

| Py pewm Pey P PEW PRy PpES pEm pEea puy pee pem PEN P P PR PR R P

THE PICK® SYSTEM
R83 User
REFERENCE MANUAL

VOLUME 2

©1988 Pick Systems, Irvine, California
A1l Rights Reserved

The PICK System
R83 User Reference Manual

Copyright 1988 by Pick Systems, Irvine, CA 92714,
All rights reserved.

Printed in the United States of America.

PROPRIETARY INFORMATION

This document contains information which is proprietary to and considered
a trade secret of PICK SYSTEMS. It is expressly agreed that it shall not
be reproduced in whole or part, disclosed, divulged, or otherwise made
available to any third party either directly or indirectly.

Reproduction of this document for any purpose is prohibited without the
prior express written authorization of PICK SYSTEMS.

User Reference Manual copyright 1988 PICK SYSTEMS

Fa pEa32 a4 P

B!

[== N C

e g el

By B

-

719 e Ba pa Y

CHAPTER 8 -
Preliminary

Chapter 8

RUNOFF

THE PICK SYSTEM

USER MANUAL

PROPRIETARY INFORMATION

This document contains information which is
proprietary to and considered a trade secret of
PICK SYSTEMS. It is expressly agreed that it
shall not be reproduced in whole or part,
disclosed, divulged, or otherwise made available
to any third party either directly or indirectly.
Reproduction of this document for any purpose is
prohibited without the prior express written

authorization of PICK SYSTEMS. All rights

reserved.

RUNOFF Copyright 1988 PICK SYSTEMS
PAGE 8-1

Contents

8 RUNOFF

8.1 RUNOFF INTRODUCTION AND RUNOFF VERB FORMAT . 8-3

8.2 RUNOFF SOURCE FILE FORMAT . 8-4

8.3 RUNOFF COMMANDS . 8-5

8.3.1 BEGIN PAGE (BP) . . 8-5

8.3.2 BOX n,m / BOX OFF (BOX) . 8-5

8.3.3 BREAK (B) . . 8-5

8.3.4 CAPITALIZE SENTENCES (CS) . 8-5

8.3.5 CENTER (C) .. . 8-6

8.3.6 CHAIN ([DICT] [FILE- NAME]} ITEM ID . 8-6

8.3.7 CHAPTER text e e . 8-7

8.3.8 COMMENT INSTRUCTION (*) . 8-7

8.3.9 CONTENTS .. . 8-7

8.3.10 CRT . . 8-7

8.3.11 FILL (F) . 8-7

8.3.12 FOOTING . 8-8

8.3.13 HEADING . . . 8-8

8.3.14 HILITE c / HILITE OFF . 8-9

8.3.15 HYPHENS e . 8-9

8.3.16 INDENT n (I) e e . 8-9

8.3.17 INDENT MARGIN n (IM) . 8-9

8.3.18 INDEX text . . 8-10
8.3.19 INPUT . . . 8-10
8.3.20 JUSTIFY (J) . 8-10
8.3.21 LEFT MARGIN n . 8-10
8.3.22 LINE LENGTH n . 8-10
8.3.23 LOWER CASE (LC) . 8-10
8.3.24 LPTR . 8-10
8.3.25 NOCAPITALIZE SENTENCES (NCS) . 8-11
8.3.26 NOFILL (NF) C e . 8-11
8.3.27 NOJUSTIFY (NJ) . 8-11
8.3.28 NOPAGING (N) . 8-11
8.3.29 noparagraph . 8-11
8.3.30 page number n . 8-11
8.3.31 PAPER LENGTH n . 8-11
8.3.32 PARAGRAPH n . 8-11
8.3.33 PRINT INDEX . 8-13
8.3.34 PRINT 8-13
8.3.35 READ ([DICT] [file name]} item id . 8-13
8.3.36 READNEXT e e e . 8-13
8.3.37 SAVE INDEX file-name . 8-17
8.3.38 SECTION n text . 8-17
8.3.39 SET TABS n,n,n, . 8-17
8.3.40 SKIP n (SK) . 8-18
8.3.41 SPACE n (SP) . 8-18
8.3.42 SPACING n . 8-18
8.3.43 STANDARD . . 8-18
8.3.44 TEST PAGE n . 8-18
8.3.45 UPPER CASE (UC) e . 8-18
8.4 SPECIAL CONTROL CHARACTERS . 8-19
8.4.1 Upper and Lower Case Controls . 8-19
8.4.2 Underlining and Overstriking . . 8-20
8.4.3 Tab Settings . e e e . 8-21

CHAPTER 8 - RUNOFF Copyright 1988 PICK SYSTEMS
Preliminary PAGE 8-2

By w3 § 9

ey peey PEN Ppum AN PN Pem PpUEN Ppew JENE PN O PW PN W pew ey pew oW M

8.1 RUNOFF INTRODUCTION AND RUNOFF VERB FORMAT
|

RUNOFF is a verb which facilitates the preparation and maintenance of
textual material suc as memos, manuals, etc. RUNOFF takes text
prepared with the EDITOR and produces formatted output. RUNOFF source
text contains commands which control justification, page titling and
numbering, spacing and capitalization. Textual material prepared with
RUNOFF may be easily edited and corrected with the Editor and then
reprinted with RUNOFF. Material may be inserted or deleted, while
unchanged text need not be retyped. RUNOFF also provides the
capability of combining separate textual material into a single report
and inserting duplicate text into different reports.

RUNOFF is the TCL-II verb issued to process one or more source text file
items in RUNOFF format. Multiple input items are treated as a single
source text file. A source text item may contain a command which causes
RUNOFF to CHAIN to another file item. This makes it possible to CHAIN
file items together without doing a SELECT or SSELECT. Items included in
the RUNOFF verb's item-list may chain to other items within the same
file. when the chain ends, processing continues with the next item from
the item-list. i -

A source text item may also contain a command which causesRUNOFF to READ
a second file item and then resume processing of the first item. This
makes it possible to insert the text from a single file item in the
output from many other file items (see example below).

The RUNOFF verb format is: RUNOFF file-name item-1list ((options))

OPTIONS:
c The C option suppresses thecommands.
1 The I option will output the name of the next item to be
'Runoff'. (helpful for tracing.CHAINed sequences)
J The J option will suppress Highlighting.
N The N optit; causes output to the terminal to be continuous;
that is, RUNOFF will not pause at the bottom of a page

and wait for a carriage-return if the N option is used.

Nnn This numeric option may be used to set the number of times
BOLDFACE letters are overprinted.

P The P option may be used to direct output to the line printer.
S The S option may be used to suppress underlining and boldface
when RUNOFF output is directed to a CRT.
U The U optilon will force the output to upper-case.
CHAPTER 8 - RUNOFF Copyright 1988 PICK SYSTEMS
Preliminary ! PAGE 8-3

’

8.2 RUNOFF SOURCE FILE FORMAT

The source file contains the textual material which will appear on
the final copy, plus command information to specify formatting and
alternate sources of input.

Each line of input source text is processed in the text mode except those
beginning with a period. A line beginning with a period is assumed to be
a command line and is processed in the command mode. A command line may
contain one or more commands, each starting with a period. The commands
provide formatting information and select various modes of

RUNOFF fills each output line by adding successive words from the source
text until one more word will not fit on the 1line. The line is then
justified by inserting blank spaces between words at random until the
last word in the line exactly meets the right margin. RUNOFF may be set
to fill output lines without justifying the right margin. When filling
lines, spaces and end-of-lines are treated only as word separators.
Multiple word separators are stripped from the input. RUNOFF may be set
to transmit the input source text to the output without filling 1lines or
justifying margins. In this mode, multiple spaces and end-of-lines are
not stripped from the input. Some of the commands cause a BREAK 1in the
output. A BREAK means that the current 1line is output without
Justification. This occurs at the end of paragraphs.

.SK.xbox 1,78.SK
.BP.F.J.PARAGRAPH O.LEFT MARGIN 2.LINE LENGTH 74
.SECTION 1 INTRODUCTION TO RUNOFF

.INDEX 'RUNOFF Introduction'

.box OFF.C
Common RUNOFF Commands.
CHAPTER 8 - RUNOFF Copyright 1988 PICK SYSTEMS
Preliminary PAGE 8-4

Pug pew EEy e pEm w pey PR P PN O PRR PWM O FUR P8 W PN PN W pm

8.3 RUNOFF COMMANDS

I
RUNOFF commands are‘stored along with the textual material in the |
source file. These commands are distinguished by a period at the |
start of a command line. A command 1line may contain one or more |
command, each starting with a period. The commands provide formatting |
information and select various modes of operation. |

I

d

Note: In the following descriptions of RUNOFF commands, valid comman
abbreviations are

enclosed in parantheses (where such abbreviated forms of the command
exist). ‘

8.3.1 BEGIN PAGE (BP)

BEGIN PAGE causes a BREAK (see below) followed by an advance to a new
page. The page number is incremented and the page heading (if set) is
printed.

8.3.2 BOX n,m / BOX OFF (BOX)

The BOX command causes the following text to be enclosed in a box with the
width parameter specified by 'n' (right margin) and 'm' (left margin).
The text will continue to be 'boxed' until a "BOX OFF" command is
encountered.

For example:
001 .box 4,74.CENTER

002 This is an example of a BOX.
003 .box

| This is an example of a BOX. |

8.3.3 BREAK (B)

BREAK causes any partially filled line to be output before processing the
next input line.

8.3.4 CAPITALIZE SETTENCES (Cs)

This command puts RUNOFF 1in the capitalize sentences mode. In this mode
the first letter of each sentence is capitalized. The first letter after
a'.', '?', or '!', followed immediately by either a space or an
end-of-line (Attribute Mark) is capitalized. The capitalize sentences
mode also causes the following characters to be followed by a double

space or an end-of-line: '.', '?', 't', ‘':', and ';'. CAPITALIZE
CHAPTER 8 - RUNOFF ‘ Copyright 1988 PICK SYSTEMS
Preliminary PAGE 8-5

SENTENCES is one of the STANDARD settings. (See the STANDARD command.)
note: This command is ignored in the NOFILL (NF) mode.

8.3.5 CENTER (C)

CENTER causes the next line to be input in NOFILL mode and centered on the
next line of output. This command causes a BREAK to occur.

8.3.6 CHAIN ([DICT] [FILE-NAME]) ITEM-ID

This command causes RUNOFF to CHAIN to the input text file item indicated.
The [DICT] and [FILE-NAME] are both optional. If DICT 1is not specified,
the DATA section of the file is assummed. If no FILE-NAME is given, the
item will be read from the same file as the item being processed.

The text input from this item is processed and output without any
parameter or mode changes. RUNOFF does mnot resume processing text from
the current source of input. This command does pot cause a BREAK.

The .CHAIN command will scan the string following the command, looking
for an item-id or a file name. The legal delimiter for the item-id or
file name is a blank. They may have an included period. If there 1is
more than one string following the CHAIN command which is delimited by a
blank, then the next-to-the-last field will be taken to the the file
name, and that file will be opened. The last field delimited with a blank
will be considered the item-id, and it will be retrieved by the RUNOFF
processor to be executed next. You can include a comment statement after
the CHAIN, however. Therefore, for the purposes of the CHAIN commands,
the 1line 1is considered exhausted when the processor encounters an
end-of-line mark, or when it encounters a period preceeded by a space.

If the processor opens a file when executing a CHAIN statement, that file
will be the file from which all succeeding items are retrieved, until the
file is respecified by another CHAIN statement.

The C option will suppress the .CHAIN command if it is desired to RUNOFF
one element of a chained or tree-ed structure. The I option will cause
the name of the next item to be output by RUNOFF to be placed in the last
line of the last item RUNOFF. This 1is of use with relatively 1large
documents.

CHAPTER 8 - RUNOFF Copyright 1988 PICK SYSTEMS
Preliminary PAGE 8-6

ey El B B2 B3 3

3 1 =S

Py pey PENm Py PpER PR PR PEY e PO ™M O PN O PY P PN PN R Pa PR

8.3.7 CHAPTER text

This command may be used to handle automatic chapter numbering and
formatting. This command has the same effect as:

.BEGIN PAGE.CENTER
.CHAPTER n

.SPACE 2

text

.SPACE 2

where the chapter number n is incremented automatically. For example:
.CHAPTER RUNOFF
would produce:

CHAPTER 8

RUNOFF

8.3.8 COMMENT INSTRUCTION (%)

This command informs the RUNOFF processor that all of the rest of the
text in the 1line in which it occurs is a comment. It must either be at
the beginning of the 1line, or after another command in a command line.
It is always the last command in a line. This allows text to be
commented out, and the intent of READs and CHAINs to be noted.

8.3.9 CONTENTS

This command prints the table of contents accumulated by preceding CHAPTER
and SECTION commands. This command should be wused at the end of the
RUNOFF source file. an example of the results of this command can be seen
by 1looking at the TABLE OF CONTENTS at the beginning of this manual.
Note: the LINE LENGTH and LEFT MARGIN of the Table of Contents is
determined by those settings that are in effect when the first .CHAPTER
or .SECTION command is encountered.

8.3.10 CRT

This command directs the RUNOFF output to the user's terminal. CRT is one
of the STANDARD settings. (See the STANDARD command.)

8.3.11 FILL (F)

FILL puts RUNOFF into the line £ill mode. Words are processed until there
are enough to £fill a line without overflowing it. If justifaction mode is
on, RUNOFF will insert spaces in the line at random to make the right
margin line up. FILL is one of the STANDARD settings. (See the STANDARD
command.)

CHAPTER 8 - RUNOFF Copyright 1988 PICK SYSTEMS
Preliminary PAGE 8-7

8.3.12 FOOTING

FOOTING causes the next 1line to be input in nofill moder and stored 1in a
page footing buffer. The page footing buffer will be output at the bottom
of each page. The page footing may be changed with successiveFOOTING
commands. The following characters have special meaning in page footings
and headings:

‘P’ Prints out the page number, right justified in
a field of four spaces, with blank fill.

'Pn' Prints out the page number, left justified in
a field of 'n' spaces ('n' specified by the user).

'L’ Performs a carriage return/line-feed (CR/LF).
‘i Prints out the Item-Id.

'in' Prints out the Item-Id, left justified in a field
of 'n' spaces ('n' specified by the user).

'F! Prints out the File-Name.

'Fn' Prints out the File-Name, left justified in a field
of 'n' spaces.

'T' Prints out the Time and Date (22 characters long).
'D' Prints out the Date in 'Ol JAN 1977' format (11 characters).
\/ 'Cc! Centers the line.

FOOTING causes a BREAK and also is one of the STANDARD settings. (See the
STANDARD command.)

8.3.13 HEADING

HEADING causes the next line to be input in NOFILL mode and stored in a
page heading buffer. The page heading buffer will be output at the top of
each page.

The page heading may be changed with successive HEADING commands. The
special characters described under the FOOTING command may also be used
in page headings.

The HEADING command causes a BREAK and also 1is one of the STANDARD
settings. (See the STANDARD command.)

CHAPTER 8 - RUNOFF Copyright 1988 PICK SYSTEMS
Preliminary PAGE 8-8

T3 0 e B4 B B2 B3 B:d KA B3 §E A

P pen SR Pw PR M PR PRY W PTE PR PR O PTT O PT PUN pew pram pem pemy

8.3.14 HILITE c¢ / HILITE OFF

HILITE causes the character specified by 'c' to be printed out at the
extreme right margin fior every line of text until a HILITE OFF command is
encountered. An example of the HILITE command may be seen at the right of
this text.

The highlight command does not cause a break in the text. This allows
parts of paragraphs to be highlighted in justify or fill mode. If you
wish to align the HILITE command with a paragraph, it may be necessary to
put the HILITE | command after the first 1line of filled or justified
text, and to put the form .BREAK at the end of the paragraph.

The execution of the‘hilite command also is such that if the term is the
last character strinf in command 1line, then it 1is equivalent to HILITE
OFF. The J option will suppress highlighting.

8.3.15 HYPHENS

Hyphens which are surrounded by alphabetic characters will allow a
word-break on the hy?hen in fill and justify modes. That is, if a term
is a concatenation of two words separated by a hyphen, and the 1line
overflows within the second part of the term, then the first part and the
hyphen are left in the 1line, and the next line is commenced with the
second part of the word.

Similarly, if a 1line in the source text terminates with a hyphen
preceeded by an alphabetic character, and the first character in the next
line is an alphabetic character, then the last word 1in the line and the
hyphen will be concatenated with the first word in the next line and
output together in a line with the hyphen between the two parts. If there
is a line overflow which occurs during this process, the hyphenated word
will be handled as above. What the processor will not do is remove the
hyphen. |

\

If the hyphen does not have this meaning, then the back-arrow character
may be placed in front of it to suppress this action.

|
8.3.16 INDENT n (I)

INDENT causes the next line of output to be indented by n spaces to the
right of the 1left ﬂargin. n may be negative to cause the line to begin
left of the left margin. If n is missing, n=1 is assumed. This command
causes a BREAK to occur.

8.3.17 INDENT HARGI# n (IM)

This command causes the left margin to be increased by n spaces and the
line length to be decreased by n. Negative n may be used to decrease the
left margin and increase the line length. This command causes a BREAK to
occur.

CHAPTER 8 - RUNOFF Copyright 1988 PICK SYSTEMS
Preliminary PAGE 8-9

* %

* % % ¥ %

8.3.18 INDEX text

INDEX causes the text specified to be stored in an 1index list. The text
may be more than one word, or several words enclosed in single quotes.
The word, or words, along with the current page number, are put in a
sorted index list. The index can be printed by the PRINT INDEX command.

8.3.19 INPUT

The INPUT command caused RUNOFF to read the next line of source text from
the wuser's terminal. The text input from the terminal is processed and
output without a BREAK or mode change.

8.3.20 JUSTIFY (J)

JUSTIFY puts RUNOFF in the FILL and JUSTIFY mode. RUNOFF fills each
output line by adding successive words from the source text until one
more word will not fit on the 1line. the 1line 1is then justified by
inserting blank spaces between words at random until the last word in the
line exactly meets the right margin. JUSTIFY is one of the STANDARD
settings. (See the STANDARD command.)

8.3.21 LEFT MARGIN n

This command sets the left margin to n spaces. If n plus the current line
length exceeds the maximum 1line 1length, this command is ignored. A LEFT
MARGIN of O is one of the STANDARD settings. (See the STANDARD command.)
8.3.22 LINE LENGTH n

This command sets the line length to n characters (not counting the left
margin). If n plus the current left margin exceeds the maximum 1line
length, this command is ignored. A LINE LENGTH of 70 is one of the
STANDARD settings. (See the STANDARD command.)

8.3.23 LOWER CASE (LC)

This command puts RUNOFF into lower case mode. In lower case mode all
letters are automatically made 1lower case. They may then be changed to
upper case by various text commands or control characters. (See the
section on RUNOFF Special Characters.)

8.3.24 LPTR

This command directs the RUNOFF output to the line printer.

CHAPTER 8 - RUNOFF Copyright 1988 PICK SYSTEMS
Preliminary PAGE 8-10

¥4 =2 B3 W1

=1

s Ssa | &= | | =2 | Bad ey

I S B2 8 a2 P BNl

=

8.3.25 NOCAPITALIZE FENTENCES (NCS)

This command resets the CAPITALIZE SENTENCES mode.

8.3.26 NOFILL (NF)

This command resets both the JUSTIFY and FILL modes. Input text lines
will be output as Fhey are, (after posssible elimination of special
control characters) without removal of extra spaces. Output 1lines will
not be filled nor will right margins be justified. This command causes
BREAK. i

8.3.27 NOJUSTIFY (NJ)

This command resets the JUSTIFY mode, but has no effect on the FILL mode.

8.3.28 NOPAGING (N)

The N option may be uged to eliminate the wait for terminal input at the

end of each page printed on the terminal.

8.3.29 NOPARAGRAPH

This command resets the paragraph mode. Blank input text lines and spaces
at the beginning of a line will be ignored in justify mode.

8.3.30 PAGE NUMBER n

This command sets the current page number to n. If n is missing, n=1 is
assumed.

8.3.31 PAPER LENGTH n

This command sets the paper length to n lines.

8.3.32 PARAGRAPH n

This command causes a%y blank line or any line which starts with a space
to be considered as the start of a new paragraph. This allows normally
typed text to be Jjustified without any special commands. n sets the
number of spaces paragraphs are to be indented or unindented. A paragraph
causes a BREAK followed by (line spacing + 1)/2 blank lines. A PARAGRAPH
5 is one of the ST settings. (See the STANDARD command.)

The PARAGRAPH command may be set to a negative number. The example shows
the use of a negative paragraph setting to decrease the left margin.

CHAPTER 8 - RUNOFF Copyright 1988 PICK SYSTEMS
Preliminary \ PAGE 8-11

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018

Note that in the above example the text lines beginning with 1. and
are spaced over one space thus resulting in the negative paragraphing.

2.

The

.SK .PARAGRAPH -4 .LEFT MARGIN 13 .LINE LENGTH 63

1. The user enters the command "Z" to the DEBUGGER prompt character
"%" The DEBUGGER responds with "PROG NAME?", the user enters the
program name. This allows the DEBUGGER access to the symbol table
created during compilation. Alternatively, if the user uses the
*(D)" during run time, access to the symbol table is already
established, and use of the "Z" command is unnecessary.

2. To find out how far in the loop the program progressed, the
user looks at the variable "I" by entering "/I". The DEBUGGER
responds with
"1l =", at which the user may change the value of "I" if desired.
The user may then want to look at all of the values in the array by
entering "/ARRAY". The DEBUGGER responds with "ARRAY(1l)=1=",6 the
user depresses
return and the DEBUGGER continues with the next "array slot"

(i.e., "ARRAY(2 etc.)=2="). Once "ARRAY(10)=10=" has been reached
the . . . etc.

above source text would print:

1. The user enters the command "Z" to the DEBUGGER prompt character
k", The DEBUGGER responds with "PROG NAME?", the user enters the
program name. This allows the DEBUGGER access to the symbol table
created during compilation. Alternatively, if the user uses the
debug option "(D)" during run time, access to the symbol table is

already established, and use of the "Z" command is unnecessary.

2. To find out how far in the 1loop the program progressed, the user
looks at the variable "I" by entering "/I". The DEBUGGER responds
with "11 =", at which the user may change the value of "I" if

desired. The wuser may then want to look at all of the values in
the array by entering "/ARRAY", The DEBUGGER responds with
"ARRAY(1)=1=", the wuser depresses return and the DEBUGGER

continues with the next "array slot" (i.e., "ARRAY(2)=2=" etc.).
Once "ARRAY(10)=10=" has been reached the ... etc.

CHAPTER 8 - RUNOFF

Sample usage of a negative PARAGRAPH command.

Copyright 1988 PICK SYSTEMS

Preliminary PAGE 8-12

e Ex e

F2 P B 63 821 s B9 Bed BEs B2

-3

1 Ba §a

(B |

Fen ™ ™S PE W WM PR Py PN PSS PSNT O PPN PO Y e SN e

8.3.33 PRINT INDEX

This command causes t*e sorted index list of words and page numbers to be
printed. The index is| sorted into alphabetical order, and printed in two
columns per page. Note -- this command changes the tab settings, and
causes a BEGIN PAGE command to be performed.

8.3.34 PRINT

The PRINT command causes RUNOFF to print the next line of input text on
the user's terminal.

|
8.3.35 READ ([DICT] [file-name]) item-1id

This command causes kUNOFF to read the file item indicated. The [DICT]
and [FILE-NAME] are both optional. If DICT is not specified, DATA section
of the file will be used. If no FILE-NAME is given, the item will be read
from the same file as the item being processed. The text input from this
item is processed and output without any parameter or mode changes. After
processing this item, RUNOFF resumes input with the next 1line of the
current source of input. This command does not cause a BREAK.

The .READ command will scan the string following the command, looking
for an 1item-id or a file name. The legal delimiter for the item-id or
file name is a blank. They may have an included period. If there is
more than one stringi following the READ command which is delimited by a
blank, then the next-to-the-last field will be taken to the the file
name, and that file will be opened. The last field delimited with a blank
will be considered the item-id, and it will be retrieved by the RUNOFF
processor to be executed next. If the statement is a READ, then the
processor will eventually return to this item and continue processing it.
When it does, it will commence at the beginning of the next line in the
item. Therefore, no statements which occur after the READ statement in
the line will be executed. You can include a comment statement after the
READ however. Therefore, for the purposes of the READ command, the 1line
is considered exhausted when the processor encounters an end-of-line
mark, or when it encounters a period preceeded by a space. The C option
will suppress the . command if it is desired to RUNOFF one element of
a chained or treed structure. The I option will cause the name of the
next item to be output by RUNOFF to be placed in the last line of the
last item RUNOFF. This is most useful with large documents.

8.3.36 READNEXT

This command is wused to read data from a pre-selected LIST. It has an
effect only if, prior to entering RUNOFF, a SELECT, SSELECT, QSELECT or
GET-LIST statement has been entered, which selects a list of values. Each
READNEXT command in |[RUNOFF will extract one value from the select-list
and place it in the text stream. READNEXT does mnot cause a break. If

CHAPTER 8 - RUNOFF Copyright 1988 PICK SYSTEMS
Preliminary PAGE 8-13

there 1is no pre-selected 1list, or when the 1list 1is exhausted, the
READNEXT command will cause a termination of RUNOFF, and a return to TCL.

This command is particularly useful when form-letters are to be
generated. For example, it may be necessary to insert the name and
address of each recipient of the letter from a separate file. A SSELECT
statement is used to extract the relevant data from the file and save it
in a list. A series of READNEXT statements will insert the data into the
text of the letter. At the end of the letter, a CHAIN statement may be
used to restart the next letter. When the list is exhausted, the RUNOFF
will stop.
The commands necessary to generate a form letter are:

{S)SELECT file-name {selection criteria) attribute-list
.READNEXT

.CHAIN item-name

The selected attribute-list contains all the variable information to be
'written' into the form letter. The use of '.READNEXT' commands reads
each of these variables and causes them to be 'written' into the letter.
The '.CHAIN' command causes the letter to be repeated so long as there is
variable information in the selected attribute 1list. The following
example demonstrates the generation of a form letter.

Assume the dictionary of the accounts payable file for a company contains
the following three Attribute defining Items:

NAME COUNT AMOUNT

001 A 001 A 001 A

002 1 002 2 003 3

003 CUSTOMER NAME 003 ACCOUNT TYPE 003 AMOUNT DUE

004 004 004

005 005 005

006 006 006

007 007 007

008 Al:"," 008 008 A;3(MR2S,):"."

009 L 009 L 009 R

010 25 010 30 010 10
CHAPTER 8 - RUNOFF Copyright 1988 PICK SYSTEMS
Preliminary PAGE 8-14

B2 &3 §:2 Ei

9 B = Sa

The dictionary also contains the following form letter written in RUNOFF:

LETTER

001

.SK 8

002 Dear Mr.

003
004
005

.READNEXT
Our records show that your
.READNEXT

006 account is overdrawn by the amount of

007

.READNEXT

008 We would appreciate prompt payment.

009
010
011
012
013
014
015

The data
250
001

002
003

Thank you,
Indiana Jones
.SK 2
President CELEBRITY SERVICES CO.
.SK 3
.BP
.CHAIN LETTER

file contains items such as the following three:

251

252

Magic Johnson 001 Eddie Van Halen 001 Boy George

Basketball Shoes 002 Guitar
25000 003 12345

To generate the form letter the data file is
name with the attribute list of NAME ACCOUNT and AMOUNT:

String 002 Voice Lesson
003 452359

first sort selected by the

SSELECT ACC-PAYABLE BY NAME WITH AMOUNT > "100" NAME ACCOUNT AMOUNT

This command will generated a

information:

001
002
003
004
005
006
007
008
009

Boy George,
Voice Lesson
$4,523.59.

Eddie Van Halen,
Guitar String
$123.45.

Magic Johnson,
Basketball Shoes
$250.00.

selected 1list containing the following

Note that the correlatives on the names and on the amounts have

been performed.

form letters are generated:
RUNOFF DICT ACC-PAYABLE LETTER (P)

CHAPTER

8 - RUNOFF

Preliminary PAGE 8-15

Now by issuing the following RUNOFF command the

Copyright 1988 PICK SYSTEMS

The form letters will be printed as follows:

Dear Mr. Boy George,

Our records show that your Voice Lesson account is

overdrawn by the amount of $4,523.59. We would appreciate

prompt payment.
Thank You,

Indiana Jones

President CELEBRITY SERVICES CO.

(next page)

Dear Mr. Eddie Van Halen,

Our records show that your Guitar String account is
overdrawn by the amount of $123.45. We would appreciate
prompt payment.

Thank You,

Indiana Jones

President CELEBRITY SERVICES CO.

(next page)
Dear Mr. Magic Johnson,

Our records show that your Basketball Shoes account is
overdrawn by the amount of $250.00. We would appreciate
prompt payment.

Thank You,

Indiana Jones

President CELEBRITY SERVICES CO.

CHAPTER 8 - RUNOFF Copyright 1988 PICK SYSTEMS

Preliminary PAGE 8-16

tad &3 B3 B3 B3 B3

©3 93 S 89 &3 ¢um Ed d

37 =4 8 B &3

8.3.37 SAVE INDEX file-name

This command causes chapter and page number information of indexed data
in a text to be saved 1in a separate file. Each 1indexed datum is stored
as an 1individual item wusing the datum as the Item-Id, the chapter (where
that datum is referenced) as the first attribute and the page number as
the second attribute. Multiple values are stored in these attributes as
multiple references to the same indexed datum are encountered. The
resulting file may then be operated on by the ACCESS processor to
generate 1listings for the chapter and page number information of all
indexed data in a text.

The 'file-name' is the name of the file in which the chapter and page

information 1is to be stored. NOTE: s must be SEPARATE FILE from the
text file 11! (Otherwise data in the text file will be DESTROYED.) The
is placed in the text item itself and must precede the '.INDEX' commands.

In short, only that indexed data which has been preceded by the '.SAVE
INDEX' command will be saved in the specified file.

8.3.38 SECTION n text

This command may be wused in conjunction with the CHAPTER command to
handle automatic chapter section numbering and formatting. The

SECTION command automatically starts the next section at depth n, where n
is the range 1-5. The text 1is printed following the section number
SKIP occurs. The text is recorded as the section heading in the TABLE OF
CONTENTS. If no text appears on the SECTION command, then no SKIP occurs
and the section 1is not recorded in the TABLE OF CONTENTS. Section numbers
are incremented automatically and the section number is printed in the
form i.j.k.1.m with n digits printed.

Conventionally the .SECTION command is followed by a blank 1line before
the next paragraph starts. Since the SECTION command causes a break
which terminates the preceding paragraph, and since the text following
the SECTION command is placed immediately into an ouput 1line and output
prior to a consideration of the next 1line, the blank 1line after the
SECTION command can be avoided by not indenting the first 1line of the
next paragraph. That 1is, 1if the processor does not know that the next
line starts a paragraph, it will not skip a line. It may be necessary to
use an INDENT MARGIN if paragraph indentation is desired, however.

8.3.39 SET TABS n,n,n,

This command clears previous tab stops and sets new tab stops as indicated
by the numeric tab positions. The tab stops (up to 30) must be greater
than zero and in increasing order. They indicate tab stop positions
relative to the left margin. Tabs are only in effect in NOFILL mode. The
left-tab character (<) causes the next word to start at the next tab
position. The right-tab character (>) causes the next word to end at the

CHAPTER 8 - RUNOFF Copyright 1988 PICK SYSTEMS
Preliminary PAGE 8-17

next tab position. If a tab character appears at a point in the line
where no further tab stops have been set, the tab character is ignored.

8.3.40 SKIP n (SK)

The SKIP causes a BREAK after which n*(SPACING n) lines are left blank.
If the skip would advance past the end of the page, the output is
advanced to the top of the next page. If n is missing, n=1 is assumed.

8.3.41 SPACE n (SP)

This command has the same affect as SKIP, except that n (rather than
SPACING n) 1lines are left blank. SPACE is used where space is to be left
independent of the 1line spacing; SKIP is used where space should be
relative to the SPACING command. If n is missing, n=1 is assumed.

8.3.42 SPACING n

This command sets the line spacing to n. The command .SPACING 2 may be
used for double spacing.

8.3.43 STANDARD

This command sets the standard (default) parameters and modes.
STANDARD command is equivalent to the following commands:

.CS.F.J.UC.LEFT MARGIN O.CRT.HEADING
.FOOTING
.PARAGRAPH 5.LINE LENGTH 74

8.3.44 TEST PAGE n

This command causes a BREAK followed by an advance to a new page when
there are less than n lines remaining on the current page. If there are n
or more lines remaining on the current page, this command has no effect.
This command should be used to ensure that the following n lines are all
output on the same page.

8.3.45 TUPPER CASE (UC)

This command puts RUNOFF into upper case mode. Alphabetic letters will be
processed as they are, unless modified by special commands or control
characters. This command allows users of terminals with upper and lower
case to generate the input text file without special commands or control
characters. UC 1is one of the STANDARD settings. (See the STANDARD
command.) The 'U' option will force the whole runoff output to
upper-case if that is desired.

CHAPTER 8 - RUNOFF Copyright 1988 PICK SYSTEMS
Preliminary PAGE 8-18

= pm P P W M W PN O PT O S PN PN P PRSP PN s

8.4 SPECIAL CONTROL CHARACTERS

I
RUNOFF features Special Control Characters for Upper/Lower Case |
Control, Underlining, Boldface Printing, Tabbing, and Special |
Character Override. |

I

8.4.1 Upper and Lower Case Controls

The upper-case, lower-case control structure causes the text to go to the
case specified. ENDCASE or EC will turn off both the upper-case condition
and the lower-case condition to allow the text to go to 1its natural
condition.
The forms “" and \\ cause the text to switch to upper-case or to
lower-case in the same way that UC and LC cause the switch, except that
“* and \\ may be imbedded in a line. Turning off the condition "" or
\\ requires the use of EC.

The forms ", \, & and @ will produce one character of upper-case,
lower-case, underline, or overstrike. Each will be treated as the
character itself if it is followed by a blank. The backarrow or underline
character, _, will cause the succeeding character to be taken as a text
character rather than a control character. This means that if you have
existing RUNOFF text with forms such as '40# @$1.28/#', the dollar sign
will be overstruck and the @ will disappear unless the backarrow, _, is
inserted in front of the @. The same is true of the '&' character if
it occurs in a character string.

The example below is an attempt to display the interactions of the
several commands above. The first part 1is the text which was sent to
RUNOFF and the second part is the output from RUNOFF. First, note that
the 'I' in 'is' is always capitalized by the single-character ", and that
the 'a' is always in lower-case due to the single-character \ command.

The first 1line is in its natural form. The second 1line is uniformly
capitalized by the UC command, excepting the 'a'. The third 1line is

uniformly sent to lower-case, except for the 'Is'. The fourth and fifth
lines contain a '"" text \\ ' string, which is uniformly capitalized,
excepting the 'a'. After the \\ the string reverts to lower-case. The

only way to retrieve the capitalization of the string 'UC AND 'LC' is by
the use of EC command. Thus, the sixth line is in its natural form.

CHAPTER 8 - RUNOFF Copyright 1988 PICK SYSTEMS
Preliminary PAGE 8-19

001 .LINE LENGTH 66.PARAGRAPH 5.J
002 This “is \a test of UC AND LC.
003 .UC

004 This “is \a test of UC AND LC.
005 .LC

006 This “is \a test of UC AND LC.
007 This “is \a ““test of UC AND LC.
008 This “is \a test of UC AND LC.
009 .EC

010 This “is \a test of UC AND LC.

This Is a test of UC AND LC.
THIS IS a TEST OF UC AND LC.
This Is a test of uc and lc.
This Is a TEST OF UC AND LC.

THIS IS a TEST of uc and lc.

This Is a test of UC AND LC.

Example of .UC, .LC, .EC and the associated " and \ characters.

8.4.2 Underlining and Boldface Printing

UNDERLINING

The ampersand (&) may be used to indicate underlining. The ampersand
causes the letter immediately following to be underlined.

.LC
THE LETTER &A IS FIRST IN THE ALPHABET

This example of RUNOFF source would print as:

the letter a is first in the alphabet
Ampersand may be used in conjunction with the up-arrow and back-slash to
underline a series of characters. An ampersand followed immediately by an
up-arrow (&") puts RUNOFF in the Underline mode until an ampersand
followed immediately by a back-slash (&\) is encountered.

.uc
&"SPECIAL CONTROL CHARACTERS&\ ARE NEEDED ...

This example of RUNOFF source would print as:

SPECIAL CONTROL CHARACTERS ARE NEEDED ...

CHAPTER 8 - RUNOFF Copyright 1988 PICK SYSTEMS
Preliminary PAGE 8-20

OLDFAC G

The at sign (@) may be used to indicate BOLDFACE type. An at sign
followed immediately by an up-arrow (@") puts RUNOFF in the boldface mode
until an at sign followed immediately by a back-slash (@\) is encountered.
The number of times the boldface letters are overprinted may be set by
using the numeric option of the RUNOFF verb.

.UC
@"SPECIAL CONTROL CHARACTERS@\ ARE NEEDED ...

This example of RUNOFF source would print as:
SPECIAL CONTROL CHARACTERS ARE NEEDED ...

The S option suppresses underlining and boldface printing.

CHAPTER 8 - RUNOFF Copyright 1988 PICK SYSTEMS
Preliminary PAGE 8-21

8.4.3 Tab Settings

The less-than (<) and greater-than (>) characters may be used for tabbing.
The 1left-tab character (<) causes the next word to start at the next tab
position as set by the .SET TABS command. The right-tab character (>)
causes the next word to end at the next tab position.

.NF

.SET TABS 5,8,25

.SK'1

><&"NAME<CONVENTIONAL DATA PROCESSING NAME&\
.SK'1

>1.<Item<Record

>la.<Attribute<Field

>1b.<Item-id<Record Key

This example of RUNOFF source would print as:

AME CONV. TIONAL DATA PROCESSING NAME
1. Item Record
la. Attribute Field
1b. Item-id Record Key

Note: Tab characters are only in effect in the NOFILL (NF) mode.

You will also note that the sequence .tl .tl .tl will tab over to the

third tab if tabs are set.

8.4.4 Special Character Override

The back-arrow or underscore (_) may be used to quote one of the special

control characters or blanks. the letter immediately following the

back-arrow is transmitted to the output without special processing.
_"SPECIAL _"CONTROL _"CHARACTERS ARE NEEDED ..

This example of RUNOFF source would print as:

“SPECIAL "CONTROL “CHARACTERS ARE NEEDED ...

CHAPTER 8 - RUNOFF Copyright 1988 PICK SYSTEMS
Preliminary PAGE 8-22

3 B4 B B8 52 B &3 &9 23 B2 BEm B B3 B3

CHAPTER 9 - PICK/BASIC

Preliminary

Chapter 9

PICK/BASIC

THE PICK SYSTEM

USER MANUAL

PROPRIETARY INFORMATION

This docuient contains information which 1is

proprieta:
PICK SYSI

shall not

disclosed,

'y to and considered a trade secret of
[EMS . It 1is expressly agreed that it
be reproduced in whole or part,
divulged, or otherwise made available

to any third party either directly or indirectly.
Reproduction of this document for any purpose is
prohibited without the prior express written
authorization of PICK SYSTEMS. All rights

reserved.

PAGE 9-1

J /ﬂ@‘J

Copyright 1988 PICK SYSTEMS

Contents

o

PICK/BASIC

THE PICK/BASIC LANGUAGE

PICK/BASIC LANGUAGE DEFINITIONS

PICK/BASIC FILE STRUCTURE

THE PICK/BASIC PROGRAM .

.1 DYNAMIC ARRAYS - FILE ITEM STRUCTURE

CREATING AND COMPILING PICK/BASIC PROGRAMS .o
PICK/BASIC COMPILER OPTIONS: A, C, E, L AND P OPTIONS

.2 PICK/BASIC COMPILER OPTIONS : M, S, AND X OPTIONS

EXECUTING PICK/BASIC PROGRAMS e e

CATALOG AND DECATALOG : CREATING VERBS .

.1 PICK/BASIC EXECUTION FROM PROC .
VARIABLES AND CONSTANTS : DATA REPRESENTATION
ARITHMETIC EXPRESSIONS

woNNoOTLLLUEPPWDNDME
-

9 . 9-5
9 . 9-7
9 . 9-11
9 . 9-12
9 . 9-13
9 9-15
9 9-17
9 9-19
9. . 9-20
9. . 9-21
9. . 9-22
9. . 9-23
9. . 9-25
9.10 STRING EXPRESSIONS . 9-27
9.11 RELATIONAL EXPRESSIONS . . . 9-29
9.12 MATCHES : RELATIONAL EXPRESSION PATTERN MATCHING 9-31
9.13 OR - AND : LOGICAL EXPRESSIONS e e e e e e e e . . 9-33
9.14 NUMERIC MASK AND FORMAT MASK CODES : VARIABLE FORMATTING 9-35
9.15 @ FUNCTION : CURSOR CONTROL . 9-38
9.16 ABORT STATEMENT : TERMINATION . 9-41
9.17 ABS FUNCTION : ABSOLUTE NUMERIC VALUE . . . 9-42
9.18 ALPHA FUNCTION : ALPHABETIC STRING DETERMINATION 9-43
9.19 ASCII FUNCTION : FORMAT CONVERSION . . . 9-44
9.20 ASSIGNMENT STATEMENT : ASSIGNING VARIABLE VALUES 9-45
9.21 BREAK ON AND OFF : DEBUGGER INHIBITION . 9-46
9.22 CALL AND SUBROUTINE STATEMENTS : EXTERNAL SUBROUTINES 9-47
9.22.1 ARRAY PASSING AND THE CALL STATEMENT . . 9-48
9.23 CASE STATEMENT : CONDITIONAL BRANCHING . 9-49
9.24 CHAIN STATEMENT : INTERPROGRAM COMMUNICATION . 9-50
9.25 CHAR FUNCTION : FORMAT CONVERSION . . 9-52
9.26 CLEAR STATEMENT : INITIALIZING VARIABLE VALUES . 9-53
9.27 CLEARFILE STATEMENT : DELETING DATA 9-54
9.28 COL1() AND COL2() FUNCTIONS : STRING SEARCHING . 9-55
9.29 COMMON STATEMENT : VARIABLE SPACE ALLOCATION . 9-56
9.30 COS FUNCTION : COSINE OF AN ANGLE . 9-58
9.31 COUNT FUNCTION : DYNAMIC ARRAYS . 9-59
9.32 CRT STATEMENT : Terminal Output . 9-60
9.33 DATA STATEMENT : STACKING INPUT DATA . 9-61
9.34 DATE() FUNCTION : DATE CAPABILITY . 9-63
9.35 DCOUNT FUNCTION : DYNAMIC ARRAYS . 9-64
9.36 DELETE STATEMENT : DELETING ITEMS 9-65
9.37 DELETE FUNCTION : DYNAMIC ARRAY DELETION . 9-66
9.38 DIM STATEMENT : DIMENSIONING ARRAYS . . . 9-67
9.39 DTX FUNCTION : DECIMAL to HEXADECIMAL CONVERSION . 9-69
9.40 EBCDIC FUNCTION : FORMAT CONVERSION . 9-70
9.41 ECHO ON AND OFF : TERMINAL DISPLAY . 9-71
9.42 END STATEMENT e e e e e e e e e e e . 9-72
9.43 ENTER STATEMENT : INTERPROGRAM TRANSFERS . 9-73
9.44 EQUATE STATEMENT : VARIABLE ASSIGNMENT . . 9-74
9.45 EXECUTE STATEMENT : EXECUTING TCL COMMANDS . . 9-75
9.45.1 INPUT - EXECUTE STATEMENT . 9-75
9.45.2 OUTPUT - CAPTURING CLAUSE . 9-75
CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-2

v |

&3

=

2RI

Bed God Bad B9 02 B3 Bad B3 83 B B4 84 B § 3

g2

™ PN F S P8 MR e PP s S e e

.45.3
45.4
.45.5
.45.6
.46
.47
.48
.49
.50
.50.1
.51
.52
.53
.54
.55
.56
.57
.58
.59
.60
.60.1
.61
.62
.63
.64
.65
.66
.67
.68
.69
.70
.71
.72
.73
.74
.75
.76
.77
.78
.79
.80
.81
.82
.83
.84
.85
.86
.87
.88
.89
.90
.91
.92
.93
.94
.95

OV OOVOVOVOVOOVOVOOVOOVOOVOOOVOOVOOVOOVOOOVOOVOOOVOOVWOOVOOOOVOOOOOOVOOOOOVOOOOOVOOOOY

OUTPUT
SELECT

FIELD FUN

FOOTING STATEMENT :

.NEX
FOR .N

GOSUB AND ON..
GOTO STATﬁHENT : UNCONDITIONAL BRANCHING
HEADING STATEMENT :
ICONV FUNCTION :

IF STAT : SINGLE-LINE CONDITIONAL BRANCHING -
IF STAT : MULTI-LINE CONDITIONAL BRANCHING -
IN Statement - Single Character Input . -

INCLUDE STATEMENT
INDEX FUNCTION :

INPUT STA'
Using
INPUTERR -

RETURNING CLAUSE . .
ISTS - EXECUTE STATEMENT .

CTION : DYNAMIC ARRAY EXTRACTION

ION : STRING SEARCHING

PAGE OUTPUT FOOTINGS

STATEMENT : PROGRAM LOOPING . .

