems, Vol. Il

Pressing "E" for Edit will invoke the system editor. The editor will,
in turn, present the following prompt:

>Edit: A(djust C(opy D(el F(ind I(nsert J(ump K(ol M(argin P(age ? [7R0.5]

Prompt line control is one of the many standard screen handling ser-
vices provided by the operating system and is available for use by
any program.

Program Debugging

The symbolic debugger is a tool for debugging compiled programs and
is invoked from the main system prompt line. The debugger allows a
user to display and/or alter memory, set breakpoints, and single-step
through a p-code program.

Memory locations are specified by entering either the name of a var-
iable or an address. Breakpoints may be set by line number (as shown
on a compiler listing) or by procedure number and code offset (from
the beginning of the procedure). Whenever a breakpoint is encountered
or an error occurs, the debugger is re-invoked.

Concurrency

Although the p-System is not a multiprogramming system, it does pro-
vide many services traditionally offered by multitasking or concurrent
operating systems.

Concurrency provides a way to deal with external, asynchronous
events. For example, the p-System's print spooler uses the system's
concurrency facilities to allow the user to edit a text file while
printing another file at the same time. The print spooler executes
and "spools" text files to the printer while the system is waiting
for the user to enter data from the keyboard.

Processes are declared much like procedures in UCSD Pascal and are
set into action by the intrinsic START. A single process may be
started many times should it be desirable to do so. The number of
processes that may be active at any one time is constrained only by
the amount of available memory. When a process is started, it is
assigned a priority and a separate stack area. Both the priority and
the size of the stack area are selectable by the programmer.

p-System Operating System 7-7

Semaphores are used to synchronize cooperating processes and to con-
trol critical sections of code. Semaphores may also be associated
with an external event or an interrupt. Whenever this external event
occurs, the associated semaphore is signaled. A process may synchro-
nize with the event by waiting on that semaphore. This signaling
facility allows a process to be used as an interrupt handler.

A task switch will only occur when a process waits on a semaphore
or a semaphore is signaled. No time slicing is automatically per-
formed. Whenever a signaled semaphore causes a process to be made
ready to run, the system examines all processes that are ready to
run and allows the highest priority process to resume execution.

Memory Management

Main memory is managed by the operating system as three logical-
ly distinct areas: the heap, the stack, and the code pool. The heap
provides dynamically allocated memory blocks, while the stack follows
the first-in-last-out rule for the order of allocation and dealloca-
tion. The code pool, like the heap, is dynamically allocated and is
used to hold code segments.

The heap is used for dynamically allocated memory. A program may re-
quest memory blocks of any size and later return this memory to the
system without regard to the order in which the memory was allocated.

As mentioned earlier, each process has its own stack. The stack is
used for procedure activation records. An activation record con-
tains the local data for the procedure, the procedure's parameters,
and control information that is used to return to the calling pro-
cedure. In addition, the stack is used for expression evaluation.
The stack always obeys the last-allocated-first-deallocated rule.

Dividing a program into units and segments overcomes the problems of
a small main memory. This technique, however, raises the problem of
managing memory in a way that meets the changing needs for data/in-
struction space. The p-System provides two solutions to this problem:
internal and external code pools. Both solutions provide virtual mem-
ory management for p-System programs.

An internal code pool (see Figure 7-1) can expand, contract, or shift
in response to program needs for stack and heap space.

7-8 Microprocessor Operating Systems, Vol. Il

The second solution provides an extended memory configuration (see
Figure 7-2) in which the "external" code pool is entirely separate
from the data area containing the stack and the heap. The architec-
ture of this facility is such that a wide range of host processor
memory organizations can be accommodated.

The dynamic and automatic management of code segments in the p-
System is a significant aid to program developers. Very large pro-
grams can be built with much less concern for main memory constraints
than is necessary in many other software environments. The same
program can run in a 64K-byte Z80 environment and in a 128K-byte
68000 environment. The performance in each environment will differ,
but the system will automatically adjust its memory management to
exploit the memory resources of the host environment.

The p-machine architecture requires that a segment be located in main
memory when it is executing. In addition, when a transfer of control
between two segments takes place, both segments must be present dur-
ing the transition. Much more space is usually available for the code
pool than is necessary to meet these minimum constraints. In this case,
as many of the most-recently used segments as possible are retained.

STACK

CODE POOL

HEAP

Figure 7-1 The p-System Internal Code Pool.

p-System Operating System 7-9

It is possible to override the operating system's least-recently used
method for selecting which segment to remove from memory. This is
accomplished by locking a group of one or more segments into memory.
The list of segments that are locked in memory can be changed at any
time and this list can include operating system segments in addition
to application program segments. Only the segments that are not
locked in memory are candidates for being swapped out of memory.

1/O Devices

All 1/O devices are categorized as either communication volumes or
storage volumes. The BIOS presents a uniform interface to all de-
vices within each of these groups. For example, a printer and a termi-
nal are both considered to be communication volumes and are accessed
in exactly the same manner.

A communication volume is a character-oriented device such as a
printer, terminal, or modem. For these devices, the BIOS interface
provides the ability to read or write a sequence of characters.

CODE POOL

STACK

HEAP

Figure 7-2 The p-System External Code Pool.

7-10 Microprocessor Operating Systems, Vol. Il

All storage volumes appear to the operating system as random access
devices that are composed of 512-byte blocks. The actual device
may be a hard disk, a diskette, RAM, or even tape. In the case of a
diskette, the BIOS may perform logical sector interleaving and track-
to-track skewing to improve performance. Storage volumes may have a
capacity of up to 16 megabytes. The BIOS can support larger storage
volumes by dividing a large physical volume into smaller logical
volumes.

The p-System can support up to 127 logical devices. Each device has
both a logical device number and a name. Communication volumes are
assigned standard names while storage volumes have user-assigned
names. The name of a storage device that contains removable volumes
(such as a flexible diskette drive) is always the name of the cur-
rently mounted volume. A device's logical device number does not
change.

Universal Medium

The many different disk formats currently in use hinder the movement
of a portable program from one system to another. Some of the differ-
ences include the size of the diskette (8- and 5%-inch), the number
of sides, the recording density, the number of tracks, the number of
sectors per track, and the size of each sector.

A special format for 5%-inch diskettes, called the Universal Medium
format, has been defined by SofTech Microsystems. This format can
be supported by most 5%-inch diskette drives/controllers. Many sys-
tems use the Universal Medium format as their native format; if not,
a special utility program called an "adaptor" is used to move files
between the Universal Medium format and the system's native diskette
format.

By using the Universal Medium format, it is possible to distribute

a single diskette that can be read by most systems that support 5Y-
inch diskette drives.

1/0 Redirection

Unless a program specifically designates a file for input or output,
the system normally assumes that input is entered through the console

p-System Operating System 7-11

keyboard and that output is directed to the console display. I/O
redirection allows the source of the input and the destination of the
output to be changed. Using this facility, the output of one program
may be directed to the input of another program. (The user simply re-
directs output from the first program to a file and redirects input
for the second program to the same file.) This facility is comparable
to the "pipe" facility in the UNIX operating system.

Redirecting input amounts to driving the system with a "script." A
script file is simply a text file containing input data that would
normally be entered through the console. The Monitor command pro-
vides a convenient way for an operator to create a script file while
using the system in a normal manner. Under the Monitor command, each
operator keystroke is recorded in a script file. This recorded se-
quence of commands can then be repeated by redirecting input to the
script file. The use of /O redirection and script files offers many
opportunities to increase operator productivity. As an example, auto-
mated regression tests for software maintenance use can save many
hours of operator time.

File Systems

The file systems provide device independent |/O to both communica-
tion volumes and storage volumes. For example, a program can read a
string of characters from a file without knowing whether the source
of the file is the console keyboard or a disk file.

Storage volumes may contain many files. The p-System supports two
ways of organizing the files on a storage volume—the standard file
system and the advanced file system.
File names under both file systems may be up to |5 characters in
length. A file name may include an optional suffix that indicates the
type of the file. Any non-standard suffix is considered to indicate
a data file. The standard suffixes are:

JEXT Human readable text.

BACK Human readable text (a backup copy).

.CODE Executable code (either p-code or machine code).

DATA Data in a user-specified format.

7-12 Microprocessor Operating Systems, Vol. |l

Text files are organized into pages—each page is two blocks (1024
bytes) in length. The first page in the file is called the header
page and contains information for use by the editors. The remaining
pages in the file consist of a series of complete text lines, each
of which is terminated by the carriage return character. Any unused
space at the end of a page is filled with the NUL character. In order
to save space when dealing with indented text, a blank compression
code may be present at the beginning of a line. This blank compression
code is the DLE character followed by a byte whose value is 32+n,
where n is the number of characters fo indent.

A code file is a file that contains either compiled or assembled code.
Code files begin with a one-block header called a segment dictionary.
This dictionary contains information used by the operating system and
various utilities.

