

1
t
1
I
I
[

I
I
[

I
1
I
1
I
I
I
I
(

I

THE PICK® SYSTEM
R83 USER

REFERENCE MANUAL

VOLUME 2

01988 Pick Systems, Irvine, California
All Rights Reserved

The PICK System
R83 User Reference Manual

Copyright 1988 by Pick Systems, Irvine, CA 92714.
All rights reserved.

Printed in the United States of America.

PROPRIETARY INFORMATION

This document contains information which is proprietary to and considered
a trade secret of PICK SYSTEMS. It is expressly agreed that it shall not
be reproduced in whole or part, disclosed, divulged, or otherwise made
available to any third party either directly or indirectly.

Reproduction of this document for any purpose is prohibited without the
prior express written authorization of PICK SYSTEMS.

User Reference Manual copyright 1988 PICK SYSTEMS

1

I
•

I
.1t!Il!!'
.!jJ. •
I ..

I
•
• I

• ..
I

i

I
I
I

I
[

I
I
[

I
[

I
I
I
I
I
I
I
I
I
I
I
[

Chapter 8

RUNOFF

THE PICK SYSTEM

USEll MANUAL

PROPRIETAllY INFOllHATION

This document contains information which is
proprietary to and considered a trade secret of
PICK SYSTEMS. It is expressly agreed that it
shall not be reproduced in whole or part,
disclosed, divulged, or otherwise made available
to any third party either directly or indirectly.
Reproduction of this document for any purpose is
prohibited without the prior express written
authorization of PICK SYSTEMS. All rights
reserved.

CHAPTER 8 - RUNOFF
Preliminary PAGE 8-1

Copyright 1988 PICK SYSTEMS

8

8.1
8.2
8.3
8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.3.6
8.3.7
8.3.8
8.3.9
8.3.10
8.3.11
8.3.12
8.3.13
8.3.14
8.3.15
8.3.16
8.3.17
8.3.18
8.3.19
8.3.20
8.3.21
8.3.22
8.3.23
8.3.24
8.3.25
8.3.26
8.3.27
8.3.28
8.3.29
8.3.30
8.3.31
8.3.32
8.3.33
8.3.34
8.3.35
8.3.36
8.3.37
8.3.38
8.3.39
8.3.40
8.3.41
8.3.42
8.3.43
8.3.44
8.3.45
8.4 .
8.4.1
8.4.2
8.4.3

Contents

RUNOFF

RUNOFF INTRODUCTION AND RUNOFF VERB FORMAT
RUNOFF SOURCE FILE FORMAT
RUNOFF COMMANDS

BEGIN PAGE (BP)
BOX n,m / BOX OFF (BOX)
BREAK (B) ••....
CAPITALIZE SENTENCES (CS)
CENTER (C)
CHAIN ([DICT] [FILE-NAME]) ITEM-ID
CHAPTER text

COMMENT INSTRUCTION (*)
CONTENTS
CRT
FILL (F)
FOOTING
HEADING
HILITE c / HILITE OFF

HYPHENS
INDENT n (I)
INDENT MARGIN n (1M)
INDEX text
INPUT
JUSTIFY (J)
LEFT MARGIN n
LINE LENGTH n
LOWER CASE (LC)
LPTR
NOCAPITALIZE SENTENCES (NCS)
NOFILL (NF)
NOJUSTIFY (NJ)
NOPAGING (N)
noparagraph
page number n
PAPER LENGTH n
PARAGRAPH n
PRINT INDEX
PRINT
READ ([DICT] [file-name]) item-id
READNEXT
SAVE INDEX file-name
SECTION n text
SET TABS n,n,n,
SKIP n (SK)
SPACE n (SP)
SPACING n
STANDARD ..
TEST PAGE n
UPPER CASE (UC)

SPECIAL CONTROL CHARACTERS
Upper and Lower Case Controls
Underlining and Overstriking .

Tab Settings

8-3
8-4
8-5
8-5
8-5
8-5
8-5
8-6
8-6
8-7
8-7
8-7
8-7
8-7
8-8
8-8
8-9
8-9
8-9
8-9
8-10
8-10
8-10
8-10
8-10
8-10
8-10
8-11
8-11
8-11
8-11
8-11
8-11
8-11
8-11
8-13
8-13
8-13
8-13
8-17
8-17
8-17
8-18
8-18
8-18
8-18
8-18
8-18
8-19

. . 8-19
8-20
8-21

CHAPTER 8 - RUNOFF
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 8-2

I

I
I
I

I··
,

I
I
I
I
i
I
I
I
I
I
I
I
I

I
[

I
I
[

[

[

I
I
I
[

I
(

I
I
I
I
I
[

RUNOFF is a verb which facilitates the preparation and maintenance of
textual material suc~ as memos, manuals, etc. RUNOFF takes text
prepared with the EDITOR and produces formatted output. RUNOFF source
text contains commattds which control justification, page titling and
numbering, spacing a~d capitalization. Textual material prepared with
RUNOFF may be easilt edited and corrected with the Editor and then
reprinted with RUNOFF. Material may be inserted or deleted, while
unchanged text need not be retyped. RUNOFF also provides the
capability of combining separate textual material into a single report
and inserting duplicate text into different reports.

RUNOFF is the TCL-II verb issued to process one or more source text file
items in RUNOFF format. Multiple input items are treated as a single
source text file. A source text item may contain a command which causes
RUNOFF to CHAIN to another file item. This makes it possible to CHAIN
file items together without doing a SELECT or SSELECT. Items included in
the RUNOFF verb's item-list may chain to other items within the same
file. when the chainl ends, processing continues with the next item from
the item-list.

A source text item may also contain a
a second file item and then resume
makes it possible tol insert the text
output from many othe~ file items (see

command which causesRUNOFF to READ
processing of the first item. This

from a single file item in the
example below).

The RUNOFF verb format is: RUNOFF file-name item-list {(options)}

OPTIONS:

C

I

J

N

Nnn

!

I
The C optiDn suppresses thecommands.

The I option will output the name of the next item to be
'Runoff'. (helpful for tracing. CHAINed sequences)

The J option will suppress Highlighting.

The N oPt~on causes output to the terminal to be continuous;
that is, OFF will not pause at the bottom of a page
and wait or a carriage-return if the N option is used.

This numeric option may be used to set the number of times
BOLDFACE ~etters are overprinted.

P The P optiJon may be used to direct output to the line printer.

S

u

I

The S option may be used to suppress underlining and boldface
when RUNO~F output is directed to a CRT.

The U oPt~on will force the output to upper-case.

I

CHAPTER 8 - RUNOFF
Preliminary PAGE 8-3

Copyright 1988 PICK SYSTEMS

8.2 aUNOFF SOURCE FILE FORMAT

The source file contains the textual material which will appear on
the final copy, plus command information to specify formatting and
alternate sources of input.

Each line of input source text is processed in the text mode except those
beginning with a period. A line beginning with a period is assumed to be
a command line and is processed in the command mode. A command line may
contain one or more commands, each starting with a period. The commands
provide formatting information and select various modes of
RUNOFF fills each output line by adding successive words from the source
text until one more word will not fit on the line. The line is then
justified by inserting blank spaces between words at random until the
last word in the line exactly meets the right margin. RUNOFF may be set
to fill output lines without justifying the right margin. When filling
lines, spaces and end-of-lines are treated only as word separators.
Multiple word separators are stripped from the input. RUNOFF may be set
to transmit the input source text to the output without filling lines or
justifying margins. In this mode, mUltiple spaces and end-of-lines are
not stripped from the input. Some of the commands cause a BREAK in the
output. A BREAK means that the current line is output without
justification. This occurs at the end of paragraphs.

.SK.xbox 1,78.SK

.BP.F.J.PARAGRAPH O.LEFT MARGIN 2.LINE LENGTH 74

.SECTION 1 INTRODUCTION TO RUNOFF

.INDEX 'RUNOFF Introduction'

.box OFF.C

Common RUNOFF Commands.

CHAPTER 8 - RUNOFF
Preliminary PAGE 8-4

Copyright 1988 PICK SYSTEMS

I

I
I
I
•... ; ..•

II

I
I
I
I
I
I
I
I
I
I
I
I
I

I
[

I
[

I
[

l
I
I
I
(

(

(

I
I
(

I
I
I

8.3 "UNO" COllKANDS

I I
I RUNOFF commands are stored along with the textual material in the I
I source file. These commands are distinguished by a period at the I
I start of a commanf· line. A command line may contain one or more I
I command, each starti g with a period. The commands provide formatting I
I information and sele t various modes of operation. I
I=---~~~~~~--~~--~---=-===~------~--~~----I Note: In the following descriptions of RUNOFF commands, valid command
abbreviations are
enclosed in paranthesrs
exist) .

8.3.1 BEGIN PAGE (BP~

(where such abbreviated forms of the command

BEGIN PAGE causes a BREAK (see below) followed by an advance to a new
page. The page number is incremented and the page heading (if set) is
printed.

8.3.2 BOX n,m / BOX OFF (BOX)

The BOX command causes the following text to be enclosed in a box with the
width parameter spec~fied by 'n' (right margin) and 'm' (left margin).
The text will cont~nue to be 'boxed' until a "BOX OFF" command is
encountered.

For example:

001 .box 4,74.C~ER
002 This is an e~ple of a BOX.
003 .box

This is an example of a BOX.

8.3.3 BREAK (B)

BREAK causes any partially filled line to be output before processing the
next input line.

8.3.4 CAPITALIZE ~CES (CS)

This command puts R~OFF in the capitalize sentences mode. In this mode
the first letter of ~ach sentence is capitalized. The first letter after
a '.', '1', or 'I~" followed· immediately by either a space or an
end-of-1ine (Attribu e Mark) is capitalized. The capitalize sentences
mode also causes t e following characters to be followed by a double
space or an end-o -line: '.', '1', '!', ':', and ';' CAPITALIZE

CHAPTER 8 - RUNOFF
Preliminary PAGE 8-5

Copyright 1988 PICK SYSTEMS

SENTENCES is one of the STANDARD settings. (See the STANDARD command.)
note: This command is ignored in the NOFILL (NF) mode.

8.3.5 CENTER (C)

CENTER causes the next line to be input in NOFILL mode and centered on the
next line of output. This command causes a BREAK to occur.

8.3.6 CHAIN ([DICT] [FILE-RAKE]) ITEM-ID

This command causes RUNOFF to CHAIN to the input text file item indicated.
The [DICT] and [FILE-NAME] are both optional. If DICT is not specified,
the DATA section of the file is assummed. If no FILE-NAME is given, the
item will be read from the same file as the item being processed.

The text input from this item is processed and output without any
parameter or mode changes. RUNOFF does not resume processing text from
the current source of input. This command does not cause a BREAK.

The .CHAIN command will scan the string following the command, looking
for an item-id or a file name. The legal delimiter for the item-id or
file name is a blank. They may have an included period. If there is
more than one string following the CHAIN command which is delimited by a
blank, then the next-to-the-last field will be taken to the the file
name, and that file will be opened. The last field delimited with a blank
will be considered the item-id, and it will be retrieved by the RUNOFF
processor to be executed next. You can include a comment statement after
the CHAIN, however. Therefore, for the purposes of the CHAIN commands,
the line is considered exhausted when the processor encounters an
end-of-line mark, or when it encounters a period preceeded by a space.

If the processor opens a file when executing a CHAIN statement, that file
will be the file from which all succeeding items are retrieved, until the
file is respecified by another CHAIN statement.

The C option will suppress the .CHAIN command if it is desired to RUNOFF
one element of a chained or tree-ed structure. The I option will cause
the name of the next item to be output by RUNOFF to be placed in the last
line of the last item RUNOFF. This is of use with relatively large
documents.

CHAPTER 8 - RUNOFF
Preliminary PAGE 8-6

Copyright 1988 PICK SYSTEMS

I
I •
I
I •
I
I
I
I
I
I
I
I
I

I
I' •
I
I
I

[

(

I
[

[

[

l ,
I
I
(

I
(

I
I
I
I
I
(

8.3.7 CHAPTER text

This command may bel used to handle automatic chapter numbering and
formatting. This comm~nd has the same effect as:

.BEGIN PAGE. CENTER

.CHAPTER n

.SPACE 2
text
.SPACE 2

where the chapter number n is incremented automatically. For example:

. CHAPTER RUNOFF

would produce:

CHAPTER 8

RUNOFF

8.3.8 COMMENT INSTRUCTION (*)

This command informs the RUNOFF processor that all of the rest of the
text in the line in 'which it occurs is a comment. It must either be at
the beginning of th~ line, or after another command in a command line.
It is always the last command in a line. This allows text to be
commented out, and the intent of READs and CHAINs to be noted.

8.3.9 CONTENTS

This command prints #he table of contents accumulated by preceding CHAPTER
and SECTION commands. This command should be used at the end of the
RUNOFF source file. an example of the results of this command can be seen
by looking at the .TABLE OF CONTENTS at the beginning of this manual.
Note: the LINE LENGf: and LEFT MARGIN of the Table of Contents is
determined by those ettings that are in effect when the first .CHAPTER
or .SECTION command ·s encountered.

8.3.10 CR.T

This command directs Ithe RUNOFF output to the user's terminal. CRT is
of the STANDARD sett~ngs. (See the STANDARD command.)

8.3.11 FILL (F)

one

FILL puts RUNOFF intl the line fill mode. Words are processed until there
are enough to fill a line without overflowing it. If justifaction mode is
on, RUNOFF will ins rt spaces in the line at random to make the right
margin line up. FILL is one of the STANDARD settings. (See the STANDARD
command.)

CHAPTER 8 - RUNOFF
Preliminary PAGE 8-7

Copyright 1988 PICK SYSTEMS

8.3.12 rooTING

FOOTING causes the next line to be input in nofill mode- and stored in a
page footing buffer. The page footing buffer will be output at the bottom
of each page. The page footing may be changed with successiveFOOTING
commands. The following characters have special meaning in page footings
and headings:

'P' Prints out the page number, right justified in
a field of four spaces, with blank fill.

'Pn'

, L'

, i'

'in'

, F'

'Fn'

'T'

Prints out the page number, left justified in
a field of 'n' spaces ('n' specified by the user).

Performs a carriage return/line-feed (CR/LF).

Prints out the Item-Id.

Prints out the Item-Id, left justified in a field
of 'n' spaces ('n' specified by the user).

Prints out the File-Name.

Prints out the File-Name, left justified in a field
of 'n' spaces.

Prints out the Time and Date (22 characters long).

'0' Prints out the Date in '01 JAN 1977' format (11 characters).

J 'C' Centers the line.

FOOTING causes a BREAK and also is one of the STANDARD settings. (See the
STANDARD command.)

8.3.13 HEADING

HEADING causes the next line to be input in NOFILL mode and stored in a
page heading buffer. The page heading buffer will be output at the top of
each page.

The page heading may be changed with successive HEADING commands. The
special characters described under the FOOTING command may also be used
in page headings.

The HEADING command causes a BREAK and also is one of the STANDARD
settings. (See the STANDARD command.)

CHAPTER 8 - RUNOFF
Preliminary PAGE 8-8

Copyright 1988 PICK SYSTEMS

I

I
i
I
" . I"·

I
I
I
I

I

I

I
I
I
[

[

[

l
I
I
I
[

I
I
I
I
(

I
(

[

8.3.14 BILITE c I BIJlTE OFP

HILITE causes the chJracter specified
extreme right margin for every line of
encoun~ered. An examp~e of the HILITE
this text. I

by 'c' to be printed out at the
text until a HILITE OFF command is
command may be seen at the right of *

*

The h1.ghlight comman4 does not cause a break in the text. This allows *
parts of paragraphs tq be highlighted in justify or fill mode. If you *
wish to align the HI LITE command with a paragraph, it may be necessary to *
put the HILITE I ~ommand after the first line of filled or justified *
text, and to put the form .BREAK at the end of the paragraph. *

The execution of the'hilite command also is such that if the
last character strint in command line, then it is equivalent
OFF. The J option w 11 suppress highlighting.

8.3.15 HYPHENS

term is the
to HILITE

Hyphens which are surrounded by alphabetic characters will allow a
word-break on the hyphen in fill and justify modes. That is, if a term
is a concatenation of two words separated by a hyphen, and the line
overflows within the ~econd part of the term, then the first part and the
hyphen are left in tpe line, and the next line is commenced with the
second part of the word.

i
Similarly, if a line in the source text terminates with a hyphen
preceeded by an alphabetic character, and the first character in the next
line is an alphabetic. character, then the last word in the line and the
hyphen will be conc~tenated with the first word in the next line and
output together in a line with the hyphen between the two parts. If there
is a line overflow which occurs during this process, the hyphenated word
will be handled as a~ove. What the processor will not do is remove the
hyphen.

If the hyphen does ~t have this meaning, then the back-arrow character
may be placed in frorit of it to suppress this action.

I

8.3.16 INDENT n (I)i

INDENT causes the ne~t line of output to be indented by n spaces to the
right of the left margin. n may be negative to cause the line to begin
left of the left margin. If n is missing, n-1 is assumed. This command
causes a BREAK to ocQur.

8.3.17 (IH)

This command causes the left margin to be increased by n spaces and the
line length to be d~creased by n. Negative n may be used to decrease the
left margin and inclease the line length. This command causes a BREAK to
occur.

CHAPTER 8 - RUNOFF
Preliminary PAGE 8-9

Copyright 1988 PICK SYSTEMS

8.3.18 INDEX text

INDEX causes the text specified to be stored in an index list. The text
may be more than one word, or several words enclosed in single quotes.
The word, or words, along with the current page number, are put in a
sorted index list. The index can be printed by the PRINT INDEX command.

8.3.19 INPUT

The INPUT command caused RUNOFF to read the next line of source text from
the user's terminal. The text input from the terminal is processed and
output without a BREAK or mode change.

8.3.20 JUSTIFY (J)

JUSTIFY puts RUNOFF in the FILL and JUSTIFY mode. RUNOFF fills each
output line by adding successive words from the source text until one
more word will not fit on the line. the line is then justified by
inserting blank spaces between words at random until the last word in the
line exactly meets the right margin. JUSTIFY is one of the STANDARD
settings. (See the STANDARD command.)

8.3.21 LEFT MARGIN n

This command sets the left margin to n spaces. If n plus the current line
length exceeds the maximum line length, this command is ignored. A LEFT
MARGIN of 0 is one of the STANDARD settings. (See the STANDARD command.)

8.3.22 LINE LENGTH n

This command sets the line length to n characters (not counting the left
margin). If n plus the current left margin exceeds the maximum line
length, this command is ignored. A LINE LENGTH of 70 is one of the
STANDARD settings. (See the STANDARD command.)

8.3.23 LOWER CASE (LC)

This command puts RUNOFF into lower case mode.
letters are automatically made lower case. They
upper case by various text commands or control
section on RUNOFF Special Characters.)

8.3.24 LPTll

In lower case mode all
may then be changed to
characters. (See the

This command directs the RUNOFF output to the line printer.

CHAPTER 8 - RUNOFF
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 8-10

I
I
I

I

I
I
I
I
I
I

I

I
I
I

(

[

I
[

[

l
I
(

[

I ,
I
I
I
l
I
I
(

8.3.25 ReCAPITALIZE ~ENTIHCES (RCS)

This command resets the CAPITALIZE SENTENCES mode.

8.3.26 ROFILL (MF)

This command resets both the JUSTIFY and FILL modes. Input text lines
will be output as they are, (after posssible elimination of special
control characters) ~ithout removal of extra spaces. Output lines will
not be filled nor Wi~l right margins be justified. This command causes
BREAK. i

8.3.27 ROJUSTIFY (NJ)

This command resets the JUSTIFY mode, but has no effect on the FILL mode.

8.3.28 NOPAGING (N)
I

The N option may be u~ed to eliminate the
end of each page prin~ed on the terminal.

8.3.29 NOPARAGRAPH

wait for terminal input at the

This command resets the paragraph mode. Blank input text lines and spaces
at the beginning of a line will be ignored in justify mode.

8.3.30 PAGE NUKBEll ni

This command sets thel current page number to n. If n is missing, n-l is
assumed.

8.3.31 PAPEll LENGTH n

This command sets the paper length to n lines.

8.3.32 PARAGRAPH n

This command causes y blank line or any line which starts with a space
to be considered as the start of a new paragraph. This allows normally
typed text to be j stified without any special commands. n sets the
number of spaces par graphs are to be indented or unindented. A paragraph
causes a BREAK foIl ed by (line spacing + 1)/2 blank lines. A PARAGRAPH
5 is one of the ST settings. (See the STANDARD command.)

The PARAGRAPH comman may be set to a negative number. The example shows
the use of a negative paragraph setting to decrease the left margin.

CHAPTER 8 - RUNOFF
Preliminary PAGE 8-11

Copyright 1988 PICK SYSTEMS

001 .SK .PARAGRAPH -4 .LEFT MARGIN 13 .LINE LENGTH 63
002 1. The user enters the command "Z" to the DEBUGGER prompt character
003 "*". The DEBUGGER responds with "PROG NAME?", .the user enters the
004 program name. This allows the DEBUGGER access to the symbol table
005 created during compilation. Alternatively, if the user uses the
006 "(D)" during run time, access to the symbol table is already
007 established, and use of the "Z" command is unnecessary.
008 2. To find out how far in the loop the program progressed, the
009 user looks at the variable "I" by entering "/1". The DEBUGGER
010 responds with
011 "11 -", at which the user may change the value of "I" if desired.
012 The user may then want to look at all of the values in the array by
013 entering "/ABRAY". The DEBUGGER responds with "ABRAY(l)-l-", the
014 user depresses
015 return and the DEBUGGER continues with the next "array slot"
016 (i.e., "ABRAY(2 etc.)-2-"). Once "ABRAY(10)-10-" has been reached
017 the ... etc.
018

Note that in the above example the text lines beginning with 1. and
2. are spaced over one space thus resulting in the negative paragraphing.

The above source text would print:

1. The user enters the command "Z" to the DEBUGGER prompt character
"*" The DEBUGGER responds with "PROG NAME?", the user enters the
program name. This allows the DEBUGGER access to the symbol table
created during compilation. Alternatively, if the user uses the
debug option "(D)" during run time, access to the symbol table is
already established, and use of the "Z" command is unnecessary.

2. To find out how far in the loop the program progressed, the user
looks at the variable "I" by entering "/1". The DEBUGGER responds
with "11 -" at which the user may change the value of "I" if
desired. The user may then want to look at all of the values in
the array by entering "/ABRAY". The DEBUGGER responds with
"ABRAY(l)-l-", the user depresses return and the DEBUGGER
continues with the next "array slot" (i.e., "ABRAY(2)-2-" etc.).
Once "ABRAY(10)-10-" has been reached the ... etc.

Sample usage of a negative PARAGRAPH command.

CHAPTER 8 - RUNOFF
Preliminary PAGE 8-12

Copyright 1988 PICK SYSTEMS

I
I
I
I

I
I

I
I
J
it
I

I

I
[

I
I
[

[

I
I
I
I
I
I
I ,
I
I
I
(

[

8.3.33 PllIRT INDEX

This command causes t~e sorted index list of words and
printed. The index is sorted into alphabetical order,
columns per page. Note -- this command changes the
causes a BEGIN PAGE command to be performed.

8.3.34 PRINT

page numbers to be
and printed in two
tab settings, and

The PRINT command carses RUNOFF to
the user's terminal.

print the next line of input text on

8.3.35 READ ([DIeT] [file-name]) item-id

This command causes ~UNOFF to read the file item indicated. The [DIeT]
and [FILE-NAME] are both optional. If DIeT is not specified, DATA section
of the file will be used. If no FILE-NAME is given, the item will be read
from the same file aSI the item being processed. The text input from this
item is processed antl output without any parameter or mode changes. After
processing this item, RUNOFF resumes input with the next line of the
current source of input. This command does not cause a BREAK.

The .READ command will scan the string following the command, looking
for an item-id or a file name. The legal delimiter for the item-id or
file name is a blank. They may have an included period. If there is

I

more than one string following the READ command which is delimited by a
blank, then the nextl-to-the-last field will be taken to the the file
name, and that file ~il1 be opened. The last field delimited with a blank
will be considered the item-id, and it will be retrieved by the RUNOFF
processor to be e~cuted next. If the statement is a READ, then the
processor will event~lly return to this item and continue processing it.
When it does, it will' commence at the beginning of the next line in the
item. Therefore, no statements which occur after the READ statement in
the line will be exequted. ~ou can include a comment statement after the
READ however. Therefore, for the purposes of the READ command, the line
is considered exhaJsted when the processor encounters an end-of-line
mark, or when it enqounters a period preceeded by a space. The C option
will suppress the .READ command if it is desired to RUNOFF one element of
a chained or treed ~tructure. The I option will cause the name of the
next item to be ou~put by RUNOFF to be placed in the last line of the
last item RUNOFF. This is most useful with large documents.

8.3.36 READNEXT

This command is use to read data from a pre-selected LIST. It has an
effect only if, pri r to entering RUNOFF, a SELECT, SSELECT, QSELECT or
GET-LIST statement h s been entered, which selects a list of values. Each
READNEXT command in RUNOFF will extract one value from the select-list
and place it in the text stream. READNEXT does not cause a break. If

CHAPTER 8 - RUNOFF
Preliminary PAGE 8-13

Copyright 1988 PICK SYSTEMS

there is no pre-selected list, or when the list is exhausted, the
READNEXT command will cause a termination of RUNOFF, and a return to TCL.

This command is particularly useful when form-letters are to be
generated. For example, it may be necessary to insert the name and
address of each recipient of the letter from a separate file. A SSELECT
statement is used to extract the relevant data from the file and save it
in a list. A series of READNEXT statements will insert the data into the
text of the letter. At the end of the letter, a CHAIN statement may be
used to restart the next letter. When the list is exhausted, the RUNOFF
will stop.

The commands necessary to generate a form letter are:

(S)SELECT file-name (selection criteria) attribute-list

.READNEXT

.CHAIN item-name

The selected attribute-list contains all the variable information to be
'written' into the form letter. The use of '.READNEXT' commands reads
each of these variables and causes them to be 'written' into the letter.
The '.CHAIN' command causes the letter to be repeated so long as there is
variable information in the selected attribute list. The following
example demonstrates the generation of a form letter.

Assume the dictionary of the accounts payable file for a company contains
the following three Attribute defining Items:

NAME
001 A
002 1
003 CUSTOMER NAME
004
005
006
007
008 AI:","
009 L
010 25

CHAPTER 8 - RUNOFF
Preliminary

ACCOUNT
001 A
002 2
003 ACCOUNT TYPE
004
005
006
007
008
009 L
010 30

PAGE 8-14

AMOUNT
001 A
003 3
003 AMOUNT DUE
004
005
006
007
008 A;3(MR2$,):"."
009 R
010 10

Copyright 1988 PICK SYSTEMS

I

I

I

I

I
I
I , ..
I
\I ..
I
J
I

I
[

(

[

[

l
I
I
I
I
I
I
I ,
I
I
I
I
[

The dictionary also contains the following form letter written in RUNOFF:

LETTER

001 .SK 8
002 Dear Mr.
003 . READNEXT
004 Our records show that your
005 . READNEXT
006 account is overdrawn by the amount of
007 . READNEXT
008 We would appreciate prompt payment.
009 Thank you,
010 Indiana Jones
011 .SK 2
012 President CELEBRITY SERVICES CO.
013 .SK 3
014 .BP
015 . CHAIN LETTER

The data file contains items such as the following three:

250

001 Magic Johnson
002 Basketball Shoes
003 25000

251

001 Eddie Van Halen
002 Guitar String
003 12345

252

001 Boy George
002 Voice Lesson
003 452359

To generate the form letter the data file is first sort selected by the
name with the attribute list of NAME ACCOUNT and AMOUNT:

SSELECT ACC-PAYABLE BY NAME WITH AMOUNT> "100" NAME ACCOUNT AMOUNT

This command will generated a selected list containing the following
information:

001 Boy George,
002 Voice Lesson
003 $4,523.59.
004 Eddie Van Halen,
005 Guitar String
006 $123.45.
007 Magic Johnson,
008 Basketball Shoes
009 $250.00.

Note that the correlatives on the names and on the amounts have
been performed. Now by issuing the following RUNOFF command the
form letters are generated:

RUNOFF DICT ACC-PAYABLE LETTER (P)

CHAPTER 8 - RUNOFF
Preliminary PAGE 8-15

Copyright 1988 PICK SYSTEMS

The form letters will be printed as follows:

Dear Mr. Boy George,

Our records show that your Voice Lesson account is
overdrawn by the amount of $4,523.59. We would appreciate
prompt payment.

Thank You,

Indiana Jones

President CELEBRITY SERVICES CO.

(next page)

Dear Mr. Eddie Van Halen,

Our records show that your Guitar String account is
overdrawn by the amount of $123.45. We would appreciate
prompt payment.

Thank You,

Indiana Jones

President CELEBRITY SERVICES CO.

(next page)
Dear Mr. Magic Johnson,

Our records show that your Basketball Shoes account is
overdrawn by the amount of $250.00. We would appreciate
prompt payment.

Thank You,

Indiana Jones

President CELEBRITY SERVICES CO.

CHAPTER 8 - RUNOFF
Preliminary PAGE 8-16

Copyright 1988 PICK SYSTEMS

I

II

"

I
I
i
I II

I
II •
I
I

I

I
I
I

I
[

[

I
[

(

I
I
I
I
I
I
I
I
I
I
l
[

[

8.3.37 SAVE INDEX file-name

This command causes chapter and page number information of indexed data
in a text to be saved in a separate file. Each indexed datum is stored
as an individual item using the datum as the Item-Id, the chapter (where
that datum is referenced) as the first attribute and the page number as
the second attribute. Multiple values are stored in these attributes as
multiple references to the same indexed datum are encountered. The
resulting file may then be operated on by the ACCESS processor to
generate listings for the chapter and page number information of all
indexed data in a text.

The 'file-name' is the name of the file in which the chapter and page
information is to be stored. NOTE: Ibis must be a SEPARATE FILE from the
text file I!! (Otherwise data in the text file will be DESTROYED.) The
is placed in the text item itself and must precede the '.INDEX' commands.
In short, only that indexed data which has been preceded by the' . SAVE
INDEX' command will be saved in the specified file.

8.3.38 SECTION n text

This command may be used in conjunction with the CHAPTER command to
handle automatic chapter section numbering and formatting. The

SECTION command automatically starts the next section at depth n, where n
is the range 1-5. The text is printed following the section number
SKIP occurs. The text is recorded as the section heading in the TABLE OF
CONTENTS. If no text appears on the SECTION command, then no SKIP occurs
and the section is not recorded in the TABLE OF CONTENTS. Section numbers
are incremented automatically and the section number is printed in the
form i.j.k.l.m with n digits printed.

Conventionally the .SECTION command is followed by a blank line before
the next paragraph starts. Since the SECTION command causes a break
which terminates the preceding paragraph, and since the text following
the SECTION command is placed immediately into an ouput line and output
prior to a consideration of the next line, the blank line after the
SECTION command can be avoided by not indenting the first line of the
next paragraph. That is, if the processor does not know that the next
line starts a paragraph, it will not skip a line. It may be necessary to
use an INDENT MARGIN if paragraph indentation is desired, however.

8.3.39 SET TABS n,n,n, ...

This command clears previous tab stops and sets new tab stops as indicated
by the numeric tab positions. The tab stops (up to 30) must be greater
than zero and in increasing order. They indicate tab stop positions
relative to the left aargin. Tabs are only in effect in NOFILL mode. The
left-tab character «) causes the next word to start at the next tab
position. The right-tab character (» causes the next word to end at the

CHAPTER 8 - RUNOFF
Prelimi.nary PAGE 8-17

Copyright 1988 PICK SYSTEMS

next tab position. If a tab character appears at a point in the line
where no further tab stops have been set, the tab character is ignored.

8.3.40 SKIP n (SK)

The SKIP causes a BREAK after which n*(SPACING n) lines are left blank.
If the skip would advance past the end of the page, the output is
advanced to the top of the next page. If n is missing, n-l is assumed.

8.3.41 SPACE n (SP)

This command has the same affect as SKIP, except that n (rather than
SPACING n) lines are left blank. SPACE is used where space is to be left
independent of the line spacing; SKIP is used where space should be
relative to the SPACING command. If n is missing, n-l is assumed.

8.3.42 SPACING n

This command sets the line spacing to n. The command .SPACING 2 may be
used for double spacing.

8.3.43 STANDARD

This command sets the standard (default) parameters and modes.
STANDARD command is equivalent to the following commands:

.CS.F.J.UC.LEFT MARGIN O.CRT.HEADING

. FOOTING

.PARAGRAPH s.LINE LENGTH 74

8.3.44 TEST PAGE n

This command causes a BREAK followed by an advance to a new page when
there are less than n lines remaining on the current page. If there are n
or more lines remaining on the current page, this command has no effect.
This command should be used to ensure that the following n lines are all
output on the same page.

8.3.45 UPPER CASE (UC)

This command puts RUNOFF into upper case mode. Alphabetic letters will be
processed as they are, unless modified by special commands or control
characters. This command allows users of terminals with upper and lower
case to generate the input text file without special commands or control
characters. UC is one of the STANDARD settings. (See the STANDARD
command.) The 'U' option will force the whole runoff output to
upper-case if that is desired.

CHAPTER 8 - RUNOFF
Preliminary PAGE 8-18

Copyright 1988 PICK SYSTEMS

I'" . y

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I

[

[

l
I
(

l
I
I
I
I
1
I
I
I
I
I
I
I
(

8.4 SPECIAL CONTROL CHARACTERS

RUNOFF features Special Control
Control, Underlining, Boldface
Character Override.

8.4.1 Upper and Lower Case Controls

Characters
Printing,

for Upper/Lower Case
Tabbing, and Special

The upper-case, lower-case control structure causes the text to go to the
case specified. ENDCASE or EC will turn off both the upper-case condition
and the lower-case condition to allow the text to go to its natural
condition.

The forms AA and \\ cause the text to switch to upper-case or to
lower-case in the same way that UC and LC cause the switch, except that
AA and \\ may be imbedded in a line. Turning off the condition AA or
\\ requires the use of EC.

The forms A, \, & and @ will produce one character of upper-case,
lower-case, underline, or overstrike. Each will be treated as the
character itself if it is followed by a blank. The backarrow or underline
character, _, will cause the succeeding character to be taken as a text
character rather than a control character. This means that if you have
existing RUNOFF text with forms such as '40# @$1.28/#', the dollar sign
will be overstruck and the @ will disappear unless the backarrow, _, is
inserted in front of the @. The same is true of the '&' character if
it occurs in a character string.

The example below is an attempt to display the interactions of the
several commands above. The first part is the text which was sent to
RUNOFF and the second part is the output from RUNOFF. First, note that
the 'I' in 'is' is always capitalized by the single-character A, and that
the 'a' is always in lower-case due to the single-character \ command.

The first line is in its natural form. The second' line is uniformly
capitalized by the UC command, excepting the 'a'. The third line is
uniformly sent to lower-case, except for the 'Is'. The fourth and fifth
lines contain a ,AA text \\ string, which is uniformly capitalized,
excepting the 'a'. After the \\ the string reverts to lower-case. The
only way to retrieve the capitalization of the string 'uc AND 'LC' is by
the use of EC command. Thus, the sixth line is in its natural form.

CHAPTER 8 - RUNOFF
Preliminary PAGE 8-19

Copyright 1988 PICK SYSTEMS

001 .LINE LENGTH 66.PARAGRAPH 5.J
002 This Ais \a test of UC AND LC.
003 .UC
004 This Ais \a test of UC AND LC.
005 .LC
006 This Ais \a test of UC AND LC.
007 This Ais \a AAtest of UC AND LC.
008 This Ais \a test of UC AND LC.
009 .EC
010 This Ais \a test of UC AND LC.

This Is a test of UC AND LC.

THIS IS a TEST OF UC AND LC.

This Is a test of uc and lc.

This Is a TEST OF UC AND LC.

THIS IS a TEST of uc and lc.

This Is a test of UC AND LC.

Example of .UC, .LC, .EC and the associated A and \ characters.

8.4.2 Underlining and Boldface Printing

UNDERLINING

The ampersand (&) may be used to indicate underlining. The ampersand
causes the letter immediately following to be underlined.

.LC
THE LETTER &A IS FIRST IN THE ALPHABET

This example of RUNOFF source would print as:

the letter A is first in the alphabet

Ampersand may be used in conjunction with the up-arrow and back-slash to
underline a series of characters. An ampersand followed immediately by an
up-arrow (&A) puts RUNOFF in the Underline mode until an ampersand
followed immediately by a back-slash (&\) is encountered .

. UC
&ASPECIAL CONTROL CHARACTERS&\ ARE NEEDED

This example of RUNOFF source would print as:

SPECIAL CONTROL CHARACTERS ARE NEEDED ...

CHAPTER 8 - RUNOFF
Preliminary PAGE 8-20

Copyright 1988 PICK SYSTEMS

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I

I
[
[

I
[

(

I
I
I
I
I
I
I
I
I
I
l
l
(

BOLDFACE PRINTING

The at sign (@) may be used to indicate BOLDFACE type. An at sign
followed immediately by an up-arrow (@A) puts RUNOFF in the boldface mode
until an at sign followed immediately by a back-slash (@\) is encountered.
The number of times the boldface letters are overprinted may be set by
using the numeric option of the RUNOFF verb .

. UC
@ASPECIAL CONTROL CHARACTERS@\ ARE NEEDED

This example of RUNOFF source would print as:

SPECIAL CONTROL CHARACTERS ARE NEEDED ...

The S option suppresses underlining and boldface printing.

CHAPTER 8 - RUNOFF
Preliminary PAGE 8-21

Copyright 1988 PICK SYSTEMS

8.4.3 Tab Settings

The less-than «) and greater-than (» characters may be used for tabbing.
The left-tab character «) causes the next word to start at the next tab
position as set by the .SET TABS command. The right-tab character (»
causes the next word to end at the next tab position.

.NF

.SET TABS 5,8,25

.SK 1
><&ANAME<CONVENTIONAL DATA PROCESSING NAME&\
.SK 1
>l.<Item<R.ecord
>la.<Attribute<Field
>lb.<Item-id<Record Key

This example of RUNOFF source would print as:

NAME CONVENTIONAL DATA PROCESSING NAME

l.
lao
lb.

Item
Attribute
Item-id

Record
Field
Record Key

Note: Tab characters are only in effect in the NOFILL (NF) mode.

You will also note that the sequence .t1 .t1 .tl will tab over to the
third tab if tabs are set.

8.4.4 Special Character Override

The back-arrow or underscore (_) may be used to quote one of the special
control characters or blanks. the letter immediately following the
back-arrow is transmitted to the output without special processing.

ASPECIAL ACONTROL ACHARACTERS ARE NEEDED

This example of RUNOFF source would print as:

ASPECIAL ACONTROL ACHARACTERS ARE NEEDED

CHAPTER 8 - RUNOFF
Preliminary PAGE 8-22

Copyright 1988 PICK SYSTEMS

I

.1., ... '

II

I
I
I
I

" ..
I
I
I
I
I , ..
I

• (I

I

[

[

1
l
[

I,
t

1
[

I
,~ I·····

I
I
I
I
[

[

Chapter 9

PICK/BASIC

THE PICK SYSTEM

USER MANUAL

PROPRIETARY INFORMATION

This doc~ent contains information which is
proprietaty to and considered a trade secret of
PICK SYS EMS. It is expressly agreed that it
shall no be reproduced in whole or part,
disclosed divulged, or otherwise made available
to any th rd party either directly or indirectly.
Reproduct on of this document for any purpose is
prohibite without the prior express written
authoriza ion of PICK SYSTEMS. All rights
reserved.

CHAPTER 9 - PICK/BASI
Preliminary PAGE 9-1

Copyright 1988 PICK SYSTEMS

9

9.1
9.2
9.3
9.4
9.4.1
9.5
9.5.1
9.5.2
9.6
9.7
9.7.1
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18
9.19
9.20
9.21
9.22
9.22.1
9.23
9.24
9.25
9.26
9.27
9.28
9.29
9.30
9.31
9.32
9.33
9.34
9.35
9.36
9.37
9.38
9.39
9.40
9.41
9.42
9.43
9.44
9.45
9.45.1
9.45.2

Contents

PICK/BASIC

THE PICK/BASIC LANGUAGE 9 -5
PICK/BASIC LANGUAGE DEFINITIONS 9-7
PICK/BASIC FILE STRUCTURE 9-11

THE PICK/BASIC PROGRAM 9-12
DYNAMIC ARRAYS - FILE ITEM STRUCTURE 9-13

CREATING AND COMPILING PICK/BASIC PROGRAMS . 9-15
PICK/BASIC COMPILER OPTIONS: A, C, E, L AND P OPTIONS 9-17
PICK/BASIC COMPILER OPTIONS : M, S, AND X OPTIONS 9-19

EXECUTING PICK/BASIC PROGRAMS 9-20
CATALOG AND DECATALOG : CREATING VERBS 9 -21

PICK/BASIC EXECUTION FROM PROC 9-22
VARIABLES AND CONSTANTS : DATA REPRESENTATION 9-23
ARITHMETIC EXPRESSIONS 9-25
STRING EXPRESSIONS 9-27
RELATIONAL EXPRESSIONS 9-29
MATCHES : RELATIONAL EXPRESSION PATTERN MATCHING 9-31
OR - AND : LOGICAL EXPRESSIONS 9-33
NUMERIC MASK AND FORMAT MASK CODES : VARIABLE FORMATTING 9 - 35
@ FUNCTION : CURSOR CONTROL 9-38
ABORT STATEMENT : TERMINATION 9-41
ABS FUNCTION : ABSOLUTE NUMERIC VALUE 9-42
ALPHA FUNCTION : ALPHABETIC STRING DETERMINATION 9-43
ASCII FUNCTION : FORMAT CONVERSION 9-44
ASSIGNMENT STATEMENT : ASSIGNING VARIABLE VALUES 9-45
BREAK ON AND OFF : DEBUGGER INHIBITION 9-46
CALL AND SUBROUTINE STATEMENTS : EXTERNAL SUBROUTINES 9-47

ARRAY PASSING AND THE CALL STATEMENT . . . 9-48
CASE STATEMENT : CONDITIONAL BRANCHING 9-49
CHAIN STATEMENT : INTERPROGRAM COMMUNICATION 9-50
CHAR FUNCTION : FORMAT CONVERSION 9-52
CLEAR STATEMENT : INITIALIZING VARIABLE VALUES 9-53
CLEARFILE STATEMENT : DELETING DATA 9-54
COL1() AND COL2() FUNCTIONS : STRING SEARCHING 9-55
COMMON STATEMENT : VARIABLE SPACE ALLOCATION 9-56
COS FUNCTION : COSINE OF AN ANGLE 9-58
COUNT FUNCTION : DYNAMIC ARRAYS 9-59
CRT STATEMENT : Terminal Output 9-60
DATA STATEMENT : STACKING INPUT DATA 9-61
DATE() FUNCTION : DATE CAPABILITY . 9-63
DCOUNT FUNCTION : DYNAMIC ARRAYS 9-64
DELETE STATEMENT : DELETING ITEMS 9-65
DELETE FUNCTION : DYNAMIC ARRAY DELETION 9-66
DIM STATEMENT : DIMENSIONING ARRAYS 9-67
DTX FUNCTION : DECIMAL to HEXADECIMAL CONVERSION 9-69
EBCDIC FUNCTION: FORMAT CONVERSION . . 9-70
ECHO ON AND OFF: TERMINAL DISPLAY 9-71
END STATEMENT 9-72
ENTER STATEMENT : INTERPROGRAM TRANSFERS 9 -73
EQUATE STATEMENT: VARIABLE ASSIGNMENT 9-74
EXECUTE STATEMENT: EXECUTING TCL COMMANDS 9-75

INPUT - EXECUTE STATEMENT 9-75
OUTPUT - CAPTURING CLAUSE. 9-75

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-2

Copyright 1988 PICK SYSTEMS

I

I ..