T STATEMENT : EXTENDED PROGRAM IOOPING
.GOSUB STATEMENTS : SUBROUTINE BRANCHING

PAGE OUTPUT HEADINGS
INPUT CONVERSION

: INCLUDING OTHER PICK/BASIC PROGRAMS
SEARCHING FOR SUB-STRINGS .
EMENT : TERMINAL INPUT
asks with Input Statement e e
INPUTTRAP - INPUTNULL : INPUT FORMS
CTION : DYNAMIC ARRAY INSERTION
: INTEGER NUMERIC VALUE
: GENERATING A LENGTH VALUE
: NATURAL LOGARITHM
: LOCATING INDEX VALUES

O WO O OO WOWYWWOWWOWWOWYWWOWWOWOWOOOYWOOOVOOVOOVOYVOYO
'
P OWOVWOVOYVOVOOOOVOOOOOOOWMOMOOWMOMMOMWMNNNNINY

[
Og\bm\lO\U‘wwNHO‘bNH\OQ\lU‘wHO@\IO\O\O\U\
N

LOCK STAT : SETTING EXECUTION LOCKS R
LOOP STAT : STRUCTURED LOOPING 9-104
MAT - ASSIGNMENT AND COPY : ASSIGNING ARRAY VALUES . . 9-106
MATREAD STATEMENT : MULTIPLE ATTRIBUTES 9-108
MATREADU STATEMENT : GROUP LOCKS 9-109
MATREADU STATEMENT : LOCKED CLAUSE 9-110
MATWRITE STATEMENT : MULTIPLE ATTRIBUTES e e e .. 09111
MATWRITEU STATEMENT : UPDATE LOCKS 9-112
NOT FUNCTION : LOGIC CAPABILITY 9-113
NULL STAT : NON-OPERATION . . . - R 8 1
NUM FUNCTION : NUMERIC STRING DETERMINATION e e e .. . 9-115
OCONV FUN ION : OUTPUT CONVERSIONS 9-116
ON...GOTO STATEMENT : COMPUTED BRANCHING 9-117
OPEN STAT : OPENING I/0 FILES 9-118
OUT Statement - Single Character Output 9-119
PAGE STAT : HEADING OUTPUT 9-119
PRECISION DECLARATION : SELECTING NUMERIC PRECISION . . 9-120
PRINT STA : TERMINAL OR PRINTER OUTPUT 9-122
PRINT STA : TABULATION AND CONCATENATION 9-124
PRINTER ON/OFF STATEMENTS : SELECTING OUTPUT DEVICE . . 9-125

PROCREAD STATEMENT : READING DATA FROM A CALLING PROC . 9-126

PROCWRITE

PROMPT STA
PWR FUNCTI
READ STATE

READNEXT S
READT STAT
READU AND
READU AND

CHAPTER 9 - PICK/BASI
Preliminary

STATEMENT : WRITING DATA BACK TO PROC 9-127
TEMENT : INPUT PROMPT CHARACTER 9-128
ON : RAISING BY APOWER 9-129
MENT : ACCESSING FILE ITEMS 9-130
TATEMENT : ACCESSING ITEM-IDS 9-131
: READING RECORDS FROM TAPE 9-132

VU STATEMENTS : GROUP LOCKS 9-133

VU STATEMENTS : LOCKED CLAUSE 9-135

c Copyright 1988 PICK SYSTEMS

PAGE 9-3

9.96 READV STATEMENT : ACCESSING AN ATTRIBUTE 9-136
9.97 RELEASE STATEMENT : RELEASING GROUP UPDATE LDCKS . 9-137
9.98 REM OR MOD FUNCTION : REMAINDER VALUE . . . 9-138
9.99 REPLACE FUNCTION : DYNAMIC ARRAY REPLACEMENT . . 9-139
9.100 RETURN AND RETURN TO STATEMENTS : SUBROUTINE RETURNING 9-140
9.101 REWIND STATEMENT : REWINDING THE TAPE . 9-141
9.102 RND FUNCTION : RANDOM NUMBER GENERATION . 9-142
9.103 SELECT STATEMENTS : SELECTING ITEM-IDS . 9-143
9.104 SEQ FUNCTION : FORMAT CONVERSION . 9-145
9.105 SIN FUNCTION : SINE OF AN ANGLE 9-146
9.106 SLEEP OR RQM STATEMENT : TIME AllDCATION . 9-147
9.107 SPACE FUNCTION : STRING SPACING 9-148
9.108 SQRT FUNCTION : SQUARE ROOT CABABILITY . 9-149
9.109 STOP STATEMENT : TERMINATION . . 9-150
9.110 STR FUNCTION : GENERATING STRING VALUES .. . 9-151
9.111 SYSTEM FUNCTION : CALLING PRE-DEFINED SYSTEM VALUES . 9-152
9.112 TAN FUNCTION : TANGENT OF AN ANGLE e e e . 9-155
9.113 TIME() AND TIMEDATE() FUNCTIONS : TIME AND DATE . 9-156
9.114 TRIM FUNCTION : DELETING EXTRANEOUS SPACES . 9-157
9.115 UNLOCK STATEMENT : CLEARING EXECUTION LOCKS . 9-158
9.116 WEOF STATEMENT : POSITIONING TAPE . 9-159
9.117 WRITE STATEMENT : MODIFYING ITEMS . . 9-160
9.118 WRITET STATEMENT : WRITING RECORDS TO TAPE . 9-161
9.119 WRITEU AND WRITEVU STATEMENTS : UPDATE LOCKS . 9-162
9.120 WRITEV STATEMENT : UPDATING AN ATTRIBUTE .. . 9-163
9.121 XTD FUNCTION : HEXADECIMAL TO DECIMAL CONVERSION . . 9-164
9.122 PICK/BASIC SYMBOLIC DEBUGGER : AN OVERVIEW . 9-165
9.122.1 USING THE PICK/BASIC DEBUGGER : AN EXAMPLE . 9-167
9.122.2 THE TRACE TABLE . . 9-169
9.122.3 PICK/BASIC DEBUGGER: THE B D AND K COMMANDS . 9-170
9.122.4 E, G, AND N COMMANDS : DEBUGGER EXECUTION . . 9-171
9.122.5 SLASH '/' COMMAND : DISPLAYING AND CHANGING VARIABLES 9-172
9.122.6 VARIOUS DEBUGGER COMMANDS : ADDITIONAL FEATURES . 9-173
9.122.7 GENERAL CODING TECHNIQUES : HELPFUL HINTS . 9-174
9.122.8 PROGRAMMING EXAMPLES: PYTHAG . . 9-176
9.122.9 PROGRAMMING EXAMPLES: GUESS . 9-177
9.122.10 PROGRAMMING EXAMPLES: INV-INQ . 9-178
9.122.11 PROGRAMMING EXAMPLES: FORMAT . 9-179
9.122.12 PROGRAMMING EXAMPLES: LOT-UPDATE . 9-181
9.123 SUMMARY OF PICK/BASIC STATEMENTS .. . 9-184
9.124 BASIC INTRINSIC FUNCTION SUMMARY . . 9-188
9.125 BASIC COMPILER ERROR MESSAGES . 9-190
9.126 BASIC RUN-TIME ERROR MESSAGES . 9-192
9.127 LIST OF ASCII CODES . . 9-194
9.128 SUMMARY OF THE PICK/BASIC DEBUGGER COMMANDS . 9-197
9.129 DEBUGGER MESSAGES e e e e e e e . 9-199
Tables

9-1 Cursor Control Characters . 9-39
CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-4

81 B4 B4

bad Bd Ged 03 had 84 B3 B4 B3

| 3

4 &9

3 i Gad B

N N s S PN 'S P ' R O FE PT P8 P O PT O PS Pm Pt PE e

9.1 THE PICK/BASIC LANGUAGE

I
This manual describes the PICK/BASIC source language, which is an |
extended version of Dartmouth BASIC. |

I

BASIC (Beginners All‘Purpose Symbolic Instruction Code) 1is a simple yet
versatile programming language suitable for expressing a wide range of
problems. Developed at Dartmouth College in 1963, BASIC 1is a language
especially easy for the beginning programmer to master. Extended
PICK/BASIC has the following extraordinary features:

- Optional statement labels (i.e., statement numbers)

- Statement labels of any length

- Multiple statements on one line

- Computed GOTO statements

- Complex IF statements

- Multi-line IF statements

- Priority CASE statement selection

- String handling with variable length
strings up to 32,267 characters

- External subro*tine calls
i
- Direct and indirect calls
- Magnetic tape input and output

- Fixed point arithmetic with up to
14 digit precision

- ACCESS data co‘version capabilities

- PICK file access and update capabilities

- File level or #roup level lock capabilities
- Pattern matchi£g

- Dynamic arrays

- TCL command exicution

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-5

ABORT FOOTING MAT PROMPT STOP
BREAK ON/OFF FOR...NEXT MATCHES READ SUBROUTINE
CALL GO MATREAD READNEXT UNLOCK
CASE GOSUB MATREADU READV WEOF
CHAIN GOTO MATWRITE READT WRITE
CLEAR GO TO MATWRITEU READV WRITEU
CLEARFILE HEADING NEXT READVU WRITET
COMMON IF NULL RELEASE WRITEV
CRT INPUT ON GOSUB REM * ! WRITEVU
DATA INPUTERR ON GOTO RETURN PROCREAD
DELETE INPUTNULL OPEN RETURN TO PROCWRITE
DIM INPUTTRAP PAGE REWIND EXECUTE
END INPUTQ@ PRECISION RQM INCLUDE
ENTER LOCK PRINT PRINTER ON/OFF
EQUATE LOOP SELECT SLEEP

PICK/BASIC Statements
Q@ DATE() INDEX PWR SYSTEM
ABS DCOUNT INSERT REM TAN
ALPHA DELETE INT REPLACE TIME()
ASCII DTX LEN RND TIMEDATE()
CHAR EBCDIC LN SEQ TRIM
COL1() EXP LOCATE SIN XTD
COL2() EXTRACT NOT SPACE
CcOoS FIELD NUM SQRT
COUNT ICONV OCONV STR

PICK/BASIC Intrinsic Functions

CHAPTER 9 - PICK/BASIC

Preliminary

PAGE 9-6

Copyright 1988 PICK SYSTEMS

Bed

N S P9 | M M P P9 O O fOF PN PY M rFY pmoPes s s

9.2 PICK/BASIC LANGUAGE DEFINITIONS

I
| A PICK/BASIC ©program is comprised of PICK/BASIC statements. |
| PICK/BASIC statements may contain variables, constants, expressions, |
| and PICK/BASIC Intrinsic Functionms. |

’ I

| |

A PICK/BASIC program consists of a sequence of PICK/BASIC statements.
More than one statement may appear on the same program line, separated by
semicolons. Any [PICK/BASIC statement may begin with an optional
statement label.

PICK/BASIC statements may contain arithmetic, relational, and 1logical
expressions. These, expressions are formed by combining specific
operators with variables, constants, or PICK/BASIC Intrinsic Functions.
The value of a variable may change dynamically throughout the execution
of the program. A constant, as its name implies, has the same value

throughout the execution of the program. An Intrinsic Function performs
a pre-defined operation upon the parameter(s) supplied.

FUNCTION EF _DESCRIPTION

ABS Returnsian absolute value.

ALPHA Tests for alphabetic value.

ASCII Converts string from EBCDIC to ASCII.

CHAR Converts numeric value to ASCII character.

COL1() Returnsicolumn position preceding FIELD-selected sub-string.
COL2() Returns column position following FIELD-selected sub-string.
cos Generates the trigonometric cosine of an angle.

COUNT Counts the number of occurrences in a string.

DATE() Returns current internal date.

DCOUNT Returns| a value of the number of values in a string.
DELETE Deletes attribute, value, or sub-value from dynamic array.
DTX Converts decimal to hexadecimal.

EBCDIC Coverts| string from ASCII to EBCDIC.

EXP The exponential function.

EXTRACT Returns| attribute, value, or sub-value from dynamic array.
FIELD Returns|a delimited sub-string.

ICONV ProvideL for Pick input conversion.

INDEX Returns| column position of sub-string.

INSERT Inserts| attribute, value, or sub-value into dynamic array.
INT Return an integer value.

LEN Returns length of string.

LN Generates the natural logarithm of the expression.

LOCATE Returns | the index of a sub-string in a dynamic array.

NOT Returns|logical inverse.

NUM Tests for numeric value.

OCONV Provides for Pick output conversion.

PWR Raises an expression.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-7

Copyright 1988 PICK SYSTEMS

FUNCTION ____ BRIEF DESCRIPTION

REPLACE
RND

SEQ

SIN
SPACE
SQRT

STR
SYSTEM
TAN

TIME
TIMEDATE
TRIM

XTD

@

Replaces attribute, value, or sub-value in dynamic array.

Generates random number.

Converts ASCII to a numeric value.
Generates trigonometric sine.
Generates string containing blanks.
Returns positive square root.
Generates specified string.
Provides certain pre-defined values.
Generates trigonometric tangent.
Returns internal time of day.
Returns external time and date.
Removes extraneous blank spaces.
Converts hexadecimal to decimal.
Controls terminal cursor.

CHAPTER 9 - PICK/BASIC
Preliminary

Summary of PICK/BASIC INTRINSIC FUNCTIONS

PAGE 9-8

Copyright 1988 PICK SYSTEMS

| &] | [==]

g3

PN PN N pss W PSS R FOR P T PSS M O PW S| M PN P PR M

STATEMENT BRIEF DESCRIPTION
BREAK ON/OFF Enables or disables debugger.
CALL Extermal subroutine branching.
CASE Provides conditional selection of a sequence
of statements.
CHAIN Passes control to another program.
CLEAR Initializes all variables to zero.
CLEARFILE Clears data section of specified file.
COMMON Variable storage space allocation, used with
CHAINed programs.
CRT Directs output to the terminal.
DATA Storjs data for input using CHAIN or EXECUTE
DELETE Deletes specified file item.
DIM Reserves storage for arrays.
END Designates the physical end of the program.
ENTER Transfers control from one program to another
EQUATE Allows variable to be defined as equivalent of another.
EXECUTE Executes TCL commands.
FOR. . .NEXT Specifies beginning of a program loop, NEXT specifies
end. ‘
GOSUB Transfers control to a subroutine.
GOTO Transfers control to another statement.
HEADING Prints a page heading.
IF Provides conditional execution of specified statements.
INCLUDE Uses data from other programs.
INPUT Inputs data from the terminal.
INPUTTER Message is printed at bottom of screen.
INPUTNULL Replaces default values with null.
INPUTTRAP Sets /input trap for character(s).
LOCK Sets jan execution lock.

LOOP. . .REPEAT
MAT

MATCHES
MATREAD
MATREADU
MATWRITE
MATWRITEU
NULL

ON GOTO/GOSUB
OPEN

PAGE
PRECISION
PRINT

PRINTER ON/OFF
PROCREAD
PROCWRITE
PROMPT

READ

READU
READNEXT

Provides for structured program loops.

Assigns value to each element of an array.
Relational pattern matching.

Reads a file item into an array.

Reads a file item into an array, sets update lock.
Writes a file item with the contents of an array.
Same as MATWRITE but will not unlock update group.
Specifies a non-opertion.

Transfers control using an indexed expression.
Selects a file for subsequent I/0.

Pages output device and prints heading.

Selects precision used in calculations.

Causes specified data to be printed.

Controls selection of printer or terminal for output.
Reads a PROC's primary input buffer.

Writes data to PROC's input buffer.

Selects a prompt character for the terminal.

Reads a file item.

Reads a file item, sets update lock.

Reads next item-id.

CHAPTER 9 - PICK/BASIC

Preliminary

PAGE 9-9

Copyright 1988 PICK SYSTEMS

STATEMENT _ BRIEF DESCRIPTION

READT Reads next magnetic tape record.

READV Reads an attribute.

READVU Reads an attribute, sets update lock.

REM | * Specifies a remark (command) statement.

RETURN Returns control from a subroutine.

RETURN TO Return control to the main program

REWIND Rewinds magnetic tape.

RQM or SLEEP Terminates programs current time quantum.

SELECT Selects data from a file.

STOP Designates a logical end of the program.
SUBROUTINE Specifies a program branch subroutine.

UNLOCK Resets an execution lock.

WEOF Writes an EOF on magnetic tape.

WRITE Updates a file item.

WRITET Writes a magnetic tape record.

WRITEU Writes a file item, will not unlock update group.
WRITEV Updates an attribute value.

WRITEVU Updates an attribute value, will not unlock update group.

Summary of PICK/BASIC Statements

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS

Preliminary PAGE 9-10

B-1

FUR P S| P P PSS S PWT W U5 PR O P O PN ™ gw pwy a s |

9.3 PICK/BASIC FILE JTRUCTURE

referenced by its em-Name (i.e., the name it is given when it is
created via the EDITOR). An individual line within the PICK/BASIC

A PICK/BASIC program, when stored, constitutes a File Item, and is
I
program constitutes an attribute.

There is a fixed structure for PICK/BASIC source files. The file MUST
have a dictionary and a separate data 1level. The PICK/BASIC source
programs are stored in the data level of the file. The compiler writes
the object and the symbol file as one record into the dictionary. This
makes it much simpler to manipulate the program source. It can be LISTed,
T-DUMPed, T-LOADed, and so on, without having to select the source items.
The object record cEntains binary data, so the dictionary "D" pointer
must have "DC" in attribute one. The primary advantages of this format

are:

1. The object can now be protected with access/update locks.
|
|
2. The object saves/restores with the account on account-saves.

3. The CATALOG function is not necessary for run time efficiency.

4. There is less disk space utilized and fewer steps to perform.

5. The PICK/BASiC Debugger can tell the name of the item and verify
the object code integrity.

6. PICK/BASIC has a restriction of 32267 bytes of object code and
32267 bytes of source per program.

|

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary ‘ PAGE 9-11

9.4 THE PICK/BASIC PROGRAM

I
A PICK/BASIC program is comprised of PICK/BASIC statements. The Remark |
statement may be wused to identify the function or purpose of various |

sections of the program. |

§mlggl QH - []
A PICK/BASIC program consists of a sequence of PICK/BASIC statements.

More than one statement may appear on the same program line, separated by
semicolons. For example:

X=0; Y=20; GOTO 50

LABELS - optional
Any PICK/BASIC statement may begin with an optional statement label which
must be numeric only. A statement label is used so that the statement

may be referenced from other parts of the program. For example:

100 INPUT X
169.40 INPUT Y

Ms - IREHI l'l Tt
A helpful feature to use when writing a PICK/BASIC program is the Remark

statement. A Remark statement is used to explain or document the program.
It allows the programmer to place comments anywhere in the program
without affecting program execution. A Remark statement is specified by
typing the leters REM, or the asterisk character (*), or the exclamation
(!) at the beginning of the statement; any arbitrary characters may then
follow (up to the end of the line). For example:

REM THESE PICK/BASIC STATEMENTS
! DO NOT AFFECT
* PROGRAM EXECUTION

BLANK SPACES

Except for situations explicitly called out in the following sections,
blank spaces appearing in the program line (which are not part of a data
item) will be ignored. Thus, blanks may be used freely within the program

for purposes of appearance.

REM PROGRAM TO PRINT NUMBERS
! FROM ONE TO MAX. NUMBER
MAX NUM = 25; * define max number
5% FOR/NEXT LOOP ROUTINE
FOR DSPLY = 1 to MAX. NUM
PRINT DSPLY
NEXT DSPLY
9% FINISHED
END

Sample PICK/BASIC PRogram Including Remark Statements.

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-12

N P N O N PSS s PO A P''s PO P O P, O P| P s s s

9.4.1 DYNAMIC ARRAYS

- FILE ITEM STRUCTURE

| of item-formatted st

I
| PICK/BASIC allows thF user to manipulate PICK file items in the form

|
|
ings which are called dynamic arrays. |
I

The PICK/BASIC 1lan

ge contains a number of statements and functions

which are extremely useful in accessing and updating PICK files. A
complete description | of the PICK file structure 1is presented in the
chapter on File-structure. A brief description of the structure as viewed
by the PICK/BASIC programmer is appropriate at this point.

accessed by a PICK/
is represented as a

A PICK file consist;k of a set of items.

When a PICK file 1item is
SIC program (refer to INPUT/OUTPUT STATEMENTS), it
ICK/BASIC string in item format. A string in item

format is called a dﬂnamic array.

A dynamic array consists of one or more attributes separated by attribute
marks (i.e., an attribute mark has an ASCII equivalent of 254, which
prints as """). An atitribute, in turn, may consist of a number of values

separated by value

secondary values s

rks (i.e, a value mark has an ASCII equivalent of

parated by secondary value marks (i.e., a secondary

253, which prints a% "]1"). Finally, a value may consist of a number of

value mark has an

example of a dynamic
"55“ABCD"7

where "55", "ABCD", "

SCI1 equivalent of 252, which prints as "\"). An
array is as follows:

3XYZ"*100000.33"

73XYZ", and "100000.33" are attributes.

The following illustrates a more complex dynamic array:
"Q5“AAAA“952]ABC]12345%A"B*C]TEST\12I\9\99.3]2"555"

where "Q5", "“AAAA",
"555" are attributes;
"2" are values; and "

Dynamic arrays can
array functions (1
FUNCTIONS). Dynamic
referenced by these

"952]ABC]12345", "A", "B", "C]TEST]\12I\9\99.3]2" and
"952", "ABC", "12345", "C", "TEST\12I\9\99.3", and
TEST", "12I", "9", and "99.3" are secondary values.

be directly manipulated by the PICK/BASIC dynamic
efer to the section titled PICK/BASIC INTRINSIC
arrays are called "arrays" because they can be
functions using 3 subscripts. They are "dynamic" in

re-compile the pro

ram, as long as the item does not exceed 32,267

the sense that el%nents can be added and deleted without having to

characters.

CHAPTER 9 - PICK/BASIC

Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-13

ARRAY
123456789]ABC]DEF

Q56"3.22]3.56\88\B2C"99

A]B]C]D"E]F]G]H"1]J

EXPLANATION
"123", "456", "789]ABC]DEF" are attributes;

"789", "ABC" and "DEF" are values.

"Q56", "3.22]3.56\88\B2C", and "99" are
attributes; "3.56/88/B2C" is a value;
"3.56", "88", and

"B2C" are secondary values.

"A]B]C]D", "E]F]G]H", and "I]J" are
attributes; "A", "B", "C", "D", “E", "F",
"G", "H", "I", and "J" are values.

Sample Usage of Dynamic Arrays.

CHAPTER 9 - PICK/BASIC
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-14

¢ 3

9.5 CREATING AND COMPILING PICK/BASIC PROGRAMS

I
| A PICK/BASIC program is created via the EDITOR as any other data-file

| item. Once this source code item has been filed, it 1is compiled by
| issuing the COMPILE verb (or the BASIC verb) at the TCL level.

FORMAT:

ED (or EDIT) file-name item-id

Upon execution, the EDITOR processor will then be entered, and the user
may begin entering his PICK/BASIC program. For ease of instruction
indentation, the user may set tab stops (either at the TCL 1level or while
the EDITOR processor is in control-- see examples below).

The program name will‘be that specified by the 'item-id' and the program
will be stored in the file specified by the 'file-name'. Users will
typically have a file exclusively devoted to the storage of PICK/BASIC
programs. The PICKJEASIC compiler stores the object code in the same
file, but in the dictionary portion of the file (see below).

Once the PICK/BASIC program has been entered and filed, it may be compiled
by issuing the BASIC verb at the TCL level. BASIC is a TCL-II verb which
creates a new dict 14:m: it contains the compiled PICK/BASIC program (the
object code), and a symbol definition table of the variables used in the
program. The item is |stored in the file specified by 'file-name'.

|

FORMAT:

BASIC file-name item-list {(options)

separated by one or more blanks. The 'options' parameter is optional and
if used, must be preceded by a left parenthesis. Multiple options should
be separated by commas. Valid options are listed below. For detailed
descriptions of each, see the following section.

The 'item-list’ coniists of one or more item-id's (program names)

BASIC VERB OPTIONS

A Assembled code option

c Suppress End Of Line (EOL) opcodes from object code.

E List error lines only.

L List PICK/BASIC program.

M List map of PICK/BASIC program

P Print compilation output on line printer.

s Suppress generation of symbol table.

X Cross reference all variables.
CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-15

DTABS I 2,4,8 <RETURN> <----c-cccc-- User sets input tabs
at TCL level
>ED BP COUNT <RETURN> <-e-creceno-- User edits item 'COUNT'
in file 'BP' (Basic Programs)
NEW ITEM
TOP
<RETURN> <eececccccce-s User enters input mode and

begins to enter program

001* PROGRAM COUNTS FROM 1-10 * <RETURN>

002 FOR I =1 TO 10 <RETURN> <----- Entered with [ctrl-I] (or TAB key)
003 PRINT I <RETURN> <------- depressed once for indentation
004 NEXT I <RETURN> | to first tab stop.
005 END <RETURN> |
006 <RETURN> = ce--- [ctrl-I] (or TAB key) depressed
TOP twice for second tab stop
indentation
FI <RETURN> <----c---
I
-------- User files item
'COUNT' FILED
>BASIC BP COUNT <RETURN> <---------- User issues compile command
dkkkk

[BO] PROGRAM 'count' compiled. 1 frame/s used.

PICK/BASIC Program "COUNT" Created (edited), Filed and Compiled.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-16

Copyright 1988 PICK SYSTEMS

B3 i Gl Bd Gl Boed Bad Gl Bd God Bal Bad Bed Bad Gsd Bd B:d

N S S S MmO s P's S S PSS PSS P PSS O PSS S s pm pUm P

9.5.1 PICK/BASIC COMPILER OPTIONS: A, C, E, L AND P OPTIONS

This section describes five of the options available when issuing the
BASIC compile statement. They are the "A" for assembled code, the "C"
for suppression of end of 1line opcode, "E" for the listing of error
lines only, the "L" for the listing of the program during
compilation, and "P" for routing output to the printer. The following
section describes the remaining three compiler options.

FORMAT :
BASIC file-pame item-name ((options)

If multiple options a&e present, they are seperated by commas.

A - The assembled code option. The "A" option generates

listing of the source code line numbers, the labels and the
PICK/BAQIC opcodes used by the program. This is a 'pseudo'
assembly code listing which allows the user to see what
PICK/BASIC opcodes his program has generated. The
hexadecimal numbers on the left of the 1listing are the
PICK/BASIC opcodes and the mnemonics are listed on the
right. The assembled code listing of the PICK/BASIC program
"COUNT"J(from previous section) is shown, as an example, on

the facing page.

C - The comqress option. The compress option suppresses the
end-of-line (EOL) opcodes from the object code item. The
EOL opcades are wused to count 1lines for error messages.
This eliminates 1 byte from the run time object code for
every line in the source code. This option is designed to
be usedjwith debugged programs. Any run time error message

will specify a line number of 1.

E - The 'list error 1lines only' option. The "E" option
generates a listing of the error lines encountered during

the compilation of the program. The listing indicates line

number %n the source code item, the source line itself and

a description of the error associated with the line.

L - The list program option. The "L" option generates a 1line
by line| listing of the program during compilation. Error
lines with associated error messages are indicated.

|

P - The printer option. The "P" option routes all output
generated by the compilation to the printer.

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-17

SOURCE
CODE

LINE NO.

001
002
002
002
002
002
002
002
002
002
002
002
003
003
003
004
004
004
005
006

[BO] Program 'count' compiled. 1 frame/s used.

BASIC
OBJECT

CODE

01
03
07
07
2D
SF
*1009
05
03
07
1B
01
16
50
01
06
*2009
01
01
45

PSEUDO
ASSEMBLY
CODE

EOL

LOADA I
LOAD 1

LOAD 1
SUBTRACT
STORE

LOADN 10
LOADA I
LOAD 1

FORNEXT *2009
EOL

LOAD I
PRINTCRLF

EOL

BRANCH *1009

EOL
EOL
EXIT

"A" option listing of PICK/BASIC program "COUNT"

CHAPTER 9 - PICK/BASIC
Preliminary

Copyright 1988 PICK SYSTEMS

PAGE 9-18

pea pey S pm e pUm Pem P P PN PR PN PN PPN P PR M S PR

9.5.2 PICK/BASIC COMPILER OPTIONS : M, §, AND X OPTIONS

This

section describes the remaining three options available when

issuing the BASIC compile statement. They are "M" for map, "S" for

suppressing generation of the symbol table, and "X" for cross
reference.

M

CHAPTER 9 - PICK/BASIC

The map optionL The "M" option generates a variable map which is
printed out after compilation. These maps show where the program
data has been stored in the user's workspace. The variable map
lists the off£et in decimal of every PICK/BASIC variable in the
program. For e

ample, the form:
20 xxx 30 yyy

shows that th# descriptor of variable 'xxx' starts on byte 20 and
the descriptor of variable 'yyy' starts on byte 30 of the seventh
frame of the I§ buffer. Descriptors are 10 bytes in length.

The suppress symbol table option. The "S" option suppresses the
the symbol table item which 1is normally generated during
compilation. e symbol table item is used exclusively by the
PICK/BASIC DEBUGGER for reference, therefore it must be kept only
if the user wishes to use the Debugger.

The cross reference option. The "X" option creates a cross
reference of all the labels and variables used 1in a PICK/BASIC
program and stores this information in the BSYM file. Note: A
BSYM file mus? exist (a modulo and separation of 1,1 should be
sufficient). ;The & option first clears the BSYM file
information in the BSYM file then creates an item for every
variable and label used in the program. The item-id 1is the
variable or label name. The attributes contain the line numbers
of where the |variable or label is referenced. An asterisk will
precede the liﬁe number where a label 1is defined, or where the
value of the v*riable is changed.

No output 1is generated by this option. an attribute definition
item should be placed in the dictionary of the "BSYM" file which

allows a cross reference listing of the program to be generated by
the command: >%ORT BSYM BY LINE-NUMBER LINE-NUMBER

Copyright 1988 PICK SYSTEMS

Preliminary PAGE 9-19

9.6 EXECUTING PICK/BASIC PROGRAMS

The PICK/BASIC program is executed by issuing the RUN verb. |

FORMAT:
RUN file-name item-id ((options))

RUN is the TCL-II verb issued to run a compiled PICK/BASIC program. The
"file-name" and "item-id" specify the compiled PICK/BASIC program to be
executed. The "options" parameter is optional (if wused, it must be
enclosed in parentheses). Multiple options are separated by commas. Valid
options are as follows:

A - Abort option. The "A" option inhibits entry to the Basic
Debugger under all error conditions; instead, the program will
print a message and terminate execution.

D - Run-time debug option; causes the PICK/BASIC debugger to be
entered before the start of program execution. Note that the
PICK/BASIC debugger may also be called at any time while the
program is executing, by pressing the BREAK key on the terminal.

E - Errors option. The "E" option forces the PICK/BASIC runtime
package to enter the PICK/BASIC Debugger whenever an error
condition occurs. The use of this option will force the
operator to either accept the error by using the Debugger, or
exit to TCL.

N - Nopage option. The "N" option cancels the default wait at the
end of each page of output.

P - Printer on (has same effect as issuing a PICK/BASIC PRINTER ON
statement). Directs all program output from a PRINT statement
to the printer.

S - Suppress run-time warning messages.

I I
I I
| TESTING |
I I
| 001 * PROGRAM TO PRINT TEST MESSAGE |
| 002 PRINT "THIS IS A TEST" |
| 003 END |
' :
|
| > RUN PROGRAMS TESTING <RETURN> |
| THIS IS A TEST |
I I
I I
Execution of Sample PICK/BASIC Program
CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-20

g2

9.7 CATALOG AND DECATALOG : CREATING VERBS FOR BASIC PROGRAMS

| |
| Verbs defining PICK/BASIC programs can be created and deleted using |
|
|

| the CATALOG and DECATALOG verbs.
I

The CATALOG verb creates a TCL-II verb defining a PICK/BASIC program.
FORMAT:
CATALOG file-name item-id

The "file-name" and "item-id" specify the previously compiled PICK/BASIC
program which is to be cataloged. The system will respond with:

[244] item-id CATALOGED

Once a program is cataloged, it is 'run' simply by issuing the program
name at the TCL prompt. The TCL-II verb which is added to the wuser's
Master Dictionary has the following form:

1) P

2) E6

3)

4)

5) XXXXX

where XXXXX is the user's basic program file name.

The DECATALOG verb deletes the verb definition from the user's Master
Dictionary.
FORMAT:

DECATALOG file-name item-id

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-21

9.7.1 PICK/BASIC EXECUTION FROM PROC

I
| PICK/BASIC program execution can be initiated from PROC, similar to

I
I
| any other TCL command. |
I I

A PICK/BASIC program may be run from a PROC. The following example
illustrates the wuse of a PICK/BASIC program in conjunction with the
ACCESS Sort Select (SSELECT) verb.

PROC named LISTBT as follows:

PQ
HSSELECT BASIC/TES

STON ’
HRUN BASIC/TEST LISTIDS
P

PICK/BASIC program named LISTIDS as follows:

10 N=0
20 READNEXT ID ELSE STOP
PRINT ID 'L#18':
N=N+1
IF N>= 4 THEN PRINT; GO TO 10
GO TO 20
END

By typing in the following:
LISTBT
at the TCL 1level, the PROC LISTBT selects the item-id's contained in

file BASIC/TEST and invokes the BASIC program LISTIDS to 1list the
item-id's selected, four to a line.

Sample Usage of PICK/BASIC called from PROC.

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-22

P P O PS P4 PSS S PSS ' S s Bl s S P v PR PN PR S

9.8 VARIABLES AND CONSTANTS : DATA REPRESENTATION

There are two types of data: NUMERIC and STRING. These data types are
represented within the PICK/BASIC program as either variables or
constants.

Numeric data consists of a series of digits and represent an amount
(e.g., 255). String data consist of a set of characters, such as would be
for a name and address. For example:

JOE DOE, 430 MAIN, ATOWN, CA.

These data types may be represented within the PICK/BASIC program as
either constants or variables. A constant, as its name implies, has the
same value throughout the execution of the program. A numeric constant
may contain up to 14 digits, including a maximum of 6 digits following
the decimal point and must be in the range:

-99,999,999.999999 to 99,999,999.999999

If the PRECISION (see section on PRECISION DECLARATION) of the program is
6 digits; by setting the PRECISION to a value 1less than 6, the range of
the allowable numbers is increased accordingly.

The unary minus sign is used to specify negative constants. For example:

-17000000
-14.3375

A string constant is represented by a set of characters enclosed
in single quotes, double quotes, or backslashes. For example:

"THIS IS A STRING" 'ABCD1234#*' \HELLO\

if any of the string delimiters ('," or \) are to be part of the string,
then one of the other delimiters must be used to delimit the string. For
example:

"THIS IS A 'STRING' EXAMPLE"
\THIS IS A "STRING" EXAMPLE\

A string may contain from O to 32,267 characters.

As mentioned above, data may also be represented as variables. A variable
has a name and a value. The value of a variable may be either numeric or
string, and may change dynamically throughout the execution of the
program. The name of a variable identifies the variable (the name remains
constant throughout program execution). Variable names consist of an
alphabetic character followed by zero or more letters, numerals, periods,
or dollar signs. The length of a variable name may be from 1 to 64
characters.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-23

Copyright 1988 PICK SYSTEMS

For example:
X
QUANTITY
DATA.LENGTH
BS..$

The variable X, for example, may be assigned the value 100 at the start
of a program, and may then later be assigned the value "THIS IS A STRING".

It should be noted that PICK/BASIC keywords (i.e., words that define
PICK/BASIC statements and functions) may not be used as variable names.

VALID G INVALID STRING
"ABC$123#*4AB" ABC123

(i.e., quotes are missing)
'1Q2z...."
'ABCSQQR"
(either two single quotes
or two double quotes

"A 'LITERAL' STRING"

'A "LITERAL" STRING' must be used)

'* (i.e., the empty string) "12345678910
(terminating double

\JOHN PROGRAMMER\ quote missing)

Sample Usage of String Constants

VALID VARTABLE NAME NVALID VARIAB NAME
A5 ABC 123
(no space allowed)
ABCDEFGHI
5AB
QUANTITY.ON.HAND (must begin with letter)
RSSSSPS z.,$
(comma not allowed)
J1B2Z
A-B
INTEGER ("-" not allowed)
THIS.IS.A.NAME
INPUT

(Pick/Basic Statement)

Sample Usage of Variable Names

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-24

Copyright 1988 PICK SYSTEMS

- Py 9 PN N S Y Y PSS el 'Y S| O P O PSOPPSO PSS PSR YW

9.9 ARITHMETIC EXPRESSIONS

Expressions are formed by combining operators with wvariables, constants,
or PICK/BASIC Intrinsic Functions. Arithmetic expressions are formed by
using arithmetic operators.

When an expression is encountered as part of a PICK/BASIC program
statement, it is evaluated by performing the operations specified by each
of the operators on the adjacent operands, i.e., the adjacent constants,
identifiers, or Intrinsic Functions. (NOTE: Intrinsic Functions are
discussed in a separate section of this manual.)

Arithmetic expressions are formed by wusing the arithmetic operators
listed below. The simplest arithmetic expression 1is a single numeric
constant, variable, or Intrinsic Function. A simple arithmetic expression
may combine two operands using an arithmetic operator. More complicated
arithmetic expressions are formed by combining simple expressions using
arithmetic operators.

When more than one operator appears in an expression, certain rules are
followed to determine which operation is to be performed first. Each
operator has a precedence rating. In any given expression the highest
precedence operation will be performed first. Precedence of the
arithmetic operators are shown below. If there are two or more operators
with the same precedence (or an operator appears more than once) the
leftmost operation is performed first. For example, consider this
expression: -R/A+B*C. The unary minus 1is evaluated first (i.e., -R =
Resultl). The expression then becomes: Result 1 / A+B*C. The division and
multiplication operators have the same precedence; since the division
operator 1is leftmost it is evaluated next (i.e., Resultl / A = Result2).
The expression then becomes: Result 2+B*C. The multiplication operation
is performed next (i.e., B*C = Result3). The Result2 + Result3 = Final
Result.

Using some figures in the above expression illustrates, for example, that
the expression -50/5+3*2 evaluates to -4.

Any sub-expression may be enclosed in parentheses. Within the
parentheses, the rules of precedence apply. However, the parenthesized
subexpression as a whole has highest precedence and is evaluated first.
For example: (10+2)*(3-1) = 12%2 = 24. Parentheses may be used anywhere
to clarify the order of evaluation, even if they do not change the order.

If a string value containing only numeric characters 1is used in an
arithmetic expression, it is considered as a decimal number. For example,
123 + "456" evaluates to 579.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-25

Copyright 1988 PICK SYSTEMS

If a string value containing non-numeric characters is wused in an
arithmetic expression, a warning message will be printed (refer to
APPENDIX D - PICK/BASIC RUN-TIME ERROR MESSAGES) and zero will be assumed
for the string value.

The following expression, for example, evaluates to 123:

123 + "ABC"

TOR OL OPERATION PRECEDENCE
+ unary plus 1 (high)
- unary minus 1
) exponental 2
* multiplication 3
/ division 3
+ addition 4
- subtraction 4 (low)

Arithmetic Operators
2+6+8/2+6 Evaluates to 18
12/2%3 Evaluates to 18
12/(2*%3) Evaluates to 2
2%2%3 Evaluates to 12
2% (2%3) Evaluates to 64
A+75/25 Evaluates to 3 plus
the current value
of variable A.
-5+42 Evaluates to -3
-(5+2) Evaluates to -7
8*%(-2) Evaluates to -16
5 % "3" Evaluates to 15

Sample Usage of Arithmetic Expressions.

CHAPTER 9 - PICK/BASIC
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-26

L Bl sl Bed Beed Besdl Bal BRd Bood BNE R BEd BE? Bsm S Baad Rl B

9.10 STRING EXPRESSIONS

A string expression may be: a string constant, a variable with a string |
value, a sub-string, or a concatenation of string expressions. String |
expressions may be combined with arithmetic expressions. |

rFw Pm PN P PSS PSS PN S PSS S s s P FPs P S s Pm e

FORMAT:
variable[expressionl,expression2]
expressionl - - - - starting character position
expression2 - - - - - number of characters in sub-string length

A sub-string is a set of characters which makes up part of a whole
string. For example, "SO.", "123", and "ST." are sub-strings of the
string "1234 SO. MAIN ST." Sub-strings are specified by a starting
character position and a sub-string length, separated by a comma and
enclosed in square brackets. For example, if the current value of
variable S is the string "ABCDEFG", then the current value of S[3,2] is
the sub-string "CD" (i.e., the two character sub-string starting at
character position 3 of string S). Furthermore, the value of S[1,1] would
be "A", and the value of S[2,6] would be "BCDEFG".

If the "starting character" specification is past the end of the string
value, then an empty sub-string value is selected (e.g., if A has a value
of 'XYZ', then A[4,1] will have a value of ''). If the "starting
character” specification is negative or zero, then the first character is
assumed (e.g., if X has a value of 'JOHN', the X[-5,1] will have a value
of 'J').

If the "sub-string 1length" specification exceeds the remaining number of
characters in the string, then the remaining string is selected (e.g., 1if
B has a value of '123ABC', the B[5,10] will have a value of 'BC'). If the
"sub-string length" specification is negative or zero, then an empty
sub-string is selected (e.g., B[5,-2] and B[5,0] both have a value of '').

Concatenation operations may be performed on strings. Concatenation is
specified by a colon (:) or CAT operator. The concatenation of two
strings (or sub-strings) is the addition of the characters of the second
operand onto the end of the first. For example:

"AN EXAMPLE OF " CAT "CONCATENATION"
evaluates to:
"AN EXAMPLE OF CONCATENATION"

The precedence of the concatenation operator is higher than any of the
arithmetic operators. So if the concatenation operator appears in the
same expression with an arithmetic operator, the concatenation operation
will be performed first. Multiple concatenation operations are performed
from left to right. Parenthesized sub-expressions are evaluated first.
The concatenation operator considers both its operands to be string
values; for example, the expression 56:"ABC" evaluates to "S6ABC":

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-27

NOTE: For the following examples, assume that the current
value of A is "ABC123", and the current value of
variable Z is "EXAMPLE".

EXPRESSION EXPLANATION

Z[1,4)] Evaluates to "EXAM".

A:Z[1,1] Evaluates to "ABC123E".

Z{1,1] CAT A[4,3] Evaluates to "E123"

5%2:0 2:0 is evaluated first and results in

the string "20" (i.e., concatenation
operator assumes both operands are
strings). 5*%"20" is then evaluated
and results in 100 (i.e., * operator
assumes both operands are numeric.
Final result is 100.

A[6,1]+5 Evaluates to 8.
Z CAT A:2 Evaluates to "EXAMPLEABC123EXAMPLE".
Z CAT " ONE" Evaluates to "EXAMPLE ONE".

Examples of String Expressions Combined
With Arithmetic Examples.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-28

Copyright 1988 PICK SYSTEMS

9.11 RELATIONAL EXPRESSIONS

Relational expressions are the result of applying a relational operator |
to a pair of arithmetic or string expressions. |

The relational operators are 1listed below. A relational operation
evaluates to 1 1if the relation 1is true, and evaluates to 0 if the
relation 1is false. Relational operators have lower precedence than all
arithmetic and string operators; therefore, relational operators are only
evaluated after all arithmetic and string operations have been evaluated.

For purposes of clarification, relational expressions may be divided into
two types: arithmetic relations and string relations. An arithmetic
relation is a pair of arithmetic expressions separated by any one of
relational operators. For example:

3<4 (3 is less than 4)=(true)=1

I =4 (3 is equal to 4)=(false)=0

3 GT 3 (3 is greater than 3)=(false)=0

3 >=3 (3 is greater than or equal to 3)=(true)=l

5+1 > 4/2 (5 plus 1 is greater than 4 divided by 2)=(true)=1l

A string relation is a pair of string expressions separated by any one of
the relational operators. A string relation may also be a string
expression and an arithmetic expression separated by a relational
operator (i.e., if a relational operator encounters one numeric operand
and one string operand, it treats both operands as strings). To resolve a
string relation, character pairs (one from each string) are compared one
at a time from leftmost characters to rightmost. If no wunequal character
pairs are found, the strings are considered to be 'equal'. If an unequal
pair of characters are found, the characters are ranked according to
their numeric ASCII code equivalents (refer to the LIST OF ASCII CODES in
APPENDIX E of this manual). The string contributing the higher numeric
ASCII code equivalent 1is considered to be "greater" than the other
string. Consider the following relation:

"AAB" > "AAA"

This relation evaluates to 1 (true) since the ASCII equivalent of B (66)
is greater than the ASCII equivalent of A (65).

If the two strings are not the same length, but the shorter string is
otherwise identical to the beginning of the 1longer string, then the
longer string 1is considered "greater" than the shorter string. The
following relation, for example, is true and evaluates to 1l:

"STRINGS" GT "STRING"

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-29

OR S
< or LT
> or GT
<= or LE or =<
>= or GE or =>
= or EQ
or <> or <> or NE

MATCH or MATCHES

OPERATION

Less than

Greater than

Less than or equal to
Greater than or equal to
equal to

not equal to

pattern matching (see next page)

Relational Operators

PRE ON
4 <5
"D" EQ "A"

"D" > HA"

"Q" LT 5

6+5 = 11

Q EQ 5

"ABC" GE "ABB"

HXXXII LE "xx”

PLANATION
Evaluates to 1 (true).
Evaluates to 0 (false).
ASCII equivalent of D (X'44') is greater than
ASCII equivalent of A (X'41l'), so expression
evaluates to 1.
ASCII equivalent of Q (X'51') is not less than
ASCII equivalent of 5 (X'35'), so expression
evaluates to 0.

Evaluates to 1.

Evaluates to 1, if current value of variable
Q is 5; evaluates to 0 otherwise.

Evaluates to 1 (i.e., C is "greater" than B).

Evaluates to O.

Sample Usage of Relational Expressions.

CHAPTER 9 - PICK/BASIC
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-30

9.12 MATCHES : RELATIONAL EXPRESSION PATTERN MATCHING

BASIC pattern matching allows the comparison of a string value to a
predefined pattern. Pattern matching is specified by the MATCH or MATCHES
relational operator.

FORMAT:
expression MATCH{ES) "pattern"

The MATCH or MATCHES relational operator compares the string value of the
expression to the predefined pattern (which is also a string value) and

evaluates to 1 (true) or 0O (false). The pattern may consist of any
combination of the following:

- An integer number followed by the 1letter N (which tests for that
number of numeric characters).

- An 1integer number followed by the letter A (which tests for that
number of alphabetic characters).

- An integer number followed by the letter X (which tests for that
number of any characters).

- A 1literal string enclosed in quotes (which tests for that literal
string of characters).

Consider the following expression:
DATA MATCHES "4N"

This relation evaluates to 1 if the current string value of variable DATA
consists of four numeric characters.

If the integer number used in the pattern is 0O, then the relation will
evaluate to true only if all the characters in the string conform with
the "specification letter" (i.e., N,A, or X). For example:

X MATCH "OA"

This relation evaluates to 1 if the current string value of variable X
consists only of alphabetic characters.

As a further example, consider the following expression:
A MATCHES "1A4N"

This relation evaluates to 1 1if the current string value of variable A
consists of an alphabetic character followed by four numeric characters.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-31

Copyright 1988 PICK SYSTEMS

PR N

Z MATCHES '9N'

Q MATCHES "ON"

B MATCH '3N"-"2N"-"4N'

B="4N1A2N"
C MATCHES B

A MATCHES "ON'.'ON"

"ABC" MATCHES "3N"
"XYZ" MATCHES "OA"
"XYZ1" MATCH "4X"

X MATCHES ''

EXPLANATION

Evaluates to 1 if current string value
of variable Z consists of 9 numeric
characters; evaluates to 0 otherwise.

Evaluation to 1 if current value of Q is
any unsigned integer; evaluates to 0
otherwise.

Evaluates to 1 if current value of B is,
for example, any social security number;
evaluates to 0 otherwise.

Evaluates to 1 if current string value
of C consists of four numeric characters
followed by one alphabetic character
followed by two numeric characters;
evaluates to O otherwise.

Evaluates to 1 if current value of A is
any number containing a decimal point;

evaluates to 0 otherwise.

Evaluates to O.

Evaluates to 1.

Evaluates to 1.

Evaluates to 1 if current string value

of X is the empty string; evaluates to
0 otherwise.

Sample Usage of Pattern Matching Relation.

CHAPTER 9 - PICK/BASIC
Preliminary

Copyright 1988 PICK SYSTEMS

PAGE 9-32

Py UM PN S9N Y PN PN PR O PTT P P O ' Y O PP'Wm P e

9.13 OR - AND : LOGICAL EXPRESSIONS

Logical expressions (also called Boolean expressions) are the Result of
applying 1logical (Boolean) operators to relational or arithmetic
expressions.

FORMAT:
AND or & Logical And operation
OR or ! Logical Or operation

Logical operators operate on the true or false Results of relational or
arithmetic expressions. (Relational expressions are considered false when
equal to zero, and are considered true when equal to one; arithmetic
expressions are considered false when equal to zero, and are considered
true when not equal to zero.) Logical operators have the lowest precedence
and are only evaluated after all other operations have been evaluated. If
two or more logical operators appear in an expression, the leftmost is
performed first.

Logical operators act on their associated operands as follows:

aORD is true (evaluates to 1) if a is true or b is
true; is false (evaluates to 0) only when a
and b are both false.

a AND b is true (evaluates to 1) only if both a and b
are true; is false (evaluates to 0) if a is
false or b is false or both are false.

consider, for example, the following logical expression:
A*2-5>B AND 7>J

The multiplication operation has highest precedence, so it is evaluated
first (i.e., A*2 = Resultl). the expression then becomes:
Resultl - 5>B AND 7>J

The subtraction operation is next (i.e., Resultl - 5=Result2). The
expression then becomes:
Result2 > B AND 7>J

the two relational operators are of equal precedence, so the leftmost is
evaluated first (i.e., Result2 > B=Result3, where Result3 has a value of
1 indicating true, or a value of 0 indicating false). the expression then
becomes:

Result3 AND 7>J The remaining relational operation is then
performed (i.e., 7>J = Result 4, where Result4 equals 1 or 0). The final
expression therefore becomes:

Result3 AND Result4

which is evaluated as true (1) if both Result3 and Result4 are true, and
is evaluated as false (0) otherwise.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-33

Copyright 1988 PICK SYSTEMS

The NOT function may be used in logical expressions to negate (invert)
the expression or sub-expression (refer to the description of the NOT
Intrinsic Function).