Data files may be structured in any way the creator of the file wishes.
The operating system makes no assumptions about the content of a
data file.

The Standard File System

The volume directory for a standard file system volume is a maximum
of 2048 bytes in length. This directory contains both volume infor-
mation and information about each file on the volume. The volume in-
formation consists of the volume name (up to 7 characters), the size
of the volume in blocks, and the number of files in the directory. A
directory may contain a maximum of 77 files. For each file, the di-
rectory contains the file name, the location of the file, the date the
file was last modified, and the type of the file. All standard file
system files occupy a contiguous group of blocks on the 1/O device.

A duplicate directory may be maintained on a volume if the user de-
sires. This duplicate directory is provided as a backup to aid in re-
covering accidentally deleted files. The duplicate directory is of
the same format as the main directory. The utility COPYDUPDIR
will replace the main directory with the duplicate directory. The
utility MARKDUPDIR copies the current main directory into the du-
plicate directory. Thus, the user determines when the main directory
is backed up and restored.

p-System Operating System 7-13

Two additional file name suffixes are recognized by the Standard
File System:

.SVOL A subsidiary volume file.

BAD A file covering a physically damaged area of a
volume.

A subsidiary volume file is a file whose content has the same format
as a volume. The purpose of subsidiary volumes is to provide two
levels of directory hierarchy and to improve the system's ability
to use large storage volumes. By using subsidiary volumes, the maxi-
mum number of files that can be contained on a volume is 5929. That
is, the main volume directory may consist of 77 subsidiary volume
files and each of these subsidiary volumes may contain 77 files.

Files that are marked as BAD files are used to cover physically dam-
aged areas on a volume. A BAD file is considered to be unmovable.
All other types of files may be moved in order to consolidate the
free space on a volume.

The Advanced File System

In addition to the standard file system, an advanced file system is also
available for the p-System. The advanced file system is ideal for
large capacity storage volumes and removes many of the limitations
of the standard file system. Since the capabilities of the advanced
file system are a superset of the capabilities of the standard file
system, programs that run under the standard file system will also
run under the advanced file system with no modification or recompila-
tion.

In the advanced file system, a tree-structured directory mechanism
is employed that allows directories to be nested arbitrarily deep.
A path name similar to the UNIX file naming convention is used to
locate a file. Path names of up to 255 characters may be used.

The advanced file system is a B+/Tree-based file system and supports
keyed file access as an integral part of the system. All files are
represented as a B+ tree where the leaves of the tree contain record
descriptors that point to the actual data. Directories are represented
as keyed files in which the file name is the key and the data record

7-14 Microprocessor Operating Systems, Vol. |

is the disk address of the root of the file. Since there is no arti-
ficial limit on the number of records in a keyed file, there is no limit
on the number of files that can be in a directory.

Keyed files may have variable length records and multiple records
with the same key. The basic operations that apply to keyed files
include sequential access in both ascending and descending key order,
random access, random record insertion, and a record update that
will expand the size of the record if needed.

A variety of directory information is maintained on each file. This
information includes the following:

) The date and time the file was created and last updated.

2) A user-settable text comment that describes the file and
is displayed in a directory listing.

3) Other information that is used in performing consistency
checks and that aids in recovering accidentally removed
files.

Summary

The p-System is truly unique in that it provides object code porta-
bility to a variety of microcomputer systems—even when the systems
contain different microprocessors. With the application developer
freed from having to implement a new version of his/her software
package for each different system, the developer is able to devote
more attention to designing and implementing other applications.

The user-friendly, menu-oriented operator interface is an aid to both
experienced and novice users. A prompt line is always present as a
reminder of what commands may be entered, and only a single key-
stroke is needed to invoke a command.

The p-System provides sophisticated services that support both appli-
cation execution and program development.

p-System Operating System 7-15

References

p-System Operating System Reference Manual, Sof Tech Micro-
systems.

p-System Program Development Reference Manual, Sof Tech
Microsystems.

p-System Internal Architecture Reference Manual, SofTech
Microsystems.

p-System Application Developers Manual, Sof Tech Micro-
systems.

Overgaard, M., and S. Stringfellow, Personal Computing with the
UCSD p-System, Prentice-Hall, Inc., New Jersey, 1983.

Thomas Burger is the supervisor of Product Enhancement at SofTech
Microsystems, Inc. Prior to joining SofTech Microsystems, he was
a systems programmer for Burroughs Corporation. Thomas has a M.S.
degree in Computer Science from Vanderbilt University in Nashville,
Tennessee and a B.S. degree in Mathematics from the University of
Alabama in Birmingham.

Chapter 8

THE RM/COS OPERATING SYSTEM

A Commercial Operating System for Multiuser,
Multitasking Business Computer Systems

Thomas H. Morrison
Peter H. Ziebelman
Ryan-McFarland Corporation

8

The Ryan-McFarland Commercial Operating System (RM/COS) is a
multiuser, multitasking operating system developed specifically for
business computing requirements. (See Figure 8-1.) The RM/COS op-
erating system is currently implemented on Texas Instruments' 990
and Business System computers and on Motorola M68000-based ma-
chines, including the Tandy Model 16, NCR Tower, Altos ACS68000,
CIE 680 series, CYB Multibox, Wicat, and the IBM-PC (using the
Sritek 68000 plug-in card).

The RM/COS operating system is designed for use with the RM/COBOL
compiler and run-time support system. The RM/COS system provides
the most efficient base for developing and executing software written
in RM/COBOL. Applications may include any software written in
RM/COBOL—ranging from vertical applications (such as accounts

CPU
DISK STORAGE
TAPE BACKUP

o SERRRITRAL ° FRERRERNNS
I —

VDT 1 VDT 2 PRINTER

Figure 8-1 RM/COS is a Multiuser, Multitasking Operating System.

RM/COS Operating System 8-3

payable) to harizontal applications (such as code generators and
spreadsheets). Since RM/COBOL is widely accepted as a highly por-
table COBOL compiler and run-time implementation, hundreds of ap-
plications are currently available.

The RM/COS operating system and utilities extend the concept of RM/
COBOL application code portability to the operating system. The ap-
plications developer and user can transport an entire software package
—including job control language—quickly and efficiently. Software
packages may be transported without rewriting either the job control
language or the application itself. In addition, RM/COS permits
media interchangeability among hardware systems—for example, the
same 8" flexible diskette can be loaded into the Tandy system or into
the Altos system.

Designed for. the "desktop" computing environment, RM/COS sat-
isfies multiuser and multitasking requirements with limited resident
memory. For example, RM/COS can support two users in 64K-byte
unmapped memory configurations and can provide a three-user
diskette-based system in only 128K bytes of memory. Larger memory
configurations can increase the speed and flexibility of the system.
The RM/COS operating system is currently capable of supporting up
to 99 terminals.

A typical RM/COS system implementation requires approximately
500K bytes of disk storage for the operating system and compiler.
The complete resident memory requirements range from 32K bytes to
I00K bytes, depending on the host system and the number and type
of peripheral devices. A typical four-user system includes 256K
bytes of resident memory, a IOM byte hard disk, and a flexible
diskette or cartridge tape drive for program load and backup.

System Hardware Support

RM/COS supports the peripherals typically found in a business com-
puting environment—terminals, printers, disk drives, and tape
drives. RM/COS supports many popular terminals by providing the
application program with a consistent "canonical" terminal represen-
tation. This canonical terminal consists of a standard display (24
rows by 80 columns) and a keyboard (with function keys). Each func-
tion is mapped into one or more keystrokes for a particular terminal
type. For terminals without the entire repertoire of keys described

8-4 Microprocessor Operating Systems, Vol. |

by the canonical model, a "function sequence introducer" key is de-
fined. Changing from one keyboard to another usually involves, at most,
learning a new function sequence introducer. (See Figure 8-2.)

The canonical terminal is a benefit to both the end user and the ap-
plication designer. The end user can "mix and match" VDTs as required,
while the application developer need only write an application for
one terminal—the canonical terminal.

The RM/COS system provides support for both parallel and serial
printer interfaces. Disk devices include most 5%- and 8-inch, single-
and double-sided, single- and double-density diskettes and the pop-
ular hard disk technologies. RM/COS also supports cartridge tape
drives. These drives may be used for backup/archival purposes or as
file devices supporting multiple files per volume and multivolume
files.

Data communications support is available for the popular 2780/3780
protocol through either the normal synchronous serial interface or an
asynchronous serial interface. The asynchronous 3780 utility allows
data interchange among computers without synchronous hardware.
In addition, the asynchronous interface is available to COBOL ap-
plication programs. Using this support, custom or proprietary pro-
tocols (such as those found in reservation systems or cash registers)
can be implemented.