W
~ ..•...•. "': ..
I

i
I
I
I

I
I
[

I
[

I
I
I
I
I
I
I
I
I
I
I
(

I
(

9.45.3
9.45.4
9.45.5
9.45.6
9.46
9.47
9.48
9.49
9.50
9.50.1
9.51
9.52
9.53
9.54
9.55
9.56
9.57
9.58
9.59
9.60
9.60.1
9.61
9.62
9.63
9.64
9.65
9.66
9.67
9.68
9.69
9.70
9.71
9.72
9.73
9.74
9.75
9.76
9.77
9.78
9.79
9.80
9.81
9.82
9.83
9.84
9.85
9.86
9.87
9.88
9.89
9.90
9.91
9.92
9.93
9.94
9.95

OUTPUT RETURNING CLAUSE
SELECT ISTS - EXECUTE STATEMENT
WORK IRONMENT CHANGES
EXECUTE WORKSPACE

EXP FUNCT ON : EXPONENTIAL CAPABILITY

9-75
. 9-76

9-76
9-76
9-77

EXTRACT CTION: DYNAMIC ARRAY EXTRACTION
FIELD FUN TION : STRING SEARCHING
FOOTING S 1lTEMENT : PAGE OUTPUT FOOTINGS
FOR ... NEX STATEMENT: PROGRAM LOOPING

... 9-78
9-80
9-81
9-83

FOR... T STATEMENT: EXTENDED PROGRAM LOOPING
GOSUB ANDON ... GOSUB STATEMENTS: SUBROUTINE BRANCHING
GOTO STATaMENT : UNCONDITIONAL BRANCHING
HEADING S1ATEMENT : PAGE OUTPUT HEADINGS
ICONV FUNqTION : INPUT CONVERSION
IF STAT~ : SINGLE-LINE CONDITIONAL BRANCHING
IF STAT~ : MULTI-LINE CONDITIONAL BRANCHING

IN State~ent - Single Character Input . . .

. 9-85
9-87
9-88
9-89
9-91
9-92
9-94
9-96

INCLUDE S1ATEMENT : INCLUDING OTHER PICK/BASIC
INDEX FUNqTION : SEARCHING FOR SUB-STRINGS .
INPUT STA~EMENT : TERMINAL INPUT

Using ~asks with Input Statement
INPUTERR -I INPUTTRAP - INPUTNULL : INPUT FORMS
INSERT ~CTION : DYNAMIC ARRAY INSERTION . .
INT FUNCT]ON : INTEGER NUMERIC VALUE
LEN FUNCT]ON : GENERATING A LENGTH VALUE

PROGRAMS 9-91
9-92
9-93
9-93
9-95
9-96
9-97
9-98

LN FUNCTIqN : NATURAL LOGARITHM
LOCATE STIiTEMENTS : LOCATING INDEX VALUES
LOCK STATe : SETTING EXECUTION LOCKS
LOOP STAT : STRUCTURED LOOPING
MAT - ASS GNMENT AND COPY : ASSIGNING ARRAY VALUES
MATREAD S~ATEMENT : MULTIPLE ATTRIBUTES
MATREADU STATEMENT : GROUP LOCKS
MATREADU TATEMENT: LOCKED CLAUSE ...
MATWRITE TATEMENT : MULTIPLE ATTRIBUTES
MATWRITEU STATEMENT : UPDATE LOCKS
NOT FUNCTI N : LOGIC CAPABILITY
NULL STAT : NON -OPERATION
NUM FUNCTl N : NUMERIC STRING DETERMINATION
OCONV FUNCTION : OUTPUT CONVERSIONS
ON ... GOTO iSTATEMENT : COMPUTED BRANCHING
OPEN STAT : OPENING I/O FILES

OUT State ent - Single Character Output
PAGE STAT : HEADING OUTPUT . .
PRECISION ECLARATION : SELECTING NUMERIC PRECISION
PRINT STA ENT: TERMINAL OR PRINTER OUTPUT
PRINT STA : TABULATION AND CONCATENATION
PRINTER 0 OFF STATEMENTS : SELECTING OUTPUT DEVICE
PROCREAD S 1lTEMENT : READING DATA FROM A CALLING PROC
PROcw.ITE TATEMENT: WRITING DATA BACK TO PROC
PROMPT ST EMENT: INPUT PROMPT CHARACTER
PWR FUNCTI N : RAISING BY A POWER ..
READ STAT : ACCESSING FILE ITEMS
READNEXT S ATEMENT : ACCESSING ITEM-IDS
READT STAT : READING RECORDS FROM TAPE
READU AND VU STATEMENTS GROUP LOCKS
READU AND VU STATEMENTS : LOCKED CLAUSE

9-99
9-100
9-102
9-104
9-106
9-108
9-109
9-110
9-111
9-112
9-113
9-114
9-115
9-116
9-117
9-118
9-119
9-119
9-120
9-122
9-124
9-125
9-126
9-127
9-128
9-129
9-130
9-131
9-132
9-133
9-135

CHAPTER 9 - PICK/BASI
Preliminary PAGE 9-3

Copyright 1988 PICK SYSTEMS

9.96
9.97
9.98
9.99
9.100
9.101
9.102
9.103
9.104
9.105
9.106
9.107
9.108
9.109
9.110
9.111
9.112
9.113
9.114
9.115
9.116
9.117
9.118
9.119
9.120
9.121
9.122
9.122.1
9.122.2
9.122.3
9.122.4
9.122.5
9.122.6
9.122.7
9.122.8
9.122.9
9.122.10
9.122.11
9.122.12
9.123
9.124
9.125
9.126
9.127
9.128
9.129

READV STATEMENT: ACCESSING AN ATTRIBUTE
RELEASE STATEMENT: RELEASING GROUP UPDATE LOCKS
REM OR MOD FUNCTION : REMAINDER VALUE
REPlACE FUNCTION: DYNAMIC ARRAY REPlACEMENT
RETURN AND RETURN TO STATEMENTS : SUBROUTINE RETURNING
REWIND STATEMENT : REWINDING THE TAPE
RND FUNCTION: RANDOM NUMBER GENERATION
SELECT STATEMENTS : SELECTING ITEM-IDS
SEQ FUNCTION : FORMAT CONVERSION
SIN FUNCTION : SINE OF AN ANGLE
SLEEP OR RQM STATEMENT : TIME ALLOCATION
SPACE FUNCTION : STRING SPACING
SQRT FUNCTION : SQUARE ROOT CABABILITY
STOP STATEMENT : TERMINATION
STR FUNCTION : GENERATING STRING VALUES
SYSTEM FUNCTION : CALLING PRE-DEFINED SYSTEM VALUES
TAN FUNCTION : TANGENT OF AN ANGLE
TlME() AND TlMEDATE() FUNCTIONS : TIME AND DATE
TRIM FUNCTION : DELETING EXTRANEOUS SPACES
UNLOCK STATEMENT : CLEARING EXECUTION LOCKS
WEOF STATEMENT : POSITIONING TAPE
WRITE STATEMENT : MODIFYING ITEMS
WRITET STATEMENT : WRITING RECORDS TO TAPE
WRITEU AND WRITEVU STATEMENTS : UPDATE LOCKS
WRITEV STATEMENT : UPDATING AN ATTRIBUTE
XTD FUNCTION : HEXADECIMAL TO DECIMAL CONVERSION
PICK/BASIC SYMBOLIC DEBUGGER : AN OVERVIEW . .

USING THE PICK/BASIC DEBUGGER : AN EXAMPLE
THE TRACE TABLE
PICK/BASIC DEBUGGER: THE B, D, AND K COMMANDS
E, G, AND N COMMANDS : DEBUGGER EXECUTION
SlASH 'I' COMMAND: DISPlAYING AND CHANGING VARIABLES
VARIOUS DEBUGGER COMMANDS : ADDITIONAL FEATURES
GENERAL CODING TECHNIQUES : HELPFUL HINTS
PROGRAMMING EXAMPLES: PYTHAG
PROGRAMMING EXAMPLES: GUESS
PROGRAMMING EXAMPLES: INV-INQ .
PROGRAMMING EXAMPLES: FORMAT
PROGRAMMING EXAMPLES: LOT-UPDATE

SUMMARY OF PICK/BASIC STATEMENTS.
BASIC INTRINSIC FUNCTION SUMMARY
BASIC COMPILER ERROR MESSAGES
BASIC RUN-TIME ERROR MESSAGES
LIST OF ASCII CODES
SUMMARY OF THE PICK/BASIC DEBUGGER COMMANDS
DEBUGGER MESSAGES

Tables

9-136
9-137
9-138
9-139
9-140
9-141
9-142

· 9-143
· 9-145

9-146
· 9-147

9-148
9-149
9-150
9-151
9-152
9-155
9-156
9-157
9-158
9-159
9-160
9-161
9-162
9-163
9-164
9-165
9-167
9-169
9-170
9-171
9-172
9-173
9-174
9-176
9-177
9-178
9-179
9-181
9-184
9-188
9-190
9-192
9-194
9-197
9-199

9-1 Cursor Control Characters • . • . . 9 - 39

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-4

Copyright 1988 PICK SYSTEMS

I

1'· "

I
I
I
I
I

I
I
I
I

I
I
I
I
l
I
I
I
I
I
I
I
I
I
[

I
[

I
[

9.1 THE PICK/BASIC GUAGE

This manual descri es the PICK/BASIC
extended version of Dartmouth BASIC.

source language, which is an

BASIC (Beginners All PUrpose Symbolic Instruction Code) is a simple yet
versatile programmin language suitable for expressing a wide range of
problems. Developed t Dartmouth College in 1963, BASIC is a language
especially easy fo the beginning programmer to master. Extended
PICK/BASIC has the f llowing extraordinary features:

,
i

- Optional state~ent labels (i.e., statement numbers)

- Statement labels of any length

- Multiple state~ents on one line

- Computed GOTO ~tatements

- Complex IF sta¢ements

- Multi-line IF statements

- Priority CASE $tatement selection

- String handlin~ with variable length
strings up to ~2,267 characters

- External subrortine calls

- Direct and indfrect calls

- Magnetic tape ;nput and output

- Fixed point ar thmetic with up to
14 digit preci ion

,

- ACCESS data cotversion capabilities

- PICK file acce s and update capabilities
j

- File level or froup level lock capabilities

- Pattern matchi*g

- Dynamic arrays

- TCL command ex cut ion

CHAPTER 9 - PICK/BAS C
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-5

I
[

I
I
I' ,

I
I
I
I
I
I
I
I
I
I
I
I
I
[

9.2

A PICK/BASIC pr gram is comprised of PICK/BASIC statements.
PICK/BASIC statem nts may contain variables, constants, expressions,
and PICK/BASIC Int insic Functions.

A PICK/BASIC progr~ consists of a sequence of PICK/BASIC statements.
More than one state~ent may appear on the same program line, separated by
semicolons. Any iPICK/BASIC statement may begin with an optional
statement label.

PICK/BASIC statement,s may contain arithmetic, relational, and logical
expressions. Thesel expressions are formed by combining specific
operators with varia~les, constants, or PICK/BASIC Intrinsic Functions.
The value of a variable may change dynamically throughout the execution
of the program. A ~onstant, as its name implies, has the same value
throughout the execution of the program. An Intrinsic Function performs
a pre-defined operat!ion upon the parameter(s) supplied.

FUNCTION

ABS
ALPHA
ASCII
CHAR
COLl()
COL2()
COS
COUNT
DATE()
DCOUNT
DELETE
DTX
EBCDIC
EXP
EXTRACT
FIELD
ICONV
INDEX
INSERT
INT
LEN
LN
LOCATE
NOT
NUK
OCONV
PWR

I

BRIEF D~SCRIPTION

Returns I an absolute value.
Tests fbr alphabetic value.
Convert~ string from EBCDIC to ASCII.
Convert~ numeric value to ASCII character.
Returns. column position preceding FIELD-selected sub-string.
Returns~ column position following FIELD-selected sub-string.
Generat~s the trigonometric cosine of an angle.
Counts ~he number of occurrences in a string.
Returns current internal date.
Returns I a value of the number of values in a string.
Deletes' attribute, value, or sub-value from dynamic array.
Converts decimal to hexadecimal.
Coverts I string from ASCII to EBCDIC.
The expbnential function.
Returns, attribute, value, or sub-value from dynamic array.
Returns I a delimited sub-string.
Provide~ for Pick input conversion.
Returns! column position of sub-string.
Inserts attribute, value, or sub-value into dynamic array.
Return ~n integer value.
Returns length of string.
Generatts the natural logarithm of the expression.
Returns the index of a sub-string in a dynamic array.
Returns logical inverse.
Tests f r numeric value.
Provide for Pick output conversion.
Raises n expression.

CHAPTER 9 - PICK/BASI
Preliminary PAGE 9-7

Copyright 1988 PICK SYSTEMS

roNCTION

REPLACE
RND
SEQ
SIN
SPACE
SQRT
STR
SYSTEM
TAN
TIME
TlMEDATE
TRIM
XTD
@

BRIEF DESCRIPTION

Replaces attribute. value, or sub-value in dynamic array.
Generates random number.
Converts ASCII to a numeric value.
Generates trigonometric sine.
Generates string containing blanks.
Returns positive square root.
Generates specified string.
Provides certain pre-defined values.
Generates trigonometric tangent.
Returns internal time of day.
Returns external time and date.
Removes extraneous blank spaces.
Converts hexadecimal to decimal.
Controls terminal cursor.

Summary of PICK/BASIC INTRINSIC roNCTIONS

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-8

Copyright 1988 PICK SYSTEMS

I

I
I
I

i
I
I
I

I
i
]

·I···~· '
" .

• ..

I
l
I
I
[

l
I
I
I
I
I
I
I
I
I
I
I
I
(

BREAK ON/OFF
CALL
CASE

CHAIN
CLEAR
CLEARFlLE
COMMON

CRT
DATA
DELETE
DIM
END
ENTER
EQUATE
EXECUTE
FOR ... NEXT
end.

Enab es or disables debugger.
Exte 1 subroutine branching.
Prov des conditional selection of a sequence
of s~atements.
pass*s control to another program.
Init a1izes all variables to zero.
C1ea s data section of specified file.
Vari Ie storage space allocation, used with
CHAINed programs.
Direqts output to the terminal.
Stor~s data for input using CHAIN or EXECUTE

I

De1eaes specified file item.
Rese~es storage for arrays.
Designates the physical end of the program.
Tran~fers control from one program to another
A1101S variable to be defined as equivalent of another.
Exec tes TCL commands.
Spec fies beginning of a program loop, NEXT specifies

!

GOSUB Tran~fers control to a subroutine.
GOTO Tran~fers control to another statement.
HEADING Prin~s a page heading.
IF Prov~des conditional execution of specified statements.
INCLUDE Uses idata from other programs.
INPUT Inpu~s data from the terminal.
INPUTTER Mess~ge is printed at bottom of screen.
INPUTNULL Repl~ces default values with null.
INPUTTRAP Sets !input trap for character(s).
LOCK Sets Ian execution lock.
LOOP ... REPEAT provfes for structured program loops.
HAT Assi s value to each element of an array.
HATCHES Re1a iona1 pattern matching.
HATREAD Read a file item into an array.
HATREADU Read~ a file item into an array, sets update lock.
HATWRITE Writ!S a file item with the contents of an array.
HATWRITEU Same as HATWRITE but will not unlock update group.
NULL Spec fies a non-opertion.
ON GOTO/GOSUB Tran~fers control using an indexed expression.
OPEN Se1e ts a file for subsequent I/O.
PAGE Page output device and prints heading.
PRECISION Se1e ts precision used in calculations.
PRINT Caus s specified data to be printed.
PRINTER ON/OFF Cont ols selection of printer or terminal for output.
PROCREAD Read a PROC' s primary input buffer ..
PROCWRITE Writ s data to PROC's input buffer.
PROMPT Sele ts a prompt character for the terminal.
READ Read a file item.
READU Read a file item, sets update lock.
READNEXT Read next item-id.

CHAPTER 9 - PICK/BAS C
Preliminary PAGE 9-9

Copyright 1988 PICK SYSTEMS

STATEMENT BRIEF DESCRIPTION
READT Reads next magnetic tape record.
READV Reads an attribute.
READVU Reads an attribute, sets update lock.
REM I * Specifies a remark (command) statement.
RETURN Returns control from a subroutine.
RETURN TO Return control to the main program
REWIND Rewinds magnetic tape.
RQM or SLEEP Terminates programs current time quantum.
SELECT Selects data from a file.
STOP Designates a logical end of the program.
SUBROUTINE Specifies a program branch subroutine.
UNLOCK Resets an execution lock.
WEOF Writes an EOF on magnetic tape.
WRITE Updates a file item.
WRITET Writes a magnetic tape record.
WRITEU Writes a file item, will not unlock update group.
WRITEV Updates an attribute value.
WRITEVU Updates an attribute value, will not unlock update group.

Summary of PICK/BASIC Statements

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-10

Copyright 1988 PICK SYSTEMS

I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I

I
I
I
I
[

[

I
I
I
I
I
I
I
I
I
I
I
I
[

9.3 PICK/BASIC FILE TRUCTURE

A PICK/BASIC progr , when stored, constitutes a File Item, and is
referenced by its I em-Name (i.e., the name it is given when it is
created via the E ITOR). An individual line within the PICK/BASIC
program constitutes ,n attribute.

I
There is a fixed str~cture for PICK/BASIC source files. The file MUST
have a dictionary an~. a separate data level. The PICK/BASIC source
programs are stored n the data level of the file. The compiler writes
the object and the s bol file as one record into the dictionary. This
makes it much simpler. to manipulate the program source. It can be LISTed,

I
T-DUMPed, T-LOADed, a~d so on, without having to select the source items.
The object record cpntains binary data, so the dictionary "D" pointer
must have "DC" in attribute one. The primary advantages of this format
are:

1. The object can now be protected with access/update locks.
I

2. The object saves/restores with the account on account-saves.

3. The CATALOG ~unction is not necessary for run time efficiency.

4. There is les~ disk space utilized and fewer steps to perform.

5. The PICK/BASIIC Debugger can tell the name of the item and verify
the object code integrity.

I

6. PICK/BASIC ~as a restriction of 32267 bytes of object code and
32267 bytes lof source per program.

CHAPTER 9 - PICK/BAS C
Preliminary PAGE 9-11

Copyright 1988 PICK SYSTEMS

9.4 THE PICK/BASIC PROGRAM

A PICK/BASIC program is comprised of PICK/BASIC statements. The Remark
statement may be used to identify the function or purpose of various
sections of the program.

SEJ(ICOLON - , ; ,
A PICK/BASIC program consists of a sequence of PICK/BASIC statements.
More than one statement may appear on the same program line, separated by
semicolons. For example:

x - 0; Y - 0; GOTO 50

LABELS - optional
Any PICK/BASIC statement may begin with an optional statement label which
must be numeric only. A statement label is used so that the statement
may be referenced from other parts of the program. For example:

100 INPUT X
169.40 INPUT Y

REMARKS - 'REM' 'I' '*'
A helpful feature to use when writing a PICK/BASIC program is the Remark
statement. A Remark statement is used to explain or document the program.
It allows the programmer to place comments anywhere in the program
without affecting program execution. A Remark statement is specified by
typing the leters REM, or the asterisk character (*), or the exclamation
(!) at the beginning of the statement; any arbitrary characters may then
follow (up to the end of the line). For example:

REM THESE PICK/BASIC STATEMENTS
I DO NOT AFFECT
* PROGRAM EXECUTION

BLANK SPACES
Except for situations explicitly called out in the following sections,
blank spaces appearing in the program line (which are not part of a data
item) will be ignored. Thus, blanks may be used freely within the program
for purposes of appearance.

REM PROGRAM TO PRINT NUMBERS
FROM ONE TO MAX. NUMBER
MAX NOM - 25; * define max number

5* FOR/NEXT LOOP ROUTINE
FOR DSPLY - 1 to MAX. NOM

PRINT DSPLY
NEXT DSPLY

9* FINISHED
END

Sample PICK/BASIC PRogram Including Remark Statements.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-12

Copyright 1988 PICK SYSTEMS

I
I
I
I
I
I
I
I
I

I
I
I

I"·· ..

I
I
I

I
I
I
I
[

I
I
I
I
I
I
I
I
I
I
I
I
I
(

9.4.1 DYNAMIC ARRAYS - PILE ITEH STRUCTURE

PICK/BASIC allows th user to manipulate PICK file items in the form
of item-formatted st ings which are call.ed dynamic arrays.

The PICK/BASIC Ian a number of statements and functions
which are extremely useful in accessing and updating PICK files. A
complete description of the PICK file structure is presented in the
chapter on File-struc ure. A brief description of the structure as viewed
by the PICK/BASIC pro rammer is appropriate at this point.

A PICK file consist1 of a set of items. When a PICK file item is
accessed by a PICK/ SIC program (refer to INPUT/OUTPUT STATEMENTS), it
is represented as a ICK/BASIC string in item format. A string in item
format is called a d amic array.

A dynamic array consists of one or more attributes separated by attribute
marks (i.e., an a tribute mark has an ASCII equivalent of 254, which
prints as "A"). An a tribute, in turn, may consist of a number of values
separated by value arks (i.e, a value mark has an ASCII equivalent of
253, which prints a H)"). Finally, a value may consist of a number of
secondary values s parated by secondary value marks (i.e., a secondary
value ms.rk has an SCll equivalent of 252, which prints as "\") . An
example of a dynamic array is as follows:

"SSAABCDA 3XYZAIOOOOO.33"
where "55", "ABCD" ,
The following illust

"QS A,AAAAA9
where "Q5", "AAAA",
"555" are attributes
"2" are values; and

73XYZ" , and "100000.33" are attributes.
ates a more complex dynamic array:
2]ABC]1234SAAABAC]TEST\12I\9\99.3]2ASSS"
"952)ABC)l2345", "A", "B", "C)TEST)\12I\9\99.3)2" and

"952", "ABC", "12345", nCR, "TEST\12I\9\99.3" , and
TEST", "121", "9", and "99.3" are secondary values.

Dynamic arrays can ,be directly manipulated by the PICK/BASIC dynamic
array functions (efer to the section titled PICK/BASIC INTRINSIC
FUNCTIONS). Dynamic arrays are called "arrays" because they can be
referenced by these functions using 3 subscripts. They are "dynamic" in
the sense that e1~ments can be added and deleted without having to
re-compile the pro1ram, as long as the item does not exceed 32,267
characters.

!

CHAPTER 9 - PICK/BAS C
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-13

EXPLANATION
"123", "456", "789]ABC]DEF" are attributes;
"789", "ABC" and "DEF" are values.

"Q56" , "3.22]3.56\88\B2C", and "99" are
attributes; "3.56/88/B2C" is a value;
"3.56", "88", and
"B2C" are secondary values.

"A]B]C]D", "E]F]G]H", and "I]J" are
attributes; "A", "B", nCR, "D", "E", "F",
"G", "H", "I", and "J" are values.

Sample Usage of Dynamic Arrays.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-14

Copyright 1988 PICK SYSTEMS

I .,

i
I ..
I .. •
I

I
]

I
1 II

I

I

I:'; , ,

I
I
[

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

9.5 ClEATING AND CO ILING PICK/BASIC PROGRAMS

A PICK/BASIC progr is created via the EDITOR as any other data-file
item. Once this sour e code item has been filed, it is compiled by
issuing the COMPILE erb (or the BASIC verb) at the TCL level.

FORMAT:

ED (or EDIT!) file-name item- id

Upon execution, the ~DITOR processor will then be entered, and the user
may begin entering I his PICK/BASIC program. For ease of instruction
indentation, the user! may set tab stops (either at the TCL level or while
the EDITOR processor iis in control- - see examples below).

i

The program name willi be that specified by the 'item-id' and the program
will be stored in ,the file specified by the 'file-name'. Users will
typically have a fi~' exclusively devoted to the storage of PICK/BASIC
programs. The PICK ASIC compiler stores the object code in the same
file, but in the dic ionary portion of the file (see below).

Once the PICK/BASIC ~rogram has been entered and filed, it may be compiled
by issuing the BASIC ~erb at the TCL level. BASIC is a TCL-II verb which
creates a new dict i~~m: it contains the compiled PICK/BASIC program (the
object code), and a Isymbol definition table of the variables used in the
program. The item is Istored in the file specified by 'file-name'.

FORMAT:

BASIC file-Iname item-list (options)
I

The 'item-list' con~ists of one or more item-id's (program names)
separated by one or ore blanks. The 'options' parameter is optional and
if used, must be pre eded by a left parenthesis. Multiple options should
be separated by co~as. Valid options are listed below. For detailed
descriptions of each ,I see the following section.

A
C
E
L
H
P
S
X

,

BASIC VERB OPTIONS

Assembled qode option
Suppress E~d Of Line (EOL) opcodes from object code.
List error lines only.
List PICK/ IC program.
List map 0 PICK/BASIC program
Print comp lation output on line printer.
Suppress 8 neration of symbol table.
Cross refe ence all variables.

CHAPTER 9 - PICK/BAS C
Preliminary PAGE 9-15

Copyright 1988 PICK SYSTEMS

>TABS I 2,4,8 <RETURN> <------------ User sets input tabs
at TCL level

>ED BP COUNT <RETURN> <------------ User edits item 'COUNT'
in file 'BP' (Basic Programs)

NEW ITEM
TOP
<RETURN> <------------ User enters input mode and

begins to enter program

001* PROGRAM COUNTS FROM 1-10 * <RETURN>
002 FOR I - 1 TO 10 <RETURN> <----- Entered with [ctrl-I] (or TAB key)
003 PRINT I <RETURN> <------- depressed once for indentation
004 NEXT I <RETURN> I to first tab stop.
005 END <RETURN> I
006 <RETURN>
TOP

FI <RETURN>

, COUNT' FILED

<--------
I

[ctr1-I] (or TAB key) depressed
twice for second tab stop

indentation

User files item

>BASIC BP COUNT <RETURN> <---------- User issues compile command

[BO] PROGRAM 'count' compiled. 1 frame/s used.

PICK/BASIC Program nCOUNTn Created (edited), Filed and Compiled.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-16

Copyright 1988 PICK SYSTEMS

I
i
I
I
I
I
I
I
I
]

I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

9.5.1 PICE/BASIC CO lLER OPTIONS: A, C, E, L AND P OPTIONS

This section describ s five of the options available when issuing the
BASIC compile statem nt. They are the "A" for assembled code, the ·C"
for suppression of e d of line opcode, "E" for the listing of error
lines only, the ,L" for the listing of the program during
compilation, and ·P": for routing output to the printer. The following
section describes th~ remaining three compiler options.

FORMAT:

BASIC file-name item-name {(options)
!

If mUltiple options ~e present, they are seperated by commas.

A

C

E

L

P

The as!semb1ed code option. The "A" option generates a
listing ~f the source code line numbers, the labels and the
PICK/BASIIC opcodes used by the program. This is a 'pseudo'
assemb1~ code listing which allows the user to see what
PICK/BASiIC opcodes his program has generated. The
hexadec~al numbers on the left of the listing are the
PICK/BA~IC opcodes and the mnemonics are listed on the
right. Ie assembled code listing of the PICK/BASIC program
"COUNT" (from previous section) is shown, as an example, on
the fac~ng page.

The compress option. The compress option suppresses the
end-of-line (EOL) opcodes from the object code item. The
EOL opcQdes are used to count lines for error messages.
This e~iminates 1 byte from the run time object code for
every l~ne in the source code. This option is designed to
be used Iwith debugged programs. Any run time error message
will sp~cify a line number of 1.

The 'list error lines only' option. The "E" option
generaJs a listing of the error lines encountered during
the co ilation of the program. The listing indicates line
number n the source code item, the source line itself and
a descr ption of the error associated with the line.

The listt program option. The "L" option generates a line
by line listing of the program during compilation. Error
lines w~th associated error messages are indicated.

The p inter option. The "P" option routes all output
generat d by the compilation to the printer.

CHAPTER 9 - PICK/BAS C
Preliminary PAGE 9-17

Copyright 1988 PICK SYSTEMS

SOURCE BASIC PSEUDO
CODE OBJECT ASSEMBLY
LINE NO. ~ ~

001 01 EOL
002 03 LOADA I
002 07 LOAD 1
002 07 LOAD 1
002 2D SUBTRACT
002 SF STORE
002 *1009
002 OS LOADN 10
002 03 LOADA I
002 07 LOAD 1
002 1B FORNEXT *2009
002 01 EOL
003 16 LOAD I
003 SO PRINTCRLF
003 01 EOL
004 06 BRANCH *1009
004 *2009
004 01 EOL
005 01 EOL
006 45 EXIT

[BO] Program 'count' compiled. 1 frame/s used.

"A" option listing of PICK/BASIC program "COUNT"

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-18

Copyright 1988 PICK SYSTEMS

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I

I
[

I
I
I
I
I
I
I
I
I
I
I
I
I
[

I
I
(

9.5.2 rIel/BASIC CO ILEi OPTIONS H, S. AND X OPTIONS

This section descr bes the remaining three options available when
issuing the BASIC ompile statement. They are "M" for map, "S" for
suppressing genera ion of the symbol table, and "X" for cross
reference.

M The map option~ The "M" option generates a variable map which is
printed out a~ter compilation. These maps show where the program
data has beenl stored in the user's workspace. The variable map
lists the off~et in decimal of every PICK/BASIC variable in the

S

X

program. For e*ample, the form: .

20 xxx 30 yyy

shows that th~ descriptor of variable 'xxx' starts on byte 20 and
the descriptor! of variable 'yyy' starts on byte 30 of the seventh
frame of the IS buffer. Descriptors are 10 bytes in length.

The suppress s~' bol table option. The "S" option suppresses the
the symbol t ble item which is normally generated during
compilation. e symbol table item is used exclusively by the
PICK/BASIC DEByGGER for reference, therefore it must be kept only
if the user wiThes to use the Debugger.

The cross reference option. The "X" option creates a cross
reference of .11 the labels and variables used in a PICK/BASIC
program and s~ores this information in the BSYM file. Note: A
BSYM file must exist (a modulo and separation of 1,1 should be
sufficient). !The "X" option first clears the BSYM file
information in! the BSYM file then creates an item for every
variable and ilabel used in the program. The item-id is the
variable or la~el name. The attributes contain the line numbers
of where the ivariable or label is referenced. An asterisk will
precede the li_e number where a label is defined, or where the
value of the vlriable is changed.

No output is enerated by this option. an attribute definition
item should b~ placed in the dictionary of the "BSYM" file which
allows a cros1 reference listing of the program to be generated by
the command: >~ORT BSYM BY LINE-NUMBER LINE-NUMBER

I

CHAPTER 9 - PICK/BAS C
Preliminary PAGE 9-19

Copyright 1988 PICK SYSTEMS

9.6 EXECUTING PICK/BASIC PROGRAMS

The PICK/BASIC program is executed by issuing the RUN verb.

FORMAT:

RUN file-name item-id «options»

RUN is the TCL-II verb issued to run a compiled PICK/BASIC program. The
"file-name" and "item-id" specify the compiled PICK/BASIC program to be
executed. The "options" parameter is optional (if used, it must be
enclosed in parentheses). Multiple options are separated by commas. Valid
options are as follows:

A

D

E

N

P

S

Abort option. The "A" option inhibits entry to the Basic
Debugger under all error conditions; instead, the program will
print a message and terminate execution.

Run-time debug option; causes the PICK/BASIC debugger to be
entered before the start of program execution. Note that the
PICK/BASIC debugger may also be called at any time while the
program is executing, by pressing the BREAK key on the terminal.

Errors option. The "E" option forces the PICK/BASIC runtime
package to enter the PICK/BASIC Debugger whenever an error
condition occurs. The use of this option will force the
operator to either accept the error by using the Debugger, or
exit to TCL.

Nopage option. The "N" option cancels the default wait at the
end of each page of output.

Printer on (has same effect as issuing a PICK/BASIC PRINTER ON
statement). Directs all program output from a PRINT statement
to the printer.

Suppress run-time warning messages.

TESTING

001 * PROGRAM TO PRINT TEST MESSAGE
002 PRINT "THIS IS A TEST"
003 END

> RUN PROGRAMS TESTING <RETURN>
THIS IS A TEST

Execution of Sample PICK/BASIC Program

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-20

Copyright 1988 PICK SYSTEMS

I
I
I; , '

I
1",'·<,',·· ']

I

I

I··' "

I
I
I
I
I:·' >~

I
I
I

[

(

I
I
I
I
I
I
I
I
I
I
I
I
I
(

I
I
I

9. 7 CATALOG AND DECA'l'ALOG ClEATING VERBS FOR BASIC PROGlWIS

Verbs defining PICK/~ASIC programs can be created and deleted using
the CATALOG and DECAtALOG verbs.

The CATALOG verb creates a TCL-II verb defining a PICK/BASIC program.

FORMAT:

CATALOG file-name item-id

The "file-name" and "item-id" specify the previously compiled PICK/BASIC
program which is to be cataloged. The system will respond with:

[244] item-id CATALOGED

Once a program is cataloged, it is 'run' simply by issuing the program
name at the TCL prompt. The TCL-II verb which is added to the user's
Master Dictionary has the following form:

1) P
2) E6
3)
4)
5) XXXXX

where XXXXX is the user's basic program file name.

The DE CATALOG verb deletes the verb definition from the user's Master
Dictionary.
FORMAT:

DE CATALOG file-name item-id

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-21

Copyright 1988 PICK SYSTEMS

9.7.1 PICK/BASIC EXECUTION FaOM PROC

PICK/BASIC program execution can be initiated from PROC, similar to
any other TCL command.

A PICK/BASIC program may be run from a PROC. The following example
illustrates the use of a PICK/BASIC program in conjunction with the
ACCESS Sort Select (SSELECT) verb.

PROC named LISTBT as follows:

PQ
HSSELECT BASIC/TEST
STON
HRUN BASIC/TEST LISTIOS
P

PICK/BASIC program named LISTIOS as follows:

10 N - 0
20 READNEXT 10 ELSE STOP

PRINT 10 'una':
N - N + 1
IF N>- 4 THEN PRINT; GO TO 10
GO TO 20
ENO

By typing in the following:

LISTBT

at the TCL level, the PROC LISTBT selects the item-id's contained in
file BASIC/TEST and invokes the BASIC program LISTIOS to list the
item-id's selected, four to a line.

Sample Usage of PICK/BASIC called from PROC.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-22

Copyright 1988 PICK SYSTEMS

I

I
I
I
I
I
I
I

-
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I,
I
I
E
I
I
I
I
I
I
(

There are two types of
represented within the
constants.

DATA REPRESENTATION

data: NUMERIC and STRING. These data types are
PICK/BASIC program as either variables or

Numeric data consists of a series of digits and represent an amount
(e.g., 255). String data consist of a set of characters, such as would be
for a name and address. For example:

JOE DOE, 430 MAIN, ATOWN, CA.

These data types may be represented within the PICK/BASIC program as
either constants or variables. A constant, as its name implies, has the
same value throughout the execution of the program. A numeric constant
may contain up to 14 digits, including a maximum of 6 digits following
the decimal point and must be in the range:

-99,999,999.999999 to 99,999,999.999999

If the PRECISION (see section on PRECISION DECLARATION) of the program is
6 digits; by setting the PRECISION to a value less than 6, the range of
the allowable numbers is increased accordingly.

The unary minus sign is used to specify negative constants. For example:

-17000000
-14.3375

A string constant is represented by a set of characters enclosed
in single quotes, double quotes, or backslashes. For example:

"THIS IS A STRING" 'ABCD1234#*' \HELLO\

if any of the string delimiters (' ," or \) are to be part of the string,
then one of the other delimiters must be used to delimit the string. For
example:

"THIS IS A 'STRING' EXAMPLE"
\THIS IS A "STRING" EXAMPLE\

A string may contain from 0 to 32,267 characters.

As mentioned above, data may also be represented as variables. A variable
has a name and a value. The value of a variable may be either numeric or
string, and may change dynamically throughout the execution of the
program. The name of a variable identifies the variable (the name remains
constant throughout program execution). Variable names consist of an
alphabetic character followed by zero or more letters, numerals, periods,
or dollar signs. The length of a variable name may be from 1 to 64
characters.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-23

Copyright 1988 PICK SYSTEMS

For example:
X
QUANTITY
DATA. LENGTH
B$ •• $

The variable X, for example, may be assigned the value 100 at the start
of a program, and may then later be assigned the value "THIS IS A STRING".

It should be noted that PICK/BASIC keywords (i.e., words that define
PICK/BASIC statements and functions) may not be used as variable names.

VALID STRING

"ABC%123#*4AB"

I 1Q2Z I

"A 'LITERAL' STRING"

'A "LITERAL" STRING'

II (i.e., the empty string)

INVALID STRING

ABC123
(i.e., quotes are missing)

I ABC %QQR "
(either two single quotes
or two double quotes
must be used)

"12345678910
(terminating double

\JOHN PROGRAMMER\ quote missing)

Sample Usage of String Constants

VALID VARIABLE NAME

A5

ABCDEFGHI

QUANTITY.ON.HAND

R$$$$P$

J1B2Z

INTEGER

THIS. IS.A.NAME

CHAPTER 9 - PICK/BASIC
Preliminary

INVALID VARIABLE NAME

ABC 123
(no space allowed)

5AB
(must begin with letter)

Z. ,$
(comma not allowed)

A-B
("-" not allowed)

INPUT
(Pick/Basic Statement)

Sample Usage of Variable Names

Copyright 1988 PICK SYSTEMS
PAGE 9-24

I
I
I
I
I
I
I
I
.1
I
I
I
I
I
I
I
I
I
I

I
[

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
[

9.9 ARITHMETIC EXPRESSIONS

Expressions are formed by combining operators with variables, constants,
or PICK/BASIC Intrins~c Functions. Arithmetic expressions are formed by
using arithmetic operators.

When an expression is encountered as part of a PICK/BASIC program
statement, it is evaluated by performing the operations specified by each
of the operators on the adjacent operands, i.e., the adjacent constants,
identifiers, or Intrinsic Functions. (NOTE: Intrinsic Functions are
discussed in a separate section of this manual.)

Arithmetic expressions are formed by using the arithmetic operators
listed below. The simplest arithmetic expression is a single numeric
constant, variable, or Intrinsic Function. A simple arithmetic expression
may combine two operands using an arithmetic operator. More complicated
arithmetic expressions are formed by combining simple expressions using
arithmetic operators.

When more than one operator appears in an expression, certain rules are
followed to determine which operation is to be performed first. Each
operator has a precedence rating. In any given expression the highest
precedence operation will be performed first. Precedence of the
arithmetic operators are shown below. If there are two or more operators
with the same precedence (or an operator appears more than once) the
leftmost operation is performed first. For example, consider this
expression: -R/A+B*C. The unary minus is evaluated first (i.e., -R -
Resultl). The expression then becomes: Result 1 / A+B*C. The division and
multiplication operators have the same precedence; since the division
operator is leftmost it is evaluated next (i.e., Resultl / A - Result2).
The expression then becomes: Result 2+B*C. The multiplication operation
is performed next (i.e., B*C - Result3). The Result2 + Result3 - Final
Result.

Using some figures in the above expression illustrates, for example, that
the expression -50/5+3*2 evaluates to -4.

Any sub-expression may be enclosed in parentheses. Within the
parentheses, the rules of precedence apply. However, the parenthesized
subexpression as a whole has highest precedence and is evaluated first.
For example: (10+2)*(3-1) - 12*2 - 24. Parentheses may be used anywhere
to clarify the order of evaluation, even if they do not change the order.

If a string value containing only numeric characters is used in an
arithmetic expression, it is considered as a decimal number. For example,
123 + "456" evaluates to 579.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-25

Copyright 1988 PICK SYSTEMS

If a string value containing non-numeric characters is used in an
arithmetic expression, a warning message will be printed (refer to
APPENDIX D - PICK/BASIC RUN-TIME ERROR MESSAGES) and zero will be assumed
for the string value.

The following expression, for example, evaluates to 123:

123 + "ABC"

OPERATOR SYMBOL OPERATION PRECEDENCE

+ unary plus 1 (high)
unary minus 1

" exponental 2
* mul tipl ication 3
/ division 3
+ addition 4

subtraction 4 (low)

Arithmetic Operators

2+6+8/2+6

12/2*3

12/(2*3)

2"2*3

2"(2*3)

A+75/25

-5+2

-(5+2)

8*(-2)

5 * "3"

Sample Usage

CHAPTER 9 - PICK/BASIC
Preliminary

Evaluates to 18

Evaluates to 18

Evaluates to 2

Evaluates to 12

Evaluates to 64

Evaluates to 3 plus
the current value
of variable A.

Evaluates to -3

Evaluates to -7

Evaluates to -16

Evaluates to 15

of Arithmetic Expressions.

Copyright 1988 PICK SYSTEMS
PAGE 9-26

I

!
I
I

I
I
I
I
•... ", .. '. ..
I

I
I
I

I
I,
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
[

9.10 STRING ElPRESSIONS

A string expression .~y be: a string constant, a variable with a string
value, a sub-string,' or a concatenation of string expressions. String
expressions may be combined with arithmetic expressions.

FORMAT:
variable [expressionl ,expression2]

expression1 - starting character position

expression2 - - - - - number of characters in sub-string length

A sub-string is a set of characters which makes up part of a whole
string. For example, "SO.", "123", and "ST." are sub-strings of the
string "1234 SO. MAIN ST." Sub-strings are spe~ified by a starting
character position and a sub-string length, separated by a comma and
enclosed in square brackets. For example, if the current value of
variable S is the string "ABCDEFG", then the current value of S[3,2] is
the sub-string "CD" (i.e., the two character sub-string starting at
character position 3 of string S). Furthermore, the value of S[l,l] would
be "A", and the value of S[2,6] would be "BCDEFG".

If the "starting character" specification is past the end of the string
value, then an empty sub-string value is selected (e.g., if A has a value
of 'XYZ', then A[4,l] will have a value of "). If the "starting
character" specification is negative or zero, then the first character is
assumed (e.g., if X has a value of 'JOHN', the X[-S,l] will have a value
of 'J').

If the "sub-string length" specification exceeds the remaining number of
characters in the string, then the remaining string is selected (e.g., if
B has a value of '123ABC', the B[S,10] will have a value of 'BC'). If the
"sub-string length" specification is negative or zero, then an empty
sub-string is selected (e.g., B[S,-2] and B[S,O] both have a value of ").

Concatenation operations may
specified by a colon (:)
strings (or sub-strings) is
operand onto the end of the

be performed on strings. Concatenation is
or CAT operator. The concatenation of two

the addition of the characters of the second
first. For example:

"AN EXAMPLE OF " CAT "CONCATENATION"

evaluates to:

"AN EXAMPLE OF CONCATENATION"

The precedence of the concatenation operator is higher than any of the
arithmetic operators. So if the concatenation operator appears in the
same expression with an arithmetic operator, the concatenation operation
will be performed first. Multiple concatenation operations are performed
from left to right. Parenthesized sub-expressions are evaluated first.
The concatenation operator considers both its operands to be string
values; for example, the expression 56:"ABC" evaluates to "S6ABC":

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-27

Copyright 1988 PICK SYSTEMS

NOTE: For the following examples, assume that the current
value of A is "ABC123". and the current value of
variable Z is "EXAMPLE".

EXPRESSION

Z[l,4]

A:Z[l.l]

Z[l,l] CAT A[4,3]

5*2:0

A[6,l]+5

Z CAT A:Z

Z CAT " ONE"

EXPLANATION

Evaluates to "EXAM".