EXPRESSION EXPLANATION
1 AND A Evaluates to 1 if current value of

variable A is non-zero; evaluates
to 0 if current value of A is O.

8-2%4 OR Q5-3 Evaluates to 1 if current value of
Q5-3 is non-zero; evaluates to 0 if
current value of Q5-3 is 0.

A>5 OR A<O Evaluates to 1 if the current value of
variable A is greater than 5 or is
negative; evaluates to O otherwise.

1 AND (O OR 1) Evaluates to 1.

J EQ 7 AND 1 EQ 5%2 Evaluates to 1 if the current value
of variable J is 7 and the current
value of variable I is 10; evaluates
to 0 otherwise.

"XYZ1" MATCH "4X" AND X Evaluates to 1 if the current value of
variable X is non-zero; evaluates to 0
if current value of X is O.

X1 AND X2 AND X3 Evaluates to 1 if the current value
of each variable (X1, X2, and X3) is
non-zero; evaluates to 0 if the
current value of any or all
variables is 0.

Sample Usage of Logical Expressions.

CHAPTER 9 - PICK/BASIC ' Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-34

r= "N FY S ™8 8 "N S ™ " PN T O P O PT O re Pe| PY e e

9.14 NUMERIC MASK AND FORMAT MASK CODES : VARIABLE FORMATTING

Variable values may be formatted via the use of format strings. A format
string immediately following a variable name or expression specifies that
the wvalue will be formatted as specified by the characters within the
format string. The format string may also be used directly in conjunction
with the PRINT statement.

FORMAT:
variable = variable"{numeric mask code){(format mask code))"

The format string uses the same subroutines as the ACCESS Mask Conversion
Code. It may be used to format both numeric and non-numeric strings.

The entire format string is enclosed in quotes. If the format mask is
used, it is enclosed in parentheses within the quotes.

The entire format string may be used as a literal, or it may be assigned
to a variable. In either case the format string or variable immediately
follows the variable it is to format.

The numeric mask code is represented by the symbols: j, n, m, 2, ',', c
and §, which controls justification, precision, scaling and credit
indication. The format mask code controls field 1length and fill
characters.

The formatted value may be assigned to the same variable or to a new
variable (as shown in the general form), or it may be used in a PRINT
statement of the form: PRINT X"format string".

The format mask code may be used separately or in conjunction with the
numeric mask.

The format mask code 1is enclosed in parentheses, and may consist any
combination of format characters and literal data.

The field 1length specified ('n') should not exceed 99. The format
characters are "#", "*" or "%", optionally followed by a numeric, such as
"#3" or "s5".

Any other character in the format field, including parentheses, may be
used as a literal character.

NOTE: If a dollar sign is placed outside of the format mask, it will be
output just prior to the value, regardless of the filled mask. If a
dollar sign is used within the format field it will be output in the
leftmost position regardless of the filled field.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-35

Copyright 1988 PICK SYSTEMS

C MASK

] specifies justification. "R" specifies right justification. "L"
specifies left justification. Default justification is left.

n 1is a single numeric digit defining the number of digits to print out
following the decimal point. If n = 0, the decimal point will not be
output following the value.

m 1is an optional 'scaling factor' specified by a single numeric digit
which ‘'descales' the converted number by the 'mth' power of 10.
Because PICK/BASIC assumes &4 decimal places (unless otherwise
specified by a Precision Statement) to descale a number by 10 m
should be set to 5, to descale a number by 100, m should be set to 6,
etc.

Z 1is an optional parameter specifying the suppression of leading zeros.

, is an optional parameter for output which inserts commas between
every thousands position of the value.

¢ The following five symbols are Credit Indicators which are optional
parameters of the form:

C Causes the letters 'CR' to follow negative values and causes two
blanks to follow positive or zero values.

D Causes the 1letters 'DB' to follow positive values; two blanks to
follow negative or zero values.

M Causes a minus sign to follow negative values; a blank to follow
positive or zero values.

E Causes negative values to be enclosed with a "<..... >" sequence;
a blank follows positive or zero values.

N Causes the minus sign of negative values to be suppressed.
$ 1Is an optional parameter for output which appends a dollar
ORMAT K _CODE:
#n specifies that the data is to be filled on a field of 'n' blanks.

*n specifies that the data is to be filled on a field of 'n’
asterisks.

8n specifies that the data is to be filled on a field of 'n' zeros
and to force leading zeros into a fixed field. 'D'() specifies
the standard system 'D' (date) conversion.
NOTE: Any other character, including parentheses may be used as
a field fill.

Explanation of the Format String Codes.

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-36

e PR OFY Y PR P Pl M P PP P PO PY O Pm PR P e W

FORMAT ;
I
variable = variable"{numeric mask code){(format mask code)}"

NUMERIC MASK
MASK CODE JMPLEMENTED AS MEANING
j Rorl Right or Left justification
(default is left justification).
n single numeric # of decimal places.
m single numeric 'Descaling' factor.
z z Suppress leading zeros.
, , Insert commas every thousands
position.
c C,DM,E or N Credit indicators.
$ $ Outputs dollar sign prior to value.

FORMAT MASK (enclosed in parentheses)

MASK CODE IMPLEMENTED AS MEANING

$ $ Outputs a dollar sign in the
leftmost position of field.

#n #10 Fills data on a field of 10 blanks.

sn %10 Fills data on a field of 10 zeros.

*n *10 Fills data on a field of 10 asterisks,
or on a field of any other specified
character.

NOTE: If a dollar sign 1is placed outside of the format mask, it will be
output just prior to the value, regardless of the filled field. 1If a
dollar sign 1is wused within the format mask it will be output in the
leftmost position regardless of the filled field.

General Form and Summary of Format String Codes.

UNCONVERTED STRING FORMAT STRING RESULT (V)
X = 1000 V = X"R26" 10.00
X = 1234567 V = X"R27," 1,234.57
X = -1234567 V = X"R27,E§" $<1234.57>
X = 38.16 V = X"1" 38.2
X = -1234 V = X"R25$,M(*10#)" **%x$123.40-
X = -1234 V = X"R25,M($*10#)" $***xx123.40-
X = -1234 V = X"R25,M($*10)" $*¥*%123.40-
X = 072458699 V = X"L(3Ht-#t-#EE:) " 072-45-5866
X = 072458699 V = X"L(#3-#2-#4)" 072-45-5866
X = v

SMITH, JOHANNSEN

X"L((#13))" (SMITH, JOHANN)

Sample usage of Numeric Format Codes.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-37

Copyright 1988 PICK SYSTEMS

9.15 @ FUNCTION : CURSOR CONTROL

|
The @ function generates terminal output codes to position the cursor |
to a specified location. |

I

FORMAT:
@(column(,row))

where
column column at which to position cursor

row row at which to position the cursor; if row is not specified,
cursor 1s positioned at column on current row

The values of the expressions used in the @ function must be within the
row and column limits of the terminal screen. The wupper left corner,
also known as the home position, is location 0,0.

Special cursor control characters for the current terminal type (as
defined by the TERM statement in effect at the time) can be generated by
using negative values with @ function. For a list of values, see Table
9-1.

NOTE: The values generated by the @ function are specified in the TCL
verb, DEFINE-TERMINAL.

at home location (0,0).

I

Statement Description
|
INPUT @(1,12) A Cursor 1is at column 1, row 12; input prompt |
is displayed at column 0, row 12. |
I
X=7;Y=23 Prints value of variable Z |
print @(X,Y):Z at column 7, row 3 |
|
q = @(3):"HI" Prints HI at column 3 of |
print q current line. |
|
PRINT @(-1) Clears the screen and positions the cursor |
’ |
I

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-38

Bl B Bad bl Bed B Gad Bad Bed B B Bl L4 B BES EA §BS Bl

F

Table 9-1 Cursor Control Characters (1 of 2)

Character

@e(-1)

e(-2)

@e(-3)

Q(-4)

@(-5)

@(-6)

e(-7)

@e(-8)

e(-9)

@(-10)
@e(-11)
@e(-12)
@(-13)
@Q(-14)
@(-15)
@(-16)
@(-17)
@(-18)
@(-19)
@(-20)
@(-21)
@(-22)
@(-23)
@(-24)
@(-25)
@(-26)
@(-27)
@(-28)
@(-29)
@(-30)
@(-31)
@(-32)
@(-33)
@(-34)
@(-35)
@(-36)
@(-37)
@(-38)
@e(-39)
@(-40)
@(-41)
@(-42)
@(-43)
@(-44)
@(-45)
@(-46)
@(-47)
@(-48)

Description

Clear screen and home cursor

Home cursor

Clear from cursor positon to the end of the screen
Clear from cursor position to the end of the line

Blink on
Blink off
Start protec

ted field

Stop protected field
Backspace cursor one character
Move cursor up one line

Enable prote
Disable prot
Reverse vide
Reverse vide
Underline on
Underline of
Slave on

Slave off

ct mode
ect mode
o on

o off

f

Move cursor right
Move cursor down

Graphics cha
Graphics cha

racter set on
racter set off

Keyboard lock

Keyboard unl
Control char
Control char
Write status
Erase status

ock
acter enable
acter disable
line
line

Initialize terminal mode
Download function keys

Non-embedded
Non-embedded
Background -
Background -
Background -
Background -
Background -
Background -
Background -
Background -
Foreground,
Foreground,
Foreground,
Foreground,
Foreground,
Foreground,
Foreground,
Foreground,

stand-out on
stand-out off
white

brown

magenta

red

cyan

green

blue

black
full-intensity
full-intensity
full-intensity
full-intensity
full-intensity
full-intensity
full-intensity
full-intensity

white
brown
magenta
red
cyan
green
blue
black

CHAPTER 9 - PICK/BASIC

Preliminary

PAGE 9-39

Copyright 1988 PICK SYSTEMS

TABLE 9-1 Cursor Control Characters (2 of 2)

Character

@(-49)-
@(-56)
@(-57)
@(-58)
@(-59)
@(-60)
@(-61)
@(-62)
@(-63)
@(-64)
@(-65) -
@(-88)
@(-89)
@(-90) -
@(-92)
@(-93)
@(-94)
@(-95) -
@(-98)
@(-99)

@(-100)
@(-101)

Description

Unused and reserved

Foreground, half-intensity - white
Foreground, half-intensity - brown
Foreground, half-intensity - magenta
Foreground, half-intensity - red
Foreground, half-intensity - cyan
Foreground, half-intensity - green
Foreground, half-intensity - blue
Foreground, half-intensity - black
Unused and reserved

80 x 25 black/white mode (monochrome monitor)
Unused and reserved

80 x 25 color mode
80 x 25 black/white mode (color monitor)
Unused and reserved

Returns 1 if the terminal uses embedded attributes;
returns 0 if terminal does not use embedded attributes;
returns null if not set in DEFINE-TERMINAL

Half intensity *

Full intensity *

@(-102) - Unused and reserved

@(-300)

*not supported for memory-mapped monitors

CHAPTER 9 - PICK/BASIC

Preliminary

PAGE 9-40

Copyright 1988 PICK SYSTEMS

Ed Bl Wl Bad Bl Bt B85 S B Ged BER P A G 0N ES B 93 K3

N N ™' s e e ™ m

re = F3 PN e

9.16 ABORT STATEMENT :

TERMINATION

logical termination o

The ABORT statement ;

the program.

ay appear anywhere in the program; it designates a

FORMAT:

ABORT (errmsg.id{,param, param,

-1)

Upon the execution of a ABORT statement, the PICK/BASIC program will

terminate.

The ABORT statement may be placed anywhere within the PICK/BASIC program
to indicate the end of one of several alternative paths of 1logic. The
ABORT statement is similiar to the STOP statement except that the ABORT
statement will terminate execution of any PROC which might have called

the program containing the ABORT statement.

Like the STOP stateant, the ABORT statement may optionally be followed
by an error message id, and error message parameters separated by commas.
The error message name is a reference to an item in the ERRMSG file. The

parameters are variables

format.

or literals to be used within the error message

INPUT FN

incorrect file name

This program requests a file name

is

PRINT 'PLEAbE ENTER FILE NAME':

OPEN '', FN TO FFN ELSE ABORT 201, FN

and attempts to open the file. If an

entered, the standard system error message 201

"xxx IS NOT A FILE" will be printed, and the program is terminated.

Sahple usage of the ABORT statement.

CHAPTER 9 - PICK/BASI
Preliminary

PAGE 9-41

Copyright 1988 PICK SYSTEMS

9.17 ABS FUNCTION : ABSOLUTE NUMERIC VALUE

The ABS function returns an absolute value. An absolute value is an
unsigned integer value.

FORMAT:
ABS (expression)

The ABS function generates the absolute numeric value of the expression.

An absolute value is the numerical value of a number without reference to
its algebraic sign. The result 1looks positive, but it 1is in fact,
unsigned. For example:

A =100 ; B =25

C = ABS(B-A)

These statements assign the value 75 to variable C. (An absolute value is
conventionally written as |75].)

STATEMENT EXPLANATION

A = ABS(Q) Assigns the absolute value of
variable Q to variable A.

A = 600 Assigns the value 400 to vari-

B = ABS(A-1000) able B.

A=3 Assigns the value 7 to variable C.

B = -10

C = ABS(A+B)

Sample Usage of the ABS Function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-42

Copyright 1988 PICK SYSTEMS

B4 R3 B3 &3

Bl Beod Bad Bed Bad Fo9 $:d B8 854 B3 B B2 B B9

[2= |

9.18 ALPHA FUNCTION : ALPHABETIC STRING DETERMINATION

The ALPHA function returns a value of true (1) if the given expression
evaluates to a alphab%tic character or string.

FORMAT:
ALPHA (expression)

The ALPHA function tests the given expression for a alphabetic value. For
example, if the expression evaluates to an alphabetic character or
alphabetic string the ALPHA function will return a value of true (i.e.,
generating a value of 1).

Inversely, an expression evaluating to a number, numeric string, or any
non-alpha character will cause the ALPHA function to return a value of
false. Consider the following examples:

IF ALPHA(expression) THEN PRINT "ALPHABETIC DATA"

This statement will print the text "ALPHABETIC DATA" if the current value
of variable "expression" is a letter or an alphabetic string.

In the case of a non-numeric, non-alphabetic character or string (#, ?,
etc.) a value of false would be returned for both the ALPHA and NUM
functions.

The empty string ('') is considered to be a numeric string, but not an
alpha string. ‘

(See: NUM)

ATEMENT PLANATION
Al=ALPHA("ABC") ‘ Assigns a value of 1 to variable Al.
A3=ALPHA("12C") Assigns a value of 0 to variable A3.

IF ALPHA(I CAT J) THEN GOTO 5 Transfers control to statement 5 if
current value of both variables I
and J are letters or alphabetic strings.

Sample Tsage of NOT, NUM and ALPHA Functions.

CHAPTER 9 - PICK/BASI
Preliminary PAGE 9-43

Copyright 1988 PICK SYSTEMS

9.19 ASCII FUNCTION : FORMAT CONVERSION

The ASCII function converts a string value from EBCDIC to ASCII.

FORMAT:

ASCII(expression)
The string value of the expression is converted from EBCDIC to ASCII. For
example:

A = ASCII(B)

Conversely, the EBCDIC function is available to convert string values
from ASCII to EBCDIC.

(See: EBCDIC)

STATEMENT PLANATION
READT X ELSE STOP Reads a record from the magnetic tape
Y = ASCII(X) unit and assigns its value to variable X.

Assigns ASCII value of record to
variable Y.

Sample Usage of the ASCII function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-44

Copyright 1988 PICK SYSTEMS

4 K4 838 64

g 4

™ N ™ "N O FSOMrEres YN r s

9.20 ASSIGNMENT STAI&HENT : ASSIGNING VARIABLE VALUES

The Simple Assignment statement is used to assign a value to a variable.

FORMAT:
variable = expression

The resultant value of the expression becomes the current value of the
variable on the left side of the equality sign. The expression may be any
legal PICK/BASIC expression. For example:

ABC = 500

X2 = (ABC+100)/2

The first statement will assign the value of 500 to the variable ABC. The
second statement will asign the value 300 to the variable X2 (i.e., X2 =
(ABC+100) /2 = (500+100)/2 = 600/2 = 300).

String values may also be assigned. For example:
VALUE = "THIS IS A STRING"
SUB = VALUE [6,2]

The first statement above assigns the string "THIS IS A STRING" to
variable VALUE. The second statement assigns the string "IS" to variable
SUB (i.e., assigns to SUB the 2 character sub-string starting at

character position 6 of VALUE).

TATEMENT PLANATION

X=5 Assigns 5 to X.

X=X+1 Increments X by 1.

ST="STRING" | Assigns the character string to ST.

ST1=ST[3,1] Assigns sub-string "R" to STI1.

TABLE(I,J)=A(3) Assigns matrix element from vector
element.

A=(B=0) Assigns 1 to A if "B=0" is true,

assigns 0 to A if "B=0" is false.

Examples of Assignment Statements.

A

CHAPTER 9 - PICK/BASI(
Preliminary PAGE 9-45

Copyright 1988 PICK SYSTEMS

9.21 BREAK ON AND OFF : DEBUGGER INHIBITION

The BREAK statements enable or disable the Debugger function accordingly.

FORMAT:

BREAK ON
BREAK OFF
BREAK expression

These commands increment/decrement the break inhibit counter. Note that
they are cummulative. If two BREAK OFFs are executed, two BREAK ONs must
be executed to restore a breakable status.

If the expression form of the command is wused, the break key is disabled
when the expression evaluates to 0. The break key is enabled when the

expression evaluates to non-zero.

(See: PICK/BASIC DEBUGGER)

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-46

Copyright 1988 PICK SYSTEMS

g4 3 B3 B4 B3 &I

™ s ' OFPY S O Ss s ey e ™

O P Y P Y

9.22 CALL AND SUBROUTINE STATEMENTS : EXTERNAL SUBROUTINES

capabilities for the PICK/BASIC program. An external subroutine 1is a
subroutine that is compiled and cataloged separately from the calling
program.

The CALL and SUBEOUTINE statements provide external subroutine

FORMAT:
CALL name (argument list)
SUBROUTINE name (argument list)

The CALL statement transfers control to the cataloged subroutine 'name'.
The CALL 'argument list' consists of zero or more expressions, separated
by commas, that represent actual values passed to the subroutine. The
SUBROUTINE 'argument list' consists of the same number of expressions, by
which the subroutine references the values being passed to it.

The SUBROUTINE statement is used to identify the program as a subroutine
and must be the first statement in the program.

There is no correspondence between variable names or labels in the
calling program and the subroutine. The only information passed between
the calling program and the subroutine are the arguments. A sample
external subroutine that involves two arguments together with correctly
formed CALL statements, is shown below.

CALL Statements Subroutine ADD .
CALL ADD(A,B,C) SUBROUTINE ADD(X,Y,Z)
CALL ADD(A+2,F,X) Z=X+Y

CALL ADD(3,495,2Z) RETURN

An external subroutine must contain a SUBROUTINE statement and a RETURN
statement. GOSUB and RETURN may be used within the subroutine. When a
RETURN is executed with no corresponding GOSUB, control passes to the
statement following t%e corresponding CALL statement. If the subroutine's
END statement, a STOP or CHAIN statement (see appropriate section of the
manual) is executed, control never returns to the calling program. The
CHAIN statement should not be used to chain from an external subroutine
to another PICK/BASIC program.
\

STATEMENTS LANATION

CALL REVERSE(A,B) | Subroutine REVERSE has two arguments.
SUBROUTINE REVERSE(I,X)

CALL REPORT Subroutine REPORT has no parameters.
SUBROUTINE REPORT i

CALL DISPLAY(A,B,C) ‘ Subroutine DISPLAY accepts (and
SUBROUTINE DISPLAX(I,#,K) returns) three argument values.
|

Sample U%age of CALL and SUBROUTINE Statements.

CHAPTER 9 - PICK/BASIT Copyright 1988 PICK SYSTEMS

Preliminary PAGE 9-47

9.22.1 ARRAY PASSING AND THE CALL STATEMENT

Arrays may be passed to external subroutines. External subroutines may be
called indirectly.

PASSING ARRAYS TO EXTERNAL SUBROUTINES

FORMAT:
MAT variable

The 'variable' 1is the name of the array defined in the DIMENSION
statement. The array must be dimensioned in both the calling program and
the subroutine. Array dimensions may be different, as long as the total
number of elements matches. Arrays are copied in row major order.
Consider the following example:

Calling Program Subroutine
DIM X(10), Y(10) SUBROUTINE COPY (MAT A)
CALL COPY (MAT X, MAT Y) DIM A(10,2)
END PRINT A(2,5)
RETURN
END

In this subroutine the parameter passing facility 1is used to copy MAT X
and MAT Y specified in the CALL statement of the calling program into MAT
A of the subroutine. Printing A(2,5) in the subroutine is equivalent to
printing Y(5) in the calling program.

INDIRECT FORM OF THE CALL STATEMENT

FORMAT:
CALL @name(argument list)

The 'name’' is a variable containing the name of the cataloged subroutine
to be called. The argument list performs the same function as in a direct
call.

NAME = 'XSUBL'

CALL @NAME

NAME = 'XSUB2'

CALL @NAME

The first call invokes subroutine XSUB1. The second call invokes
subroutine XSUB2.

S EXPLANATION
DIM A(4,10),B(10,5) Subroutine REV accepts two input

CALL REV(MAT A, MAT B) array variables, one of size 40

and one of size 50 elements.

SUBROUTINE REV(MAT C, MAT B)
DIM C(4,10), B(50)

Examples of Array Parameters.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-48

Copyright 1988 PICK SYSTEMS

83 & 3

hd

&3 §:2 B3 B3

b3

Bad Bad Gad B4

Gad B Bad Ad Bd Gad

|

F PN P P 1S PMO T P P Y PN Y O Pm s e ™

r o=

|
9.23 CASE STATEMENT |: CONDITIONAL BRANCHING

The CASE statement Arovides conditional selection of a sequence of BASIC
statements.

FORMAT:
BEGIN CASE
CASE expression
statements
CASE egpression
statements

END CASE

If the logical value of the first expression is true (i.e., non-zero),
then the statement or sequence of statements that immediately follows is
executed, and control passes -to the next sequential statement following
the END CASE statement. If the first expression is false (i.e., =zero),
then control passes to the next test expression, and so on. Consider the
following example:
BEGIN CASE
CASE A (< 5
PRINT 'A IS LESS THAN 5'
CASE A [< 10
PRINT 'A IS GREATER THAN OR EQUAL TO 5 AND LESS THAN 10'
CASE 1
PRINT 'A IS GREATER THAN OR EQUAL TO 10'
END CASE
If A<5, then the first PRINT statement will be executed. If 5<=A<10, then
the second PRINT statement will be executed. Otherwise, the third PRINT
statement will be executed. (Note that a test expression of 1 means
"always true.")

STATEMENTS PLANATION

BEGIN CASE Program control branches to the
CASE A=0; GOTO 10! statement with label 10 if the
CASE A<0O; GOTO 20, value of A is zero; to 20 if A
CASE 1; GOTO 30 is negative; or to 30 if A is

END CASE] greater than zero.

BEGIN CASE If ST is one letter, "1" is assigned
CASE ST MATCHES "1A" to all LET elements and the entire
MAT LET=1 CASE is ended. If ST is one number,
CASE ST MATCHES "1N" "l" is assigned to SGL, ST is stored
SGL=1; A.1(I)=ST at element A.1(I), and the entire
CASE ST MATCHES "2N" case is ended. If ST is two numbers,
DBL=1; A.2(J)=ST "1l" is assigned to DBL, ST is stored
CASE ST MATCHES "3N" at element A.2(J), and the entire
GOSUB 103 case is ended. If ST is three

END CASE numbers, subroutine 103 is executed.

Sa#ple usage of the CASE statement.

CHAPTER 9 - PICK/BASI&
Preliminary PAGE 9-49

Copyright 1988 PICK SYSTEMS

9.24 CHAIN STATEMENT : INTERPROGRAM COMMUNICATION

The CHAIN statement allows a PICK/BASIC program to execute any valid TCL
command, including the ability to pass values to a separately compiled
PICK/BASIC program which is executed during the same terminal session.

FORMAT:
CHAIN "any tcl command"

The CHAIN statement causes the specified TCL command to be executed. The
CHAIN statement may contain any valid Verb or PROC name in the wuser's
Master Dictionary. Consider the following example:

CHAIN "RUN FILE1l PROGRAM1"

This statement causes the previously compiled program named PROGRAM1 in
the file named FILE1l to be executed.

By using the 'I' option, the CHAIN statement allows values to be passed
to the specifed program. This is possible since all PICK/BASIC programs
which are executed during a single terminal session use the same data
area. The variables in one program that are to be passed to another
program must be in the same location. This 1is accomplished via use of the
DIM statement. Consider, for example, the following two PICK/BASIC
programs:

Program ABC in le BP

DIM A(1,1), B(2)

A=500

B(1)=1 B(2)=2

CHAIN "RUN BP XYZ (I)"
END

Program XYZ in file BP

DIM 1(2), J(1,1)
PRINT I(1)

PRINT I(2)
PRINT J(1,1)

END

Program ABC causes program XYZ to be executed. Program XYZ, in turn,
prints the values "500", "1", and "2". All dimensioned variables form a
long vector in row major order, and on a the CHAIN are assigned left to
right to chained program's dimensioned variables.

The user should note that control 1is mnever returned to the PICK/BASIC
program originally executing the CHAIN statement (See EXECUTE Statement).

(see: Execute statement)

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-50

Copyright 1988 PICK SYSTEMS

| B |

A B8

[|

¢:8 82

Bd Bad Bad bad Ad Kd B Gd Bad Bed B3 B

STATEMENT

CHAIN "RUN FN1 LAX (I)"

CHAIN "LISTU"

CHAIN "LIST FILE"

CHAIN "RUN PROGRAMS ABC"

—EXPLANATION

Causes the execution of program LAX
in file FN1 and values are passed to
program LAX.

Causes the execution of the LISTU
SYSPROG PROC.

Causes the execution of the LIST
ACCESS Verb.

Causes the execution of program
ABC in file PROGRAMS. Since I
option is not used, values will
not be passed to program ABC.

Sample usage of the CHAIN statement.

CHAPTER 9 - PICK/BASIC
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-51

9.25 CHAR FUNCTION : FORMAT CONVERSION

The CHAR function converts a numeric value to 1its corresponding ASCII
character.

FORMAT :
CHAR (expression)

The CHAR function converts the numeric value specified by the expression
to its corresponding ASCII character string value. For example, the
following statement assigns the string value for as Attribute Mark to the
variable AM:

AM = CHAR(254)

Conversely, the SEQ function is available to convert the first character
of a string value to its corresponding numeric decimal value.

NOTE: For a complete list of ASCII codes, refer to the Appendix.

STATEMENT PLANATION

SM = CHAR(255) Assigns the string value for a Segment
Mark to variable SM.

X = 252 Assigns the string value for a Secondary

SVM = CHAR(X) Value Mark to variable SVM.

Sample Usage of the CHAR Function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-52

Copyright 1988 PICK SYSTEMS

44 B3 p3 82

g

(SER =

| B

9.26 CLEAR STATEMENT :

INITIALIZING VARIABLE VALUES

The CLEAR statement
zZero.

is used to

initialize all variables to a value of

FORMAT :
CLEAR

The CLEAR statement initializes all possible variables to =zero (i.e.,
assigns the value O to all variables). The CLEAR statement may be used in
the beginning of the program to initialize all variables to zero, or may
be used anywhere within the program for re-initialization purposes. This
statement should only be used on completely debugged programs.

STATEMENT

CLEAR

EXPLANATION

Assigns the value 0 to all
possible variables.

4kxample of the CLEAR Statement.

CHAPTER 9 - PICK/BASI
Preliminary

PAGE 9-53

Copyright 1988 PICK SYSTEMS

9.27 CLEARFILE STATEMENT : DELETING DATA

The CLEARFILE statement 1is wused to clear out the data section of a
specified file.

FORMAT:
CLEARFILE (file.variable)

Upon execution of the CLEARFILE statement, the data section of the file
which was previously assigned to the specified file.variable via an OPEN
statement, will be emptied. The data in the file will be deleted, but the
file itself will not be deleted. If the file.variable is omitted from the
CLEARFILE statement, then the internal default variable is used (thus
specifying the file most recently opened without a file.variable).

The dictionary section of file should not be cleared via a CLEARFILE
statement. If CLEARFILE 1is performed on a dictionary, opened as a data
file, then all items of the dictionary will be deleted except for "D"
pointers. PICK/BASIC program will abort with an appropriate error
message 1if the specified file has not been opened prior to the execution
of the CLEARFILE statement.

STA NT PLANATION

OPEN 'FN1' ELSE PRINT 'NO FN1';STOP Opens the data section of file

READ I FROM 'I1' ELSE STOP FN1, reads item Il and assigns

CLEARFILE value to variable I, and
finally clears the data
section of file FNI.

OPEN 'FILEA' TO A ELSE STOP 201, 'FILEA' Clears the data sections of
OPEN 'FILEB' TO B ELSE STOP 201, FILEB' files FILEA AND FILEB.
CLEARFILE A

CLEARFILE B

OPEN 'ABC' ELSE PRINT 'NO FILE'; STOP Clears the data section of

READV Q FROM 'IB3',5 ELSE STOP file ABC if the 5th attribute

IF Q = 'TEST' THEN CLEARFILE of the item with name IB3 has
a string value of 'TEST'.

Sample usage of the CLEARFILE statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-54

Copyright 1988 PICK SYSTEMS

-9

-~

Bd &8 Bad Gd B3 B @

B Bid Bl Gad .4 &4

Bl o D

9.28 COL1() AND COL2() FUNCTIONS : STRING SEARCHING

The COL1() and COL2()| functions return the numeric values of the column
positions immediately preceding and immediately following the sub-string
selected by the FIELD function.

FORMAT:
COL1(),
CoL2()

COL1() returns the mnumeric value of the column position immediately
preceding the sub-string selected via the most recent FIELD function. For
example:

B = FIELD("XXX.YYY.ZZZ.555",".",2)
BEFORE = COL1()

These statements assﬂgn the numeric value 4 to the variable BEFORE (i.e.,
the value "YYY" which is returned by the FIELD function is preceded in
the original string by column position 4).

COL2() returns the mnumeric value of the column position immediately
following the sub-jtring selected via the most recent FIELD function.
COL2() returns zero if the sub-string is not found. For example:

B = FIELD("XXX.YYY.ZZZ.555",".",2)
AFTER = COL2()

These statements assfgn the numeric value 8 to the variable AFTER (i.e.,
the value "YYY" which is returned by the FIELD function is followed in
the original string by column position 8).

(See: FIELD)
STATEMENT LANATION
i
Q = FIELD("ABCBA","B",2) Assigns the string value "C" to
R = COL1() variable Q, the numeric value 2 to
S = COL2() variable R, and the numeric value 4

to variable S.

Sample Usage of the COL1() and COL2() Functions.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-55

Copyright 1988 PICK SYSTEMS

9.29 COMMON STATEMENT : VARIABLE SPACE ALLOCATION

The COMMON statement may be used to control the order in which space is
allocated for the storage of variables, and for the passing of wvalues
between programs.

FORMAT :
COM{MON) variable {,variable}...

The purpose of the COMMON statement is to change the automatic allocation
sequence that the compiler follows, so that more than one program may
have specified variables in a pre-determined sequence.

In the absence of a COMMON statement, variables are allocated space in the
order in which they appear in the program, with the additional
restriction that arrays are allocated space after all simple variables.
COMMON variables (including COMMON arrays) are allocated space before any
other variables in the program. The COMMON statement must appear before
any of the variables in the program are used.

The COMMON variable list may include simple variables, file variables and
arrays. Arrays may be declared in a COMMON statement by specifiying the
dimensions enclosed in parentheses, (e.g. COMMON A(10) declares an array
"A" with 10 elements). Arrays that are declared in a COMMON statement
should pot be declared again by a DIMENSION statement. All variables in
the program which do not appear in a COMMON statement are allocated space
in the normal manner.

The COMMON statement may be used to share variables among ENTERed
programs, or among main-line programs and subroutines. This ensures that
all 'COMMON' variables refer to the same external stored values in
different programs. For example:

COMMON X,Y,Z(5)
COMMON Q,R,S(5)

If the first statement is found in a main-line program and the second in
a subroutine call it is ensured that the variables X and Q, Y and R, and
the arrays Z and S share the same locations. NOTE: The second COMMON
statement variables may be regarded as a mask over the first. What
associates Q to X (R to Y and S to Z) 1is a matter of alignment. Thus if
the second statement had been "COMMON Q(2),R(5)" then Q(l) would refer to
the location where the value of X is stored and Q(2) would refer to the
location where the value of Y is stored.

The COMMON statement differs from the argument list in a Subroutine Call
in that the actual storage locations of Common variables are shared by
the main-line program and its external subroutines; whereas the argument
list in a Subroutine Call causes the values to be pushed on to the stack.
The COMMON statement thereby affords a more efficient method of passing
values.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-56

Copyright 1988 PICK SYSTEMS

&2 82 &

2 83 B3

R Bl Gd Bad Bl Bd Bl Bed Beed B2 B B2

|

A program being callec

1 must have the same or less COMMON space.

em " oG"

COMMON A,B,C(10)

A = "NUMBER"

B = "SQUARE ROOT"

FOR I =1 TO 10
C(I) = SQRT(I)

NEXT I

CALL SUBPROG
PRINT "DONE"

END

tem SU 0G

COMMON X(2),Y(10)
PRINT X(1), X(2)
FOR J =1 TO 10
PRINT J, Y(J)

NEXT J

RETURN

END

Variables A, B, and array C are
allocated space before any other
variables.

Subroutine call to cataloged program
SUBPROG.

The 2 elements of array X contain
respectively, the values of A and
B from the main-line program. The
array Y contains the values of C
from the main-line program.
Returns to main-line program.

SamPle usage of the COMMON statement.

CHAPTER 9 - PICK/BASIC
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-57

9.30 COS FUNCTION : COSINE OF AN ANGLE

The COS function generates the trigonmetric cosine of an angle.

FORMAT:

COS (expression)

The COS function generates the cosine of an angle, expressed in degrees.

Values which are less than O degrees,

adjusted to this range before generation.

or greater than 360 degrees

are

(See: SIN)
TATEMENT PLANATION
YY = COS(XX) Assigns the cosine of an

PRINT COS(1)
PRINT COS(361)
PRINT COS(2)
PRINT COS(362)
PRINT COS(45)

PRINT COS(90)

angle of XX degrees to YY.

Prints

Prints

Prints

Prints

Prints

Prints

"0.9998"

"0.9998"

"0.9994"

"0.9994"

"0.7071"

non

Sample usage of the COS function.

CHAPTER 9 - PICK/BASIC
Preliminary

PAGE 9-58

Copyright 1988 PICK SYSTEMS

N PR P 59 FSOFS PSSO fmEsSs e e e e r e em

9.31 COUNT FUNCTION

DYNAMIC ARRAYS

The COUNT function counts the number of occurrences of a substring within |

a string.

FORMAT:

COUNT (string, substring)

The COUNT function cgun
rl

function is particul

The COUNT function returns a value of zero if the substring is not found,
and returns the number of characters in the string if the substring is

ts the number of occurrences of a substring within
a string. Any number of characters may be present in the substring. This
y useful for determing the number of attributes
within an item, or |the number of multiple values or sub-values within an
attribute (See DCOUNT).

null (i.e. a null matiches on any character). For example:

COMMAND VALUE OF X
X = COUNT('THIS IS A TEST',b'IS') 2
X = COUNT('THIS IS A TEST','X') 0
X = COUNT('THIS IS A TEST','"') 14
(There are 14 characters in the string.)
X = COUNT('AAAA','AA') 3

There are 3 substrings within the string AAAA.

AAAA STRING
XX SUBSTRING 1
XX SUBSTRING 2
XX SUBSTRING 3
(See: DCOUNT)
STATEMENT _EXPLANATION

A = "1234ABC5723"
X = COUNT(A,'23')

X = COUNT('ABCDEFG',"')

Value returned in X is 2 as

there are two oc
in the string A.

curances of '23'

Value returned in X is 7 as a null

substring will match any character.

Sample examples of the COUNT function.

CHAPTER 9 - PICK/BASIC
Preliminary

PAGE 9-59

Copyright 1988 PICK SYSTEMS

9.32 CRT STATEMENT : Terminal Output

The CRT statement is used to direct output to the terminal.

FORMAT:
CRT print.list

CRT is similar to the PRINT statement, except the CRT statement is not
affected by the PRINTER ON or the PRINTER OFF statements.

The print.list can include @ functions to position data, literals, and
expressions. Commas can be used to align data to preset tab positions at
columns 18, 36, 54, and 72. Colons can be used to print data
continuously across the page.

(See: PRINT AND PRINTER ON statements)

STATEMENT EXPILANATION

CRT 'Print on terminal’ Output is to the terminal.

PRINTER ON

PRINT 'Send to printer' Directs print output to printer;

CRT 'Send to terminal' CRT output is still directed to terminal
PRINTER OFF

Sample Usage of the CRT statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-60

Copyright 1988 PICK SYSTEMS

td4 B3 L3

S BSOS PSR rer' s ores e s

r~ W

9.33 DATA STATEMENT :; STACKING INPUT DATA

The DATA statement is|used to store data for stacked input when using the
CHAIN or EXECUTE statTmenc.

FORMAT:
DATA expression{,expression ...)

Where 'expression' may be any valid combination of variables, literals,
functions, etc. Each |expression becomes the response to one input request
from the CHAIN or EXECUTE process.

Each DATA statement will generate one line of stacked input. The lines of
stacked input are then used in response to the input requests of other
processes. The DATA statement may be wused to store stacked input for
ACCESS, TCL, PROCs, or other PICK/BASIC programs.

The following example illustrates the procedure to exit a PICK/BASIC
program, sort-select a file and begin execution of a second PICK/BASIC
program. The variableJREF.DATE is passed to the second PICK/BASIC program.

Assuming that no stacked input is currently present:

DATA 'RUN BP PROF'; DATA REF.DATE.B CHAIN ‘'SSELECT FILE WITH DATE
"' :REF.DATE:'" BY DATE'

The first statement stacks two values (e.g. 'RUN BP PROG' and 'REF-DATE').

The second statement Eauses an ACCESS statement to be executed. When the

ACCESS processor has completed, the first value on the stack is the input

to the TCL prompt, thPs BP PROG begins execution. (Note that the stack 1is

a First In First Out KFIFO) type.)

!
The second PICK/BASIC]program (BP PROG) then performs the following:

INPUT REF.DATE
|
This instruction gets| its input from the second value on the stack, i.e.
the value of REF.DATE from the first PICK/BASIC program.
NOTE: The DATA stati ent must be processed before the CHAIN or EXECUTE
statement!!

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-61

Copyright 1988 PICK SYSTEMS

STATEMENT
DATA A

DATA B
DATA C
CHAIN 'RUN BP TEST'

DATA 'RUN BP CHARGE-ACC'

DATA DATE
CHAIN 'SELECT ACC WITH AMT > "100"

Stacks the values of A, B

and C for subsequent input requests.
Program 'TEST' may have three

input requests which will be
satisfied by the stacked input.

This causes the TCL command ‘'RUN

BP CHARGE-ACC' to be stored on

the stack. Control first exits to

the ACCESS processor to perform

the SELECT, after which the PICK/BASIC
program is run with DATE as stacked
input.

Sample usage of the DATA statement.

CHAPTER 9 - PICK/BASIC

Copyright 1988 PICK SYSTEMS

Preliminary PAGE 9-62

29 B9 B2 B3 Rl B3

| 38)

Bl Bl Gd Bad Bl Bd el Bed Bed BB

8.4

9.34 DATE() FUNCTION :

DATE CAPABILITY

The DATE() function r#turns the current internal date.

FORMAT:

DATE() ‘

|
The DATE() function returns the string value containing the internal

date. The internal date

is the number of days since December 31, 1967.

(See: TIME() and TIMEDATE() functions)

STATEMENT

Q = DATE()
PRINT DATE()

WRITET DATE() ELSE STOP

PLANATION

Assigns string value of current
internal date to variable Q.

Prints the current date
in the internal format.

Writes the string value of the
current internal date onto a magnetic
tape record.

SaEble Usage of the DATE() function.

CHAPTER 9 - PICK/BASIC
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-63

9.35 DCOUNT FUNCTION : DYNAMIC ARRAYS

The DCOUNT Function returns a value which is the number of wvalues |
separated by a specified delimiter. |

FORMAT:
DCOUNT (string, substring)

The DCOUNT function counts the number of values separated by a specified
delimiter. The DCOUNT function differs from the COUNT function in that it
returns the true number of values by the specified delimiter, rather than
the number of occurances of the delimiter within the string. For example,
considering the string:

A = ABC"DEF"GHI"JKL

COMMAND VALUE OF X
X = COUNT(A,AM) 3
X = DCOUNT(A,AM) 4

The DCOUNT function may be used to count the number of attributes in an
item, or the number of values (or subvalues) within an attribute. The
DCOUNT function returns a value of zero when a null string is encountered.

(See: COUNT)
I
|
STATEMENT EXPLANATION |
I
AM = CHAR(254) Value returned in X is 3 as there |
A = "123"456"ABC" are three values in the string [
X = DCOUNT(A,AM) separated by attribute marks. |
I
VM = CHAR(253) Value returned in X is 4 as there |
A = "123]456"ABC]DEF]HIJ" are four values in the string |
X = DCOUNT(A,VM) separated by value marks. |
|
A = "ABCDEFG" Value returned in X is 0 as a null |
X = DCOUNT(A,'"') is specified as the delimiter. |
[
|
Examples of DCOUNT function.
CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-64

Bed Hid 880 Bod Gad God Bed Gl Bed God S8 49 82 9% B9 B3 B3 B2 B:d

PN W F9 9 FEOFSOPFS PSSO s PSS re r, /s e e|s s

9.36 DELETE STATEMENT : DELETING ITEMS

The DELETE statement is used to delete a file item.

FORMAT: |
DELETE (file.variable,) item-name

The DELETE statement A deletes the item which is specified by the itemname
and which 1is located in the file previously assigned to the specified
file.variable via an OPEN statement. If the file.variable 1is omitted,
then the internal dea:ult variable 1is used (thus specifying the file most

recently opened without a file.variable).

|
No action 1is taken if a non-existent item is specified in the DELETE
statement.

appropriate error message if the specified file has not been opened prior
to the execution of the DELETE statement.

The user should not% that the PICK/BASIC program will abort with an

(See: DELETE FunctioT)

STATEMENT f EXPLANATION

DELETE X, "XYZ" Deletes item XYZ in the file opened
and assigned to variable X.

Q="JOB" ’ Deletes item JOB in the file opened

DELETE Q without a file variable.

Sa*ple Usage of the DELETE Statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-65

Copyright 1988 PICK SYSTEMS

9.37 DELETE FUNCTION : DYNAMIC ARRAY DELETION

The DELETE function deletes an attribute, a value, or a secondary value
from a string in 'item' format (called a dynamic array).

FORMAT :
DELETE(da.variable,att#{,value#,sub-value#))

The dynamic array used by this function is specified by the da.variable.
Whether an attribute, a value, or a secondary value is deleted depends
upon the values of the second, third, and fourth parameters. The att#
specifies an attribute, the value# specifies a value, and the sub-value#
specifies a secondary value. If the value# and sub-value# both have a
value of O, or are dropped, then an entire attribute is deleted. If the
last three expressions are all non-zero, then a secondary value is
deleted.

If a value is deleted the value mark associated with the value is also
deleted. If an attribute is deleted the attribute mark associated with
the attribute is also deleted. Consider the following example:

OPEN 'TEST' TO TEST ELSE STOP 201, 'TEST'
READ X FROM TEST, 'NAME' ELSE STOP 202, 'NAME'
WRITE DELETE(X,2) ON TEST, 'NAME'

These statements delete attribute 2 (and 1its associated delimiter) of
item NAME in file TEST.

ATEMEN PLANATIO
Y = DELETE(X,3,2) Deletes value 2 of attribute 3 of
dynamic array X (and its associated
delimiter), and assigns
resultant dynamic array to Y.

A=]1;B=2;C-3 D eletes secondary value 2 (and
DA = DELETE(DA,A,B,C-A) its associated delimiter) of
value 2 of attribute 1 of dynamic

array DA.

X = DELETE(X,7) Deletes attribute 7 (and its
associated delimiter) of dynamic
array X.

PRINT DELETE(X,7,1) Prints the dynamic array which

results when value 1 of attribute
7 of dynamic array X is deleted.

Sample usage of the DELETE Function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-66

Copyright 1988 PICK SYSTEMS

B4 B4

a2 B3 B3

B2 0

Gl G Bl Bad Bad Bl B Bl bd S Bea

9.38 DIM STATEMENT : DIMENSIONING ARRAYS

Multiple valued variables are called arrays. Before arrays may be used in
a PICK/BASIC program they must be dimensioned via a DIM statement.

FORMAT:
DIM variablq (dimensionl(,dimension2})

A variable with more | than one value associated with it 1is called an
array. Each value is called an element of the array, and the elements are
ordered. Before an array may be used in a PICK/BASIC program, however, the
maximum dimension(s) |of the array must be specified for storage purposes.
This is done via a ﬁIM statement, wherein the dimensions of an array are
declared with constant whole number, separated by commas. DIM statements
must precede any array references, and are wusually placed at the
beginning of the program. (Arrays need only be dimensioned once
throughout the entire program.) Several arrays may be dimensioned via a
single DIM statement.

| 3 |---- The first element of A has value 3

| 8 |----iThe second element of A has value 8

|-20.3|---- The third element of A has value -20.3

| ABC |---- The fourth element of A has string value "ABC"

The above example illustrates a one-dimensional array (called a vector).
A two-dimensional array (called a matrix) is characterized by having rows

and columns. For example:
COL.1 COL.2 COL.3 COL.4

Row1l | 3 | XYZ| A | -8.2 |

[oroem o |
Array Z: Row 2 | 8 | 3.1 | 500 | .333 |

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-67

Copyright 1988 PICK SYSTEMS

Any array element may be accessed by specifying its position in the
array. This position is like an offset from the beginning of the array.
In specifying an element, the user must have one offset or subscript for
each dimension of the array. 1In Array A, element A(l) has a value of 3,
while element A(3) has a value of "20.3". For a two-dimensional array
(matrix) the first subscript specifies the row, while the second specifies
the column. For example, in array Z above, element Z(1l,1) has a value of
3, while element Z(2,3) has a value of 500.

DIM MATRIX(10,12) Specifies 10 by 12 matrix named MATRIX.

DIM Q(10),R(10),S(10) Specifies three vectors named Q, R, and
S (each to contain 10 elements).

DIM M1(50,10),X(2) Specifies 50 by 10 matrix named M1,

and two-element vector named X.

Sample usage of the DIM statement.

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS

Preliminary PAGE 9-68

o T o TR o TR o TN o T o B B

™ | ' S '/ | ’Ss PSS ™ s s

9.39 DTX FUNCTION : DECIMAL to HEXADECIMAL CONVERSION

The DTX function converts a value from Decimal to Hexadecimal.