NO FUNCTION KEYS

RM/COS

> + RM/COS =
20 FUNCTION KEYS
%‘a j

10 FUNCTION KEYS

Figure 8-2 RM/COS Maps Existing Terminals into a Standard Canonical Rep-
resentation.

RM/COS Operating System 8-5

Languages and Third-Party Software

The RM/COS operating system supports a superset of the GSA-
certified RM/COBOL implementation as its high level language. RM/
COBOL features:

) A full "level 2" implementation of sequential, relative,
and indexed files.

2) ANSI "level 2" SORT/MERGE capabilities.
3) Record- and file-level locking.
4) Standard CALL and CANCEL with no link-edit step.

5) Extended computational types including binary and packed
decimal.

6) Full arithmetic capability including COMPUTE.
7) Library COPY.

8) Interactive debug and powerful interactive screen/key-
board handling.

Programmer access to additional system features for COBOL ap-
plications is available through COBOL-callable assembly language
subroutines. Also, hundreds of third-party RM/COBOL commercial
applications are available—ranging from agriculture software to
wine cellar management software.

Two text editors are integral to the RM/COS operating system. The
primary text editor is a full screen, character editor with many user-
oriented features such as word wrap, word and columnar tabs, line
markers, and floating left margin. In addition, the editor can copy,
move, or delete a range of lines, insert from another file, dupli-
cate or erase to a specified tab, find and replace strings (with a
wild card matching capability), and split, join, and center lines. A
profile feature allows the user to save frequently-used settings of
the various screen editor features for recall in a subsequent edit
session.

A line editor is provided for use with teletypewriter terminals—
terminals that do not support cursor positioning. The line editor can
also be used when editing must be performed in a batch mode (e.g.,

8-6 Microprocessor Operating Systems, Vol. Il

when an application vendor wishes to make minor modifications to
customers' text files). The line editor has several features similar to
those found in the full screen editor.

Print Spooling

The RM/COS system provides a print queue server subsystem to manage
the system's printer resources. This subsystem consists of three main
components: the queue entry mechanism, the queue server(s), and the
queue manager. The queue itself is implemented as an ordinary indexed
file. The queue entry mechanism is used to place a file print request
in the queue. The entry mechanism also signals the other subsystem
components when an entry has been added to the queue. The queue server
selects qualified queue entries and prints the contents of the speci-
fied files using parameters extracted from the queue entries. Finally,
the queue manager utility may be used to alter the entry selection
criteria, add, modify, or delete queue entries, and communicate with
the queue server(s) attached to the queue.

Other print server features include print-through (printing while the
application is still generating the print file), single sheet feed,
automatic page alignment, forms control, and specific device or de-
vice class selection. The entire subsystem is written in COBOL; source
is supplied as an option, allowing an application designer to integrate
the subsystem directly into a vertical product.

The print queue subsystem uses the generalized system features of
shared files, record-level locking, and user events (described in
later sections). These system features may also be used to write
other queue serving subsystems—for example, a 3780 file transfer
queue server.

The User Communication Link

A COBOL-callable subroutine provides direct application program
control over the capabilities of an asynchronous, bit-serial com-
munication port (user link). The programmer can specify speed and
framing characteristics, can control link connection and discon-
nection, and can read or write data messages (terminated by user-
specified codes). In addition, facilities are provided for both
character and longitudinal data integrity checking. This subroutine

RM/COS Opera

ting System

8-7

allows a knowledgeable system designer to implement a custom bit-

serial link inter

face.

System Generation

RM/COS does not require a SYSGEN procedure; instead it is self-
configuring at initial program load (IPL) time. The system designer
merely maintains a text file of parameters used to drive the config-
uration process as shown in Figure 8-3. A Job Description Language
command is provided that allows the system designer to test a new
system definition file. This technique relieves the designer of the
tedium normally associated with system generation and saves the ex-
pense of sending a field engineer to "SYSGEN'" the system.

*

2

3 4

5

6

*23456789012345678901234567890123456789012345678901234567890

S AL]
*kk
cC
ST01
ST02
BLO1
DS00
DSO1
DS02
DS03
DS04
*k
60000
60000
60000
0
0
4000

U 00U UTU U r*CCcCcCcCccacacca

1983

SERI
SERI
SERI

AL/0/0
AL/1/0
AL/2/0

VIRTUAL/0/0
VIRTUAL/0/1
VIRTUAL/0/2
DISK/0/0
FLOPPY/0/0

*23456789012345

Figure 8-3 An B

para
cont

1

1

2

99

99

99
2

5 CPU Board

SRITEK for IBM-PC/XT
TVI925, 9600/EVEN/7/1

60/10/15, 2400
5/5, 4000

5/5, 4000

5/5, 4000

5/5, 18000

5/5, 640

Partition
Partition
Partition
Partition
Partition
Partition
3 4

Ve we we Vs we we

001
002
101
102
103
999

5

; Main terminal

’
’
B}
k]
’
B}
’

B}

; Televideo 925
; Async 3780

; Virtual O

; Virtual 1

; Virtual 2

; (SRIDEF1.DSK)

Raw floppy O

Terminal STO1
Terminal ST02
Nonterminal
Nonterminal
Nonterminal
Shared File

6

678901234567890123456789012345678901234567890

rxample of a System Definition File for the IBM PC. The
meters that are specific to the IBM PC appear only on the
roller specification (C) and unit specification (U) records.

These records specify the devices attached to the computer. For

the
at S
term

inal.

nitial configuration, the integrated terminal is configured
FRIAL/0/0. This terminal, named STOI, is also the console

8-8 Microprocessor Operating Systems, Vol. Il

The Job Description Language

Users communicate with RM/COS by means of the Job Description
Language (JDL). JDL features include:

1) An interactive command mode.

2) A traditional batch command mode.

3) A hybrid "interactive batch" command mode.

4) Automatic batch upon logon.

5) Command and command parameter abbreviation.
6) Synonym substitution.

In interactive mode, the operator simply enters a command name. The
system prompts the operator for the necessary command parameters
by displaying the keyword name for each parameter. While this method
gives the operator direct control at all times, it is not appropriate
for the typical RM/COS end user.

The traditional and the hybrid batch mechanisms are used to "hide"
the operating system from the end user. The traditional batch mode
uses a disk file of JDL commands (batch stream). In this mode, a
command name is followed by a list of keyword parameters, as follows:

<ce>/<command-name>[,<keyword>=<value>][<,keyword>=<value>]...

Batch mode provides additional commands that control execution within
the batch stream, allowing conditional execution and looping. When
using traditional batch mode, the values for all parameters must be
known before the execution of the batch stream.

The hybrid "interactive batch" stream is an important RM/COS con-
cept. In this mode, the operator may be prompted for some command
parameters within the batch stream. The prompts displayed to the op-
erator may be customized by placing the prompt between the keyword
and the equal sign, as:

<keyword>("<custom prompt>")=(<default value>)
Note that a default value may be displayed along with the prompt. If

a custom prompt is not present, the keyword itself is used for the
prompt.

RM/COS Operatiing System 8-9

The automatic batch upon logon feature allows the application designer
to generate packages in which the end user never enters any JDL com-
mands. In this mode, the system manager specifies the pathname of a
batch stream file that is to be executed immediately after a user
successfully logs onto the system.

While not important to the end user, command abbreviation is of im-
portance to the application developer. Any command may be abbrevi-
ated by omitting letters from the right end of the command name; as
long as the command can be uniquely identified, the abbreviation is
valid. Similarly, command parameter keywords may also be abbreviated.
For example, the BATCH command—the only command that begins
with B— may be abbreviated B, BA, BAT, or BATC.

Finally, RM/COS synonym substitution provides a means to cause one
string of characters (usually long or variable) to replace another
string of characters (usually short and invariant) within a JDL com-
mand before interpreting the command. This substitution allows a
single batch stream to be used with varying results, depending on the
value of one or more synonyms. Another use of synonyms is to "remem-
ber" operator responses when such responses apply to more than one
command ina JDL batch stream. (Synonyms may also be used for passing
limited amounts of information between COBOL run units, rather than
using a file for the same purpose.)

A summary of the JDL commands, grouped by function, is listed in the
following paragraphs.

File commands:

) ASSIGN - Binds a logical name to a file.

2) CHANGE - Changes the characteristics of a file.
3) CREATE - Creates a file.

4) DELETE - Deletes a file.

5) DIRECTORY - Creates a directory file.

6) FCOPY|- Copies a file.

7) FILE-BACKUP - Creates a backup/archive copy of a file,
subdiregtory, or volume.

8-10 Microprocessor Operating Systems, Vol. Il

8) FILE-RESTORE - Restores afile, subdirectory, or volume
from a backup.

9) FILE-VALIDATE - Validates a backup created by FILE-
BACKUP.

10) INITIALIZE - Initializes a new disk volume.

1) KEY - Predefines indexed file keys (normally performed
by COBOL open output).

12) LOAD - Installs a volume so that the operating system
may use it.