Evaluates to "ABC123E".

Evaluates to "E123"

2:0 is evaluated first and results in
the string "20" (i.e., concatenation
operator assumes both operands are
strings). 5*"20" is then evaluated
and results in 100 (i.e., * operator
assumes both operands are numeric.
Final result is 100.

Evaluates to 8.

Evaluates to "EXAMPLEABC123EXAMPLE".

Evaluates to "EXAMPLE ONE".

Examples of String Expressions Combined
With Arithmetic Examples.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-28

Copyright 1988 PICK SYSTEMS

I
I
i

I
I .. •
I
I
I
I
I
I
I
I

I
I
I

I
I
I
I
I
[

I
I
I
I
I
I
I
I
I
I
I
I
[

9.11 RELATIONAL ElPIISSIONS

Relational expressio~s are the result of applying a relational operator
to a pair of arithmetic or string expressions.

The relational operators are listed below. A relational operation
evaluates to 1 if the relation is true, and evaluates to 0 if the
relation is false. Relational operators have lower precedence than all
arithmetic and string operators; therefore, relational operators are only
evaluated after all arithmetic and string operations have been evaluated.

For purposes
two types:
relation is
relational

of clarification, relational expressions may be divided into
arithmetic relations and string relations. An arithmetic
a pair of arithmetic expressions separated by anyone of

operators. For example:

3 < 4 (3 is less than 4)-(true)-1

3 4 (3 is equal to 4)-(false)-O

3 GT 3 (3 is greater than 3)-(false)-O

3 >- 3 (3 is greater than or equal to 3)-(true)-1

5+1 > 4/2 (5 plus 1 is greater than 4 divided by 2)-(true)-1

A string relation is a pair of string expressions separated by anyone of
the relational operators. A string relation may also be· a string
expression and an arithmetic expression separated by a relational
operator (i.e., if a relational operator encounters one numeric operand
and one string operand, it treats both operands as strings). To resolve a
string relation, character pairs (one from each string) are compared one
at a time from leftmost characters to rightmost. If no unequal character
pairs are found, the strings are considered to be 'equal'. If an unequal
pair of characters are found, the characters are ranked according to
their numeric ASCII code equivalents (refer to the LIST OF ASCII CODES in
APPENDIX E of this manual). The string contributing the higher numeric
ASCII code equivalent is considered to be "greater" than the other
string. Consider the following relation:

"MB" > "AAA"

This relation evaluates to 1 (true) since the ASCII equivalent of B (66)
is greater than the ASCII equivalent of A (65).

If the two strings are not the same length, but the shorter string is
otherwise identical to the beginning of the longer string, then the
longer string is considered "greater" than the shorter string. The
following relation, for example, is true and evaluates to 1:

"STRINGS" GT "STRING"

CHAPTER 9 - PICK/BAStC
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-29

OPERATOR SYMBOLS OPERATION

< or LT Le.. than

> or GT Greater than

<- or I.E or -< Less than or equal to

>- or GE or -> Greater than or equal to

- or EQ equal to

#I or < > or < > or NE not equal to

HATCH or HATCHES pattern matching (see next page)

Relational Operators

EXPRESSION EXPLANATION

4 < 5 Evaluates to 1 (true).

"D" EQ "A" Evaluates to 0 (false).

"D" > "A" ASCII equivalent of D (X'44') is greater than
ASCII equivalent of A (X'4l'), so expression
evaluates to 1.

"Q" LT 5 ASCII equivalent of Q (X'5l') is not less than
ASCII equivalent of 5 (X'35'), so expression
evaluates to O.

6+5 - 11 Evaluates to 1.

Q EQ 5 Evaluates to 1, if current value of variable
Q is 5; evaluates to 0 otherwise.

"ABC" GE "ABB" Evaluates to 1 (i.e., C is "greater" than B).

"XXX" LE "XX" Evaluates to O.

Sample Usage of Relational Expressions.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-30

Copyright 1988 PICK SYSTEMS

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I

I
[

I
(

(

[

I
I
I
I
I
I
I
I
I
I
[

I
[

9 . 12 HATCHES RELATOCONAL EXPRESSION PATTERN HATCHING

BASIC pattern matchihg allows the comparison of a string value to a
predefined pattern. Pattern matching is specified by the MATCH or MATCHES
relational operator.

FORMAT:
expression MATCH{ES) "pattern"

The MATCH or MATCHES relational operator compares the string value of the
expression to the predefined pattern (which is also a string value) and
evaluates to 1 (true) or 0 (false). The pattern may consist of any
combination of the following:

- An integer number followed by the letter N (which tests for that
number of numeric characters).

- An integer number followed by the letter A (which tests for that
number of alphabetic characters).

- An integer number followed by the letter X (which tests for that
number of any characters).

- A literal string enclosed in quotes (which tests for that literal
string of characters).

Consider the following expression:

DATA MATCHES "4N"

This relation evaluates to 1 if the current string value of variable DATA
consists of fou~ numeric characters.

If the integer number used in the pattern is 0, then the relation will
evaluate to true only if all the characters in the string conform with
the "specification letter" (i.e., N,A, or X). For example:

X MATCH "OAR

This relation evaluates to 1 if the current string value of variable X
consists only of alphabetic characters.

As a further example, consider the following expression:

A MATCHES "IA4N"

This relation evaluates to 1 if the current string value of variable A
consists of an alphabetic character followed by four numeric characters.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-31

Copyright 1988 PICK SYSTEMS

EXPRESSION

Z MATCHES '9N'

Q MATCHES "ON"

B MATCH '3N"-"2N"-"4N'

B-"4N1A2N"
C MATCHES B

A MATCHES "ON'.'ON"

"ABC" MATCHES "3N"

"XYZ" MATCHES "OA"

"XYZl" MATCH "4X"

X MATCHES I I

EXPLANATION

Evaluates to 1 if current string value
of variable Z consists of 9 numeric
characters; evaluates to 0 otherwise.

Evaluation to 1 if current value of Q is
any unsigned integer; evaluates to 0
otherwise.

Evaluates to 1 if current value of B is,
for example, any social security number;
evaluates to 0 otherwise.

Evaluates to 1 if current string value
of C consists of four numeric characters
followed by one alphabetic character
followed by two numeric characters;
evaluates to 0 otherwise.

Evaluates to 1 if current value of A is
any number containing a decimal point;
evaluates to 0 otherwise.

Evaluates to O.

Evaluates to 1.

Evaluates to 1.

Evaluates to 1 if current string value
of X is the empty string; evaluates to
o otherwise.

Sample Usage of Pattern Matching Relation.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-32

Copyright 1988 PICK SYSTEMS

-?!

I·
······"

I
I
I
I.:~· •
I

I
I
I
I
I
I
I
I
]

I
I
I

I
I
I
I
I
[

I
I
I
I
I
I
I
I
I
I
I
I
(

9.13 OR - AND LOG~CAL EXPRESSIONS

Logical expressions (also called Boolean expressions) are
applying logical (Boolean) operators to relational
expressions.

FORMAT:
AND
OR

or
or

&
I

Logical And operation
Logical Or operation

the Result of
or arithmetic

Logical operators operate on the true or false Results of relational or
arithmetic expressions. (Relational expressions are considered false when
equal to zero, and are considered true when equal to one; arithmetic
expressions are considered false when equal to zero, and are considered
true when not equal to zero.) Logical operators have the lowest precedence
and are only evaluated after all other operations have been evaluated. If
two or more logical operators appear in an expression, the leftmost is
performed first.

Logical operators act on their associated operands as follows:

a OR b

a AND b

is true (evaluates to 1) if a is true or b is
true; is false (evaluates to 0) only when a
and b are both false.

is true (evaluates to 1) only if both a and b
are true; is false (evaluates to 0) if a is
false or b is false or both are false.

consider, for example, the following logical expression:
A*2-5>B AND 7>J

The multiplication operation has highest precedence, so it is evaluated
first (i.e., A*2 - Resultl). the expression then becomes:

Resultl - 5>B AND 7>J

The subtraction operation is next (i.e., Resultl
expression then becomes:

Result2 > B AND 7>J

5-Result2). The

the two relational operators are of equal precedence, so the leftmost is
evaluated first (i.e., Result2 > B-Result3, where Result3 has a value of
1 indicating true, or a value of 0 indicating false). the expression then
becomes:

Result3 AND 7>J The remaining relational operation is then
performed (i.e., 7>J - Result 4, where Result4 equals 1 or 0). The final
expression therefore becomes:

Result3 AND Result4

which is evaluated as true (1) if both Result3 and Result4 are true, and
is evaluated as false (0) otherwise.

CHAPTER 9 - PICK/BAStC
Preliminary PAGE 9-33

Copyright 1988 PICK SYSTEMS

The NOT function may be used in logical expressions to negate (invert)
the expression or sub-expression (refer to the description of the NOT
Intrinsic Function).

EXPRESSION

1 AND A

8-2*4 OR Q5-3

A>5 OR A<O

1 AND (0 OR 1)

J EQ 7 AND I EQ 5*2

"XYZl" MATCH "4X" AND X

Xl AND X2 AND X3

EXPLANATION

Evaluates to 1 if current value of
variable A is non-zero; evaluates
to 0 if current value of A is O.

Evaluates to 1 if current value of
Q5-3 is non-zero; evaluates to 0 if
current value of Q5-3 is O.

Evaluates to 1 if the current value of
variable A is greater than 5 or is
negative; evaluates to 0 otherwise.

Evaluates to 1.

Evaluates to 1 if the current value
of variable J is 7 and the current
value of variable I is 10; evaluates
to 0 otherwise.

Evaluates to 1 if the current value of
variable X is non-zero; evaluates to 0
if current value of X is O.

Evaluates to 1 if the current value
of each variable (Xl, X2, and X3) is
non-zero; evaluates to 0 if the
current value of any or all
variables is O.

Sample Usage of Logical Expressions.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-34

Copyright 1988 PICK SYSTEMS

}" I···

I
I
I
I

I
I
I
I
I
I
I
I
1
I
I
I

I
[

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
[

9.14 RUKERIC MASK ANP FORMAT MASK CODES VARIABLE FORMATTING

Variable values may be formatted via the use of format strings. A format
string immediately following a variable name or expression specifies that
the value will be formatted as specified by the characters within the
format string. The format string may also be used directly in conjunction
with the PRINT statement.

FORMAT:

variable - variable" (numeric mask code) (format mask code»"

The format string uses the same subroutines as the ACCESS Mask Conversion
Code. It may be used to format both numeric and non-numeric strings.

The entire format string is enclosed in quotes. If the format mask is
used, it is enclosed in parentheses within the quotes.

The entire format string may be used as a literal, or it may be assigned
to a variable. In either case the format string or variable immediately
follows the variable it is to format.

The numeric mask code is represented by the symbols: j, n, m, Z, ',', c
and $, which controls justification, precision, scaling and credit
indication. The format mask code controls field .length and fill
characters.

The formatted value may be assigned to the same variable or to a new
variable (as shown in the general form), or it may be used in a PRINT
statement of the form: PRINT X"format string".

The format mask code may be used separately or in conjunction with the
numeric mask.

The format mask code is enclosed in parentheses, and may consist any
combination of format characters and literal data.

The field length specified ('n') should not exceed 99. The format
characters are "#", "*" or "%", optionally followed by a numeric, such as
"#3" or "%5".

Any other character in the format field, including parentheses, may be
used as a literal character.

NOTE: If a dollar sign is placed outside of the format mask, it will be
output just prior to the value, regardless of the filled mask. If a
dollar sign is used within the format field it will be output in the
leftmost position regardless of the filled field.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-35

Copyright 1988 PICK SYSTEMS

19UMEllIC IASIC CODE:

j specifies justification. nan specifies right justification. "L"
specifies left justification. Default justification is left.

n is a single numeric digit defining the number of digits to print out
following the decimal point. If n - 0, the decimal point will not be
output following the value.

m is an optional 'scaling factor' specified by a single numeric digit
which 'descales' the converted number by the 'mth' power of 10.
Because PICK/BASIC assumes 4 decimal places (unless otherwise
specified by a Precision Statement) to descale a number by 10 m
should be set to 5, to descale a number by 100, m should be set to 6,
etc.

Z is an optional parameter specifying the suppression of leading zeros.

c

$

is an optional parameter for output which inserts commas between
every thousands position of the value.

The following five symbols are Credit Indicators which are optional
parameters of the form:

C

D

Causes the letters 'CRt to follow negative values and causes two
blanks to follow positive or zero values.

Causes the letters 'DB' to follow positive values; two blanks to
follow negative or zero values.

M Causes a minus sign to follow negative values; a blank to follow
positive or zero values.

E

N

Causes negative values to be enclosed with a "< >" sequence;
a blank follows positive or zero values.

Causes the minus sign of negative values to be suppressed.

Is an optional parameter for output which appends a dollar

lOBHAT IASIC CODE:

#n specifies that the data is to be filled on a field of In' blanks.

specifies that the data is to be filled on a field of In'
asterisks.

'n specifies that the data is to be filled on a field of In' zeros
and to force leading zeros into a fixed field. 'D'() specifies
the standard system 'D' (date) conversion.

~ Any other character, including parentheses may be used as
a field fill.

Explanation of the Format String Codes.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-36

Copyright 1988 PICK SYSTEMS

I

I
I
I

I
I
I
I
1
I
I
I
I
I
J
I
I

I
[

I
I
I
[

[

I
I
I
I
I
I
I
(

I

I

FORMAT:
I

variable - variable"(pumeric mask code} (format mask code)}"

IUHER,IC IASlC

MASK CODE IKPLEMENTED AS
j R or L

n single numeric
m single numeric
Z Z

c C,D,K,E or N
$ $

MEANING
Right or Left justification
(default is left justification).
of decimal places.
'Descaling' factor.
Suppress leading zeros.
Insert commas every thousands
position.
Credit indicators.
Outputs dollar sign prior to value.

FORMAT MASK (enclosed in parentheses)

MASK CODE
$

#n
%n
*n

IKPLEMENTED AS
$

#10
%10
*10

MEANING
Outputs a dollar sign in the
leftmost position of field.
Fills data on a field of 10 blanks.
Fills data on a field of 10 zeros.
Fills data on a field of 10 asterisks,
or on a field of any other specified
character.

NOTE: If a dollar sign is placed outside of the format mask, it will be
output just prior to the value, regardless of the filled field. If a
dollar sign is used within the format mask it will be output in the
leftmost position regardless of the filled field.

General Form and Summary of Format String Codes.

UNCONVERTED STRING (X)
X - 1000
X - 1234567
X - -1234567
X - 38.16
X - -1234
X - -1234
X - -1234
X - 072458699
X - 072458699
X - SKITH, JOHANNSEN

FORHAT STRING
V - X"R26"
V - X"R27,"
V - X"R27,E$"
V - X"l"
V - X"R25$,K(*10#)"
V - X"R25,K($*10#)"
V - X"R25,K($*10)"
V - X"L(###-##-####)"
V - X"L(#3-#2-#4)"
V - X"L«#13»"

RESULT (V)

10.00
1,234.57
$<1234.57>
38.2
***$123.40-
$****123.40-
$***123.40-
072-45-5866
072-45-5866
(SMITH, JOHANN)

Sample usage of Numeric Format Codes.

CHAPTER 9 - PICK/BASlC
Preliminary PAGE 9-37

Copyright 1988 PICK SYSTEMS

9.15 @ FUNCTION CURSOR CONTROL

The @ function generates terminal output codes to position the cursor
to a specified location.

FORMAT:
@(co1umn(, row))

where
column column at which to position cursor

row row at which to position the cursor; if row is not specified,
cursor is positioned at column on current row

The values of the expressions used in the @ function must be within the
row and column limits of the terminal screen. The upper left corner,
also known as the home position, is location 0,0.

Special cursor
defined by the
using negative
9-1.

control characters for the current terminal type (as
TERM statement in effect at the time) can be generated by
values with @ function. For a list of values, see Table

NOTE: The values generated by the @ function are specified in the TCL
verb, DEFINE-TERMINAL.

Statement Description

INPUT @(1,12) A Cursor is at column I, row 12; input prompt
is displayed at column 0, row 12.

X-7;Y-3
print @(X,Y):Z

q - @(3):"HI"
print q

PRINT @(-1)

CHAPTER 9 - PICK/BASIC
Preliminary

Prints value of variable Z
at column 7, row 3

Prints HI at column 3 of
current line.

Clears the screen and positions the cursor
at home location (0,0).

Copyright 1988 PICK SYSTEMS
PAGE 9-38

I

I
I
I
~

'.·.111·.'· ..
I
I
I····· ..

!
I
I
I

J
)

• II

I

I
[

(

I
[

[

I
I
I
I
[

I
I

I
[,
I
[

Character

@(-1)
@(-2)
@(-3)
@(-4)
@(-5)
@(-6)
@(-7)
@(-8)
@(-9)
@(-10)
@(-11)
@(-12)
@(-13)
@(-14)
@(-15)
@(-16)
@(-17)
@(-18)
@(-19)
@(-20)
@(-2l)
@(-22)
@(-23)
@(-24)
@(-25)
@(-26)
@(-27)
@(-28)

. @(-29)
@(-30)
@(-3l)
@(-32)
@(-33)
@(-34)
@(-35)
@(- 36)
@(-37)
@(-38)
@(-39)
@(-40)
@(-41)
@(-42)
@(-43)
@(-44)
@(-45)
@(-46)
@(-47)
@(-48)

Table 9-1 Cursor Control Characters (1 of 2)

Description

Clear screen and home cursor
Home cursor
Clear from cursor positon to the end of the screen
Clear from cursor position to the end of the line
Blink on
Blink off
Start protected field
Stop protected field
Backspace cursor one character
Move cursor up one line
Enable protect mode
Disable protect mode
Reverse video on
Reverse video off
Underline on
Underline off
Slave on
Slave off
Move cursor right
Move cursor down
Graphics character set on
Graphics character set off
Keyboard lock
Keyboard unlock
Control character enable
Control character disable
Write status line
Erase status line
Initialize terminal mode
Download function keys
Non-embedded stand-out on
Non-embedded stand-out off
Background - white
Background - brown
Background - magenta
Background - red
Background - cyan
Background - green
Background - blue
Background - black
Foreground, full-intensity - white
Foreground, full-intensity - brown
Foreground, full-intensity - magenta
Foreground, full-intensity - red
Foregro~d, full-intensity - cyan
Foreground. full-intensity - green
Foreground, full-intensity - blue
Foreground, full-intensity - black

CHAPTER 9 - PICK/BAStC
Preliminary PAGE 9-39

Copyright 1988 PICK SYSTEMS

Character

@(-49)-
@(-56)

@(-57)
@(-58)
@(-59)
@(-60)
@(-6l)
@(-62)
@(-63)
@(-64)
@(-65) -

@(-88)
@(-89)
@(-90) -

@(-92)
@(-93)
@(-94)
@(-95) -

@(-98)
@(-99)

@(-100)
@(-101)
@(-102)

@(-300)

TABLE 9-1 Cursor Control Characters (2 of 2)

Description

Unused and reserved

Foreground, half-intensity - white
Foreground, half-intensity - brown
Foreground, half-intensity - magenta
Foreground, half-intensity - red
Foreground, half-intensity - cyan
Foreground, half-intensity - green
Foreground, half-intensity - blue
Foreground, half-intensity - black
Unused and reserved

80 x 25 black/white mode (monochrome monitor)
Unused and reserved

80 x 25 color mode
80 x 25 black/white mode (color monitor)
Unused and reserved

Returns 1 if the terminal uses embedded attributes;
returns 0 if terminal does not use embedded attributes;
returns null if not set in DEFINE-TERMINAL
Half intensity *
Full intensity *

- Unused and reserved

*not supported for memory-mapped monitors

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-40

Copyright 1988 PICK SYSTEMS

I

I
I
I

I
I
I
J
I
I
I
I
I
]

I
I
I

I

l
[

[

[

I
I
[,
[

I
I ,
(

I ,
I
[

9.16 ABORT STATEMENT TERMINATION

The ABORT statement may appear anywhere in the program; it designates a
logical termination of the program.

FORMAT:
ABORT {errmsg.id(,param, param, ... }}

Upon the execution of a ABORT statement, the PICK/BASIC program will
terminate.

The ABORT statement may be placed anywhere within the PICK/BASIC program
to indicate the end of one of several alternative paths of logic. The
ABORT statement is si~iliar to the STOP statement except that the ABORT
statement will termirate execution of any PROC which might have called
the program containing the ABORT statement.

Like the STOP state~nt, the ABORT statement may optionally be followed
by an error message id, and error message parameters separated by commas.
The error message n~e is a reference to an item in the ERRMSG file. The
parameters are variables or literals to be used within the error message
format.

PRINT 'P~E ENTER FILE NAME I :

INPUT FN
OPEN II, FN TO FFN ELSE ABORT 201, FN

This program requests a file name and attempts to open the file. If an
incorrect file name lis entered, the standard system error message 201
"xxx IS NOT A FILE" Jill be printed, and the program is terminated.

Sample usage of the ABORT statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-41

Copyright 1988 PICK SYSTEMS

9 • 17 ABS J'URCTION ABSOLUTE RUHEllIC VALUE

The ABS function returns an absolute value. An absolute value is an
unsigned integer value.

FORMAT:
ABS(expression)

The ABS function generates the absolute numeric value of the expression.

An absolute value is the numerical value of a number
its algebraic sign. The result looks positive,
unsigned. For example:

A - 100 ; B - 25
C - ABS(B-A)

without
but it

reference to
is in fact,

These statements assign the value 75 to variable C. (An absolute value is
conventionally written as 1751.)

STATEMENT

A - ABS(Q)

A - 600
B - ABS(A-1000)

A - 3
B - -10
C - ABS(A+B)

EXPLANATION

Assigns the absolute value of
variable Q to variable A.

Assigns the value 400 to vari­
able B.

Assigns the value 7 to variable C.

Sample Usage of the ABS Function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-42

Copyright 1988 PICK SYSTEMS

I
I
I
I
I
I
I
I
I
I
I
I·
,

I
I
'" J

1

I
I
[

I
(

[

[

l
I
I
[

I
I
[

E ,
I
[

9.18 ALPHA FUNCTION ALPHABETIC STRING DETERHINATION

The ALPHA function r turns a value of true (1) if the given expression
evaluates to a alphab tic character or string.

FORMAT:
ALPHA(expression)

The ALPHA function t~sts the given expression for a alphabetic value. For
example, if the e~ression evaluates to an alphabetic character or
alphabetic string the I ALPHA function will return a value of true (i.e.,
generating a value of '1).

Inversely, an expresslon evaluating to a number, numeric string, or any
non-alpha character w 11 cause the ALPHA function to return a value of
false. Consider the fllowing examples: .

IF ALPHA(expression) THEN PRINT "ALPHABETIC DATA"

This statement will p*int the text "ALPHABETIC DATA" if the current value
of variable "expression" is a letter or an alphabetic string.

In the case of a non-numeric, non-alphabetic character or string (#,?,
etc.) a value of ~alse would be returned for both the ALPHA and NUM
functions.

The empty string (") is considered to be a numeric string, but not an
alpha string.

(See: NUM)

STATEMENT

AI-ALPHA ("ABC")

A3-ALPHA("12C")

IF ALPHA(I CAT J) THE$' GOTO 5

EXPLANATION

Assigns a value of 1 to variable AI.

Assigns a value of 0 to variable A3.

Transfers control to statement 5 if
current value of both variables I
and J are letters or alphabetic strings.

Sample Usage of NOT, NUM and ALPHA Functions.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-43

Copyright 1988 PICK SYSTEMS

9.19 ASCII FUNCTION FOIKAT CONVERSION

The ASCII function converts a string value from EBCDIC to ASCII.

FORMAT:

ASCII (expression)

The string value of the expression is converted from EBCDIC to ASCII. For
example:

A - ASCII(B)

Conversely, the EBCDIC function is available to convert string values
from ASCII to EBCDIC.

(See: EBCDIC)

STATEMENT

READT X ELSE STOP
Y - ASCII(X)

EXPLANATION

Reads a record from the magnetic tape
unit and assigns its value to variable X.
Assigns ASCII value of record to
variable Y.

Sample Usage of the ASCII function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-44

Copyright 1988 PICK SYSTEMS

I

I

I

I

J

• ..

I
I
I

[

(

[

I

[

[

I
[

I
I
E

I
I
[

I
I
I
(

9.20 ASSIGRKENT STA~EHENT ASSIGNING VARIABLE VALUES

The Simple ASSignmen~ statement is used to assign a value to a variable.

FORMAT:
,

variable - expression

The resultant value of the expression becomes
variable on the left side of the equality sign.
legal PICK/BASIC expr~ssion. For example:

the current value of the
The expression may be any

ABC - 500
X2 - (~C+100)/2

The first statement will assign the value of 500 to the variable ABC. The
second statement will asign the value 300 to the variable X2 (i.e., X2 -
(ABC+100)/2 - (500+100)/2 - 600/2 - 300).

String values may also be assigned. For example:
VALUE - "THIS IS A STRING"
SUB - VALUE [6,2]

The first statement
variable VALUE. The
SUB (i.e., assigns
character position 6

STATEMENT

X-S
X-X+1
ST-" STRING"
ST1-ST[3,l]
TABLE(I,J)-A(3)

A-(B-O)

,above assigns
'second statement

bto SUB the 2
f VALUE).

the string "THIS IS A STRING" to
assigns the string "IS" to variable
character sub-string starting at

EXPLANATION

Assigns 5 to X.
Increments X by 1.
Assigns the character string to ST.
Assigns sub-string "R" to ST1.
Assigns matrix element from vector
element.
Assigns 1 to A if "B-O" is true,
assigns 0 to A if "B-O" is false.

Examples of Assignment Statements.

CHAPTER 9 - PICK/BASI~
Preliminary PAGE 9-45

Copyright 1988 PICK SYSTEMS

9.21 BREAK ON AND OFF DEBUGGER INHIBITION

The BREAK statements enable or disable the Debugger function accordingly.

FORMAT:

BREAK ON
BREAK OFF
BREAK expression

These commands increment/decrement the break inhibit counter. Note that
they are cummu1ative. If two BREAK OFFs are executed, two BREAK ONs must
be executed to restore a breakable status.

If the expression form of the command is used, the break key is disabled
when the expression evaluates to O. The break key is enabled when the
expression evaluates to non-zero.

(See: PICK/BASIC DEBUGGER)

CHAPTER 9 - PICK/BASIC
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-46

I

I

I

I

J
I
• •
i ,
1l1li

I
I

[

I
[

I
[

[

[

[

[

I
I
E
I

I

,
I
[

9.22 CALL AND SUBROUTINE STATEMENTS EXTEBNAL SUBROUTINES

I
The CALL and SUB~OUTINE statements provide external subroutine
capabilities for th PICK/BASIC program. An external subroutine is a
subroutine that is c mpiled and cataloged separately from the calling
program.

FORMAT:
CALL name (argument list)
SUBROUTINE pame(argument list)

The CALL statement transfers control to the cataloged subroutine 'name'.
The CALL 'argument list' consists of zero or more expressions, separated
by commas, that repr~sent actual values passed to the subroutine. The
SUBROUTINE 'argument list' consists of the same number of expressions, by
which the subroutine references the values being passed to it.

The SUBROUTINE statement is used to identify the program as a subroutine
and must be the first statement in the program.

There is no correspondence between variable names or labels in the
calling program and the subroutine. The only information passed between
the calling program! and the subroutine are the arguments. A sample
external subroutine that involves two arguments together with correctly
formed CALL statements, is shown below.

CALL Statements
CALL ADD(A,B,C)
CALL ADD(A+2,F,X)
CALL ADD(3,495,Z)

Subroutine ADD
SUBROUTINE ADD(X,Y,Z)
Z-X+Y
RETURN

An external subroutine must contain a SUBROUTINE statement and a RETURN
statement. GOSUB ana RETURN may be used within the subroutine. When a
RETURN is executed with no corresponding GOSUB, control passes to the
statement following the corresponding CALL statement. If the subroutine's
END statement, a STOP I or CHAIN statement (see appropriate section of the
manual) is executed, i control never returns to the calling program. The
CHAIN statement should not be used to chain from an external subroutine
to another PICK/BASIClprogram.

STATEMENTS

CALL REVERSE(A,B)
SUBROUTINE REVERSE(I.,)

I

CALL REPORT
SUBROUTINE REPORT

CALL DISPLAY(A,B,C)
SUBROUTINE DISPLAY(I.{.K)

EXPLANATION

Subroutine REVERSE has two arguments.

Subroutine REPORT has no parameters.

Subroutine DISPLAY accepts (and
returns) three argument values.

Sample uJage of CALL and SUBROUTINE Statements.

CHAPTER 9 - PICK/BASI~
Preliminary I PAGE 9-47

Copyright 1988 PICK SYSTEMS

9.22 . 1 AUAY PASSING AND THE CALL STATEHERT

Arrays may be passed to external subroutines. External subroutines may be
called indirectly.

PASSING AUAYS TO EXTERNAL SUBROUTINES

FORMAT:
MAT variable

The 'variable' is the name of the array defined in the DIMENSION
statement. The array must be dimensioned in both the calling program and
the subroutine. Array dimensions may be different, as long as the total
number of elements matches. Arrays are copied in row major order.
Consider the following example:

Calling Program
DIM X(lO), Y(lO)
CALL COPY (MAT X, MAT Y)
END

Subroutine
SUBROUTINE COPY (MAT A)
DIM A(lO,2)
PRINT A(2,S)
RETURN
END

In this subroutine the parameter passing facility is used to copy MAT X
and MAT Y specified in the CALL statement of the calling program into HAT
A of the subroutine. Printing A(2,S) in the subroutine is equivalent to
printing YeS) in the calling program.

INDIRECT FORK OF THE CALL STATEMENT

FORMAT:
CALL @name(argument list)

The 'name' is a variable containing the name of the cataloged subroutine
to be called. The argument list performs the same function as in a direct
call.

NAME - 'XSUBl'
CALL @NAME
NAME - 'XSUB2'
CALL @NAME

The first call invokes subroutine XSUBl. The second call
subroutine XSUB2.

STATEMENTS
DIM A(4,lO),B(10,5)
CALL REV(MAT A, MAT B)

SUBROUTINE REV (MAT C, MAT B)
DIM C(4,lO), B(50)

EXPLANATION
Subroutine REV accepts two input
array variables, one of size 40
and one of size 50 elements.

Examples of Array Parameters.

invokes

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-48

I

I

I

I

J

•
'I ..
I

l

[

1
[

[

L
[

[

I
[

l
!
[

I ,
[

[

I
[

[

I

9.23 CASE STATEKERTi: CONDITIONAL BRANCHING

The CASE statement
statements.

I
~rovides conditional selection of a sequence of BASIC

FORMAT:

I

BEGIN CASE
CASE expression
statemEints
CASE expression
statements

END CASE

If the logical value of the first expression is true (i.e., non-zero),
then the statement o:r sequence of statements that immediately follows is
executed, and control passes to the next sequential statement following
the END CASE statement. If the first expression is false (i.e., zero),
then control passes t~ the next test expression, and so on. Consider the
following example: '

BEGIN CASE i
CASE A ! < 5
PRINT 'fa. IS LESS THAN 5'
CASE A ! < 10
PRINT 'A IS GREATER THAN OR EQUAL TO 5 AND LESS THAN 10'
CASE 1
PRINT 'A IS GREATER THAN OR EQUAL TO 10'

END CASE
If A<S, then the first PRINT statement will be executed. If 5 <-A< 1 0 , then
the second PRINT st~tement will be executed. Otherwise, the third PRINT
statement will be ex~cuted. (Note that a test expression of 1 means
"always true.")

STATEMENTS

BEGIN CASE
CASE A-O; GOTO 10
CASE A<O; GOTO 201
CASE 1; GOTO 30

END CASE

BEGIN CASE
CASE ST MATCHES "LA"
MAT LET-l
CASE ST MATCHES "iN"
SGL-l; A.l(I)-ST
CASE ST MATCHES "iN"
DBL-1; A.2(J)-ST I

CASE ST MATCHES "iN"
GOSUB 103

END CASE

s4Ple

I

CHAPTER 9 - PICK/BASIC
Preliminary

EXPLANATION

Program control branches to the
statement with label 10 if the
value of A is zero; to 20 if A
is negative; or to 30 if A is
greater than zero.

If ST is one letter, "1" is assigned
to all LET elements and the entire
CASE is ended. If ST is one number,
"1" is assigned to SGL, ST is stored
at element A.l(I), and the entire
case is ended. If ST is two numbers,
"1" is assigned to DBL, ST is stored
at element A.2(J), and the entire
case is ended. If ST is three
numbers, subroutine 103 is executed.

usage of the CASE statement.

Copyright 1988 PICK SYSTEMS
PAGE 9-49

9.24 CHAIN STATEMENT INTERPllOGRAH COM!IUNICATION

The CHAIN statement allows a PICK/BASIC program to execute any valid TCL
command, including the ability to pass values to a separately compiled
PICK/BASIC program which is executed during the same terminal session.

FORMAT:
CHAIN "any tcl command"

The CHAIN statement causes the specified TCL command to
CHAIN statement may contain any valid Verb or PROC name
Master Dictionary. Consider the following example:

CHAIN "RUN FlLEl PROGRAM1"

be executed. The
in the user's

This statement causes the previously compiled program named PROGRAMl in
the file named FILEl to be executed.

By using the 'I' option, the CHAIN statement allows values to be passed
to the specifed program. This is possible since all PICK/BASIC programs
which are executed during a single terminal session use the same data
area. The variables in one program that are to be passed to another
program must be in the same location. This is accomplished via use of the
DIM statement. Consider, for example, the following two PICK/BASIC
programs:

Prosram ABC in file BP

DIM A(l,l), B(2)
A-500
B(l)-l B(2)-2
CHAIN "RUN BP XYZ (I)"
END

Pro&ram XXZ in file BP

DIM 1(2), J(l,l)
PRINT 1(1)
PRINT 1(2)
PRINT J(l,l)
END

Program ABC causes program XYZ to be executed. Program XYZ, in turn,
prints the values "500", "1", and "2". All dimensioned variables form a
long vector in row major order, and on a the CHAIN are assigned left to
right to chained program's dimensioned variables.

The user should note that control is never returned to the PICK/BASIC
program originally executing the CHAIN statement (See EXECUTE Statement).

(see: Execute statement)

CHAPTER 9 - PICK/BASIC
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-50

I

'.1· I

l
I

I
I
[,
[

[

I
(

[

I
I

I
I

I
[

STATEMENT

CHAIN "RUN FN1 LAX (Ii)"

CHAIN "LISTO"

CHAIN "LIST FILE"

CHAIN "RUN PROGRAMS AlBC"

EXPLANATION

Causes the execution of program LAX
in file FN1 and values are passed to
program LAX.

Causes the execution of the LISTO
SYSPROG PROC.

Causes the execution of the LIST
ACCESS Verb.

Causes the execution of program
ABC in file PROGRAMS. Since I
option is not used, values will
not be passed to program ABC.

S~p1e usage of the CHAIN statement.

CHAPTER 9 - PICK/BAS C
Preliminary PAGE 9-51

Copyright 1988 PICK SYSTEMS

9.25 CHAR FUNCTION FORHAT CONVERSION

The CHAR function converts a numeric value to its corresponding ASCII
character.

FORMAT:

CHAR (express ion)

The CHAR function converts the numeric value specified by the expression
to its corresponding ASCII character string value. For example, the
following statement assigns the string value for as Attribute Mark to the
variable AM:

AM - CHAR(254)

Conversely, the SEQ function is available to convert the first character
of a string value to its corresponding numeric decimal value.

NOTE: For a complete list of ASCII codes, refer to the Appendix.

STATEMENT

SM - CHAR(255)

x - 252
SVK - CHAR(X)

EXPLANATION

Assigns the string value for a Segment
Mark to variable SM.

Assigns the string value for a Secondary
Value Mark to variable SVK.

Sample Usage of the CHAR Function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-52

Copyright 1988 PICK SYSTEMS

•
I

I

• •

I
" I

l
I

.,
'III

I
'1 ...•...... ..
I

[

1
(

I
l
I
l
I ,
I
I
I

[

I

,
I
(

9.26 CI..EAll STATEMENT INITIALIZING VAllIABLE VALUES

The CLEAR statement is used to initialize all variables to a value of
zero.

FORMAT:
CLEAR

The CLEAR statement. initializes all possible variables to zero (Le.,
assigns the value 0 t~ all variables). The CLEAR statement may be used in
the beginning of the ~rogram to initialize all variables to zero, or may
be used anywhere with~n the program for re-initia1ization purposes. This
statement should only be used on completely debugged programs.

STATEMENT

CLEAR

EXPLANATION

Assigns the value 0 to all
possible variables.

~xamp1e of the CLEAR Statement.

CHAPTER 9 - PICK/BASI
Preliminary PAGE 9-53

Copyright 1988 PICK SYSTEMS

9.27 CLEAlFlLE STATEMENT DELETING DATA

The CLEARFILE statement is used to clear out the data section of a
specified file.

FORMAT:

CLEARFILE (file.variable)

Upon execution of the CLEARFILE statement, the data section of the file
which was previously assigned to the specified file. variable via an OPEN
statement, will be emptied. The data in the file will be deleted, but the
file itself will not be deleted. If the file. variable is omitted from the
CLEARFILE statement, then the internal default variable is used (thus
specifying the file most recently opened without a file.variable).

The dictionary section of file should not be cleared via a CLEARFILE
statement. If CLEARFILE is performed on a dictionary, opened as a data
file, then all items of the dictionary will be deleted except for "D"
pointers. PICK/BASIC program will abort with an appropriate error
message if the specified file has not been opened prior to the execution
of the CLEARFILE statement.

STATEMENT
OPEN 'FNl' ELSE PRINT 'NO FNl'; STOP
READ I FROM 'II' ELSE STOP
CLEARFILE

OPEN 'FILEA' TO A ELSE STOP 20l,'FILEA'
OPEN 'FILEB' TO B ELSE STOP 201, FILEB'
CLEARFILE A
CLEARFILE B

OPEN 'ABC' ELSE PRINT 'NO FILE'; STOP
READV Q FROM 'IB3', 5 ELSE STOP
IF Q - 'TEST' THEN CLEARFILE

EXPLANATION
Opens the data section of file
FNl, reads item 11 and assigns
value to variable I, and
finally clears the data
section of file FNl.

Clears .the data sections of
files FILEA AND FILEB.

Clears the data section of
file ABC if the 5th attribute
of the item with name IB3 has
a string value of 'TEST'.

Sample usage of the CLEARFILE statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-54

Copyright 1988 PICK SYSTEMS

1*

I

I
~.

•
I

I

i

I
1
I

I
I
I

l
I
I
I
t
1
1
l
I
I
I
[

I
I
[

I
[

9.28 COLl () AND COL2,() J'DNCTIONS STRING SIWlCHING

The COLI() and COL2() functions return the numeric values of the column
positions immediatel preceding and immediately following the sub-string
selected by the FIE function.

FORMAT:
COLI ()'I!
COL2()

COLI() returns the ~umeric value of the column position immediately
preceding the sub-s~ring selected via the most recent FIELD f~nction. For
example: I

B - F~ELD("XXX.YYY.ZZZ.555".".".2)
BEFOREl - COLl() .

!

These statements ass:!gn the numeric value 4 to the variable BEFORE (i.e.,
the value "YYY" wh ch is returned by the FIELD function is preceded in
the original string y column position 4).

COL20 returns
following the
COL2() returns

the ilnumeric value of the column position immediately
sub- tring selected via the most recent FIELD function.

zero f the sub-string is not found. For example:

B - F~ELD("XXX.YYY.ZZZ.555".".".2)
AFTER 1- COL2()

i
These statements ass~gn the numeric value 8 to the variable AFTER (i.e.,
the value "YYY" whi h is returned by the FIELD function is followed in
the original string y column position 8).

(See: FIELD)

STATEMENT
i

Q - FIELD ("ABCBA" • "B ~ • 2)
R - COLIO
S - COL2()

EXPIANATION

Assigns the string value "C" to
variable Q. the numeric value 2 to
variable R, and the numeric value 4
to variable S.

Sample sage of the COLI() and COL2() Functions.

CHAPTER 9 - PICK/BAS C
Preliminary PAGE 9-55

Copyright 1988 PICK SYSTEMS

9.29 CODON STATEKENT VAl.IABLE SPACE ALLOCATION

The COMMON statement may be used to control the
allocated for the storage of variables, and for
between programs.

FORMAT:
COM{MON) variable {,variable} ...

order in which space is
the passing of values

The purpose of the COMMON statement is to change the automatic allocation
sequence that the compiler follows, so that more than one program may
have specified variables in a pre-determined sequence.

In the absence of a COMMON statement, variables are allocated space in the
order in which they appear in the program, with the additional
restriction that arrays are allocated space after all simple variables.
COMMON variables (including COMMON arrays) are allocated space before any
other variables in the program. The COMMON statement must appear before
any of the variables in the program are used.

The COMMON variable list may include simple variables, file variables and
arrays. Arrays may be declared in a COMMON statement by specifiying the
dimensions enclosed in parentheses, (e.g. COMMON A(lO) declares an array
"A" with 10 elements). Arrays that are declared in a COMMON statement
should not be declared again by a DIMENSION statement. All variables in
the program which do not appear in a COMMON statement are allocated space
in the normal manner.

The COMMON statement may be used to share variables among ENTERed
programs, or among main-line programs and subroutines. This ensures that
all 'COMMON' variables refer to the
different programs. For example:

COMMON X,Y,Z(5)
COMMON Q,R,S(5)

same external stored values in

If the first statement is found in a main-line program and the second in
a subroutine call it is ensured that the variables X and Q, Y and R, and
the arrays Z and S share the same locations. NOTE: The second COMMON
statement variables may be regarded as a mask over the first. What
associates Q to X (R to Y and S to Z) is a matter of alignment. Thus if
the second statement had been "COMMON Q(2),R(5)" then Q(l) would refer to
the location where the value of X is stored and Q(2) would refer to the
location where the value of Y is stored.

The COMMON statement differs from the argument list in a Subroutine Call
in that the actual storage locations of Common variables are shared by
the main-line program and its external subroutines; whereas the argument
list in a Subroutine Call causes the values to be pushed on to the stack.
The COMMON statement thereby affords a more efficient method of passing
values.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-56

Copyright 1988 PICK SYSTEMS

i

I
I
III

I

I
I
I
l
I
J

I

I
1
[

I
(

[

I
I

I
I
I
I

t
I
[

A program being calle must have the same or less COMMON space.

Item "HAINPROG"

COMMON A,B,C(lO)
A - "NUMBER"
B - "SQUARE ROOT"
FOR I-I TO 10
C(I) - SQRT(I)

NEXT I
CALL SUBPROG
PRINT "DONE"
END

Item SUBPROG

COMMON X(2),Y(10)
PRINT X(l), X(2)
FOR J - 1 TO 10

PRINT J, Y(J)
NEXT J
RETURN
END

Variables A, B, and array Care
allocated space before any other
variables.

Subroutine call to cataloged program
SUBPROG.

The 2 elements of array X contain
respectively, the values of A and
B from the main-line program. The
array Y contains the values of C
from the main-line program.
Returns to main-line program.

Sample usage of the COMMON statement.

CHAPTER 9 - PICK/BAS C
Preliminary PAGE 9-57

Copyright 1988 PICK SYSTEMS

9. 30 COS FORCTION COSINE OF AI AlGLE

The COS function generates the trigonmetric cosine of an angle.

FORMAT:

COS (expression)

The COS function generates the cosine of an angle, expressed in degrees.