FORMAT:

DTX(eeression)

The string value ofj the expression 1is converted from Decimal to
Hexadecimal. For exam?le:

Conversely, the XTD function 1is available to convert string values from

B = DTk(A)

Hexadecimal to Decimal.

(See: XTD)
STATEMENT P ION
H = DTX(D) Assigns the Hexadecimal value of variable D

to variable H.

CHAPTER 9 - PICK/BASIC

Preliminary

Sample Usage of the DTX function.

Copyright 1988 PICK SYSTEMS
PAGE 9-69

9.40 EBCDIC FUNCTION : FORMAT CONVERSION

The EBCDIC function converts a string value from ASCII to EBCDIC.

FORMAT:

EBCDIC(expression)
The string value of the expression is converted from ASCII to EBCDIC. For
example:

B = EBCDIC(A)

Conversely, the ASCII function is available to convert string values from
EBCDIC to ASCII.

(See: ASCII)

STATEME EXPLANATION
B = EBCDIC(A) Assigns the EBCDIC value of variable A

to variable B.

Sample Usage of the EBCDIC function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-70

Copyright 1988 PICK SYSTEMS

P F| S PSSR SO FS FEO e MO O es e e rs m o es TMm s

9.41 ECHO ON AND OFF : TERMINAL DISPLAY

The ECHO statement en%bles or disables terminal output accordingly.

FORMAT:
ECHO ON
ECHO OFF
ECHO expression

These commands turn the system echo-back on or off. They may be wused to
suppress the echo back of terminal input.

If the expression form is wused, terminal echo 1is inhibited when the
expression evaluates to zero. Terminal echo 1is enabled when the
expression evaluates to non-zero.

CHAPTER 9 - PICK/BASIC
Preliminary \ PAGE 9-71

Copyright 1988 PICK SYSTEMS

9.42 END STATEMENT

If the END statement is used, it must be the 1last statement of the
PICK/BASIC program; it designates the physical end of the program. The
STOP and ABORT statements may appear anywhere in the program; they
designate a logical termination of the program.

FORMAT:
END

The END statement may appear as the very last statement in the BASIC
program. It 1is used to specify the physical end of the sequence of
statements comprising the program, and increases readability.

The END statement is also wused to designate the physical end of
alternative sequences of statements within the IF statement and within
certain of the PICK/BASIC I/O Statements.

(See: IF..THEN, LOCATE, L1OCK, READ for a discussion of this alternative
use of the END statement.)

A=500 ; B=750 ; C=235 ; D=1300
REVENUE = A + B ; COST = C + D
PROFIT = REVENUE - COST

IF PROFIT > 1 THEN GOTO 10
PRINT "ZERO PROFIT OR LOSS"

STOP<----------- Logical end of program.
10 PRINT "POSITIVE PROFIT"
END €--cccccmmmcccccccmccccneao- Physical end of program

Sample usage of the END Statement.

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS

Preliminary PAGE 9-72

F e | A esmes s e res res Mmoo e s e|m e

9.43 ENTER STATEMENT : INTERPROGRAM TRANSFERS

The ENTER statement 'permits transfer of control from one cataloged
program to another cataloged program. The program that executes the ENTER
statement pust be exeguted via the cataloged verb in the user's MD,

FORMATS :

ENTER program-name

where program-name is the item-id of the program to be ENTERed and

ENTER @variable

where variable has been assigned the program name to be ENTERed.
All variables which are to be passed between programs must be declared in
a COMMON declaration in all program segments that are to be ENTERed.

All other variables will be initialized upon ENTERing the program. It is
permissible to ENTER a program that calls a subroutine, but it is illegal
to ENTER a program from a subroutine.

STATEMENT
ENTER PROGRAM.1

N=2
PROG = "PROGRAM."
ENTER @PROG

EXPLANATION

Causes execution of the cataloged
program "PROGRAM.1". Any COMMON
variables will be passed to "PROGRAM.1".

Causes execution of the cataloged

: N program "PROGRAM.2". Any COMMON

variables will be passed to
"PROGRAM.2".

CHAPTER 9 - PICK/BASIC

Preliminary

Sample usage of the ENTER statement.

Copyright 1988 PICK SYSTEMS
PAGE 9-73

9.44 EQUATE STATEMENT : VARIABLE ASSIGNMENT

The EQUATE statement allows one variable to be defined as the equivalent
of another variable.

FORMAT:
EQU(ATE) variable TO equate-variable{,variable TO equate.variable..)

The variable must be a simple variable. The equate-variable may be a
literal number, string, character or array element. The equate-variable
may also be a CHAR function, however, the CHAR function 1is the only
allowed function in an EQUATE statement. The EQUATE statement must appear
before the first reference to the equate-variable.

The EQUATE Statement differs from the ASSIGNMENT Statement (where a
variable is assigned a value via an equal sign) in that there is no
storage location generated for the variable. The advantage this offers
is that the value 1is compiled directly into the object-code item at
compile time and does not need to be re-assigned every time the program
is executed. The EQUATE Statement is therefore particularly useful under
the following two conditions:

Where a constant is used frequently within a program, and therefore the
program would read more clearly if the constant were given a symbolic
name. In the example, "AM" is the commonly used symbol for "attribute
mark", one of the standard data delimiters.

Where a MATREAD statement is used to read in an entire item from a file
and disperse it into a dimensioned array. In this case, the EQUATE
statement may be used to give symbolic names to the individual array
elements which makes the program more meaningful. For example:

DIM ITEM(20)

EQUATE BIRTHDATE TO ITEM(1), SOC.SEC.NO. TO ITEM(2)

EQUATE SALARY TO ITEM(3)

in this case, the wvariables BIRTHDATE, SOC.SEC.NO. and SALARY are
rendered equivalent to the first three elements of the array ITEM. These
meaningful variables are then used in the remainder of the program.

TATEMENT EXPIANATION

EQUATE PI TO 3.1416 Variable PI is compiled as the value
3.1416 at compile time.

EQUATE STARS TO "*****" Variable STARS is compiled as the
value of five asterisks at compile time.

EQUATE AM TO CHAR(254) Variable AM is equivalent to the ASCII
charater generated by the CHAR function.

EQUATE PART TO ITEM(3) Variable PART is equivalent to
element 3 of array ITEM.

Sample usage of the EQUATE statement.

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS

Preliminary PAGE 9-74

9.45 EXECUTE STA NT : EXECUTING TCL COMMANDS

| I
The EXECUTE statement is used to execute any TCL command and use the |
results of that command in later processing. |

FORMAT:
EXECUTE expression {CAPTURING varl)} (RETURNING var2?)

The 'expression' parameter may be a complete TCL statement, a PROC, or
a cataloged PICK/BASIC program. Any output from the executed command
is captured in 'varl'. After execution, 'var2' will contain error
message numbers.

The CAPTURING and RETURNING clauses are both optional.

When using both clauses, the CAPTURING clause should precede the
RETURNING clause.

After execution of the 'expression', the data stack is reset and the
PICK/BASIC program continues with the next statement.

9.45.1 INPUT - EXECUTE STATEMENT

Input is passed to the EXECUTE statement using the. DATA statement,
just like it 1is used with the CHAIN statement. The data stack is
reset after the EXECUTE statement is completed.

(See: DATA and CHAIN)

9.45.2 OUTPUT - CAPTURING CLAUSE

Output from the executed command 1is captured by the calling program
in the wvariable used with the CAPTURING clause (var2). When output is
being 1re-directed to a variable in the calling progranm,
carriage-return/line feed pairs are converted to attribute marks, and
clear-screen sequences (to the terminal) are deleted.

9.45.3 OUTPUT - RETURNING CLAUSE

Output of error message numbers may be examined in two ways. Using
the optional RETURNING clause, allows error message numbers to be
assigned to a variable (varl). Each error message number is separated
by a blank. Secondly, the SYSTEM() function may be used.

|9)

CHAPTER 9 - PICK/BASI
Preliminary PAGE 9-75

Copyright 1988 PICK SYSTEMS

9.45.4 SELECT LISTS - EXECUTE STATEMENT

If a selected list is active when the EXECUTE statement is executed,
that list is passed to the TCL command executed. A selected list may
be passed back from the executed command to the PICK/BASIC program,
if one is generated. The select list will be assigned to the default
select variable for the next READNEXT statement, or to any variable
by:

SELECT TO variable

Therefore it is possible to EXECUTE the SELECT verb, test for select
list active wusing the SYSTEM(11l) function, and then EXECUTE the
SAVE-LIST verb. It 1is also possible to issue a SELECT verb from TCL,
RUN a PICK/BASIC program which EXECUTEs a LIST verb, and then have
the initial select list passed to the LIST verb. In order to pass a
select list to the executed TCL command, it is necessary that the
select list not be referenced by a READNEXT or SELECT statement.

9.45.5 WORK ENVIRONMENT CHANGES

Extra care should be taken when using the following commands with the
EXECUTE statement. The original environment will NOT be restored
after they are EXECUTEd. The PICK/BASIC program will resume with the
next line of code, under the newly changed parameters.

A) TERM

B) SP-ASSIGN, SP-OPEN, SP-CLOSE, etc.

C) P (output supression)

D) CHARGES - work performed with EXECUTE not reflected.
E) T-ATT, T-DET (record size, etc.)

There are two verbs which wupon EXECUTion, do not return to the
PICK/BASIC program.

A) OFF
B) LOGTO

There is one verb which cannot be done from an EXECUTion:

A) EXEC

9.45.6 EXECUTE WORKSPACE

The EXECUTE process requires 1it's own dedicated workspace. These
workspace frames are automatically taken from overflow, and
maintained in a special EXECUTE workspace table. The very first time
an EXECUTE statement 1is performed, the process may be delayed up to
30 seconds. Subsequent EXECUTE statements will proceed without delay.

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-76

g3

N R

9.46 EXP FUNCTION : T!PONENTIAL CAPABILITY

I I
| The EXPONENTIAL funcrion generates the result of raising base 'e' to

| the power designated by the expression. (Base 'e' is 2.7183)
I |

FORMAT:
EXP(expression)

The EXPONENTIAL function raises the number ‘'e' (2.7183) to the value of
the expression. If the value of the expression at precision 4 is 24 or
greater, the function returns a value of zero. The size of the maximum
result is reduced accordingly if precision 5 or precision 6 has been
declared.

The EXPONENTIAL function is the inverse of the NATURAL LOGARITHM (LN)
function. (See: LN)

STATEMENT EXPLANATION

YY = EXP(XX) Assigns the result of raising base 'e' the
power of the expression XX, to variable YY.

PRECISION 6

PRINT EXP(1) Prints "2.7182"

PRINT EXP(-110+120) Prints "2.3026"

PRINT 24 + EXP(1000) Prints "30.9079"

PRINT EXP(10000) Prints "9.2105"

Sample usage of the EXP function.

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary : PAGE 9-77

9.47 EXTRACT FUNCTION : DYNAMIC ARRAY EXTRACTION

The EXTRACT function returns an attribute, a value, or a secondary value |
from a string in 'item' format (called a dynamic array). |

FORMAT:
EXTRACT(da.variable,att#{,value#,sub-value#})
or
da.variable<att#(,value#,sub-value#)>

the dynamic array used by this function is specified by the da.variable.
Whether an attribute, a value, or a secondary value is extracted depends
upon the values of the second, third, and fourth parameters. The att#
specifies an attribute, the value# specifies an value, and the sub-value#
specifies a secondary value. If the third and fourth parameters both have
a value of 0, or have been dropped, then an entire attribute is
extracted. If the sub-value# (only) has a wvalue of 0, or been dropped,
then a value is extracted. If the last three parameters are all non-zero,
then a secondary value is extracted. Trailing zero value# or sub-value#
mark counts are not required. Consider the following example:

OPEN 'TEST' TO TEST ELSE STOP 201, 'TEST'
READ ITEM FROM TEST, 'NAME' ELSE STOP 202, 'NAME'
PRINT ITEM<,3,2>

These statements cause value 2 of attribute 3 of item NAME in file TEST
to be printed. Consider the following example:

OPEN 'ACCOUNT' TO ACCOUNT ELSE STOP 201, 'ACCOUNT'
READ ITEM1 FROM ACCOUNT, 'ITEM1' ELSE STOP 202, 'ITEM1’'
IF ITEM1<3,2,1>=25 THEN PRINT "MATCH"

CHAPTER 9 - PICK/BASIC ' Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-78

B

These statements cause the message
value 1 of value 2 of attribute 3 of item ITEM1 in file ACCOUNT is equal

to 25.

"MATCH" to be printed if secondary

STATEMENT
Y=EXTRACT(X,2,0,0)
Y=X<2>

A=3
B=2
Q1=ARR<A,B,A+1>

IF B<3,2,1> >5 THEN
PRINT MSG

GOSUB 100

END

PRINT D<25,2,0>

—EXPLANATION
Assigns attribute 2 of dynamic

array X to variable Y.

Assigns secondary value 4 of
value 2 of attribute 3 of
dynamic array ARR to variable Ql.

If secondary value 1 of value 2
of attribute 3 of dynamic array
B is greater than 5, then the
value of MSG is printed and a
subroutine branch is made to
statement 100.

Prints value 2 of attribute 25
of dynamic array D.

Sample usage of the EXTRACT Function.

CHAPTER 9 - PICK/BASIC

Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-79

9.48 FIELD FUNCTION : STRING SEARCHING

The FIELD function returns a sub-string from a string by specifying a
delimiter character.

FORMAT:
FIELD(expression,delimiter,occurence#)

The FIELD function takes the string value of the expression and searches
for a sub-string delimited by the character specified by the delimiter.
The occurence# specifies which occurrence of the sub-string is to be
returned. If the occurence# has a value of 1, then the FIELD function
will return the sub-string from the beginning of the string up to the
first occurrence of of the delimiter. For example, the statement below
assigns the string value of "XXX" to the variable A:

A = FIELD("XXX.YYY.ZZZ.555",".",1)

If the occurence# has a value of 2, then the sub-string delimited by the
first and second occurrence of the specified delimiter character will be
returned. A value of 3 for the occurence# will return the sub-string
delimited by the second and third occurence of the specified delimiter
character, and so on for higher values. For example, the statement below
assigns the string value "ZZZ" to variable C:

C = FIELD("XXX.YYY.Z2ZZ.555",".",3)

(See: COL1() and COL2() Functions)

STATEMENT P ON

T = "12345A6789A98765A" Assigns the string value "12345"

G = FIELD(T,"A",1) to variable G.

T = "12345A6789A98765A" Assigns the string value "98765"

G = FIELD(T,"A",3) to variable G.

X = "77$ABCSXX" The IF statement will cause the

Y = "§" program to terminate (i.e., the

Z = "ABC" value returned by the FIELD function
IF FIELD(X,Y,2)= Z THEN STOP is "ABC", which equals the

value of Z, thus making the test
condition true).

Sample usage of the FIELD statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-80

Copyright 1988 PICK SYSTEMS

Beed Dl RS Bead Beed Bed Bed Bekd Bid Bet Bl B B B B Ram BEE Bl Bl

[
[
[
[
[
[
[
[
[
L
L
[
!
E
|
[
[
[
[

9.49 FOOTING STATEHEN* ¢ PAGE OUTPUT FOOTINGS
\

The FOOTING statement causes the specified text string to be printed at
the bottom of each page.

FORMAT:
FOOTING "text 'options' (text 'options')"

The first FOOTING statement executed will initialize the page parameters.
Subsequently, the Footing literal data may be changed by a new FOOTING
Statement, and the new Footing will be output when the end of the current
page is reached.

The special Footing option characters listed below may be used as part of
a FOOTING string expression. These special characters will be converted
and printed as part of the Footing. Option characters are enclosed in
single quotes. Consider, for example:

FOOTING "Copyright 1988 PICK SYSTEMS 'T' PAGE 'P'"

This statement will print a Footing consisting of: the words "Copyright
1988 PICK SYSTEMS", followed by the current time and date, followed by
the word "PAGE", followed by the current page number. Page numbers are
assigned in ascending order starting with page 1.

The footing 1literal data may be changed at any time in the PICK/BASIC
program by another FOOTING statement; this change will take effect when
the end of the current page is reached. The same set of special option
characters are used in heading statements.

(See: HEADING)

HEADING OPTIONS Character is Converted to:

P Current page number right
justified in a field of four
Carriage return/line feed
Current time and date
Centers the line
Current date
No stop at end of page

N Current page number left justified

M2Zoaodr

Special Option Characters for FOOTING Statement.

Copyright 1988 PICK SYSTEMS

CHAPTER 9 - PICK/BAS%C
| PAGE 9-81

Preliminary
\

STATEMENT
FOOTING "TIME & DATE:

FOOTING "PAGE 'P'"

FOOTING "'LTP'"

ITIH

EXPLANATION
The text "TIME & DATE:" will be printed
followed by the current time and date.

The text "PAGE" will be printed
followed by the current page number.

The following footing will be
printed: return/line feed, .
the current time, date and page.

Sample Usage of FOOTING Statements.

CHAPTER 9 - PICK/BASIC
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-82

R N & S | PSR P's P s O PE P s s re

|
9.50 FOR...NEXT STAT$HENT : PROGRAM LOOPING
|

The FOR and NEXT statements are used to specify the beginning and ending
points of a program loop. A loop is a portion of a program written in
such a way that it will execute repeatedly until some test condition is
met.

A FOR and NEXT loop causes execution of a set of statements for successive
values of a variable until a 1limiting value is encountered. Such values
are specified by establishing: 1) an initial value for a variable, 2) a
limiting value for thé variable, and 3) an increment value to be added to
the value of the variable at the end of each pass through the loop. When
the limit is exceeded, program control proceeds to the following body of
the program.

FORMAT:
FOR variable = expression TO expression (STEP expression)

A=I*75
NEXT variable

The expression preceding TO specifies the initial value of the variable,
the expression following TO gives the 1limiting value, and the optional
expression following STEP gives the increment. If STEP is omitted, the
increment value is assumed to be +1. The initial value expression is
evaluated only once (when the FOR statement is executed). The other two
expressions are evaluated on each iteration of the loop.

The function of the NEXT statement 1is to return program control to the
beginning of the loop after a new value of the variable has been computed.
Note that the variable in the NEXT statement must be the same as the
variable in the FOR statement.

As an example, consider the execution of the following statements:

150 FOR J=2 TO 11 STEP 3
160 PRINT J+5
170 NEXT J

Statement 150 sets the initial wvalue of J to 2 and specifies that J
thereafter will be incremented by 3 each time the 1loop is performed,
until J exceeds the 1limiting value 11. Statement 160 prints out the
current value of the expression J+5. Statement 170 assigned J its next
value (i.e., J=243=5) and causes program control to return to statement
150. Statement 160 is again executed, and statement 170 again increments
J and causes the program to loop back. This process continues with J
being incremented by 3 after each pass through the loop. When J attains
the 1limiting value of 11, statement 160 will again be executed and
control will pass to 170. J will again be incremented (i.e., J=11+3=14),
and since 14 is greater than the 1limiting value of 11, the program will
"fall through" statement 150 and control will pass to the next sequential
statement following statement 170.

CHAPTER 9 - PICK/BAS%C
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-83

STATEMENTS

FOR A=1 TO 2+X-Y

NEXT A

FOR K=10 TO 1 STEP -1
NEXT K
FOR VAR= O TO 1 STEP 1

NEXT VAR

EXPLANATION

Limiting value is current value of
expression 2+4X-Y; increment value
is +1.

Increment value is -1 (i.e., vari-
able K will decrement by a value -1
for each of 10 passes through the
loop).

Increment value is 1 (i.e., vari-
able VAR will increment by a value
of 1 for each of 11 passes through
the loop).

Sample usage of the FOR...NEXT statement.

CHAPTER 9 - PICK/BASIC
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-84

Bod Dol Sl Died Beed Bad Bod Rl Beod Beid B2 B g By BEd R B Bd Bed

9.50.1 FOR...NEXT STATEMENT : EXTENDED PROGRAM LOOPING

I
Optional condition clauses (WHILE and UNTIL) may be wused in the FOR |

statement. FOR and NEXT loops may be "nested"; a nested loop is defined |
as a loop which is wholly contained within another loop. |

EXTENDED FORMAT:

FOR variable = expression TO expression (STEP
expression) (WHILE expression)

FOR variable = expression TO expression {STEP
expression) (UNTIL expression)

The extended form of the FOR statement functions identically to the basic
form, with the following additionms.

If the WHILE clause 1is used, the specified expression will be evaluated
for each iteration of the loop. If it evaluates to false (i.e., zero),
then program control will pass to the statement immediately following the
accompanying NEXT statement. If it evaluates to true (i.e., non-zero),
the loop will re-iterate.

If the UNTIL clause is used, the specified expression will be evaluated
for each iteration of the loop. If it evaluates to true (i.e., non-zero),
then program control will pass to the statement immediately following the
accompanying NEXT statement. If it evaluates to false.(i.e., non-zero),
the loop will re-iterate.

The following FOR and NEXT loop, for example, will execute until I=10 or
until the statements within the loop cause variable A to exceed the value
100:

FOR I=1 TO 10 STEP .5 UNTIL A>100

A = I*75
NEXT I

FOR and NEXT loops contained within the range of other FOR and NEXT loops
are called nested loops. For example:

FOR I-1 TO 10

FOR J=1 TO 10

PRINT B (I,J)

NEXT J g
NEXT I |

The above statements illustrate a two-level nested loop. The inner loop
will be executed ten | times for each of ten passes through the outer loop,
i.e., the statement PRINT B(I,J) will be executed 100 times, causing
matrix B to be printed in the following order: B(1,1), B(1,2),

B(1,3),..., B(1,10), B(2,1), B(2,2),..., B(10,10).

1
CHAPTER 9 - PICK/BAS*C Copyright 1988 PICK SYSTEMS
Preliminary \ PAGE 9-85

\

Loops may be nested any number of levels. However, a mnested loop must be
completely contained within the range of the outer loop (i.e., the ranges
of the loops may not cross).

STATEMENT EXPLANATION

ST="X" Loop will execute 4 times (i.e.,
FOR B=1 TO 10 UNTIL ST="XXXXX" an "X" is added to the string
ST=ST CAT "X" value of variable ST until the
NEXT B string equals "XXXXX").

A=20 Loop will execute 5 times (i.e.,
FOR J=1 TO 10 WHILE A<25 variable A reaches 25 before
A=A+1 variable J reaches 10).

PRINT J,A

NEXT J

A=0 Loop will execute 10 times (i.e.,
FOR J=1 TO 10 WHILE A<25 variable J reaches 10 before
A=A+1 variable A reaches 25).

PRINT J,A

NEXT J

Sample usage of the FOR...NEXT statement.
(Extended Form)

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-86

ey N N O FE PE PO O PE S PR O PY eSO PSSO PO O PsT O O res e

9.51 GOSUB AND ON...GbSUB STATEMENTS : SUBROUTINE BRANCHING

The GOSUB, COMPUTED GOSUB, RETURN, and RETURN TO statements (The RETURN
and RETURN TO statements will be discussed in a following section.)
provide internal subroutine capabilities for the PICK/BASIC program. A
subroutine is an integral group of statements which handle a unique
function or task. nn internal subroutine 1s a subroutine that is
contained within the program that calls it (i.e., before the END
statement). The GOSUB statement transfers control to the subroutine).

FORMAT :
GOSUB statement.label

Upon execution of a GOSUB statement, program control 1is transferred to
the statement which begins with the specified numeric statement.label.
Execution proceeds sequentially from that statement until a RETURN or
RETURN TO statement is encountered. Either of these statements transfers
control back to the main program.

The Computed GOSUB statement 1is a combination of the Computed GOTO
statement and the GOSUB statement. Control is transferred to one of
several statement.labels selected by the current value of an index.
expression. Control returns to the statement following the computed GOSUB
when a RETURN statement is executed.

FORMAT: ON index. expression GOSUB statement. label,
statement.label,

The index expression is evaluated and truncated to an integer value. The
result 1is used as an 1index into the 1list of statement.labels. A
subroutine branch is executed to the statement.label selected.

If the expression evaluates to less than 1 or to a value greater. than the
number of statement.labels, po action is taken, that is, the statement
immediately following the ON GOSUB will be executed next.

ON I GOSUB 100,150,250

* CONTROL TRANSFERS HERE AFTER RETURN FROM SUBROUTINE

e (DIRECTLY IF I<1l OR I>3)

100 * CONTROL TRANSFERS HERE IF I=1
RETURN

150 * CONTROL TRANSFERS HERE IF I=2
RETURN

250: * CONTROL TRANSFERS HERE IF I=3

RETURN

Samp#e usage of the ON...GOSUB statement.
|

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-87

Copyright 1988 PICK SYSTEMS

9.52 GOTO STATEMENT : UNCONDITIONAL BRANCHING

The GO{TO) statement unconditionally transfers program control to any
statement within the PICK/BASIC program.

FORMAT:
GO(TO) statement-label

Execution of the GO{TO) statement causes program control to transfer to
the statement which begins with the specified numeric statement-label. If
a statement does not exist with the specified statement-label an error
message will be printed at compile time (refer to the appendix describing
compiler error messages). Note that control may be transferred to
statements following the GO{TO) statement, as well as to statements
preceding the GO{TO) statement.

(see: ON...GOTO)

> 100 A=0

REM BRANCH TO STATEMENT 500
200 GOTO 500 ===
I
I

| .
==> 500 A=B+C
D=100

REM REPEAT PROGRAM
GOTO 100 ==

Sample usage of the GOTO statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-88

Copyright 1988 PICK SYSTEMS

9.53 HEADING STATEMENT : PAGE OUTPUT HEADINGS
\

The HEADING statement ‘auses the specified text string to be printed as

the next page heading.

FORMAT:
HEADING "text 'options' (text 'options')"

The first HEADING statement executed will initialize the page parameters.
Subsequently, the Heading literal data may be changed by a new HEADING
Statement, and the new Heading will be output at the beginning of the
next page. The special heading option characters listed below may be used
as part of a HEADING /string expression. These special characters will be
converted and printed as part of the heading. Option characters are
enclosed in single quotes. Consider, for example:

HEADING "INVENTORY LIST 'T' PAGE 'PL'"

This statement prints a heading consisting of: the words "INVENTORY
LIST", followed by the current time and date, followed by the word
"PAGE", followed by the current page number, followed by a carriage
return and line feed. Page numbers are assigned in ascending order
starting with page 1.

The same set of special option characters are used in FOOTING statements.

(See: FOOTING)

HEADING OPTIONS Character is Converted to:

P Current page number right
justified in a field of four

L Carriage return/line feed

T Current time and date

C Centers the line

D Current date

N No stop at end of page

PN Current page number left justified

Special Option Characters for HEADING Statement.

CHAPTER 9 - PICK/BAsrc
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-89

STATEMENT

HEADING "TIME & DATE:

HEADING "PAGE 'PL'"

ITL'

EXPLANATION

The text "TIME & DATE:" will be
printed followed by the current time and
date plus a carriage return/line feed.

The text "PAGE" will be printed
followed by the current page number and a
carriage return/line feed.

Sample Usage of HEADING Statements.

CHAPTER 9 - PICK/BASIC
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-90

Bod Bed Ed Pad B B3 Bed B3 Bd

Bkl Bed Bod Bod Bed Bad

Ny P PO rFT PN FNOes s e s eY e s esommores s e

9.54 ICONV FUNCTION : INPUT CONVERSION

The ICONV function provides the PICK/ACCESS input conversion capabilities
to the PICK/BASIC programmer.

FORMAT:
ICONV(expression,conversion)

The conversion specifies the type of input conversion to be applied to
the string value resulting from the expression. The resultant value is
always a string.

(See: OCONV)

The input conversion operation specified by the conversion parameter may
include any one of the following:

D Convert date to internal format (for ICONV function)
or to external format (for OCONV function).

MT Converts time.

MX Convert ASCII to hexadecimal (for ICONV function) or
convert hexadecimal to ASCII (for OCONV function).

T Convert by table translation.
U Call to user-defined assembly routine.

For a detailed treatment of these (and other) conversion capabilities,
the user should refer to the ACCESS Chapter.

NOTE: The ACCESS 'F' and 'A' conversions cannot be called by these
functions. The ACCESS 'MR' or 'ML' conversion may be called by using the
Format String which performs the same function and is preferable to using
the ICONV or OCONV functions in this case.

STATEMENT EXPLANATION

IDATE = ICONV("7-01-74","D") Assigns the string value
"2374" (i.e., the internal
date) to the variable IDATE.

ITIME = ICONV("17:04:18","MT") Assigns the string value
"61458" (i.e., the internal
time) to the variable ITIME.

|

STmple usage of the ICONV Function.

CHAPTER 9 - PICK/BASJC
Preliminary PAGE 9-91

Copyright 1988 PICK SYSTEMS

9.55 1IF STATEMENT : SINGLE-LINE CONDITIONAL BRANCHING

The Single-Line IF statement provides the conditional execution of a |
sequence of PICK/BASIC statements, or the conditional execution of one of |
two sequences of statements. |

FORMAT:
IF expression THEN statements (ELSE statements)

If the result of the test condition specified by the expression is true
(i.e., non-zero), then the statement or sequence of statements following
the THEN are executed. If the result of the expression is false (i.e.,
zero), then the statement or sequence of statements following the ELSE
are executed, unless the ELSE clause is omitted, in which case control
will pass to the next sequential statement following the entire IF
statement. The expression may be any legal BASIC expression.

The sequence of statements in the THEN or ELSE clauses may consist of one
or more statements on the same 1line. If more than one statement is
contained in either the THEN or ELSE clause, they must be separated by
semicolons. Consider the example:

IF ITEM THEN PRINT X; X=X+1 ELSE PRINT X*5; GOTO 10

If the current value of ITEM 1is non-zero (i.e., true), then this
statement will print the current value of X, add one to the current value
of X, and then transfer control to -the next sequential instruction in the
program. If the value of ITEM is zero (i.e., false), then the value of
X*5 will be printed and control will transfer to statement 10.

Any statements may appear in the THEN and ELSE clauses, including
additional IF statements.

The THEN clause of an IF statement is optional if the ELSE clause is
present. One or the other MUST be present. This allows IF statements with
the format:

IF expression ELSE statements

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-92

N NP e

STATEMENT

IF A="STRING" THEN PRINT "MATCH"

IF Q THEN PRINT A ELSE PRINT B;

IF A=B THEN STOP ELSE IF C THEN

STOP

GOTO 20

EXPLANATION

Prints "MATCH" if value of
A is the string "STRING".

The value of A is printed
if Q is non-zero. If Q=0,
then the value of B is
printed and the program is
terminated.

Program is terminated if
A=B; control is passed to
statement 20 if A does not

equal B and if C is non-zero.

Sample usage of the Single-Line IF statement.

CHAPTER 9 - PICK/BASIC
Preliminary

PAGE 9-93

Copyright 1988 PICK SYSTEMS

9.56 IF STATEMENT : MULTI-LINE CONDITIONAL BRANCHING

The Multi-Line IF statement is functionally identical to the Single-Line
IF statement. It provides the conditional execution of a sequence of
PICK/BASIC statements, or the conditional execution of one of two
sequences of statements. The statement sequences, however, may be placed
on multiple program lines.

The Multi-Line IF statement is actually an extension of the Single-Line
format. With this format, the statement sequences in the THEN and ELSE
clauses may be placed on multiple program lines, with each sequence being
terminated by an END. The general format of the Multi-Line IF statement
takes on three forms as shown in Figure A.

In each of the three forms, the ELSE clause 1is optional and may be
included or omitted as desired. Any statements may appear in the THEN and
ELSE clauses.

FORM 1: IF expression THEN
statements

END ELSE statements

FORM 2: IF expression THEN
statements
END ELSE
statements
END
FORM 3: IF expression THEN statements ELSE
END
NOTE: In each of the above forms,

the ELSE clause is optional.

General form of the Multi-Line IF statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-94

Copyright 1988 PICK SYSTEMS

Ed R4 4 B3 BaA B2 8 b4

1F STATEMENTS

IF ABC=ITEM+5 THEN
PRINT ABC
STOP
END ELSE PRINT ITEM; GOTO 10

IF VAL THEN
PRINT MESSAGE
PRINT VAL
VAL~100

END

10 IF S="XX" THEN PRINT "OK" ELSE
PRINT "NO MATCH"
PRINT S
STOP

END

20 REM REST OF PROGRAM

IF X>1 THEN
PRINT X
X=X+1
END ELSE
PRINT "NOT GREATER"
GOTO 75
END

EXPLANATION

The value of ABC is printed and the
program terminates if ABC=ITEM+5;
otherwise the value of ITEM is
printed and control passes to
statement 10.

If the value of VAL is non-zero
then the value of MESSAGE 1is
printed, the value of VAL is
printed, and VAL is assigned a
value of 100; otherwise control
passes to the next statement
following END.

If the value of S is the string
"XX" then the message "OK" is
printed and control passes to
statement 20; otherwise "NO MATCH"
is printed, the value of S is

printed, and the program terminates.

If X>1 the value of X is printed
and then incremented, and control
passes to the next statement fol-
lowing the second END: otherwise
"NOT GREATER" is printed and
control passes to statement 75.

Sample usage of the Multi-Line IF statement.

CHAPTER 9 - PICK/BASIC

Copyright 1988 PICK SYSTEMS

Preliminary PAGE 9-95

9.57 1IN Statement - Single Character Input

| The IN statement is used to accept a single character of input. No
| prompt is displayed; no <RETURN> is expected.
I

The syntax of the statement is
IN variable

The input is stored in the variable as an ASCII (decimal) code.

| Statement esc on

| PRINT 'Press Y to continue':
| INR . If Y is entered, the ASCII code 89 is
| returned in R.

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-96

Bed had Ol Rd Bod fBed Bod el had Bied B:d Bed Kad §=d d R Sl Gl Bad

N S PO Fs PO s rFs O rs Mmoo res P rsre e rm oM

9.58 INCLUDE STATEHE#T : INCLUDING OTHER PICK/BASIC PROGRAMS
\

The INCLUDE statene%: is used to include data from other PICK/BASIC

programs which no
statements.

ally

consist of COMMON blocks and EQUATE

FORMAT:

INCLUDE (file-name) item-name

When the PICK/BASIC compiler encounters an INCLUDE statement, it will
open the specified file, read the item, and compile it into the current

program.

If the file name is omitted, the file containing the source-item wused in
the TCL statement would be assumed.

Normally one would use this statement to include COMMON blocks and EQUATE
statements into a program. It would also be logical to have CRT format
strings and similar simple executable statements in the INCLUDE.

There is no limit to the number of INCLUDEs in a program, but only five

levels of nesting are allowed.

STATEMENT
INCLUDE BP COMMON.DATA

PLANATION
The program COMMON.DATA in BP file
will be compiled into the program
containing the INCLUDE statement.

Sample usage of the INCLUDE statement.

NOTE: The INCLUDE statement is not available on the PC-XT Version 2.0 or

lower.

CHAPTER 9 - PICK/BASIC
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-91

9.59 INDEX FUNCTION : SEARCHING FOR SUB-STRINGS

|
| The INDEX function searches a string for the occurrence of a |
| sub-string and returns the starting column position of that |
| sub-string. |

|

FORMAT:
INDEX(string.expression,substring,occurrence#)

The INDEX function takes the string value of the expression and searches
for the sub-string specified by substring. The occurrence# specifies
which occurrence of that sub-string is sought. The resultant numeric
value of the INDEX function is the starting column position of the
sub-string within the string. a value of 0 is returned if the sub-string
is not found. If the substring is null then the occurrence# will be
returned.

The user should note that no blank space may appear between "INDEX" and
"(". This is true for all PICK/BASIC Intrinsic Functions.

ATEMENT _EXPLANATION
A = INDEX("ABCAB","A",2) Assigns value of 4 to variable A

(i.e., 2nd occurrence of "A" is
at column position 4 of "ABCAB").

X = "1234ABC" The IF statement will transfer con-
Y = "ABC" trol to statement 3 (i.e., "ABC"
IF INDEX(X,Y,1)=5 THEN GOTO 3 starts at column position 5 of

"1234ABC" which makes the test con-
dition in the IF statement true).

Q = INDEX("PROGRAM",6"S",65) Assigns value of 0 to variable Q
(i.e., "S" does not occur in
"PROGRAM") .

S = "XIXXIXX1XX" The loop will execute 8 times

(i.e., 3rd occurrence of "1"
appears at column position 8 of
the string named S).

FOR I=1 TO INDEX(S,"1",3)

NEXT I

Sample usage of the INDEX Function.

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS

Preliminary PAGE 9-92

Aad Bmd Bad Bd B3 La B2

Bl Bind Bl Bod fod Bd S

6

o TN o BN o B . BN - BN . BN . BN o BN o BN . BN o B o B o

9.60 INPUT STATEMENT : TERMINAL INPUT

The INPUT statement is wused to request input data from the user's
terminal. The input statement can include the @ function to position the
cursor, and format strings to verify input.

The syntax of the statement is
INPUT (@(col,row)) variable {(,len}(:} (mask)

where
@(col,row) @ function; when specified, the cursor 1is positioned at
the specified 1location and the carriage return/line feed
after input 1is suppressed (for more information on
positﬂoning the cursor, see the section on @ function).

variable receives response; 1if the variable being used already has
a value, and if @ function has been specified, the current
value of the variable is displayed as the default at the
specified cursor address. To accept the default, press
<RETURN>.

len maximum number of characters to be entered; as soon as the
specified number of characters are entered, an automatic
<RETURN> is entered and processing continues with the next
statement.

suppresses carriage return/line feed after input has been
completed; this can be wused only if @ function has not
been specified.

mask format string; if mask is to be used, the @ function must
also be specified; for more information on using masks,
see next section.

When an input statement is executed, a prompt character is displayed,
followed by the cursor. If the @ function is wused, the prompt is
displayed preceding the location specified by @. The prompt character
can be specified using the PROMPT statement.

9.60.1 Using Masks with Input Statement

The mask is used to verify and reformat the actual entry of the data.
Any format string as described in Section 9.15, Numeric Masks and Format
Mask Codes, can be specified. The input is verified against the mask,
and, if acceptable, is assigned to the variable. For example, 1if the
mask contains a decimal digit specification and/or a scaling factor, then
numeric checking is performed. If the mask contains a length
specification (e.g., R#10), then length checking is performed. If the
mask is a valid date mask, then a date verification is performed.

Data is 1input and verified according to the mask, then stripped of 1its
output characteristics and stored in internal format. For example, if
the statement is

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-93

INPUT @(20,10) SOC.SEC '$%%-3%-3%%%'
and the data entered is
423-15-6897
the variable SOC.SEC contains the value
423156897

If the data 1is entered as 423156897, it is redisplayed at the input
location as

423-15-6897

If fewer digits are entered than specified, the value is zero-filled and
redisplayed; however, it is stored with the same number of digits as were
entered.

If an error condition 1is encountered, a message is printed at the bottom
of the screen and the cursor returns to the input prompt.

Error checking can be added to the INPUT @ form of the statement by the
statements INPUTTRAP and INPUTNULL. Messages can be displayed using the
INPUTERR statement. For more information, see the description for each
statement.

Statement esc tion
INPUT VAR Requests a value for variable VAR.
INPUT VAR,3 Performs an automatic <RETURN> as soon as

three characters are input (the user may
press <RETURN> to enter fewer than three
characters).

INPUT @(1,10) DESC Cursor is positioned at column 1, row 10
for input. (The prompt is displayed at
column 0, row 10.)

INPUT @(25,2) INV.DATE 'D' Date can be input in either the form mm-
dd-yy (any non-numeric character can be
used as the delimiter) or the form dd mon
yyyy:; the date is redisplayed in the form
dd mon yyyy and stored in internal date
format.

INPUT @(35,7) AMOUNT 'R2,' Data must be numeric; it is redisplayed
right-justified and with two decimal
places.

INPUT @(20,14) NAME 'L#40' Data can be any characters; length of
input is verified.

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-94

N 3 ' M N N MM ™M

N Y OFY FS /" 3 MM N e s

9.61 INPUTERR - INPUTTRAP - INPUTNULL : INPUT FORMS

Some extended features of the INPUT fuction.

FORMAT:
INPUT expr
IN 'xx' GOTO n,n,n,n ...
IN 'xx' GOSUB n,n,n,n ...
IN x

These are all support functions for the extended form of input statement.
They allow the user to tailor the INPUT function to conform to 1local
standards.

line of the screen. is differs from an explicit PRINT statement in that
it sets a flag indicating that a message has been printed. Thus, when the
next valid entry is made the system will check the flag and clear the
bottom line.

INPUTERR causes a ne?;age, specified by "expr", to be printed on the last

INPUTTRAP allows the wuser to set a trap for a particular character or
characters. Each character 1in the string specification corresponds to a
label in the GOTO or GOSUB clause. Thus, for example, if the statement
INPUTTRAP '__ X' GOTO 10,20 1is executed, the subsequent entry of a '_ '
character will cause a branch to "10" and the entry of 'X' will cause a
branch to "20". The GOSUB form of this expression will cause a subroutine
call to be issued instead. Caution - the subroutine RETURN statement will
cause a return to the statement following the INPUTTRAP statement - not
the one following the INPUT statement.

The INPUTNULL statement allows the user to define a character which is to
signify that whatever default value was present is to be replaced by the
null string. Thus, if the statement INPUTNULL '_/' 1is executed, the
subsequent entry of a '_/' character will cause a defaulted value to go
to null. Note that the default character is '__'.

(See: INPUT)

INPUTERR 'INVALID DATA!' Displays error message

INPUTTRAP '*/' GOTO 150,170 Causes branching if
either '*' or '_/' is entered.

INPUTNULL '_@' Causes the '_@' character to null
defaults in INPUT statements.

1
\
Examples of TNPUTERR, INPUTTRAP and INPUTNULL Statements.
|
|
|

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-95

9.62 INSERT FUNCTION : DYNAMIC ARRAY INSERTION

The INSERT function inserts an attribute, a value, or a secondary value
into a string in 'item' format (called a dynamic array).

FORMAT:
INSERT(da.variable,att#(,value#,sub-value#,) (;)new.expression)

The dynamic array used by this function is specified by the da.variable.
Whether an attribute, a value, or a secondary value is replaced depends
upon the values of the second, third, and fourth parameters. The att#
specifies an attribute, the value# specifies a value, and the sub-value#
specifies a secondary value. If the value# and sub-value# both have a
value of 0, (or dropped) then an entire attribute is replaced. If the
sub-value# (only) has a value of 0, (or dropped) then a value is
replaced. If the second, third, and fourth parameters are all non-zero,
then a secondary value is replaced. The replacement value is specified by
the new.expression. The semi-colon (;) 1is wused whenever wvalue# and/or
sub-value# have been dropped and the new.expression is no 1longer the
fifth parameter.

If the att#, value# or sub-value# of the INSERT function has a value of
-1, then 1insertion after the last attribute, last value, or last
secondary value (respectively) of the dynamic array is specified. For
example:

OPEN 'FN1' TO FN1 ELSE STOP 201, 'FN1'

READ B FROM FN1,'ITEMX' ELSE STOP 202, 'ITEMX'

A = INSERT(B,-1;'EXAMPLE')

WRITE A ON FN1,'ITEMX'
These statements insert the string value "EXAMPLE" after the last
attribute of item ITEMX in file FN1.

ST S _EXPLANATION
Y = INSERT(X3,2,0,"XYZ") Inserts before value 2 of attribute

3 of dynamic array X the

string value "XYZ" (thus creating

a new value), and assigns the
resultant dynamic array to variable Y.

NEW = "VALUE" Inserts before attribute 9 of

TEMP = INSERT(TEMP,9,0,0,NEW) dynamic array TEMP the string
value "VALUE" (thus creating a
new attribute).

Z = INSERT(W,5,1,1,"B") Inserts the string value "B"

before secondary value 1 of value 1

of attribute 5 in dynamic array W

(thus creating a new secondary

value), and assigns the resultant

dynamic array to variable Z.

—_——-— - ——_————_————

Sample usage of the INSERT Function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-96

Copyright 1988 PICK SYSTEMS

B3 B3 B4 B A A Bl Bad Bad

Bad

&4

S

hed Bd Bod Baed 3

§d

9.63 INT FUNCTION : INTEGER NUMERIC VALUE

The INT function returns an integer value. An integer is a whole number.

FORMAT:

INT(expression)
The INT function returns the integer portion of the specified expression
(i.e., the fractional portion of the expression is truncated). For
example:

PRINT INT(5.37)

.B This statement causes the value 5 to be printed.

STATEMENT

A = INT(Q)

A = 3.55
B=3.6

C = INT(A+B)

J = INT (5/3)

PLANATION

Assigns the integer value of
variable Q to variable A.

Assigns the value 7 to variable C.

Assigns the value 1 to variable J.

Sample Usage of the INT Function.

CHAPTER 9 - PICK/BASIC
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-97

9.64 LEN FUNCTION : GENERATING A LENGTH VALUE

The LEN function determines the length of a string.

FORMAT :
LEN(expression)

the LEN function returns the numeric value of the length of the string

specified by the expression. For example:

A = "1234ABC"
B = LEN(A)

These statements assign the value of 7 to variable B.

STATEMENT
Q = LEN("123")
X = "123"

Y = "ABC"
Z = LEN(X CAT Y)

EXPLANATION

Assigns the value 3 to variable Q
(i.e., the length of string "123").

Assigns the value 6 to variable Z.

Sample Usage of the LEN Function.

CHAPTER 9 - PICK/BASIC
Preliminary

PAGE 9-98

Copyright 1988 PICK SYSTEMS

Good Bl Sed Bl Bad

N N M rs

9.65 LN FUNCTION : NATURAL LOGARITHM

The NATURAL LOGARITHM| function generates the mnatural 1logarithm of the
expression. (Base 'e' is 2.7183)

FORMAT:

LN(expression)
The NATURAL LOGARITHM (LN) function generates the natural (base e)
logarithm of the expression. If the value of the expression is less than
or equal to zero, the LN function returns a value of zero. The upper

range limit for the expression is 14,073,748,835 at precision 4.

The NATURAL LOGARITHM function is the inverse of the EXPONENTIAL function.

(See: EXP)
STATEMENT PLANATION
YY = LN(XX) Assigns the natural logarithm of
expression XX to variable YY.
PRINT LN(-35+37) Prints "0.6932"
PRINT LN(1000) Prints "6.9079"
PRINT LN(10000) Prints "9.2105"

Sample usage of the LN function.

CHAPTER 9 - PICK/BASI(
Preliminary PAGE 9-99

Copyright 1988 PICK SYSTEMS

\a

9.66 LOCATE STATEMENTS : LOCATING INDEX VALUES

The LOCATE statement may be used to find the index of an attribute, a
value, or a secondary value within a dynamic array. The elements of the
dynamic array may be specified as being in ascending or descending ASCII
sequence, and sorted with either right or 1left justification. If the
specified attribute, value, or secondary value is not present in the
dynamic array in the proper sequence, an index value is returned which
may be used in an INSERT statement to place the sought element into its
proper location.

FORMAT:
LOCATE('string',item(,att#({,val#));index#{;'sequence)) THEN/ELSE stmts

'String' is the element to be 1located in dynamic array 'item'. °'Index#’
is the variable into which the index of 'string' 1is to be stored. 'Att#'
and "val#" are optional parameters which restrict the scope of the search
within 'item'. 1If neither parameter is present, 'string' 1is tested for
equality with attributes in 'item', and 'index#' returns an attribute
number. If 'att#' is present, 'string' is compared with values within the
attribute specified by "att#" of "item", and "index#" returns a value
number. If 'val#' is also present, the search is conducted for secondary
values of the specified attribute and value of 'item', and 'index#'
returns a secondary value number.

If 'sequence' has the value 'A' (or any string value beginning with 'A'),
the elements of "item" are assumed to be sorted in ascending sequence. If
"sequence" has the value "D" (or any string value beginning with "D"), the
elements are assumed to be in descending sequence. All other values for
'sequence' are ignored.