I13) PRINT - Prints a file without using the queuing subsystem.
14) RECLOSE - Repairs a file damaged due to power failure.

I5) RELEASE - Releases the binding of a logical name to a
file.

16) RENAME - Changes the pathname of a file.

I7) REPLACE - Replaces a cataloged file with a scratch file.

18) SCRATCH - Creates a scratch file using the character-
istics of a cataloged file.

19) SHOW - Displays a file on the terminal screen.
20) SORT - Performs sort/merge functions.
21) TAPE-ASSIGN - Binds a logical name to a tape file.

22) UNLOAD - Makes a volume unavailable to the operating
system.

Batch control commands:

1) BATCH - Starts a new batch stream and waits until com-
pletion before executing the next JDL command in the
current batch stream. This command can also be used to
start a concurrent batch stream in a nonterminal par-
tition.

RM/COS Operating System

2)

3)
4)
5)

6)

7

8)

CHAIN - Starts a new batch stream and terminates the
current batch stream.

LOOP|- Defines the beginning of a JDL command loop.
REPEAT - Loop closure.
REPOINT - Rewinds the batch listing file.

SETCOND - Sets the conditional execution control
variable.

SYNONYM - Defines or deletes a synonym.
UNCOUPLE - Breaks the sire/offspring connection be-

tween the init.ating partition and the execution par-
tition.

Data communication commands:

1

2)

3)

4)

CONNECT - Establishes a logical communications link.

FTS - Acts as a SEND or RECEIVE command depending
on the remote end of an RM/COS-t0-RM/COS link.

RECEIVE - Receives a file over a logical link.

SEND - Sends a file over a logical link.

Program development and execution commands:

D)

2)

3)
4)

5)

6)

COBOL - Invokes the RM/COBOL compiler.

COMBINE - Combines the contents of one or more program
files ifto a new program file with optional deletes.

EDITOR - Invokes the line editor.
EXECUTE - Starts execution of a COBOL run unit.

FLAGF-PROGRAM - Allows certain nonstandard COBOL
treatments.

SWITQH - Sets/resets COBOL switches.

8-12 Microprocessor Operating Systems, Vol. Il|

Miscellaneous commands:
) CONTINUE - Continues an interrupted process.
2) EXIT - Terminates an interrupted process.
3) FDUMP - Dumps the (partial) contents of a file.
4) FMODIFY - Modifies the contents of a file.
5) HALT - Interrupts a nonterminal partition process.

6) INSTALL-SYSTEM - Installs a new RM/COS system for
use at the next IPL.

7) KPRINTER - Kills the current print file.
8) KTASK - Kills a nonterminal partition process.

9) LIST - Displays the hierarchicul directory structure of a
volume or subdirectory.

10) MAP-KEYS - Displays statistics about one or more in-
dexed files.

I1) MAP-PROGRAMS - Displays statistics about one or
more program files.

12) MAP-SYNONYMS - Displays the partition's current
synonyms and values.

13) MESSAGE - Sends a message to one or more terminals.

14) PARTITION - Changes the size or scheduling priority of a
partition.

I5) QUIT - Logs off.

16) REMOVE-SYSTEM - Removes the installed RM/COS
system from a volume.

I7) SDUMP - Dumps a sector.

18) SMODIFY - Modifies a sector.

RM/COS Operating System 8-13

19) STATUS - Displays the status of partitions, devices, and
logical names.

20) TEST-SYSDEFIL - Allows a new system definition file to
be tested at the next IPL.

21) TIME - Sets the system date and time.

22) VARY - Removes a peripheral from service or returns a
peripheral fo service.

23) VCOPY - Copies a volume to an identical volume.

System Security

Each user may be provided a unique user identification and password
that must be entered to gain access to RM/COS. A master user, called
the system manager, may use a utility program to maintain the user
data base.

Each user identification has an associated privilege level. This
privilege level is used to control the use of Job Description Lan-
guage commands and also to control the use of files in the cataloged
file system.

Each Job Description Language command may be entered in either an
interactive mode or in a batch mode. However, as an additional secur-
ity feature, the system designer or system manager may selectively
delete certain commands from either the interactive or batch reper-
toire. In this manner, use of these commands can be restricted to
carefully controlled situations.

Cooperating User Processes

The RM/COS ¢perating system has two provisions that allow two or
more user processes (i.e., programs), each running in its own par-
tition, to act|as cooperating user processes. These provisions are
record locking| and user event signaling. These features may be used
by the applications designer separately or in combination.

A file may be shared among cooperating user processes by designating
an access type other than "Exclusive All" (with the ASSIGN JDL

8- 14 Microprocessor Operating Systems, Vol. Il|

command). RM/COS prohibits concurrent modification operations on
a shared file (e.g., two WRITEs, two DELETEs, a WRITE and a
DELETE, etc.). Concurrent nonmodifying operations (i.e., two or
more READs) are allowed. In this manner, the integrity of the file
structure is assured when the file is shared.

Record locking is used to prevent simultaneous updates of an individ-
val record. Under RM/COS, a program can lock a record at the time
the record is read. Using this feature, the program gains exclusive
access to the locked record until the program issues a subsequent 1/O
operation for the same file (e.g., a rewrite). No other program can
access the record while it is locked.

User event signaling may be used by cooperating processes to commun-
icate the occurrence of an event of mutual interest. In the RM/COS
environment, user event signaling may be combined with file sharing
and record locking to provide event-driven processing. For example,
a program modifying a file may notify other programs that a modifi-
cation has occurred. User event signaling is supported by the COBOL
subroutine library package.

User Memory Partitions

The available user memory under RM/COS is divided into segments
called partitions. Every process must execute in a partition, and
each partition can support only one process at a time. All logical
name and synonym assignments are local to the partition in which they
are made. The size of each partition, the location of each partition
in physical memory, and the priority of each partition is defined
in the system definition file, but may be changed with the PARTITION
command. As JDL commands and applications programs are executed
by a user, memory within that user's partition is allocated and de-
allocated on an as-needed basis. Under RM/COS, all memory allo-
cation (after IPL) is performed within the partition of the process
requesting the memory. This strategy prevents one user's excessive
demands for memory from interfering with the correct operation of
other users' applications.

There are three types of partitions: terminal, nonterminal, and shared
file. Associated with each terminal device is a terminal partition.
A terminal partition becomes active when a user logs in at a terminal
device; the partition becomes idle when the user QUITs. All but one
of the remaining partitions are nonterminal partitions, and may be

RM/COS Operdting System 8-15

activated by a BATCH command. The shared file partition is not avail-
able to any process. Instead, this partition is available for the
memory structyres that represent shared disk files (files not assigned
exclusively to stingle user).

A partition's priority is an integer from | to 65535, inclusive. The
priority determines what fraction of the available processor time
a process executing in the partition receives. A priority of | maxi-
mizes the processor time available to a process; a higher number re-
duces the processor time available to a process. If two processes
are contending for the processor, the first with a priority of | and
the second with a priority of 2, the first process will receive twice
as much time as the second process. If only one process can use the
processor because all other processes are awaiting 1/O requests, the
running process will receive all of the processor time regardless of
its priority.

The File Subsystem

The RM/COS file subsystem is responsible for managing 1/O devices
and mass storage (disk) files. The file subsystem presents a device
independent file interface to the application program.

Each device connected to the system is given a unique four char-
acter device name. The first two characters are letters that identify
the device type. The last two characters are numerals that specify
the device number (e.g., STOl). Device names are bound to specific
hardware devices by the system configuration process.

RM/COS disk volumes may be divided into separate files. Files are
grouped into sets called directories, which are themselves files.
Directories are hierarchically organized into a tree structure having
as its root the volume directory. Each file on a disk has a unique
designation, called a pathname. A pathname consists of a volume name
followed by zero or more directory names and finally followed by a
file name. All hames within the pathname are separated by periods.
Note that withjn a directory, all file names must be unique; however,
two directories may contain the same file name without ambiguity.

The volume name for a disk cartridge is specified using the INI-
TIALIZE command. File names for directory files and nondirectory
files are specified by the DIRECTORY and CREATE commands, re-
spectively. The|volume directory name may be omitted from the path-
name (i.e., the pathname may begin with a period), indicating to

8-16 Microprocessor Operating Systems, Vol. Ili

RM/COS that the volume directory of the system disk volume is to
be used.

The directory tree structure encourages the designer to group files
with related content into a common directory. Such grocuping may
also provide operational convenience (e.g., copying entire direc-
tory structures using FCOPY), depending upon the application.

COBOL applications programs and some Job Description Language
commands require logical names to refer to devices or files. Logi-
cal names are bound to actual devices or files by using the AS-
SIGN, CREATE, CONNECT, or TAPE-ASSIGN commands; the binding
is severed by using the RELE ASE command.