Values which are less than 0 degrees, or greater than 360 degrees are
adjusted to this range before generation.

(See: SIN)

STATEMENT

'YY - COS(XX)

PRINT COS (I)

PRINT COS(361)

PRINT COS(2)

PRINT COS(362)

PRINT COS(4S)

PRINT COS(90)

EXPLANATION

Assigns the cosine of an
angle of XX degrees to 'YY.

Prints "0.9998"

Prints "0.9998"

Prints "0.9994"

Prints "0.9994"

Prints "0.7071"

Prints "0"

Sample usage of the COS function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-58

Copyright 1988 PICK SYSTEMS

I

I
II!
I

• •

I
i
I
I

I
]

I
1
I
I
I

I
I
[

I
[

1
[

I
I
I
I
I
I
I
I

I
(

9.31 COURT FUNCTION DYlWIIC AlUlAYS

The COUNT function co ts the number of occurrences of a substring within
a string.

FORMAT:
COUNT(string, substring)

The COUNT function c
a string. Any numb
function is particul
within an item, or
attribute (See DCO

I

ts the number of occurrences of a substring within
r of characters may be present in the substring. This
rly useful for determing the number of attributes
the number of multiple values or sub-values within an
) .

The COUNT function r~'turns a value of zero if the substring is not found,
and returns the num er of characters in the string if the substring is
null (i.e. a null ma ches on any character). For example:

COMMAND

X - COUNT ('THIS
X - COUNT ('THIS
X - COUNT('THIS

S A TEST' , ' IS')
S A TEST' , 'X')
S A TEST' , ' ,)

(There are 14 charac ers in the string.)

VALUE OF X

2
o

14

X - COUNT('AAAA' ,'AA') 3

There are 3 Sub"irings within the string AAAA.

AAAA STRING
XX SUBSTRING 1

XX SUBSTRING 2
XX SUBSTRING 3

(See: DCOUNT)

STATEMENT

A - "1234ABC5723"
X - COUNT(A,'23')

X - COUNT('ABCDEFG' ,.')

CHAPTER 9 - PICK/BAsic
Preliminary f

EXPLANATION

Value returned in X is 2 as
there are two occurances of '23'
in the string A.

Value returned in X is 7 as a null
substring will match any character.

examples of the COUNT function.

Copyright 1988 PICK SYSTEMS
PAGE 9-59

9 . 32 CllT STATEMENT Terminal Output

The CRT statement is used to direct output to the terminal.

FORMAT:

CRT print. list

CRT is similar to the PRINT statement, except the CRT statement is not
affected by the PRINTER ON or the PRINTER OFF statements.

The print. list can include @ functions to position data, literals, and
expressions. Commas can be used to align data to preset tab positions at
columns 18, 36, 54, and 72. Colons can be used to print data
continuously across the page.

(See: PRINT AND PRINTER ON statements)

STATEMENT

CRT 'Print on terminal'

PRINTER ON
PRINT 'Send to printer'
CRT 'Send to terminal'
PRINTER OFF

EXPLANATION

Output is to the terminal.

Directs print output to printer;
CRT output is still directed to terminal

Sample Usage of the CRT statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-60

Copyright 1988 PICK SYSTEMS

I" ,.

I
I
I
I

I

I
J
J
I

1
I
I
I

I
I
l ,
[

(

[

I
I
I
I
I
I
I
I

I
[

9.33 DATA STATEMENT STACKING INPUT DATA

The DATA statement is used to store data for stacked input when using the
CHAIN or EXECUTE stat ment.

FORMAT:
DATA expres ion{,expression ... }

Where 'expression' ma~e any valid combination of variables, literals,
functions, etc. Each expression becomes the response to one input request
from the CHAIN orEXE E process.

Each DATA statement w~ll generate one line of stacked input. The lines of
stacked input are ~hen used in response to the input requests of other
processes. The DAT~ statement may be used to store stacked input for
ACCESS, TCL, PROCs, ot other PICK/BASIC programs.

The following exampl~ illustrates the procedure to exit a PICK/BASIC
program, sort-select. fHe and begin execution of a second PICK/BASIC
program. The variablelREF.DATE is passed to the second PICK/BASIC program.

:

Assuming that no stacked input is currently present:

DATA 'RUN BP PRob,; DATA REF.DATE.B CHAIN 'SSELECT FILE WITH DATE
n , : REF . DATE: 'n Byi DATE'

i
The first statement s~acks two values (e.g. 'RUN BP PROG' and 'REF-DATE').
The second statement ~auses an ACCESS statement to be executed. When the
ACCESS processor has! completed, the first value on the stack is the input
to the TCL prompt, thus BP PROG begins execution. (Note that the stack is
a First In First Out (FIFO) type.)

The second PICK/BASICI program (BP PROG) then performs the following:
i

INPUT REF.DATE

This instruction getsl its input from the second value on the stack, 1. e.
the value of REF.DAT~ from the first PICK/BASIC program.

!

NOTE: The DATA statJment must be processed before the CHAIN or EXECUTE
statement!! I

CHAPTER 9 - PICK/BAS C
Preliminary PAGE 9-61

Copyright 1988 PICK SYSTEMS

STATEMENT
DATA A
DATA B
DATA C
CHAIN 'RUN BP TEST'

DATA 'RUN BP CHARGE-ACC'
DATA DATE
CHAIN 'SELECT ACC WITH AMI > "100"

EXPLANATION
Stacks the values of A, B
and C for subsequent input requests.
Program 'TEST' may have three
input requests which will be
satisfied by the stacked input.

This causes the TCL command 'RUN
BP CHARGE-ACC' to be stored on
the stack. Control first exits to
the ACCESS processor to perform
the SELECT, after which the PICK/BASIC
program is run with DATE as stacked
input.

Sample usage of the DATA statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-62

Copyright 1988 PICK SYSTEMS

I
I

• II

I
I

l
I
I
I , ..
I

I··~. "",', . •

l
I
[

I
[

(

I
I
I
I
I
I
I
I
I

I
(

9.34 DATE() FUNCTION DATE CAPABILITY

The DATE() function r turns the current internal date.

FORMAT:

DATEO i

The DATE() function r~turns the string value containing the internal
date. The internal date is the number of days since December 31, 1967.

(See: TIKE() and TIKEDATE() functions)

STATEMENT

Q - DATEO

PRINT DATEO

WRITET DATE() ELSE STPP

EXPlANATION

Assigns string value of current
internal date to variable Q.

Prints the current date
in the internal format.

Writes the string value of the
current internal date onto a magnetic
tape record.

S~p1e Usage of the DATE() function.

CHAPTER 9 - PICK/BAS C
Preliminary PAGE 9-63

Copyright 1988 PICK SYSTEMS

9.35 DCOUNT FUNCTION DYNAMIC AlRAYS

The DCOUNT Function returns a value which is the number of values
separated by a specified delimiter.

FORMAT:
DCOUNT(string, substring)

The DCOUNT function counts the number of values separated by a specified
delimiter. The DCOUNT function differs from the COUNT function in that it
returns the true number of values by the specified delimiter, rather than
the number of occurances of the delimiter within the string. For example,
considering the string:

COMMAND

X - COUNT(A,AM)
X - DCOUNT(A,AM)

VALUE OF X

3
4

The DCOUNT function may be used to count the number of attributes in an
item, or the number of values (or subvalues) within an attribute. The
DCOUNT function returns a value of zero when a null string is encountered.

(See: COUNT)

STATEMENT

AM - CHAR(254)
A - "l23 A 456 A ABC"
X - DCOUNT(A,AM)

VM - CHAR(253)
A - "l23]456 AABC]DEF]HIJ"
X - DCOUNT(A,VM)

A - "ABCDEFG"
X - DCOUNT(A, ' ')

EXPlANATION

Value returned in X is 3 as there
are three values in the string
separated by attribute marks.

Value returned in X is 4 as there
are four values in the string
separated by value marks.

Value returned in X is 0 as a null
is specified as the delimiter.

Examples of DCOUNT function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-64

Copyright 1988 PICK SYSTEMS

I
I
i

2
I
I
I

•
I

I
I
[

[

[

[

I
I
I
I
I
I
I
I
I
I
[

I
I

9.36 DELETE STATEKE DELETING ITEHI

The DELETE statement s used to delete a file item.

FORMAT:
DELETE (file.variable,) item-name

The DELETE statement deletes the item which is specified by the itemname
and which is locateid in the file previously assigned to the specified
file.variable via ~ OPEN statement. If the file. variable is omitted,
then the internal de~ault variable is used (thus specifying the file most
recently opened withdut a file.variable).

I

No action is taken lif a non-existent item is specified in the DELETE
i statement.

The user should not~ that the PICK/BASIC program will abort with an
appropriate error me~sage if the specified file has not been opened prior
to the execution of ~he DELETE statement.

(See: DELETE Functio~)

STATEMENT

DELETE X, "XYZ"

Q-"JOB"
DELETE Q

I

EXPlANATION

Deletes item XYZ in the file opened
and assigned to variable X.

Deletes item JOB in the file opened
without a file variable.

S~ple Usage of the DELETE Statement.

CHAPTER 9 - PICK/BAS C
Preliminary PAGE 9-65

Copyright 1988 PICK SYSTEMS

9.37 DELETE FUNCTION DYNAMIC ARRAY DELETION

The DELETE function deletes an attribute, a value, or a secondary value
from a string in 'item' format (called a dynamic array).

FORMAT:
DELETE(da.variable,att#(,value#,sub-value#})

The dynamic array used by this function is specified by the da.variable.
Whether an attribute, a value, or a secondary value is deleted depends
upon the values of the second, third, and fourth parameters. The att#
specifies an attribute, the value# specifies s value, and the sub-value#
specifies a secondary value. If the value# and sub-value# both have a
value of 0, or are dropped, then an entire attribute is deleted. If the
last three expressions are all non-zero, then a secondary value is
deleted.

If a value is deleted the value mark associated with the value is also
deleted. If an attribute is deleted the attribute mark associated with
the attribute is also deleted. Consider the following example:

OPEN 'TEST' TO TEST ELSE STOP 201,'TEST'
READ X FROM TEST,'NAME' ELSE STOP 202, 'NAME'
WRITE DELETE(X,2) ON TEST, 'NAME'

These statements delete attribute 2 (and its associated delimiter) of
item NAME in file TEST.

STATEMENT
Y - DELETE(X,3,2)

A-l;B-2;C-3
DA - DELETE(DA,A,B,C-A)

X - DELETE(X,7)

PRINT DELETE(X,7,l)

EXPIANATION
Deletes value 2 of attribute 3 of
dynamic array X (and its associated
delimiter), and assigns
resultant dynamic array to Y.

Deletes secondary value 2 (and
its associated delimiter) of
value 2 of attribute 1 of dynamic
array DA.

Deletes attribute 7 (and its
associated delimiter) of dynamic
array X.

Prints the dynamic array which
results when value 1 of attribute
7 of dynamic array X is deleted.

Sample usage of the DELETE Function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-66

Copyright 1988 PICK SYSTEMS

3.,., ..

I , ..
I
I
I
I ..
I
I
I
J
I:····· .

I
I
I
I
I
I
I
I

I
[

I
I
(

I
[

I
I
I
I
[

I
I
I
I
!
I
l

9.38 DIM STATElIENT IKENSIONING ARRAYS

Multiple valued varia les are called arrays. Before arrays may be used in
a PICK/BASIC program ey must be dimensioned via a DIM statement.

FORMAT:
DIM variable (dimensionl{,dimension2»

A variable with more~. than one value associated with it is called an
array. Each value is aIled an element of the array, and the elements are
ordered. Before an ar ay may be used in a PICK/BASIC program, however, the
maximum dimension(s) ,of the array must be specified for storage purposes.
This is done via a QIM statement, wherein the dimensions of an array are
declared with consta~t whole number, separated by commas. DIM statements
must precede any a~ray references, and are usually placed at the
beginning of the program. (Arrays need only be dimensioned once
throughout the entir. program.) Several arrays may be dimensioned via a
single DIM statement.

3 �---- The first element of A has value 3

8 I----The second element of A has value 8
Array A: - - - - - --

1-20.31---- The third element of A has value -20.3

1 ABC 1----iThe fourth element of A has string value "ABC"
J

The above example illustrates a one-dimensional array (called a vector).
A two-dimensional arr~y (called a matrix) is characterized by having rows
and columns. For example:

COL.1 COL. 2 COL.3 COL.4

Row 1 1 3 1 XYZ I A 1 -8.2 1
I----~--------------------I

Array Z: Row 2 1 8 I 3.1 I 500 1 .333 1
1 - - - -;- 1

Row 3 1 2 I -5 I Q123 1 84 I
- - - - -i- ... -

CHAPTER 9 - PICK/BAS C
Preliminary PAGE 9-67

Copyright 1988 PICK SYSTEMS

Any array element may be accessed by specifying its position in the
array. This position is like an offset from the beginning of the array.
In specifying an element, the user must have one offset or subscript for
each dimension of the array. In Array A, element A(l) has a value of 3,
while element A(3) has a value of "20.3". For a two-dimensional array
(matrix) the first subscript specifies the row, while the second specifies
the column. For example, in array Z above, element Z(l,l) has a value of
3, while element Z(2,3) has a value of 500.

DIM MATRIX(10,12)
DIM Q(lO),R(lO),S(lO)

DIM Ml(50,lO),X(2)

Specifies 10 by 12 matrix named MATRIX.
Specifies three vectors named Q, R, and
S (each to contain 10 elements).
Specifies 50 by 10 matrix named Ml,
and two-element vector named X.

Sample usage of the DIM statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-68

Copyright 1988 PICK SYSTEMS

I······ .

I
I
I
I
I
I
I
I
I
I
I
I
I

l
J
I

I
I
I
I
[

I
I
I
I
I
I
I
I
I
I
I
I
I
(

9.39 DTX PUHCTION ECIHAL to BElADECIMAL CONVERSION

The DTX function conv rts a value from Decimal to Hexadecimal.

FORMAT:

DTX(extression)

I The string value of! the expression is converted from Decimal to
Hexadecimal. For examtle:

I

B - DTX(A)

Conversely, the XTD function is available to convert string values from
Hexadecimal to Decimal.

(See: XTD)

STATEMENT

H - DTX(D)

EXPLANATION

Assigns the Hexadecimal value of variable D
to variable H.

S~le Usage of the DTX function.

CHAPTER 9 - PICK/BAS C
Preliminary PAGE 9-69

Copyright 1988 PICK SYSTEMS

9.40 EBCDIC FUNCTION FORMAT CONVERSION

The EBCDIC function converts a string value from ASCII to EBCDIC.

FORMAT:

EBCDIC (expression)

The string value of the expression is converted from ASCII to EBCDIC. For
example:

B - EBCDIC(A)

Conversely, the ASCII function is available to convert string values from
EBCDIC to ASCII.

(See: ASCII)

STATEMENT

B - EBCDIC(A)

EXPLANATION

Assigns the EBCDIC value of variable A
to variable B.

Sample Usage of the EBCDIC function.

CHAPTER 9 - PICK/BASIC
Preliminary

•

PAGE 9-70
Copyright 1988 PICK SYSTEMS

I
]

I

I
J
I
I
J
I
2
I
J
I
l
I
I
I

I
[

I
I
(

I
[

[

I
I
I
I
I
I
I
I

I
(

9.41 ECIIO OR A1ID OFF I: 'lEBIIiRAL DISPlAY

The ECHO statement enables or disables terminal output accordingly.

FORMAT:
ECHO ON
ECHO OFF
ECHO expression

These commands turn the system echo-back on or off. They may be used to
suppress the echo back of terminal input.

If the expression form is used,
expression evaluates! to zero.
expression evaluates to non-zero.

terminal
Terminal

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-71

echo
echo

is
is

inhibited when the
enabled when the

Copyright 1988 PICK SYSTEMS

9.42 END STATEMENT

If the END statement is used, it must be the last statement of
PICK/BASIC program; it designates the physical end of the program.
STOP and ABORT statements may appear anywhere in the program;
designate a logical termination of the program.

FORMAT:
END

the
The

they

The END statement may appear as the very last statement in the BASIC
program. It is used to specify the physical end of the sequence of
statements comprising the program, and increases readability.

The END statement is also used to designate the physical end of
alternative sequences of statements within the IF statement and within
certain of the PICK/BASIC I/O Statements.

(See: IF .. THEN, LOCATE, LOCK, READ for a discussion of this alternative
use of the END statement.)

A-SOO ; B-7S0 ; C-235 ; 0-1300
REVENUE - A + B ; COST - C + D
PROFIT - REVENUE - COST
IF PROFIT > 1 THEN GOTO 10
PRINT "ZERO PROFIT OR LOSS"
STOP<-----------Logica1 end of program.

10 PRINT "POSITIVE PROFIT"
END <---------------------------- Physical end of program

Sample usage of the END Statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-72

Copyright 1988 PICK SYSTEMS

I
I
I

" I

I
I
I
J
J
I
I
I
I
I
I
I
I

I
I
I
I
I
[

[

I
I
I
I
I
I
I
I
Ii

"

r ...

I
I

9 .43 ERTEl. STATEMENT : INTEB.PROGlWI TlANSrD.S

The ENTER .tat nt Ipermits transfer of control frena one cataloged
program to another cataloged program. The program that executes the ENTER
statement must be executed via the cataloged verb in the user's MD.

FORMATS:
ENTER progr~-name

where program-name is the item-id of the program to be ENTERed and

ENTER @Variable

where variable has been assigned the program name to be ENTERed.
All variables which are to be passed between programs must be declared in
a COMMON declaration in all program segments that are to be ENTERed.

All other variables will be initialized upon ENTERing the program. It is
permissible to ENTER • program that calls a subroutine, but it is illegal
to ENTER a program fr~m a subroutine.

STATEMENT
ENTER PROGRAM. 1

N-2
PROG - "PROGRAM."
ENTER @PROG

N

EXPLANATION
Causes execution of the cataloged
program "PROGRAM. 1 ". Any COMMON
variables will be passed to "PROGRAM.l".

Causes execution of the cataloged
program "PROGRAM. 2". Any COMMON
variables will be passed to
"PROGRAM. 2".

Sample usage of the ENTER statement.

CHAPTER 9 - PICK/BAS IF'
Preliminary ,

Copyright 1988 PICK SYSTEMS
PAGE 9-73

9.44 EQUATE STATEHENT VARIABLE ASSIGNHENT

The EQUATE statement allows one variable to be defined as the equivalent
of another variable.

FORMAT:
EQU{ATE} variable TO equate-variable(,variable TO equate.variable .. }

The variable must be a simple variable. The equate-variable may be a
literal number, string, character or array element. The equate-variable
may also be a CHAR function, however, the CHAR function is the only
allowed function in an EQUATE statement. The EQUATE statement must appear
before the first reference to the equate-variable.

The EQUATE Statement differs from the ASSIGNMENT Statement (where a
variable is assigned a value via an equal sign) in that there is no
storage location generated for the variable. The advantage this offers
is that the value is compiled directly into the object-code item at
compile time and does not need to be re-assigned every time the program
is executed. The EQUATE Statement is therefore particularly useful under
the following two conditions:

Where a constant is used frequently within a program, and therefore the
program would read more clearly if the constant were given a symbolic
name. In the example, "AM" is the commonly used symbol for "attribute
mark", one of the standard data delimiters.

Where a KATREAD statement is used to read in an entire item from a file
and disperse it into a dimensioned array. In this ease, the EQUATE
statement may be used to give symbolic names to the individual array
elements which makes the program more meaningful. For example:

DIM ITEM(20)
EQUATE BIRTHDATE TO ITEM(l), SOC.SEC.NO. TO ITEM(2)
EQUATE SALARY TO ITEM(3)

in this ease, the variables BIRTHDATE, SOC.SEC.NO. and SALARY are
rendered equivalent to the first three elements of the array ITEM. These
meaningful variables are then used in the remainder of the program.

STATEMENT

EQUATE PI TO 3.1416

EQUATE STARS TO "*****"

EQUATE AM TO CHAR(254)

EQUATE PART TO ITEM(3)

EXPlANATION

Variable PI is compiled as the value
3.1416 at compile time.

Variable STARS is compiled as the
value of five asterisks at compile time.

Variable AM is equivalent to the ASCII
charater generated by the CHAR function.

Variable PART is equivalent to
element 3 of array ITEM.

Sample usage of the EQUATE statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-74

Copyright 1988 PICK SYSTEMS

I

I
I
I
IIIiII

I
I
I

I
l
I
]

I
l
·1·

~',

I
I
I
I
I
(

l
I
I
I
I
I
I
I
I
I
[

I
I

9.45 DECOTE STAJuNT EDCUTING TCL COHKARDS

The EXECUTE statem~nt is used to execute any TCL command and use the
results of that command in later processing.

FORMAT:
EXECUTE expression (CAPTURING varl) {RETURNING var2}

The 'expression' parameter may be a complete TCL statement, a PROC, or
a cataloged PICK/BASIC program. Any output from the executed command
is captured in 'varl'. After execution, 'var2' will contain error
message numbers.

The CAPTURING and RETURNING clauses are both optional.

When using both clauses, the CAPTURING clause should precede the
RETURNING clause.

After execution of the 'expression', the data stack is reset and the
PICK/BASIC program continues with the next statement.

9.45.1 INPUT - EXECUTE STATEMENT

Input is passed to the EXECUTE statement using the- DATA statement,
just like it is used with the CHAIN statement. The data stack is
reset after the EXECUTE statement is completed.

(See: DATA and CHAIN)

9.45.2 OUTPUT - CAPTURING CLAUSE

Output from the executed command is captured by the calling program
in the variable used with the CAPTURING clause (var2). When output is
being re-directed to a variable in the calling program,
carriage-return/line feed pairs are converted to attribute marks, and
clear-screen sequences (to the terminal) are deleted.

9.45.3 OUTPUT - RETURNING CLAUSE

Output of error m~ssage numbers may be examined in two ways. Using
the optional RETURNING clause, allows error message numbers to be

. assigned to a varifble (varl). Each error message number is separated
by a blank. Second y, the SYSTEM() function may be used.

CHAPTER 9 - PICK/BASIl
Preliminary PAGE 9-75

Copyright 1988 PICK SYSTEMS

9.45.4 SELECT LISTS - EXECUTE STATEMENT

If a selected list is active when the EXECUTE statement is executed,
that list is passed to the TCL command executed. A selected list may
be passed back from the executed command to the PICK/BASIC program,
if one is generated. The select list will be assigned to the default
select variable for the next REAnNEXT statement, or to any variable
by:

SELECT TO variable

Therefore it is possible to EXECUTE the SELECT verb, test for select
list active using the SYSTEK(ll) function, and then EXECUTE the
SAVE-LIST verb. It is also possible to issue a SELECT verb from TCL,
RUN a PICK/BASIC program which EXECUTEs a LIST verb, and then have
the initial select list passed to the LIST verb. In order to pass a
select list to the executed TCL command, it is necessary that the
select list not be referenced by a REAnNEXT or SELECT statement.

9.45.5 WORK ENVIRONMENT CHANGES

Extra care should be taken when using the following commands
EXECUTE statement. The original environment will NOT be
after they are EXECUTEd. The PICK/BASIC program will resume
next line of code, under the newly changed parameters.

A) TERM
B) SP-ASSIGN, SP-OPEN, SP-CLOSE, etc.
C) P (output supression)

with the
restored

with the

D) CHARGES - work performed with EXECUTE not reflected.
E) T-ATT, T-DET (record size, etc.)

There are two verbs which upon EXECUTion, do not return to the
PICK/BASIC program.

A) OFF
B) LOGTO

There is one verb which cannot be done from an EXECUTion:

A) EXEC

9.45.6 EXECUTE WORKSPACE

The EXECUTE process requires it's own dedicated workspace. These
workspace frames are automatically taken from overflow, and
aaintained in a special EXECUTE workspace table. The very first time
an EXECUTE statement is performed, the process may be delayed up to
30 seconds. Subsequent EXECUTE statements will proceed without delay.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-76

Copyright 1988 PICK SYSTEMS

I
I
I
I
I
I
I

I, f

I
l

I
I
I
I

I
[

I
I

I
I
I
I
I
I
I
I
I
I
!
[

I
I

9.46 ZIP FUNCTION: ~ONENTIAL CAPABILITY

I i

I The EXPONENTIAL function generates the result of raising base 'e' to
I the power designated by the expression. (Base 'e' is 2.7183)

I ________________ ~---------------------------------------

FORMAT:

EXP(expression)

The EXPONENTIAL function raises the number 'e'
the expression. If tpe value of the expression
greater, the function returns a value of zero.
result is reduced aecordingly if precision 5
declared.

(2.7183) to the value of
at precision 4 is 24 or
The size of the maximum

or precision 6 has been

The EXPONENTIAL function is the inverse of the NATURAL LOGARITHM (LN)
function. (See: LN)

STATEMENT

¥Y - EXP(XX)

PRECISION 6
PRINT EXP (1)

PRINT EXP(-110+120)

PRINT 24 + EXP(1000)

PRINT EXP(10000)

EXPLANATION

Assigns the result of raising base 'e' the
power of the expression XX, to variable ¥Y.

Prints "2.7182"

Prints "2.3026"

Prints "30.9079"

Prints "9.2105"

Sample usage of the EXP function.

CHAPTER 9 - PICKlBAsJc
Preliminary PAGE 9-77

Copyright 1988 PICK SYSTEMS

9.47 EXTRACT FUNCTION DYNAHIC ARRAY EXTRACTION

The EXTRACT function returns an attribute, a value, or a secondary value
from a string in 'item' format (called a dynamic array).

FORMAT:
EXTRACT(da. variable.att#(• value#, sub-,value#)

or
da.variable<att#(,value#,sub-value#»

the dynamic array used by this function is specified by the da.variable.
Whether an attribute, a value. or a secondary value is extracted depends
upon the values of the second, third, and fourth parameters. The att#
specifies an attribute. the value# specifies an value. and the sub-value#
specifies a secondary value. If the third and fourth parameters both have
a value of 0, or have been dropped. then an entire attribute is
extracted. If the sub-value# (only) has a value of 0, or been dropped,
then a value is extracted. If the last three parameters are all non-zero,
then a secondary value is extracted. Trailing zero value# or sub-value#
mark counts are not required. Consider the following example:

OPEN 'TEST' TO TEST ELSE STOP 20l,'TEST'
READ ITEM FROM TEST, 'NAME' ELSE STOP 202,' NAME'
PRINT ITEM<,3,2>

These statements cause value 2 of attribute 3 of item NAME in file TEST
to be printed. Consider the following example:

OPEN 'ACCOUNT' TO ACCOUNT ELSE STOP 20l,'ACCOUNT'
READ ITEMl FROM ACCOUNT, 'ITEMl' ELSE STOP 202,' ITEMI '
IF ITEMl<3, 2,1:>-25 THEN PRINT "MATCH"

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-78

Copyright 1988 PICK SYSTEMS

I
I
I
I

I
I

I
J
I;':" ,"'

I
I

I
I
I
I
I
I
.1
I
I
I
I
I
I
I
I
I
I
I
I

These statements cauie the message
value 1 of value 2 of attribute 3 of
to 25.

"MATCH" to be printed if secondary
item ITEMI in file ACCOUNT is equal

STATEMENT
Y-EXTRACT(X, 2 ,0,0)
Y-X<2>

A-3
B-2
Ql-ARR<A,B,A+l>

IF B<3, 2 ,I> >5 THEN
PRINT MSG
GOSUB 100
END

EXPLANATION
Assigns attribute 2 of dynamic
array X to variable Y.

Assigns secondary value 4 of
value 2 of attribute 3 of
dynamic array ARR to variable Ql.

If secondary value 1 of value 2
of attribute 3 of dynamic array
B is greater than 5, then the
value of MSG is printed and a
subroutine branch is made to
statement 100.

PRINT D<25,2,O> Prints value 2 of attribute 25
of dynamic array D.

Sample usage of the EXTRACT Function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-79

Copyright 1988 PICK SYSTEMS

9.48 PIELD PURCTION STRING SEAaCBING

The FIELD function returns a sub-string from a string by specifying a
delimiter character.

FORMAT:
FIELD(expression, delimiter , occurence#)

The FIELD function takes the string value of the expression and searches
for a sub-string delimited by the character specified by the delimiter.
The occurence# specifies which occurrence of the sub-string is to be
returned. If the occurence# has a value of I, then the FIELD function
will return the sub-string from the beginning of the string up to the
first occurrence of of the delimiter. For example, the statement below
assigns the string value of "XXX" to the variable A:

A - FIELD("XXX.YYY.ZZZ.555","." ,1)

If the occurence# has a value of 2, then the sub-string delimited by the
first and second occurrence of the specified delimiter character will be
returned. A value of 3 for the occurence# will return the sub-string
delimited by the second and third occurence of the specified delimiter
character, and so on for higher values. For example, the statement below
assigns the string value "ZZZ" to variable C:

C - FIELD("XXX.YYY.ZZZ.555",".",3)

(See: COLl() and COL2() Functions)

STATEMENT

T - "12345A6789A98765A"
G - FIELD(T,"A" ,1)

T - "12345A6789A98765A"
G - FIELD(T,"A",3)

x - "77ABCXX"
Y _ "$"
Z - "ABC"
IF FIELD(X,Y,2)- Z THEN STOP

EXPlANATION

Assigns the string value "12345"
to variable G.

Assigns the string value "98765"
to variable G.

The IF statement will cause the
program to terminate (i.e., the
value returned by the FIELD function
is "ABC", which equals the
value of Z, thus making the test
condi tion true).

Sample usage of the FIELD statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-80

Copyright 1988 PICK SYSTEMS

I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
[

I
I
I
I
I
I
I
I
I
I
[

I
I

9.49 POOTING STATEMENT: PAGE OUTPUT POOTINGS

The FOOTING statement lauses the
the bottom of each pag~.

FORMAT:

specified text string to be printed at

FOOTING "text 'options' {text 'options'}"

The first FOOTING stat,ment executed will initialize the page par~eters.
Subsequently, the Footing literal data may be changed by a new FOOTING
Statement, and the newi Footing will be output when the end of the current
page is reached.

The special Footing option characters listed below may be used as part of
a FOOTING string exp~ession. These special characters will be converted
and printed as part ~f the Footing. Option characters are enclosed in
single quotes. Consider, for example:

FOOTING "Copyright 1988 PICK SYSTEMS 'T' PAGE 'P'"

This statement will print a Footing consisting of: the words "Copyright
1988 PICK SYSTEMS", followed by the current time and date, followed by
the word ·PAGE", followed by the current page number. Page numbers are
assigned in ascending order starting with page 1.

The footing literal data may be changed at any time in the PICK/BASIC
program by another FOOTING statement; this change will take effect when
the end of the current page is reached. The same set of special option
characters are used in heading statements.

(See: HEADING)

HEADING OPTIONS
P

L
T
C
D
N
PN

Character is Converted to:
Current page number right
justified in a field of four
Carriage return/line feed
Current time and date
Centers the line
Current date
No stop at end of page
Current page number left justified

Special Option Characters for FOOTING Statement.

CHAPTER 9 - PICK/BAStC
Preliminary I

Copyright 1988 PICK SYSTEMS
PAGE 9-81

I

STATEMENT EXPLANATION
FOOTING "TIME & DATE: 'T'" The text "TIME & DATE:" will be printed

followed by the current time and date.

FOOTING "PAGE 'p,n The text "PAGE" will be printed
followed by the current page number.

FOOTING n'LTP,n The following footing will be
printed: return/line feed,
the current time, date and page.

Sample Usage of FOOTING Statements.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-82

Copyright 1988 PICK SYSTEMS

I
I

I
I
I
I.· ...

I

!
I
I
I
i

I
I
I
I
I

I
I
I
I
[

[

I
I
I
I
I
I
I
I
I
I
I
I
I

9.50 FOR .•. RE17 STA~ : rROGIAK LOOPIRG

The FOR and NEXT sta~ements are used to specify the beginning and ending
points 'of a program loop. A loop is a portion of a program written in
such a way that it will execute repeatedly until some test condition is
met.

A FOR and NEXT loop c.uses execution of a set of statements for successive
values of a variable until a limiting value is encountered. Such values
are specified by establishing: 1) an initial value for a variable, 2) a
limiting value for the variable, and 3} an increment value to be added to
the value of the var~able at the end of each pass through the loop. When
the limit is exceededl, program control proceeds to the following body of
the program.

FORMAT:
FOR variable - expression TO expression (STEP expression)

A-I*75

NEXT variable

The expression preceding TO specifies the initial value of the variable,
the expression follo~ing TO gives the limiting value, and the optional
expression following STEP gives the increment. If STEP is omitted, the
increment value is assumed to be +1. The initial value expression is
evaluated only once (when the FOR statement is executed). The other two
expressions are eval~ted on each iteration of the loop.

The function of the NEXT statement is to return program control to the
beginning of the loop after a new value of the variable has been computed.
Note that the vari~ble in the NEXT statement must be the same as the
variable in the FOR s!tatement.

As an example, consider the execution of the following statements:

150 FOR J-2 TO 11 STEP 3
160 PRINT J+5
170 NEXT J

Statement 150 sets the initial value of J to 2 and specifies that J
thereafter will be incremented by 3 each time the loop is performed,
until J exceeds the limiting value 11. Statement 160 prints out the
current value of the expression J+5. Statement 170 assigned J its next
value (i.e., J-2+3-5) and causes program control to return to statement
150. Statement 160 is again executed, and statement 170 again increments
J and causes the Plogram to loop back. This process continues with J
being incremented by 3 after each pass through the loop. When J attains
the limiting value of 11, statement 160 will again be executed and
control will pass to 170. J will again be incremented (i.e., J-ll+3-l4),
and since 14 is greater than the limiting value of 11, the program will
"fall through" stateJent 150 and control will pass to the next sequential
statement following Jtatement 170.

I

CHAPTER 9 - PICK/BAS~C Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-83

STATEMENTS

FOR A-l TO 2+X-Y

NEXT A

FOR K-10 TO 1 STEP -1

NEXT K

FOR VAR- 0 TO 1 STEP 1

NEXTVAR

EXPLANATION

Limiting value is current value of
expression 2+X-Y; increment value
is +1.

Increment value is -1 (i.e., vari­
able K will decrement by a value -1
for each of 10 passes through the
loop).

Increment value is 1 (i.e., vari­
able VAR will increment by a value
of 1 for each of 11 passes through
the loop).

Sample usage of the FOR ... NEXT statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-84

Copyright 1988 PICK SYSTEMS

I

I
I
I
I
I

I
I
I

I

I
I
I

I
I
I
I
I
[

I
I
I
I
I
I
I
I
I
I
I
I
I

9.50.1 ,oa ... NEXT ST~TEKENT EXTENDED PROGIAH LOOPING

Optional condition clauses (WHILE and UNTIL) may be used in the FOR
statement. FOR and ,EXT loops may be -nested"; a nested loop is defined
as a loop which is wholly contained within another loop.

EXTENDED FORMAT:

FOR variable expression TO expression (STEP
expression)(WHILE expression)

FOR variable - expression TO expression (STEP
expression} (UNTIL expression)

The extended form of the FOR statement functions identically to the basic
form, with the following additions.

If the WHILE clause is used, the specified expression will be evaluated
for each iteration of the loop. If it evaluates to false (i.e., zero),
then program control will pass to the statement immediately following the
accompanying NEXT statement. If it evaluates to true (i.e., non-zero),
the loop will re-iterate.

If the UNTIL clause is used, the specified expression will be evaluated
for each iteration of the loop. If it evaluates to true (i.e., non-zero),
then program control will pass to the statement immediately following the
accompanying NEXT s~tement. If it evaluates to false .(i.e., non-zero),
the loop will re-iter~te.

The following FOR and NEXT loop, for example, will execute until 1-10 or
until the statements within the loop cause variable A to exceed the value
100:

FOR I-I TO 10 STEP .5 UNTIL A>100

A - 1*75

NEXT I

FOR and NEXT loops contained within the range of other FOR and NEXT loops
are called nested loops. For example:

FOR I-I TO 10
FOR J-l TO 10
PRINT B (I,J)
NEXT J

NEXT I

The above statementj' illustrate a two-level nested loop. The inner loop
will be executed ten times for each of ten passes through the outer loop,
i.e .• the statement PRINT B(I.J) will be executed 100 times. causing
matrix B to be ptinted in the following order: B(l.l). B(1.2).
B(I.3) •...• B(l.lO). B(2.l). B(2.2) •...• B(lO.lO).

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-85

Copyright 1988 PICK SYSTEMS

Loops may be nested any number of levels. However, a nested loop must be
completely contained within the range of the outer loop (i.e., the ranges
of the loops may not cross).

STATEMENT

ST-"X"
FOR B-1 TO 10 UNTIL ST-"XXXXX"
ST-ST CAT "X"
NEXT B

A-20
FOR J-l TO 10 WHILE A<25
A-A+l
PRINT J,A
NEXT J

A-O
FOR J-1 TO 10 WHILE A<25
A-A+1
PRINT J,A
NEXT J

EXPLANATION

Loop will execute 4 times (i.e.,
an "X" is added to the string
value of variable ST until the
string equals "XXXXX").

Loop will execute 5 times (i.e.,
variable A reaches 25 before
variable J reaches 10).

Loop will execute 10 times (i.e.,
variable J reaches 10 before
variable A reaches 25).

Sample usage of the FOR ... NEXT statement.
(Extended Form)

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-86

Copyright 1988 PICK SYSTEMS

]

I
I
I
I
.. •
i
• I

•• ,

I
I
I
I
I" ,

I
I
I
I
I

I
[

[

I ,
!
I
I
I
I
I
I
I
I
I
I
[

I
I

9 . 51 GOSUB AND ON ... OOSUB STATEMENTS SUBROUTINE BlANCHING

The GOSUB, COMPUTED GO~UB, RETURN, and RETURN TO statements (The RETURN
and RETURN TO state~ents will be discussed in a following section.)
provide internal sUbtoutine capabilities for the PICK/BASIC program. A
subroutine is an integral group of statements which handle a unique
function or task. An internal subroutine is a subroutine that is
contained within the program that calls it (i.e., before the END
statement). The GOSUB statement transfers control to the subroutine).

FORMAT:
GOSUB statement. label

Upon execution of a GOSUB statement, program control is transferred to
the statement which qegins with the specified numeric statement. label.
Execution proceeds s~quential1y from that statement until a RETURN or
RETURN TO statement is encountered. Either of these statements transfers
control back to the main program.

The Computed GOSUB statement is a combination of the Computed GOTO
statement and the GOSUB statement. Control is transferred to one of
several statement. labels selected by the current value of an index.
expression. Control returns to the statement following the computed GOSUB
when a RETURN statement is executed.

FORMAT: ON index. expression GOSUB statement. label,
statement. label, ...

The index expression is evaluated and truncated to an integer value. The
result is used as an index into the list of statement. labels. A
subroutine branch is executed to the statement. label selected.

If the expression evaluates to less than 1 or to a value greater. than the
number of statement. labels, no action is taken, that is, the statement
immediately following the ON GOSUB will be executed next.

ON I GOSUB 100,150,250
* CONTROL TRANSFERS HERE AFTER RETURN FROM SUBROUTINE

(DIRECTLY IF 1<1 OR 1>3)
100 * CONTROL, TRANSFERS HERE IF 1-1

RETURN
150 * CONTRO~ TRANSFERS HERE IF 1-2

RETURN
250: .*.C~NTR~ TRANSFERS HERE IF 1-3

RETURN

Samp~e usage of the ON ... GOSUB statement.

CHAPTER 9 - PICK/BAS4C
Preliminary i

Copyright 1988 PICK SYSTEMS
PAGE 9-87

9.52 GOTO STATEMENT UNCONDITIONAL BRANCHING

The GO{TO} statement unconditionally transfers program control to any
statement within the PICK/BASIC program.

FORMAT:
GO{TO} statement-label

Execution of the GO{TO} statement causes program control to transfer to
the statement which begins with the specified numeric statement-label. If
a statement does not exist with the specified statement-label an error
message will be printed at compile time (refer to the appendix describing
compiler error messages). Note that control may be transferred to
statements following the GO{TO} statement, as well as to statements
preceding the GO{TO} statement.
(see: ON ... GOTO)

-> 100 A-O

REM BRANCH TO STATEMENT 500
200 GOTO 500

-> 500 A-B+C
1>-100

REM REPEAT PROGRAM
GOTO 100

Sample usage of the GOTO statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-88

Copyright 1988 PICK SYSTEMS

I
J
I ,. a
I
I

I
I
I

!
I
J
I
I
I

I
I
[

i
[

I
I
£
I
[

E
I

I
I
[

I

9.53 BEADING STATEKERf : PAGE OUTPUT BEADINGS

I

The HEADING statement rauses the specified text string to be printed as
the next page heading. 1

I

FORMAT:
HEADING "text 'options' (text 'options')"

The first HEADING st.tement executed will initialize the page parameters.
Subsequently, the Heading literal data may be changed by a new HEADING
Statement, and the ~ew Heading will be output at the beginning of the
next page. The specia~ heading option characters listed below may be used
as part of a HEADING !string expression. These special characters will be
converted and printed as part of the heading. Option characters are
enclosed in single quotes. Consider, for example:

HEADING "INVENTORY LIST 'T' PAGE 'PL'"

This statement prints a
LIST", followed by the
"PAGE", followed by the
return and line feed.
starting with page 1.

heading consisting of: the words "INVENTORY
current time and date, followed by the word
current page number, followed by a carriage

Page numbers are assigned in ascending order

The same set of speci,l option characters are used in FOOTING statements.

(See: FOOTING)

HEAPING OPTIONS

P

L
T
C
D
N
PN

Character is Converted to;

Current page number right
justified in a field of four
Carriage return/line feed
Current time and date
Centers the line
Current date
No stop at end of page
Current page number left justified

Special Option Characters for HEADING Statement.

CHAPTER 9 - PICK/BASfC
Preliminary I

Copyright 1988 PICK SYSTEMS
PAGE 9-89

STATEMENT

HEADING "TIME & DATE: 'TL'

HEADING "PAGE 'PL'"

EXPLANATION

The text "TIME & DATE:" will be
printed followed by the current time and
date plus a carriage return/line feed.

The text "PAGE" will be printed
followed by the current page number and a
carriage return/line feed.

Sample Usage of HEADING Statements.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-90

Copyright 1988 PICK SYSTEMS

II.·.·.· ... ;.w

I
J

I:; " ,

J
I
J
I
I
J

J
I
I
I

I

I
I
[

I
I
I
I
I
[

I
l
I
I
r •
I
[

I
I
I

9.54 ICONV FUNCTION INPUT CONVERSION

The ICONV function provides the PICK/ACCESS input conversion capabilities
to the PICK/BASIC pro~rammer.

FORMAT:
ICONV(expression, conversion)

The conversion specifies the
the string value res~lting

always a string.

(See: OCONV)

type of
from the

input conversion
expression. The

to be applied to
resultant value is

The input conversion operation specified by the conversion parameter may
include anyone of the following:

D Convert date to internal format (for ICONV function)
or to external format (for OCONV function).

MT Converts time.

HX Convert ASCII to hexadecimal (for ICONV function) or
convert hexadecimal to ASCII (for OCONV function).

T Convert by table translation.

U Call to user-defined assembly routine.

For a detailed treatment of these (and other) conversion capabilities,
the user should refer to the ACCESS Chapter.

NOTE: The ACCESS 'F' and 'A' conversions cannot be called by these
functions. The ACCESS 'MR' or 'ML' conversion may be called by using the
Format String which performs the same function and is preferable to using
the ICONV or OCONV functions in this case.

STATEMENT
IDATE - ICONV("7-01-74","D")

ITIHE - ICONV("l7:04:l8","MT")

EXPLANATION
Assigns the string value
"2374" (i.e., the internal
date) to the variable IDATE.