If the first character of 'sequence' is 'A' or 'D', the second character
determines the justification used when sorting the elements. If the
second character is "R", right justification is wused. For any other
value, including null, 1left justification is used. If 'sequence' is not
specified and the string 1is not found, the default will be to the last
position.

SEQUENCE PARAMETERS
AL - ascending, left-justified DL - descending, left-justified
AR - ascending, right-justified DR - descending, right-justified

The LOCATE statement has an alternate form that allows starting other
than at the begining of a field.

I
| Note: This alternate form is NOT available on the PC-XT Version 2.0

|
|
| or lower. |
|

FORMAT:
" LOCATE string IN item {<att#{,val#)>) (,start} (BY seq)} SETTING result
THEN/ELSE stmts.

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS

Preliminary PAGE 9-100

d Gad

Bl od bad Bd Qo Boaud Gd B3

g2

Att#, val# and start form the AVS triple. If both att# and val# are
present, the start is the starting SVM for the search. If only att# is
present, then start is the starting val# for the search. If both att# and
val# are ommited, th# start is the starting att# for the search.

STATEMENT ;|
LOCATE('55',ITEM,3,1;INDEX1;'AR') ELSE ITEM = INSERT(ITEM,3,1,INDEX1,'55"')
EXPLANATION
The third attribute, first value of dynamic array 'ITEM' is searched for
the numeric literal '55'. 'INDEX1' will return with the secondary value

index if the numeric is found, and will return with the correct secondary
value jndex if the numeric is not found. If it is not found, control
passes to the ELSE clause which inserts the numeric into the correct
position by wvirtue of the index contained in 'INDEX1'. The optional
parameter 'AR' specifies ascending sequence and right justification.

Sample usage of the the LOCATE statement.

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS

Preliminary PAGE 9-101

9.67 LOCK STATEMENT : SETTING EXECUTION LOCKS

The LOCK statement provides a file and execution lock capability for
PICK/BASIC programs. The LOCK statement sets execution locks while the
UNLOCK statement releases them.

FORMAT:
LOCK expression {THEN/ELSE statements)

The LOCK statement sets an execution 1lock so that when any other BASIC
program attempts to set the same 1lock, then that program will either
execute an alternate set of statements or will pause until the lock is
released (via an UNLOCK statement) by the program which originally locked
it.
'

Execution locks may be used as file locks to prevent multiple PICK/BASIC
programs from updating the same files simultaneously. There are 64
execution locks numbered from 0 through 63.

I
| Note: There are only 48 execution locks on the PC-XT Version 2.0 and |
| lower. |

|

The value of the expression specifies which execution lock is to be set.
If the specified execution 1lock has already been set by another
concurrently running program (and the ELSE clause is not used), then
program execution will temporarily halt until the 1lock is released by the
other program.

If the ELSE clause is used, then the statement(s) following the ELSE will
be executed if the specified 1lock has already been set by another
program. The statements in the THEN/ELSE clause may be placed on the same
line separated by semicolons, or may be placed on multiple 1lines
terminated by an END (i.e., the THEN/ELSE clause takes on the same format
as the THEN/ELSE clause in the IF statement).

All execution 1locks set by a program will automatically be released upon
termination of the program.

(See: UNLOCK)

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-102

Copyright 1988 PICK SYSTEMS

3 B4 Q.d

STATEMENTS

LOCK 15 ELSE STOP

LOCK 2

LOCK 10 ELSE PRINT X; GOTO 5

—EXPLANATION

Sets execution lock 15 (if lock 15
is already set, program terminates.

Sets execution lock 2.
Sets execution lock 10 (if lock 10 is

already set, the value of X is printed
and program branches to statement 5.)

Sample Usage of the LOCK Statement.

CHAPTER 9 - PICK/BASLC
Preliminary \

Copyright 1988 PICK SYSTEMS
PAGE 9-103

9.68 LOOP STATEMENT : STRUCTURED LOOPING

Program loops may be constructed via the use of the LOOP statement.

FORMAT:
LOOP (statements) WHILE expression DO (statements) REPEAT
LOOP (statements) UNTIL expression DO (statements) REPEAT

Execution of a LOOP statement proceeds as follows. First the statements
(if any) following "LOOP" will be executed. Then the expression is
evaluated. One of the following is then performed depending upon the form
used:

- If the "WHILE" form is used, then the statements following "DO"
(1f any) will be executed and program control will 1loop back to
the beginning of the 1loop if the expression evaluates to true
(i.e., non-zero), or program control will proceed with the next
sequential statement following "REPEAT" (i.e., control passes out
of the loop) if the expression evaluates to false (i.e., zero).

- If the "UNTIL" form is used, then the statements following "DO"
(1f any) will be executed and program control will loop back to
the beginning of the loop if the expression evaluates to false
(i.e., zero), or program control will proceed with the next
sequential statement following "REPEAT" (i.e., control passes out
of the loop) if the expression evaluates to true (i.e., non-zero).

Statements used within the LOOP statement may be placed on one 1line
separated by semicolons, or may be placed on multiple lines. Consider
the following example:

LOOP UNTIL A=4 DO A=A+1; PRINT A REPEAT

Assuming that the value of variable A is O when the LOOP statement is
first executed, this statement will print the sequential values of A
from 1 through 4 (i.e., the 1loop will execute 4 times). As a further
example, consider the statement:

LOOP X=X-10 WHILE X>40 DO PRINT X REPEAT

Assuming, for example, that the value of variable X is 100 when the
above LOOP statement is first executed, this statement will print the
values of X from 90 down through 50 in increments of -10 (i.e., the
loop will execute 5 times).

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-104

& d

o T o I o DN . B . B L B . B L B BN L N L B B . BN L BN . B BN o B . B L

STATEMENTS EXPLANATION
J=0 Loop will execute 4 times (i.e.,
LOOP sequential values of variable J
PRINT J from 0 through 3 will be

J=J+1 printed).

WHILE J<4 DO REPEAT

Q=6 Loop will execute 5 times (i.e.,

LOOP Q=Q-1 WHILE Q DO PRINT Q REPEAT wvalues of variable Q will be
printed in the following order:
5, 4, 3, 2, and 1).

Q=6 Loop will execute 7 times (i.e.,

LOOP PRINT Q WHILE Q DO Q=Q-1 REPEAT wvalues of variable Q will be
printed in the following order:
6, 5, 4, 3, 2, 1, and 0).

B=1 Loop will execute 5 times (i.e.,

LOOP UNTIL B=6 DO sequential values of variable
B=B+1 B from 2 through 6 will be
PRINT B printed).

REPEAT

Sample usage of the LOOP statement.

CHAPTER 9 - PICK/BAS4C
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-105

9.69 MAT - ASSIGNMENT AND COPY : ASSIGNING ARRAY VALUES

MAT Assignment and Copy statements are used to assign values to each
element in the array.

FORMAT: MAT variable = expression

The MAT Assignment statement 1is similar to the Simple Assignment
statement. It assigns a single value to all elements in an array.

The resultant value of the expression (which may be any legal expression)
is assigned to each element of the array. The array being assigned is
specified by the "variable" parameter. The specified array must have been
previously dimensioned via a DIM statement. The following statement, for
example, assigns the current value of X+Y-3 to each element of array A:

MAT A = X+Y-3
FORMAT : MAT variable = MAT variable

The MAT Copy statement copies one array to another. The first element of
the array on the right becomes the first element of the array on the
left, the second element on the right becomes the second element on the
left, and so forth. Each variable name must have been dimensioned, and
the number of elements 1in the two arrays must match; if not, an error
message OCCUrS.

Arrays are copied in row major order, i.e., with the second subscript
(column) varying first. Consider the following example:

Program Code Resulting Array Values

DIM X(5,2), Y(10) X(1,1) = Y(1) =1

FOR I=-1 TO 10 X(1,2) = Y(2) = 2

Y(I)=I X(2,1) = Y(3) =3

NEXT I .

MAT X = MAT Y .
X(5,2) = Y(10) = 10

The program dimensions two arrays as both having ten elements (5x2=10),
initializes array Y elements to the numbers 1 through 10, and copies
array Y to array X, giving the array elements the indicated values.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-106

Copyright 1988 PICK SYSTEMS

Bl Bad Rl Bd

STATEMENTS
MAT TABLE=1

MAT XYZ=A+B/C

DIM A(20), B(20)

MAT A = MAT B

DIM TAB1(10,10), TAB2(50,2)

MAT TAB1 = MAT TAB2

EXPLANATION
Assigns a value of 1 to each element
of array TABLE.

Assigns the expression value to each
element of array XYZ.

Dimensions two vectors of equal length,
and assigns to elements of A the values
of corresponding elements of B.

Dimensions two arrays of the same
number of elements (10x10=50x2),
and copies TAB2 values to TABl in
row major order.

Sample usage of the MAT Assignment and Copy statements.

CHAPTER 9 - PICK/BAS
Preliminary

fc

Copyright 1988 PICK SYSTEMS

PAGE 9-107

9.70 MATREAD STATEMENT : MULTIPLE ATTRIBUTES

The MATREAD statement reads a file 1item and assigns the value of each
attribute to consecutive vector elements.

FORMAT :
MATREAD array.var FROM (file.variable,) itemname THEN/ELSE statements

The MATREAD statement reads the file item specified by the itemname and
assigns the string value of each attribute to consecutive elements of the
vector specified by the array.variable. If the file.variable is used, the
item will be read from the file previously assigned to that file.variable
via an OPEN statement. If the file.variable is omitted, then the internal
default variable is used (thus specifying the file most recently opened
without a file.variable).

If a non-existent item is specified, then the statements following the
ELSE will be executed. The statements in the THEN/ELSE clause may appear
on one line separated by semicolons, or on multiple lines terminated by
an END (i.e., the THEN/ELSE clause takes on the same format as the
THEN/ELSE clause in the IF statement). If the item does not exist, the
contents of the vector remain unchanged.

If the number of item attributes 1is 1less than the DIMensioned vector
size, the trailing vector elements are assigned a null string. If the
number of attributes in the item exceeds the DIMensioned vector size, the
remaining attributes will be assigned to the last element of the array.

(See: MATREADU)

TATEMENT —EXPLANATION
DIM ITEM (20) Reads the item named TEST

OPEN 'LOG' TO Fl1 ELSE STOP from the data file named LOG
MATREAD ITEM FROM Fl1, ‘'TEST' ELSE STOP and assigns the string
value of each attribute
to consecutive elements of
vector ITEM, starting with
first element.

Sample Usage of the MATREAD Statement.

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS

Preliminary PAGE 9-108

Bed

(o T . T o D . B . B . B . BN . BN . BN O B . B B L B BN o B . BN o B o B

9.71 MATREADU STATEMENT : GROUP LOCKS

MATREADU provides the facility to 1lock a group of items in a file prior
to updating an item dIn the group. Using a group lock prevents updating of
an item by two or more programs simultameouslly while still allowing
multiple program access to the file.

FORMAT:

MATREADU variable FROM (file.var,) itemname THEN/ELSE statements
This statement functions identically to the MATREAD statement, but
additionally locks the group of the file in which the item to be accessed
falls.
(See: MATREAD)

A group lock will prevent:

1. Access of items 1in the locked group of other PICK/BASIC
programs using the READU, READVU, and MATREADU statements.

2. Update by any other program of any item in the locked group.
3. Access of the group by the FILE-SAVE process.

The group will become unlocked when any item in that group is accessed by
the process which has it 1locked, when the PICK/BASIC program 1is
terminated, or a RELEASE statement unlocks the group. Items can be
updated to the group without unlocking it by using the WRITEU, WRITEVU or
MATWRITEU statements.

Other processes (as in 1,2,3 above) which encounter a group lock will be
suspended until the group becomes unlocked.

The maximum number of groups which may be locked by all processes in the
system 1is 64. If a process attempts to lock a group when 64 locks are
already set, it will be suspended until some group is unlocked.

(See: MATWRITEU)

E

PLANATION
This example shows use
of a null ELSE
clause to lock the
group regardless
of whether the item
is existent or not.

MATREADU T FROM XM, "N4" ELSE NULL

|
|
Sam#le Usage of the MATREADU statement.

CHAPTER 9 - PICK/BAS{C Copyright 1988 PICK SYSTEMS

Preliminary PAGE 9-109

9.72 MATREADU STATEMENT : LOCKED CLAUSE

The MATREADU statement may be used with a LOCKED clause allowing the
execution of statements if the group to be accessed is found to be already
locked by another program.

FORMAT:
MATREADU var FROM (file.var,) itemname LOCKED stmts THEN/ELSE stmts

This statement functions exactly like the MATREADU statement, unless the
group to be accessed is found to be already locked by another program,
from another line. If the group to be accessed is found to be already
locked, then the statements which £follow the LOCKED clause will be
executed.

If the LOCKED clause is not 1included in the MATREADU statement, the
program will wait until the group it 1is trying to access becomes
unlocked, before proceeding with the THEN or the ELSE clause.

(See: MATREADU)

STATEMENTS PLANATION
MATREADU ARRAY1 FROM FILEl, IT1 LOCKED If group containing item IT1
is found to be already
GOTO 77 locked, the program will go
END THEN to label 77. If the item
GOSUB 10 IT1 exists the program
END ELSE will go to label 10.
GOSUB 20 If the item IT1 does not
END exist, the program will go
to label 20.

Sample Usage of a LOCKED clause with a MATREADU statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-110

Copyright 1988 PICK SYSTEMS

9.73 MATWRITE STATEMENT : MULTIPLE ATTRIBUTES

|
The MATWRITE statement writes a file item with the contents of a vector.

FORMAT :
MATWRITE array.variable ON (file.variable,} itemname

The MATWRITE statement replaces the attributes of the item specified by
the itemname with the string value of the consective elements of the
vector named by the array.variable. If the file.variable is wused, the
item will be written in the file previously assigned to that file.variable
via an open statement. If the file.variable is omitted, then the internal
default variable is used. If the itemname specifies an item which does
not exist, then a new item will be created. The number of attributes in
the item is determined by the DIMensioned size of the vector.

(See: MATWRITEU, WRITE, and WRITEV)

STATEMENT P TI10

DIM ITEM (10) Writes an item named

OPEN '', 'TEST' ELSE STOP JUNK in the file named
FOR I=1 TO 10 TEST. The item written
ITEM(I)=I will contain 10 attributes
NEXT I whose string values are
MATWRITE ITEM ON "JUNK" 1 through 10.

Sample Usage of the MATWRITE Statement.

CHAPTER 9 - PICK/BAS4C Copyright 1988 PICK SYSTEMS

Preliminary PAGE 9-111

9.74 MATWRITEU STATEMENT : UPDATE LOCKS

The MATWRITEU statement has the 1letter "U" appended to it to imply
update. This command will not unlock the group locked by the program.

FORMAT :
MATWRITEU variable ON (file.variable,) itemname

This command executes similar to the MATWRITE statement with the following
added functionality.

(See: MATWRITE, WRITEU, and WRITEVU)

This command will not unlock the group locked by the program. This
varient is wused primarily for master file wupdates when several
transactions are being processed and an update of the master item is made
following each transaction update.

If the group is not locked when the MATWRITEU statement is executed, the
group will not be locked by the execution of the command.

TATEMENT EXPLANATION

MATWRITEU ARRAY ON FILE.NAME, 1D Replaces the attributes of
the item specified by ID
(in the file opened and assigned
to variable FILE.NAME) with
the consecutive elements of
vector ARRAY. Does not unlock
the group.

Sample usage of the MATWRITEU statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-112

Copyright 1988 PICK SYSTEMS

9.75 NOT FUNCTION :

LOGIC CAPABILITY

| The NOT function returns a value of true (1) 1if the given expression
| evaluates to 0 and a value of false (0) if the expression evaluates to a

non-zero quantity.

FORMAT:

NOT (expression)
The NOT function returns the logical inverse of the specified expression;
it returns a value of true (i.e., generates a value of 1) if the
expression evaluates to O, and returns a value of false (i.e., generates

a value of 0) if the expression evaluates to a non-zero quantity. The
specified expression must evaluate to a numeric quantity or a numeric
string. The following statement, for example, assigns the value 1 to the

variable X:
X = NOT(0)

As a futher example
printed:

A=1
B=35

PRINT NOT(A AND B)

’

the

following statements cause the value O to be

STATEMENT

X=A AND NOT(B)

IF NOT(X1)THEN STOP

PRINT NOT(M) OR NOT(NUM(N))

PLANATION

Assigns the value 1 to variable X if
current value of variable A is 1 and
current value of variable B is O.

Assigns a value of 0 to X otherwise.

Program terminates if current value
of variable X1 is O.

Prints a value of 1 if current value
of variable M is 0 or current value
of variable N is a non-numeric string.
Otherwise prints a zero.

CHAPTER 9 - PICK/BAS
Preliminary

%ample usage of the NOT Function.

1c

Copyright 1988 PICK SYSTEMS
PAGE 9-113

9.76 NULL STATEMENT : RON-OPERATION

The NULL statement specifies a non-operation, and may be used anywhere in
the program where a PICK/BASIC statement is required.

FORMAT:
..NULL...

The NULL statement is used in situations where a PICK/BASIC statement is
required, but no operation or action is desired. Consider the following
example:

IF X1 MATCHES "9N" THEN NULL ELSE GOTO 100

This statement will cause program control to branch to statement 100 if
the current string value of variable X1 does not consist of 9 numeric
characters. If the current string value of variable X1 does consist of 9
numeric characters, then no action will be taken and program control will
proceed to the next sequential PICK/BASIC statement.

The NULL statement may be used anywhere in the PICK/BASIC program where a
statement is required.

STATEMENT EXPLANATION
10 NULL This statement does not result in any

operation or action; however, since it
is preceded by a statement label (10)
it may be used as a program entry point
for GOTO or GOSUB stmts elsewhere in
the program.

IF A=0 THEN NULL ELSE If the current value of variable A is

PRINT "A NON-ZERO" non-zero, then the sequence of state-
GOSUB 45 ments following the ELSE will be executed.
STOP If A=0, no action is taken and control
END passes to the next sequential statement

following the END.

READ A FROM "ABC" ELSE NULL File item ABC is read and assigned to
variable A. If ABC does not exist, no
action is taken. (Refer to description
of READ statement for further
information).

Sample usage of the NULL statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-114

Copyright 1988 PICK SYSTEMS

Bl

Py P FT PN R N Pe Fa P P PR PN PN e P S e s M

9.77 NUM FUNCTION : NUMERIC STRING DETERMINATION

|
|

|
The NUM function returns a value of true (1) if the given expression |
evaluates to a number or a numeric string. |
|
|

FORMAT :
NUM(expression)

The NUM function tests the given expression for a numeric value. For
example, if the expression evaluates to a number or numeric string the
NUM function will return a value of true (i.e., generating a value of 1).

Inversely, an expression evaluating to a letter or an alphabetic string
will cause the NUM function to return a value of false (0). Consider the
following example:

IF NUM(expression) THEN PRINT "NUMERIC DATA"

This statement will print the text "NUMERIC DATA" if the current value of
variable "expression" 1is a number or a numeric string. In the case of a
non-numeric, non-alphabetic character or string (#, ?, etc.) a value of
false would be returned for both the NUM and ALPHA functions. The empty
string ('') and the period (.) are considered to be a numeric string, but
not an alphabetic string.

(See: ALPHA)
|
I
'ATEMENT EXPLANATION |
I
Al=NUM(123) Assigns a value of 1 to variable Al. |
|
A2=NUM("123") Assigns a value of 1 to variable A2. |
|
A3=NUM("12C") Assigns a value of 0 to variable A3. |
|
|
Sample Usage of the NUM Function.
|
|
CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-115

9.78 OCONV FUNCTION : OUTPUT CONVERSIONS

The OCONV function provides the PICK output conversion capabilities to
the PICK/BASIC programmer.

FORMAT:
OCONV (expression,conversion)

The conversion specifies the type of output ACCESS conversion to be
applied to the string value resulting from the expression. The resultant
value is always a string.

(See: ICONV)

The output conversion operation specified by the conversion parameter may
include any one of the following:

D Convert date to internal format (for ICONV function)
or to external format (for OCONV function).

MT Converts time.

MX Convert ASCII to hexadecimal (for ICONV function) or
convert hexadecimal to ASCII (for OCONV function).

T Convert by table translation.
U Call to user-defined assembly routine.

For a detailed treatment of these (and other) conversion capabilities,
the user should refer to the ACCESS chapter.

NOTE: The ACCESS 'F' and 'A' conversions cannot be called by these
functions. The ACCESS 'MR' or 'ML' conversion may be called by using the
Format String which performs the same function and is preferable to using
the ICONV or OCONV functions in this case.

STATEMENT —EXPLANATION
A = "2374" Assigns the string value
B = "D" "0l JUL 1974" (i.e., the external

XDATE = OCONV(A,B) date) to.the variable XDATE.
A = OCONV(O, 'U50BB') Assigns the string value of
PRINT A the line number and user
END account name to A.

"02 SYSPROG" is printed.

NUM.LINES = OCONV(O, 'UF070') Returns the number of
PRINT NUM.LINES physical serial 1I/0 ports.

Sample Usage of the OCONV Function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-116

Copyright 1988 PICK SYSTEMS

Sum Fa S 'S S O Pa N Pm s s s s PEm S O PTE MM e ™

9.79 ON...GOTO STATEMENT : COMPUTED BRANCHING

The ON GOTO statement transfers control to one of several
statement-labels sel%cted by the current value of an index expression.

FORMAT :
ON index. expression GOTO statement.label, statement.label,...

Upon execution of the ON GOTO statement, program control is transferred
to the statement which begins with the numeric statement.label selected
by the expression. Statement.labels in the list are numbered 1, 2, 3,....
In executing the ON GOTO statement, the expression is evaluated and then
the result of the expression is truncated to an integer value.

Consider the following example:

ON I GOTO 50, 100, 150

50

100 .

150 .
The labels in the label list may precede or follow the ON GOTO statement.
If the current value of variable I=1, control transfers to the first
statement.label, i.e., the statement with 1label 50. If 1I=2, control
transfers to the third statement.label, i.e., statement 150.
If the value of the expression evaluates to less than one or greater than

the number of statement.labels, no action is taken, that 1is, the
statement immediately following the ON GOTO will be executed next.

STATEMENT EXPLANATION
ON M+N GOTO 40, 61, 5, 7 Transfer control to statement 40,

61, 5, or 7 depending on the value
of M+N being 1, 2, 3, or 4
respectively.

ON C GOTO 25, 25, 20 Transfer control to statement 25

if C=1 or 2, to statement 20 in all

other cases.

IF A GE 1 AND A LE 3 THEN The IF statement assures that A
ON A GOTO 110, 120, 150 is in range for the computed
END GOTO statement.

SamTle usage of the ON...GOTO statement.

CHAPTER 9 - PICK/BAS+C
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-117

9.80 OPEN STATEMENT : OPENING I/O FILES

The OPEN statement is used to select a file for subsequent input, output,
or update. Before a file can be accessed by a READ, WRITE, DELETE,
CLEARFILE, MATREAD, MATWRITE, READV, or WRITEV etc. statement, it must be
opened via an OPEN statement.

FORMAT:
OPEN {"DICT,"), "expression" (TO variable) THEN/ELSE statements

The expression in the OPEN statement indicates the file name. If the
first parameter 1s DICT, then the dictionary section of the file is
opened. The word DICT must be explicitly supplied to open a dictionary
level file. If the file is a multiple data file (that is, multiple data
files associated with a single dictionary), to open one of the data
sections the format: 'dictname,dataname' is used.

If the "TO variable" option is used, then the dictionary or data section
of the file will be assigned to the specified variable for subsequent
reference. If the "TO variable" option is omitted, then an internal
default variable is generated; subsequent I/0 statements not specifying a
file variable will then automatically default to this file.

If the file 1indicated in the OPEN statement does not exist, then the
statement or sequence of statements following the ELSE will be executed.
The statements in the ELSE clause may be placed on the same 1line
separated by semicolons, or may be placed on multiple lines terminated by
an END (i.e., the ELSE clause takes on the same format as the ELSE clause
in the IF statement).

There is no limit to the number of files that may be open at any given
time.

STATEMENT EXPLANATION
A='DICT' Opens the dictionary portion of file
OPEN A, 'XYZ' TO B ELSE XYZ and assigns it to variable B.
PRINT "NO XYZ" If XYZ does not exist, the text
STOP "NO XYZ" is printed and the program
END terminates.

OPEN '','ABC,X' TO D5 ELSE STOP Opens data section X of file ABC and
assigns it to variable D5. If ABC,X
does not exist, program terminates.

Xem'' Opens data section of file TEST1
Y='TEST1' and assigns it to internal default
Z='NO FILE' variable. If TESTl1 does not exist,

OPEN X, Y ELSE PRINT Z; GOTO 5 "NO FILE" is printed and control
passes to statement 5.

Sample usage of the OPEN statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-118

Copyright 1988 PICK SYSTEMS

9.81 OUT Statement - Single Character Output

| The OUT statement is used to output a single character; the character
| 1s specified as a decimal code; the corresponding ASCII character is
| printed.

The syntax of the function is
OUT var

The variable contains the code; a literal may also be used. Any ASCII
code may be specified, including non-printable characters.

I |
| Statement Description |
I |
| oUT 80 The upper case letter P is displayed. |
I |
| A= 1104 Numbers greater than 256 are adjusted modulo |
| OUT A 256; in this example, the upper case letter |
| P is displayed. |
I I
| BELL = 7 |
| OUT BELL Causes terminal bell to beep. |
| I
CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-119

9.82 PAGE STATEMENT : HEADING OUTPUT

The PAGE statement causes the current output device to page, and causes
the heading specified by the most recent HEADING/FOOTING statement to be
printed as a page heading/footing. The page number may optionally be
reset by the PAGE statement.

FORMAT:
PAGE (expression)

The PAGE statement causes the current output device to page, and causes
the heading specified by the most recent HEADING statement to be printed
at the top of the page. the number of print lines per page is controlled
by the current TERM command (see TERM - TCL section). if a Footing
statement has also been used, the PAGE statement will cause the footing
to be printed out at the bottom of the page. If only a footing is
desired, a null heading should be assigned. Headings and/or footings
must be assigned before the PAGE statement is encountered.

If the PAGE statement has the optional expression, the expression is
evaluated and the resulting number becomes the next page number used. If
a FOOTING is in effect at the time that the page number is changed, the
footing will be printed with a page number one less than the evaluated
expression!

TA NT —EXPLANATION

HEADING "ANNUAL STATISTICS" The PAGE statement will cause both
FOOTING "XYZ CORPORATION" the specified heading and footing to be
PAGE printed out when the paging is executed.
PAGE 1 This statement will cause the current

footing, if any, to print (with a page
number of 0), and the current

heading, if any, to print

with a page number of 1.

PAGE X+Y The current footing and heading will be
output, and the page number set to the
evaluated result of X+Y.

Sample Usage of PAGE Statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-119

Copyright 1988 PICK SYSTEMS

Bood Dbl Bl Bod Bod B Bood Bod Boad Beod Bed Bad Bed Bsd Bd B3 Bad Bad Bed

9.83 PRECISION DECLARATION : SELECTING NUMERIC PRECISION

| The PRECISION declaration allows the user to select the degree of
| precision to which all values are calculated within a given program.

FORMAT:
PRECISION n

n is a number from 0-6.

|
Note: Only PRECISION n, where n is a number O0-4 is supported on the |
PC-XT Version 2.0 or lower. |

|

The default precision value is 4, that is, all values are stored in an
internal form with 4 fractional places, and all computations are
performed to this degree of precision. The desired number of fractional
digits may be specified by a PRECISION declaration within the range of
0-6.

Only one PRECISION declaration is allowed in a program. If more than one
is encountered, a warning message 1is printed and the declaration 1is
ignored.

Where external subroutines are wused, the mainline program and all
external subroutines must have the same PRECISION. If the precision is
different between the calling program and the subroutine, a warning
message will be printed.

Changing the precision changes the acceptable form of a number; a number
is defined as having a maximum of "n" fractional digits, where "n" is the
precision value. Thus, the value:

1234.567

Is a legal number if the precision is 3 or 4, but is not a legal number
if the precision is 0, 1 or 2.

Setting a precision of zero implies that all values are treated as
integers. The max number at precision 4 is 14,073,748,835.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-120

Copyright 1988 PICK SYSTEMS

STATEMENT
PRECISION 0
A=3
B = A/2

PRECISION 1

PRECISION 2

PRECISION 6

—EXPLANATION

All numeric values in the program will
be treated as integers. The value
returned for B will be 1, not 1.5.

All numeric values in the program will
be calculated to one fractional digit.

All numeric values in the program will
be calculated to two fractional digits.

All numeric values in the program will
be calculated to six fractional digits.

Sample Usage of PRECISION Declaration.

CHAPTER 9 - PICK/BASIC
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-121

| BeAl Bl Baca |] B [=] | T | Rad B4 Eaid | =5 | ES §.d R

Y e ey U W PN O PFY PE " P P M

9.84 PRINT STATEMENT : TERMINAL OR PRINTER OUTPUT

The PRINT statement outputs data to the device selected by the PRINTER
statement. The PRINT ON option allows output to multiple print files.

FORMAT:
PRINT {ON expression) print-list

The PRINT statement without the ON option is wused to output variable or
literal values to the terminal or line printer, as previously selected by
a PRINTER statement. The print-list may consist of a single expression,
or a series of expressions, separated by commas or colons (these
punctuation marks are used to denote output formatting; refer to the
section Tabulation and Concatenation in PRINT Statement). The expressions
may be any legal PICK/BASIC expressions. The following statement, for
example, will print the current value of the expression X+Y:

PRINT X+Y

The PRINT ON statement (i.e., with the ON option) 1is used, when PRINTER
ON 1is in effect, to output the print-list items to a numbered print file.
This is usually done when building several reports at the same time, each
having a different number. The expression following ON indicates the
print file number, which may be from O to 254 (selected arbitrarily by
the program). Consider the following example:

PRINT ON 1 A,B,C,D
PRINT ON 2 E,F,G,H
PRINT ON 3 X,Y,Z

These statements will generate 3 separate output listings, one containing
A, B, C, and D values, one containing E, F, G, and H values, and the
third containing X, Y and Z values.

When the ON expression is omitted, print file zero is used.

The HEADING/FOOTING statements affect only print file zero. Pagination
must be handled by the program for print files other than zero. Lack of
pagination will result in continuous printing across page boundaries.

When PRINTER OFF 1is in effect, both PRINT ON and PRINT operate
identically, i.e., all output is to the terminal. The contents of all
print files used by the program, including print file zero, will be
output to the printer in sequence when a PRINTER CLOSE statement is given
or on termination of the program.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-122

Copyright 1988 PICK SYSTEMS

STATEMENT

PRINTER ON
PRINT X

PRINTER ON
PRINT ON 24 X

N=50
PRINT ON N X,Y,Z

PRINTER ON
PRINT ON 15 "100"
PRINT ON 40 "100"

PRINTER ON
PRINT A
PRINT B

PRINTER ON

PRINT ON 10 F1,F2,F3
PRINT ON 20 M,N,P
PRINT ON 10 F4,FS,F6

EXPLANATION

Causes the value of X to be output
to print file O.

Causes the value of X to be output
to print file 24.

Outputs print-list to print file
50.

Causes the value 100 to be copied
to both print file 15 and print
file 40.

Print file O will contain the
values of A and B.

Print file 10 will contain the
values of Fl1 through F6; print
file 20 will contain the values
M, N and P.

Sample usage of the PRINT statement.

Besd Bead Bed Bed B9 Bl B3 B4 B B2

CHAPTER 9 - PICK/BASIC
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-123

ey 8 PN FU PSS OSSO P9 P O FE O FEmO s e BT e s s P e e

9.85 PRINT STATEMENT : TABULATION AND CONCATENATION

The print-list of the PRINT statement may specify tabulation or
concatenation when printing multiple items.

Output values may be aligned at tab positions across the output page

by using commas to separate the print-list expressions. Tab positions are

pre-set at every 18 character positions. Consider the following example:
PRINT (50%3)+2, A, "END"

Assuming that the current value of A is 37, this statement will print the
values across the output page as follows:

152 37 END

Output values may be printed continuously across the output page by using
colons to separate the print-list expressions. The following statement,
for example, will cause the text message "THE VALUE OF A IS 5010" to be
printed:

PRINT "THE VALUE OF A IS" :50:5+5

After the entire print-list has been printed, a carriage return and a
line feed will be executed, unless the print-list ends with a colon. In
that case the next value in the next PRINT statement will be printed on
the same line as the very next character position. For example, these
statements:

PRINT A:B,C,D:

PRINT E,F,G
will produce exactly the same output as this statement:

PRINT A:B,C,D:E,F,G

TATEMENT EXPLANATION
PRINT A:B: Prints the current values of A, B, C, D,
PRINT C:D E, and F contiguously across the output
PRINT E:F page, each value concatenated to the next.
PRINT A=1 Prints 1 if "A=1" is true; prints 0
otherwise.
PRINT A*100,Z Prints the value of A*100 starting at
column position 1; prints the value of
Z on the same line starting at column
position 18 (i.e., 1lst tab position).
PRINT Prints an empty (blank) line.
PRINT "INPUT": Prints the text "INPUT" and does not
execute a carriage return or line feed.
PRINT "", B Prints the value of B starting at column

position 18 (i.e., 1lst tab position).

Sample usage of the PRINT statement formatting.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-124

Copyright 1988 PICK SYSTEMS

9.86 PRINTER ON/OFF STATEMENTS : SELECTING OUTPUT DEVICE

The PRINTER statement selects either the user's terminal or the 1line
printer for subsequent program output.

FORMAT:
PRINTER ON
PRINTER OFF
PRINTER CLOSE

The PRINTER ON statement directs program output data specified by
subsequent PRINT, HEADING/FOOTING, or PAGE statements to be output to the
line printer. The PRINTER OFF statement directs subsequent program output
to the terminal.

Once executed, a PRINTER ON or PRINTER OFF statement will remain in
effect until a new PRINTER ON or PRINTER OFF statement is executed. If a
PRINTER ON statement has not been executed, output will be to the
terminal.

When a PRINTER ON statement has been issued, subsequent output data
(specified by PRINT, HEADING/FOOTING, of PAGE statements) are not
immediately printed on the line printer (Unless immediate printing is
forced via the system SP-ASSIGN I or N option, as described in the PICK
Peripheral Manual). Rather, the data are stored in an intermediate buffer
area and are automatically printed upon termination of program execution.

If the user's application requires that the data be printed on the line
printer prior to program termination, they may issue a PRINTER CLOSE
statement. The PRINTER CLOSE statement will cause all data currently
stored in the intermediate buffer area to immediately be printed.

When a PRINTER OFF statement has been issued, subsequent output data are
always printed at the user's terminal immediately upon execution of the
PRINT, HEADING, or PAGE statements (i.e., the PRINTER CLOSE statement
applies only to output data directed to the line printer).

STATEMENT P ON

PRINTER ON Causes the value of variable A to be
PRINT A immediately printed on the line printer,
PRINTER CLOSE and thereafter causes the value of
PRINTER OFF variable B to be printed at the user's
PRINT B terminal.

PRINTER ON Causes the value of variable B to be
PRINT A immediately printed at the user's ter-
PRINTER OFF minal, and thereafter causes the value
PRINT B of variable A to be printed on the line
PRINTER CLOSE printer.

Sample usage of the PRINTER ON/OFF/CLOSE statements.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-125

Copyright 1988 PICK SYSTEMS

5 -1

9.87 PROCREAD STATEMENT : READING DATA FROM A CALLING PROC

The PROCREAD statement is used to read a calling PROC's primary input
buffer and assign it to a variable within the program.

FORMAT:
PROCREAD variable THEN/ELSE statements

The PROCREAD statement reads the primary input buffer of the PROC from
which the PICK/BASIC program, containing the PROCREAD statement was
called, and assigns it to the variable.

The THEN/ELSE clause takes on the same format as the THEN/ELSE clause in
the IF statement. If the primary input buffer has been cleared (i.e. RI
or RO) before the PICK/BASIC program 1is executed, the variable 1is
assigned to null, and the THEN statements are executed.

If the PICK/BASIC program is not called from a PROC, (i.e. from TCL) the
ELSE statements will be executed.

(See: PROC)
STATEMENT EXPLANATION
CALL.PROC A proc named 'CALL.PROC'
001 PQ
002 HRUN BP PROG1 Run PROG1
003 P
PROG1 The called program.
PROCREAD PROC.BUFF THEN PROC.BUFF contains 'CALL.PROC'
PRINT PROC.BUFF Prints out 'CALL.PROC'
END ELSE
PRINT "NOT RUN FROM PROC"
END

Sample Usage of the PROCREAD Statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-126

Copyright 1988 PICK SYSTEMS

9.88 PROCWRITE STATEMENT : WRITING DATA BACK TO A CALLING PROC

The PROCWRITE statement is used to write a variable 1in a program, back to
the primary input buffer of a calling PROC.

FORMAT:
PROCWRITE variable

The PROCWRITE statement will write whatever data 1is assigned to the
variable, back into the primary input buffer of the PROC, which
originally called the PICK/BASIC program.

If the PICK/BASIC program is not called from a PROC, (i.e. from TCL)
nothing happens. '

(See: PROC)
STATEMENT EXPLANATION
CALL. PROC A proc named 'CALL.PROC'
001 PQ
002 HRUN BP PROG1 Run PROG1
003 P
004 DO Displays input buffer - 'XYZ'
PROG1 The called program.
VAR1 = 'XYZ'
PROCWRITE VAR1 Writes 'XYZ' to PROC buffer.
Sample Usage of the PROCREAD Statement.
CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-127

Boad Rl Bl Basd Bl Bued Boad Bed Bead Bad Bl Bod Bed Bsd BSF O BY A

=y u e

9.89 PROMPT STATEMENT : INPUT PROMPT CHARACTER

The PROMPT statement is used to select the "prompt character" which is
printed at the terminal to prompt the user for input.

FORMAT:
PROMPT expression

The value of the expression becomes the prompt character. For example:
PROMPT ":"

This statement selects the character ":" as the prompt character for
subsequent INPUT statements. If the value of the expression is a numeric
value of more than 1 digit, or a string consisting of one character, only
the most significant character will be used.

When a PROMPT statement has been executed, it will remain in effect until
another PROMPT statement is executed. 1f a PROMPT statement has not been
executed, the INPUT statement will wuse a question mark (?) as the prompt
character (i.e., "?" is the default prompt character).

(See: INPUT)

STATEMENT PLANATION

PROMPT "@" Specifies that the '@'character will be
used as a prompt character for subsequent
INPUT statements.

PROMPT A Specifies that the current value of A will

be used as a prompt character.

Sample Usage of the PROMPT Statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-128

Copyright 1988 PICK SYSTEMS

9.90 PWR FUNCTION : RAISING BY A POWER

The PWR function raises an expression by the power parameter.

FORMAT:
PWR (expression,power) or expression”power

The POWER function raises the expression to the power denoted by the
power parameter. If the power parameter is zero, the function will return
the value one.

If the expression raised to the power denoted by the power parameter is
greater than 14,073,748,835 at precision 4, the function will return
unpredictable numbers. If the expression is zero and the power parameter
is any number other than zero, the function will return a value of zero.
If the POWER PARAMETER is O, the function will return a value of O.

Note: another way to express the PWR function is X_"Y where X is raised
to the Y power.

STATEMENT PLANATION

YY = PWR(XX,Z22) Assigns the result of
raising XX by the power
of ZZ to the variable YY.

PRINT PWR(3+4,10) Prints "282475249"
PRINT 6 + PWR(2,4) Prints "22"
PRINT PWR(O,5) Prints "0"

Sample usage of the PWR function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-129

Copyright 1988 PICK SYSTEMS

B B Bl Bed

B3

-

e FE

P F=E FN s pE

9.91 READ STATEMENT : ACCESSING FILE ITEMS

The READ statement reads a file item and assigns its value to a variable.

FORMAT:
READ variable FROM (file.variable,) itemname THEN/ELSE statements

The READ statement reads the file item specified by the itemname and
assigns 1its string value to the variable as a dynamic array. The
file.variable is optional and specifies the file wvariable. If the
file.variable is wused, the item will be read from the file previously
assigned to that file.variable via an OPEN statement. If the
file.variable is omitted, then the internal default variable is used
(thus specifying the file most recently opened without a file.variable).

If the itemname specifies the name of an item which does not exist, then
the statement or sequence of statements following the ELSE will be
executed. The statements in the THEN/ELSE clause may appear on one line
separated by semicolons, or on multiple lines terminated by an END (i.e.,
the THEN/ELSE clause takes on the same format as the THEN/ELSE clause in
the IF statement).

The user should note that the PICK/BASIC program will abort with an
appropriate error message if the specified file has not been opened prior
to the execution of the READ statement.

STATEMENT P ON

READ Al FROM X, "ABC" ELSE Reads item ABC from the file
PRINT "NOT ABC" opened and assigned to file variable
GOTO 70 X, and assigns its value to

END variable Al. If ABC does not

exist, the text "NOT ABC" is printed
and control passes to statement 70.

A="TEST" Reads item TEST1 from the file

B="1" opened and assigned to file variable

READ X FROM C, (A CAT B) ELSE STOP C, and assigns its value to
variable X. Program terminates if
TEST1 does not exist.

READ Z FROM "Q" ELSE PRINT X; STOP Reads item Q from the file
opened without a file variable and
assigns its value to variable Z.
Prints value of X and terminates
program if Q does not exist.

Sample usage of the READ statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-130

Copyright 1988 PICK SYSTEMS

9.92 READNEXT STATEMENT : ACCESSING ITEM-IDS

The READNEXT statement reads the next Item-id from a selected list. 1If
multiple files have been selected, which 1list 1is specified by
select.variable.

FORMAT:
READNEXT variable (,vmc){FROM select.variable) THEN/ELSE statements

The READNEXT statement reads the next Item-id and assigns 1its string
value to the variable indicated. The 1Item-id 1is read from the list
created by the most recent program SELECT statement or SELECT, SSELECT,
or QSELECT command issued at the TCL level. If the list of Item-id's has
been exhausted, or if no selection has been performed, the statements
following the ELSE will be executed. The statements in the THEN/ELSE
clause may be placed on the same line separated by semicolons, or may be
placed on multiple lines terminated by an END (i.e., the THEN/ELSE clause
takes on the same format as the THEN/ELSE clause in the IF statement).

READNEXT FORMATS:.B

NEXT variable ELSE statement
.B This will read the next Item-id of the last file selected without a
select.variable.

NEXT variable,vmc EN/ELSE _statements
.B The 'vmc' 1is wused for the value mark count to be obtained from the
Exploding Sort (External SSELECT).

NEXT variable OM select.v ble N tatements
.B Reads the next Item-id of the file (or variable) selected and assigned
to the select.variable.

T varjable,vmc FROM select,v. ble ELSE statements
.B This is a combination of the previous two forms.

READNEXT A FROM X ELSE STOP Specifies the list selected
and assigned to the select-variable
X. Assigns the value of that
list's next item-id to variable
A. If item-id list exhausted (or if no
SELECT, SSELECT or QSELECT executed),
program will terminate.

READNEXT X2 ELSE Specifies the last list selected
PRINT "UNABLE" without a select-variable. Assigns
GOTO 50 the value of the next item-id to

END variable X2. If unable to read,

"UNABLE" is printed and control
transfers to statement 50.

Sample usage of the READNEXT statements.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-131

Copyright 1988 PICK SYSTEMS

Beed EA EF3 BN Bad B

Bl Bl

S FY Fm O FY e 78 MMM O FEY PO e M e

e T e T e T B

9.93 READT STATEMENT : READING RECORDS FROM TAPE

The READT statement 1is used to read records from magnetic tape. The

record length 1is specified by the T-ATT statement executed at the TCL |

level. (For information on T-ATT, see Chapter 4, TCL Verbs.)

The syntax of the statement is

READT variable (THEN/ELSE statements)
The record 1is read and its string value 1s assigned to the wvariable
indicated. If the tape unit has not been attached, or if an End-of-File
(EOF) mark is read, the statements following ELSE are executed.

To read the error conditions, see the SYSTEM function.

control passes to statement 5.

|

Statement Description |
|

READT B ELSE The next tape record is read and |
PRINT "NO" its value assigned to variable B. |
GOTO 5 If EOF is read (or tape unit not |

END attached), then NO is printed and |
|

I

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-132

Copyright 1988 PICK SYSTEMS

9.94 READU AND READVU STATEMENTS : GROUP LOCKS

|
READU and READVU provide the facility to lock a group of items in a file |

prior to updating an item in the group. Using a group lock prevents |
updating of an item by two or more programs simultameouslly while still |
allowing multiple program access to the file. |

FORMAT:
READU variable FROM (file.var,) itemname THEN/ELSE statements

READVU variable FROM (file.var,) itemname,att# THEN/ELSE statements

These statements function identically to the READ and READV statements,
but additionally lock the group of the file in which the item to be
accessed falls. (See: READ and READV)

A group lock will prevent:

1. Access of 1items in the 1locked group of other PICK/BASIC
programs using the READU, READVU, and MATREADU statements.

2. Update by any other program of any item in the locked group.

3. Access of the group by the file-save process.

The group will become unlocked when any item in that group is wupdated by
the process which has it 1locked, when the PICK/BASIC program 1is
terminated, or a RELEASE statement wunlocks the group. Items can be
updated to the group without unlocking it by using the WRITEU, WRITEVU or
MATWRITEU statements.

Other processes (as 1in 1,2,3 above) which encounter a group lock will be
suspended until the group becomes unlocked.

The maximum number of groups which may be locked by all processes in the
system 1is 64. If a process attempts to lock a group when 64 locks are
already set, it will be suspended until some group is unlocked.

(See: Matreadu)

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-133

B3 Ba A §id Bad

Ba Bea

Bed Sod Bl Bad Bed Bed Bl Bed Bl

e B A

Fes Fu

T s T T T B A

STATEMENTS

READU ITEM FROM INV, S5 ELSE
GOSUB 4
END

READVU ATT FROM B, "REC", 6 ELSE STOP

EXPLANATION

Lock group of items
containing item S5.
Read S5 to variable
ITEM or, if S5 is
non-existent, execute
the ELSE clause;

in either case the group
remains locked until
one of its items

is updated or a RELEASE
unlocks the group.

Lock group of items
containing item REC.
Read attribute 6 to
variable ATT or, if

REC is non-existent
execute the ELSE clause.
The group remains
locked as above.

Sample Usage of READU and READVU statements.

CHAPTER 9 - PICK/BASIC
Preliminary

PAGE 9-134

Copyright 1988 PICK SYSTEMS

9.95 READU AND READVU STATEMENTS : LOCKED CLAUSE

READU and READVU may be used with a LOCKED clause allowing the execution
of statements if the group to be accessed 1is found to be already locked
by another program.

FORMAT:
READU var FROM (file.var,) itemname LOCKED stmts THEN/ELSE stmts

READVU var FROM (file.var,) itemname,att# LOCKED stmts THEN/ELSE stmts

I
Note: The LOCKED CLAUSE portion of the READU and READVU is NOT |
available on the PC-XT Version 2.0 or lower. |

I

These statements function identically to the READU and READVU statements,
unless the group to be accessed is found to be already locked by another
program, from another line. If the group to be accessed 1is found to be
already locked, then the statements which follow the LOCKED clause will
be executed.

If the LOCKED clause 1is not 1included in the READU or READVU statement,
the program will wait until the group it is trying to access becomes
unlocked, before proceeding with the THEN or the ELSE clause.