Each file on an RM/COS disk volume has certain conceptual charac-
teristics. These characteristics are used to control the means by
which individual logical records are processed and to control the ac-
cessibility of files to various applications and users. These charac-
teristics are:

) Logical record length.

2) Block size.

3) Number of blocking buffers.

4) Initial disk allocation.

5) Secondary disk allocation.

6) Organization.

7) Type.

8) Privilege level.

9) Delete protection.

I0) Write protection.
The logical record length specifies the maximum number of characters
that may be contained in a single logical record of the file. The
block size specifies the number of characters that are to be con-

tained in a logical block. A logical block is the unit of data trans-
ferred to or from a disk device in one operation. A logical block

RM/COS Operdting System 8-17

may contain one or more logical records and, except for indexed files,
may contain only a portion of a logical record.

The number of| blocking buffers specifies the amount of a user par-
tition that is 'to be used, while a file is open, as buffer storage
for logical blocks. Within limits, file I/O will use multiple blocking
buffers to enhance 1/O time at the expense of the additional memory
used.

The initial disk allocation and the secondary disk allocation, de-
scribed in the following paragraphs, specify the amount of physical
storage area needed to contain file data.

RM/COS supparts the three types of file organization used in COBOL
programs: sequential, relative, and indexed. In addition, RM/COS
supports three types of file organization for system data: directory,
program, and multipartite direct secondary (MDS). The multivolume
sequential disk (MVD or MVSD) file organization is intended for use
with the FILE-BACKUP and FILE-RESTORE commands. But, COBOL
programs may access MVD files in the same manner as sequential files.

There are several RM/COS file types. A file can take on the attri-
butes of one ar more of these types. The spool type, which applies
to sequential organization files only, records slewing information
in a transparent manner. The work type is specified for files to
be written in the deferred write mode. In deferred write mode, file
records are not actually written to the disk until the memory space
occupied by the records is needed or until the file is closed. The
auvto type is specified for files that are open and updated over
long periods of time and require a high degree of data integrity
while minimizing the need for data recovery in the event of a power
failure or other fault. The scratch type is specified for a tem-
porary file. Scratch files are automatically deleted when they are
released from a logical name. Scratch files are always treated as
work files.

The compressed type file occupies less disk space than a normal
file. In a compressed file, consecutive repeated characters are en-
coded as one dr two characters before they are written. The original
characters are|restored to the record after the record is read.

When created,|RM/COS files are assigned privilege levels. A privilege
level is an integer value in the range of 0 through 65535.

8-18 Microprocessor Operating Systems, Vol. Il

Files may be protected against deletion and/or modification. A write-
protected file may be neither deleted nor modified; a delete-protected
file may not be deleted. Directories may also be delete-protected.

As stated previously, RM/COS disk volumes may be divided into sep-
arate files. RM/COS manages the available storage on a disk volume
and allocates storage to files as needed. RM/COS divides a disk
volume into units called Allocatable Disk Units (ADU). Each ADU
is an integral multiple of physical disk sectors.

When a file is created, two disk allocation parameters are provided
describing the initial amount and, if the file size may exceed the
initial size, the secondary, or incremental, amount of disk storage
required for the file. RM/COS allocates the number of ADUs required
for the initial amount of disk storage by first attempting to find
a group of contiguous ADUs large enough to satisfy the requirement
and then, if no contiguous space is large enough, by finding the
smallest number of noncontiguous groups that will satisfy the re-
quirement.

As data is added to a file, the amount of storage in the current
allocation may be exhausted. |f the secondary allocation creation
parameter was nonzero, RM/COS attempts to allocate additional
disk storage (sufficient to hold the added data) in increments of
the secondary allocation amount. First, if the ADU with a number
one higher than the last ADU allocated to the file is unallocated,
that ADU (and as many contiguous ADUs as required to satisfy the
secondary allocation requirement) will be allocated to the file.
If this fails to allocate enough disk storage, a search, identical
to the search described for the initial amount, will be made for
additional ADUs.

Summary

RM/COS contains the features and utilities that are required for
running RM/COBOL applications in a multiuser business environ-
ment. The full screen editor, multilevel file directories, the canon-
ical keyboard, spooler, 3780 communications utility, and job control
language are all prerequisites in the minicomputer and mainframe
environments. RM/COS brings these features to the new multiuser
"desktop computer" systems.

RM/COS Operating System 8-19

The efficiency and speed of RM/COS is directly attributable to its
record-oriented design. The record is both the natural unit of in-
formation in Husiness data processing and also the fundamental unit
for the RM/COS operating system. Additional business software con-
cepts—such as record locking and multikeyed indexed files—are
integral to the design and implementation of the RM/COS operating
system.

References

RM/COS User Manual, Ryan-McFarland Corporation, 1983.

Thomas H. Morrison is currently a senior member of the technical
staff at Ryan-McFarland Corporation. He was previously a member
of the staff at the University of Texas Computation Center. At
Texas Instruments, he developed software for 990 computer prod-
ucts and the Advanced Scientific Computer. Thomas has a B.S.C.S.
from Michigan State University.

Peter H. Ziebelman is the RM/COS product manager at Ryan-
McFarland Carporation. Prior to joining Ryan-McFarland, he served
as a marketing manager and software product strategy manager in
the Semiconductor Group of Texas Instruments. Peter has a B.S. in
Combined Sciences from Yale University.

Chapter @

THE SuperDOS OPERATING SYSTEM

A Business-oriented Multiuser Operating System
with Data Base Capabilities

Tom Lee
Bluebird Systems

SuperDOS

Q

SuperDOS is an efficient multiuser operating system designed by
Bluebird Systems specifically for use in the development and opera-
tion of sophisticated business applications. This operating system is
designed to provide microcomputer programmers with the same
power and flexibility as that available to minicomputer programmers.
SuperDOS users find that the presence of powerful features normally
found only in minicomputer operating systems—coupled with the op-
erating system's speed and ease of use—allow them to easily develop
sophisticated business software.

Unlike many operating systems in use today, SuperDOS was conceived,
designed and developed by two business applications programmers. To-
gether, the authors have over twenty years of experience in developing
end user business applications on minicomputers. Because of their
business applications experience, the authors were able to make diffi-
cult operating system implementation tradeoffs to ensure speed and
efficiency for business software packages.

SuperDOS currently operates on two microprocessors, the Zilog Z80
and the Intel 8088 (the system processor for the IBM PC and XT).
As viewed by the user, SuperDOS is identical in both implementations
with the exception that SuperDOS can run concurrently with PC-DOS
on the IBM PC and XT.

The number of terminals running programs under SuperDOS depends on
the particular machine that is being used. On the IBM PC, up to
ten terminals can operate concurrently. On the Bluebird Il Turbo
(hosted by a Z80H processor), 16 terminals can be used.

SuperDOS is written in the native assembly language of the host
microprocessor. Although the use of assembly language makes it diffi-
cult to transport SuperDOS to other microprocessors, this implemen-
tation language choice is one of the primary reasons that SuperDOS
is fast and efficient.

SuperDOS Operating System

Some of the features built into SuperDOS include:

)

2)

3)

4)

5)

6)

7)

8)

9)

10)

The ability to run up to 255 programs concurrently.

An extensive file /O capability that includes the
ability to read and write by byte, record, or sector.
Also, records can be read sequentially—by record
number or by index key.

Multi-key indexing that allows any number of index files
to reference a data base file. Keys can be added, deleted,
and read generically, specifically, or sequentially (for-
ward or backward).

A file system that allows multiple programs to access
and update files concurrently.

A record locking facility.

The ability to run a batch stream on any terminal by
storing commands on a disk file.

"Logical" terminal commands that support many types
of terminals with no software changes.

The ability of a user on one terminal to start a pro-
gram on another terminal or to "detach" an executing
program and run another program under a different
task.

Subdirectories and path specifications.
Security capabilities that can protect against un-

authorized access to the entire system, to specific
directories, or to individual files within a directory.

9-3

Execution E

The entire op
imately 20K

Business Basi
must provide

i

nvironment

erating system is always resident and requires approx-
bytes of main memory. Another 20K is required for the
c processor. In all Z80 implementations, the hardware
bank switching in order to allow more than one task.

9-4 Microprocessor Operating Systems, Vol. Il

When running concurrently with PC-DOS, SuperDOS and Business
Basic require a total of 50K bytes of main memory.

SuperDOS also requires interrupt-driven disk controllers and a real-
time clock.

User Interface

The SuperDOS interface consists of two parts: signing on to the
system and entering command lines. Before any processing can occur
in a task, a user must be signed on. To sign on, a user must enter
a password. SuperDOS verifies the password by looking it up in the
PASSWORD file. If the password is not valid, the user cannot con-
tinue.

Once the user has entered a valid password, SuperDOS assigns values
for the following user attributes:

I) Security (priority) level. This level ranges from | to 7
(7 is the highest level). Security levels are used to
restrict file access.