Assigns the string value
"61458" (i.e., the internal
time) to the variable ITIKE.

S~le usage of the ICONV Function.

CHAPTER 9 - PICK/BAslc
Preliminary PAGE 9-91

Copyright 1988 PICK SYSTEMS

9.55 IF STATEMENT SINGLE-LIRE CONDITIONAL BRANCHING

The Single-Line IF statement provides the conditional execution of a
sequence of PICK/BASIC statements, or the conditional execution of one of
two sequences of statements.

FORMAT:
IF expression THEN statements {ELSE statements}

If the result of the test condition specified by the expression is true
(i.e., non-zero), then the statement or sequence of statements following
the THEN are executed. If the result of the expression is false (i.e.,
zero), then the statement or sequence of statements following the ELSE
are executed, unless the ELSE clause is omitted, in which case control
will pass to the next sequential statement following the entire IF
statement. The expression may be any legal BASIC expression.

The sequence of statements in the THEN or ELSE clauses may consist of one
or more statements on the same line. If more than one statement is
contained in either the THEN or ELSE clause, they must be separated by
semicolons. Consider the example:

IF ITEM THEN PRINT X; X-X+l ELSE PRINT X*5; GOTO 10

If the current value of ITEM is non-zero (i.e., true), then this
statement will print the current value of X, add one to the current value
of X, and then transfer control to·the next sequential instruction in the
program. If the value of ITEM is zero (i.e., false), then the value of
X*5 will be printed and control will transfer to statement 10.

Any statements may appear in the THEN and ELSE clauses, including
additional IF statements.

The THEN clause of an IF statement is optional if the ELSE clause is
present. One or the other MUST be present. This allows IF statements with
the format:

IF expression ELSE statements

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-92

Copyright 1988 PICK SYSTEMS

~.'
l1li

I
I
I
I
I
I
I

I
J
I
I
!
. I'····· .

I
I
I
I

I
I
[

I
I
[

E

I
I
I
I
I
I

I'··
~'

I
I
[

I
I

STATEMENT

IF A-"STRING" THEN PRINT "MATCH"

IF Q THEN PRINT A ELSE PRINT B; STOP

IF A-B THEN STOP ELSE IF C THEN GOTO 20

EXPLANATION

Prints "MATCH" if value of
A is the string "STRING".

The value of A is printed
if Q is non-zero. If Q-O,
then the value of B is
printed and the program is
terminated.

Program is terminated if
A-B; control is passed to
statement 20 if A does not
equal B and if C is non-zero.

Sample usage of the Single-Line IF statement.

CHAPTER 9 - PICK/BAsic
Preliminary PAGE 9-93

Copyright 1988 PICK SYSTEMS

9.56 IP STATEMENT HULTI-LINE CONDITIONAL BRANCHING

The Hulti-Line IF statement is functionally identical to the Single-Line
IF statement. It provides the conditional execution of a sequence of
PICK/BASIC statements, or the conditional execution of one of two
sequences of statements. The statement sequences, however, may be placed
on mUltiple program lines.

The Hulti-Line IF statement is actually an extension of the Single-Line
format. With this format, the statement sequences in the THEN and ELSE
clauses may be placed on mUltiple program lines, with each sequence being
terminated by an END. The general format of the Hulti-Line IF statement
takes on three forms as shown in Figure A.

In each of the three forms, the ELSE clause is optional
included or omitted as desired. Any statements may appear in
ELSE clauses.

FORM 1:

FORM 2:

IF expression THEN
statements

END ELSE statements

IF expression THEN
statements

END ELSE
statements

END

and may be
the THEN and

FORM 3: IF expression THEN statements ELSE

NQIE:

END

In each of the above forms,
the ELSE clause is optional.

General form of the Hulti-Line IF statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-94

Copyright 1988 PICK SYSTEMS

I
I
I
I
I
I
I

I
I
I
I
J ;. .,

I
J
I
I
I

I
l
(

I
[

(,
I
!
I
I
I
I

I

[

I
I

IF STATEMENTS

IF ABC-ITEM+5 THEN
PRINT ABC
STOP

END ELSE PRINT ITEM; GOTO 10

IF VAL THEN
PRINT MESSAGE
PRINT VAL
VAL-100

END

10 IF S-"XX" THEN PRINT "OK" ELSE
PRINT "NO MATCH"
PRINT S
STOP

END
20 REM REST OF PROGRAM

IF X>1 THEN
PRINT X
X-X+1

END ELSE

END

PRINT "NOT GREATER"
GOTO 75

EXPLANATION

The value of ABC is printed and the
program terminates if ABC-ITEM+5;
otherwise the value of ITEM is
printed and control passes to
statement 10.

If the value of VAL is non-zero
then the value of MESSAGE is
printed, the value of VAL is
printed, and VAL is assigned a
value of 100; otherwise control
passes to the next statement
following END.

If the value of S is the string
"XX" then the message "OK" is
printed and control passes to
statement 20; otherwise "NO MATCH"
is printed, the value of S is
printed, and the program terminates.

If X>1 the value of X is printed
and then incremented, and control
passes to the next statement fol­
lowing the second END: otherwise
"NOT GREATER" is printed and
control passes to statement 75.

Sample usage of the Multi-Line IF statement.

CHAPTER 9 - PICK/RAslc
Preliminary r

Copyright 1988 PICK SYSTEMS
PAGE 9-95

9.57 IN Statement - Single Character Input

The IN statement is used to accept a single character of input.
prompt is displayed; no <RETURN> is expected.

The syntax of the statement is

IN variable

The input is stored in the variable as an ASCII (decimal) code.

Statement Description

PRINT 'Press Y to continue':

No

IN R If Y is entered, the ASCII code 89 is
returned in R.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-96

Copyright 1988 PICK SYSTEMS

I
I

• •

I
i

I

I
]

I
l
I

I

I
I ,
[

E ,
[

I
[

I
I
I
I

[

I
I

9.58 INCLUDE S~~ INCLUDING OTBEll PIC~/BASIC PllOGlWIS

The INCLUDE statement is used to include data from other
programs which normally consist of COMMON blocks
statements.

PICK/BASIC
and EQUATE

FORMAT:
INCLUDE (file-name) item-name

When the PICK/BASIC compiler encounters an INCLUDE statement, it will
open the specified file, read the item, and compile it into the current
program.

If the file name is omitted, the file containing the source-item used in
the TCL statement would be assumed.

Normally one would use this statement to include COMMON blocks and EQUATE
statements into a proigram. It would also be logical to have CRT format
strings and similar s'imple executable statements in the INCLUDE.

There is no limit to the number of INCLUDEs in a program, but only five
levels of nesting are allowed.

STATEMENT
INCLUDE BP COMMON.DATA

EXPlANATION
The program COMMON.DATA in BP file
will be compiled into the program
containing the INCLUDE statement.

Sample usage of the INCLUDE statement.

NOTE: The INCLUDE statement is not available on the PC-XT Version 2.0 or
lower.

CHAPTER 9 - PICKfBAslc
Preliminary PAGE 9-91

Copyright 1988 PICK SYSTEMS

9.59 INDEX FUNCTION SEARCBIRG poa SUB-ST.lIRGS

The INDEX
sub-string
sub-string.

FORMAT:

function searches
and returns the

a string
starting

for
column

the occurrence
position of

of a
that

INDEX(string. expression, substring,occurrence#)

The INDEX function takes the string value of the expression and searches
for the sub-string specified by substring. The occurrence# specifies
which occurrence of that sub-string is sought. The resultant numeric
value of the INDEX function is the starting column position of the
sub-string within the string. a value of 0 is returned if the sub-string
is not found. If the substring is null then the occurrence# will be
returned.
The user should note that no blank space may appear between "INDEX" and
"(no This is true for all PICK/BASIC Intrinsic Functions.

STATEMENT
A - INDEX("ABCAB","A",2)

x - "1234ABC"
Y - "ABC"
IF INDEX(X,Y,l)-5 THEN GOTO 3

Q - INDEX("PROGRAM","S",5)

S - "XIXXIXX1XX"
FOR 1-1 TO INDEX(S,"1",3)

NEXT I

EXPLANATION
Assigns value of 4 to variable A
(i.e., 2nd occurrence ~f "A" is
at column position 4 of "ABCAB").

The IF statement will transfer con­
trol to statement 3 (i.e., "ABC"
starts at column position 5 of
"1234ABC" which makes the test con­
dition in the IF statement true).

Assigns value of 0 to variable Q
(i.e., "S" does not occur in
"PROGRAM") .

The loop will execute 8 times
(i.e., 3rd occurrence of "1"
appears at column position 8 of
the string named S).

Sample usage of the INDEX Function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-92

Copyright 1988 PICK SYSTEMS

I
I
I
I
I
I
I
I
I
I
I
I
I
J

J
J

•

I
I
I
I
I
I
I
I
I
I
I
I
I
I

, ..

I
[

9.60 IRPUT STATDE : TDlIIRAL IRPUT

The INPUT statement is used to request input data from the user's
terminal. The input statement can include the @ function to position the
cursor, and format s rings to verify input.

The syntax of the statement is

INPUT (@(col,row)} variable (,len}(:) (mask)

where
@(col,row)

variable

len

@ fun~tion; when specified, the cursor is positioned at
the ,pecified location and the carriage return/line feed
after input is suppressed (for more information on
positloning the cursor, see the section on @ function).

receives response; if the variable being used already has
a va~ue, and if @ function has been specified, the current
value I of the variable is displayed as the default at the
speci.ied cursor address. To accept the default, press
<RETUItN>.

maxi~ number of characters to be entered; as soon as the
speci~ied number of characters are entered, an automatic
<RETUItN> is entered and processing continues with the next
statellent.

suppr~sses carriage return/line feed after input has been
compl~ted; this can be used only if @ function has not
been specified.

mask format string; if mask is to be used, the @ function must
also be specified; for more information on using masks,
see next section.

When an input statement is executed, a prompt character is displayed,
followed by the cutsor. If the @ function is used, the prompt is
displayed preceding the location specified by @' The prompt character
can be specified using the PROMPT statement.

9.60.1 Using Kasks vith Input Statement

The mask is used to !verify and reformat the actual entry of the data.
Any format string a$ described in Section 9.15, Numeric Masks and Format
Mask Codes, can be specified. The input is verified against the mask,
and, if acceptable, is assigned to the variable. For example, if the
mask contains a decimal digit specification and/or a scaling factor, then
numeric checking is performed. If the mask contains a length
specification (e. g 'l R#10) , then length checking is performed. If the
mask is a valid date mask, then a date verification is performed.

Data is input and v rified according to the mask, then stripped of its
output characteristi s and stored in internal format. For example, if
the statement is

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-93

Copyright 1988 PICK SYSTEMS

INPUT @(20,lO) SOC.SEC ' ••• -•• -•••• '

and the data entered is

423-15-6897

the variable SOC.SEC contains the value

423156897

If the data is entered as 423156897, it is redisplayed at the input
location as

423-15-6897

If fewer digits are entered than specified, the value is zero-filled and
redisplayed; however, it is stored with the same number of digits as . were
entered.

If an error condition is encountered, a message is printed at the bottom
of the screen and the cursor returns to the input prompt.

Error checking can be added to the INPUT @ form of the statement by the
statements INPUTTRAP and INPUTNULL. Messages can be displayed using the
INPUTERR statement. For more information, see the description for each
statement.

Statement Description

INPUT VAR Requests a value for variable VAR.

INPUT VAR,3 Performs an automatic <RETURN> as soon as
three characters are input (the user may
press <RETURN> to enter fewer than three
characters) .

INPUT @(l,10) DESC Cursor is positioned at column 1, row 10
for input. (The prompt is displayed at
column 0, row 10.).

INPUT @(25,2) INV.DATE 'D' Date can be input in either the form mm­
dd-yy (any non-numeric character can be
used as the delimiter) or the form dd mon
yyyy; the date is redisp1ayed in the form
dd mon yyyy and stored in internal date
format.

INPUT @(35,7) AMOUNT 'R2,' Data must be numeric; it is redisplayed
right-justified and with two decimal
places.

INPUT @(20,14) NAME '1#40' Data can be any characters; length of
input is verified.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-94

Copyright 1988 PICK SYSTEMS

• ..
I
J

• .I

I
I
I
1
1
I
1
J

I
I
I
I
f
I
I
I
I
[

I
I

I

I

9.61 IBPUTDll - INPUllTRAP - IBPOTNULL nmrr 'OllIS

Some extended

FORMAT:

featurer of the

INPUTERR expr
INPUTTRAP 'xx'
INPUTTRAP 'xx'
INPU'rNPLL x

INPUT fuction.

GOTD n,n,n,n .. .
GOSUB n, n, n, n .. .

These are all supporlt functions for the extended form of input statement.
They allow the userl to tailor the INPUT function to conform to local
standards.

INPUTERR causes a message, specified by "expr". to be printed on the last
line of the screen. This differs from an explicit PRINT statement in that
it sets a flag indic~ting that a message has been printed. Thus, when the
next valid entry is made the system will check the flag and clear the
bottom line.

INPUTTRAP allows the user to set a trap for a particular character or
characters. Each character in the string specification corresponds to a
label in the GOTO or GOSUB clause. Thus, for example, if the statement
INPUTTRAP ' __ X' GOTq 10,20 is executed, the subsequent entry of a ' __ '
character will caus~ a branch to "10" and the entry of 'X' will cause a
branch to "20". The qOSUB form of this expression will cause a subroutine
call to be issued in~tead. Caution - the subroutine RETURN statement will
cause a return to the statement following the INPUTTRAP statement - not
the one following the INPUT statement.

The INPUTNULL statement allows the user to define a character which is to
signify that whatever default value was present is to be replaced by the
null string. Thus, iif the statement INPUTNULL 'J' is executed, the
subsequent entry ofa 'J' character will cause a defaulted value to go
to null. Note that the default character is '

(See: INPUT)

INPUTERR 'INVALJiD DATA!' Displays error message

INPUTTRAP '*/' GOTO 150,170 Causes branching if
either '*' or 'J' is entered.

INPUTNULL '_@' Causes the '_@' character to null
defaults in INPUT statements.

Examples of tNPUTERR, INPUTTRAP and INPUTNULL Statements.

CHAPTER 9 - PICK/BAStC
Preliminary

I

Copyright 1986 PICK SYSTEMS
PAGE 9-95

9.62 IBSDT PUNCTION DYlWfIC ADAY IBSDTION

The INSERT function inserts an attribute, a value, or a secondary value
into a string in 'item' format (called a dynamic array).

FORMAT:
INSERT(da.variab1e,att#{,va1ue#,sub-va1ue#,}{;}new.expression)

The dynamic array used by this function is specified by the da.variab1e.
Whether an attribute, a value, or a secondary value is replaced depends
upon the values of the second, third, and fourth parameters. The att#
specifies an attribute, the va1ue# specifies a value, and the sub-va1ue#
specifies a secondary value. If the va1ue# and sub-va1ue# both have a
value of 0, (or dropped) then an entire attribute is replaced. If the
sub-va1ue# (only) has a value of 0, (or dropped) then a value is
replaced. If the second, third, and fourth parameters are all non-zero,
then a secondary value is replaced. The replacement value is specified by
the new. expression. The semi-colon (;) is used whenever va1ue# and/or
sub-va1ue# have been dropped and the new.expression is no longer the
fifth parameter.

If the att#, va1ue# or sub-va1ue# of
-1, then insertion after the last
secondary value (respectively) of the
example:

the INSERT function has a value of
attribute, last value, or last

dynamic array is specified. For

OPEN 'FN1' TO FN1 ELSE STOP 201,' FN1'
READ B FROM FN1, I ITEHX' ELSE STOP 202, I ITEHX I
A - INSERT(B,-l;'EXAHPLE')
WRITE A ON FN1,'ITEHX'

These statements insert the string value "EXAMPLE"
attribute of item ITEHX in file FNl.

after the last

STATEMENTS
Y - INSERT(X3,2,O,"XYZ")

NEW - "VALUE"
TEMP - INSERT(TEMP,9,O,O,NEW)

z - INSERT(W,5,l,l,"B")

EXPLANATION
Inserts before value 2 of attribute
3 of dynamic array X the
string value "XYZ" (thus creating
a new value), and assigns the
resultant dynamic array to variable Y.

Inserts before attribute 9 of
dynamic array TEMP the string
value "VALUE" (thUS creating a
new attribute).

Inserts the string value "B"
before secondary value 1 of value 1
of attribute 5 in dynamic array W
(thus creating a new secondary
value), and assigns the resultant
dynamic array to variable Z.

V
I
I
I
I

________________ ~~------~~~~~~--~------------------I
Sample usage of the INSERT Function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-96

Copyright 1988 PICK SYSTEMS

::I ' •
I
I

I
I

I
'I ..
I
I
1

l
I
I
1

l
I
[

I
I
I
I
I
• ..
I
I ,
It

I

I
I

9.63 INT FONCTION INTEGER NUMEIlIC VALUE

The INT function retu~ an integer value. An integer is a Whole number.

FORMAT:
INT(expression)

The INT function returns the integer portion of the specified expression
(i.e., the fractional portion of the expression is truncated). For
example:

PRINT INT(S.37)

.B This statement causes the value 5 to be printed.

STATEMENT

A - INT(Q)

A - 3.55
B - 3.6
C - INT(A+B)

J - INT (5/3)

EXPLANATION

Assigns the integer value of
variable Q to variable A.

Assigns the value 7 to variable C.

Assigns the value 1 to variable J .

Sample Usage of the INT Function.

CHAPTER 9 - PICK/BAS~C
Preliminary I

Copyright 1988 PICK SYSTEMS
PAGE 9-97

9.64 LD FUNCTION GENERATING A LDGTB VALUE

The LEN function determines the length of a string.

FORMAT:
LEN(expression)

the LEN function returns the numeric value of the length of the string
specified by the expression. For example:

A - "1234ABC"
B - LEN(A)

These statements assign the value of 7 to variable B.

STATEMENT

Q - LEN("123")

x - "123"
Y - "ABC"
Z - LEN(X CAT Y)

EXPLANATION

Assigns the value 3 to variable Q
(i.e .• the length of string "123").

Assigns the value 6 to variable Z.

Sample Usage of the LEN Function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-98

Copyright 1988 PICK SYSTEMS

.•.... , .-
I
I
I···· ..
]

I
I
J
I

I
I

J
l
I
I

I
I
[

I
(

1
l
I
I
I

I
I
I
I
[

I
[

9.65 LR FUNCTION .TURAL LOGAllITBH

The NATURAL LOGARITHM function generates the natural logarithm of the
expression. (Base Ie' is 2.7183)

FORMAT:

LN(expression)

The NATURAL LOGARITHM (LN) function generates the natural (base e)
logarithm of the expression. If the value of the expression is less than
or equal to zero, the LN function returns a value of zero. The upper
range limit for the expression is 14,073,748,835 at precision 4.

The NATURAL LOGARITHM function is the inverse of the EXPONENTIAL function.

(See: EXP)

STATEMENT

YY - LN(XX)

PRINT LN(-35+37)

PRINT LN(lOOO)

PRINT LN(lOOOO)

EXPLANATION

Assigns the natural logarithm of
expression XX to variable YY.

Prints "0.6932"

Prints "6.9079"

Prints "9.2105"

Sample usage of the LN function.

CHAPTER 9 - PICK/BASI~
Preliminary PAGE 9-99

Copyright 1988 PICK SYSTEMS

I

9.66 LOCATE STATEMENTS LOCATING INDEX VArJJES

The LOCATE statement may be used to find the index of an attribute, a
value, or a secondary value within a dynamic array. The elements of the
dynamic array may be specified as being in ascending or descending ASCII
sequence, and sorted with either right or left justification. If the
specified attribute, value, or secondary value is not present in the
dynamic array in the proper sequence, an index value is returned which
may be used in an INSERT statement to place the sought element into its
proper location.

FORMAT:
LOCATE('string' ,item{,att#{,val#}};index#{;'sequence}) THEN/ELSE stmts

'String' is the element to be located in dynamic array 'item'. 'Index#'
is the variable into which the index of 'string' is to be stored. 'Att#'
and "val#" are optional parameters which restrict the scope of the search
within 'item'. If neither parameter is present, 'string' is tested for
equality with attributes in 'item', and 'index#' returns an attribute
number. If 'att#' is present, 'string' is compared with values within the
attribute specified by "att#" of "item", and "index#" returns a value
number. If 'val#' is also present, the search is conducted for secondary
values of the specified attribute and value of 'item', and 'index#'
returns a secondary value number.

If 'sequence' has the value 'A' (or any string value beginning with 'A'),
the elements of "item" are assumed to be sorted in ascending sequence. If
"sequence" has the value "0" (or any string value beginning with "0"), the
elements are assumed to be in descending sequence. All other values for
'sequence' are ignored.

If the first character of 'sequence' is 'A' or '0', the second character
determines the justification used when sorting the elements. If the
second character is "R", right justification is used. For any other
value, including null, left justification is used. If 'sequence' is not
specified and the string is not found, the default will be to the last
position.

SEQUENCE PARAMETERS
AL - ascending, left-justified
AR - ascending, right-justified

DL - descending, left-justified
DR - descending, right-justified

The LOCATE statement has an alternate form that allows starting other
than at the begining of a field.

I Note: This alternate form is NOT available on the PC-XT Version 2.0
I or lower.
I
~FO-RMA---T-:---

. LOCATE string IN item «att#(,val#}» (,start) (BY seq) SETTING result
THEN/ELSE stmts.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-100

Copyright 1988 PICK SYSTEMS

I

I
I
I
J
I
I
I

I
I

I. I'·,··

J
l
I

I

I
I
I
I
I
I
[

[

I
I
I
I
I
I
I
I
[

I
I

Att#, val# and start form the AVS triple. If both att# and val# are
present, the start is the starting SVM for the search. If only att# is
present, then start is the starting val# for the search. If both att# and
val# are ommited, the start is the starting att# for the search.

STATEMENT:
LOCATE('55',ITEM,3,I;INDEXl;'AR') ELSE ITEM - INSERT(ITEM, 3, 1, INDEXl, '55')

EXPlANATION
The third attribute, first value of dynamic array 'ITEM' is searched for
the numeric literal '55'. 'INDEXl' will return with the secondary value
index if the numeric is found, and will return with the correct secondary
value index if the numeric is not found. If it is not found, control
passes to the ELSE clause which inserts the numeric into the correct
position by virtue of the index contained in 'INDEXl'. The optional
parameter 'AR' specifies ascending sequence and right justification.

Sample usage of the the LOCATE statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-101

Copyright 1988 PICK SYSTEMS

9.67 LOCK STATEHERT SITTINC DlCUTIOR LOCKS

The LOCK statement provides a file and execution lock capability for
PICK/BASIC programs. The LOCK statement sets execution locks while the
UNLOCK statement releases them.

FORMAT:
LOCK expression {THEN/ELSE statements}

The LOCK statement sets an execution lock so that when any other BASIC
program attempts to set the same lock. then that program will either
execute an alternate set of statements or will pause until the lock is
released (via an UNLOCK statement) by the program which originally locked
it.

I

Execution locks may be used as file locks to prevent multiple PICK/BASIC
programs from updating the same files simultaneously. There are 64
execution locks numbered from 0 through 63.

Note: There are only 48 execution locks on the PC-XT Version 2.0 and
lower.

The value of the expression specifies which execution lock is to be set.
If the specified execution lock has already been set by another
concurrently running program (and the ELSE clause is not used). then
program execution will temporarily halt until the lock is released by the
other program.

If the ELSE clause is used. then the statement(s) following the ELSE will
be executed if the specified lock has already been set by another
program. The statements in the THEN/ELSE clause may be placed on the same
line separated by semicolons. or may be placed on multiple lines
terminated by an END (i.e .• the THEN/ELSE clause takes on the same format
as the THEN/ELSE clause in the IF statement).

All execution locks set by a program will automatically be released upon
termination of the program.

(See: UNLOCK)

CHAPTER 9 - PICK/BASIC
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-102

I
I
I
I
I
I
I
I
J
I
I
I
I
I

J

(

I
I
I
I
(

I
I
I
I
I
I
I
I
I

[

I
I

STATEMENTS

LOCK 15 ELSE STOP

LOCK 2

LOCK 10 ELSE PRINT X; GOTO 5

EXPLANATION

Sets execution lock 15 (if lock 15
is already set, program terminates.

Sets execution lock 2.

Sets execution lock 10 (if lock 10 is
already set, the value of X is printed
and program branches to statement 5.)

Sample Usage of the LOCK Statement.

CHAPTER 9 - PICK/BASiC
Preliminary I

Copyright 1988 PICK SYSTEMS
PAGE 9-103

I

9.68 IDOP STATEMENT SnUCTUUD IDOPIlIG

Program loops may be constructed via the use of the IDOP statement.

FORMAT:

IDOP (statements) WHILE expression DO (statements) REPEAT

LOOP (statements) UNTIL expression DO (statements) REPEAT

Execution of a LOOP statement proceeds as follows. First the statements
(if any) following "LOOP" will be executed. Then the expression is
evaluated. One of the following is then performed depending upon the fora
used:

If the "WHILE" fora is used, then the statements following "DO"
(if any) will be executed and program control will loop back to
the beginning of the loop if the expression evaluates to true
(i.e., non-zero), or program control will proceed with the next
sequential statement following "REPEAT" (i.e., control passes out
of the loop) if the expression evaluates to false (i.e., zero).

If the "UNTIL" fora is used, then the statements following "DO"
(if any) will be executed and program control will loop back to
the beginning of the loop if the expression evaluates to false
(i.e., zero), or program control will proceed with the next
sequential statement following "REPEAT" (i.e., control passes out
of the loop) if the expression evaluates to true (i.e., non-zero).

Statements used within the LOOP statement may be placed on one line
separated by semicolons, or may be placed on multiple lines. Consider
the following example:

LOOP UNTIL A-4 DO A-A+l; PRINT A REPEAT

Assuming that the value of variable A is 0 when the LOOP statement is
first executed, this statement will print the sequential values of A
from 1 through 4 (i.e., the loop will execute 4 times). As a further
example, consider the statement:

LOOP X-X-10 WHILE X>40 DO PRINT X REPEAT

Assuming, for example, that the value of variable X is 100 when the
above LOOP statement is first executed, this statement will print the
values of X from 90 down through 50 in increments of -10 (i.e., the
loop will execute 5 times).

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-104

Copyright 1988 PICK SYSTEMS

I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
[

I
I

STATEMENTS

J-O
LOOP

PRINT J
J-J+l

WHILE J<4 DO REPEAT

Q-6
LOOP Q-Q-l WHILE Q DO PRINT Q REPEAT

Q-6
LOOP PRINT Q WHILE Q DO Q-Q-lREPEAT

B-1
LOOP UNTIL B-6 DO
B-B+l
PRINT B

REPEAT

EXPLANATION

Loop will execute 4 times (i.e.,
sequential values of variable J
from 0 through 3 will be
printed) .

Loop will execute 5 times (i.e.,
values of variable Q will be
printed in the following order:
5, 4, 3, 2, and 1).

Loop will execute 7 times (i.e.,
values of variable Q will be
printed in the following order:
6, 5, 4, 3, 2, 1, and 0).

Loop will execute 5 times (i.e.,
sequential values of variable
B from 2 through 6 will be
printed) .

Sample usage of the LOOP statement.

CHAPTER 9 - PICK/BAS C
Preliminary PAGE 9-105

Copyright 1988 PICK SYSTEMS

9.69 KAT - ASSIGNMENT AND COPY ASSIGNING AUAY VALUES

MAT Assignment and Copy statements are used
element in the array.

FORMAT: MAT variable expression

to assign values to each

The MAT Assignment statement is similar to the Simple Assignment
statement. It assigns a single value to all elements in an array.

The resultant value of the expression (which may be any legal expression)
is assigned to each element of the array. The array being assigned is
specified by the "variable" parameter. The specified array must have· been
previously dimensioned via a DIM statement. The following statement, for
example, assigns the current value of X+Y-3 to each element of array A:

MAT A - X+Y-3

FORMAT: MAT variable - MAT variable

The MAT Copy statement copies one array to another. The first element of
the array on the right becomes the first element of the array on the
left, the second element on the right becomes the second element on the
left, and so forth. Each variable name must have been dimensioned, and
the number of elements in the two arrays must match; if not, an error
message occurs.

Arrays are copied in row major order, i.e., with the second subscript
(column) varying first. Consider the following example:

Program Code Resulting Array Values
DIM X(5,2), Y(lO) X(l,l) - Y(l) - 1
FOR I-I TO 10 X(1,2) - Y(2) - 2
Y(I)-l X(2,1) - Y(3) 3
NEXT I
MAT X - MAT Y

X(S,2) - Y(lO) - 10

The program dimensions two arrays as both having ten elements (Sx2-l0),
initializes array Y elements to the numbers 1 through 10, and copies
array Y to array X, giving the array elements the indicated values.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-106

Copyright 1988 PICK SYSTEMS

l
I
I
I

I
J
I
I
l
J
I

l
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

STATEMENTS
MAT TABLE-l

MAT XYZ-A+B/C

DIM A(20), B(20)

MAT A - MAT B

DIM TABl(lO,lO), TAB2(SO,2)

MAT TAB1 - MAT TAB2

EXPLANATION
Assigns a value of 1 to each element
of array TABLE.

Assigns the expression value to each
element of array XYZ.

Dimensions two vectors of equal length,
and assigns to elements of A the values
of corresponding elements of B.

Dimensions two arrays of the same
number of elements (10x10-S0x2),
and copies TAB2 values to TABl in
row major order.

Sample usage of the MAT Assignment and Copy statements.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-107

Copyright 1988 PICK SYSTEMS

9.70 JlATllJW) STATEHENT lIULTIPLE A'l'TB.IBUTES

The KATREAD statement reads a file item and assigns the value of each
attribute to consecutive vector elements.

FORMAT:

KATREAD array. var FROM {file. variable,} i temname THEN/ELSE statements

The KATREAD statement reads the file item specified by the itemname and
assigns the string value of each attribute to consecutive elements of the
vector specified by the array.variable. If the file.variable is used, the
item will be read from the file previously assigned to that file. variable
via an OPEN statement. If the file. variable is omitted, then the internal
default variable is used (thus specifying the file most recently opened
without a file.variable).

If a non-existent item is specified, then the statements following the
ELSE will be executed. The statements in the THEN/ELSE clause may appear
on one line separated by semicolons, or on multiple lines terminated by
an END (i.e., the THEN/ELSE clause takes on the same format as the
THEN/ELSE clause in the IF statement). If the item does not exist, the
contents of the vector remain unchanged.

If the number of item attributes is
size, the trailing vector elements are
number of attributes in the item exceeds
remaining attributes will be assigned to

(See: KATREADU)

less than the DIMensioned vector
assigned a null string. If the
the DIMensioned vector size, the
the last element of the array.

STATEMENT EXPlANATION

DIM ITEM (20)
OPEN 'LOG' TO Fl ELSE STOP
KATREAD ITEM FROM Fl, ' TEST'

Reads the item named TEST
from the data file named LOG

ELSE STOP and assigns the string
value of each attribute

to consecutive elements of
vector ITEM, starting with
first element.

Sample Usage of the KATREAD Statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-108

Copyright 1988 PICK SYSTEMS

I
i

II ..
I
I

]

!
I
I
'1 ..
I
i

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(

9. 71 IlATUADU STATDERT Gl.OUP LOCO

HATREADU provides th~· facility to lock a group of items in a file prior
to updating an item n the group. Using a group lock prevents updating of
an item by two or ore programs simultameouslly while still allowing
multiple program access to the file.

FORMAT:

HATREADU variable FROM (file.var.) itemname THEN/ELSE statements

This statement functions identically to the HATREAD statement. but
additionally locks the group of the file in which the item to be accessed
falls.

< See: HATREAD)

A group lock will prevent:

1. Access of items in the locked group of other PICK/BASIC
programs using the READU. READVU. and HATREADU statements.

2. Update by any other program of any item in the locked group.

3. Access of the group by the FILE-SAVE process.

The group will become unlocked when any item in that group is accessed by
the process which has it locked. when the PICK/BASIC program is
terminated. or a RELEASE statement unlocks the group. Items can be
updated to the group without unlocking it by using the WRITEU. WRITEVU or
HATWRITEU statements.

Other processes <as in 1,2,3 above) which encounter a group lock will be
suspended until the group becomes unlocked.

The maximum number of groups which may be locked by all processes in the
system is 64. If a Iprocess attempts to lock a group when 64 locks are
already set, it will be suspended until some group is unlocked.

<See: HATWRITEU)

STATEMENTS
HATREADU T FROM XK, "N4" ELSE NULL

EXPLANATION
This example shows use
of a null ELSE
clause to lock the
group regardless
of whether the item
is existent or not.

S~le Usage of the HATREADU statement.

CHAPTER 9 - PICK/BAS~C
Preliminary PAGE 9-109

Copyright 1988 PICK SYSTEMS

9. 72 HATUADU STATEMENT LOCOD CLAUSE

The MATREADU statement may be used with a LOCKED clause allowing the
execution of statements if the group to be accessed is found to be already
locked by another program.

FORMAT:

MATREADU var FROM (file. var ,) i temname LOCKED stmts THEN/ELSE stmts

This statement functions exactly like the MATREADU statement, unless the
group to be accessed is found to be already locked by another program,
from another line. If the group to be accessed is found to be already
locked, then the statements which follow the LOCKED clause will be
executed.

If the LOCKED clause is not included in the MATREADU statement, the
program will wait until the group it is trying to access becomes
unlocked, before proceeding with the THEN or the ELSE clause.

(See: MATRMOU)

STATEMENTS

MATREADU ARRAYl FROM FILEI, ITI LOCKED

GOTO 77
END THEN

GOSUB 10
END ELSE

GOSUB 20
END

EXPlANATION

If group containing item ITI
is found to be already
locked, the program will go
to label 77. If the item
ITI exists the program
will go to label 10.
If the item ITI does not
exist, the program will go
to label 20.

Sample Usage of a LOCKED clause with a MATREADU statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-110

Copyright 1988 PICK SYSTEMS

I

• •

I

I

l
I
l
I

I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
[

I
I

9.73 KlTVIITI STAT~RT MULTIPLE ATTIlBUTES

The HATWRITE statement writes a file item with the contents of a vector.

FORMAT:
HATWRITE array.variable ON {file.variable,} itemname

The HATWRITE statement replaces the attributes of the item specified by
the itemname with t~ string value of the consective elements of the
vector named by the array.variable. If the file.variable is used, the
item will be written in the file previously assigned to that file. variable
via an open statement. If the file.variable is omitted, then the internal
default variable is used. If the itemname specifies an item which does
not exist, then a new item will be created. The number of attributes in
the item is determined by the DIMensioned size of the vector.

(See: HATWRITEU, WRITE, and WRITEV)

STATEMENT

DIM ITEM (10)
OPEN ", 'TEST' ELSE STOP
FOR 1-1 TO 10
ITEM(I)-I
NEXT I
HATWRITE ITEM ON "JUNK"

EXPLANATION

Writes an item named
JUNK in the file named
TEST. The item written
will contain 10 attributes
whose string values are
1 through 10.

Sample Usage of the HATWRITE Statement.

CHAPTER 9 - PICK/BAStC
Preliminary PAGE 9-111

Copyright 1988 PICK SYSTEMS

9.74 KATWlllTEU STATEMENT UPDATE LOCKS

The MATWRITEU statement has the letter "U" appended to it to imply
update. This command will not unlock the group locked by the program.

FORMAT:

MATWRITEU variable ON {file.variable,} itemname

This command executes similar to the MATWRITE statement with the following
added functionality.

(See: MATWRITE, WRITEU, and WRITEVU)

This command will not unlock the group locked by the program. This
varient is used primarily for master file updates when several
transactions are being processed and an update of the master item is made
following each transaction update.

If the group is not locked when the MATWRITEU statement is executed, the
group will not be locked by the execution of the command.

STATEMENT

MATWRITEU ARRAY ON FILE.NAME,ID

EXPLANATION

Replaces the attributes of
the item specified by ID
(in the file opened and assigned
to variable FlLE.NAME) with
the consecutive elements of
vector ARRAY. Does not unlock
the group.

Sample usage of the MATWRITEU statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-112

Copyright 1988 PICK SYSTEMS

I

I

I

!

i

" i! ..
I

I
l
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

9.75 ROT FURCTIOR ~IC CAPABILITY

The NOT function returns a value of true (1) if the given expression
evaluates to 0 and a value of false (0) if the expression evaluates to a
non-zero quantity.

FORMAT:

NOT(e~ression)

The NOT function returns the logical inverse of the specified expression;
it returns a value of true (i.e., generates a value of 1) if the
expression evaluates to 0, and returns a value of false (i.e., generates
a value of 0) if the expression evaluates to a non-zero quantity. The
specified expression must evaluate to a numeric quantity or a numeric
string. The following statement, for example, assigns the value 1 to the
variable X:

X - NOT(O)

As a futher example, the following statements cause the value 0 to be
printed:

STATEMENT

A-I
B - 5
PRINT NOT(A AND B)

X-A AND NOT (B)

IF NOT(Xl)THEN STOP

PRINT NOT(K) OR NOT(NUK(N))

EXPLANATION

Assigns the value 1 to variable X if
current value of variable A is land
current value of variable B is O.
Assigns a value of 0 to X otherwise.

Program terminates if current value
of variable Xl is O.

Prints a value of 1 if current value
of variable M is 0 or current value
of variable N is a non-numeric string.
Otherwise prints a zero.

Sample usage of the NOT Function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-113

Copyright 1988 PICK SYSTEMS

9.76 BULL STATEHERT RON-OPERATION

The NULL statement specifies a non-operation, and may be used anywhere in
the program where a PICK/BASIC statement is required.

FORMAT:

••• NULL .••

The NULL statement is used in situations
required, but no operation or action is
example:

where a PICK/BASIC statement is
desired. Consider the following

IF Xl MATCHES "9N" THEN NULL ELSE ooTO 100

This statement will cause program control to branch to statement 100 if
the current string value of variable Xl does not consist of 9 numeric
characters. If the current string value of variable Xl does consist of 9
numeric characters, then no action will be taken and program control will
proceed to the next sequential PICK/BASIC statement.

The NULL statement may be used anywhere in the PICK/BASIC program where a
statement is required.

STATEMENT

10 NULL

IF A-O THEN NULL ELSE
PRINT "A NON-ZERO"
GOSUB 45
STOP
END

READ A FROM "ABC" ELSE NULL

EXPlANATION

This statement does not result in any
operation or action; however, since it
is preceded by a statement label (10)
it may be used as a program entry point
for GOTO or GOSUB stmts elsewhere in
the program.

If the current value of variable A is
non-zero, then the sequence of state­
ments following the ELSE will be executed.
If A-o, no action is taken and control
passes to the next sequential statement
following the END.

File item ABC is read and assigned to
variable A. If ABC does not exist, no
action is taken. (Refer to description
of READ statement for further
information).

Sample usage of the NULL statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-114

Copyright 1988 PICK SYSTEMS

I ,
iii

I

I
j

I
'I •
J

]

I

l
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
[

I
I

9.77 NOH FUNCTION NUHERIC STRIRG DETElKINATION

The NUK function returns a value of true (1) if the given expression
evaluates to a number or a numeric string.

FORMAT:

NUK(expression)

The NUK function tests the given expression for a numeric value. For
example, if the expression evaluates to a number or numeric string the
NUK function will return a value of true (i.e., generating a value of 1).

Inversely, an expression evaluating to a letter or an alphabetic string
will cause the NUK function to return a value of false (0). Consider the
following example:

IF NUK(expression) THEN PRINT "NUKERIC DATA"

This statement will print the text "NUKERIC DATA" if the current value of
variable "expression" is a number or a numeric string. In the case of a
non-numeric, non-alphabetic character or string (#, 1, -etc.) a value of
false would be returned for both the NUK and ALPHA functions. The empty
string (") and the period (.) are considered to be a numeric string, but
not an alphabetic string.

(See: ALPHA)

STATEMENT EXPLANATION

Al-NUK(123) Assigns a value of 1 to variable AI.

A2-NUM("123") Assigns a value of 1 to variable A2.

A3-NUM("12C") Assigns a value of 0 to variable A3.

Sample Usage of the NUM Function.

CHAPTER 9 - PICK/BAStc
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-115

9.78 OCONV lUNCTIOR OUTPUT CORVERSIORS

1
IThe OCONV function provides the PICK output conversion capabilities to
Ithe PICK/BASIC programmer. 1 __ ___

FORMAT:
OCONV(expression, conversion)

The conversion specifies the type of output ACCESS conversion to be
applied to the string value resulting from the expression. The resultant
value is always a string.

(See: ICONV)

The output conversion operation specified by the conversion parameter may
include anyone of the following:

D Convert date to internal format (for ICONV function)
or to external format (for OCONV function).

HT Converts time.

xx Convert ASCII to hexadecimal (for ICONV function) or
convert hexadecimal to ASCII (for OCONV function).

T Convert by table translation.

U Call to user-defined assembly routine.

For a detailed treatment of these (and other) conversion capabilities,
the user should refer to the ACCESS chapter.

NOTE: The ACCESS 'F' and 'A' conversions cannot be called by these
functions. The ACCESS 'HR' or 'KL' conversion may be called by using the
Format String which performs the same function and is preferable to using
the ICONV or OCONV functions in this case.

STATEMENT
A - "2374"
B - "D"
XDATE - OCONV(A,B)

A - OCONV(O, 'U50BB')
PRINT A
END

NOM.LINES - OCONV(O,'UF070')
PRINT NOM.LINES

EXPLANATION
Assigns the string value
"01 JUL 1974" (i.e., the external
date) tO,the variable XDATE.

Assigns the string value of
the line number and user
account name to A.
"02 SJSPROG" is printed.

Returns the number of
physical serial I/O ports.

Sample Usage of the OCONV Function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-116

Copyright 1988 PICK SYSTEMS

1····.·.· -; ..
I

I

I
III
II

!

i
l
I
l
I
]

I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I

9.79 ON ••• GOTO STATIlIINT COJlPU'l'El) BlANCHING

The ON GOTO st~tement transfers control to one of several
statement-labels se11cted by the current value of an index expression.

FORMAT:
ON index. expression GOTO statement.label, statement.label, •..

Upon execution of the ON GOTO statement, program control is transferred
to the statement which begins with the numeric statement. label selected
by the expression. S~atement.labels in the list are numbered 1, 2, 3,
In executing the ON GOTO statement, the expression is evaluated and then
the result of the expression is truncated to an integer value.

Consider the following example:

ON I GOTO 50, 100, 150

50

100

150

The labels in the label list may precede or follow the ON GOTO statement.
If the current value of variable 1-1, control transfers to the first
statement. label, i.e., the statement with label 50. If 1-2, control
transfers to the third statement.label, i.e., statement 150.

If the value of the expression evaluates to less than one or greater than
the number of statement. labels , no action is taken, that is, the
statement immediately following the ON GOTO will be executed next.

STATEMENT
ON K+N GOTO 40, 61, 5, 7

ON C GOTO 25, 25, 20

IF A GE 1 AND A LE 3 THEN
ON A GOTO 110, 120, 150

END

EXPLANATION
Transfer control to statement 40,
61, 5, or 7 depending on the value
of K+N being 1, 2, 3, or 4
respectively.

Transfer control to statement 25
if C - 1 or 2, to statement 20 in all
other cases.

The IF statement assures that A
is in range for the computed
GOTO statement.

samt1e usage of the ON ... GOTO statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-117

Copyright 1988 PICK SYSTEMS

9.80 OPEN STATEKENT OPENING I/O rILES

The OPEN statement is used to select a file for subsequent input, output,
or update. Before a file can be accessed by a READ, WRITE, DELETE,
CLEARFlLE, HATREAD, HATWRITE, READV, or WRITEV etc. statement. it must be
opened via an OPEN statement.