(See: READU and READVU)

STATEMENTS ATIO

READU ITEM FROM CUST, 101 LOCKED If group containing item 101 is
found to be already locked,

GOTO 99 the program will go to label 99.
END THEN If item 101 exists, the program
GOSUB 10 will go to label 10.
END ELSE If item 101 does not exist, the
GOSUB 20 program will go to label 20.
END

Sample Usage of a LOCKED clause with a READU statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-135

Copyright 1988 PICK SYSTEMS

Bed BA ED

| |

§

FN P S PR P Y PP Y O Fm Y Y

s

T e

re ro rFe

9.96 READV STATEMENT : ACCESSING AN ATTRIBUTE

The READV statement is used to read a single attribute value from an item
in a file.

FORMAT:
READV variable FROM (file.variable,) itemname,att# THEN/ELSE statements

The READV statement reads the attribute specified by att# (attribute
number) from the item specified by the itemmame, and assigns its string
value to the variable.

The file.variable is optional and specifies the file wvariable; if it is
used, the attribute will be read from the file previously assigned to
that file.variable via an OPEN statement. If the file.variable 1is
omitted, then the internal default variable is used (thus specifying the
file most recently opened without a file.variable).

If a non-existent item 1is specified, the statement or sequence of
statements following the ELSE will be executed. The statements in the
THEN/ELSE clause may be placed on the same line separated by semicolons,
or may be placed on multiple lines terminated by END (i.e., the THEN/ELSE
clause takes on the same format as the THEN/ELSE clause in the IF
statement).

The PICK/BASIC program will abort with an appropiate error message if the
specified file has not been opened prior to the execution of the READV
statement.

STATEMENT EXPLANATION

READV X FROM A, "TEST",5 ELSE Reads 5th attribute of item TEST
PRINT ERR (in the file opened and assigned
GOTO 70 to variable A) and assigns value

END to variable X. 1If item TEST is

non-existent, then value of ERR
is printed and control passes to
statement 70.

Sample usage of the READV statements.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-136

Copyright 1988 PICK SYSTEMS

9.97 RELEASE STATEMENT : RELEASING GROUP UPDATE LOCKS

The RELEASE statement unlocks specified groups or all groups locked by
the program.

FORMAT:
RELEASE ((file.variable,) expression)

The RELEASE statement unlocks the group hashed into by the item-id
specified by the expression. If the file.variable is wused, the file will
be the one previously assigned to that file.variable via on OPEN
statement. If the file.variable is omitted, then the internal default
variable is used (thus specifying the file most recently opened without a
file.variable).

If the RELEASE statement is used without a file.variable or expression
all groups which have been locked by the program will be unlocked.

The RELEASE statement is useful when an abnormal condition is encountered
during multiple file updates. A typical sequence is to mark the item with
an abnormal status, update it to the file and then RELEASE all other
locked groups. This version of the RELEASE statement will release all
groups locked by the program.

(See: READU, READVU and MATREADU)

ATEMENT —EXPLANATION
RELEASE Releases all groups locked

by the program.
RELEASE CUST.FILE, PART.NO Releases group hashed into
by item-id contained in PART.NO
in file CUST.FILE.

Sample usage of the RELEASE statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-137

Copyright 1988 PICK SYSTEMS

ad B4 B3 Kl Bl Badd Bad

Bl B8 Bl Bed Bad Bad Bad

4 B

s FY P PN T Y

P FSD T PN S PN P P

P

9.98 REM OR MOD FUNCTION :

REMAINDER VALUE

The REM or MOD function generates the remainder (modulo) of one number

divided by another.

FORMAT:

REM(numerator,denominator)

or

MOD (numerator,denominator)

This function returns the remainder (modulo) of the value of the numerator

divided by the value of the denominator.

The REM and MOD (modulo) functions are identical.

TAT
A = MOD(Q,Z)
A = 600
B = REM(A, -1000)

J = REM(5,3)

o
1

MOD (1023,256)

P ON

Assigns the remainder of variable
Q divided by Z to variable A.

Assigns the value 600 to vari-

able B.

Assigns the value 2 to variable J.

Assigns the value 255 to the variable Q.

Sample Usage of the REM or MOD function.

CHAPTER 9 - PICK/BASIC
Preliminary

PAGE 9-138

Copyright 1988 PICK SYSTEMS

9.99 REPLACE FUNCTION : DYNAMIC ARRAY REPLACEMENT

The REPLACE function replaces an attribute, a value, or a secondary value
in a string in 'item' format (called a dynamic array).

FORMAT:
REPLACE(da.variable,att#{,value#,sub-value#,){; Jnew.expression)
or
da.variable<att#{,value#,sub-value#)> = new.expression

The second form above is actually an extract function being utilized as a
replacement function. The dynamic array wused by this function is
specified by the da.variable. Whether an attribute, a value, or a
secondary value is replaced depends upon the values of the second, third,
and fourth parameters. The att# specifies an attribute, the value#
specifies a value, and the sub-value# specifies a secondary value. If the
value# and sub-value# both have a value of 0, (or dropped) then an entire
attribute is replaced. If the sub-value# (only) has a value of 0, (or
dropped) then a value is replaced. If the second, third, and fourth
parameters are all non-zero, then a secondary value is replaced. The
replacement value is specified by the new.expression. The semi-colon (;)
is used whenever value# and/or sub-value# have been dropped and the
new.expression is no longer the fifth parameter.

If the att#, value# or sub-value# of the REPLACE function has a value of
-1, then insertion after the 1last attribute, 1last value, or last
secondary value (respectively) of the dynamic array-is specified. For
example:

OPEN 'XYZ' TO XYZ ELSE STOP 201, 'XYZ'
READ B FROM XYZ,'ABC' ELSE STOP 202, 'ABC'’
B<3, -1>="'NEW VALUE'

WRITE B ON XYZ, 'ABC'

These statements insert the string value "NEW VALUE" after the last value
of attribute 3 of item ABC in file XYZ.

STATEMENT P ON
Y=REPLACE(X,4,0,0,'") Replaces attribute 4 of dynamic
array X with the empty (null) string.
string, and assigns the resultant
dynamic array to Y.

VALUE="TEST STRING" Replaces secondary value 2 of

DA<4, 3, 2>=VALUE value 3 of attribute 4 in dynamic
array DA with the string value
"TEST STRING".

X="ABC123" Inserts the value "ABCl23" after
¥<1,1,-1>=X the last secondary value of value 1
of attribute 1 in dynamic array Y.

Sample usage of the REPLACE Function.

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS

Preliminary PAGE 9-139

™= Fa 3 PN O FY FPE T P

| == |

F3 FN M Fa

e

™ re re s

9.100 RETURN AND RETURN TO STATEMENTS : SUBROUTINE RETURNING

The RETURN or RETURN TO statements return control to the main program.

FORMAT :
RETURN
RETURN TO statement-label

The RETURN statement will transfer control from the subroutine back to
the statement immediately following the GOSUB statement. The RETURN TO
statement returns control from the subroutine to the statement within the
PICK/BASIC main program having the specified statement-label.

The statements in a subroutine may be any PICK/BASIC statements,
including another GOSUB statement. To insure proper flow of control, each
subroutine must return to the calling program by using a RETURN (or
RETURN TO) statement, not a GOTO statement. The user should also insure
that the subroutine cannot be executed by any flow of control other than
through the execution of a GOSUB statement.

If the RETURN TO statement refers to a statement-label which is not
present in the program, an error message will be printed at compile time
(refer to APPENDIX C - PICK/BASIC COMPILER ERROR MESSAGES).

Consider the statements shown in the example below . Upon execution of
statement 10, control will transfer to statement 30 as illustrated in the
left side of the figure. The statements within the subroutine will be
executed and statement 40 will then return control to statement 15.
Execution will then proceed sequentially to statement 20, whereby control
will again be transferred to the subroutine as shown in the right side of
the figure. The conditional RETURN TO path is taken instead of the normal
RETURN if the logical variable ERROR is true (1).

1st Execution of Subroutine 2nd Execution of Subroutine

I
10 GOSUB 30
=—>15 PRINT X1

10 GOSUB 30
| 15 PRINT X1
. | | .
| - o I -
20 GOSUB 30 | 20 GOSUB 30—
I > . I
I

: .
=>30 REM SUBROUTINE =>30 REM SUBROUTINE
| .
| IF ERROR RETURN TO 50
40 RETURNw=w=e 40 RETURN=——

50: REM ERROR RETURN HERE 50: REM ERROR RETURN HERE

I

I

I

I

I

I

(I .
I

I |-

| | IF ERROR RETURN TO 50
I

|

Sample usage of the RETURN statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-140

Copyright 1988 PICK SYSTEMS

9.101 REWIND STATEMENT : REWINDING THE TAPE

BASIC programs may specify Magnetic Tape to rewind to the BOT (Beginning
of Tape) mark through the use of the REWIND (Rewind Tape Unit) statement.

FORMAT :
REWIND THEN/ELSE statements
The REWIND statement rewinds the magnetic tape unit to the

Beginning-of-Tape (BOT). If the tape unit has not been attached, then the
statement(s) following the ELSE will be executed.

STATEMENT EXPLANATION
REWIND ELSE STOP Tape is rewound to BOT.

Sample Usage of the REWIND statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-141

Copyright 1988 PICK SYSTEMS

B4

FSY FS S FS N N M, "

9.102 RND FUNCTION : RANDOM NUMBER GENERATION

¢
i

The RND function returns a random number. The range of the random number
generated is controlled by the expression.

FORMAT:
RND (expression)

The RND function generates a numeric value for a random number between
zero and the number specified by the expression 1less one (inclusive),
which must be positive.

Therefore, an expression parameter which evaluates to 3, would randomly
generate 0, 1, or 2. This is an invaluable function when programming
games of chance.

STATEMENT P ION
Z = RND(11) Assigns a random number between
0 and 10 (inclusive) to the variable Z.
R = 100 Assigns a random number between
Q = 50 0 and 150 (inclusive) to the
B = RND(R+Q+1) variable B.
Y = RND(ABS(051)) Assigns a random number between
0 and 50 (inclusive) to the
variable Y.

Sample Usage of the RND Function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-142

Copyright 1988 PICK SYSTEMS

9.103 SELECT STATEMENTS : SELECTING ITEM-IDS

The SELECT command provides a facility to select a set of item-ids or |
attributes which, when used in conjunction with the READNEXT statement |
(see section on READNEXT), may be used to access single or multiple file |
item-ids or attributes within a PICK/BASIC program. |

FORMAT :
SELECT (file.variable}{TO select.variable}

The SELECT statement builds the same 1list of item-ids as a SELECT command
executed at the TCL level without any selection criteria (see ACCESS). If
the file.variable is wused, a list of item-ids will be created for the
file or item previously assigned to that file.variable via an OPEN or
READ statement. I1f the file.variable 1s omitted, then the internal
default variable is used (thus specifying the file most recently opened
without a file.variable). The item ids are then extracted using the
READNEXT statement.

FORMAT
SELECT

Creates a select 1list of item-ids from the file most recently opened
without a file.variable.

SELECT file.variable
Creates a select list of item-ids from the file opened to 'file.variable'.
SELECT var

Creates a select list from the attributes of the variable 'var'. The
select list only includes the first value of a multivalued attribute.

SELECT TO select.variable

Creates a select list from the file most recently opened without a file.
variable and assign the selected list to 'select.variable'.

SELECT file.variable TO select.variable

Creates a select list from the file opened to 'file.variable' and assign
the selected list to 'select.variable'.

SELECT var TO select.variable

As above, except the selected list is assigned to 'select.variable'.

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-143

Bod Bod Reed Bod Besd Bed Bed ed B4 B Bod Bl Bd

il Bl Bad Ssd Ed

Bd

P9 FW PR PN PR PN PN O FR O PW PN O Pwm PR PEm P,

N rFm res

N P

STATEMENT EXPLANATION

SELECT Builds list of item-id's using the
default variable of the last file
opened without a file-variable.

SELECT BP TO BLIST Builds a list of item-ids for the
file opened and assigned to
file.variable 'BP'. Assigns the
list to select.variable 'BLIST'.

READ A FROM FILEX, 'ALIST' ELSE STOP Creates a select list of the
SELECT A attributes in item ALIST.

Sample usage of the SELECT statements.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-144

Copyright 1988 PICK SYSTEMS

9.104 SEQ FUNCTION : FORMAT CONVERSION

The SEQ function converts an ASCII character to its corresponding numeric
value.

FORMAT:

SEQ(expression)
The first character of the string value of the expression is converted to
its corresponding numeric value. The following example will print the
number 49:

PRINT SEQ('1l') (character 1 = ASCII 49 decimal)

Conversely, the CHAR function is available to convert a numeric expression
to its corresponding ASCII character string value.

(See: CHAR)

NOTE: For a complete list of ASCII codes, refer to APPENDIX E.

TEMENT PLANATION
DIM C(50) Encodes in vector C elements the decimal
S = 'THE GOOSE FLIES SOUTH' equivalents of individual characters
FOR I=1 TO LEN(STRING) of character string S.
C(I) = SEQ(S[I1])
NEXT 1

Sample Usage of the SEQ Function.

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS

Preliminary PAGE 9-145

=

54

N P O r | s s e

S FE FR P FR PN T 'm M

9.105 SIN FUNCTION :

SINE OF AN ANGLE

The SIN function generates the trigonmetric sine of an angle.

FORMAT:

SIN(expression)

The SIN function generates the sine of an angle, expressed in degrees.

Values which are less

adjusted to this range before generation.

than O degrees, or greater than 360 degrees are

(See: COS)
STATEMENT —EXPLANATION
YY = SIN(XX) Assigns the sine of an

PRINT SIN(1)
PRINT SIN(361)
PRINT SIN(2)
PRINT SIN(362)
PRINT SIN(45)

PRINT SIN(90)

angle of XX degrees to YY.

Prints

Prints

Prints

Prints

Prints

Prints

"0.0174"
"0.0174"
"0.0349"
"0.0349"
"0.7071"

Hll‘

Sample usage of the SIN function.

CHAPTER 9 - PICK/BASIC
Preliminary

PAGE 9-146

Copyright 1988 PICK SYSTEMS

9.106 SLEEP OR RQM STATEMENT : TIME ALLOCATION

The RQM or SLEEP statement terminates the executing program's current
quantum (time-slice) The RQM or SLEEP statement may be used to effect
program execution speed.

FORMAT:

RQM (seconds} or SLEEP {seconds)
RQM("time.expression") or SLEEP{"time.expression")

The time-shared environment of the Pick system allows concurrent
execution of several programs, with each program executing for a specific
time period (called a time-slice or quantum) and then pausing while other
programs continue execution. The RQM statement terminates the program's
current time-slice. The RQM statement may be used in heavy compute loops
to allow increased execution speed of other concurrently executing
programs by giving up time. It may also be used to cause predetermined
pauses (in seconds or until specified time) 1in program execution. The
seconds parameter does not require quotes. The time expression (AM, PM or
MILITARY) requires enclosure in quotes.

STATEMENTS EXPLANATION
SLEEP 20 Sleep fo 20 seconds.
SLEEP "15:00" Sleep until 3:00 PM.

* PROGRAM SEGMENT TO SOUND
* TERMINAL "BELL" FIVE TIMES.

BELL=CHAR(7)

FOR I=1 TO 5

PRINT BELL: RQM statement allows enough
RQM time for bell to be heard as
NEXT I discrete "beeps".

END

Sample usage of the SLEEP and RQM statements.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-147

Copyright 1988 PICK SYSTEMS

B3 B&d B=d

2 B3

T T AN = B

9.107 SPACE FUNCTION : STRING SPACING

The SPACE function generates a string value containing a specified number

of blank spaces.

FORMAT:

the

SPACE(length)

SPACE function generates a string value containing the number of

blank spaces specified by the length. For example:

PRINT SPACE(10):"HELLO"

This statement prints 10 blanks followed by the string "HELLO".

Conversely, the TRIM function is available to delete extraneous blanks.

(See: TRIM)
TATEMENT EXPLANATION
B =14 Assigns to variable A the string
A = SPACE(B) value containing 14 blank spaces.
DIM M(10) Assigns a string consisting of
MAT M = SPACE(20) 20 blanks to each of the 10 elements
of array M.
S = SPACE(5) Assigns to variable N the concatenated
L = "SMITH" string consisting of 5 blanks,
Cm=n"n" the name SMITH, 5 blanks, a comma,
F = "JOHN" 5 blanks, and the name JOHN, or
N = S:L:S:C:S:F " SMITH , JOHN"

CHAPTER 9 - PICK/BASIC

Sample Usage of the SPACE Function.

Copyright 1988 PICK SYSTEMS

Preliminary PAGE 9-148

9.108 SQRT FUNCTION : SQUARE ROOT CABABILITY

The SQUARE ROOT function returns the positive square root of a positive
number.

FORMAT:
SQRT (expression)

The SQUARE ROOT function returns the positive square root of any positive
number (expression) that is greater than or equal to O and 1less than or
equal 14,073,748,835 at precision 4.

ST ENT —EXPLANATION

Y = SQRT(36) Assign the value 6
to variable Y.

PRINT SQRT(1024) Prints "32".

PRINT SQRT(1000) Prints "31.6227"

PRINT SQRT(14073748834) Prints "118632.832"

Sample Usage of the SQRT Function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-149

Copyright 1988 PICK SYSTEMS

Y 3 58 A 5

~ o

9.109 STOP STATEMENT : TERMINATION

The STOP statement may appear anywhere in the program; it designates a
logical termination of the program.

FORMAT:
STOP (errnum(,param, param, ...})

Upon the execution of a STOP statement, the PICK/BASIC program will
terminate. If the program was called from a PROC the control will be
returned to the calling PROC.

The STOP statement may be placed anywhere within the PICK/BASIC program
to indicate the end of one of several alternative paths of logic.

The STOP statement may optionally be followed by an error message name,
and error message parameters separated by commas. The error message name
is a reference to an item in the ERRMSG file. The parameters are
variables or literals to be used within the error message format.

(See: ABORT)

A=500 ; B=750 ; C=235 ; D=1300
REVENUE=A+B ; COST=C+D
PROFIT=REVENUE-COST

IF PROFIT > O THEN GOTO 10
PRINT "ZERO PROFIT OR LOSS"

STOP <~---cvccccnmcccrmcnccccncnn- If this path taken,
10 PRINT "POSITIVE PROFIT" Program will terminate
END because profit is less
than 0.

Sample usage of the STOP Statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-150

Copyright 1988 PICK SYSTEMS

9.110 STR FUNCTION : GENERATING STRING VALUES

The STR function generates a string value containing a specified number
of occurrences of a specified string.

FORMAT:
STR(expression,occurence#)

The STR function generates a string value containing the number of
occurrences specified by the occurence# of the string specified by the
expression. The following statement, for example, assigns a string value
containing 12 asterisk characters to variable X:

X=STR('*',12)

As a further example, the following statement will cause the string value
"ABCABCABC" to be printed:

PRINT STR('ABC',3)

|
|
| STATEMENT PLANATION
|
| VAR = STR("A",5) Assigns to variable VAR the string
| value containing five A's.
I
| A= "BBB' Assigns to variable C the string
| B = STR("B",3) value containing six B's.
| C=B CAT A
|
| N = STR("?%?",4) Assigns to variable N the string
| value containing 4 consecutive
| occurrences of the string "?7%?7".
|
I
Sample Usage of the STR Function.
CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-151

¥l

9.111 SYSTEM FUNCTION : CALLING PRE-DEFINED SYSTEM VALUES

The SYSTEM function allows the user to obtain certain pre-defined values |
from the system. The value returned may either be an error status code |
(generated as a result of a previous BASIC statement), or a parameter |
such as the page-number or page-width. |

FORMAT:
SYSTEM(expression)

The value of expression is in the range 0 through the maximum value as
defined in table A. If the value of "expression" is outside the allowable
range, the SYSTEM function will return a value as if the "expression"
evaluated to zero (the error function).

If the expression used in the SYSTEM function is a 2zero, the function
returns a value determined by the last executed BASIC statement that set
an error condition. Examples of such BASIC statements are the tape
commands such as READT, WRITET, etc. where the ELSE branch executes.
SYSTEM(0), therefore, allows one to determine exactly what error has
occurred when the program follows the ELSE branch of these statements. If
the ELSE branch was not followed, the value returned by SYSTEM(0) is zero.

For example, the sequence of BASIC instructions:

READT TAPERECORD ELSE
BEGIN CASE
CASE SYSTEM(0) = 1; PRINT "ATTACH THE TAPE UNIT"; STOP
CASE SYSTEM(0) = 2; PRINT "END OF FILE; DONE!"; STOP
END CASE
END

will result in one of the messages being printed if the tape unit was not
attached to the line running the BASIC program or if an EOF is read from
the tape.

The SYSTEM function, with non-zero values of the expression, returns
parameters that have been set external to the BASIC program. See Table A.

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-152

SYSTEM expression
0
1

10

11

12
13
14
15
16

17

100

Value returned
Error function value; see table B.

1 If PRINTER ON or (P) option used in RUN;
0 If data is being printed to the terminal.

Current page-size from TERM statement
(page-width in columns).

Current page-depth from TERM statement
(number of lines in page).

Number of lines remaining in current page.
Current page-number.
Current line-counter (number of lines printed).

One-character terminal-type code from TERM
statement.

Current tape record length.
Current CPU millisecond count.

1 if current stack (STON) condition enabled.
0 if current stack inactive.

f a SELECT-LIST is active.
f a SELECT-LIST function is inactive.

11
01
Current time in milliseconds

Forces an RQM and returns 1.

Number of bytes in terminal input buffer.
Returns verb options as a character string.

Returns nested EXECUTE level

Returns error message string, with each number
separated by an attribute mark.

Returns current release, version, and version date.

Meaning of values usable in the SYSTEM function.

CHAPTER 9 - PICK/BASIC

Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-153

Fa 9 FO FS FAE PN BSOS s s FEO s e

Previously executed

BASIC statement.

READT, WRITET,
WEOF or REWIND

READT
WRITET

WRITET

Error code Meaning
returned.

1 Tape unit is not attached.

2 EOF read from tape unit.

3 Attempted to write null string.
11 Attempted to write variable

longer than tape record length.

Values

CHAPTER 9 - PICK/BASIC

Preliminary

returned by the error function, SYSTEM(O)

Copyright 1988 PICK SYSTEMS
PAGE 9-154

9.112 TAN FUNCTION :

TANGENT OF AN ANGLE

The TAN function generates the trigonmetric tangent of an angle.

FORMAT:

TAN(expression)

The TAN function generates the tangent of an angle, expressed in degrees.

Values which are 1less than O degrees,

adjusted to this range before generation.

(See: COS and SIN)

or greater than 360 degrees are

STATEMENT

YY = TAN(XX)

PRINT TAN(1)
PRINT TAN(361)
PRINT TAN(2)
PRINT TAN(362)
PRINT TAN(45)

PRINT TAN(90)

—EXPLANATION

Assigns the tangent of an
angle of XX degrees to yYY.

Prints "0.0174"
Prints "0.0174"
Prints "0.0349"
Prints "0.0349"
Prints "1"

Prints "O"

CHAPTER 9 - PICK/BASIC

Preliminary

Sample usage of the TAN function.

Copyright 1988 PICK SYSTEMS
PAGE 9-155

B3 PN PN PN O Fm S S

¥ N §F31 I e e

[

9.113 TIME() AND TIMEDATE() FUNCTIONS : TIME AND DATE

The TIME() function returns the internal time of day. The TIMEDATE()
function returns the 'current time and date in external format.

FORMAT:
TIME()
TIMEDATE()

The TIME() function returns the string value containing the internal time
of day. The internal time is the number of seconds past midnight.

For example, at 4 minutes and 18 seconds after 5 P.M., the following
statement would print ' 61458 '. (17:04:18 1is 61458 seconds since
midnight.)

PRINT TIME()

The TIMEDATE() function returns the string value containing the current
time and date in the external format. This format is:

HH:MM:SS DD MMM YYYY
or
17:04:18 01 APR 1985
(See: DATE() function)

A NT EXPILANATION
A = TIME() Assigns string value of current

internal time to variable A.

IF TIME() > 1000 THEN GOTO 10 Branches to statement 10 if more
than 1000 seconds have passed
since midnight.

PRINT TIMEDATE() Prints the current time and date

in the external format.

WRITET TIME() ELSE STOP Writes the string value of the

current internal time onto a magnetic

tape record.

Sample usage of the TIME() and TIMEDATE() functions.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-156

Copyright 1988 PICK SYSTEMS

9.114 TRIM FUNCTION : DELETING EXTRANEOUS SPACES

The TRIM function removes extraneous blank spaces from a specified string.

FORMAT:
TRIM(expression)

The TRIM function deletes preceding, trailing, and redundant blanks from
the literal or variable expression. For example:

A=' GOOD MORNING, MR. BRIGGS
A=TRIM(A)
PRINT A
The PRINT statement will print:
GOOD MORNING, MR. BRIGGS

Conversely, the SPACE function is available to generate blank spaces.

(See: SPACE)

STATEMENT PLANATION

S = SPACE(S) Assigns to variable N the concatenated
L = "SMITH" string consisting of 5 blanks,

C=1n,n" the name SMITH, 5 blanks, a comma,
JOHN' .

N = S:L:S:C:S:F

M = TRIM(N) : Assigns to variable M a string

consisting of the name SMITH,
1 blank, a comma, one blank, and

|

|

|

|

|

I

|

| F = "JOHN" 5 blanks, and the name JOHN, or 'SMITH ,
|

|

|

|

|

| the name JOHN, or 'SMITH , JOHN'
|

|

Sample Usage of the TRIM Function.

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-157

Buod Bad Gl Bewd Bod God Bed Bud Bad Bod Bed Bad Bed Bd Bad Bed Dol Bed Gl

8 =8 FE eS| N s PeSs ' s PP FEM Elm em e

9.115 UNLOCK STATEMENT : CLEARING EXECUTION LOCKS

The UNLOCK statement provides a file and execution 1lock clearing |
capability for PICK/BASIC programs. The LOCK statement sets execution |
locks while the UNLOCK statement releases them. |

FORMAT :
UNLOCK {expression)

The LOCK statement sets an execution 1lock so that when any other BASIC
program attempts to set the same lock, then that program will either
execute an alternate set of statements or will pause until the lock 1is
released via an UNLOCK statement by the program which originally locked
it.

The value of the expression specifies which execution 1lock 1is to be
released (cleared). If the expression 1is omitted, then all execution
locks which were previously set by the program will be released.

All execution locks set by a program will automatically be released upon
termination of the program.

(See: LOCK)
ATEMENTS _EXPLANATION

UNLOCK 47 Resets execution lock 47.

UNLOCK Resets all execution locks
previously set by the program.

UNLOCK (5+A)*(B-2) The value of the expression
specifies which execution lock is
released.

Sample Usage of the UNLOCK Statement.
CHAPTER 9 - PICK/BASI Copyright 1988 PICK SYSTEMS
Preliminary ‘ PAGE 9-158

9.116 WEOF STATEMENT : POSITIONING TAPE

BASIC programs may specify Magnetic Tape positioning operations through
the use of the WEOF (Write End-of-File Mark) statement.

FORMAT:

WEOF THEN/ELSE statements

The WEOF statement writes two EOF (END OF FILE) marks on the tape, then
This correctly positions the tape for

backspaces over the second one.
subsequent WRITET operations.

(See: WRITET)

STATEMENT

WEOF ELSE STOP

P

Writes

ATION

two EOF marks, then

backspaces over the second one.

Sample usage of the WEOF statement.

CHAPTER 9 - PICK/BASIC
Preliminary

PAGE 9-159

Copyright 1988 PICK SYSTEMS

9.117 WRITE STATEMENT : MODIFYING ITEMS

The WRITE statement is used to update a file item.

FORMAT:
WRITE expression ON (file.variable,) itemname

The WRITE statement replaces the content of the item specified by
itemname with the string ~value of the expression. The optional
file.variable specifies the file variable; if it is used, the item will
be replaced in the file previously assigned to that file.variable via an
OPEN statement. If the file.variable is omitted, then the internal
default variable is used (thus specifying the file most recently opened
without a file variable). If the itemname specifies an item which does
not exist, then a new item will be created.

The user should note that the PICK/BASIC program will abort with an
appropriate error message if the specified file has not been opened prior
to the execution of the WRITE statement.

(See: WRITEV and WRITET)

TATEMENT PLANATION

WRITE "XXX" ON A, "ITEMS" Replaces the current content of item
ITEM5 (in the file opened and assigned
to variable A) with string value "XXX".

A="123456789" Replaces the current content of item

B="X55" X55 (in the file opened and assigned

WRITE A ON FN1,B to variable FN1) with string value
"123456789".

WRITE 100*5 ON "EXP" Replaces the current content of item
EXP (in the file opened without a file

variable) with string wvalue "500".

Sample Usage of the WRITE Statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-160

Copyright 1988 PICK SYSTEMS

9.118 WRITET STATEMENT : WRITING RECORDS TO TAPE

BASIC programs may specify Magnetic Tape output operations through the
use of the WRITET (Write Tape Record) statement. The record length on the
tape is as specified by the most recent T-ATT statement executed at the
TCL level.

FORMAT :
WRITET expression THEN/ELSE statements

The WRITET statement writes a record onto the magnetic tape. The string
value of the expression is written onto the next record of the tape.

If the tape unit has not been attached, or if the string value of the
expression is the empty string (''), then the statement(s) following the
ELSE will be executed.

(See: T-ATT,READT, and system)

'ATEMENT EXPLANATION
FOR I=1 TO 5 The values of array elements A(1l)
WRITET A(I) ELSE STOP through A(5) are written onto 5
NEXT I tape records. If one of the array
elements has a value of '' (or if

tape unit not attached), the pro-
gram will terminate.

Sample Usage of the WRITET statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-161

Copyright 1988 PICK SYSTEMS

9.119 WRITEU AND WRITEVU STATEMENTS : UPDATE LOCKS

| The WRITEU and WRITEVU statements have the letter "U" appended to them to |
imply wupdate. The execution of these commands will not unlock the group |

locked by the program.

FORMAT:

WRITEU variable ON (file.variable,) itemname

WRITEVU variable ON (file.variable,)} itemname,att#

These statements execute

identically to the WRITE and WRITEV

with the following noted additional functionality.

(See: WRITE and WRITEV)

This version of these commands will not wunlock the

program. This varient is

used primarily for master file

statements,

group locked by the

updates when

several transactions are being processed and an update of the master item
is made following each transaction update.

If the group is not locked when the WRITEU, WRITEVU or MATWRITEU statement
is executed, the group will not be locked by the execution of the command.

STATEMENT

WRITEU CUST.NAME ON CUST.FILE,ID

WRITEVU CUST.NAME ON CUST.FILE,ID,3

EXPLANATION

Replaces the current contents of

the item specified by variable ID
(in the file opened and assigned
to variable CUST.FILE) with

with the contents of CUST.NAME.
Does not unlock the group.

Replaces the third attribute

of item ID (in the file opened

and assigned to variable

CUST.FILE)

with the contents of variable
CUST.NAME. Does not unlock

the group.

Sample usage of WRITEU and WRITEVU statements.

CHAPTER 9 - PICK/BASIC
Preliminary

Copyright 1988 PICK SYSTEMS

PAGE 9-162

9.120 WRITEV STATEMENT : UPDATING AN ATTRIBUTE

The WRITEV statement is used to write (update) a single attribute value
to an item in a file.

FORMAT :
WRITEV expression ON (file.variable,) itemname,att#

Upon the execution of the WRITEV statement, the value of the expression
becomes the attribute specified by att# (attribute number), in the item
specified by the itemname and in the file previously assigned to the
specified file.variable via an OPEN statement.

If the file.variable is omitted, then the internal default variable will
be used (thus specifying the file most recently opened without a
file.variable).

If a non-existent item name (or attribute number) is specified, then a
new item (or attribute) will be created.

The WRITEV statement will also allow the attribute number (att#) to have
a value of either =zero or minus one, thus inserting data prior to the
first attribute or following the last attribute.

When att# = 0, the expression is inserted at the begining of the item.
All attributes in the item are shifted by 1 attribute and the expression
becomes attribute 1.

When att# = -1, the expression is appended to the end of the item. The
number of attributes in the item increase by 1 and all previously
existing attributes are undisturbed.

The PICK/BASIC program will abort with an appropiate error message if the
specified file has not been opened prior to the execution of the WRITEV
Statement.

(See: WRITE and MATWRITE)

STATEMENT EXPLANATION
Y="THIS IS A TEST" The string value "THIS IS A TEST"

WRITEV Y ON X, "PROG",0 is inserted prior to the first
attribute of item PROG in the file
opened and assigned to variable X.
WRITEV "XYZ" ON "A7",4 Attribute 4 of item A7 (in the file
opened without a file variable) is

replaced by string value "XYZ".

Sample usage of the WRITEV statements.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-163

Copyright 1988 PICK SYSTEMS

9.121 XTD FUNCTION : HEXADECIMAL TO DECIMAL CONVERSION

The XTD function converts a value from Hexadecimal to Decimal.

FORMAT :

XTD(expression)

The string value of the expression is converted from Hexadecimal to

Decimal. For example:
B = XTD(A)

Conversely, the DTX function is available to convert string values
Decimal to Hexadecimal.

from

(See: DTX)
T ENT P TION
D = XTD(H) Assigns the Decimal value of variable H

to variable D.

Sample Usage of the XTD function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-164

Copyright 1988 PICK SYSTEMS

M

i
9.122 PICK/BASIC smouc DEBUGGER : AN OVERVIEW

i !
\

The PICK/BASIC Symbolic Debugger facilitates the debugging of new
PICK/BASIC programs and the maintenance of existing PICK/BASIC programs.

When a PICK/BASIC ©program is compiled a symbol table item is
automatically generated unless the suppress option (S) has been used.
This table 1is used by the PICK/BASIC Debugger to reference symbolic
variables during program execution.

The PICK/BASIC Debugger may be entered at execution time by 1) depressing
the BREAK key or 2) using the 'D' (debug) option with the RUN verb. Once
the PICK/BASIC Debugger has entered it will indicate the source code line
number about to be executed and will prompt for commands with an asterisk
(*) as opposed to the System Debugger prompt '!' or the TCL prompt.

The user now has at his disposal the following general capabilities:
Controlled stepping through execution of program by way of single or
multiple steps. Transferring control to a specified step (line number).
Breaking (temporary halting) of execution on specified line number(s) or
on the satisfaction of specified logical conditions. Displaying and/or
changing any variable(s), including dimensioned variables. Tracing
variables. Conditional entry to the System Debugger. Directing output
(terminal/printer). Stack manipulation (displaying and/or popping the
stack). Displaying of specified (or all) source code line(s).

The symbol table is embedded in the object code which is placed in the
catalog space. The debugger has instant access to the symbol table, and
requires the use of the 'Z' command only when access to the source code
is required. Note that the user may suppress generation of the symbol
table by using the (S) option when compiling programs.

A user requires SYS2 privileges to use the PICK/BASIC debugger. This
prevents users from making unauthorized changes to data during reporting
and data entry.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-165

Copyright 1988 PICK SYSTEMS

[T . D o N . B BN . B .. BN L BN . B . BN L BN . BN . B L B BN . B o B . BN)

10.

11.
12.
13.

14,

15.

16.

17.

18.

CHAPTER 9 - PICK/BASIC

BASIC DEBUGGER FEATURE

Set breakpoint on logical condition

where 'o' is logical operator <,>,=,#,

'v' is variable, 'c' is condition to be met,
or 'n' is line number where preceded by B_$o.
Display breakpoint table

Escape to System Debugger

Single/multiple step execution

End program execution and return to TCL

Proceed from breakpoint
to specified line 'n'

Remove all breakpoints
specified breakpoint 'n'

Display source code current line

'n' number of lines from current one
number of lines from m-n

all lines

Toggle output device (terminal & printer)

Pass one breakpoint before stopping
'n' breakpoints

Logoff
Inhibit output
Printer-close output to spooler

Pop return stack
Display return stack

Switch turns trace table on/off
Trace specified variable 'v'

Remove all traces
specified trace

Request symbol table

Display current line number
Print value of variable 'v'
of element 'x' in array 'm'
of element 'x.y'%in matrix 'm'
of entire array 'm'

entire symbol table

Preliminary PAGE 9-166

"t
§

RELATED COMMAND

\

Bj@c{_.ul oc) or
B$pn

D

DEBUG or DE
E{n)

END

G
Gn

K
Kn
L
Ln
Lm-n
L*
LP

N
Nn

OFF

PC

WSS AN NN s NN x&\\\ N

/m(x)
/m(x,y)
/m

/*

Copyright 1988 PICK SYSTEMS

9.122.1 USING THE PICK/BASIC DEBUGGER : AN EXAMPLE

The following is a step-by-step introduction to the use of the PICK/BASIC
DEBUGGER for inexperienced users. This will demonstrate only a few of the
commands as it is merely intended to give the wuser an introductory
"feeling" for the use of the PICK/BASIC DEBUGGER.

A sample program “SAMPLE" is shown below, followed by steps a user might
take to debug 1it.

SAMPLE

001 DIM ARRAY(10) ; * ARRAY HAS 10 SLOTS

002 FOR I = 1 TO 20 ; * BUG: LOOP SPECIFIES 20 PASSES, ARRAY HAS ONLY 10
003 ARRAY(I) = I ; * EACH SLOT WILL BE FILLED WITH A CONSECUTIVE #
004 NEXT I

005 PRINT ARRAY(I)

006 END

"SAMPLE" compiles without any errors detected. Once it is run however, it
aborts with the error message "ARRAY SUBSCRIPT OUT OF RANGE" and traps to
the PICK/BASIC DEBUGGER. Supposing that the user cannot find the error,
the following steps could be taken for detecting the error using the
PICK/BASIC DEBUGGER.

1. The user enters the command "Z" to the DEBUGGER prompt
character "*". The DEBUGGER responds with "PROG NAME?", the
user enters the program name. This allows the DEBUGGER access
to the symbol table created during compilation. Alternatively,
if the wuser uses the debug option "(D)" during run time,
access to the symbol table is already established, and use of
the "Z" command is unnecessary.

2. To find out how far 1in the loop the program progressed, the
user looks at the variable "I" by entering "/I". The DEBUGGER
responds with "1l =", at which the user may change the value
of "I" 1if desired. The user may then want to look at all of
the values in the array by entering "/ARRAY". The DEBUGGER
responds with "ARRAY(1l)=1=", the user depresses return and the
DEBUGGER continues with the next "array slot" (i.e.,
"ARRAY(2)=2=" etc.). Once "ARRAY(10)=10=" has been reached the
user presses return and the DEBUGGER returns with the "*"
prompt, the user knows that the array has only 10 slots and
the loop calls for 20 -- thus he finds the error. The user may
then end the "session" with PICK/BASIC DEBUGGER by entering
"END" and repair the bug.

A summary of this interaction is given in Figure A on the next page. For
purposes of clarity, whatever is entered by the user is shown enclosed in
square brackets "[]". These are pot part of the commands; they are to
distinguish user entry from DEBUGGER response.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-167

Copyright 1988 PICK SYSTEMS

=4 Fe M

e T

NOTE: The square brackets surround user input to distinguish it from

PICK/BASIC Debugger

esponses.

They are pot part of the commands!

LINE 3 (B17) ARRAY SUBSCRIPT OUT OF RANGE

*I3

*[/1] <RETURN> 11=

*[/ARRAY] <RETURN> ARRAY(1l)=1=-

ARRAY(2)=2=
ARRAY(3)=3=
ARRAY (4)=4=
ARRAY(5)=5=

<RETURN>
<RETURN>
<RETURN>
<RETURN>

ARRAY(10)=10= <RETURN>

*<RETURN>
*[END]

<RETURN>

Sample Session with the PICK/BASIC Debugger.

NOTE: A carriage
prompted by "%"

return will return control to the BASIC DEBUGGER
a line-feed will return control to program
execution until a breakpoint, an error or the end of the program is met.

whereas

CHAPTER 9 - PICK/BASIC

Preliminary

PAGE 9-168

Copyright 1988 PICK SYSTEMS

9.122.2 THE TRACE TABLE

The trace table 1is wused for the automatic printout of a specified
variable or variables after a break has occured.

Up to six trace values may be entered in the table. Either the symbolic
name, or a line number and variable number may be used to reference the
variable. In addition, all the variables 1in the last statement executed
may be printed out. The trace table may be alternately turned on and off
by use of the "T" return command.

Examples of use of the trace table are shown below:

Tname The value of the variable name will be printed out at
each breakpoint.

T¢10,3 The value of the third wvariable in line number 10 will
be printed out at each breakpoint. If line number 10
contains the statement "A=B+C+D" the value of "C" will
be printed.

To delete a variable from the trace table use the "U" command followed by
the trace variable to be deleted. For example, to delete the variable
name from the table type in "Uname". "U" return deletes the entire trace
table.

If a program calls an external subroutine, and the BASIC/DEBUGGER has
been entered previously, a complete symbol table will be set up for the
external subroutine. the table will have 4 break-points and 6 variable
traces available, as well as pointers to program source and object, which
may be set up by the Z command. break points set up for a subroutine are
independent from break points set up in the main program or other
subroutines; however, the execution counters (E and N,) are global.

The use of multiple symbol tables allows the programmer to set up
different break points and/or variable traces for different subroutines.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-169

Copyright 1988 PICK SYSTEMS

FY Fm FR PN P el e

=1 3 FY Y OFEY Pm P

3 1 9

N

9.122.3 PICK/BASIC DEBUGGER: THE B, D, AND K COMMANDS

Commands to set (B)reakpoints, (D)isplay and (K)ill breakpoints.

Command:
B[variable-name][operator][expression]{ & another condition)

BS$[operator][line-number]{ another conditijon)

Where 'variable-name' is a simple variable or an explicitly stated array
element and ‘'expression' is a variable, constant, or array element. If
the variable does not exist or if the wrong Symbol Table is assigned, the
message "SYM NOT FND" will be printed. String constants must be enclosed
in quotes using the same rules that apply to PICK/BASIC 1literals. The
Breakpoint Table may contain up to four conditions that when satisfied,
will cause a break in execution. Logical expressions are used to set the
break conditions. The logical operators used are:

less than

greater than

equal to

not equal to

is used as a logical connector between conditions.

is a special symbol used to indicate that a line
number is specified rather than a variable name.

ol VA

A plus sign will be printed next to the command if it 1is accepted. When
the condition is met, an execution break will occur and the Debugger will
halt execution of the program and print *Bn 1 where 'n' is one of the 4
Breakpoint Table entries and 'l' is the program line number that caused
the break.

Command: D Displays Trace and Breakpoint Tables

Command: Kn Deletes nth breakpoint, n in range 1 to 4
K<RETURN> Deletes all breakpoint conditions

The 'K' command 1is used to delete breakpoint conditions from the table. A
minus sign will be printed next to the command to indicate that an entry
has been removed.

COMMAND EXPLANATION
BX<42 Breaks when X is less than 42.
BADDRESS="" Breaks when ADDRESS is null.
BDATE=INV.DATE&S=22 Breaks when variable DATE is equal to
variable INV.DATE and if the line number is 22.
K2 Kills the second breakpoint condition.
BPRICE(3)=24.98 Breaks when the third element of the array PRICE

is equal to 24.98. Only individual array
elements may be specified.
D Displays the Trace and Breakpoint Tables.
K Kills all breakpoint conditions.

Examples of B, D, and K Commands.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-170

Copyright 1988 PICK SYSTEMS

9.122.4 E, G, AND N COMMANDS : DEBUGGER EXECUTION

The commands "E", "G", and "N" in conjunction with the breakpoint table |

control the execution of the program under debug control.

The "E" command will allow the execution of a specified number of lines
before returning control to the user. "E" return will turn off the "E"
command.

Command : E Execution continues until interuption by the user, by a
breakpoint or until program ends.

ES Program will enter the debugger after executing f£five
program lines.

The "N" command will allow the user to bypass any number of breakpoints
before control is passed back to the wuser, however, the trace table
variables will be printed at each breakpoint. "NO" equals 'pass one
breakpoint', "N1" equals 'pass two breakpoints', etc. and "N" return will
set "N" to "NO".

Command: N3 Four breakpoints are passed, although the trace table
values, if present, are printed out at each breakpoint.
Control is then returned to the user.

The "G" command followed by a line number will allow control to be passed
to the line number indicated. The "G" return command will cause program
to execute the next command from the current 1line number and it will
return control depending on the breakpoint setup.

Command: G153 Control passes to line number 153 and thereafter to user.
G Control passes to next program 1line and thereafter to
user.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-171

Copyright 1988 PICK SYSTEMS

9.122.5 SLASH '/' COMMAND : DISPLAYING AND CHANGING VARIABLES

Variables and arrays can be displayed and changed in either decimal or
string formats.

To display a variable use the command '/v' where 'v' is a wvariable. For
example to display the value of the variable name select '/name'. The
DEBUGGER will respond with the string in the name field and an equal
sign. If the variable is not to be changed press return. If the variable
is to be changed put in the new value of the variable desired and press
return. To display a complete array just place the name of the array
after the slash. To display one value in the array use the form '/M(x)’
or '/M(x,y)' where 'x' and 'y' are points in the array. The array point
may then be changed in the same way as for a single variable.

A window may be placed after any variable selection by following the
variable with a ';' and the 1length of the window. For example, to 1limit

the variable name to eight characters the command '/name;8' would be

used. Numeric variables will ignore any window commands.

The symbolic name of the variable may be replaced with the form 'sx,y’
where 'x' is the line number and 'y' is the nth variable in that line in
the same way as the breakpoint table. Examples of displaying and changing
variables follows:

/CITY IRVINE= The variable 'city' is displayed but not changed.

/STATE NY=CA The variable 'state' is displayed as 'NY' and changed
to 'CA'

/FIELD(5) 10= The fifth point in array FIELD is displayed as 10 and

not changed.

/* All the symbols in the symbol table are displayed.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-172

Copyright 1988 PICK SYSTEMS

9.122.6 VARIOUS DEBUGGER COMMANDS : ADDITIONAL FEATURES

Additional PICK/BASIC Debugger commands : PC, P, LP, §, L, Z, [], DEBUG
and END.

1/0 CONTROL

The "P" command inhibits all PICK/BASIC program output so that the user
may look only at the DEBUGGER output. "P" return alternately turns "P" on
and off.

The "LP" command forces all output to the line printer which can be used
for a fast trace or hard copy of a trace. "LP" return alternately turns
the line printer command on and off.

The "PC" command is the same as the PICK/BASIC printer close command. All
data that is waiting to be sent to the printer is output at this time.

SOURCE CODE DISPLAY
The "$" command will print the next line number to be executed.

The "L" command will display sorce code lines. "L" will display the
current line of source. "Ln" will display line 'n'. "Lm-n" will display
lines 'm-n'. "L*" will display the entire source program.

SYMBOL TABLE

The "Z" command will enable a symbol table other than the currently
running programs' symbol table, which is the default. The program name
may be entered as (file-name, {dataname)) item-name.

STRING WINDOWS

The string window command "[n,m]" will cause the output of all variables
to be 1limited to the substring selected. An example of the command
follows:

X=1234567890.B [3,2] Sets the window for the third
character position with a string length of two. Any printout of x will be
34.

Setting the window length to zero will turn the string window command
off. "[Carriage-return" will have the same result.

PE TO SY GG
The "DEBUG" command will pass control to the System DEBUGGER.
TERMINATION

The "END" command will terminate the PICK/BASIC and DEBUG programs and
return control to TCL.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-173

Copyright 1988 PICK SYSTEMS

& B . N . BN o BN o B o B

9.122.7 GENERAL CODING TECHNIQUES : HELPFUL HINTS

This topic presents a number of general coding techniques which the
programmer should keep in mind when writing PICK/BASIC programs.