2) User group access. This access information restricts a
user to a specific subset of subdirectories.

3) Auto-program. This attribute supplies the name of a pro-
gram that will start automatically when the user sign-on
is complete. If this name is blank, the system prompts
the user for a command line.

4) Auto-logoff. If the password starts with a "\", the user
is automatically BYE'd (logged off) the system when the
prompt character is redisplayed.

Once a user has signed on, he/she interfaces to the system by entering
command lines. SuperDOS prompts for a command line by displaying
a prompt character (">"). A command line can either be typed in at a
terminal, sent to the task from a program that is running in another
task, or sent ahead by a program running in the task itself.

A command line is simply a program name followed by any other
command information. The program can either be a utility program

SuperDOS Operating System 9-5

(supplied with |[SuperDOS) or a user-written Business Basic or assembly
language program. For example,

>TYPE MYFILE

causes the program named TYPE to be loaded. TYPE will display a
file ("MYFILE") on the user's terminal. There are no built-in
commands in SuperDOS. The user may view such functions as DIR,
DEL, and TYPE as commands. But, in reality, each of these functions
is a utility program that performs the "command."

Once a program has completed execution, SuperDOS prompts for
another command line. Note that a SuperDOS task is either in the
process of executing a program or waiting to accept a command line
from the user.

Utility Programs

SuperDOS includes a set of utility programs to perform normal system
chores—listing file directories, deleting files, moving files, listing
file contents, editing text files, examining the free space on a disk,
initializing a disk, etc.

Other utilities perform system-specific chores. For example:

) CONFIGURE - Performs a SYSGEN-type function.
CONFIGURE allows the user to specify system param-
eters in a text file. Such parameters include the
maximum number of tasks to run, the maximum number
of files to open at one time, the memory size of each
task, the type of terminals associated with each task
and the default system drive. (CONFIGURE is run auto-
matically as part of the system boot procedure.)

2) MMI k Allows a user to display and change task re-
lated |information such as default user groups, terminal
typesy unpend keys, and interrupt keys. MMI also dis-
plays |all the tasks that are running and allows users
with g priority level of 7 to interrupt or halt any of
the running tasks.

3) PASSWORDFM - Allows a level 7 user to add, change,
and/or delete entries in the PASSWORD file.

9-6 Microprocessor Operating Systems, Vol. Il

The Business Basic Language

At the present time, one high-level language runs under SuperDOS.
This language is a compatible superset of Data General's Business
Basic language. The language is powerful and flexible—providing
the programmer with access to all of the features that are incorpo-
rated in SuperDOS. Most of the system's utility programs are written
in Business Basic.

Support of Business Basic under SuperDOS opens up access to software
written by hundreds of OEM's and installed in over ten thousand
business installations.

Bluebird's Business Basic implementation consists of a compiler and
a run-time token processor. The token processor resides in the first
task and is usually started automatically when the system is booted.
In addition to the compiler and run-time processor, there is an inter-
active Basic debugger called CODECHEK.

Task Control

Task switching is accomplished by a round robin scheduling scheme.
If a task is waiting for an I/O operation to be completed, its time
slice is given to the next task in line.

When control is to be switched to another task, the current task's
program counter, stack pointer, and register set are saved. The new
task's program counter, stack pointer, and register set are restored
to the values saved when the task was deactivated. At this point,
the new task begins executing and will continue executing until the
time slice is exhausted, an |/O operation is started, or the task
suspends itself.

As programs are started and stopped, the system dynamically changes

the value of the time slice. In this manner, terminal response time
is optimized.

Memory Management

SuperDOS uses fixed memory partitions. The size of each partition is
normally the same for each task. The partitions are set by the utility

SuperDOS Openating System 9-7

program, CONFIGURE. Under a normal implementation, this pro-
gram is only run when the system is booted.

CONFIGURE neads a disk file containing the size specifications
for each task. SuperDOS is distributed with a standard configuration
file but the user is free to change the file or create alternate files
for special situations.

Fixed memory partitions are used because memory is inexpensive and
continually declining in price. Under SuperDOS, to add more users,
one need only add more memory. This simplifies the size and overhead
of the operating system, which in turn allows more time to be spent
processing the user's programs. A typical memory configuration is
shown in Figure 9-1.

SuperDOS code

0-20K

Task Control Blocks and system tables

Task #1 information block
20-40K

BASIC token processor

Task #2 information block

40-64K BASIC re-entrant information

Task #2 program and variable space

Task #9 information block

232-256K BASIC re-entrant information

Task #9 program and variable space

Figure 9-1 A Typical SuperDOS Memory Configuration.

9-8 Microprocessor Operating Systems, Vol. Il

1/0 Management

SuperDOS provides a set of system calls to perform /O for a va-
riety of peripheral devices. In addition, SuperDOS contains a compre-
hensive set of disk file 1/O calls that provide sophisticated data base
management for the user.

SuperDOS supports both serial and parallel character 1/O. Character
output is processed by interrupt handlers. When a system call is
made to perform output, the calling program does not execute (and
does not use any of its time slice) until all the characters have been
sent.

Input characters are moved to a special "ring" buffer in the task
information block by the interrupt service routine. When a system
call is made to get input, the characters are removed from the ring
buffer and moved to the input buffer specified by the calling program.
The ring buffer is 80 bytes in length and can also be filled by system
calls. This feature is useful for processing batch streams. A batch
program can place input directly into the ring buffer; when the next

program needs input, the input characters will already be present in
the buffer.

Tape 1/0 is performed using the XLOAD and XCALL statements pro-
vided by Business Basic. These are assembly language subroutine calls
that allow 9-track and cartridge tapes to be read, written, rewound,
etc.

A utility program is also provided that can backup and restore disk
files to and from tape. During backup and/or restore operations, the
user can specify all files, all files in one or more subdirectories,
or selected filenames. Filenames can include "wild card" characters.

Disk Formats

SuperDOS supports both flexible diskette and hard disk drives. Each
disk contains a system information sector, a bit map, a disk directory,
and a collection of files.

A logical SuperDOS sector is 512 bytes of disk storage. SuperDOS
performs all the necessary adjustments to convert different physical
sectors into a 512-byte logical sector. A skewing algorithm is employed
to optimize flexible diskette access time; no skewing algorithm is
employed for hard disk drives.

SuperDOS Operating System 9-9

The Disk File|System

The disk directory contains one entry for each file on the disk. Each
file is identifigd by a name and subdirectory number. A filename can
contain up to |2 characters. Only letters, digits, and the characters
"/.-" are permitted in a filename. A filename is converted to
radix-40 representation for storage in a directory entry—reducing the
filename's length to 8 bytes.

The subdirectary number—called a user group—ranges from 0-63.
The user group allows different files on the same disk to have the
same name. It also provides a method of ensuring file security since
a user can be given access to only specific user groups and restricted
from all others.

Each directory entry also contains an absolute sector number. This
sector number identifies the position of the "header" sector of the
file. The first sector of a data file is the next contiguous sector
after the file's header sector.

When searching the directory for a filename, a hashing formula is used
to determine which directory sector should contain the name. Each di-
rectory sector also has one overflow sector. If a filename is not
found in the hashed-to sector or in the associated overflow sector,
the file is not in the directory—and hence not on the disk.

Disk Files

A disk file is uniquely identified by a drive number, a user group,
and a name. When a file is referenced by name only, SuperDOS uses a
default drive and user group. The default drive and user group can
be modified by the user at any time from within a program or by means
of a utility command.

Files in SuperDOS always occupy contiguous sectors on disk. This
allocation technique requires that the file size be specified when
the file is crieated. This technique trades off the flexibility to
dynamically expand files in favor of fast file access.

SuperDOS supports four file types:
1) Text files. Text files normally contain ASCII characters

and are used for word processing documents, source
progrcTns, batch commands, etc.

|
|
i

9-10 Microprocessor Operating Systems, Vol. Il

2) Relocatable files. These files are produced by the
assembler or compiler. A relocatable file is only used
as an object file—to be loaded and run by SuperDOS.

3) Data files. Data files are record-oriented files. When
a data file is created, the user specifies a record
length. When a read or write is performed, SuperDOS
easily calculates the record's location and the record
size in bytes. SuperDOS keeps track of deleted records
so that disk space can be reused when new records are
added.

4) Index files. Index files are files containing keys and
pointers to data base records. Any number of index files
may exist for a data base. SuperDOS uses a binary tree
concept when new keys are added so the keys are always
in order. When all keys from an index block are deleted,
the entire block is available for reuse. With this tech-
nique, index file sorts or reorganizations are not needed.
An index file can be searched for an exact match on a key
or for a generic (or partial) key. The keys can also be
read sequentially in forward or reverse order. Since the
keys are always maintained in order and not in an over-
flow area, a key search is very fast regardless of the
key's position in the index file. Areas within an index
file are automatically locked by SuperDOS when the file
[/O semaphore is used. A key add or delete operation is
performed in one pass through the file 1/O drivers.