FORMAT:
OPEN {"DICT,"}, "expression" {TO variable} THEN/ELSE statements

The expression in the OPEN statement indicates the file name. If the
first parameter is DICT, then the dictionary section of the file is
opened. The word DICT must be explicitly supplied to open a dictionary
level file. If the file is a multiple data file (that is. multiple data
files associated with a single dictionary). to open one of the data
sections the format: 'dictname.dataname ' is used.

If the "TO variable" option is used, then the dictionary or data section
of the file will be assigned to the specified variable for subsequent
reference. If the "TO variable" option is omitted, then an internal
default variable is generated; subsequent I/O statements not specifying a
file variable will then automatically default to this file.

If the file indicated in the OPEN statement does not exist, then the
statement or sequence of statements following the ELSE will be executed.
The statements in the ELSE clause may be placed on the same line
separated by semicolons, or may be placed on multiple lines terminated by
an END (i.e., the ELSE clause takes on the same format as the ELSE clause
in the IF statement).

There is no limit to the number of files that may be open at any given
time.

STATEMENT
A-'DICT'
OPEN A, 'XYZI TO B ELSE

PRINT "NO XYZ"
STOP

END

EXPLANATION
Opens the dictionary portion of file
XYZ and assigns it to variable B.
If XYZ does not exist, the text
"NO XYZ" is printed and the program
terminates.

OPEN II ,'ABC,XI TO D5 ELSE STOP Opens data section X of file ABC and
assigns it to variable D5. If ABC,X
does not exist, program terminates.

X_I I

Y-'TESTl '
Z-'NO FILE'
OPEN X, Y ELSE PRINT Z; GOTO 5

Opens data section of file TEST1
and assigns it to internal default
variable. If TEST1 does not exist,
"NO FILE" is printed and control
passes to statement S.

Sample usage of the OPEN statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-118

Copyright 1988 PICK SYSTEMS

I

!

!
i:,','·' ';:,

]
;J ..
]

I
I
I

I

I
I
I
I
I
I
I
I
I
I
I
I
I

[

I
I

9.81 OUT State.ent - Single Character Output

The OUT statement is used to output a single character; the character
is specified as a decimal code; the corresponding ASCII character is
printed.

The syntax of the function is

OUT var

The variable contains the code; a literal may also be used.
code may be specified, including non-printable characters.

Any ASCII

Statement

OUT 80

A - 1104
OUT A

BELL - 7
OUT BELL

CHAPTER 9 - PICK/BASIC
Preliminary

Description

The upper case letter P is displayed.

Numbers greater than 256 are adjusted modulo
256; in this example, the upper case letter
P is displayed.

Causes terminal bell to beep.

Copyright 1988 PICK SYSTEMS
PAGE 9-119

9.82 PAGE STATEHINT BlADING OUTPUT

The PAGE statement causes the current output device to page, and causes
the heading specified by the most recent HEADING/FOOTING statement to be
printed as a page heading/footing. The page number may optionally be
reset by the PAGE statement.

FORMAT:
PAGE {expression}

The PAGE statement causes the current output device to page, and causes
the heading specified by the most recent HEADING statement to be printed
at the top of the page. the number of print lines per page is controlled
by the current TERM command (see TERM TCL section). if a Footing
statement has also been used, the PAGE statement will cause the footing
to be printed out at the bottom of the page. If only a footing is
desired, a null heading should be assigned. Headings and/or footings
must be assigned before the PAGE statement is encountered.

If the PAGE statement has the optional expression, the expression is
evaluated and the resulting number becomes the next page number used. If
a FOOTING is in effect at the time that the page number is changed, the
footing will be printed with a page number one less than the evaluated
expression!

STATEMENT

HEADING "ANNUAL STATISTICS"
FOOTING "XYZ CORPORATION"
PAGE

PAGE 1

PAGE X+Y

EXPLANATION

The PAGE statement will cause both
the specified heading and footing to be
printed out when the paging is executed.

This statement will cause the current
footing, if any, to print (with a page
nUDIDer of 0), and the current
heading, if any, to print
with a page number of 1.

The current footing and-heading will be
output, and the page number set to the
evaluated result of X+Y.

Sample Usage of PAGE Statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-119

Copyright 1988 PICK SYSTEMS

I , ..
I

I

I
iii

i

I

1
..I

I
J
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

9.83 PRECISION DECLARATION SELECTING NUHERIC PRECISION

The PRECISION declaration allows the user to select the degree of
precision to which all values are calculated within a given program.

FORHAT:
PRECISION n

n is a number from 0-6.

Note: Only PRECISION n, where n is a number 0-4 is supported on the
PC-XT Version 2.0 or lower.

The default precision value is 4, that is, all values are stored in an
internal form with 4 fractional places, and all computations are
performed to this degree of precision. The desired number of fractional
digits may be specified by a PRECISION declaration within the range of
0-6.

Only one PRECISION declaration is allowed in a program. If more than one
is encountered, a warning message is printed and the declaration is
ignored.

Where external subroutines are used, the mainline program and all
external subroutines must have the same PRECISION. If the precision is
different between the calling program and the subroutine, a warning
message will be printed.

Changing the precision changes the acceptable form of a number; a number
is defined as having a maximum of "n" fractional digits, where "n" is the
precision value. Thus, the value:

1234.567

Is a legal number if the precision is 3 or 4, but is not a legal number
if the precision is 0, 1 or 2.

Setting a
integers.

precision of zero implies that all values are
The max number at precision 4 is 14,073,748,835.

treated as

CHAPTER 9 - PICK/BAStC
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-120

STATEMENT

PRECISION 0
A - 3
B - A/2

PRECISION 1

PRECISION 2

PRECISION 6

EXPLANATION

All numeric values in the program will
be treated as integers. The value
returned for B will be 1, not 1.5.

All numeric values in the program will
be calculated to one fractional digit.

All numeric values in the program will
be calculated to two fractional digits.

All numeric values in the program will
be calculated to six fractional digits.

Sample Usage of PRECISION Declaration.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-121

Copyright 1988 PICK SYSTEMS

I
I
I
I

I
II •
I

I
I
I
I

I

I
I
I

I
I
I
I
I
[

I
I
I
I
I
I
I , ..
I
I
I
I
I

9.84 Pl.IRT STATEMENT TElKlNAL 01. Pl.IRTD OUTPUT

The PRINT statement outputs data to the device selected by the PRINTER
statement. The PRINT ON option allows output to multiple print files.

FORMAT:
PRINT (ON expression) print-list

The PRINT statement without the ON option is used to output variable or
literal values to the terminal or line printer, as previously selected by
a PRINTER statement. The print-list may consist of a single expression,
or a series of expressions, separated by commas or colons (these
punctuation marks are used to denote output formatting; refer to the
section Tabulation and Concatenation in PRINT Statement). The expressions
may be any legal PICK/BASIC expressions. The following statement, for
example, will print the current value of the expression X+Y:

PRINT X+Y

The PRINT ON statement (i.e., with the ON option) is used, when PRINTER
ON is in effect, to output the print-list items to a numbered print file.
This is usually done when building several reports at the same time, each
having a different number. The expression following ON indicates the
print file number, which may be from 0 to 254 (selected arbitrarily by
the program). Consider the following example:

PRINT ON 1 A,B,C,D
PRINT ON 2 E,F,G,H
PRINT ON 3 X,Y,Z

These statements will generate 3 separate output listings, one containing
A, B, C, and D values, one containing E, F, G, and H values, and the
third containing X, Y and Z values.

When the ON expression is omitted, print file zero is used.

The HEADING/FOOTING statements affect only print file zero. Pagination
must be handled by the program for print files other than zero. Lack of
pagination will result in continuous printing across page boundaries.

When PRINTER OFF is in effect, both PRINT ON and PRINT operate
identically, i.e., all output is to the terminal. The contents of all
print files used by the program, including print file zero, will be
output to the printer in sequence when a PRINTER CLOSE statement is given
or on termination of the program.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-122

Copyright 1988 PICK SYSTEMS

STATEMENT

PRINTER ON
PRINT X

PRINTER ON
PRINT ON 24 X

N-50
PRINT ON N X,Y,Z

PRINTER ON
PRINT ON 15 "100"
PRINT ON 40 "100"

PRINTER ON
PRINT A
PRINT B

PRINTER ON
PRINT ON 10 F1,F2,F3
PRINT ON 20 M,N,P
PRINT ON 10 F4,F5,F6

EXPLANATION

Causes the value of X to be output
to print file O.

Causes the value of X to be output
to print file 24.

Outputs print-list to print file
50.

Causes the value 100 to be copied
to both print file 15 and print
file 40.

Print file 0 will contain the
values of A and B.

Print file 10 will contain the
values of F1 through F6; print
file 20 will contain the values
M, Nand P.

Sample usage of the PRINT statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-123

Copyright 1988 PICK SYSTEMS

I ,
I

I
I
I
I

If
II

I
I
J
l
I
I
I
I
I

I
I
I
I
I
[

I
I
I
I
I
I
I
I
I
I

I
I

9.85 PRINT STATEMENT TABULATION AND CONCATENATION

The print-list of the PRINT statement may specify
concatenation when printing multiple items.

tabulation or

Output values may be aligned at tab positions across the output page
by using commas to separate the print-list expressions. Tab positions are
pre-set at every 18 character positions. Consider the following example:

PRINT (50*3)+2, A, wEND"

Assuming that the current value of A is 37, this statement will print the
values across the output page as follows:

152 37 END

Output values may be printed continuously across the output page by using
colons to separate the print-list expressions. The following statement,
for example, will cause the text message wTHE VALUE OF A IS 5010" to be
printed:

PRINT "THE VALUE OF A IS" :50:5+5

After the entire print-list has been printed, a carriage return and a
line feed will be executed, unless the print-list ends with a colon. In
that case the next value in the next PRINT statement will be printed on
the same line as the very next character position. For example, these
statements:

PRINT A:B,C,D:
PRINT E,F,G

will produce exactly the same output as this statement:
PRINT A:B,C,D:E,F,G

STATEMENT
PRINT A:B:
PRINT C:D:
PRINT E:F

PRINT A-I

PRINT A*lOO,Z

PRINT

PRINT "INPUT":

PRINT"" B

EXPLANATION
Prints the current values of A, B, C, D,
E, and F contiguously across the output
page, each value concatenated to the next.

Prints 1 if "A_I" is true; prints 0
otherwise.

Prints the value of A*lOO starting at
column position 1; prints the value of
Z on the same line starting at column
position 18 (i.e., 1st tab position).

Prints an empty (blank) line.

Prints the text "INPUT" and does not
execute a carriage return or line feed.

Prints the value of B starting at column
position 18 (i.e., 1st tab position).

Sample 4Sage of the PRINT statement formatting.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-124

Copyright 1988 PICK SYSTEMS

9.86 RINTD OR/OFF STA'l'EHENTS SEUCTIlfG OUTPUT DEVICE

The PRINTER statement selects either the user's terminal or the line
printer for subsequent program output.

FORMAT:
PRINTER ON
PRINTER OFF
PRINTER CLOSE

The PRINTER ON statement directs program output data specified by
subsequent PRINT, HEADING/FOOTING, or PAGE statements to be output to the
line printer. The PRINTER OFF statement directs subsequent program output
to the terminal.

Once executed, a PRINTER ON or PRINTER OFF statement will remain in
effect until a new PRINTER ON or PRINTER OFF statement is executed. If a
PRINTER ON statement has not been executed, output will be to the
terminal.

When a PRINTER ON statement has been issued, subsequent output data
(specified by PRINT, HEADING/FOOTING, of PAGE statements) are not
immediately printed on the line printer (Unless immediate printing is
forced via the system SP-ASSIGN I or N option, as described in the PICK
Peripheral Manual). Rather, the data are stored in an intermediate buffer
area and are automatically printed upon termination of program execution.

If the user's application requires that the data be printed on the line
printer prior to program termination, they may issue a PRINTER CLOSE
statement. The PRINTER CLOSE statement will cause all data currently
stored in the intermediate buffer area to immediately be printed.

When a PRINTER OFF statement has been issued, subsequent output data are
always printed at the user's terminal immediately upon execution of the
PRINT, HEADING, or PAGE statements (i.e., the PRINTER CLOSE statement
applies only to output data directed to the line printer).

STATEMENT

PRINTER ON
PRINT A
PRINTER CLOSE
PRINTER OFF
PRINT B

PRINTER ON
PRINT A
PRINTER OFF
PRINT B
PRINTER CLOSE

EXPLANATION

Causes the value of variable A to be
immediately printed on the line printer,
and thereafter causes the value of
variable B to be printed at the user's
terminal.

Causes the value of variable B to be
immediately printed at the user's ter­
minal, and thereafter causes the value
of variable A to be printed on the line
printer.

Sample usage of the PRINTER ON/OFF/CLOSE statements.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-125

Copyright 1988 PICK SYSTEMS

i
I

" II

I
I

I
I
I
I
'3·· •.•... •
I
I
I
I
I

I
I
[

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

9.87 paoCREAD STATEMENT lEADING DATA raOH A CALLING raoc

The PROCREAD statement is used to read a calling PROC's primary input
buffer and assign it to a variable within the program.

FORMAT:

PROCREAD variable THEN/ELSE statements

The PROCREAD statement reads the primary input buffer of the PROC from
which the PICK/BASIC program, containing the PROCREAD statement was
called, and assigns it to the variable.

The THEN/ELSE clause takes on the same format as the THEN/ELSE clause in
the IF statement. If the primary input buffer has been cleared (i.e. RI
or RO) before the PICK/BASIC program is executed, the variable is
assigned to null, and the THEN statements are executed.

If the PICK/BASIC program is not called from a PROC, (i.e. from TCL) the
ELSE statements will be executed.

(See: PROC)

STATEMENT

CALL.PROC
001 PQ
002 HRUN BP PROGI
003 P

PROGI

PROCREAD PROC.BUFF THEN
PRINT PROC.BUFF

END ELSE
PRINT "NOT RUN FROM PROC"

END

EXPLANATION

A proc named 'CALL.PROC'

Run PROGI

The called program.

PROC.BUFF contains 'CALL.PROC'
Prints out 'CALL.PROC'

Sample Usage of the PROCREAD Statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-126

Copyright 1988 PICK SYSTEMS

9.88 PIlOCWllITE STATEllERT ftITIRG DATA BACK TO A CALLING PIlOC

The PROCWRITE statement is used to write a variable in a program, back to
the primary input buffer of a calling PROC.

FORMAT:
PROCWRITE variable

The PROCWRITE statement will write whatever data is assigned to the
variable, back into the primary input buffer of the PROC, which
originally called the PICK/BASIC program.

If the PICK/BASIC program is not called from a PROC, (i.e. from TCL)
nothing happens.

(See: PROC)

STATEMENT

CALL.PROC
001 PQ
002 HRUN BP PROG1
003 P
004 DO

PROG1

VAR1 - 'XYZ'
PROCWRITE VAR1

EXPlANATION

A proc named 'CALL.PROC'

Run PROGl

Displays input buffer - 'XYZ'

The called program.

Writes 'XYZ' to PROC buffer.

Sample Usage of the PROCREAD Statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-127

Copyright 1988 PICK SYSTEMS

I

I

I

•
I
III

I
I
I

I
l
I

I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

9.89 PROMPT STATEMENT INPUT PROMPT ClWlACTEll

The PROMPT statement is used to select the ·prompt character" which is
printed at the terminal to prompt the user for input.

FORMAT:

PROMPT expression

The value of the expression becomes the prompt character. For example:

PROMPT": "

This statement selects the character "." as the prompt character for
subsequent INPUT statements. If the value of the expression is a numeric
value of more than 1 digit, or a string consisting of one character, only
the most significant character will be used.

When a PROMPT statement has been executed, it will remain in effect until
another PROMPT statement is executed. If a PROMPT statement has not been
executed, the INPUT statement will use a question mark (?) as the prompt
character (i.e., "?" is the default prompt character).

(See: INPUT)

STATEMENT

PROMPT "@"

PROMPT A

EXPLANATION

Specifies that the '@'character will be
used as a prompt character for subsequent
INPUT statements.

Specifies that the current value of A will
be used as a prompt character.

Sample Usage of the PROMPT Statement.

CHAPTER 9 - PICK/BASlC
Preliminary PAGE 9-128

Copyright 1988 PICK SYSTEMS

9.90 PWR FORCTION RAISING BY A roVER

The PWR function raises an expression by the power parameter.

FORMAT:

PWR(expression,power) or expressionApower

The POWER function raises the expression to the power denoted by the
power parameter. If the power parameter is zero, the function will return
the value one.

If the expression raised to the power denoted by the power parameter is
greater than 14,073,748,835 at precision 4, the function will return
unpredictable numbers. If the expression is zero and the power parameter
is any number other than zero, the function will return a value of zero.
If the POWER PARAMETER is 0, the function will return a value of O.
Note: ano~er way to express the PWR function is X Ay where X is raised
to the Y power.

STATEMENT

yy - PWR(XX, ZZ)

PRINT PWR(3+4,10)

PRINT 6 + PWR(2,4)

PRINT PWR(0,5)

EXPlANATION

Assigns the result of
raising XX by the power
of ZZ to the variable YY.

Prints "282475249"

Prints "22"

Prints "0"

Sample usage of the PWR function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-129

Copyright 1988 PICK SYSTEMS

I

I
!.'
I ..

!
I
I
i
I
i

I
]

I
I
I

r
Ii

[
(. . t

I
I
I
I
I
I

I

I

9.91 lEAD STATEMENT ACCESSING rILE ITEMS

The READ statement reads a file item and assigns its value to a variable.

FORMAT:
READ variable FROM (fi1e.variab1e,) itemname THEN/ELSE statements

The READ statement reads the file item specified by the itemname and
assigns its string value to the variable as a dynamic array. The
file. variable is optional and specifies the file variable. If the
file.variable is used, the· item will be read from the file previously
assigned to that file.variable via an OPEN statement. If the
file.variable is omitted, then the internal default variable is used
(thus specifying the file most recently opened without a file.variable).

If the itemname specifies the name of an item which does not exist, then
the statement or sequence of statements following the ELSE will be
executed. The statements in the THEN/ELSE clause may appear on one line
separated by semicolons, or on mUltiple lines terminated by an END (i.e.,
the THEN/ELSE clause takes on the same format as the THEN/ELSE clause in
the IF statement).

The user should note that the PICK/BASIC program will abort with an
appropriate error message if the specified file has not been opened prior
to the execution of the READ statement.

STATEHENT
READ Al FROM X,"ABC" ELSE

PRINT "NOT ABC"
GOTO 70

END

A-"TEST"
B-"l"
READ X FROM C,(A CAT B) ELSE STOP

READ Z FROM "Q" ELSE PRINT X; STOP

EXPLANATION
Reads item ABC from the file
opened and assigned to file variable
X, and assigns its value to
variable AI. If ABC does not
exist, the text "NOT ABC" is printed
and control passes to statement 70.

Reads item TESTI from the file
opened and assigned to file variable
C, and assigns its value to
variable X. Program terminates if
TESTI does not exist.

Reads item Q from the file
opened without a file variable and
assigns its value to variable Z.
Prints value of X and terminates
program if Q does not exist.

Sample usage of the READ statement.

CHAPTER 9 - PICK/BAS~C
Preliminary PAGE 9-130

Copyright 1988 PICK SYSTEMS

9.92 IEADREIT STATEMENT ACCESSING lTEK-IDS

The READNEXT statement reads the next
multiple files have been selected,
select. variable.

Item-id from a
which list

selected list. If
is specified by

FORMAT:
READNEXT variable (, vmc) (FROM select. variable) mEN/ELSE statements

The READNEXT statement reads the next Item-id and assigns its string
value to the variable indicated. The Item-id is read from the list
created by the most recent program SELECT statement or SELECT, SSELECT,
or QSELECT command issued at the TeL level. If the list of Item-id's has
been exhausted, or if no selection has been performed, the statements
following the ELSE will be executed. The statements in the mEN/ELSE
clause may be placed on the same line separated by semicolons, or may be
placed on multiple lines terminated by an END (i.e., the mEN/ELSE clause
takes on the same format as the mEN/ELSE clause in the IF statement).

READNEXT FORMATS:. B

REAPNEXT variable THEN/ELSE statements
.B This will read the next Item-id of the last file selected without a
select.variable.

REAPNEXT variable.vmc THEN/ELSE statements
.B The 'vmc' is used for the value mark count to be obtained from the
Exploding Sort (External SSELECT).

REAONEXT variable FROM select.variable THEN/ELSE statements
.B Reads the next Item-id of the file (or variable) selected and assigned
to the select. variable.

REAPNEXI variable.vmc FROM select.variable THEN/ELSE statements
.B This is a combination of the previous two forms.

READNEXT A FROM X ELSE STOP

READNEXT X2 ELSE
PRINT "UNABLE"
GOTO 50

END

Specifies the list selected
and assigned to the select-variable
X. Assigns the value of that
list's next item-id to variable
A. If item-id list exhausted (or if no
SELECT, SSELECT or QSELECT executed),
program will terminate.

Specifies the last list selected
without a select-variable. Assigns
the value of the next item-id to
variable X2. If unable to read,
"UNABLE" is printed and control
transfers to statement 50.

Sample usage of the READNEXT statements.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-131

Copyright 1988 PICK SYSTEMS

I

I

I

I

.' ~,

" ..
I

I

I
I
I

, ..
!
I
I
[

I
l
(

I

I
I

I

[

I
I

9.93 I.EADT STATEHENT I.EADING UCOllDS FROM TAPE

The READT statement is used to read records from magnetic tape. The
record length is specified by the T-ATT statement executed at the TCL
level. (For information on T-ATT, see Chapter 4, TCL Verbs.)

The syntax of the statement is

READT variable {THEN/ELSE statements}

The record is read and its string value is assigned to the variable
indicated. If the tape unit has not been attached, or if an End-of-File
(EOF) mark is read, the statements following ELSE are executed.

To read the error conditions, see the SYSTEM function.

Statement

READT B ELSE
PRINT "NO"
GOTO 5

END

Description

The next tape record is read and
its value assigned to variable B.
If EOF is read (or tape unit not
attached), then NO is printed and
control passes to statement 5.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-132

Copyright 1988 PICK SYSTEMS

9 . 94 llEADU AND llEADVU STATEHENTS GROUP LOClCS

READU and READVU provide the facility to lock a group of items in a file
prior to updating an item in the group. Using a group lock prevents
updating of an item by two or more programs simultameouslly while still
allowing mUltiple program access to the file.

FORMAT:
READU variable FROM (file.var,) itemname THEN/ELSE statements

READVU variable FROM {file.var,l itemname,att# THEN/ELSE statements

These statements function identically to the READ and READV statements,
but additionally lock the group of the file in which the item to be
accessed falls. (See: READ and READV)

A group lock will prevent:

1. Access of items in the locked group of other PICK/BASIC
programs using the READU, READVU, and MATREADU statements.

2. Update by any other program of any item in the locked group.

3. Access of the group by the file-save process.

The group will become unlocked when any item in that group is updated by
the process which has it locked, when the PICK/BASIC program is
terminated, or a RELEASE statement unlocks the group. Items can be
updated to the group without unlocking it by using the WRITEU, WRITEVU or
MATWRITEU statements.

Other processes (as in 1,2,3 above) which encounter a group lock will be
suspended until the group becomes unlocked.

The maximum number of groups which may be locked by all processes in the
system is 64. If a process attempts to lock a group when 64 locks are
already set, it will be suspended until some group is unlocked.
(See: Matreadu)

CHAPTER 9 - PICK/BASIC
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-133

''!lJI!

I ,
•
i , ..
I
I

'I ..
I
I
I

" I

I

I
I
I

' { it.

• ..
I
I
I
[

I

!
I

r ...
[
, ..
[

[

STAIEHENTS

READU ITEM FROM INV, S5 ELSE
GOSUB 4
END

READW ATT FROM B, "REC" , 6 ELSE STOP

EXPLANATION

Lock group of items
containing 1. tem S5.
Read S5 to variable
ITEM or, if S5 is
non-existent, execute
the ELSE clause;
in either case the group
remains locked until
one of its items
is updated or a RELEASE
unlocks the group.

Lock group of items
containing item REC.
Read attribute 6 to
variable ATT or, if
REC is non-existent
execute the ELSE clause.
The group remains
locked as above.

Sample Usage of READU and READW statements.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-134

Copyright 1988 PICK SYSTEMS

9.95 JlIW)U AND JlIW)VU STATEMENTS LOCDD CLAUSE

READU and READVU may be used with a LOCKED clause allowing the execution
of statements if the group to be accessed is found to be already locked
by another program.

FORMAT:

READU var FROM {file. var ,} i temname LOCKED stmts THEN/ELSE stmts

READVU var FROM {file. var,} itemname ,att# LOCKED stmts THEN/ELSE stmts

Note: The LOCKED CLAUSE portion of the READU and READVU is NOT
available on the PC-XT Version 2.0 or lower.

These statements function identically to the READU and READVU statements,
unless the group to be accessed is found to be already locked by another
program, from another line. If the group to be accessed is found to be
already locked, then the statements which follow the LOCKED clause will
be executed.

If the LOCKED clause is not included in the READU or READVU statement,
the program will wait until the group it is trying to access becomes
unlocked, before proceeding with the THEN or the ELSE clause.

(See: READU and READVU)

STATEMENTS

READU ITEM FROM CUST, 101 LOCKED

GOTO 99
END THEN

GOSUB 10
END ELSE

GOSUB 20
END

EXPLANATION

If group containing item 101 is
found to be already locked,
the program will go to label 99.
If item 101 exists, the program
will go to label 10.
If item 101 does not exist, the
program will go to label 20.

Sample Usage of a LOCKED clause with a READU statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-135

Copyright 1988 PICK SYSTEMS

!
~f <

I
I
I

I
I
J
I
II
I
'I
81

I

J
I

[

I
I ,
II.

(

I
I
I
I
I!
1\

I
I

I
I
[

1

9.96 UADV STATEMERT ACCESSING AR ATTl.IBUTE

The READV statement is used to read a single attribute value from an item
in a file.

FORMAT:

READV variable FROM {file.variable,} itemname,att# THEN/ELSE statements

The READV statement reads the attribute specified by att# (attribute
number) from the item specified by the itemname, and assigns its string
value to the variable.

The file. variable is optional and specifies the file variable; if it is
used, the attribute will be read from the file previously assigned to
that file. variable via an OPEN statement. If the file. variable is
omitted, then the internal default variable is used (thus specifying the
file most recently opened without a file.variable).

If a non-existent item is specified, the statement or sequence of
statements following the ELSE will be executed. The statements in the
THEN/ELSE clause may be placed on the same line separated by semicolons,
or may be placed on mUltiple lines terminated by END (i.e., the THEN/ELSE
clause takes on the same format as the THEN/ELSE clause in the IF
statement).

The PICK/BASIC program will abort with an
specified file has not been opened prior
statement.

appropiate error message if the
to the execution of the READV

STATEMENT

READV X FROM A, "TEST",5 ELSE
PRINT ERR
GOTO 70

END

EXPLANATION

Reads 5th attribute of item TEST
(in the file opened and assigned
to variable A) and assigns value
to variable X. If item TEST is
non-existent, then value of ERR
is printed and control passes to
statement 70.

Sample usage of the READV statements.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-136

Copyright 1988 PICK SYSTEMS

9.97 ULEASE STATEHENT ULEASING GllOUP UPDATE LOCKS

The RELEASE statement unlocks specified groups or all groups locked by
the program.

FORMAT:
RELEASE ((file.variable,) expression)

The RELEASE statement unlocks the group hashed into by the item-id
specified by the expression. If the file.variable is used, the file will
be the one previously assigned to that file.variable via on OPEN
statement. If the file.variable is omitted, then the internal default
variable is used (thus specifying the file most recently opened without a
file. variable) .

If the RELEASE statement is used without a file.variable or expression
all groups which have been locked by the program will be unlocked.

The RELEASE statement is useful when an abnormal condition is encountered
during multiple file updates. A typical sequence is to mark the item with
an abnormal status, update it to the file and then RELEASE all other
locked groups. This version of the RELEASE statement will release all
groups locked by the program.

(See: READU, READW and MATREADU)

STATEHENT

RELEASE

RELEASE CUST. FILE, PART .NO

EXPLANATION

Releases all groups locked
by the program.

Releases group hashed into
by item-id contained in PART.NO
in file CUST.FILE.

Sample usage of the RELEASE statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-137

Copyright 1988 PICK SYSTEMS

I
I
I

II.:
II

J
-~~ - .: I"

I
J
I;·': ,

I

1
I
I
II

(

I
I
[

I
I
I
I

If
1\

I
I

I ,
II.

I
I

9.98 UK 01. IIOD FUNCTION B.EIIAINDEll VALUE

The REM or MOD funQtion generates the remainder (modulo) of one number
divided by another.

FORMAT:
REM(numerator,denominator)

or
MOD(numerator,denominator)

This function returns the remainder (modulo) of the value of the numerator
divided by the value of the denominator.

The REM and MOD (modulo) functions are identical.

STATEMENT

A - MOD(Q,Z)

A - 600
B - B.EM(A,-1000)

J - REM(5,3)

Q - MOD (1023,256)

EXPlANATION

Assigns the remainder of variable
Q divided by Z to variab1e.A.

Assigns the value 600 to vari­
able B.

Assigns the value 2 to variable J.

Assigns the value 255 to the variable Q.

Sample Usage of the REM or MOD function.

CHAPTER 9 - PICK/BASIC
Pre 1 iminary _ PAGE 9-138

Copyright 1988 PICK SYSTEMS

9.99 llEPLACE FUNCTION D1lWIIC AUAY llEPLACDENT

The REPLACE function replaces an attribute. a value. or a secondary value
in a string in 'item' format (called a dynamic array).

FORMAT:
REPLACE(da.variable.att#(,value#,sub-value#,}(;}new.expression)

or
da.variable<att#(,value#,sub-value#}> - new.expression

The second form above is actually an extract function being utilized as a
replacement function. The dynamic array used by this function is
specified by the da.variable. Whether an attribute, a value. or a
secondary value is replaced depends upon the values of the second. third.
and fourth parameters. The att# specifies an attribute. the value#
specifies a value, and the sub-value# specifies a secondary value. If the
value# and sub-value# both have a value of 0, (or dropped) then an entire
attribute is replaced. If the sub-value# (only) has a value of O. (or
dropped) then a value is replaced. If the second, third, and fourth
parameters are all non-zero. then a secondary value is replaced. The
replacement value is specified by the new. expression. The semi-colon (;)
is used whenever value# and/or sub-value# have been dropped and the
new.expression is no longer the fifth parameter.

If the att#, value# or sub-value# of the REPLACE function has a value of
-1, then insertion after the last attribute, last value. or last
secondary value (respectively) of the dynamic array-is specified. For
example:

OPEN 'XYZ' TO XYZ ELSE STOP 201,' XYZ '
READ B FROM XYZ, ' ABC' ELSE STOP 202,' ABC '
B<3, -l>-'NEY VALUE'
WRITE B ON XYZ,'ABC'

These statements insert the string value "NEY VALUE" after the last value
of attribute 3 of item ABC in file XYZ.

STATEMENT

Y-REPLACE(X,4,O,O,")

VALUE-"TEST STRING"
DA<4,3,2>-VALUE

X--ABC123-
Y<l,l,-l>-X

EXPLANATION

Replaces attribute 4 of dynamic
array X with the empty (null) string.
string, and assigns the resultant
dynamic array to Y.

Replaces secondary value 2 of
value 3 of attribute 4 in dynamic
array DA with the string value
"TEST STRING".

Inserts the value "ABC123- after
the last secondary value of value 1
of attribute 1 in dynamic array Y.

Sample usage of the REPLACE Function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-139

Copyright 1988 PICK SYSTEMS

I
I
I

I
I
I
I
I
I·:· i-

I

l
I
J
I
I

I
I
I
I
I
I
I
I

I
I
r ..
I
I

I
[

9.100 UTOIB AND U'lURN TO STATIlIERTS SUBllOUTINE UTOIBING

The RETURN or RETURN TO statements return control to the main program.

FORMAT:
RETURN
RETURN TO statement-label

The RETURN statement will transfer control from the subroutine back to
the statement immediately following the GOSUB statement. The RETURN TO
statement returns control from the subroutine to the statement within the
PICK/BASIC main program having the specified statement-label.

The statements in a subroutine may be any PICK/BASIC statements,
including another GOSUB statement. To insure proper flow of control, each
subroutine must return to the calling program by using a RETURN (or
RETURN TO) statement, not a GOTO statement. The user should also insure
that the subroutine cannot be executed by any flow of control other than
through the execution of a GOSUB statement.

If the RETURN TO statement refers to a statement-label which is not
present in the program, an error message will be printed at compile time
(refer to APPENDIX C - PICK/BASIC COMPILER ERROR MESSAGES).

Consider the statements shown in the example below. Upon execution of
statement 10, control will transfer to statement, 30 as illustrated in the
left side of the figure. The statements within the subroutine will be
executed and statement 40 will then return control to statement 15.
Execution will then proceed sequentially to statement 20, whereby control
will again be transferred to the subroutine as shown in the right side of
the figure. The conditional RETURN TO path is taken instead of the normal
RETURN if the logical variable ERROR is true (1).

1st Execution of Subroutine
I

10 GOSUB 30-----
---->15 PRINT Xl I

I

I I
I I

20 GOSUB 30 I
I
I

->30 REM SUBROUTINE
I .
I IF ERROR RETURN TO 50

40 RETURN-
I

50: REM ERROR RETURN HERE

2nd Execution of Subroutine

10 GOSUB 30
15 PRINT Xl

I .
I .

20 GOSUB 30-
--> I

I
I
->30 REM SUBROUTINE

I
I IF ERROR RETURN TO 50

40 RETURN-
I

50: REM ERROR RETURN HERE

Sample usage of the RETURN statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-140

Copyright 1988 PICK SYSTEMS

9.101 OVID $TATDERT OVIDING TB! TAPE

BASIC programs may specify Magnetic Tape to rewind to the BOT (Beginning
of Tape) mark through the use of the REWIND (Rewind Tape Unit) statement.

FORMAT:

REWIND THEN/ELSE statements

The REWIND statement rewinds the magnetic tape unit to the
Beginning-of-Tape (BOT). If the tape unit has not been attached, then the
statement(s) following the ELSE will be executed.

STATEMENT EXPLANATION

REWIND ELSE STOP Tape is rewound to BOT.

Sample Usage of the REWIND statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-141

Copyright 1988 PICK SYSTEMS

I
I
I

I •
J
I
I
]

I
I
I .. ·., ..
tI

l
I
]

I
I
I

-., .. " ..
I
I
I
I
I
I
I
I
I
I
I
I
I

I

9.102 I.RD FUNCTION UNDOH NUHBEll CDEIlATION

The RND function returns a random number. The range of the random number
generated is controlled by the expression.

FORMAT:
RND(expression)

The RND function generates a numeric value for a random number between
zero and the number specified by the expression less one (inclusive),
which must be positive.

Therefore, an expression parameter which evaluates to 3, would randomly
generate 0, 1, or 2. This is an invaluable function when programming
games of chance.

STATEMENT

Z - RND(ll)

R - 100
Q - 50
B - RND(R+Q+l)

Y - RND(ABS(05l»

EXPlANATION

Assigns a random number between
o and 10 (inclusive) to the variable Z.

Assigns a random number between
o and 150 (inclusive) to the
variable B.

Assigns a random number between
o and 50 (inclusive) to the
variable Y.

Sample Usage of theRND Function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-142

Copyright 1988 PICK SYSTEMS

9.103 SELECT STATEMENTS SELECTING ITEH-IDS

The SELECT command provides a facility to select a set of item-ids or
attributes which, when used in conjunction with the READNEXT statement
(see section on READNEXT) , may be used to access single or mUltiple file
item-ids or attributes within a PICK/BASIC program.

FORMAT:
SELECT (file.variable}{TO select.variable)

The SELECT statement builds the same list of item-ids as a SELECT command
executed at the TCL level without any selection criteria (see ACCESS). If
the file. variable is used, a list of item-ids will be created for the
file or item previously assigned to that file. variable via an OPEN or
READ statement. If the file.variable is omitted, then the internal
default variable is used (thus specifying the file most recently opened
without a file.variable). The item ids are then extracted using the
READNEXT statement.

FORHAT
SELECT

Creates a select list of item-ids from the file most recently opened
without a file.variable.

SELECT file.variable

Creates a select list of item-ids from the file opened to 'file.variable'.

SELECT var

Creates a select list from the attributes of the variable 'var'. The
select list only includes the first value of a multivalued attribute.

SELECT TO select. variable

Creates a select list from the file most recently opened without a file.
variable and assign the selected list to 'select.variable'.

SELECT file. variable TO select. variable

Creates a select list from the file opened to 'file. variable' and assign
the selected list to 'select. variable' .

SELECT var TO select. variable

As above, except the selected list is assigned to 'select.variable'.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-143

Copyright 1988 PICK SYSTEMS

I

I
'1'Ifl1 ..
I

I.'"

--
I
J

'I
III

I

I

I

I
I
I
I

I
I
I
I
I
I
I
I
I

I

STATEMENT
SELECT

SELECT BP TO BLIST

READ A FROM FILEX. 'ALIST' ELSE STOP
SELECT A

EXPLANATION
Builds list of item-id's using the
default variable of the last file
opened without a file-variable.

Builds a list of item-ids for the
file opened and assigned to
file.variable 'BP'. Assigns the
list to select.variable 'BLIST'.

Creates a select list of the
attributes in item ALIST.

Sample usage of the SELECT statements.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-144

Copyright 1988 PICK SYSTEMS

9.104 SEQ FUNCTION FORMAT CORVIIBION

The SEQ function converts an ASCII character to its corresponding numeric
value.

FORMAT:

SEQ(expression)

The first character of the string value of the expression is converted to
its corresponding numeric value. The following example will print the
number 49:

.
PRINT SEQ('1') (character 1 - ASCII 49 decimal)

Conversely, the CHAR function is available to convert a numeric expression
to its corresponding ASCII character string value.

(See: CHAR)

NOTE: For a complete list of ASCII codes, refer to APPENDIX E.

STATEMENT

DIM C(50)
S - 'THE GOOSE FLIES SOUTH'
FOR I-I TO LEN(STRING)
C(I) - SEQ(S[Il])
NEXT I

EXPlANATION

Encodes in vector C elements the decimal
equivalents of individual characters
of character string S.

Sample Usage of the SEQ Function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-145

Copyright 1988 PICK SYSTEMS

I
I
I
I

I
I
J

J

I····· .'

I
I' " ,.

sr.·;.· ... Ii. , ...

I
[

I
I
I
I
I

I
I

I
!
[

I
I

9.105 SIN FUNCTION SIRE OF AN ANOLE

The SIN function generates the trigonmetric sine of an angle.

FORMAT:

SIN(expression)

The SIN function generates the sine of an angle, expressed in degrees.

Values which are less than 0 degrees, or greater than 360 degrees are
adjusted to this range before generation.

(See: COS)

STATEMENT

YY - SIN (XX)

PRINT SIN(l)

PRINT SIN(36l)

PRINT SIN(2)

PRINT SIN(362)

PRINT SIN(45)

PRINT SIN(90)

EXPLANATION

Assigns the sine of an
angle of XX degrees to YY.

Prints "0.0174"

Prints "0.0174"

Prints "0.0349"

Prints "0.0349"

Prints "0.70711'(

Prints "1"

Sample usage of the SIN function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-146

Copyright 1988 PICK SYSTEMS

9.106 SLEEP OR RQH STATEMENT TIME ALLOCATION

The RQK or SLEEP statement
quantum (time-slice) The RQK
program execution speed.

FORMAT:

terminates the executing program's current
or SLEEP statement may be used to effect

RQM (seconds)
RQM("time.expression"}

or
or

SLEEP (seconds)
SLEEP("time.expression"}

The time-shared environment of the Pick system allows concurrent
execution of several programs, with each program executing for a specific
time period (called a time-slice or quantum) and then pausing while other
programs continue execution. The RQM statement terminates the program's
current time-slice. The RQM statement may be used in heavy compute loops
to allow increased execution speed of other concurrently executing
programs by giving up time. It may also be used to cause predetermined
pauses (in seconds or until specified time) in program execution. The
seconds parameter does not require quotes. The time expression (AM, PM or
MILITARY) requires enclosure in quotes.

STATEMENTS

SLEEP 20

SLEEP "15:00"

* PROGRAM SEGMENT TO SOUND
* TERMINAL "BELL" FIVE TIMES.
BELL-CHAR(7)
FOR I-I TO 5
PRINT BELL:
RQM
NEXT I
END

EXPLANATION

Sleep fo 20 seconds.

Sleep until 3:00 PM.

RQM statement allows enough
time for bell to be heard as
discrete "beeps".

Sample usage of the SLEEP and RQM statements.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-147

Copyright 1988 PICK SYSTEMS

I

III

I

I

I
I

I
]

I
I
I

I
I
I
I
I
I
I
I
!
I
I
I

.1.·

I

I
[

9.107 SPACE FUNCTION STRING SPACING

The SPACE function generates a string value containing a specified number
of blank spaces.

FORMAT:
SPACE (length)

the SPACE function generates a string value containing the number of
blank spaces specified by the length. For example:

PRINT SPACE(10):"HELLO"

This statement prints 10 blanks followed by the string "HELLO".

Conversely, the TRIM function is available to delete extraneous blanks.

(See: TRIM)

STATEMENT

B - 14
A - SPACE(B)

DIM M(lO)
MAT M - SPACE(20)

S - SPACE(S)
L- "SMITH"

C - " " ,
F- "JOHN"
N - S:L:S:C:S:F

EXPLANATION

Assigns to variable A the string
value containing 14 blank spaces.

Assigns a string consisting of
20 blanks to each of the 10 elements
of array M.

Assigns to variable N the concatenated
string consisting of S blanks,
the name SMITH, S blanks, a comma,
5 blanks, and the name JOHN, or
"SMITH JOHN"

Sample Usage of the SPACE Function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-148

Copyright 1988 PICK SYSTEMS

9.108 SQRT FUNCTION SQUARE ROOT CAlABILITY

The SQUARE ROOT function returns the positive square root of a positive
number.

FORMAT:
SQRT (express ion)

The SQUARE ROOT function returns the positive square root of any positive
number (expression) that is greater than or equal to 0 and less than or
equal 14,073,748,835 at precision 4.

STATEMENT

Y - SQRT(36)

PRINT SQRT(1024)

PRINT SQRT(lOOO)

PRINT SQRT(l4073748834)

EXPLANATION

Assign the value 6
to variable Y.

Prints "32".

Prints "31.6227"

Prints "118632.832"

Sample Usage of the SQRT Function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-149

Copyright 1988 PICK SYSTEMS

l
I
• •
I

I
I

i
]

i

I
J
I
J
I

,.,,' :;

I
I
I
I
I
I
I
I

• ..
I
I
I
I
I

I
I

9.109 STOP STATEHERT TERHlNATION

The STOP statement aay appear anywhere in the program; it designates a
logical termination of the program.

FORMAT:
STOP (errnum(,param, param, ... »

Upon the execution of a STOP statement, the PICK/BASIC program will
terminate. If the program was called from a PROC the control will be
returned to the calling PROC.

The STOP statement aay be placed anywhere within the PICK/BASIC program
to indicate the end of one of several alternative paths of logic.

The STOP statement aay optionally be followed by an error message name,
and error message parameters separated by commas. The error message name
is a reference to an item in the ERRMSG file. The parameters are
variables or literals to be used within the error message format.