The PICK system uses standard attribute and value delimiters. These
should be defined once in the initialization portion of the program, and
then referenced by their variable name. for example:

EQU AM TO CHAR(254)Attribute Mark
EQU AM TO CHAR(253)Value Mark
EQU SVM TO CHAR(252)Secondary Value Mark

Cursor positioning can be controlled by setting variables names to @
functions and then PRINTing those names in the body of your program.

ERASE.SCREEN = @(-1) HOME = @(-2)
CLEAR.TO.END.OF.SCREEN = @(-3) CLEAR.TO.END.OF.LINE = @(-4)
START.BLINK = @(-5) STOP.BLINK = @(-6)

START .PROTECT = @(-7) STOP.PROTECT = @(-8)

BACKSPACE = @(-9) UP.1.LINE = @(-10)

DOWN.1.LINE = CHAR(10)
BELL = CHAR(7)

RIGHT.1.CHARACTER = CHAR(6)

To erase the screen for instance, the PRINT statement would be:
PRINT ERASE.SCREEN

The OPEN statement is very time consuming and should be executed as few
times as possible. All files should be opened to file variables at the
beginning of the program; access to the files can then be performed by
referencing the file variables.

The size of programs can be reduced, with a corresponding increase in
overall system performance, by reducing the amount of 1literal storage.
For example:

200 PRINT 'RESULT IS ':A+B

210 PRINT 'RESULT IS ':A-B

220 PRINT 'RESULT IS ':A*B

230 PRINT 'RESULT IS ':A/B
CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-174

These statements should have been written as follows:

MSG = 'RESULT IS'

200 PRINT MSG:A+B
210 PRINT MSG:A-B
220 PRINT MSG:A*B
230 PRINT MSG:A/B

Operations should be pre-defined rather than repetitively performed. This
operation, for example:

X=SPACE(9-LEN(OCONV(COST, 'MCA'))) :OCONV(COST, 'MCA')
should have been written as follows:

E=OCONV (COST, 'MCA')
X=SPACE(9-LEN(E)):E

In the same context, the following operation:

FOR I=1 TO X*Y+Z(20)

NEXT 1
should have been written as follows:

TEMP=X*Y+Z (20)
FOR I=1 TO TEMP

NEXT I

The following LOOP construct could be used to access an unknown number of
multivalues from an attribute (including null values):

EQU VM TO CHAR(253)
READV ATTR FROM ID, ATTNO ELSE STOP
VNO=-1
LOOP
VALUE=FIELD (ATTR,VM,VNO)
WHILE COL2() #0 DO

PRINT VALUE
VNO=VNO+1
REPEAT
CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-175

Fu

™ ™ r ™M

9.122.8 PROGRAMMING EXAMPLES: PYTHAG

Fkdedkdkdddk ok kkkkdkkddkkkkkkkkdkkkkkkikkhkkkkkkkkktikhhihkhik
* THIS PROGRAM FINDS PYTHAGOREAN TRIPLES
Fkkddkkkkdk ik kkkdkkk ke kkkddkk gk kkdkdkk bk kdkkdddkdkdk ok dkkkkkkdkk
PRINT
PRINT 'SOME PYTHAGOREAN TRIPLES ARE:'
PRINT
FOR A=1 TO 40
D=-A-1
FOR B=1 TO A-1
CC=(A"2)+(B"2)N
IF C = INT(C) THEN PRINT B,A,C C=SQRT(EC)
NEXT B
NEXT A
STOP

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-176

9.122.9 PROGRAMMING EXAMPLES: GUESS

dkdkkdkkkhddhkdkkdkkdkdddeddeddekdedededdekdekdoddoddoddkddoddkddkdkkkkk

* THIS PROGRAM IS A GUESSING GAME
Kk khdkkdkkk ki hdkkkdkkddkkikkikikkikdkdkdhkhkikikikdkikikkikkkikkkikkkiikkk
HEADING '°
HISSCORE=0; YOURSCORE=0
10 PAGE
PRINT 'GUESS NUMBERS BETWEEN O AND 100'
PRINT 'MACHINE:':HISSCORE:' ':'YOU: ' : YOURSCORE
PRINT
NUM=RND(101)
FOR I=1 TO 6
PRINT 'GUESS ':I:' ':
INPUT GUESS
IF GUESS=NUM THEN
PRINT
PRINT 'CONGRATULATIONS, YOU WON!'
YOURSCORE=YOURSCORE+1
GOTO 60
END
IF GUESS < NUM THEN PRINT 'HIGHER'
IF GUESS > NUM THEN PRINT 'LOWER'
NEXT I
PRINT
PRINT 'YOU LOST YOU DUMMY, YOUR NUMBER WAS ':NUM
HISSCORE=HISSCORE+1
60 PRINT
PRINT 'AGAIN?':
INPUT X
IF X = 'NO' THEN STOP
GOTO 10
END

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-177

™S FT P9 FR FE PN O FY F3 P4 O FE P3PS P

9.122.10 PROGRAMMING EXAMPLES: INV-INQ

FkkkdkkhkddRddhkdkdddkdddddddkddddddkdddddodkddokdkdkdkdkdhkkdddkkddkkdhkkkkk

THIS PROGRAM QUERIES AN INVENTORY FILE.

IT READS THE DICTIONARY OF FILE 'INV' TO GET THE ATTRIBUTE
NUMBERS OF °'DESC' (DESCRIPTION) AND 'QOH' (QUANTITY-ON-HAND).
THE PROGRAM THEN PROMPTS THE USER FOR A PART-NUMBER WHICH

IS THE ITEM-ID OF AN ITEM IN 'INV' AND USES THE ATTRIBUTE
NUMBERS TO READ AND DISPLAY THE PART DESCRIPTION AND

QUANTITY ON HAND. THE PROGRAM LOOPS UNTIL A NULL PART

NUMBER IS ENTERED.

ek dekdkdkdkdkddkkdkddkddkdkddkddkdkdkdkddkdkdokdkdkdkdkkkikkkkkkkkkkkkkkikkkkk
*

%*--- GET ATTRIBUTE DEFINITIONS FROM DICTIONARY OF INVENTORY FILE
OPEN 'DICT','INV' ELSE PRINT 'CANNOT OPEN "DICT INV"'; STOP
READV DESC.AMC FROM 'DESC',2 ELSE PRINT 'CANT READ "DESC" ATTR'; STOP
READV QOH.AMC FROM 'QOH',2 ELSE PRINT 'CANT READ "QOH" ATTR'; STOP
*--- OPEN DATA PORTION OF INVENTORY FILE
OPEN '','INV' ELSE PRINT °‘'CANNOT OPEN "INV"'; STOP
*%--- PROMPT FOR PART NUMBER
100 PRINT
PRINT 'PART-NUMBER °':
INPUT PN
IF PN = '' THEN PRINT '--DONE--'; STOP
READV DESC FROM PN,DESC.AMC ELSE PRINT 'CANT FIND THAT PART' ;GOTO 100
READV QOH FROM PN,QOH.AMC ELSE QOH=O
*--- PRINT DESCRIPTION AND QUANTITY-ON-HAND
PRINT °'DESCRIPTION - ': DESC
PRINT 'QTY-ON-HAND - ': QOH
PRINT
GOTO 100
END

* % % % * % ¥ %

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-178

9.122.11 PROGRAMMING EXAMPLES: FORMAT

dkkkkkkkthtkikkikhkkikikiikikkikkikidkikkdkkikkikkikkikdkikikikkkikikkk

* THIS PROGRAM FORMATS A PICK/BASIC PROGRAM TO

* DISPLAY BLOCK STRUCTURING BY INDENTING LINES.
g g g e

%---- DEFINITIONS
10 SP =6 ;* LEFT MARGIN COLUMN NUMBER
ID = 3 ;* NUMBER OF SPACES TO INDENT
*---- INITIALIZATION
SPX = SP
LINE.NO = O
*---- INPUT FILE NAME AND PROGRAM NAME
PRINT
PRINT
PRINT 'DATA/BASIC FILE NAME - ':; INPUT FILE
IF FILE = '' THEN STOP
OPEN '',FILE ELSE PRINT 'CANNOT OPEN FILE - ': FILE; GOTO 10
PRINT 'DATA/BASIC PROGRAM NAME - ':; INPUT NAME
IF NAME = '' THEN GOTO 10
NEWITEM = ''

READ ITEM FROM NAME ELSE
PRINT °‘'CANNOT FIND THAT PROGRAM'
GOTO 10
END
%*---- GET NEW LINE, IF NONE - THEN DONE
100 LINE.NO = LINE.NO + 1
LINE = EXTRACT(ITEM,LINE.NO,0,0)
IF LINE = '' THEN
WRITE NEWITEM ON NAME

PRINT; PRINT; PRINT '--DONE--'; GOTO 10
END
LABEL = '
*---- STRIP OFF LEADING/TRAILING SPACES
200 IF LINE[1,1] = ' ' THEN LINE = LINE[2,32767]; GOTO 200
210 IF LINE[LEN(LINE),1] = ' ' THEN LINE = LINE[1,LEN(LINE)-1]; GOTO 210
---- LOOK FOR A COMMENT ('', 'I', OR 'REM')
IF LINE[1,1] = '*' THEN GOTO 1500
IF LINE[1,1] = '!' THEN GOTO 1500
IF LINE[1,3] = 'REM' THEN GOTO 1500
*---- LOOK FOR 'FOR'

IF LINE[1,4]="FOR ' AND INDEX(LINE,'NEXT ',1)>0 THEN GOTO 2000
IF LINE[1,4]="FOR ' AND INDEX(LINE, 'NEXT ',1)=0 THEN GOTO 1000
*---- LOOK FOR 'END'
IF LINE = 'END' THEN GOTO 1100
IF LINE[1,4] = 'END ' THEN
IF LINE[LEN(LINE)-4,5] = ' ELSE' THEN GOTO 1200

END
*---- LOOK FOR 'NEXT'
IF LINE[1,5] = 'NEXT ' THEN GOTO 1100
*---- EXTRACT LEADING NUMERIC LABEL
IF LINE[1,1] MATCHES '1N' THEN
L=2
300 IF LINE[L,1) MATCHES '1N' THEN L=L+1; GOTO 300

LABEL = LINE[1,L-1]
LINE = LINE[L,32767)

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-179

= Fra M

=N s

o T o T o T o B L B . B o B o B o BN o BN o B o B o BN o)

GOTO 200
END
*---- LOOK FOR LINE ENDING IN ' ELSE' OR ' THEN' ('IF' OR 'READ')
X = LINE[LEN(LINE)-4,5]
IF X = ' THEN' THEN GOTO 1000
IF X = ' ELSE' THEN GOTO 1000

%*---- THIS IS JUST ANOTHER LINE, THEREFORE NO CHANGE
GOTO 2000

*---- INDENT ON SUBSEQUENT LINES

1000 SP = SP + ID

GOTO 2000

*---- OUTDENT ON THIS AND SUBSEQUENT LINES

1100 SP = SP - ID
*---- OUTDENT THIS LINE ONLY
1200 SPX = SPX - ID

GOTO 2000
*---- PRINT WITH NO INDENTATION
1500 SPX = O
*---- WRITE NEW LINE

2000 NEW.LINE = LABEL : STR(' ',SPX-LEN(LABEL)) : LINE
PRINT NEW.LINE
NEWITEM = REPLACE(NEWITEM,LINE.NO,0,0,NEW.LINE)
SPX = SP
GOTO 100
END

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-180

9.122.12 PROGRAMMING EXAMPLES: LOT-UPDATE

dkkkkkdkdkdkdkdkdkkdkddkdkddkdddkdkkkdkkkkdkdkkdkkkkkkikkikikk

* THIS PROGRAM UPDATES DATA ON LOTS IN A HOUSING TRACT.
* ITEM-ID'S IN "LOT" FILE ARE TRACT.NAME+*LOT.NUMBER
Rk hkhkhkkhhhkhkhkhkhkrkkkihkhkhkhkkdkkhkhkhkhkikikktihkhkhkhkhkkktkikhhkihbhtiihkik
100* INITIALIZATION
PROMPT '='
CLEAR
DIM DESC(30),TYPE(30) -
OPEN 'DICT','LOT' ELSE
PRINT "CAN'T OPEN DICT LOT"
STOP
END
*
200% GET DESCRIPTIONS, CONVERSIONS
FOR I = 1 TO 30
READ DICT.ITEM FROM I ELSE
PRINT "DICTIONARY ITEM '":I:"' NOT FOUND"
GOTO 250
END

D = EXTRACT(DIC.ITEM,3,0,0) +* S/NAME- -DESCRIPTION

IF D # '' THEN DESC(I) = D:STR('.',15-LEN(D))
IF C[1,2) = 'MD' THEN
TYPE(I) + 'NUM'

GOTO 250
END
IF C[1,1] = '0' THEN TYPE(I) = 'DATE'
250%
NEXT I
*
*
OPEN '','LOT' ELSE
PRINT "CAN'T OPEN LOT FILE."
STOP
END
*
300%* GET THE TRACT NAME
PRINT
PRINT "TRACT NAME..... "
INPUT TRACT

IF TRACT = 'STOP' OR TRACT = 'END' THEN STOP
IF TRACT = '' THEN GOTO 300
READ INFO FROM TRACT ELSE
PRINT "TRACT '":TRACT:"' OT ON FILE"
GOTO 300 .
END
*
400* GET A VALID LOT NUMBER
PRINT
PRINT "LOT NUMBER..... "
INPUT NUMBER
IF NUMBER = '' THEN GOTO 400
IF NUMBER = 'END' OR NUMBER = 'STOP' THEN GOTO 300
IF NUM(NUMBER) = O THEN
PRINT "MUST BE A NUMBER"

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS

Preliminary PAGE 9-181

Bod Bad Bl Bed

B-d

e

vy

GOTO 400
END
NUMBER = TRACT:'*':NUMBER
READ ITEM FROM NUMBER ELSE
ITEM = '
PRINT "NEW LOT"
END

450%
NOT.SOLD = O
FOR I = 1 TO 30
GOSUB 1000 ;* UPDATES THE I1'TH ATTRIBUTE
IF I = 10 THEN
IF EXTRACT(ITEM,10,0,0) = '' THEN
NOT.SOLD = 1
I=19
END
END

IF I = 21 THEN
IF NOT.SOLD THEN GOTO 500
END
NEXT I

VERITY DATA & STORE
PRINT
PRINT" OK "
INPUT OK
IF OK = '' THEN
WRITE ITEM ON NUMBER
GOTO 400
END
IF OK = 'L' THEN
PRINT
FOR L = 1 TO 30
ATT = EXTRACT(ITEM,I,0,0)
IF ATT = '' THEN GOTO 550
PRINT DESC(L):
IF TYPE(L) = 'DATE' AND NUM(DATE) THEN ATT = OCONV(ATT,'DO')
IF TYPE(L) = 'NUM' AND NUM(ATT) THEN ATT = 0.01 * ATT
PRINT ATT 'RiHEHEEEHEAERER
550%
NEXT L
GOTO 500
END
GOTO 400
*
1000* UPDATE'S THE I'TH ATTRIBUTE OF "ITEM"
IF DESC(I) = '' THEN RETURN ;* NOT NEEDED OR NOT FOUND
PRINT DESC(I):
CURRENT = EXTRACT(ITEM,I,0,0)
*
IF TYPE(I) = 'NUM' THEN
1100* NEED A NUMBER (AMOUNT)
PRINT CURRENT#*.01 ' RiEEHEHHHHEHER"
INPUT RESPONSE

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-182

IF RESPONSE = '' THEN RETURN

I F RESPONSE = '' THEN
ITEM = REPLACE(ITEM,I,0,0,'"')
RETURN

END

IF NUM(RESPONSE) = O THEN
PRINT "MUST BE A NUMBER"
GOTO 1100

END

+* JUST LOOKING

;* DELETE THIS ATT.

ITEM = REPLACE(ITEM,I,0,0,RESPONSE*100)

RETURN
END
*
IF TYPE(I) = 'DATE' THEN
1200* NEED A DATE

PRINT OCONV(CURRENT, 'DO') 'RHHHHEHBEHHEHHAAE" .

INPUT RESPONSE
IF RESPONSE = '' THEN RETURN
IF RESPONSE = 'T' THEN
DATE = DATE()
GOTO 1250
END
IF RESPONSE = '' THEN
ITEM = REPLACE(ITEM,I,0,0,'')
RETURN
END
DATE = ICONV(RESPONSE,'D')
IF DATE = '' THEN

;* JUST LOOKING

;* DELETE THIS ATT.

PRINT "USE DATE FORMAT 'MONTH/DAY/YEAR'"

GOTO 1200
END
1250%
ITEM = REPLACE(ITEM,I,0,0,DATE)
RETURN
END
1300* NO NECESSARY FORMATS
PRINT CURRENT 'R#HHHEHEHBHEHREHERE |
INPUT RESPONSE
IF RESPONSE = '' THEN RETURN
IF RESPONSE = '' THEN RESPONSE = ''

ITEM = REPLACE(ITEM I1,0,0,RESPONSE)

RETURN

CHAPTER 9 - PICK/BASIC '
Preliminary PAGE 9-183

Copyright 1988 PICK SYSTEMS

F31 ©3 FE Fm

¥ M re

ra

9.123 SUMMARY OF PICK/BASIC STATEMENTS

I
| This

I
summary presents the general form for each of the PICK/BASIC |

| Statements. The statements are listed in alphabetical order. |

STATEMENTS
ABORT({errnum(,param,param,...})
BREAK ON/OFF
CALL @name(argument list)
CALL name(argument list)
CASE --- BEGIN CASE
CASE expression
stmts
CASE expression
stmts
END CASE
CHAIN "any TCL command"
CLEAR
CLEARFILE (file.variable)
COM{MON) variable (,variable)
CRTexpression
DATA expression(,expression...)
DELETE (file.variable,} itemname
DIM variable(dimensions) (,variable(dimensions))
ECHO ON/OFF
ENTER"cataloged.program"
END

EXECUTEexpression (CAPTURING varl) (RETURNING var2?)

EQU(ATE) variable TO equate-variable (, ...)
CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-184

FOOTING "text 'options' {text 'options')"

FOR . ..NEXT---FOR variable = exp TO exp (STEP exp)(WHILE/UNTIL exp)
NEXT variable

GOSUB statement-label

GO(TO) statement-label

HEADING "text 'options' (text 'options')}"

IF expression THEN stmts (ELSE stmts)

INPUT variable {(:)

INPUT @(column,row) : variable ('mask')

INPUTERR expression

INPUTTRAP 'xx' GOTO n,n,n .

INPUTTRAP 'xx' GOSUB n,n,n...

INPUTNULL x

LOCATE('String',Item{ ,Att#{,Val#));index#{ ;sequence))THEN/ELSE stmts

LOCK expression (THEN/ELSE stmts)

LOOP (stmts) WHILE/UNTIL expression DO (stmts)} REPEAT

MAT variable

MAT array.variable = expression

MAT array.variable = MAT array.variable

MATREAD array.variable FROM {(file.variable,) itemname THEN/ELSE stmts

MATREADU array.variable FROM (file.variable,) expression THEN/ELSE

stmts

MATWRITE array.variable ON (file.variable,) expression

MATWRITEU array.variable ON (file.variable,) expression

NEXT variable

NULL

ON expression GOTO/GOSUB statement-label, statement-label

OPEN ("DICT",) "filename" (TO file.variable) THEN/ELSE stmts

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-185

Bal Bad Beld Bad Bod Gad Ad Bl Bad Bad Buid Rad God Bud Gad B4 Bad Bad Bad

3 F1 3 Fa FS

¥ M | MM ra N,

™ ™ /M r,mfsarmrs

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-186

PAGE (expression)

PRECISION n

PRINT (ON expression} print-list

PRINTER ON/OFF

PRINTER CLOSE

PROCREADvariable THEN/ELSE statements

PROCWRITEvariable

PROMPT expression

READ variable FROM (file.variable,) itemname THEN/ELSE stmts
READNEXT variable (,vmc){(FROM select.variable) THEN/ELSE stmts
READT variable THEN/ELSE/ stmts

READU variable FROM (file.variable,) itemname THEN/ELSE stmts
READV variable FROM (file.variable,) itemname,att# THEN/ELSE stmts
READVU variable FROM (file.variable,) itemname,att# THEN/ELSE stmts
RELEASE ((file.variable,} expression)

REM or * or !

RETURN

RETURN TO statement-label

REWIND THEN/ELSE stmts

RQM (seconds or "time")

SELECT (file.variable)}{TO select.variable)

SLEEP (seconds or "time")

STOP (errnum(param,param,...})

SUBROUTINE name (argument list)

UNLOCK {expression)

WEOF THEN/ELSE {expression)

WRITE expression ON (file.variable,) itemname

WRITEU variable ON (file.variable,)} itemname

Copyright 1988 PICK SYSTEMS

WRITET expression THEN/ELSE stmts
WRITEV expression ON (file.variable,) itemname,att#

WRITEVU expression ON {(file.variable,) itemname,att#

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-187

a

9.124 BASIC INTRINSIC FUNCTION SUMMARY

| This summary presents the general form for each of the PICK/BASIC

| Intrinsic Functions. The functions are listed in alphabetical order.

| page referenced.

FUNCTION
@(column{,row))
ABS (expression)
ALPHA (expression)
ASCII(expression)
CHAR (expression)
COL()

coL2()

COS (expression)
COUNT (string,substring)
DATE()

DCOUNT (string,substring)

DELETE(da.variable,att#{,value#{,sub-value#)))

EBCDIC(expression)

EXP(expression)

EXTRACT (da.variable,att#(,value#(,sub-value#)))

FIELD(expression,delimiter,occurence#)

ICONV(expression,conversion)

INDEX(string,sub-string,occurence#)

INSERT (da.variable,att#{,value#{,sub-value#,)}{(;)new.expression)

INT (expression)
LEN(expression)
LN

CHAPTER 9 - PICK/BASIC

Preliminary PAGE 9-188

Copyright 1988 PICK SYSTEMS

MOD (numerator ,denominator)
NOT (expression)
NUH(eipression)

OCONV (expression,conversion)
PWR (expression,power)
REM(numerator,denominator)
REPLACE(da.variable,att#(,value#(,sub-value#,))(;)new.expression)
RND (expression)
SEQ(expression)

SIN (expression)
SPACE(length)

SQRT (expression)

STR (expression,occurence#)
TAN (expression)

TIMEQ)

TIMEDATE()

TRIM(expression)

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-189

e
|

9.125 BASIC COMPILER ERROR MESSAGES 1 \

I I
| This summary presents a list of the error messages which may occur as a |
| result of compiling a PICK/BASIC program. |

3 S s

™ ™ s /MM s F s m s,

ERROR NO, ERROR MESSAGE CAUSE
b// BO PROGRAM 'xx' COMPILED. PICK/BASIC program compiled with
n FRAMES USED. no compilation errors. This is not

AN

B100

.

B101

S~

B102

\

COMPILATION ABORTED;
NO OBJECT CODE
PRODUCED

MISSING "END", NEXT",
"WHILE", "UNTIL",
"REPEAT", OR "ELSE";
COMPILATION ABORTED,
NO OBJECT CODE
PRODUCED

BAD STATEMENT

an error; it simply informs that
compilation is completed.

Compilation errors present.

Compilation error present.

Unrecognizable statement.

B103 LABEL "C" IS Label indicated by GOTO or GOSUB
MISSING was not found.
U//;IOA LABEL "C" 1S More than one statement was found

105

B106

T

B107

~

B108
,B109
B110

B111l

— =S

DOUBLY DEFINED

"C" HAS NOT
BEEN DIMENSIONED

"C" HAS BEEN
DIMENSIONED AND USED
WITHOUT SUBSCRIPTS
"ELSE" CLAUSE MISSING

"NEXT" STATEMENT
MISSING

VARIABLE MISSING IN
"NEXT" STATMENT

"END" STATEMENT
MISSING

"UNTIL" OR "WHILE"
MISSING IN "LOOP"

CHAPTER 9 - PICK/BASIC
Preliminary

beginning with the same label.

Subscripted variable was not
dimensioned.

Dimensioned variable used without
subscripts.

ELSE clause is missing.

NEXT statement is missing in
FOR-NEXT loop.

Iteration variable is missing in NEXT
statement.

END statement is missing in multi-
line IF statement.

UNTIL or WHILE clause is missing in
a LOOP statement.

Copyright 1988 PICK SYSTEMS

PAGE 9-190

H

/1 STATEMENT
B112 { "REPEAT" MISSING IN REPEAT is missing in a LOOP statement.
"LOOP" STATEMENT

B113 COLUMN B Garbage following a legal statement
TERMINATOR MISSING or quote missing.

\// Bl1l4 MAXIMUM NUMBER OF Using the default descriptor size of
\j// VARIABLES EXCEEDED 10, the maximum number of variables

(including array elements) is 3274.

B115 LABEL 'C' IS USED The equate-variable is referenced
BEFORE THE EQUATE STMT before it has been defined.

Bl11l6 LABEL 'C' IS USED A common variable has been referenced
BEFORE THE COMMON STMT before it is put in common.

B117 LABEL 'C' IS MISSING An array is referenced without
A SUBSCRIPT LIST a subscript list.

B118 LABEL 'C' IS THE
| OBJECT OF AN EQUATE
STMT AND IS MISSING

B119 WARNING - PRECISION
VALUE OUT OF RANGE -
IGNORED!
B120 WARNING - MULTIPLE
‘ PRECISION STATEMENTS -
V// IGNORED!
B121 LABEL 'C' IS A

CONSTANT AND CAN NOT
BE WRITTEN INTO

B122 LABEL 'C' IS
IMPROPER TYPE

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-191

Bed Bad Bl Bed Bad bd bhad Bad had God Baad Bed Gad Bad Ged Bed God Bood Boud

| 3

9.126 BASIC RUN-TIME ERROR MESSAGES

This summary presents a list of the error messages which may occur as a
result of executing a PICK/BASIC program. Warning messages indicate that
illegal conditions have been smoothed over (by making an appropriate
assumption), and do mnot result in program termination. Fatal error

- Y 3

PSS P3P PSP PN PR M P P ey

¥ ™

messages result in program termination.

W. G AGES
Error
No. Error Message Cause

B10

v
/ B11

b// B13 NULL CONVERSION CODE A string variable that should have a
, IS ILLEGAL; value is actually null.
NO CONVERSION DONE!
B16 NON-NUMERIC DATA WHEN A non-numeric string was encountered
NUERIC REQUIRED; when a number was required. (A value of
ZERO USED! 0 is assumed.)
B19 ILLEGAL PATTERN Illegal pattern used with MATCH or
MATCHES operator.
B20 COL1 OR COL2 USED COL1 or COL2 function used before FIELD
PRIOR TO EXECUTING function used. (A value of 0 is assumed.)
A FIELD STMT; ZERO
/ USED!
{///;24 DIVIDE BY ZERO ILLEGAL; Division by zero attempted. (A value of
: ZERO USED! 0 is assumed.)
B209 FILE IS UPDATE
PROTECTED
B210 FILE IS ACCESS

VARIABLE HAS NOT BEEN
ASSIGNED A VALUE;
ZERO USED!

TAPE RECORD TRUNCATED
TO TAPE RECORD LENGTH!

PROTECTED

CHAPTER 9 - PICK/BASIC
Preliminary

An unassigned variable

was referenced.

(A value of 0 is assumed.)

An attempt was made to
a tape record than the
length. (The record is
record length.)

Copyright 1988 PICK SYSTEMS

PAGE 9-192

write more onto
tape record
truncated to tape

FATAL ERROR MESSAGES
Error
No, Error Message
h//BIZ FILE HAS NOT BEEN
OPENED

BAD STACK DESCRIPTOR

V/ Bl4

B15 ILLEGAL OPCODE: C

B17 ARRAY SUBSCRIPT
OUT-OF -RANGE

B18 ATTRIBUTE LESS THAN
-1 IS ILLEGAL

PROGRAM "C" HAS
NOT BEEN CATALOGED

b/// B25

/
/

B27 RETURN EXECUTED WITH
NO GOSUB
B28 NOT ENOUGH WORK SPACE

L/// B30

/
ARRAY SIZE MISMATCH
\:;//
/

B31 STACK OVERFLOW

>~

B32 PAGE HEADING
EXCEEDS MAXIUM OF
L// 1400 CHARACTERS
B33 PRECISION DECLARED
IN SUBPROGRAM 'C' 1S
DIFFERENT FROM THAT
DECLARED
B34 FILE VARIABLE USED WHERE

B4l LOCK NUMBER IS
GREATER THAN 47

CHAPTER 9 - PICK/BASIC
Preliminary

Qagge

File indicated in I/0 statement has
not been opened via an OPEN statement.

This error message is generated if the
the lengths of the input-lists or
lengths of the input-lists or output-
lists in the CALL and SUBROUTINE state-
ments are different, if an attempt is
made to execute an external subroutine
as a main program or if a file variable
is used as an operand.

Object code for this item is not legal.
Array subscript is less than or equal
to zero or exceeds the row or column

number indicated by a DIM statement.

Attribute less than on specified in
READV or WRITEV statement.

The specified external subroutine must
be cataloged before appearing in a CALL
statement.

RETURN statement executed prior to
GOSUB.

Not enough work space assigned at
LOGON to run program.

Array sizes in MAT Copy statement, or
in CALL and SUBROUTINE statements, do

not match.

The program has attempted to call too
many nested subroutines.

Page heading is too long.

Precision must be the same between
calling programs and subroutines.

STRING EXPRESSION EXPECTED

Maxium of locks available is 47.

Copyright 1988 PICK SYSTEMS
PAGE 9-193

B

=S FY SN O F9 SN e Mmoo rm s Mmoo s e

P ™ Y Y

9.127 LIST OF ASCII CODES

| This summary presents a list of ASCII codes used in the PICK system.

DECIMAL HEX CHARACTER

0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 A
11 B
12 c
13 D
14 E
15 F
16 10
17 11
18 12
19 13
20 14
21 15
22 16
23 17
24 18
25 19
26 1A
27 1B
28 1C
29 1D
30 1E
31 1F
32 20
33 21
34 22
35 23
36 24
37 25
38 26
39 27
40 28

CHAPTER 9 - PICK/BASIC
Preliminary

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
us

SPACE

~ e =

SPECIAL USE IN PICK
Null prompt character
Cursor home on CRT Terminal

Cursor forward on CRT Terminal

Bell on CRT Terminal

Cursor down on CRT Terminal
Vertical address on CRT Terminal
Screen erase on CRT Terminal
Carriage return on CRT Terminal

Horizontal address on CRT Terminal

Cursor back on CRT Terminal

Cursor up on CRT Terminal

Copyright 1988 PICK SYSTEMS
PAGE 9-194

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

CHAPTER 9 - PICK/BASIC

Preliminary

29
2A
2B
2C
2D

2E

2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55

-+ %k~

WoONOTUVMPLPWNFHON:

CHVPWOWOZRERHRLCHIOMMEBOOEPM®OV I A -

PAGE 9-195

Copyright 1988 PICK SYSTEMS

=N | 5

™ Y

86
87
88
89
90
91
92
93
94
95
123
124
125
126
127
251
252
253
254
255

CHAPTER 9 - PICK/BASIC

Preliminary

56
57
58
59
S5A
5B
5C
5D
SE
S5F
7B
7C
7D
7E
7F
FB
FC

FE
FF

~N—NHKXEA

DEL
SB
SVM

SM

Start buffer
Secondary Value Mark
Value Mark

Attribute Mark
Segment Mark

Copyright 1988 PICK SYSTEMS
PAGE 9-196

9.128 SUMMARY OF THE PICK/BASIC DEBUGGER COMMANDS

| The following 1is a summary of all the PICK/BASIC DEBUGGER commands and |
| their descriptions.

Bx

DEBUG

DE

En

END

Gn

Nx

OFF

PC

Tv

CHAPTER 9 - PICK/BASIC
Preliminary

Set breakpoint condition table where 'x' is a simple
logical expression, which may be composed of < (less
than), > (greater than), = (equal to), # (not equal
to), & (and), and the special operator § (line number).
Displays breakpoint and trace tables.

Escape to standard debugger.

Short form of DEBUG.

Step on n+l instructions. E <RETURN> turns mode off.

End execution of PICK/BASIC program and return to TCL.
Proceed from breakpoint.

Go to line n.

Kills all breakpoint conditions in table set by 'B'
command.

Kills breakpoint condition 'x' where 'x' is the
breakpoint number from 1-4.

Display source code lines starting at n and continuing
for # lines.

All output forced to printer reverses status each time
LP is selected.

Continue thru x+1 breakpoints before stopping.

Log off.

Inhibit PICK/BASIC program output.

Printer close - output to spooler.

Pops return stack.

Display subroutine stack.

Turns breakpoint trace table alternatley off and on.
Set variable 'v' in trace breakpoint table.

Copyright 1988 PICK SYSTEMS
PAGE 9-197

3 P PN W

F°u 9 O PE O FTm S s Fa e 5N P PSS A

P'“l

Uv

/v
/m(x)
/m(x,y)
/m

/*

[x,y]

NOTE:

Remove all breakpoint trace table variables set by 'T'
command.

Remove breakpoint trace variable 'v' from table.
Verify object code.

Request symbol table.

Current statement number.

Display current program name, 1line # and object code
verification status.

Print value of a variable 'v'.

Print value of a point 'x' in array 'm'.

Print value of point 'x,y' in array 'm'.

Print the entire array where 'm' is the array.

Dump entire symbol table.

String window where 'x' equals the start of the string
and 'y' equals the length of the string. This command
effects all outputs of variables and has no effect on

input.

Removes string window (setting string length to zero has
the same effect).

Equal sign prints out after the printing of a variable
in any slash command except '/m'. The value of the
variable may be changed at this point.

- Carriage return terminates all controls.

- A linefeed equals G <RETURN>

- Break key breaks to PICK/BASIC DEBUGGER from PICK/BASIC program

at end of line.

- PICK/BASIC DEBUGGER prompts with '*',

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS

Preliminary

PAGE 9-198

9.129 APPENDIX G

BASIC DEBUGGER MESSAGES

The following informative, warning or error messages are
used by the BASIC DEBUGGER.

*E x Single step breakpoint at line number 'x'.

*Bn x Table breakpoint at line number 'x', 'n' equals
number of breakpoint.

*V=x Value of variable at breakpoint.

*Nvar Variable not found in statement.

CMND? Command not recognized.

NSTAT# Statement number out of range of program.
SYM NOT FND Symbol not found in table.

UNASSIGNED VAR Variable not assigned a value.

STACK EMPTY The subroutine return stack is empty.

STACK ILL Illegal subroutine return stack format.

TBL FULL Trace or break table full.

ILLGL SYM Illegal symbol.

NOT IN TBL Not in trace break table.

NO SYM TAB Symbol table not in file.
CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-199

" Y

Chapter 10

SYSTEM MAINTENANCE

THE PICK SYSTEM

USER MANUAL

PROPRIETARY INFORMATION

This document contains 1information which is
proprietary to and considered a trade secret of
PICK SYSTEMS. It 1is expressly agreed that it
shall not be reproduced in whole or part,
disclosed, divulged, or otherwise made available
to any third party either directly or indirectly.
Reproduction of this document for any purpose is
prohibited without the prior express written

authorization of PICK SYSTEMS. All rights
reserved.
CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-1

Contents
10 SYSTEM MAINTENANCE
10.1 VIRTUAL MEMORY STRUCTURE . . e e e e« 4+« . . 10-3
10.2 ADDITIONAL WORK-SPACE AIIOCATION e v e e e e e« . . . 10-6
10.3 THE FILE AREA ¢« o« . . 10-7
10.4 FRAME FORMATS e e e e e e e e e e e e . . 109
10.5 DISPLAYING FRAME FORMATS : THE DUMP VERB 10-10
10.6 THE SYSTEM FILE and SYSTEM-level FILES« . . 10-12
10.7 THE BLOCK-CONVERT AND POINTER-FILE DICTIONARIES . . . 10-14
10.8 THE ERRMSG FILE, LOGON MESSAGES, AND THE PRINT-ERR VERB 10-16
10.9 USER IDENTIFICATION ITEMS 10-19
10.10 SECURITY . . . « « . . . 10-21
10.11 THE ACCOUNTING HISTORY FILE AN INTRODUCTION 10-23
10.12 THE ACCOUNTING HISTORY FILE: SUMMARY AND EXAMPLES . . 10-25
10.13 THE ACCOUNTING HISTORY FILE: PERIODIC CLEARING . . . 10-27
10.14 FILE STRUCTURE: THE ITEM AND GROUP COMMANDS 10-28
10.15 FILE STRUCTURE: THE ISTAT AND HASH-TEST COMMANDS . . 10-30
10.16 DETERMINING NATURE OF GROUP FORMAT ERRORS A B) §
10.16.1 GROUP DEFINITION+ « 10-31
10.16.2 GROUP FORMAT ERRORS B L EX) §
10.16.3 RECOVERY FROM GFE's 10-32
10.17 GENERATING CHECKSUMS: THE CHECK-SUM COMMAND 10-33
10.18 SYSTEM PROGRAMMER (SYSPROG) ACCOUNT 10-34
10.19 AVAILABLE SYSTEM SPACE: THE POVF COMMAND 10-34
10.20 CREATING ACCOUNTS « « « « « « « « « . . 10-35
10.21 DELETE-ACCOUNT . . e e e e e e e e e e . . 10-36
10.22 FILE STATISTICS REPORT e . 10-37
10.23 UTILITY VERBS: STRIP-SOURCE, LOCK FRAME UNLOCK FRAME 10-39
10.24 SYS-GEN AND FILE-SAVE TAPES: FORMAT 10-41
10.25 FILE-RESTORE . . . c e e e e e e e e e w1042
10.26 ERROR RECOVERY DURING FILE IDADS e e e e e e e e e . 10-44
10.27 SELECTIVE RESTORES 10-45
10.28 SYSTEM BACKUP : FILE-SAVE 10-47
10.29 THE SAVE VERB . . e e e e e e e e e e e e e e e . 1049
10.29.1 MULTIPLE REEL SAVES e c e e e e 4 e« . . . 10-50
10.30 ACCOUNT-SAVE AND ACCOUNT- RESTORE e (0 152 §
10.31 SYSTEM STATUS: THE WHAT AND WHERE VERBS . « « « .« . . 10-53
10.32 VERIFYING SOFTWARE 10-56
CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
Preliminary PAGE 10-2

Bl Bl 0l Bl Bend Bud Bud Bad

10.1 VIRTUAL MEMORY STRUCTURE

PICK 1is a multi-programmable virtual memory machine with all of the
virtual memory (i.e., disk) being directly addressable as if it were real
memory (i.e., core).

The virtual memory of an PICK system resides on a magnetic disk drive,
which is divided into 512 byte "Frames". the frames are given Frame-ID's,
or "FID"s numbered 1, 2, 3 ... up to the maximum FID, which depends upon
the size of the disk.

The lower-numbered frames on the disk are "ABS" frames, which contain
system software and workspaces. all frames above the ABS area are
available for use in files. those frames not used in files make wup the
Available Space, sometimes called "Overflow".

EXECUTABLE AREA (ABS)

The ABS area consists of executable object code ;and process workspaces.
Software written in PICK assembly 1language is 1loaded onto disk in the
executable area. The length of the executable area is a system generation
parameter, and must be between 511 and 4095. Frames 1 through 399 of the
executable area are reserved for current and future PICK software. The
remaining frames are available for user-written assembly language
programs.

WORK AREA

The PICK operating system allows multi-programming, which means more than
one different program may be executed, on a time-sharing basis, by the
CPU. each running program, or process, has a "Primary" workspace area of
32 contiguous frames, the first of which is called the "Process Control
Block" (PCB).

The PCB of channel zero is normally frame 512 (200 hex). PCB's for
succeeding processes are separated by 32, and therefore the PCB for
channel one is 544 (220 hex), channel two is 240 hex, etc.

CHAPTER 10 - SYSTEM MAINTENANCE
PAGE 10-3

Copyright 1988 PICK SYSTEMS

Additionally, larger "Secondary" workspace blocks are reserved following
the last primary workspace, that of the SPOOLER. WSSTART is the starting
FID of the secondary workspaces, which continue to the end of the work
area. each process has three secondary workspaces, wusually of 100 frames
each.

EILES AND OVERFLOW

After the work area are the PICK files, beginning with the SYSTEM file.
The base of the SYSTEM file, SYSBASE, is the beginning of the file space.
on a newly generated or restored system, all other files on the system
immediately follow the SYSTEM file. At the end of the files is the start
of Available Space (overflow), which then continues until the end of the
disk--MAXFID. (See the left side of the first figure.)

On a running system, the overflow area will become "fragmented", as
frames are taken from and returned to the overflow pool. (See the right
side of the second figure.)

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
. PAGE 10-4

-

_FID (HEX)

I 1 1 I A A A
2 2		PICK	
3 3		Assembly	EXECUTABLE
.		Code	AREA
_399 LV			
400	* I		
		User	
		Assembly	
. .		Code	
1 511 I1FF	V v		
512 200	“ Line O PCB °		
		& Primary	WORK
		Workspace	AREA
d 1V			
220	* Line 1 PCB	Process	
		& Primary	Control
		Workspace	Blocks
1 LV	&		
	...workspaces...	Primary	
			Workspaces
	© Spooler PCB		
		& Primary	
		Workspace	
I 1V ')			
WSSTART	* Line O Sec. °		
	¥ Workspace		
	.	Secondary	
	<	Workspaces	
. .	© SPOOLER Sec.		
] . .| V Workspace Vv \Y

SYSBASE

I
I
|
|
I
]
I
I
I
|
I
|
I
I
I
I

--Available-
Space

— 1
| __Files |

|

I
I
|
-1
I
|
I
o
|
I

11 1

I
I
I
I
|
|
I
|
I
I
|
I
I
|
I
I

ABS area, including Executable area and Work area.

>

e e e

el inll i B o T o I & T = IO S TN & BN = TN = B

] ugiFLD]
Files and Available Space, after a file-restore (left)
and after undergoing normal fragmentation (right)

CHAPTER 10 - SYSTEM MAINTENANCE
PAGE 10-5

Copyright 1988 PICK SYSTEMS

10.2 ADDITIONAL WORK-SPACE ALLOCATION

The "additional workspace" is a set of contiguous, linked frames that is
initialized by the system at coldstart or system-generation time.

There are several processors in the system that require large amounts of
workspace, or buffer area. This workspace 1is pre-assigned, and need not
be 1linked up at LOGON time. The workspace is linked after a file-restore,
or it may be 1linked from TCL by use of the LINK-WS verb. The SPOOLER
process links the workspace for all the other lines, and no other user
can log on the system while this linkage is taking place; the message:

LINKING WORK-SPACE; WAIT
will appear until the spooler has finished the linkage.
The starting FID of the workspace may be computed as below:

WSSTART = 512 + (number of lines)*32. Each line has three (3) workspaces
of one hundred (100) contiguous frames.

The workspace may be linked on a 1live system using the LINK-WS verb on
the SYSPROG account. This may be done if it is suspected that the links
of the additional workspace have been destroyed for some reason. One
manifestation of this situation is that BASIC programs may terminate with
the "NOT ENOUGH WORK SPACE" message. Work-space 1links should be
particularly suspect if a program or process aborts on one channel, but
works correctly on others.

The general form of the verb to relink the workspace is:
LINK-WS ((n{-m}))

If the "(n)" or "(n-m)" is omitted, the workspace of ALL lines will be
relinked, except those of 1lines 1logged on and that of the spooler
process. The parenthetical specification may be used to 1limit the
relinking process to lines "n", or "n" through "m" only.

As the 1linkage proceeds, the 1line-number of the process whose workspace
is currently being 1linked is displayed on the terminal; if the line is
logged on, the message "ON!" will be displayed, and THE WORK-SPACE IS NOT
RELINKED!

The spooler's workspace can only be relinked via a coldstart!

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-6

10.3 THE FILE AREA

Beginning 1immediately after the Work Area, the remainder of the virtual
memory (called the File Area) 1is available for the storage of data in
files. The portions of the File Area that are not allocated to the files
are maintained as a pool of Available Space.

The beginning of the File Area is a system generation parameter. It may
be computed via the following general formula:

Start of File Area = (FID of first PCB) +
((number of processes)*32 +
((number of processes)¥*(pre-assigned work-space)*3

Pre-assigned work-space is set to 100 frames per process per work-space.
Each process (including the spooler) has 3 secondary workspaces of 100
frames each.

As an example, a system with 16 communication 1lines (therefore 17
processes including the spooler) will have the start of the file area at
frame:

512 + (17 * 32) + (17 * 300) = 6156
The end of the File Area is the highest available disk frame, MAXFID.

File Area frames which are not allocated to the files are maintained as a
pool of Available Space, often called "Overflow". Available Space is used
by the Pick system file management routines as additional data space, as
well as to other processors as scratch work space. The Pick Computer
System maintains a table of pointers that define the Available Space,
which may be either in a "linked" form, or in a "contiguous" form.
Contiguous Available Space, as the name implies, consists of blocks of
contiguous frames (defined by starting and ending numbers) that can be
taken out of the pool either singly or as a block. Linked Available Space
can only be taken a frame-at-a-time. Conversely, space may be released by
processors to the 1linked available pool a frame-at-a-time, or to the
contiguous pool as a block.

At the conclusion of a File-Restore process on the Pick system, an initial
condition may be said to exist; there will be one principle block of
contiguous available space, extending from ‘the end of the current data
space through the last available data frame. This is illustrated in the
first figure; the results of the POVF (print overflow) verb indicate that
there is no 1linked overflow space (blank line at the top of the output),
and only one contiguous block of space.

CHAPTER 10 - SYSTEM MAINTENANCE
PAGE 10-7

Copyright 1988 PICK SYSTEMS

As the system obtains and releases Available Space (and as files are
created and deleted), the Available Space gets fragmented; at any
particular time there may be several blocks of contiguous Available
Space, and a chain of linked Available Space. Available frames will be
placed in the 1linked Available Chain only when there are 31 sets of
contiguous Available space (representing the maximum that the system
space management routines can maintain). This is 1illustrated in the
second figure; here the 1linked Available chain starts at FID 23459 and
contains 400 frames. There are also several sets of contiguous Available
space as shown by the pairs of FIDs displayed.

Logically, there is no difference between Available space in linked chain
and that in the contiguous sets; however, certain processors obtain
frames from the contiguous space only, for example the CREATE-FILE
processor, and the MEM-DIAG processor. Therefore, if the system Available
space 1is severely fragmented, while there may be actually be enough disk
space to create a large file, for example, there may not be enough
available as a contiguous block. Periodically, a File-Restore may be run
to restore contiguous Available space from the linked Available space
chain.

(SEE: POVF)

>POVF [CR]
23987- 97799

TOTAL NUMBER OF CONTIGUOUS FRAMES AVAIABLE= 63812

Results of POVF immediately after a file-restore
(One contiguous block of Available space only)

>POVF [CR]
23459 (400)

8112- 8117 (6) 9000- 9000 (1)
23789- 23801 (13) 25000- 25678 (679)
25681- 25692 (12) 27123- 27323 (201)
34502- 35123 (522) 35800- 35801 (2)
37091- 37091 (1) 37093- 37093 (1)
37099- 37100 (2) 38100- 38100 (1)
43100- 44234 (1135) 45680- 45681 (2)
46343- 46443 (101) 46445- 46445 (1)
46448- 46448 (1) 46451- 46451 (1)
46454- 46454 (1) 46458- 46474 (17)
47011- 47444 (434) 47460- 47492 (33)
47661- 47750 (90) 48012- 48017 (6)
48018- 48018 (1) 48020- 48101 (82)
48233- 48268 (36) 48299- 48299 (1)
51111- 53234 (2124) 53400- 53601 (202)

60000- 97799 (37800)
TOTAL NUMBER OF CONTIGUOUS AVAILABLE FRAMES= 43509

Results of POVF after normal system operation.