Because every file is contiguous, any file type can be read sequen-
tially or randomly by byte, record, or sector. Also, all files can
be processed in the shared mode by any number of users concurrently.
Consequently, all files can be locked by record or by sector.

File Security

Each file has a set of protect flags associated with it. A protect
flag has a value from 0 to 7. The value of the flags indicates whether
or not a particular function can be performed. The flags govern the
following functions:

R - Reading information from the file.

W - Writing information to the file.

SuperDOS Operating System 9-11

Create affile.

Delete a file.

Open a fije.

Close a file.

Close all files open for a specific task.

Initialize a file.

Check the existence of a file.

Rename a file.

Read one or more records/sectors by record/sector number.
Read one or more records/sectors at the "next" record/sector number.
Readone ormorerecords/sectors at the "previous record/sector number.
Read one or more records by an index file key.

Read one or more records by the "next" key.

Read one or more records by the "previous' key.

Read one or more bytes at a specified byte offset.
Retrieve key information from an index file.

Retrieve the "next" key.

Retrieve the "previous" key.

Update one or more records/sectors by record/sector number.
Update one or more records/sectors by key.

Update one or more bytes at a specified byte offset.

Add a record to a data file.

Add a key to an index file.

Add an index key and a data record.

Retrieve the next available record number.

Delete a record from a data file.

Delete a key from an index file.

Delete an index key and a data record.

Lock one or more records.

Unlock one or more records.

Unlock all records locked by a task.

Allocate a device to a task.

Deallocate a device.

Retrieve a device allocation.

Send a character string to a port.

Read a character string from a port.

Read a single character from a port.

Retrieve a single character from a port if one is ready.
Position cursor to line and column.

Perform one of the 25 logical terminal functions.
Retrieve the charactersrequired to perform alogical terminal function.
Halt a program in a task.

Sign off a user from a task.

Force a ptogram to start in another task.

Chain to another program.

Detach a port from a task.

Attach a task to a port.

Send infoimation to a task's ring buffer (auto-reply).
Suspend ajtask for | cycle.

Suspend a|task for a specified time.

Retrieve the current time and date.

Convert between ASCII and radix-40 format.

Convert between ASCII calendar and binary Julian dates.

Table 9-1 SuperDOS System Calls.

9-12 Microprocessor Operating Systems, Vol. |ll

D - Deleting or initializing (purging) a file.
M - Modifying the protect flags.

The value of a flag is compared to the user's priority level. (The
user's priority level is determined by the password that was used
during sign-on.) If the user's priority is less than the value of
the protect flag, the user cannot perform the associated function.

In addition to the priority level, the user's password also deter-
mines which user groups the user can access. If a user does not have
access to a particular user group, the files in that group can not
be read, updated, or deleted. Moreover, the names of the files will
not even appear in a directory listing.

SuperDOS System Calls

In order to summarize the functionality of SuperDOS, all the SuperDOS
system calls are listed in Table 9-1. These calls may be invoked di-
rectly from assembly language programs or indirectly from a Business
Basic program.

References
SuperDOS Programmer's Guide, Bluebird Systems.

SuperDOS User's Guide, Bluebird Systems.

Tom Lee is a senior systems analyst for Bluebird Systems and the
coauthor of SuperDOS and Business Basic. Tom received an M.S. in
operations research at UCLA and spent ten years as an applications
programmer for Burroughs Corporation and Compusource Corporation.
In the Fall of 1979, while working as an independent business ap-
plications consultant, Tom teamed up with Dave Houge to develop a
microcomputer-based multiuser workstation network. This work led to
the development of SuperDOS and Business Basic.

Chapter 10O

THE TurboDOS OPERATING SYSTEM

Software 2000’s CP/M-compatible,
Networking Operating System

Rex Jackson
Arrow Electronics, Inc.

TurboDOS

1O

The TurboDOS operating system is Software 2000's flexible and power -
ful multiuser operating system. It runs on microcomputers that are
compatible with the CP/M, the CP/M-86, and the CP-NET operating
systems. Because the TurboDOS operating system is compatible with
the CP/M operating system, users have access to a large pool of
readily-available applications software. TurboDOS can be used as

a direct replacement for CP/M on Z80 microcomputer systems and
CP/M-86 on 8086-family systems.

The TurboDOS operating system is designed to alleviate many typical
microprocessor operating system limitations—especially file size re-
strictions. Hard disk drives up to one gigabyte (over 1000 megabytes)
in size are supported without partitioning. Moreover, random access
files may be up to |34 megabytes in length. Extremely large files are
not uncommon in business applications. For example, an auto dealership
or parts supplier may require upwards of 50M bytes to store informa-
tion for over 500,000 parts (part number, price, stock level, inven-
tory dates, etc.).

In a network implementation, the TurboDOS operating system accom-
modates a wide range of network topologies. Networking configura-
tions also provide the interlocks necessary to permit multiuser
access to common data bases.

The Human Interface

All TurboDOS file commands have consistent formats and options.
For example, the COPY command allows a user to copy a file or a
group of files from a "source" to a 'destination." (Note that the
following example describes only a limited subset of the COPY
command options.) COPY options allow the user to request:

1) A query for each file. This option gives the user con-
trol over each individual file to be copied (e.g., when
a wild card filename is used).

TurboDOS Operating System 10-3

2) A prompt if the destination file already exists. This
option| allows the user to delete the existing file, if
desired.

3) That qll files be copied without operator intervention
—avutomatically deleting any files that already exist.

COPY also allows a user to copy from one user area to another (if
the privilege codes permit). For example,

COPY B:*.COM C: ;N S2 D5

copies all files with file extension ".COM" from the source—drive B
("B:"), user 2 ("S2")—to the destination—drive C ("C:"), user 5
("DSH).

System Support

All unique TurboDOS tunctions are called using a special TurboDOS
entry point, different from the CP/M-family entry point. By using
different entry points, any conflict in function call assignments
between CP/M and TurboDOS is eliminated. All unique TurboDOS
functions are invoked by a call to location 80 on the Z80 and by in-
terrupt 225 on the 8086. Each TurboDOS function is assigned a func-
tion number between 0 and 41.

All CP/M BDOS functions and all direct BIOS calls are fully
supported. In addition, TurboDOS dalso provides compatibility with
CP/M Plus, MP/M Il, and Concurrent CP/M in file and record
locks, system date and time, and several other selected areas.

The TurboDOS operating system is also media-compatible with
the CP/M operating system. TurboDOS automatically determines
whether a diskette is written in standard CP/M format or in Turbo-
DOS format. [(TurboDOS-formatted diskettes typically run faster
and store morE data.) The format of a newly-created diskette is
determined when the diskette is initialized.

Networking

Networking TurboDOS supports a multiuser network of interconnected
microcomputens that can share a common pool of mass storage devices,

|

10-4 Microprocessor Operating Systems, Vol. Il

printers, and other peripherals. Since there is a microcomputer dedi-
cated to each user, TurboDOS is able to support a large number of si-
multaneous users with excellent performance and minimal interaction.

Each network processor may have its own local console, printer, and/or
disk drives. Or, a network processor can rely completely on the periph-
erals attached to other network processors—even the operating sys-
tem may be downloaded over the network.

TurboDOS accommodates awide variety of network topologies, from the
simplest master/slave systems to the most complex star, ring, and
hierarchical networks. The network protocol is a simple one, adaptable
to both point-to-point and multidrop links (parallel or serial, polled
or autonomous). Bidirectional (master-to-master) network dialogue—
in which two processors on the network may simultaneously access disks
attached to the other processor—is supported by TurboDOS. TurboDOS
supports any mix of Z80 and 8086-family slave processors in a single
network.

Networking configurations of TurboDOS provide the file and record
interlocks necessary to permit multiuser access to common data bases.
Password-type logon security prevents unauthorized access and pro-
tects private file libraries. A log file keeps an automatic record
of all system usage. TurboDOS provides FIFOs (similar to UNIX pipes)
for interprocess synchronization and interuser communication. Turbo-
DOS supports a sophisticated multiqueue print spooler that allows any
number of users to share a maximum of sixteen printers per processor.

Networking TurboDOS incorporates an advanced failure detection and
recovery facility that makes the system virtually crashproof. Even
a user with malicious intent cannot compromise the processing of
files belonging to another user.

Bank Switching

For Z80 systems, TurboDOS supports 128K bytes of bank switched
memory (two 64K-byte banks). The operating system and a large
pool of disk buffers are located in one bank. The other bank
is divided into a 63K-byte transient program area and a IK-byte
reserved area. The 63K-byte transient program area provides
considerably more application program space than unbanked con-
figurations of either CP/M or TurboDOS.