(See: ABORT)

A-500 ; B-750 ; C-235 ; 0-1300
REVENUE-A+B COST-C+D
PROFIT-REVENUE-COST
IF PROFIT > 0 THEN GOTO 10
PRINT "ZERO PROFIT OR LOSS"
STOP <---------------------------

10 PRINT "POSITIVE PROFIT"
END

If this path taken,
Program will terminate
because profit is less
than O.

Sample usage of the STOP Statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-150

Copyright 1988 PICK SYSTEMS

9.110 STa FUNCTION GENERATING STaING VALDES

The STR function generates a string value containing a specified number
of occurrences of a specified string.

FORMAT:
STR(expression,occurence#)

The STR function generates a string value containing the number of
occurrences specified by the occurence# of the string specified by the
expression. The following statement, for example, assigns a string value
containing 12 asterisk characters to variable X:

X-STR(' *' ,12)

As a further example, the following statement will cause the string value
"ABCABCABC" to be printed:

PRINT STR('ABC' ,3)

STATEHENT

VAR - STR("A" ,5)

A - 'BBB'
B - STR("B" ,3)
C - B CAT A

N - STR("?%?" ,4)

EXPLANATION

Assigns to variable VAR the string
value containing five A's.

Assigns to variable C the string
value containing six B's.

Assigns to variable N the string
value containing 4 consecutive
occurrences of the string "?%?".

Sample Usage of the STR Function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-151

Copyright 1988 PICK SYSTEMS

I
I
I
I
I
I
~ I·······

I
I
I
I
I
I
I
l

" •
I

•........ ,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
[

I
I

9.111 SYSTEH FUBCTION CALLING PIE-DEFINED SYSTEH VALDES

The SYSTEM function allows the user to obtain certain pre-defined values
from the system. The value returned may either be an error status code
(generated as a result of a previous BASIC statement), or a parameter
such as the page-number or page-width.

FORMAT:
SYSTEM (express ion)

The value of expression is in the range 0 through
defined in table A. If the value of "expression" is
range, the SYSTEM function will return a value as
evaluated to zero (the error function).

the maximum value as
outside the allowable
if the "expression"

If the expression used in the SYSTEM function is a zero, the function
returns a value determined by the last executed BASIC statement that set
an error condition. Examples of such BASIC statements are the tape
commands such as READT, WRITET, etc. where the ELSE branch executes.
SYSTEM(O), therefore, allows one to determine exactly what error has
occurred when the program follows the ELSE branch of these statements. If
the ELSE branch was not followed, the value returned by SYSTEM(O) is zero.

For example, the sequence of BASIC instructions:

READT TAPERECORD ELSE
BEGIN CASE

END

CASE SYSTEM(O)
CASE SYSTEM(O)

END CASE

1; PRINT "ATTACH THE TAPE UNIT"; STOP
- 2; PRINT "END OF FILE; DONE!"; STOP

will result in one of the messages being printed if the tape unit was not
attached to the line running the BASIC program or if an EOF is read from
the tape.

The SYSTEM function, with non-zero values of the expression, returns
parameters that have been set external to the BASIC program. See Table A.

CHAPTER 9 - PICK/BAStC
Preliminary PAGE 9-152

Copyright 1988 PICK SYSTEMS

SYSTEM expression

o

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

100

Value returned

Error function value; see table B.

1 If PRINTER ON or (P) option used in RUN;
o If data is being printed to the terminal.

Current page-size from TERM statement
(page-width in columns).

Current page-depth from TERM statement
(number of lines in page).

Number of lines remaining in current page.

Current page-number.

Current line-counter (number of lines printed).

One-character terminal-type code from TERM
statement.

Current tape record length.

Current CPU millisecond count.

1 if current stack (STON) condition enabled.
o if current stack inactive.

1 if a SELECT-LIST is active.
o if 8. SELECT-LIST function is inactive.

Current time in milliseconds

Forces an RQM and returns 1.

Number of bytes in terminal input buffer.

Returns verb options as a character string.

Returns nested EXECUTE level

Returns error message string, with each number
separated by an attribute mark.

Returns current release, version, 8.nd version date.

Meaning of values usable in the SYSTEM function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-153

Copyright 1988 PICK SYSTEMS

I
1·

.:·(

"

I
I

I
I
I
I
I
I
I

I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I'
Ii

I
I
I
I

Previously executed Error code Meaning
BASIC statement. returned.

READT. WRITET. 1 Tape unit is not attached.
VEOF or REWIND

READT 2 EOF read from tape unit.

WRITET 3 Attempted to write null string.

WRITET 11 Attempted to write variable
longer than tape record length.

Values returned by the error function, SYSTEM(O)

CHAPTER 9 - PICK/BAS~C
Preliminary PAGE 9-154

Copyright 1988 PICK SYSTEMS

9.112 TAN I'UNCTION TANGENT OF AN ANGLE

The TAN function generates the trigonmetric tangent of an angle.

FORMAT:

TAN(expression)

The TAN function generates the tangent of an angle, expressed in degrees.

Values which are less than 0 degrees, or greater than 360 degrees are
adjusted to this range before generation.

(See: COS and SIN)

STATEMENT

YY - TAN(XX)

PRINT TAN(I)

PRINT TAN(361)

PRINT TAN(2)

PRINT TAN(362)

PRINT TAN(45)

PRINT TAN(90)

EXPLANATION

Assigns the tangent of an
angle of XX degrees to yYY.

Prints "0.0174"

Prints "0.0174"

Prints "0.0349"

Prints "0.0349"

Prints "1"

Prints "0"

Sample usage of the TAN function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-155

Copyright 1988 PICK SYSTEMS

I
I
I
I
I

I

I
J
I
I
1
I
]

I
I
I

I
I
I

" Ii

I
I
I
I

I
I
I

'" •
I
I
I

r ..
I
I

9.113 TIME() AND TIKEDATE() lURCTIONS TIME AND DATE

The TIMEO function returns the internal time of day. The TIMEDATEO
function returns the 'current time and date in external format.

FORMAT:

TIME()

TlMEDATE()

The TIME() function returns the string value containing the internal time
of day. The internal time is the number of seconds past midnight.

For example. at 4 minutes and 18
statement would print 61458
midnight.)

PRINT TIME()

seconds after 5
(17:04:18 is

P.M .•
61458

the following
seconds since

The TIMEDATE() function returns the string value containing the current
time and date in the external format. This format is:

HH:MM: SS DD MMM YY'lY
or

17:04:18 01 APR 1985
(See: DATE() function)

STATEMENT
A - TIMEO

IF TlME() > 1000 THEN GOTO 10

PRINT TIMEDATE()

WRITET TIME() ELSE STOP

EXPLANATION
Assigns string value of current
internal time to variable A.

Branches to statement 10 if more
than 1000 seconds have passed
since midnight.

Prints the current time and date
in the external format.

Writes the string value of the
current internal time onto a magnetic
tape record.

Sample usage of the TIME() and TIMEDATE() functions.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-156

Copyright 1988 PICK SYSTEMS

9.114 TRIM PUNCTION DELETING ElTlAREOUS SPACES

The TRIM function removes extraneous blank spaces from a specified string.

FORMAT:
TRIM (express ion)

The TRIM function deletes preceding, trailing, and redundant blanks from
the literal or variable expression. For example:

A-' GOOD MORNING, MR. BRIGGS
A-TRIM (A)
PRINT A

The PRINT statement will print:

GOOD MORNING, MR. BRIGGS

Conversely, the SPACE function is available to generate blank spaces.

(See: SPACE)

STATEMENT

S - SPACE(5)
L - "SMITH"
C - ","
F - "JOHN"
JOHN' .
N - S:L:S:C:S:F
M - TRIM(N)

EXPLANATION

Assigns to variable N the concatenated
string consisting of 5 blanks,
the name SMITH,S blanks, a comma,
5 blanks, and the name JOHN, or 'SMITH,

Assigns to variable M a string
consisting of the name SMITH,
1 blank, a comma, one blank, and
the name JOHN, or 'SMITH , JOHN'

Sample Usage of the TRIM Function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-157

Copyright 1988 PICK SYSTEMS

]

I
I
I

I
I .• II

I

I
I
]

I

I
I
I

I

I
I
I
I
I
I
I
I·· I·

I
I
I
I
I
I
I
f
I.

I
I

9.115 UNLOCK STATEMENT CLEARING EXECUTION LOCKS

The UNLOCK statement provides a file and execution lock clearing
capability for PICK/BASIC programs. The LOCK statement sets execution
locks while the UNLOCK statement releases them.

FORMAT:

UNLOCK (expression)

The LOCK statement sets an execution lock so that when any other BASIC
program attempts to set the same lock, then that program will either
execute an alternate set of statements or will pause until the lock is
released via an UNLOCK statement by the program which originally locked
it.

The value of the expression specifies which execution lock is to be
released (cleared).· If the expression is omitted, then all execution
locks which were previously set by the program will be released.

All execution locks set by a program will automatically be released upon
termination of the program. .

(See: LOCK)

STATEMENTS

UNLOCK 47

UNLOCK

UNLOCK (5+A)*(B-2)

EXPLANATION

Resets execution lock 47.

Resets all execution locks
previously set by the program.

The value of the expression
specifies which execution lock is
released.

Sample Usage of the UNLOCK Statement.

CHAPTER 9 - PICK/BASIC Copyright 1988 PICK SYSTEMS
Preliminary , PAGE 9-158

9.116 WEOF STATEMENT POSITIONING TAPE

BASIC programs may specify Magnetic Tape positioning operations through
the use of the WEOF (Write End-of-Fi1e Mark) statement.

FORMAT:

WEOF THEN/ELSE statements

The WEOF statement writes two EOF (END OF FILE) marks on the tape, then
backspaces over the second one. This correctly positions the tape for
subsequent WRITET operations.

(See: WRITET)

STATEMENT

WEOF ELSE STOP

EXPLANATION

Writes two EOF marks, then
backspaces over the second one.

Sample usage of the WEOF statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-159

Copyright 1988 PICK SYSTEMS

I
I
I
I
I

I
J
I
I
I
I

I
I
I
I

I
I
I.
I
I
I
I
I
I
I
I
I
I
I
I
[

[

I

9.117 WRITE STATEMENT MODIFYING ITEMS

The WRITE statement is used to update a file item.

FORMAT:
WRITE expression ON (file.variable,) itemname

The WRITE statement replaces the content of the item specified by
itemname with the string value of the expression. The optional
file. variable specifies the file variable; if it is used, the item will
be replaced in the file previously assigned to that file.variable via an
OPEN statement. If the file.variable is omitted, then the internal
default variable is used (thus specifying the file most recently opened
without a file variable). If the itemname specifies an item which does
not exist, then a new item will be created.

The user should note that the PICK/BASIC program will abort with an
appropriate error message if the specified file has not been opened prior
to the execution of the WRITE statement.

(See: WRITEV and WRITET)

STATEMENT

WRITE "XXX" ON A, "ITEMS"

A-"123456789"
B-"X55"
WRITE A ON FNl,B

WRITE 100*5 ON "EXP"

EXPLANATION

Replaces the current content of item
ITEMS (in the file opened and assigned
to variable A) with string value "XXX".

Replaces the current content of item
X55 (in the file opened and assigned
to variable FN1) with string value
"123456789".

Replaces the current content of item
EXP (in the file opened without a file
variable) with string value "500".

Sample Usage of the WRITE Statement.

CHAPTER 9 - PICK/BAStC
Preliminary PAGE 9-160

Copyright 1988 PICK SYSTEMS

9.118 VllITET STATEKENT ftITIRG BeOItDS TO TAPE

BASIC programs may specify Magnetic Tape output operations through the
use of the WRITET (Write Tape Record) statement. The record length on the
tape is as specified by the most recent T-ATT statement executed at the
TCL level.

FORMAT:

WRITET expression THEN/ELSE statements

The WRITET statement writes a record onto the magnetic tape. The string
value of the expression is written onto the next record of the tape.

If the tape unit has not been attached, or if the string value of the
expression is the empty string ("). then the statement(s) following the
ELSE will be executed.

(See: T-ATT,READT, and system)

STATEMENT

FOR 1-1 TO 5
WRITET A(I) ELSE STOP
NEXT I

EXPLANATION

The values of array elements A(l)
through A(5) are written onto 5
tape records. If one of the array
elements has a value of " (or if
tape unit not attached), the pro­
gram will terminate.

Sample Usage of the WRITET statement.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-161

Copyright 1988 PICK SYSTEMS

I

I

I ..

i

I

I

I
1.· ...

.I

I
"
I·

"

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

9.119 vaITEU AND valTEVU STATEMENTS UPDATE LOCKS

The WRITED and WRITEVU statements have the letter ·U" appended to them to
imply update. The execution of these commands will not unlock the group
locked by the program.

FORMAT:

WRITEU variable ON (fi1e.variab1e,) itemname

WRITEVU variable ON (fi1e.variab1e,) itemname,att#

These statements execute identically to the WRITE and WRITEV statements,
with the following noted additional functionality.

(See: WRITE and WRITEV)

This version of these commands will not unlock the group locked by the
program. This varient is used primarily for master file updates when
several transactions are being processed and an update of the master item
is made following each transaction update.

If the group is not locked when the WRITEU, WRITEVU or MATWR1TEU statement
is executed, the group will not be locked by the execution of the command.

STATEMENT

WRITEU CUST. NAME ON CUST. FILE, 10

EXPlANATION

Replaces the current contents of
the item specified by variable 10
(in the file opened and assigned
to variable CUST.FILE) with
with the contents of CUST.NAME.
Ooes not unlock the group.

WR1TEVU CUST.NAME ON CUST.FILE,10,3 Replaces the third attribute
of item 10 (in the file opened
and assigned to variable CUST.FILE)
with the contents of variable
CUST.NAME. Ooes not unlock
the group.

Sample usage of WRITEU and WRITEVU statements.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-162

Copyright 1988 PICK SYSTEMS

9.120 VRITEV STATEMENT UPDATING AN ATTRIBUTE

The WRITEV statement is used to write (update) a single attribute value
to an item in a file.

FORHAT:
WRITEV expression ON (file.variable,) itemname,att#

Upon the execution of the WRITEV statement, the value of the expression
becomes the attribute specified by att# (attribute number), in the item
specified by the itemname and in the file previously assigned to the
specified file. variable via an OPEN statement.

If the file.variable is omitted, then the internal default variable will
be used (thus specifying the file most recently opened without a
file.variable).

If a non-existent item name (or attribute number) is specified, then a
new item (or attribute) will be created.

The WRITEV statement will also allow the attribute number
a value of either zero or minus one, thus inserting data
first attribute or following the last attribute.

(att#) to have
prior to the

When att# - 0, the expression is inserted at the begining of the item.
All attributes in the item are shifted by 1 attribute and the expression
becomes attribute 1.

When att# - -1, the expression is appended to the end of the
number of attributes in the item increase by 1 and all
existing attributes are undisturbed.

item. The
previously

The PICK/BASIC program will abort with an appropiate error message if the
specified file has not been opened prior to the execution of the WRITEV
Statement.
(See: WRITE and MATWRITE)

SUT~IDIT
Y-"THIS IS A TEST"
WRITEV Y ON X,"PROG",0

WRITEV "XYZ" ON "A7",4

EXPLANATION
The string value "THIS IS A TEST"
is inserted prior to the first
attribute of item PROG in the file
opened and assigned to variable X.

Attribute 4 of item A7 (in the file
opened without a file variable) is
replaced by string value "XYZ".

Sample usage of the WRITEV statements.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-163

Copyright 1988 PICK SYST~S

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

[

E
I

I •
I

9.121 rlD FUNCTION IlUADECnw. TO DECnw. CONVDSION ! t
•
I

The XTD function converts a value from Hexadecimal to Decimal.

FORMAT:

XTD(expression)

The string value of the expression is converted from Hexadecimal to
Decimal. For example:

B - XTD(A)

Conversely, the DTX function is available to convert string values from
Decimal to Hexadecimal.

(See: DTX)

STATEMENT

D - XTD(H)

EXPLANATION

Assigns the Decimal value of variable H
to variable D.

Sample Usage of the XTD function.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-164

Copyright 1988 PICK SYSTEMS

, I
. I

9.122 PICK/BASIC SYMBOLIC DEBUGGER AN OVEllVIEW

The PICK/BASIC Symbolic Debugger facilitates the debugging of new
PICK/BASIC programs and the maintenance of existing PICK/BASIC programs.

When a PICK/BASIC program is compiled a symbol table item is
automatically generated unless the suppress option (S) has been used.
This table is used by the PICK/BASIC Debugger to reference symbolic
variables during program execution.

The PICK/BASIC Debugger may be entered at execution time by 1) depressing
the BREAK key or 2) using the 'D' (debug) option with the RUN verb. Once
the PICK/BASIC Debugger has entered it will indicate the source code line
number about to be executed and will prompt for commands with an asterisk
(*) as opposed to the System Debugger prompt 'I' or the TCL prompt.

The user now has at his disposal the following general capabilities:
Controlled stepping through execution of program by way of single or
multiple steps. Transferring control to a specified step (line number).
Breaking (temporary halting) of execution on specified line number(s) or
on the satisfaction of specified logical conditions. Displaying and/or
changing any variable(s), including dimensioned variables. Tracing
variables. Conditional entry to the System Debugger. Directing output
(terminal/printer). Stack manipulation (displaying and/or popping the
stack). Displaying of specified (or all) source code line(s).

The symbol table is embedded in the object code which is placed in the
catalog space. The debugger has instant access to the symbol table, and
requires the use of the 'Z' command only when access to the source code
is required. Note that the user may suppress generation of the symbol
table by using the (S) option when compiling programs.

A user requires SYS2 privileges to use the PICK/BASIC
prevents users from making unauthorized changes to data
and data entry.

debugger. This
during reporting

CHAPTER 9 - PICK/BASIC
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-165

I'·· !"

I
I
I
I
I
I
I
I
I
J, i'_

I
I'·"·' .,.

I
I

I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1.

2.

3.

4.

s.

6.

BASIC DEBUGGER FEATURE

Set breakpoint on logical condition
where '0' is logical operator <,>,-,#,
'v' is variable, 'c' is condition to be met,
or 'n' is line number where preceded by B_$o.

Display breakpoint table

Escape to System Debugger

Single/multiple step execution

End program execution and return to TCL

Proceed from breakpoint
to specified line In'

7. Remove all breakpoints
specified breakpoint In'

8. Display source code current line
'n' number of lines from current one
number of lines from m-n
all lines

9. Toggle output device (terminal & printer)

10. Pass one breakpoint before stopping
In' breakpoints

11. Logoff

12. Inhibit output

13. Printer-close output to spooler

14. Pop return stack
Display return stack

15. Switch turns trace table on/off
Trace specified variable 'v'

16. Remove all traces
specified trace

17. Request symbol table

18. Display current line number
Print value of v~riable 'v'
of element 'x' irt array 'm'
of element 'x,y' in matrix 'm'
of entire array 'm'
entire symbol table

RElATED COMMAND

Bvoc{ .ul oc} or
B$t,n -

D

DEBUG or DE

E{n}

END

G
Gn

K
Kn

L
Ln
Lm-n
L*

LP

N
Nn

OFF

P

PC

R
S

T
Tv

U
Un

z

$
/v
/m(x)
/m(x,y)
/m
/*

/

~
/
V
/
:f

c/
/

~
~
~

CHAPTER 9 - PICK/BASlC Copyright 1988 PICK SYSTEMS
Preliminary PAGE 9-166

9.122.1 USING THE PICl/BASIC DEBUGGER AN ElAKPLE

The following is a step-by-step introduction to the use of the PICK/BASIC
DEBUGGER for inexperienced users. This will demonstrate only a few of the
commands as it is merely intended to give the user an introductory
"feeling" for the use of the PICK/BASIC DEBUGGER.

A sample program "SAMPLE" is shown below, followed by steps a user might
take to debug it.

SAMPLE

001 DIM ARRAY(10) ; * ARRAY HAS 10 SLOTS
002 FOR I - 1 TO 20 ; * BUG: LOOP SPECIFIES 20 PASSES, ARRAY HAS ONLY 10
003 ARRAY(I) - I ; * EACH SLOT WILL BE FILLED WITH A CONSECUTIVE #
004 NEXT 1
005 PRINT ARRAY(I)
006 END

"SAMPLE" compiles without any errors detected. Once it is run however, it
aborts with the error message "ARRAY SUBSCRIPT OUT OF RANGE" and traps to
the PICK/BASIC DEBUGGER. Supposing that the user cannot find the error,
the following steps could be taken for detecting the error using the
PICK/BASIC DEBUGGER.

1. The user enters the command "Z" to the DEBUGGER prompt
character "*". The DEBUGGER responds with "PROG NAME?", the
user enters the program name. This allows the DEBUGGER access
to the symbol table created during compilation. Alternatively,
if the user uses the debug option "(D)" during run time,
access to the symbol table is already established, and use of
the "Z" command is unnecessary.

2. To find out how far in the loop the program progressed, the
user looks at the variable "I" by entering "/1". The DEBUGGER
responds with "II -", at which the user may change the value
of "I" if desired. The user may then want to look at all of
the values in the array by entering "/ARRAY". The DEBUGGER
responds with "ARRAY(l)-l-", the user depresses return and the
DEBUGGER continues with the next "array slot" (i.e.,
"ARRAY(2)-2-" etc.). Once "ARRAY(lO)-lo-" has been reached the
user presses return and the DEBUGGER returns with the "*"
prompt, the user knows that the array has only 10 slots and
the loop calls for 20 -- thus he finds the error. The user may
then end the "session" with PICK/BASIC DEBUGGER by entering
"END" and repair the bug.

A summary of this interaction is given in Figure A on the next
purposes of clarity, whatever is entered by the user is shown
square brackets "[1". These are DQt part of the commands;
distinguish user entry from DEBUGGER response.

page. For
enclosed in
they are to

CHAPTER 9 - PICK/BASIC
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-167

I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
J

I
!
I
I
I
I
I
I
I

I
I
I

I

I
I
I

NOTE: The square b.ackets surround user input to distinguish it from
PICK/BASIC Debugger responses. They are D2t part of the commandsl

LINE 3 (B17) ARRAY SUBSCRIPT OUT OF RANGE
*13
*[/1] <RETURN> 11-
* [IARRAY] <RETURN> ARRAY(l)-I- <RETURN>

ARRAY(2)-2- <RETURN>
ARRAY(3)-3- <RETURN>
ARRAY (4) -4- <RETURN>
ARRAY(5)-5- <RETURN>

ARRAY(lO)-lO- <RETURN>
*<RETURN>
*[END]

Sample Session with the PICK/BASIC Debugger.

NOTE: A carriage return will return control to the BASIC DEBUGGER
prompted by "*" whereas a line-feed will return control to program
execution until a breakpoint, an error or the end of the program is met.

CHAPTER 9 - PICK/BAS1C
Preliminary PAGE 9-168

Copyright 1988 PICK SYSTEMS

9.122.2 THE TRACE TABLE

The trace table is used for the automatic printout of a specified
variable or variables after a break has occured.

Up to six trace values may be entered in the table. Either the symbolic
name, or a line number and variable number may be used to reference the
variable. In addition, all the variables in the last statement executed
may be printed out. The trace table may be alternately turned on and off
by use of the "T" return command.

Examples of use of the trace table are shown below:

Tname

T%10,3

The value of the variable name will be printed out at
each breakpoint.

The value of the third variable in line number 10 will
be printed out at each breakpoint. If line number 10
contains the statement "A-B+C+D" the value of "C" will
be printed.

To delete a variable from the trace table use the "un command followed by
the trace variable to be deleted. For example, to delete the variable
name from the table type in "Uname". "un return deletes the entire trace
table.

If a program calls an external subroutine, and the BASIC/DEBUGGER has
been entered previously, a complete symbol table will be set up for the
external subroutine. the table will have 4 break-points and 6 variable
traces available, as well as pointers to program source and object, which
may be set up by the Z command. break points set up for a subroutine are
independent from break points set up in the main program or other
subroutines; however, the execution counters (E and N,) are global.

The use of mUltiple symbol tables allows the programmer to set up
different break points and/or variable traces for different subroutines.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-169

Copyright 1988 PICK SYSTEMS

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I

I

I
[

I
I

9.122.3 PICKfBASIC DEBUGGER: THE B. D. AND K COHHANDS

Commands to set (B)reakpoints. (D)isp1ay and (K)i11 breakpoints.

Command:
B[variable-name] [operator] [expression] { .& another condition)
B$[operator][line-number]{ another condition)

Where 'variable-name' is a simple variable or an explicitly stated array
element and 'expression' is a variable. constant, or array element. If
the variable does not exist or if the wrong Symbol Table is assigned, the
message "SYM NOT FND" will be printed. String constants must be enclosed
in quotes using the same rules that apply to PICK/BASIC literals. The
Breakpoint Table may contain up to four conditions that when satisfied,
will cause a break in execution. Logical expressions are used to set the
break conditions. The logical operators used are:

< less than
> greater than

equal to
not equal to
& is used as a logical connector between conditions.
$ is a special symbol used to indicate that a line

number is specified rather than a variable name.

A plus sign will be printed next to the command if it is accepted. When
the condition is met, an execution break will occur and the Debugger will
halt execution of the program and print *Bn 1 where 'n'. is one of the 4
Breakpoint Table entries and 'I' is the program line number that caused
the break.

Command:

Command:

D

Kn
K<RETURN>

Displays Trace and Breakpoint Tables

Deletes nth breakpoint. n in range 1 to 4
Deletes all breakpoint conditions

The 'K' command is used to delete breakpoint conditions from the table. A
minus sign will be printed next to the command to indicate that an entry
has been removed.

COMMAND
BX<42
BADDRESS-' ,
BDATE-INV.DATE&$-22

K2
BPRICE(3)-24.98

D
K

EXPLANATION
Breaks when X is less than 42.
Breaks when ADDRESS is null.
Breaks when variable DATE is equal to
variable INV.DATE and if the line number is 22.
Kills the second breakpoint condition.
Breaks when the third element of the array PRICE
is equal to 24.98. Only individual array
elements may be specified.
Displays the Trace and Breakpoint Tables.
Kills all breakpoint conditions.

Examples of B, D. and K Commands.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-170

Copyright 1988 PICK SYSTEMS

9.122.4 E. G. AND N COHHANDS DEBUGGER EXECUTION

The commands "E", "G", and "N" in conjunction with the breakpoint table
control the execution of the program under debug control.

The "E" command will allow the execution of a specified number of lines
before returning control to the user. "E" return will turn off the "E"
command.

Command: E

ES

Execution continues until interuption by the user, by a
breakpoint or until program ends.

Program will enter the debugger after executing five
program lines.

The "N" command will allow the user to bypass any number of breakpoints
before control is passed back to the user, however, the trace table
variables will be printed at each breakpoint. "NO" equals 'pass one
breakpoint', "Nl" equals 'pass two breakpoints', etc. and "Nfl return will
set "N" to "NO".

Command: N3 Four breakpoints are passed, although
values, if present, are printed out at
Control is then returned to the user.

the trace table
each breakpoint.

The "G" command followed by a line number will allow control to be passed
to the line number indicated. The "G" return command will cause program
to execute the next command from the current line number and it will
return control depending on the breakpoint setup.

Command: G153 Control passes to line number 153 and thereafter to user.

G Control passes to next program line and thereafter to
user.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-171

Copyright 1988 PICK SYSTEMS

I
I
I
I
I
I
I
I
I
I
I
I
I
J

I
I
I
I

I
I
I
I
I
I
I

I
I
I"··· r

I

I
I-, ~

I· .

[

l
I

9.122.5 SLASH 'I' COHKAND DISPLAYING AND CHANGING VARIABLES

Variables and arrays can be displayed and changed in either decimal or
string formats.

To display a variable use the command 'Iv' where 'v' is a variable. For
example to display the value of the variable name select '/name'. The
DEBUGGER will respond with the string in the name field and an equal
sign. If the variable is not to be changed press return. If the variable
is to be changed put in the new value of the variable desired and press
return. To display a complete array just place the name of the array
after the slash. To display one value in the array use the form 'IM(x) ,
or 'IM(x,y)' where 'x' and 'y' are points in the array. The array point
may then be changed in the same way as for a single variable.

A window may be placed after any variable selection by following the
variable with a ';' and the length of the window. For example, to limit
the variable name to eight characters the command '/name;8' would be
used. Numeric variables will ignore any window commands.

The symbolic name of the variable may be replaced with the form '%x,y'
where 'x' is the line number and 'y' is the nth variable in that line in
the same way as the breakpoint table. Examples of displaying and changing
variables follows:

/CITY IRVINE-

/STATE NY-CA

/FIELD(S) 10-

/*

The variable 'city' is displayed but not changed.

The variable 'state' is displayed as 'NY' and changed
to 'CA'

The fifth point in array FIELD is displayed as 10 and
not changed.

All the symbols in the symbol table are displayed.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-172

Copyright 1988 PICK SYSTEMS

9.122.6 VARIOUS DEBUGGER COHMANDS ADDITIONAL FEATURES

Additional PICK/BASIC Debugger commands
and END.

PC, P, LP, $, L, Z, [], DEBUG

I/O CONTROL

The "PH command inhibits all PICK/BASIC program output so that the user
may look only at the DEBUGGER outpu,t. "PH return alternately turns "PH on
and off.

The "LP" command forces all output to the line printer which can be used
for a fast trace or hard copy of a trace. "LP" return alternately turns
the line printer command on and off.

The "PC" command is the same as the PICK/BASIC printer close command. All
data that is waiting to be sent to the printer is output at this time.

SOURCE CODE DISPLAY

The "$" command will print the next line number to be executed.

The "L" command will display sorce code lines. "L" will
current line of source. "Ln" will display line 'n'. "Lm-n"
lines 'm-n'. "L*" will display the entire source program.

SYMBOL TABLE

display the
will display

The HZ" command will enable a symbol table other than the currently
running programs' symbol table, which is the default. The program name
may be entered as (file-name,(dataname}) item-name.

STRING WINDOWS

The string window command "[n,m]" will cause the
to be limited to the substring selected. An
follows:

output
example

of all variables
of the command

X-1234567890.B [3,2] Sets the window for the third
character position with a string length of two. Any printout of x will be
34.

Setting the window length to zero will turn the string window command
off. "[Carriage-return" will have the same result.

ESCAPE TO SYSTEM DEBUGGER

The "DEBUG" command will pass control to the System DEBUGGER.

TIIIINATION

The "END" command will terminate the PICK/BASIC and DEBUG programs and
return control to TCL.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-173

Copyright 1988 PICK SYSTEMS

I
I
I
I
J
I'·' \

I
I
I
I
I
I
I

I
I' ,

I
I
I

I
I
I
I
I
I
I

I
I
I
Ii ,

f.·· ~

I
I'·; .

I
I
[

I

9.122.7 GENERAL CODING TECHNIQUES HELPFUL HINTS

This topic presents a number of general coding techniques which the
programmer should keep in mind when writing PICK/BASIC programs.

The PICK system uses standard attribute and value delimiters. These
should be defined once in the initialization portion of the program, and
then referenced by their variable name. for example:

EQU AM TO CHAR(254)Attribute Mark
EQU AM TO CHAR(253)Value Mark
EQU SVM TO CHAR(252)Secondary Value Mark

Cursor positioning can be controlled by setting variables names to @
functions and then PRINTing those names in the body of your program.

ERASE.SCREEN - @(-l)
CLEAR.TO.END.OF.SCREEN - @(-3)
START.BLINK - @(-S)
START.PROTECT - @(-7)
BACKSPACE - @(-9)

DOWN.l.LINE - CHAR(lO)
BELL - CHAR(7)

HOME - @(-2)
CLEAR.TO.END.OF.LINE - @(-4)
STOP.BLINK - @(-6)
STOP.PROTECT - @(-8)
UP.l.LINE - @(-10)

RIGHT.l.CHARACTER - CHAR(6)

To erase the screen for instance, the PRINT statement would be:

PRINT ERASE. SCREEN

The OPEN statement is very time consuming and
times as possible. All files should be opened
beginning of the program; access to the files
referencing the file variables.

should be executed as few
to file variables at the
can then be performed by

The size of programs can be
overall system performance,
For example:

reduced, with a corresponding increase in
by reducing the amount of literal storage.

200 PRINT 'RESULT IS ':A+B
210 PRINT 'RESULT IS ':A-B
220 PRINT 'RESULT IS ':A*B
230 PRINT 'RESULT IS ':A/B

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-174

Copyright 1988 PICK SYSTEMS

These statements should have been written as follows:

MSG - 'RESULT IS'

200 PRINT MSG:A+B
210 PRINT MSG:A-B
220 PRINT MSG:A*B
230 PRINT KSG:A/B

Operations should be pre-defined rather than repetitively performed. This
operation, for example:

X-SPACE(9-LEN(OCONV(COST,'KCA'»):OCONV(COST,'MCA')

should have been written as follows:

E-oCONV(COST,'MCA')
X-SPACE(9-LEN(E»:E

In the same context, the following operation:

FOR 1-1 TO X*Y+Z(20)

NEXT I

should have been written as follows:

TEKP-X*Y+Z(20)
FOR 1-1 TO TEMP

NEXT I

The following LOOP construct could be used to access an unknown number of
multivalues from an attribute (including null values):

EQU VK TO CHAR(253)
READV ATTR FROM ID, ATTNO ELSE STOP
VNo-l
LOOP

VALUE-FIELD(ATTR,VK,VNO)
WHILE COL2 () #0 DO

PRINT VALUE
VNo-VNo+l

REPEAT

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-175

Copyright 1988 PICK SYSTEMS

I
I
I
I
I
I
I
I
I
I
I
I

I

I
I
I
I

I

I
I

I

I
I

I

I
I
I
1

9.122.8 PROGRAHHING EXAHPLES: PYTHAG

**
* THIS PROGRAM FINDS PYTHAGOREAN TRIPLES
ttttttttttt*****

PRINT
PRINT • SOME PYTHAGOREAN TRIPLES ARE: I

PRINT
FOR A-l TO 40

D-A-l
FOR B-1 TO A-l

CC-(A"2)+(B"2)N
IF C - INT(C) THEN PRINT B,A,C C-SQRT(EC)

NEXTB
NEXT A
STOP

CHAPTER 9 - PICK/BASIC
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-176

9.122.9 PIlOGlWOIIRG EXAHPLES: GUESS

* THIS PROGRAM IS A GUESSING GAME

HEADING' ,
HISSCORE-O; YOURSCORE-O

10 PAGE
PRINT 'GUESS NUMBERS BETWEEN 0 AND 100'
PRINT 'MACHINE:' :HISSCORE:' , : 'YOU:' :YOURSCORE
PRINT
NOM-RND(101)
FOR I-I TO 6

PRINT 'GUESS ':1:' ,.
INPUT GUESS
IF GUESS-NOM THEN

PRINT
PRINT 'CONGRATULATIONS, YOU YON!'
YOURSCORE-YOURSCORE+l
GOTO 60

END
IF GUESS < NOM THEN PRINT 'HIGHER'
IF GUESS> NOM THEN PRINT 'LOYER'

NEXT I
PRINT
PRINT 'YOU LOST YOU DUMMY. YOUR NUMBER YAS ': NOM
HISSCORE-HISSCORE+l

60 PRINT

END

PRINT 'AGAIN?':
INPUT X
IF X - 'NO' THEN STOP
GOTO 10

CHAPTER 9 - PICK/BASIC
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-177

I

I
I
I

!
I
I
I
J

I
J
I
I
I

I
I
I

I
I
I
I

I
".'.'; •

I
I
I
[

I
I

9.122.10 PROGRAKHING EXAMPLES: INV-INQ

*** * THIS PROGRAM QUERIES AN INVENTORY FILE.
* IT READS THE DICTIONARY OF FILE 'INV' TO GET THE ATTRIBUTE
* NUMBERS OF 'DESC' (DESCRIPTION) AND 'QOH' (QUANTITY-ON-HAND).
* THE PROGRAM THEN PROMPTS THE USER FOR A PART-NUMBER WHICH
* IS THE ITEM-ID OF AN ITEM IN 'INV' AND USES THE ATTRIBUTE
* NUMBERS TO READ AND DISPLAY THE PART DESCRIPTION AND
* QUANTITY ON HAND. THE PROGRAM LOOPS UNTIL A NULL PART
* NUMBER IS ENTERED.

* *--- GET ATTRIBUTE DEFINITIONS FROM DICTIONARY OF INVENTORY FILE

OPEN 'DICT' ,'INV' ELSE PRINT 'CANNOT OPEN "DICT INV"'; STOP
READV DESC.AKC FROM 'DESC' ,2 ELSE PRINT 'CANT READ "DESC" ATTR'; STOP
READV QOH.AKC FROM 'QOH' ,2 ELSE PRINT 'CANT READ "QOH" ATTR'; STOP

*--- OPEN DATA PORTION OF INVENTORY FILE
OPEN ",'INV' ELSE PRINT 'CANNOT OPEN "INV" , ; STOP

*--- PROMPT FOR PART NUMBER
100 PRINT

PRINT 'PART-NUMBER ':
INPUT PN
IF PN - " THEN PRINT '--DONE--'; STOP
READV DESC FROM PN,DESC.AKC ELSE PRINT 'CANT FIND THAT PART';GOTO 100
READV QOH FROM PN,QOH.AMC ELSE QOH-O

*--- PRINT DESCRIPTION AND QUANTITY-ON-HAND
PRINT 'DESCRIPTION - ,. DESC
PRINT 'QTY-ON-HAND - ': QOH
PRINT
GOTO 100

END

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-178

Copyright 1988 PICK SYSTEMS

9.122.11 Pl.OGlWOIIRG DAHPLES: FOlUfAT

****~**~~~~*****~~***~~*******~*********************************
* THIS PROGRAM FORMATS A PICK/BASIC Pl.OGRAM TO
* DISPLAY BLOCK STRUCTURING BY INDENTING LINES.
******~***~~~*~~~********~~*~*~~******~~~*~***************~*~***
*---- DEFINITIONS
10 SP - 6

ID - 3
; * LEFT MARGIN COLUMN NUMBER
; * NUMBER OF SPACES TO INDENT

*---- INITIALIZATION
SPX - SP
LINE.NO - 0

*- - - - INPUT FILE NAME AND PROGRAM NAME
PRINT
PRINT
PRINT 'DATA/BASIC FILE NAME
IF FILE - " THEN STOP

- ':; INPUT FILE

OPEN ",FILE ELSE PRINT 'CANNOT OPEN FILE - ': FILE; GOTO 10
PRINT 'DATA/BASIC PROGRAM NAME - ':; INPUT NAME
IF NAME - " THEN GOTO 10
NEWITEM - "
READ ITEM FROM NAME ELSE

END

PRINT 'CANNOT FIND THAT PROGRAM'
GOTO 10

*---- GET NEW LINE, IF NONE - THEN DONE
100 LINE.NO - LINE.NO + 1

*----
200
210
*----

*----

*----

LINE - EXTRACT(ITEM,LINE.NO,O,O)
IF LINE - " THEN

WRITE NEWITEM ON NAME
PRINT; PRINT; PRINT '--DONE--'; GOTO 10

END
LABEL - "
STRIP OFF LEADING/TRAILING SPACES
IF LINE[l,l] - ' , THEN LINE - LINE[2,32767]; GOTO 200
IF LINE [LEN(LINE) ,1] - ' , THEN LINE - LINE[l,LEN(LINE)-l]; GOTO 210
LOOK FOR A COMMENT ('*', 'I', OR 'REM')
IF LINE[l,l] - '*' THEN GOTO 1500
IF LINE[l,l] - 'I' THEN GOTO 1500
IF LINE[1,3] - 'REM' THEN GOTO 1500
LOOK FOR 'FOR'
IF LINE[l,4]-'FOR ' AND INDEX(LINE,'NEXT ',1»0 THEN GOTO 2000
IF LINE[l,4]-'FOR ' AND INDEX(LINE,'NEXT ',1)_0 THEN GOTO 1000
LOOK FOR 'END'
IF LINE - 'END' THEN GOTO 1100
IF LINE[l,4] - 'END ' THEN

IF LINE[LEN(LINE)-4,5] - ' ELSE' THEN GOTO 1200
END

*---- LOOK FOR 'NEXT'
IF LINE[1,5] - 'NEXT' THEN GOTO 1100

*---- EXTRACT LEADING NUMERIC LABEL
IF LINE[l,l] MATCHES 'lN' THEN

L - 2
300 IF LINE[L,l] MATCHES 'lN' THEN L-L+1j GOTO 300

LABEL - LINE[l,L-1]
LINE - LINE[L,32767]

CHAPTER 9 - PICK/BASIC
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-179

J
I
J
I
J
I
J
I
·1 .. · .. ·. II

I
I
I

J
I

I
J
I

I

I
I

• •
I
E

I
;

, ..
I
[

I
[

I
I

GOTO 200
END

*---- LOOK FOR LINE ENDING IN ' ELSE' OR 'THEN' ('IF' OR 'READ')
X - LINE[LEN(LINE)-4.5]
IF X - ' THEN' THEN GOTO 1000
IF X - ' ELSE' THEN GOTO 1000

* ---- THIS IS JUST ANOTHER LINE. THEREFORE NO CHANGE
GOTO 2000

*---- INDENT ON SUBSEQUENT LINES
1000 SP - SP + ID
GOTO 2000
*---- OUTDENT ON THIS AND SUBSEQUENT LINES
1100 SP - sp - ID
*---- OUTDENT THIS LINE ONLY
1200 SPX - SPX - ID

GOTO 2000
*---- PRINT WITH NO INDENTATION
1500 SPX - 0
*---- WRITE NEW LINE
2000 NEW.LINE - LABEL: STR(' ',SPX-LEN{LABEL» : LINE

PRINT NEW.LINE
NEWITEM - REPLACE{NEWITEM,LINE.NO,O,O,NEW.LINE)
SPX - SP
GOTO 100

END

CHAPTER 9 - PICK/BASIC
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-180

9.122.12 raOGlAHHING ElAHPLES: LOT-UPDATE

********* •••••• *************** •••••• ********************
* THIS PROGRAM UPDATES DATA ON LOTS IN A HOUSING TRACT.
* ITEM-ID'S IN "LOT" FILE ARE TRACT .NAME*LOT . NUMBER
******************* •••••• ******************** ••••••••• **
100* INITIALIZATION

*

PROMPT '-'
CLEAR
DIM DESC(30),TYPE(30)
OPEN 'DICT','LOT' ELSE

END

PRINT "CAN'T OPEN DICT LOT"
STOP

200* GET DESCRIPTIONS, CONVERSIONS

250*

*
*

*

FOR I - 1 TO 30
READ DICT.ITEM FROM I ELSE

END

PRINT "DICTIONARY ITEM '":1:"' NOT FOUND"
GOTO 250

D - EXTRACT(DIC.ITEM,3,0,0) ;* S/NAME--DESCRIPTION
IF D # " THEN DESC(I) - D:STR('.' ,15-LEN(D»
IF C[l,2] - 'MO' THEN

END

TYPE(I) + 'NUM'
GOT0250

IF C[l,l] - '0' THEN TYPE(I) - 'DATE'

NEXT 1

OPEN " ,'LOT' ELSE

END

PRINT "CAN'T OPEN LOT FILE."
STOP

300* GET THE TRACT NAME
PRINT

*

PRINT "TRACT NAME ":
INPUT TRACT
IF TRACT - 'STOP' OR TRACT - 'END' THEN STOP
IF TRACT - " THEN GOTO 300
READ INFO FROM TRACT ELSE

PRINT "TRACT '" : TRACT: "' aT ON FILE"
GOTO 300

END

400* GET A VALID LOT NUMBER
PRINT
PRINT "LOT NUMBER ":
INPUT NUMBER
IF NUMBER - " THEN GOTO 400
IF NUMBER - 'END' OR NUMBER - 'STOP' THEN GOTO 300
IF NUK(NUMBER) - 0 THEN

PRINT "MUST BE A NUMBER"

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-181

Copyright 1988 PICK SYSTEMS

I
I

I;· , ;

I
I
I
]

J
I
l
I
i
1·

-······

,-:

I'········· ,

I
I

I
I
I
I
[

!
I
I
I
I

., •
I
I
I
I
I
I

*
450*

GOTO 400
END
NUMBER - TRACT:' *' : NUMBER
READ ITEM FROM NUMBER ELSE

ITEM - "
PRINT -NEW LOT"

END

NOT.SOLD - 0
FOR I - 1 TO 30

GOSUB 1000 ;* UPDATES THE I'TH ATTRIBUTE

*

*

IF I - 10 THEN

END

IF EXTRACT(ITEM,10,0,0) - " THEN
NOT.SOLD - 1
I - 19

END

IF I - 21 THEN
IF NOT. SOLD THEN GOTO 500

END
NEXT I

VERITY DATA & STORE
PRINT
PRINT"
INPUT OK

OK

IF OK - " THEN

" .