CHAPTER 10 - SYSTEM MAINTENANCE
PAGE 10-8

Copyright 1988 PICK SYSTEMS

Bk Besl Bikd Bed Bed Boeod Bocd Bed Bod Beod Boad Ged fBad Bl fhcd Wed il Bad Bhed

10.4 FRAME FORMATS

A frame is a block of disk space that is referenced by a wunique
number called the Frame Identifier, or FID. Frames come in two
sizes: ABS frames contain are 2048 bytes, file frames contain 512
bytes.

There are two types of frames in the Pick system - ABS frames and FILE
frames. ABS frames may be object-code (assembly or PICK/BASIC-compiled
object code), buffers, or workspaces required by the system. ABS frames
contain 2048 bytes and are not linked.

FILE frames contain 512 bytes; 500 bytes are used for data, the remaining
12 bytes are used as "link fields". Linked frames are used to define
data areas that are greater than 1 frame in length. The groups in data
files may expand as more data is placed in the group, so when the end of
a frame is reached, another frame is obtained from the system overflow
and linked to the end of the group.

The format of the linked fields is as follows:

byte: 0 1 2 3 4 5 6 7 8 9 A B c

* nncf ..forward link... ..backward link... npcf * start
of data
where:
* Unused byte.
nncf Number of next contiguous frames (count of frames that

are linked forwards of this one, whose FID's are
sequential to this FID).

npcf Number of previous contiguous frames (count of frames
that are linked backwards to this one, whose FID's are
sequential to this FID).

forward 1link FID of the frame that is next in 1logical sequence to
this one.

backward link FID of frame that is logically previous to this one.

The first frame of a linked set of frames will have zero "npcf" and
"backward 1link" fields, and the last frame of such a set will have zero
"nncf" and "forward link" fields. The "nncf" and "npcf" fields are also
normally zero, except in the "linked workspace" allocated to each
process, and in files that have a separation greater than one.

Following the link fields is the 500-byte data block.

Unlinked frames have no specified format; all 512 bytes of the frame may
be used by the system.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-9

10.5 DISPLAYING FRAME FORMATS : THE DUMP VERB

| The DUMP verb may be used to display data in a frame. The data

|
|
| display may be specified in either character or hexadecimal format. |
|

FORMAT:

where

DUMP nl{-n2),options

nl{-n2) nl and n2 specify the FIDs of the frames being dumped; may be
specified in decimal, or in hexadecimal by preceding the hex
number with a period (.).

options Valid options are

c

Display ABS frame; dump begins with byte 0 of the frame
and continues for 2048 bytes.

Group; specifies that the data starting at frame nl is to
be dumped, and that the dump continue following either the
forward or backward 1links (depending on whether the U
option 1is mnot or is specified). The dump will terminate
when the last frame in the logical chain has been found.

Links; specifies that the dump be confined to the "links"
of the frame(s) concerned; no data is displayed.

No stop; if the data is printed on the terminal, specifies
that the end-of-page stop be inhibited.

Printer; the display is routed to the line-printer.

Upward trace; the data or 1links are traced logically
upwards, using the backward links to continue the display.

Hexadecimal display; the frames are dumped in hexadecimal
with ASCII characters along the right side of the display.

NOTE: The linkage information displayed by the DUMP verb is meaningful
only for linked frames.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS

PAGE 10-10

o T L T . B B . BN . BN . BN BN L B N . B . BN . BN . BN . BN B e B

>DUMP 6950,L [CR]

FID:
+FID:

6950 :
6967 :

0 6967
0 6950

0

0

o o

(1B26 :
(1B37 :

In the example above, the display indicates
whose 1links are being dumped;

link"

is 0.
hexadecimal.

Data in parentheses

"+" indicates

one.

>DUMP .1DE7 X [CR]

FID:

)

0001
0011
0021
0031
0041
0051
0061
0071
0081
0091
00Al
00B1
00C1
00D1
00E1l
00F1
0101
0111
0121
0131
0141
0151
0161
0171
0181
0191
01Al
01B1
01Cc1
01Dp1
0lEl
.01F1

7655 :

8E454E33
52414752
41524749
4LE475448
2031202E
42202E78
49535441
45582027
69637327
206F6620
20FE4953
43455353
70726F76
696C697A
6174696F
524D4154
49535441
652D6E61
747D207B
69746572
6F646966
696F6E73
6F707469
31352E46
6D652720
6F662074
77686963
65736972
65206861
74696373
76657262
66696C65

0

32FE2E42
41504820
4E203220
203734FE
62662049
626620FE
54207665
46696C65
20275374
61206669
54415420
20766572
69646573
6174696F
6E2EFE2E
3AFE2E4E
54207B44
6D65207B
73656C65
69617DFE
69657273
2C6F7074
6F6E7329
2E4AFE20
69732074
68652066
68207468
65732074
7368696E
2EFE7468
2070726F

7656

502E462E
302E4C45
2E4C494E
2E534543
53544154
2E494E44
726227FE
20737461
61746973
6C6527FE
69732061
62207768
2066696C
6E20696E
78626F78
462E494D
4943547D
6974656D
6374696F
20202020
7D207B20
696F6E73
207DFE2E
2746696C
6865206E
696C6520
65207573
6F207365
67207374
65204953
76696465

the "nncf"

are the

0O o0

4A2E5041
4654204D
45204C45
54494F4LE
20564552
45582027
2E494E44
74697374
74696373
2E626F78
6E204143
69636820
65207574
666F726D
FE20464F
203135FE
2066696C
2D6C6973
6E2D6372
20207B6D
286F7074
2C2E2E2E
494D202D
652D6E61
616D6520
666F7220
6572FE64
65207468
61746973
54415420
73206120

field 1is O;

same numbers

1DE7 :

001
017
033
049

065 :

081
097
113
129
145
161
177
193
209
225
241
257
273
289
305
321
337
353
369
385
401
417
433
449
465
481
497

1B37 0
0 1B26

that 6950 is the FID
the "forward
field is 6967; the "backward link" field is 0; the "npcf" field
displayed in
The next line displays the link fields of FID 6967; the
that this FID is logically "forward" of the preceding

0 1DE8

:.EN32" .BP.F.J.PA:
:RAGRAPH O.LEFT M:
:ARGIN 2 .LINE LE:
:NGTH 74" .SECTION:
1 .bf ISTAT VER:
:B .xbf ".INDEX ':
:ISTAT verb'”.IND:
:EX 'File statist:
'Statistics:
: of a file'”.box:
: “ISTAT is an AC:
:CESS verb which :
:provides file ut:
:ilization inform:
:ation.”.xbox” FO:
:RMAT:".NF.IM 15":
:ISTAT (DICT) fil:
:e-name {item-1lis:
:t) (selection-cr:
:iteria)” {m:
:odifiers) ((opt:
:ions,options,...:
:options) }".IM -:
:15.F.J" 'File-na:
:me' is the name :
:of the file for :
:which the user”d:
:esires to see th:
:e hashing statis:
:tics."the ISTAT :
:verb provides a :

tics!

:file:

Sample usage of the DUMP verb.

CHAPTER 10 - SYSTEM MAINTENANCE
Preliminary

PAGE 10-11

Copyright 1988 PICK SYSTEMS

10.6 THE SYSTEM FILE and SYSTEM-level FILES

The SYSTEM file is the highest-level file in the PICK file hierarchy.
It contains the file-pointers to every account in the data-base, as
well as pointers to the system-level files such as ACC, PROCLIB, etc.

Entries in the SYSTEM file define wuser M/DICT's or special files
neccessary for the PICK software.

The M/DICT pointers are either D (file definition) or Q (file synonym)
items. The item-ID's of such items are the USER-NAMES that the user
enters when the system requests him to LOGON. Such items are created by
the CREATE-ACCOUNT processor, (for D items,) or by use of the EDITOR or
COPY processor for Q items. The format of user-identification items is
discussed in the section on USER IDENTIFICATION ITEMS.

The SYSTEM file also contains the file-pointers to the system-level files
that are necessary to the proper functioning of the system. These files
are:

ACC (Accounting file)

BLOCK-CONVERT (for BLOCK-PRINT and PICK/BASIC (A) option)
POINTER-FILE (Saved lists.)

PROCLIB (Standard system PROC library)
SYSTEM-ERRORS (Disk errors)

The ACC file (Accounting history) has two types of items: those that
indicate the actively logged-on users, and the accounting-history data
items that keep track of the usage statistics of each user. The format of
the items in this file is discussed in later sections.

The ACC files have a tri-level structure, with an ACC account, an ACC
dictionary and an ACC data section.

The BLOCK-CONVERT file contains two unrelated types of items:

1) Items that define the format used in the characters displayed when
the BLOCK-PRINT verb is used.

2) Items that are used to print a descriptive message when the "A"
(assembly-code) option is used when compiling a PICK/BASIC program.

The BLOCK-CONVERT file is a single-level file.

The POINTER-FILE contains items that are "pointers" to binary data
strings. It is referenced implicitly whenever the SAVE-LIST, GET-LIST,
DELETE-LIST, CATALOG or DECATALOG verbs are used. The POINTER-FILE is a
single-level file. The file-defining entry "POINTER-FILE" in the SYSTEM
file must have the code "DC" in line 1. This indicates that the file
contains non-standard, binary data items.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-12

The PROCLIB file 1is a single-level file that contains commonly used
PROCs, such as CT (Copy to Terminal), LISTU (List active users), etc.

The SYSTEM-ERRORS file is a three-level file reserved for logging system
errors. Currently its only use is to store disk errors.

Level O SYSTEM dictionary

I

[

|

Level 1 ACC BLOCK-CONVERT POINTER-FILE PROCLIB |
SYSTEM-ERRORS |
(account) dictionary dictionary dictionary (account) |

|

Level 2 ACC |
SYSTEM-ERRORS |
dictionary |
dictionary |
I

Level 3 ACC |
SYSTEM-ERRORS |
data data |

[

|

SYSTEM-level files

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-13

10.7 THE BLOCK-CONVERT AND POINTER-FILE DICTIONARIES

This section describes the format of entries in the BLOCK-CONVERT, and
POINTER-FILE dictionaries.

BLOCK-CONVERT dictionary:

There are two types of entries in the BLOCK-CONVERT file; type I is the
entry that forms the characters for the BLOCK-PRINT verb. Its format is:

Item-id: is the character to be formed; that is, the item whose item-id
is "C" will form the character C; that whose item-id is "(" will form the
character {, etc.

The first attribute contains a code of the form:
n{c)

where "n" 1is the width of the character matrix (the depth of all
characters formed is fixed at 8); and the optional "c" 1is a character
that will replace the item-id in the generation of the BLOCK-PRINT form.

There must be 8 succeeding attributes, each one specifying the format of
a row in the generated form. Each attribute must begin with a "C" or a
"B", specifying a character insertion or a blank insertion respectively,
followed by the number of such insertions needed; optionally, additional
numbers may be specified, separated by commas. Each succeeding number
switches the insertion from character to blank and vice-versa. The sum of
all numbers must equal the character width specified in attribute 1. See
the first example.

The second type of data in the BLOCK-CONVERT file has a
two-hexadecimal-digit item-id, corresponding to the PICK/BASIC opcode
generated by the PICK/BASIC compiler; attribute 1 is the symbolic name
for the opcode. These entries are used by the "A" option of the
PICK/BASIC compiler to generate a listing of the PICK/BASIC object code.

CHAPTER 10 - SYSTEM MAINTENANCE
PAGE 10-14

Copyright 1988 PICK SYSTEMS

POINTER-FILE dictionary:

This file contains the pointers to select-lists (stored by the SAVE-LIST
verb) and to cataloged PICK/BASIC programs (stored by the CATALOG verb).

They may be examined, but, like file-pointers,ghould never be gltered in
any way by the ugser!. The format of these items is:
Item-id account-name*x*y where "x" is C for a cataloged

001
002
003
004

005

program, or "L" for a select-list,
and y is the program-name, or
select-1list name.

CL or CC CL for lists, CC for programs.

fid Base FID of the program or list.

n # frames in the program or list.

m Number of items in a list; null
for a program.

time & date Time and date of generation.

>COPY BLOCK-CONVERT S 8B (T) [CR]

001
002
003
004
005
006
007
008
009

001

S

7
B1,5,1
c2,3,2
c2,5
B1,5,1
BS,2
c2,3,2
B1,5,1
B7

8A
STOP

Item-id; defines format for character "S"

Defines character width as 7

Specifies string " SSSSS " (1 blank, 5 S's, 1 blank)
Specifies string "SS SS"

Specifies string " SSSSS "

Item-id (BASIC object-code byte)
Identifies object-code (STOP opcode).

Sample items from BLOCK-CONVERT file.

>BLOCK-PRINT S [CR]

SSSSS
SS SS
SS

SSSSS

SS
SS SS
SSSSS

CHAPTER 10 - SYSTEM MAINTENANCE

Output using BLOCK-PRINT verb.

Copyright 1988 PICK SYSTEMS
PAGE 10-15

10.8

THE ERRMSG FILE, LOGON MESSAGES, AND THE PRINT-ERR VERB

Most

error messages generated by TCL, ACCESS, PICK/BASIC, PROC or any

other system software are contained in the ERRMSG file. A standard set
of approximately 250 error message items is provided with the PICK base
system. However, the user may change the error messages in the ERRMSG

add new error messages, or even create another ERRMSG file for each

account. This can be particularly useful when used in conjunction with the

STOP

and ABORT statements in PICK/BASIC, in which the user can specify an

error message and pass parameters to the error message processor.

|
|
I
I
I
| file,
I
|
|
|

Items in the ERRMSG file must follow a certain format, in which the first
character in each line of the item defines a special operation, as listed

below.
HARACTER MEANING
v/H Causes the string following the "H" on be placed in the output

\ <_
o = =
7~
2

-

SO~

~
=)
N

S(n)

PORSL

buffer, with no carriage return or 1line feed. At the end of the
error message item, the string "H+" will inhibit the final
carriage-return/line-feed that is normally output.

Causes the output buffer to be printed, with a carriage-return and
line-feed

As above, and also causes n-1 blank lines to be printed.

Places the current date in the output buffer.

Places the current time in the output buffer.

Inserts the next parameter in the 1list of parameters which was
passed to the error message processor with the error message. The
parameters may be specified by the PICK/BASIC program (in the case
of a PICK/BASIC STOP or ABORT statement,) or by some system
processor in the case of system-generated error messages.

Inserts the next parameter right-justified in a field of n blanks.
Same as R(n), but left-justified.

Skips a parameter in the parameter list.

Sets the output buffer pointer to location "n".

SPECIAL ERRMSG FILE ITEMS.

The item "LOGON" in the SYSTEM dictionary contains the request to logon
to the system (typically "LOGON PLEASE").

When
item

CHAPTER 10 - SYSTEM MAINTENANCE

a user logs onto an PICK system, the error message specified by the
"LOGON" in the ERRMSG file is printed on the wuser's terminal.

Copyright 1988 PICK SYSTEMS

Preliminary PAGE 10-16

Therefore, any message which is to be received by all users on the system
immediately upon logging on may be placed in this item. This item must
exist on file even if there is to be no general system message.

The ERRMSG items "335" and "336" contain the connect time messages
displayed when a user logs on or off the system.

Some examples of error message processing are shown in the first figure.

The PRINT-ERR verb allows the user to invoke the error message processor
from TCL. The format is:

>PRINT-ERR file-name item-list

The error messages specified in the item-list will be processed, with a
parameter list of A,B,C,D... See second figure.

In a PICK/BASIC program, the lines...

FILE = "BP" ; ID = "1006"
OPEN "" ,FILE ELSE STOP 201,FILE
READ ITEM FROM ID ELSE STOP 202,1D

Could cause the program to stop with either of the following:

[201] 'BP' IS NOT A FILE NAME
'1006' NOT ON FILE.

If the item "LOGON" in the ERRMSG file for an account looked like:

HHello out there!
L

HIt's now

T

H and all's well!

Then the user would see the following when he logged on:

Hello out there!
It's now 11:22:33 and all's well!

Sample Usage of the Error Message Processor.

CHAPTER 10 - SYSTEM MAINTENANCE
Preliminary PAGE 10-17

Copyright 1988 PICK SYSTEMS

>PRINT-ERR ERRMSG 201 [CR]
[201] 'A' IS NOT A FILE NAME

>PRINT-ERR ERRMSG 289
TERMINAL PRINTER

B
D

PAGE WIDTH:
PAGE DEPTH:
LINE SKIP :
LF DELAY

FF DELAY :
BACKSPACE :
TERM TYPE :

HIIQEmEAOQP

Sample Usage of the PRINT-ERR verb.

CHAPTER 10 - SYSTEM MAINTENANCE
Preliminary

PAGE 10-18

Copyright 1988 PICK SYSTEMS

Bed Bl Bl Bcd Bad Bed

™ P O F©m PN PSP P P Fm | s '™meso s Peo ' esmormoees

10.9 TUSER IDENTIFICATION ITEMS

Each user has a user identification item stored in the System
Dictionary (SYSTEM). This set of user identification items define
the users that can log on to the system. User identification items
are either file definition items or file synonym definition items.

User identification items are initially created via the CREATE-ACCOUNT
PROC. These items may subsequently be updated via the EDITOR. ENTRIES
IN THE SYSTEM DICTIONARY SHOULD NOT BE UPDATED WHEN ANY OTHER USER IS
LOGGED ON to the system because the system software maintains pointers to
data in the System Dictionary when users 1log on; updating the System
Dictionary invalidates these pointers. An exception to this rule is when
creating a new account (or a synonym to an existing account), which can
be done at any time since new items are added to the end of the existing
System Dictionary data, and thus do not disturb any pointers to it.

Attributes five through eight of a user identification item contain data
associated with the wuser's security (lock) codes, password, and system
privileges:

ATTRIBUTE USE

5 Contains the set of retrieval lock-codes associated with the
user; may be multi-valued (separated by value marks). There
is no restriction to the format of individual 1lock-codes.
This attribute may be null, indicating no lock-codes. (Lock-
code usage is described in the topic titled SECURITY.)

6 Contains the set of wupdate lock-codes associated with the
user; the same considerations as described for retrieval lock-
codes above.

7 Contains the wuser's password, which is a single wvalue. This
attribute may be null. This field is encoded by the PASSWORD
process and should be changed only by the PASSWORD verb.

8 Contains a code which indicates the level of system privileges
(see below) assigned to the user.

9 May contain the code "U" to 1indicate that logon/logoff times
should be logged by the system. May contain the code "R" to
specify the RESTART option.

Attributes one through four and attributes ten through thirteen are as
defined for regular file definition of file synonym definition items (see
topic titled DICTIONARIES). The first figure shows a sample user
identification item for user SMITH.

Attribute 8 contains the system privilege 1level. Three 1levels are
available; they are referred to as SYSO (lowest), SYS1, and SYS2
(highest), respectively. Lower levels of system privileges restrict
usage of certain facilities of the system, as described in the second
figure.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-19

Attribute 9 may contain the codes 'U' or 'R', or both. 'U' specifies
that the accounting listing file is to be updated whenever the user logs
on and off this account (see ACCOUNTING FILE). 'R' specifies that the
Restart option 1is to be set. This causes the LOGON PROC to be
re-executed whenever an "END" is typed at the DEBUG level.

I

m_SMI tem o |

I

001 D <------ccccccccccncccccnce- D/CODE |
002 2537 <---ccccccccccccccccana- Base FID |
003 13 <----ccccccccccccccccccnn- Modulo |
004 1 <----c-cccccccccacccaacaaa- Separation |
005 ABC <------cccccccccccccanccan Retrieval lock Code (L/RET) |
006 1234 <-----c-cccccccccccccaan Update Lock Code (L/UPD) |
007 PWS <---cccccccncccccccccnne- Password |
008 SYS2 <----cccccccccccccnccnnn System Privilege Level |
009 U C---cc-vceccmcccccmcccccccnan Update Account File for this user |
I

Sample User Identification Item For User SMITH

FILE-RESTORE processors.

|
FACIL LOWEST PRIVILEGE LEVEL REQUIRED |
Updating of M/DICT One |
|
Use of magnetic tape One |
|
Use of DEBUG (other than P, Two |
OFF, END and G commands). |
|
Use of DUMP Processor Two |
|
Use of Assembler and Loader Two |
I
Use of FILE-SAVE and Two |
|
|

Required System Privilege Levels.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-20

g% 53 FO F9 F1 S FY P P 1R P e Fm e

il =l i |

e

10.10 SECURITY

Security codes may optionally be placed in the L/RET and L/UPD attributes
of a dictionary item to restrict access and update. At Logon time, each
user 1is assigned the set of security codes which are in his user
identification item. During the session, whenever, an L/RET or L/UPD
code is encountered, a search 1is made of the wuser assigned codes for a
match; if no match is found the user is denied access. A security code
may consist of any combination of legal ASCII characters.

L/RET and L/UPD

Both file definition ("D" code) and synonym file definition ("Q" code)
items have L/RET (retrieval 1locks) and L/UPD (update locks) attributes.
When these attributes have values stored, they are known as security
codes. Although there is no prohibition against multiple values for
these attributes, only the first attrjbute value is wused for matching
against the user assigned codes. Since each file may be individually
locked for both update and retrieval, a user must be assigned multiple
codes to that set of data he is allowed to access. Using this feature, a
complex "mask" can be constructed for each user, giving each wuser a
different sub-set of files which he may access.

Security at the file 1level is invoked at the processor 1level. The
following processors are assumed to be updating processors and therefore
require a match on the L/UPD attribute in the file definition item: COPY,
EDIT, PICK/BASIC if writing a file, RUN and the Assembler. Other
processors are assumed to be retrieval processors and require a match on
the L/RET attribute in the file definition item.

PICK/BASIC requires a match against L/RET code when the file is opened;
and requires a match against the L/UPD if data is changed in the file.

Failure to match one of the user security codes with either the L/RET (or
L/UPD) attribute value will generate the following message (and return
control to TCL):

[210] FILE xxx IS ACCESS PROTECTED

User Assigned Codes

Each user identification item in the System Dictionary (see topic titled
USER IDENTIFICATION ITEMS) contains the 1list of security codes assigned
for that particular user. These codes are values for the attributes
L/RET and L/UPD. The lock code in the user-identification item and the
lock code in the file being verified must match.

Security codes may be assigned initially when an account is created via
use of the CREATE-ACCOUNT PROC Security codes may be added or deleted by
updating the appropriate security codes); however, updates to the user
identification item should only be performed when no one else is logged
onto the system.

CHAPTER 10 - SYSTEM MAINTENANCE
PAGE 10-21

Copyright 1988 PICK SYSTEMS

Security Code Comparison

Security codes are verified comparing the value in the file dictionary
against the corresponding string of values in the user identification
item. Characters are compared from left to right. An equal (verified)
compare occurs when the value in the file dictionary is exhausted and all
characters match up to that point. This is illustrated below.

When referencing a file using a Q synonym a security code match is made
at all levels (i.e., SYSTEM, M/DICT, and file dictionary) and therefore a
correspondence must be maintained at all levels in order to process the Q
synonym files. Since the wuser identification item for the account
containing the primary file is wverified for security codes, the user
referencing the Q synonym must have a code defined in this wuser
identification item which will verify with the first code 1in the equated
account's user 1identification item. Therefore, in a user identification
item, only the first code is used to protect the account from Q synonym
accesses,while all the codes in the item are assigned to the user when he
logs on.

FILE DICTIONARY CODE USER IDENTIFICATION CODE RESULT

123 123 Match
12 123 Match
123 12 No Match
XYz XYZ5 Match
AQ2 AQ No Match

Sample Security Code Comparisons.

CHAPTER 10 - SYSTEM MAINTENANCE
PAGE 10-22

Copyright 1988 PICK SYSTEMS

|

e FE9 N F3 S P9 PN s

-

s e

10.11 THE ACCOUNTING HISTORY FILE: AN INTRODUCTION

The Accounting History File is one of the mandatory files in the PICK
system. This file contains accounting history for the system, as well as
the entries that describe the currently active (logged-on) users.

The System dictionary (SYSTEM) contains the file definition item (item-id
'ACC') for the Accounting History File, as illustrated in the figure. The
'ACC' dictionary is set up for examining and 1listing the data in
Accounting History File via ACCESS (see topic titled THE ACCOUNTING
HISTORY FILE: SUMMARY AND EXAMPLES). There are two types of entries
(items) in the Accounting History File: those that represent active
(logged-on) users, and those that keep track of accounting history.

ctive Users ems

The item-id of an active user item in the Accounting History File 1is the
four-character hexadecimal FID of the PCB of the user's process. If the
PCB's start at FID=512, (they proceed in steps of 32 frames from there
on), we see that a user logged on to process zero will have an entry with
an item-id '0200' (512), while a user logged on to process one will have
an entry with an item-id '0220' (544), and so on. Attribute one of an
active wuser item contains the name of the user (i.e., the item-id of the
user identification item), attribute three the. date 1logged on, and
attribute four the time logged on. Active wuser items are created when a
user logs on, and deleted when he logs off.

Accounting Histo Items

The item-id of an accounting history item is the name of the wuser (i.e.,
the item-id of the user identification item), with the channel number
concatenated by a "#". For example, if user 'SMITH' 1logs on to channel
12, when he logs off, the item whose item-id is 'SMITH#12' in the ACC
file will be updated. This allows one to keep track of system usage by
user-id as well as channel number.

Attributes one, two and three are not used. The remainder of the
attributes are described below:

ATTRIBUTE USE

4 Dates(s) Logged on. Each unique date 1is stored. Value marks are
tagged on to the value in this attribute if multiple Logoffs occur
on the same date (for LIST alignment purposes). Date is stored in
Pick Computer System date format.

5 Time(s) Logged on. An entry is made for each Log-off, representing
the time at which the user Logged on. Time is represented in seconds
past midnight (24- hour clock).

6 Connect time(s). This entry represents the time in seconds between
the Logon and the Logoff.

CHAPTER 10 - SYSTEM MAINTENANCE
Preliminary PAGE 10-23

Copyright 1988 PICK SYSTEMS

7 Charge-units. A number representing the CPU usage is added on each
Logoff.

8 Line-printer pages. A number representing the number of pages routed
to the line-printer for each session.

Note: Attributes 4, 5, 6, 7 and 8 are stored as a "Controlling-
dependent” data set, with attribute &4 being the controlling value, and
the others the dependent ones. See the ACCESS reference manual for a
discussion of the "controlling-dependent" data set format.

The accounting history file 'ACC' is not automatically updated every time
a user logs off the system. The SYSTEM dictionary item for the user
must have a 'U' 1in attribute 9 if the user is to have his Account file
history items wupdated. The entries in the Account file contain the
history of each session (logon to logoff). If the SYSTEM dictionary data
has been changed since logon or the history item to the updated is too
large for the work-space, the message number 338 will be printed.

Channel #Item-id Channel # Item-id
0 0200 16 0400
1 0220 17 0420
2 0240 18 0440
3 0260 19 0460
4 0280 20 0480
5 02A0 21 04A0
6 02C0 22 04C0
7 02EO 23 04EO
8 0300 24 0500
9 0320 25 0520
10 0340 26 0540
11 0360 27 0560
12 0380 28 0580
13 03A0 29 05A0
14 03¢C0 30 05C0
15 03EO

Channel (Line) numbers and corrosponding Active User Item-IDs.

CHAPTER 10 - SYSTEM MAINTENANCE
Preliminary PAGE 10-24

Copyright 1988 PICK SYSTEMS

(o I . N . B . B . D o B . BN . B o B . BN . BN . B - BN . B . B L BN e BN . B L

10.12 THE ACCOUNTING HISTORY FILE: SUMMARY AND EXAMPLES

This topic summarizes the formats of the active user items and the
accounting history items in the Accounting History File. Also presented
are sample entries for the Accounting History File.

The first figure summarizes the attributes for the active user items and
the accounting history items. The second figure shows a sample sorted
listing of the active users (users with a value for attribute Al) via an
ACCESS SORT statement. The third figure shows a sample listing of the
accounting history item for user SMITH via an ACCESS LIST statement.

ATTRIBUTE 'ACC' DICTIONARY ACCOUNTING
__NUMBER NAME ACTIVE USER ITEM BISTORY ITEM
(item-1id) Four-character User name#lineno

hexadecimal PCB-FID

1 NAME User name Not used

2 DATE Date logged on Not used

3 TIME Time logged on Not used

4 DATES Dates logged on

5 TIMES Times logged on
6 CONN Connect time

7 UNITS | Charge-units

8 PAGES Number of printer

pages generated.

Summary of Active User Items and Accounting History Items

CHAPTER 10 - SYSTEM MAINTENANCE
PAGE 10-25

Copyright 1988 PICK SYSTEMS

>LISTU [CR]

CH#

00
01
02
03
05
*06
07
10

PCBF

0200
0220
0240
0260
02A0
02Cco
02E0
0340

SYSPROG
EL-ROD
LC

HVE

CM
BUGEYE
JT

11:
12:
09:
06:
09:
11:
01:
11:

02AM
10PM
11AM
59AM
55AM
25AM
29PM
34AM

. DATE...

03/22/78 Channel
03/22/78 Channel
03/22/78 Channel
03/22/78 Channel
03/22/78 Channel
03/22/78 Channel
03/21/78 Channel
03/22/78 Channel

. LOCATION.........ciitteenennn

HNONUWMWNOKEO

Sample sorted listing of

active user items (using LISTU).

>LIST ACC = "SMITH]"

PAGE

1

......

SMITH#0

SMITH#5

DATE. TIME..
*
01/13 16:
01/14 10:
10:
02/06 17:
02/09 10:
02/23 07:
03/09 11:
16:
01/13 12:
15
15:
15:
16:
19:
01/16 09:
15:

2 ITEMS LISTED.

56
13
15
02
21
58
35
05
48

:20

25
28
20
15
41
55

(selects items with item-ids
starting with the string "SMITH")

. CONN... UNITS..
* *
00:04 9
00:00 5
00:01 343
00:18 41
00:17 690
00:01 27
01:57 378
00:22 94
02:25 160
00:05 14
00:00 2
00:17 110
02:55 2575
00:00 13
06:13 1853
00:12 15

12:17:22 22 MAR 1978

PAGES
*

16

Sample listing of accounting-history item for user "SMITH".

CHAPTER 10 - SYSTEM MAINTENANCE
PAGE 10-26

Copyright 1988 PICK SYSTEMS

5

=3

| 9

Fu F2 | P2 S F3 Fs 1

=3 F O rF e

10.13 THE ACCOUNTING HISTORY FILE: PERIODIC CLEARING

To avoid overflowing the accounting history items in the Accounting
History file for a specific wuser, the items should be periodically
cleared.

To clear the accounting history items from the ACC file, follow the steps
detailed in the first figure.

The point of overflow is determined by the activity of the wuser-account
(however, approximately 1000 Logon/Logoffs are allowed). This point can
be calculated by following the procedure detailed in the second figure.

If the accounting history item for a wuser-account does exceed the
available workspace, the user will be 1logged off, but the Accounting
History File will not be updated. To recover from this situation, follow
the procedure detailed below.

1. Logon to the SYSPROG account.

2. Type the following (if you need a listing only):
>SORT ACC WITH NAME LPTR [CR]

3. Type the following:

>SELECT ACC WITH NAME [CR]
SDELETE ACC [CR]

Procedure to Clear all Accounting History Items.

1. Use the WHAT verb to determine the number of additional
work-space frames allocated for the system (parameter
WSSIZE in the WHAT display). Multiply this figure by 500
and add 3000.

2. To determine the current size, type:
>STAT ACC ACC-SIZE 'user-name' [CR]
This will produce the following output:

STATISTICS OF ACC-SIZE:
TOTAL = xxx AVERAGE = yyy COUNT = zzz

3. 1If the value displayed for TOTAL in step 2 (i.e., xxx)
approaches the wvalue calculated in step 1, then the
user-account is iapproaching the overflow point.

Determining the point of overflow for an accounting-history item.

CHAPTER 10 - SYSTEM MAINTENANCE
PAGE 10-27

Copyright 1988 PICK SYSTEMS

10.14 FILE STRUCTURE: THE ITEM AND GROUP COMMANDS

The ITEM and GROUP commands provide information about the item and group |

structure of Pick files.

optionally directed to the line printer.

RMAT :

k;

ITEM file-name item-id ((options))

This command displays the base FID of the group into which the specified

item-id hashes.

If the item is not already on f£file, the message "ITEM

NOT FOUND" is displayed. In addition, every item-id in that group is
listed along with a character count of the item (in hex). At the end of
the 1list the following message is displayed:

n ITEMS m BYTES p/q FRAMES

where:

n
m
P

q

is
is
is
is

the number of items in the group.

the total number of bytes used in the group.
the number of full frames in the group.
the number of bytes used in the last frame of the group.

Valid options for this command are as follows:

P -
S -

FORMAT:

Direct output to line printer.
Suppress item list.

GROUP file-name {(options))

This command displays the base FID of each group in the specified file.
In addition, every item-id in the group is listed along with a character
count of the item (in hex). At the end of the 1list for each group the
following message is displayed:
n ITEMS m BYTES p/q FRAMES

where:

Qv BEs

is
is
is
is

the number of items in the group.

the total number bytes used in the group.
the number of full frames in the group.
the number of bytes used in the last frame of the group.

CHAPTER 10 - SYSTEM MAINTENANCE

PAGE 10-28

Copyright 1988 PICK SYSTEMS

Output can be displayed at the terminal or |

S O F P 83 3H B4 B OFW Y S 59 B P4 FY O F4 19 53 | 5

Valid options for this command are as follows:

P - Direct output to line printer.
S - Suppress item list.

>SITEM M/DICT A [CR]

27121

0022 FILE-DOC

001C bd

0009 A

0011 T-ATT

000F DUMP

0018 B/ADD

000F DIVX

0014 EDIT-LIST

0028 V/CONV

0022 LISTU

0019 V/MIN

001B ACCOUNT-RESTORE
001D D/CODE

0028 SL

0023 INST-INDEX

0047 SAL

0072 TB

000E SAVE

18 ITEMS 591 BYTES 1/91 FRAMES

Displaying data in a group using the ITEM command.

CHAPTER 10 - SYSTEM MAINTENANCE
PAGE 10-29

Copyright 1988 PICK SYSTEMS

10.15 FILE STRUCTURE: THE ISTAT AND HASH-TEST COMMANDS

ISTAT and HASH-TEST are ACCESS verbs that produce file hashing histograms,
ISTAT for specified file items and HASH-TEST on the basis of a
user-specified test modulo.

ISTAT

An ACCESS sentence using the ISTAT command is constructed as illustrated
below. The ISTAT command provides a file hashing histogram for the
selected items in the selected file, as illustrated by the examples. For
further information regarding file hashing, refer to the section of this
manual titled VIRTUAL MEMORY OPERATING SYSTEM. HASH-TEST

HASH-TEST produces a file hashing histogram as a result of a
user-specified test modulo. The general form of this verb is as follows:

HASH-TEST (DICT) file-name {item-list) (selection-criteria)

>ISTAT PARCEL [CR]

FILE= PARCEL MODULO= 3 SEPAR= 1

FRAMES BYTES ITMS

000002 00757 027 *>>>>>>>>>>5OSDDDDDDDDDDDDD>
000002 00836 030 *>>>>>>>353DDDODDDDSDDDDDDDDD>>
000002 00785 028 *>>>>>>555DDDBDDSSSDDDDSDDD>>

13:50:42 22 MAR 1978

ITEM COUNT=- 85, BYTE COUNT= 2378, AVG. BYTES/ITEM= 27.9
AVG. ITEMS/GROUP= 28.3, STD. DEVIATION= 1.5, AVG. BYTES/GROUP= 792.6.

Sample usage of the ISTAT command.

>HASH-TEST PARCEL [CR]

TEST MODULO: 9 [CR]

FILE= PARCEL MODULO= 9 SEPAR= 1
FRAMES BYTES ITMS

000001 00256 009 *>>>>>>>>>
000001 00281 010 *>>>>>>>>>>
000001 00255 009 *>>>>>>>>>
000001 00229 008 *>>>>>>>>
000001 00248 009 *>>>>>>>>>
000001 00251 009 *>>>>>>>>>
000001 00272 010 *>>>>>>>>>>
000001 00307 011 *>>>>>>>>>>>
000001 00279 010 *>>>>>>>>>>

13:50:55 22 MAR 1978

ITEM COUNT=- 85, BYTE COUNT= 2378, AVG. BYTES/ITEM= 27.9
AVG. ITEMS/GROUP= 9.4, STD. DEVIATION=- .8, AVG. BYTES/GROUP= 264.2.

Sample usage of the HASH-TEST verb.

CHAPTER 10 - SYSTEM MAINTENANCE
PAGE 10-30

Copyright 1988 PICK SYSTEMS

g3 3 a2 9 9 FE 9

BT §4 §a B9

s

s F O PE e s

10.16 DETERMINING NATURE OF GROUP FORMAT ERRORS

10.16.1 GROUP DEFINITION

The term group is used to specify one 'bucket' of storage. A file is made
up of a collection of groups, such that there are the same number of
groups as the number specified for the modulo of the file. Put another
way, the modulo of the file specifies the number of groups which make up
the file.

The hashing algorithm takes the specified item-id and decides in which
group 1t is or should be stored. The file retrieval or storage routine
then searches that group for the specified item. The hashing algorithm
may be thought of as dividing the item-id by the modulo in order to
obtain the remainder. This remainder is then the 'group number', and
specifies the group which is to be searched.

Within each group the items are stored physically end to end. Each item
is made up of a count field, a key, and the data. The documentation for
this system has conventionally used the term 'item-id' in place of the
term 'key'. It remains that the item-id is the key which is used to look
up the location of the item.

The count field exists only in a file representation of the item. It is
a sixteen-bit binary number, such that the high-order bit 1is zero,
represented in the file in ASCII hexadecimal notation, and as such takes
up four bytes of storage. It immediately precedes the item-id in the
file. If the item in question is the first item in the group, the count
field starts in the first data byte in the frame. If the item is not the
first item 1in the group, then the count field starts at the first byte
after the termination mark of the last item.

The count field is used as a pointer to the end of the item. The end of
the item must be an attribute mark followed by a segment mark. If the
count field does not point to this pattern, there is a group format
error, and the group format error handler will be entered.

10.16.2 GROUP FORMAT ERRORS A GROUP FORMAT ERROR IS THE RESULT OF A
HARDWARE ERROR!

A group format error is sensed if the count field does not point at an
attribute mark, segment mark sequence. This may occur if the count is
wrong, or if the data at the end of the item is wrong.

The count field is definitely wrong if any of the four digits which make
up the count field are not ASCII hexadecimal digits, which are X'30' -
X'39' or X'41' - X'46', which are 0-9 and A-F.

The end of item data may be wrong if the count field contains the wrong
ASCII hexadecimal digits, or if the end of item data is actually wrong.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-31

The end of item data may be wrong in several ways. If the item 1is
contained in a frame, then the end of item data may be wrong in the ways
that the the count field may be wrong. If the item spans a frame
boundary, certain other mechanisms come into play. If a process was in
the process of updating an item, to the extent that the first frame
containing the item was written to disk, but that the last frame was not
written when the process was interrupted by something like a cold start,
then a group format error will occur. If the overflow handler becomes
confused, the frames attached to a group may be acquired by another data
file or by a print file. The difference should be obvious on inspection,
using the DUMP verb. Print files do not normally contain attribute or
value marks and data files do not normally contain carraige-return,
line-feed sequences.

If the damaged frame is the result of an incomplete wupdate, then the
difficulty is localized. Repair of this group will usually attend to the
matter. If the damage appears to be due to co-ownership of the frame,
the problem may be greater. In this case it is best to leave the frame
with the frame to which it has a back-1ink, presuming that the data is
consistent in that chain. Then cut the forward link in the spurious
chain and terminate the group.

The effect of the group format error handler is to terminate the group at
the end of the 1last consistent item and cut the forward link out of the
last acceptable frame in the group. The rest of the overflow is
intentionally lost, because of the effect of having two copies of the
same frame referenced in the overflow chain.

The one case in which the group will not be terminated is when a print
file has meandered across the base of the file. In this case it is
probably best to recreate the -file and selectively restore it. The old
file pointer should be thrown away. Do not use the DELETE-FILE verb on
the old file, because this will further muddy the condition of the
overflow handler.

10.16.3 RECOVERY FROM GFE's

If a group format error is encountered, the system will invoke the group
format error handler. This processor will print the error message to the
terminal and wait for an operator response. The valid operator responses
are:

'D' - which will enter the system debugger.

'E' - which will end the process and return to TCL.

'F' - which will allow the GFE handler to fix the error and continue.

NOTE that fixing the error will undoubtedly cause the loss of at least
one data 1item. This record normally must be manually recovered! The
recovery strategy is to identify the file affected and do a SEL- RESTORE

on the file. It is best to do this as soon after the group format error
is noticed as possible.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-32

B 9

e FY A

W™ 9 F9 M F9 e B4 B3 83

= e Fm A M

10.17 GENERATING CHECKSUMS: THE CHECK-SUM COMMAND

I
The CHECK-SUM command generates a checksum for file items, thus providing |

a means to determine if data in a file has been changed. |

RMAT :
CHECK-SUM (DICT) file-name {(item-list) (attribute) (selection-criteria)

A checksum is generated for items in the specified file, or subset of
items if the optional "item-list" and/or "selection-criteria" appear.
Furthermore, the checksum may be calculated for one specified attribute.
If no attribute is specified, the lst default attribute will be used. If
there 1is no default attribute, or if the AMC 1is 9999, the entire item
will be included. The checksum will include the binary value of each
character times a positional value. This yields a checksum which has a
high probability of being wunique for a given character string. The
dictionary portion 1is checksummed if the "DICT" option appears. (A
checksum is the arithmetic total, disregarding overflow, of all bytes in
the selected items.)

A message is output, giving checksum statistics, in the following form:
BYTE STATISTICS FOR file-name (or attribute name):
TOTAL = t AVERAGE = a ITEMS = i CKSUM= c BITS = b

where:

is the total number of bytes in the attribute (or item) included
is the average number of bytes

is the number of items

is the checksum

is a bit count

o0 P

The attribute mark trailing the specified attribute (or item) will be
included in the statistics.

To use checksums, the user should issue CHECK-SUM commands for all files,
or portions of files, to be verified and keep the output statistics.
Subsequently, the CHECK-SUM commands can be reissued to verify that the
checksum statistics have mnot changed. The checksum must be recalculated
whenever the user updates the file!

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-33

10.18 SYSTEM PROGRAMMER (SYSPROG) ACCOUNT

Several special faciities are normally used from the System Programmer
(SYSPROG) Account. Procedures on this account are normally performed by
persons more familiar with the overall operation of the system.

To log on to the SYSPROG Account, type the following:

LOGON PLEASE: SYSPROG,password [CR]

where "password" 1is the appropriate password set up for SYSPROG.
Alternate logon names (such as SP) may be used.

I
CREATE-ACCOUNT DELETE-ACCOUNT |
ACCOUNT-RESTORE SAVE |
BUFFERS SEL-RESTORE |
LOCK-FRAME UNLOCK - FRAME |
:FILES :ABSLOAD |
:ABS/FILES WHAT |

I

Some SYSPROG Verbs and Procs.

10.19 AVAILABLE SYSTEM SPACE: THE POVF COMMAND

The POVF verb displays the system overflow table. |

FORMAT:
POVF {(P)

The POVF verb displays the contents of the system overflow table.
The P option forces all printed output to the line printer. the first
line of output is the FID of the first frame in linked overflow, folowed &
by the number of frames in the linked chain. the next 1lines (up ' to 16)
describe blocks of contiguous overflow, and have the following format:

m - n : P m - n : P
where:

m is the first frame of a contiguous block.

n is the last frame of the block.

P is the number of frames in the block.

The total number of frames contained in all the contiguous overflow is
then printed (using error message number 293):

TOTAL NUMBER OF CONTIGUOUS FRAMES :number

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-34

F1T F3 §F41 A2 a2 A Y

F= =0 09 FaA | F1 M L' e

N ™ M

10.20 CREATING ACCOUNTS

The CREATE-ACCOUNT PROC is used to create new user-accounts.]

/
CREATE-ACCOUNT PROC

The CREATE-ACCOUNT PROC generates a new account according to given
specifications. It then copies the contents of the NEWAC file (the
prototype M/DICT) to the new user M/DICT. Finally, it adds a file
synonym (Q 1item) to the account into SYSPROG's M/DICT. The
CREATE-ACCOUNT PROC is invoked by typing in the PROC name:

>CREATE-ACCOUNT [CR]

The PROC then prompts the user for the required information, as shown
below.

NOTE: The CREATE-ACCOUNT PROC should mnot be used to create a new synonym
to an existing account; this should be done by using the EDITOR to create
the file synonym definition item (Q-item) in the SYSTEM dictionary.

>CR -ACCOUNT PROC is typed in at TCL.

ACCOUNT NAME?SHERRY Anything but [CR] is legal.
L/RET-CODE(S)?AAA1BBB Multi-valued retrieval code.

L/UPD-CODE(S)? [CR] means no lock code.

PRIVILEGES? [CR] means SYSO. May be SYSO, SYS1, or SYS2.
MOD, SEP?37.1 [CR] defaults to 29,1.

CREATE-FILE (DICT SHERRY 37,1

[417] FILE 'SHERRY' CREATED; BASE= 34593 MODULO= 37 SEPAR = 1.
280 ITEMS COPIED

'SHERRY' ADDED

'SHERRY' UPDATED

PASSWORD?R2D2 User's LOGON password.

FINISHED

Sample CREATE-ACCOUNT Usage.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-35

10.21 DELETE-ACCOUNT

|/ system.

I
PELETE-ACCOUNT deletes an account and all its files from an PICK |
I
|

DELETE-ACCOUNT is a PROC which runs the program DEL-ACC. The program
lists all the files in the specified account, then requests verification
to delete the account. The files may be 1listed on the terminal or the
printer.

Requirements to run DELETE-ACCOUNT:
1. You must be logged on to SYSPROG.

2, SYSPROG must have Q-pointers to the MD of the account, and to
SYSTEM.

3. D-items must exist in DICT SYSTEM for SYSPROG and the account
name.

4. SYSPROG must have access to SYSTEM and all files on the account
to be deleted.

ALL USERS SHOULD LOG OFF before running this because an item in the
SYSTEM dictionary will be deleted.

>DELETE -ACCOUNT PROC name
Account Name ?SHERRY Enter account name
List Files on Printer (Y/N) ? To list files on printer, enter Y.

Files to be Deleted in Account: SHERRY 11:29:14 02 APR 88 PAGE 1
FILE Type BASE MOD SEP

GEN/LED D 85344 1 1

GEN/LED D 49911 231 1

BP D 44319 17 5

Still want to Delete Account SHERRY? Y
To delete the account, enter Y.

Sample DELETE-ACCOUNT usage.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-36

F9 F4a &N FN e e

e 9

s P P P e S FEm P P Pl S

10.22 FILE STATISTICS REPORT

The File Statistics Report provides a 1list of file parameters, such as
name, base, modulo, and file size. It also provides the order of files
on a FILE-SAVE tape. The report 1s automatically generated by running a

FILE-SAVE, or may be generated at any time by wusing the PROC
LIST-FILE-STATS.

The report 1is broken down by account, with a 1line of information
generated for each file in the account that includes:

item.id

name

base, modulo, and separation

total file size

total number of frames used
utilization of file space

number of Group Format Errors (GFEs)

If the report is being sent to a printer that prints 132 columns, the
following additional information is included:

average item size
average number of items per group
pad space; that is, unused space

A total line is generated for each account.

The information for the report 1is kept in the STAT-FILE on the account
that does the FILE-SAVE; this is usually the SYSPROG account. The
FILE-SAV