TurboDOS Operating System 10-5

Modular Archiitecture

Modular architecture is one of the most important features of the
TurboDOS operiating system. TurboDOS is packaged as a set of relocat-
able modules——each functional area of the operating system and
each hardware-dependent device driver are packaged as a separate
module. Some of the TurboDOS functional modules include:

) Command language interpreter.
2) Network request manager.

3) Buffer manager.

4) Spooler/despooler.

5) File manager.

6) Multitask dispatcher.

These modules are building blocks that can be combined in various
ways to produce a family of compatible operating systems, including
single task, spooling, multitask, real-time, time-sharing, distributed
processing, and networking operating systems.

Since each hardware-dependent element is a separate relocatable
module, adapting TurboDOS to various hardware configurations is
simple and straightforward. Any or all of the modules may be changed
easily, without having to perform massive reassemblies or use com-
plex system generation procedures.

There are three TurboDOS system software levels:

I) Process Level. TurboDOS supports multiple processes for
user commands/programs, for printer spooling, and for
disk buffering operations.

2) Kernel|Level. The kernel contains the software that pro-
vides approximately one hundred system functions and
controls process scheduling, peripheral /O, and the file
system;

3) Driver |Level. This level consists of the driver software
modules that interface the TurboDOS operating system
to the microcomputer hardware (e.g., terminals, printers,
disk drives, and a real-time clock).

10-6 Microprocessor Operating Systems, Vol. Il

Performance

Much of the speed advantage of TurboDOS is achieved by means of
a sophisticated buffer manager. This module performs multilevel
disk /O buffering, using a least-recently-used (LRU) buffer as-
signment algorithm and other 1/O optimizations. Buffering greatly
reduces the number of physical disk accesses in both sequential and
random operations. The number and size of buffers are user-defined
and can be changed dynamically by using a utility program or by
executing an operating system call.

In addition to ordinary CP/M-compatible linear directories, TurboDOS
also supports an optional "hashed" directory format. By using a hashing
algorithm, the speed of directory lookup operations is significantly
increased. Although a hashed directory may be used on any disk, it is
especially suited for use on hard disks with large directories.

Additional speed is provided by a program load optimizer. This module
scans the allocation map of program files that are to be loaded into
memory, determines the sequentially allocated segments of the file
(often 16K or more in length), and loads these segments at the maxi-
mum transfer rate of the disk controller.

Other major performance improvements are the elimination of warm
start and disk logon delays in TurboDOS. Warm start is instantaneous
in TurboDOS because the command interpreter is resident. Disk logon
is not required in TurboDOS because the allocation map for each disk
is stored on the disk and need not be repeatedly recreated in memory.

Disk Capacity

Business applications are often limited by the available disk capacity
of microcomputer systems. Most of the increased diskette capacity
of TurboDOS is achieved through the use of larger physical sector
sizes on the diskette. For example, an ordinary 8-inch, single-sided,
single-density diskette can accommodate eight 512-byte sectors per
track. With standard 128-byte sectors, on the other hand, 26 sectors
can be stored on each track. Thus, 512-byte sectors provide 23% more
storage on each track (4096 bytes versus 3328 bytes). Additional ca-
pacity is achieved by eliminating reserved "system tracks" (required
by many other operating systems).

TurboDOS Operating System 10-7

TurboDOS was designed to take advantage of large hard disks. TurboDOS
supports hard disk drives to one gigabyte without partitioning. In-
dividual random access files can be 134 megabytes in length.

Increased Reliability

TurboDOS performs read-after-write verification of all disk update
operations. While this type of verification has long been standard
practice on large-scale computer systems, it has been virtually un-
known among low-cost microcomputer systems. The sophisticated
buffer managerent techniques of TurboDOS make this verification
possible without increasing disk access times to intolerable levels.

Whenever errors are detected, TurboDOS provides meaningful diagnos-
tic messages and a variety of recovery options. For example, in the
event of a disk error, the operator is prompted to retry the disk op-
eration, to accept the error and continue processing, or to abort the
program.

The allocation map for each disk is maintained by TurboDOS on the
disk itself. Therefore, a disk can be changed at any time without fear
that the disk will become "read-only" or that the data will be compro-
mised. TurboDOS senses and automatically adapts to changes of disk
format (single- or double-sided, single- or double-density, etc.).
Hassle-free disk changes under TurboDOS make low-cost single-disk
systems practical.

TurboDOS includes more than forty common transient processes.
Some of these processes include:

1) AUTOLOAD - Allows automatic program execution at
each cold or warm start.

2) BACKUP - Provides fast track-by-track copying of sim-
ilar disks (with verification).

3) BUFFERS - Allows a user to change the number and/or
size of |disk buffers. In this manner, TurboDOS can be
"tuned" |for optimum performance.

4) CHANGE - Facilitates disk changes during multiuser
operation.

10-8 Microprocessor Operating Systems, Vol. Il

5) COPY, RENAME, and DELETE - Provide the means to
copy, rename and delete indivdual files or groups of
files. All three utilities support wild card filenames
and allow optional confirmation of individual file op-
erations. COPY also allows incremental backup of hard
disk files to one or more flexible diskettes.

6) DATE - Allows a user to display and/or set the system
date and time.

7) DIR - Displays an alphabetized disk directory in colum-
nar format on either the console or the printer. Full or
selective directories may be requested.

8) DO - Initiates the automatic execution of a file of
commands. DO-files in TurboDOS may be nested to any
reasonable depth and may contain any number of sub-
stitution parameters (each with an optional default
value).

9) DRIVE - Displays on the console or printer the following
disk format information: data capacity, directory size,
block size, sector size, sectors per track, number of
tracks, and number of reserved tracks.

10) DUMP and TYPE - Display the contents of a file on the
console or printer.

I1) ERASEDIR - Initializes a disk directory and selects
a hashed or linear directory format.

12) FIFO - Permits the creation of a first-in-first-out
structure based in RAM or on disk. TurboDOS FIFOs
(similar to UNIX pipes) are useful for interprocess syn-
chronization and interuser communication.

13) FORMAT - Performs initialization of diskettes in
CP/M or TurboDOS formats.

14) LABEL - Allows a user to label a disk volume.

I5) LOGON and LOGOFF - Provide password security,
and at the option of the system manager, provide a
time/date record of all movements through user areas
along with a record of LOGONs and LOGOFFs.

TurboDOS Operating System [0-9

16) MASTER - Allows a network slave console to act as the
master |console.

17) PRINT, PRINTER, and QUEUE - Permit the operator to
control: print routing and spooling. TurboDOS supports
up to |6 concurrent printers.

References
TurboDOS User's Guide, Software 2000, |1984.
Z80 TurboDOS Programmer's Guide, Software 2000, 1984.
8086 TurboDOS Programmer's Guide, Software 2000, 1984.
780 TurboDOS Implementer's Guide, Software 2000, 1984.

8086 TurboDOS Implementer's Guide, Software 2000, 1984.

Rex Jackson became involved in digital electronics repair and
training while in the Air Force in 1971. He received a B.S.E.E.
degree from the University of Missouri, Columbia while working
for the university designing small computer systems. Rex joined
Texas Instruments as product engineer for the Memory Group and
was software product manager for the Microprocessor Group at
Texas Instruments. He currently is with Arrow Commercial Computer
Products Group of Arrow Electronics, Denver, Colorado.
|

|

MICROPROCESSOR OPERATING SYSTEMS

Designed for microprocessor system users and anyone who must
select, evaluate, and/or design operating systems to support
applications software, this series contains descriptions of the
most important microprocessor operating systems currently
available. Every chapter is written by an industry leader in-
volved in the development or implementation of the operating
system, ensuring an accurate and complete exposition. Similar
chapter formats permit the systems to be easily compared and
contrasted. A complete chapter is dedicated to each operating
system; each chapter presents a concise functional overview of
the appropriate system as well as many user-oriented technical
details.

Volume | includes the BLMX-80, iRMX 80/88, iRMX 86, MP/OS,
RIO/CP, Rx, UNIX, VERSAdos, and ZRTS operating systems.
ISBN 0-935230-03-3

Volume Il includes the CP/M, CP/M-86, Idris, 1/0S, MP/AOS,
MULTIUSER OASIS, OASIS-16, VRTX, and ZEUS operating sys-

tems.
ISBN 0-935230-04-1

OPERATING SYSTEMS concepts aND PRINCIPLES
John Zarrella

The most important component of system software is the oper-
ating system. This book provides an introduction to current
operating systems technology. Operating systems concepts,
capabilities, and terminology are explained in an easy-to-
understand manner. Among the topics included are Real-Time
and Multitasking Systems, Tasks and Task States, Communi-
cation and Synchronization, Scheduling, Memory Management,
and File Systems. A detailed glossary is also included.

ISBN 0-935230-00-9, softbound, 152 pp.

“MICROCOMPUTER
APPUCATIONS

3

Suisun City, California