WITE ITEM ON NUMBER
GOTO 400

END
IF OK - 'L' THEN

PRINT
FOR L - 1 TO 30

ATT - EXTRACT(ITEM,I,O,O)
IF ATT - " THEN GOTO 550
PRINT DESC(L):
IF TYPE(L) - 'DATE' AND NUM(DATE) THEN ATT - OCONV(ATT,'DO')
IF TYPE(L) - 'NUM' AND NUM(ATT) THEN ATT - 0.01 * ATT

550*

*

PRINT ATT 'RIIII tt II if (;' /I # 11111111 lilt II '

NEXT L
GOTO 500

END
GOTO 400

1000* UPDATE'S THE I'TH ATTRIBUTE OF "ITEM"
IF DESC (I) - " THEN RETURN ; * NOT NEEDED OR NOT FOUND
PRINT DESC(I):
CURRENT - EXTRACT(ITEM,I,O,O)

*
IF TYPE(I) - 'NOM' THEN

1100* NEED A NUMBER (AMOUNT)
PRINT CURRENT*. 01 ' RN I! II it 1/ N If II fill it JIll it' :
INPUT RESPONSE

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-182

Copyright 1988 PICK SYSTEMS

*

*

IF RESPONSE - " THEN RETURN ; * JUST LOOKING
I F RESPONSE - " THEN

ITEM - REPLACE(ITEM,I,O,O,")
RETURN ; * DELETE THIS ATT.

END
IF NUM(RESPONSE) - 0 THEN

PRINT -MUST BE A NUMBER"
GOTO 1100

END

ITEM - REPLACE(ITEM,I,0,0,RESPONSE*100)
RETURN

END

IF TYPE(I) - 'DATE' THEN
1200* NEED A DATE

1250*

END

PRINT OCONV(CURRENT,' DO') I RIfPiIlUUUIINIJIIIIUNII'" :
INPUT RESPONSE
IF RESPONSE - I' THEN RETURN ; * JUST LOOKING
IF RESPONSE - 'T' THEN

DATE - DATEO
GOTO 1250

END
IF RESPONSE - I' THEN

ITEM - REPLACE(ITEM,I,O,O,") ;* DELETE THIS ATT.
RETURN

END
DATE - ICONV(RESPONSE,'D')
IF DATE - " THEN

PRINT "USE DATE FORMAT 'KONTH/DAY/YEAR'"
GOTO 1200

END

ITEM - REPLACE(ITEM,I,O,O,DATE)
RETURN

1300* NO NECESSARY FORMATS
PRINT CURRENT 'RII II II II If 1/ 1I!i 1111//111111 1/' :
INPUT RESPONSE
IF RESPONSE - " THEN RETURN
IF RESPONSE - I' THEN RESPONSE - I I

ITEM - REPLACE(ITEM I,O,O,RESPONSE)
RETURN

END

CHAPTER 9 - PICK/BASIC
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-183

I
J
I
I
I

I
!
J
I
I
J
J
I
I
I
I
I

I
I
E
I

, ..

I
I
E
E
E
I
I

[

I
I

9.123 SUMMARY OF PICK/BASIC STATEMENTS

This summary presents the general form for each of the PICK/BASIC
Statements. The statements are listed in alphabetical order.

STATEHENTS

ABORT(errnum(,param,param, ... }}

BREAK ON/OFF

CALL @name(argument list)

CALL name(argument list)

CASE --- BEGIN CASE

CASE expression
stmts

CASE expression
stmts

END CASE

CHAIN "any TCL command"

CLEAR.

CLEAltFlLE (file.variable)

COH(HON) variable (,variable)

CRTexpression

DATA expression(,expression ... }

DELETE (file.variable,) itemname

DIM variable(dimensions) (,variable(dimensions»

ECHO ON/OFF

ENTER"cataloged.program"

END

EXECUTEexpression (CAPTURING varl) (RETURNING var2)

EQU(ATE} variable TO equate-variable (, ...)

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-184

Copyright 1988 PICK SYSTEMS

FOOTING "text 'options' (text 'options')"

FOR ••. NEXT---FOR variable - exp TO exp (STEP exp} (WHlLE/UNTIL exp)

NEXT variable

GOSUB statement-label

GO(TO) statement-label

BEADING "text 'options' (text 'options')"

IF expression THEN stmts (ELSE stmts)

INPUT variable (:)

INPUT @(co1umn,row) variable (' mask')

INPUTERR expression

INPUTTRAP 'xx' GOTO n,n,n

INPUTTRAP 'xx' GOSUB n,n,n ...

INPUTNULL x

LOCATE(' String' ,Item{,Att#{,Va1#}};index#{;sequence})THEN/ELSE stmts

LOCK expression {THEN/ELSE stmts}

LOOP (stmts) WHlLE/UNTIL expression DO (stmts) REPEAT

KAT variable

KAT array.variab1e - expression

KAT array.variab1e - KAT array.variable

KATREAD array.variab1e FROM {file.variable,} itemname THEN/ELSE stmts

KATREADU array.variable FROM {file.variable,} expression THEN/ELSE

stmts

KATWRITE array.variab1e ON (fi1e.variab1e,) expression

KATWRITEU array.variab1e ON {fi1e.variab1e,} expression

NEXT variable

ON expression GOTO/GOSUB statement-label, statement-label

OPEN ("DICT",) "filename" (TO fi1e.variable) THEN/ELSE stmts

CHAPTER 9 - PICK/BASIC
Preliminary . PAGE 9-185

Copyright 1988 PICK SYSTEMS

I
"< I······

I
I
I
I
I
I
I
I
I
I
J
I
I

I
I
I

I
I

I
f
I·'·' ,

E
[

I
E
I
I ,
I
I
I
[

I
I

PAGE {expression}

PRECISION n

paINT {ON expression} print-list

PRINTER ON/OFF

paINTER CLOSE

PROCREADvariable THEN/ELSE statements

PROCWRITEvariable

PROMPT expression

READ variable FROM {file. variable, } itemname THEN/ELSE stmts

READNEXT variable {,vmc}{FROM select.variable} THEN/ELSE stmts

READT variable THEN/ELSE/ stmts

READU variable FROM {file.variable,} itemname THEN/ELSE stmts

READV variable FROM {file.variable,} itemname,att# THEN/ELSE stmts

READVU variable FROM {file.variable,} itemname,att# THEN/ELSE stmts

RELEASE {{file.variable,} expression}

REM or * or

RETURN

RETURN TO statement-label

REWIND THEN/ELSE stmts

RQM {seconds or "time"}

SELECT {file.variable}{TO select.variable}

SLEEP {seconds or "time"}

STOP {errnum{param,param, ... }}

SUBROUTINE name (argument list)

UNLOCK {expression}

VEOF THEN/ELSE {expression}

WRITE expression ON {file.variable,} itemname

WRITEU variable ON {file.variable,} itemname

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-186

Copyright 1988 PICK SYSTEMS

WRITET expression TBER/ELSE stmts

WRITEV expr&ssion ON (fi1e.variab1e,) itemname,att#

WRlTEVU expression ON (fi1e.variab1e,) itemname,att#

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-187

Copyright 1988 PICK SYSTEMS

I
J
1

I
I
I
J .. 1 '.

p' l

]

!
I
I
l
l
I
J
I
J
I

I
I
I
I
[

I
I
I
I
I
I
I

I

I
[

[

I

9.124 BASIC INTRINSIC FUNCTION SUHKARY

This summary presents the general
Intrinsic Functions. The functions
page referenced.

form for each of the PICK/BASIC
are listed in alphabetical order.

FUNCTION

@(co1umn(,row)

ABS(expression)

ALPHA (expression)

ASCII (expression)

CHAR,(expression)

COLO

COL2()

COS (expression)

COUNT (string,substring)

DATE 0

DCOUNT (string, substring)

DELETE(da.variable,att#{,value#(,sub-value#)))

EBCDIC(expression)

EXP(expression)

EXTRACT(da.variab1e,att#(,va1ue#(,sub-value#})

FIELD(expression,delimiter,occurence#)

ICONV(expression,conversion)

INDEX(string,sub-string,occurence#)

INSERT(da.variable,att#(,value#(,sub-value#,}}(;}new.expression)

INT(expression)

LEN(expression)

LN

CHAPTER 9 - PICK/BASIC
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-188

KOD(numerator , denominator)

ROT (express ion)

ROH(expression)

OCONV(expression,conversion)

PWR(expression,power)

REH(numerator,denominator)

IEPLACE(da.variable,att#{,value#{,sub-value#,}}{;}new.expression)

llND(expression)

SEQ (expression)

SIN (expression)

SPACE (length)

SQRT (expression)

STR(expression,occurence#)

TAN (expression)

TIHEO

TIHEDATEO

TRIH(expression)

CHAPTER 9 - PICK/BASIC
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 9-189

,. I···'···

I
I
I
J
I
I
I
J
J
I
I
J
I
I
Ii, .,

I
I
I

I

I

I
I
I
I
I
I

I
I
[

[

I

\
\

\ \
I

9.125 BASIC COMPILER ERROR KESSAGES \ \.

1
This summary presents a list of the error messages which may occur as a 1
result of compiling a PICK/BASIC program. 1

__ 1

ERROR NO.

JBIOI

jBI02
IBI03

jBI04

'i.:::
IsI07
jnoa

0S109

]
J ,BllO

BIll

ERROR MESSAGE

PROGRAM 'xx' COMPILED.
n FRAMES USED.

COMPILATION ABORTED;
NO OBJECT CODE
PRODUCED

MISSING "END", NEXT",
"WILE", "UNTIL",
"REPEAT", OR "ELSE";
COMPILATION ABORTED,
NO OBJECT CODE
PRODUCED

BAD STATEMENT

LABEL "C" IS
MISSING

LABEL "C" IS
DOUBLY DEFINED

"C" HAS NOT
BEEN DIMENSIONED

"C" HAS BEEN
DIMENSIONED AND USED
WITHOUT SUBSCRIPTS

"ELSE" CLAUSE MISSING

"NEXT" STATEMENT
MISSING

VARIABLE MISSING IN
"NEXT" STATMENT

"END" STATEMENT
MISSING

"UNTIL" OR "WILE"
MISSING IN "LOOP"

CAUSE

PICK/BASIC program compiled with
no compilation errors. This is not
an error; it simply informs that
compilation is completed.

Compilation errors present.

Compilation error present.

Unrecognizable statement.

Label indicated by GOTO or GOSUB
was not found.

More than one statement was found
beginning with the same label.

Subscripted variable was not
dimensioned.

Dimensioned variable used without
subscripts.

ELSE clause is missing.

NEXT statement is missing in
FOR-NEXT loop.

Iteration variable is missing in NEXT
statement.

END statement is missing in multi­
line IF statement.

UNTIL or WILE clause is missing in
a LOOP statement.

Copyright 1988 PICK SYSTEMS CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-190

j j / STATEMENT
I

Bl12 " -REPEAT" MISSING IN REPEAT is missing in a LOOP statement.
I

-LOOP" STATEMENT

J B113 COLUMN B Garbage following a legal statement

J
TERMINATOR MISSING or quote missing.

B114 MAXIMUM NUMBER OF Using the default descriptor size of
VARIABLES EXCEEDED 10, the maximum number of variables

(including array elements) is 3274.

B115 LABEL 'C' IS USED The equate-variable is referenced
BEFORE THE EQUATE STMT before it has been defined.

B116 LABEL 'C' IS USED A common variable has been referenced
BEFORE THE COMMON STMT before it is put in common.

J B117 LABEL 'C' IS MISSING An array is referenced without
A SUBSCRIPT LIST a subscript list.

B118 lABEL 'C' IS THE
OBJECT OF AN EQUATE
STMT AND IS MISSING

B119 WARNING - PRECISION

~20
VALUE OUT OF RANGE -
IGNORED!

WARNING - MULTIPLE
PRECISION STATEMENTS -

j Bl21

IGNORED!

lABEL 'C' IS A

J Bl22

CONSTANT AND CAN NOT
BE WRITTEN INTO

lABEL 'C' IS
IMPROPER TYPE

Copyright 1988 PICK SYSTEMS CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-191

J
J
I

J

]
, J

J
J
l

J
J
I
I
I

I
I

I , ..
I
I
I

, ..

If ..
F
L

t
[

9.126 BASIC RUN-TIME ERROR MESSAGES

This summary presents a list of the error messages which may occur as a
result of executing a PICK/BASIC program. Warning messages indicate that
illegal conditions have been smoothed over (by making an appropriate
assumption), and do not result in program termination. Fatal error
messages result in program termination.

WARNING MESSAGES

Error
~

\/ BIO

IBll
j B13

B209

B2l0

Error Message

VARIABLE HAS NOT BEEN
ASSIGNED A VALUE;
ZERO USEDI

TAPE RECORD TRUNCATED
TO TAPE RECORD LENGTH!

NULL CONVERSION CODE
IS ILLEGAL;
NO CQNVERSION DONE!

NON-NUMERIC DATA WHEN
NUERIC REQUIRED;
ZERO USED!

ILLEGAL PATTERN

COLl OR COL2 USED
PRIOR TO EXECUTING
A FI ELD STH!; ZERO
USED!

DIVIDE BY ZERO ILLEGAL;
ZERO USED!

FILE IS UPDATE
PROTECTED

FILE IS ACCESS
PROTECTED

CHAPTER 9 - PICK/BASIC
Preliminary

Cause

An unassigned variable was referenced.
(A value of 0 is assumed.)

An attempt was made to write more onto
a tape record than the tape record
length. (The record is truncated to tape
record length.)

A string variable that should have a
value is actually null.

A non-numeric string was encountered
when a number was required. (A value of
o is assumed.)

Illegal pattern used with MATCH or
MATCHES operator.

COLI or COL2 function used before FIELD
function used. (A value of 0 is assumed.)

Division by zero attempted. (A value of
o is assumed.)

Copyright 1988 PICK SYSTEMS
PAGE 9-192

FATAL ERROR MESSAGES

Error

j~
B12

I B14

~ B15

B17

I B18

j B25

j
B27

/

/ B28

j B30

,

~jB31
V . B32

/
/

J B33

Error Messa&e

FILE HAS NOT BEEN
OPENED

BAD STACK DESCRIPTOR

ILLEGAL OPCODE: C

ARRAY SUBSCRIPT
OUT-OF-RANGE

ATTRIBUTE LESS THAN
-1 IS ILLEGAL

PROGRAM "C" HAS
NOT BEEN CATALOGED

RETURN EXECUTED WITH
NO GOSUB

NOT ENOUGH WORK SPACE

ARRAY SIZE MISMATCH

STACK OVERFLOW

PAGE HEADING
EXCEEDS MAXIUK OF
1400 CHARACTERS

PRECISION DECLARED
IN SUBPROGRAM t C tIS
DIFFERENT FROM THAT
DECLARED

Cause

File indicated in I/O statement has
not been opened via an OPEN statement.

This error message is generated if the
the lengths of the input-lists or
lengths of the input-lists or output­
lists in the CALL and SUBROUTINE state­
ments are different, if an attempt is
made to execute an external subroutine
as a main program or if a file variable
is used as an operand.

Object code for this item is not legal.

Array subscript is less than or equal
to zero or exceeds the row or column
number indicated by a DIM statement.

Attribute less than on specified in
READV or YRITEV statement.

The specified external subroutine must
be cataloged before appearing in a CALL
statement.

RETURN statement executed prior to
GOSUB.

Not enough work space assigned at
LOGON to run program.

Array sizes in MAT Copy statement, or
in CALL and SUBROUTINE statements, do
not match.

The program has attempted to call too
many nested subroutines.

Page heading is too long.

Precision must be the same between
calling programs and subroutines.

J B34 FILE VARIABLE USED WHERE STRING EXPRESSION EXPECTED

J B4l LOCK NUMBER IS
GREATER THAN 47

CHAPTER 9 - PICK/BASIC
Preliminary

Maxium of locks available is 47.

Copyright 1988 PICK SYSTEMS
PAGE 9-193

l

I

I
I
I
l
l
J
1
l
J

I
J

I
I
I

[, ..
I
I
I
I
E

I

l
I

9.127 LIST OF ASCII CODES

This summary presents a list of ASCII codes used in the PICK system.

12~ClHAL HEX CHARACIER
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 A
11 B
12 C
13 D
14 E
15 F
16 10
17 11
18 12
19 13
20 14
21 15
22 16
23 17
24 18
25 19
26 1A
27 IB
28 lC
29 lD
30 IE
31 IF
32 20
33 21
34 22
35 23
36 24
37 25
38 26
39 27
40 28

CHAPTER 9 - PICK/BASIC
Preliminary

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI
DLE
DCl
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US
SPACE
!

"

$,
&

(

SeECI~ USE IH el~K
Null prompt character
Cursor home on CRT Terminal

Cursor forward on CRT Terminal
Bellon CRT Terminal

Cursor down on CRT Terminal
Vertical address on CRT Terminal
Screen erase on CRT Terminal
Carriage return on CRT Terminal

Horizontal address on CRT Terminal

Cursor back on CRT Terminal

Cursor up on CRT Terminal

Copyright 1988 PICK SYSTEMS
PAGE 9-194

41 29
42 2A
43 2B
44 2C
45 2D
46 2E
47 2F
48 30
49 31
50 32
51 33
52 34
53 35
54 36
55 37
56 38
57 39
58 3A
59 3B
60 3C
61 3D
62 3E
63 3F
64 40
65 41
66 42
67 43
68 44
69 45
70 46
71 47
72 48
73 49
74 4A
75 4B
76 4C
77 4D
78 4E
79 4F
80 50
81 51
82 52
83 53
84 54
85 55

CHAPTER 9 - PICK/BASIC
Preliminary

)

*
+

/
0
1
2
3
4
5
6
7
8
9

<

>
?
@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P
Q
R
S
T
U

Copyright 1988 PICK SYSTEMS
PAGE 9-195

I

I
,
I··
"······'

I
I., .. ,., .. · ..
J
J
l
I
J
I
I
I
I

I
I
I ..
I
E
I
I., ..
I
I
I

, ..
I ,
I.

I
I
[

[

I

86 56
87 57
88 58
89 59
90 5A
91 5B
92 5C
93 5D
94 5E
95 SF
123 7B
124 7C
125 7D
126 7E
127 7F
251 FB
252 FC
253 FD
254 FE
255 FF

CHAPTER 9 - PICK/BASIC
Preliminary ,

V
W
X
Y
Z
[
/
[

DEL
SB Start buffer
SVM Secondary Value Mark
VM Value Mark
AM Attribute Mark
SM Segment Mark

Copyright 1988 PICK SYSTEMS
PAGE 9-196

9.128 SUMHARY OF THE PICK/BASIC DEBUGGER COKKANDS

The following is a summary of all the PICK/BASIC DEBUGGER commands and
their descriptions.

Bx Set breakpoint condition table where 'x' is a simple
logical expression, which may be composed of < (less
than), > (greater than), - (equal to), # (not equal
to), & (and), and the special operator $ (line number).

D

DEBUG

DE

En

G

Gn

K

Kx

~#

LP

Nx

OFF

P

PC

R

S

T

Tv

Displays breakpoint and trace tables.

Escape to standard debugger.

Short form of DEBUG.

Step on n+l instructions. E <RETURN> turns mode off.

End execution of PICK/BASIC program and return to TCL.

Proceed from breakpoint.

Go to line n.

Kills all breakpoint conditions in table set by 'B'
command.

Kills breakpoint condition 'x' where 'x'
breakpoint number from 1-4.

is the

Display source code lines starting at n and continuing
for # lines.

All output forced to printer reverses status each time
LP is selected.

Continue thru x+l breakpoints before stopping.

Log off.

Inhibit PICK/BASIC program output.

Printer close - output to spooler.

Pops return stack.

Display subroutine stack.

Turns breakpoint trace table alternatley off and on.

Set variable 'v' in trace breakpoint table.

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-197

Copyright 1988 PICK SYSTEMS

I
~ J'

I

I

!

i
• •
I
I
I

I

I
I
I
I
I
I
I

I
I' ...

I
I

[

E

NOTE:

u

Uv

v

z

$

?

/v

/m(x)

/m(x,y)

/m

/*

[x,y]

Remove all breakpoint trace table variables set by 'T'
command.

Remove breakpoint trace variable 'v' from table.

Verify object code.

Request symbol table.

Current statement number.

Display current program name, line # and object code
verification status.

Print value of a variable 'v'.

Print value of a point 'x' in array 'm'.

Print value of point 'x,y' in array 'm'.

Print the entire array where 'm' is the array.

Dump entire symbol table.

String window where 'x' equals the start of the string
and 'y' equals the length of the string. This command
effects all outputs of variables and has no effect on
input.

Removes string window (setting string length to zero has
the same effect).

Equal sign prints out after the printing
in any slash command except '/m'. The
variable may be changed at this point.

of a variable
value of the

Carriage return terminates all controls.

A linefeed equals G <RETURN>

Break key breaks to PICK/BASIC DEBUGGER from PICK/BASIC program

at end of line .

PICK/BASIC DE~UGGER prompts with '*'

CHAPTER 9 - PICK/BASIC
Preliminary PAGE 9-198

Copyright 1988 PICK SYSTEMS

9.129 APPENDIX G

BASIC DEBUGGER MESSAGES

The following informative, warning or error messages are
used by the BASIC DEBUGGER.

*E x Single step breakpoint at line number 'x' .

*Bn x Table breakpoint at line number 'x'. 'n' equals
number of breakpoint.

*V-x Value of variable at breakpoint.

*Nvar Variable not found in statement.

CMND? Command not recognized.

NSTAT# Statement number out of range of program.

SYM NOT FND Symbol not found in table.

UNASSIGNED VAR Variable not assigned a value.

STACK EMPTY The subroutine return stack is empty.

STACK ILL Illegal subroutine return stack format.

TBL FULL

ILLGL SYM

NOT IN TBL

NO SYM TAB

CHAPTER 9 - PICK/BASIC
Preliminary

Trace or break table full.

Illegal symbol.

Not in trace break table.

Symbol table not in file.

Copyright 1988 PICK SYSTEMS
PAGE 9-199

I

]

!
I
I .. ,' :I

l
J
I
I

l
I

I
I

I
I
I
I
I

I
I
I
I
I
I

I
I
[

[

I

Chapter 10

SYSTEM KAINTERANCE

THE PICK SYSTEM

USER HANUAL

PROPRIETARY INFORMATION

This document contains information which is
proprietary to and considered a trade secret of
PICK SYSTEMS. It is expressly agreed that it
shall not be reproduced in whole or part,
disclosed, divulged, or otherwise made available
to any tQird party either directly or indirectly.
Reproducttion of this document for any purpose is
prohibit~d without the prior express written
authorization of PICK SYSTEMS. All rights
reserved.

CHAPTER 10 - SYSTEK MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-1

10

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12
10.13
10.14
10.15
10.16
10.16.1
10.16.2
10.16.3
10.17
10.18
10.19
10.20
10.21
10.22
10.23
10.24
10.25
10.26
10.27
10.28
10.29
10.29.1
10.30
10.31
10.32

Contents

SYSTEH MAINTENANCE

VIRTUAL MEMORY STRUCTURE 10-3
ADDITIONAL WORK-SPACE ALLOCATION 10-6
THE FILE AREA 10-7
FRAME FORMATS 10-9
DISPLAYING FRAME FORMATS : THE DUMP VERB . . . 10-10
THE SYSTEM FILE and SYSTEM-level FILES . . . 10-12
THE BLOCK-CONVERT AND POINTER-FILE DICTIONARIES 10-14
THE ERRMSG FILE, LOGON MESSAGES, AND THE PRINT-ERR VERB 10-16
USER IDENTIFICATION ITEMS 10-19
SECURITY . 10 -21
THE ACCOUNTING HISTORY FILE: AN INTRODUCTION 10-23
THE ACCOUNTING HISTORY FILE: SUMMARY AND EXAMPLES 10-25
THE ACCOUNTING HISTORY FILE: PERIODIC CLEARING 10-27
FILE STRUCTURE: THE ITEM AND GROUP COMMANDS 10-28
FILE STRUCTURE: THE ISTAT AND HASH-TEST COMMANDS 10-30
DETERMINING NATURE OF GROUP FORMAT ERRORS 10-31

GROUP DEFINITION 10-31
GROUP FORMAT ERRORS 10-31
RECOVERY FROM GFE's 10-32

GENERATING CHECKSUMS: THE CHECK-SUM COMMAND 10-33
SYSTEM PROGRAMMER (SYSPROG) ACCOUNT 10-34
AVAILABLE SYSTEM SPACE: THE POVF COMMAND 10-34
CREATING ACCOUNTS 10-35
DELETE-ACCOUNT 10-36
FILE STATISTICS REPORT 10-37
UTILITY VERBS: STRIP-SOURCE, LOCK-FRAME, UNLOCK-FRAME, 10-39
SYS-GEN AND FILE-SAVE TAPES: FORMAT 10-41
FILE-RESTORE 10-42
ERROR RECOVERY DURING FILE LOADS 10-44
SELECTIVE RESTORES 10-45
SYSTEM BACKUP : FILE-SAVE 10-47
THE SAVE VERB 10-49

MULTIPLE REEL SAVES 10-50
ACCOUNT-SAVE AND ACCOUNT-RESTORE 10-51
SYSTEM STATUS: THE WHAT AND WHERE VERBS 10- 53
VERIFYING SOFTWARE 10-56

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
Preliminary PAGE 10-2

I
i

I
I

I
I
J

I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
[

I
I

10.1 VIRTUAL HENORY STRUCTURE

PICK is a multi-programmable virtual memory machine with all of the
virtual memory (i.e., disk) being directly addressable as if it were real
memory (i.e., core).

The virtual memory of an PICK system resides on a magnetic disk drive,
which is divided into 512 byte "Frames". the frames are given Frame-IO's,
or "FIO"s numbered 1,2, 3 ... up to the maximum FlO, which depends upon
the size of the disk.

The lower-numbered frames on the disk are "ABS" frames,
system software and workspaces. all frames above the
available for use in files. those frames not used in files
Available Space, sometimes called "Overflow".

EXECUTABLE AREA CABS)

which contain
ABS area are

make up the

The ABS area consists of executable object code ;and process workspaces.
Software written in PICK assembly language is loaded onto disk in the
executable area. The length of the executable area is a system generation
parameter, and must be between 511 and 4095. Frames 1 through 399 of the
executable area are reserved for current and future PICK software. The
remaining frames are available for user-written assembly language
programs.

WORK AREA

The PICK operating system allows multi-programming, which means more than
one different program may be executed, on a time-sharing basis, by the
cpu. each running program, or process, has a "Primary" workspace area of
32 contiguous frames, the first of which is called the "Process Control
Block" (PCB).

The PCB of channel zero is normally frame 512 (200 hex). PCB's for
succeeding processes are separated by 32, and therefore the PCB for
channel one is 544 (220 hex), channel two is 240 hex, etc.

CHAPTER 10 - SYST~ MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-3

Additionally, larger "Secondary" workspace blocks are reserved following
the last primary workspace, that of the SPOOLER. WSSTART is the starting
FID of the secondary workspaces, which continue to the end of the work
area. each process has three secondary workspaces, usually of 100 frames
each.

rILES AND 0YEllFLOW

After the work area are the PICK files, beginning with the SYSTEM file.
The base of the SYSTEM file, SYSBASE, is the beginning of the file space.
on a newly generated or restored system, all other files on the system
immediately follow the SYSTEM file. At the end of the files is the start
of Available Space (overflow), which then continues until the end of the
disk--KAXFID. (See the left side of the first figure.)

On a running system, the overflow area will become "fragmented", as
frames are taken from and returned to the overflow pool. (See the right
side of the second figure.)

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-4

I
I
I
I
I
J
I
I
I
I.'.' •.. I

1

1 ... ·.·.· •
I
I

I
!
I
I
I
I
I
I

I

I
I
I
I
I

[

[

lID (HEXl
I 1 1 I " " "
I 2 2 I I PICK I
I 3 3 I I Assembly I EXECUTABLE
I · I I Code I AREA
I 329 IV I
I 400 " I
I I User I
1 I Assembly I
I 1 Code I
I ~ll llE V V
I 512 200 " Line 0 PCB "
I I & Primary WORK
I 1 Workspace AREA
I • V

220 " Line 1 PCB Process
I & Primary Control
I Workspace Blocks

I V &
I ... workspaces ... Primary
I I Workspaces
1 " Spooler PCB
1 I & Primary
1 I Workspace

I • IV V
WSSTART I " Line 0 Sec. "

1 Y Workspace I
I I Secondary
I ~ I Workspaces
I " SPOOLER Sec. I

I 1 V Works~ace V V
ABS area, including Executable area and Work area.

SYSBASE I I "
_---..1 1

Files 1 I
I 1
I 1

- - 1 1
I 1
I I
I I

- -I I
I 1

- -Available- - I I
Space I 1

I I
I I

- - I I
MAXFID I I V

Files and Available Space, after a file-restore (left)
and after undergoing normal fragmentation (right)

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-5

10.2 ADDITIONAL WOlK-SPACE ALLOCATION

The "additional workspace" is a set of contiguous, linked frames that is
initialized by the system at coldstart or system-generation time.

There are several processors in the system that require large amounts of
workspace, or buffer area. This workspace is pre-assigned, and need not
be linked up at LOGON time. The workspace is linked after a file-restore,
or it may be linked from TCL by use of the LINK-WS verb. The SPOOLER
process links the workspace for all the other lines, and no other user
can log on the system while this linkage is taking place; the message:

LINKING WORK-SPACE; WAIT

will appear until the spooler has finished the linkage.

The starting FID of the workspace may be computed as below:

WSSTART - 512 + (number of lines)*32. Each line has three (3) workspaces
of one hundred (100) contiguous frames.

The workspace may be linked on a live system using the LINK-WS verb on
the SYSPROG account. This may be done if it is suspected that the links
of the additional workspace have been destroyed for some reason. One
manifestation of this situation is that BASIC programs may terminate with
the "NOT ENOUGH WORK SPACEn message. Work-space links should be
particularly suspect if a program or process aborts on one channel, but
works correctly on others.

The general form of the verb to re1ink the workspace is:

LINK-WS (n(-m))}

If the n(n)n or n(n_m)n is omitted, the workspace of ALL lines will be
re1inked, except those of lines logged on and that of the spooler
process. The parenthetical specification may be used to limit the
relinking process to lines nnn, or "nn through nmn only.

As the linkage proceeds, the line-number of the
is currently being linked is displayed on the
logged on, the message "ONI" will be displayed,
RELINKEDI

process whose workspace
terminal; if the line is

and THE WORK-SPACE IS NOT

The spooler's workspace can only be re1inked via a coldstart!

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-6

J

]

I
J
l

]

J
]

1

]

I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

10. 3 THE I'lL! AREA

Beginning immediately after the Work Area, the remainder of the virtual
memory (called the File Area) is available for the storage of data in
files. The portions of the File Area that are not allocated to the files
are maintained as a pool of Available Space.

The beginning of the File Area is a system generation parameter. It may
be computed via the following general formula: .

Start of I'ile Area - (lID of first PCB) +
«number of proc •••••)*32 +
«number of proc •••• s)*(pr.-a •• igned vork-.pac.)*3

Pre-assigned work-space is set to 100 frames per process per work-space.
Each process (including the spooler) has 3 secondary workspaces of 100
frames each.

As an example, a system with 16 communication lines (therefore 17
processes including the spooler) will have the start of the file area at
frame:

512 + (17 * 32) + (17 * 300) - 6156

The end of the File Area is the highest available disk f~ame, KAXFID.

File Area frames which are not allocated to the files are maintained as a
pool of Available Space, often called "Overflow". Available Space is used
by the Pick system file management routines as additional data space, as
well as to other processors as scratch work space. The Pick Computer
System maintains a table of pointers that define the Available Space,
which may be either in a "linked" form, or in a "contiguous" form.
Contiguous Available Space, as the name implies, consists of blocks of
contiguous frames (defined by starting and ending numbers) that can be
taken out of the pool either singly or as a block. Linked Available Space
can only be taken a frame-at-a-time. Conversely, space may be released by
processors to the linked available pool a frame-at-a-time, or to the
contiguous pool as a block.

At the conclusion of a File-Restore process on the Pick system, an initial
condition may be said to exist; there will be one principle block of
contiguous available space, extending from ,the end of the current data
space through the last available data frame. This is illustrated in the
first figure; the results of the POVF (print overflow) verb indicate that
there is no linked overflow space (blank line at the top of the output),
and only one contiguous block of space.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-7

As the system obtains and releases Available Space (and as files are
created and deleted), the Available Space gets fragmented; at any
particular time there may be several blocks of contiguous Available
Space, and a chain of linked Available Space. Available frames will be
placed in the linked Available Chain only when there are 31 sets of
contiguous Available space (representing the aaximum that the system
space management routines can maintain). This is illustrated in the
second figure; here the linked Available chain starts at FlO 23459 and
contains 400 frames. There are also several sets of contiguous Available
space as shown by the pairs of FIDs displayed.

Logically, there is no difference between Available space in linked chain
and that in the contiguous sets; however, certain processors obtain
frames from the contiguous space only, for example the CREATE-FILE
processor, and the HEM-DIAG processor. Therefore, if the system Available
space is severely fragmented, while there may be actually be enough disk
space to create a large file, for example, there may not be enough
available as a contiguous block. Periodically, a File-Restore may be run
to restore contiguous Available space from the linked Available space
chain.

(SEE: POVF)

>POVF [CR]

23987- 97799

TOTAL NUMBER OF CONTIGUOUS FRAMES AVAIABLE- 63812

Results of POVF immediately after a file-restore
(One contiguous block of Available space only)

>POVF [CR]
23459 (400)
8112- 8117 (6)

23789- 23801 (13)
25681- 25692 (12)
34502- 35123 (522)
37091- 37091 (1)
37099- 37100 (2)
43100- 44234 (1135)
46343- 46443 (101)
46448- 46448 (1)
46454- 46454 (1)
47011- 47444 (434)
47661- 47750 (90)
48018- 48018 (1)
48233- 48268 (36)
51111- 53234 (2124)
60000- 97799 (37800)

9000- 9000 (
25000- 25678 (
27123- 27323 (
35800- 35801 (
37093- 37093 (
38100- 38100 (
45680- 45681 (
46445- 46445 (
46451- 46451 (
46458- 46474 (
47460- 47492 (
48012- 48017 (
48020- 48101 (
48299- 48299 (
53400- 53601 (

1)
679) .
201)

2)
1)
1)
2)
1)
1)

17)
33)
6)

82)
1)

202)

TOTAL NUMBER OF CONTIGUOUS AVAILABLE FRAMES- 43509

Results of POVF after normal system operation.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-8

I
I
I
I
I
I
I
I
I
I
I
I
I ..
I

I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

10.4 FIAHE fORMATS

A frame
number
sizes:
bytes.

is a block of disk space that is referenced by a unique
called the Frame Identifier, or FlO. Frames come in two
ABS frames contain are 2048 bytes, file frames contain 512

There are two types of frames in the Pick system - ABS frames and FILE
frames. ABS frames may be object-code (assembly or PICK/BASIC-compiled
object code), buffers, or workspaces required by the system. ABS frames
contain 2048 bytes and are not linked.

FILE frames contain 512 bytes; 500 bytes are used for data, the remaining
12 bytes are used as "link fields". Linked frames are used to define
data areas that are greater than 1 frame in length. The groups in data
files may expand as more data is placed in the group, so when the end of
a frame is reached, another frame is obtained from the system overflow
and linked to the end of the group.

The format of the linked fields is as follows:

byte: 0 1 2 3 4 5 6 7 8 9 A B C
* nncf .. forward link backward link ... npcf * start

of data
where:

*

nncf

npcf

forward link

backward link

Unused byte.

Number of next contiguous
are linked forwards of
sequential to this FlO).

frames (count of
this one, whose

frames that
FlO's are

Number of previous contiguous frames (count of frames
that are linked backwards to this one, whose FlO's are
sequential to this FlO).

FlO of the frame that is next in logical sequence to
this one.

FlO of frame that is logically previous to this one.

The first frame of a linked set of frames will have zero "npcf" and
"backward link" fields, and the last frame of such a set will have zero
"nncf" and "forward link" fields. The "nncf" and "npcfn fields are also
normally zero, except in the "linked workspace" allocated to each
process, and in files that have a separation greater than one.

Following the link fields is the 500-byte data block.

Unlinked frames have no specified format; all 512 bytes of the frame may
be used by the system.

CHAPTER 10 - SYST~ MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-9

.j
10.5 DISPLAYING FRAME POIKATS THE DUMP VERB

The DUMP verb may be used to display data in a frame. The data
display may be specified in either character or hexadecimal format.

FORMAT:

where
nl{ -n2}

options

DUMP nl{-n2} ,options

nl and n2 specify the FIDs of the frames being dumped; may be
specified in decimal, or in hexadecimal by preceding the hex
number with a period (.).

Valid options are

C Display ABS frame; dump begins with byte 0 of the frame
and continues for 2048 bytes.

G Group; specifies that the data starting at frame nl is to
be dumped, and that the dump continue following either the
forward or backward links (depending on whether the U
option is not or is specified). The dump will terminate
when the last frame in the logical chain has been found.

L Links; specifies that the dump be confined to the "links"
of the frame(s) concerned; no data is displayed.

N No stop; if the data is printed on the terminal, specifies
that the end-of-page stop be inhibited.

P Printer; the display is routed to the line-printer.

U Upward trace; the data or links are traced logically
upwards, using the backward links to continue the display.

X Hexadecimal display; the frames are dumped in hexadecimal
with ASCII characters along the right side of the display.

NOTE: The linkage information displayed by the DUMP verb is meaningful
only for linked frames.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-10

I
I
it
I
I
I
I
I
I
J
I
I

J
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

>DUMP 6950,L [CR]

FID: 6950 0 6967 0 0 (1B26
+FID: 6967: 0 0 6950 0 (1B37

o 1B37 0 0)
o 0 1B26 0)

In the example above, the display indicates that 6950 is the FID
whose links are being dumped; the "nncf" field is 0; the "forward
link" field is 6967; the "backward link" field is 0; the "npcf" field
is O. Data in parentheses are the same numbers displayed in
hexadecimal. The next line displays the link fields of FID 6967; the
"+" indicates that this FID is logically "forward" of the preceding
one.

>DUMP .lDE7 X [CR]

FID: 7655 : o 7656 o 0 (1DE7 o 1DE8
)

0001 8E454E33 32FE2E42 502E462E 4A2E5041
0011 52414752 41504820 302E4C45 4654204D
0021 41524749 4E203220 2E4C494E 45204C45
0031 4E475448 203734FE 2E534543 54494F4E
0041 2031202E 62662049 53544154 20564552
0051 42202E78 626620FE 2E494E44 45582027
0061 49535441 54207665 726227FE 2E494E44
0071 45582027 46696C65 20737461 74697374
0081 69637327 20275374 61746973 74696373
0091 206F6620 61206669 6C6527FE 2E626F78
00A1 20FE4953 54415420 69732061 6E204143
00B1 43455353 20766572 62207768 69636820
00C1 70726F76 69646573 2066696C 65207574
00D1 696C697A 6174696F 6E20696E 666F726D
00E1 6174696F 6E2EFE2E 78626F78 FE20464F
00F1 524D4154 3AFE2E4E 462E494D 203135FE
0101 49535441 54207B44 4943547D 2066696C
0111 652D6E61 6D65207B 6974656D 2D6C6973
0121 747D207B 73656C65 6374696F 6E2D6372
0131 69746572 69617DFE 20202020 20207B6D
0141 6F646966 69657273 7D207B20 286F7074
0151 696F6E73 2C6F7074 696F6E73 2C2E2E2E
0161 6F707469 6F6E7329 207DFE2E 494D202D
0171 31352E46 2E4AFE20 2746696C 652D6E61
0181 6D652720 69732074 6865206E 616D6520
0191 6F662074 68652066 696C6520 666F7220
01A1 77686963 68207468 65207573 6572FE64
01B1 65736972 65732074 6F207365 65207468
01C1 65206861 7368696E 67207374 61746973
01D1 74696373 2EFE~468 65204953 54415420
01E1 76657262 2070j26F 76696465 73206120
01F1 66696C65

001 :.EN32 A.BP.F.J.PA:
017 :RAGRAPH O.LEFT M:
033 :ARGIN 2 .LINE LE:
049 :NGTH 74A.SECTION:
065 : 1 .bf ISTAT VER:
081 :B .xbf A.INDEX ':
097 :ISTAT verb,A.IND:
113 :EX 'File statist:
129 :ics' 'Statistics:
145 : of a fi1e,A.box:
161 : AISTAT is an AC:
177 :CESS verb which :
193 :provides file ut:
209 :i1ization inform:
225 :ation.A.xboxA FO:
241 :RMAT:A.NF.IM 15 A:
257 :ISTAT {DICT} fi1:
273 :e-name {item-lis:
289 :t} {se1ection-cr:
305 :iteria}A {m:
321 :odifiers} { (opt:
337 :ions,options, ... :
353 : options) }A.IM -:
369 :15.F.JA 'Fi1e-na:
385 :me' is the name :
401 :of the file for :
417 :which the userAd:
433 :esires to see th:
449 :e hashing statis:
465 :tics.Athe ISTAT
481 :verb provides a :
497 :file:

Sample usage of the DUMP verb.

o 0

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
Preliminary PAGE 10-11

10.6 THE SYSTEH rILl and SYSTEH-level rILlS

The SYSTEM file is the highest-level file in the PICK file hierarchy.
It contains the file-pointers to every account in the data-base, as
well as pointers to the system-level files such as ACC, PROCLIB, etc.

Entries in the SYSTEM file define user M/DICT's or special files
neccessary for the PICK software.

The M/DICT pointers are either D (file definition) or Q (file synonym)
items. The item-ID's of such items are the USER-NAMES that the user
enters when the system requests him to LOGON. Such items are created by
the CREATE-ACCOUNT processor, (for D items,) or by use of the EDITOR or
COPY processor for Q items. The format of user-identification items is
discussed in the section on USER IDENTIFICATION ITEMS.

The SYSTEM file also contains the file-pointers to the system-level files
that are necessary to the proper functioning of the system. These files
are:

ACC
BLOCK-CONVERT
POINTER-rILE
PROCLIB
SYSTEM-ERRORS

(Accounting file)
(for BLOCK-PRINT and PICK/BASIC (A) option)
(Saved lists.)
(Standard system PROC library)
(Disk errors)

The ACC file (Accounting history) has two types of items: those that
indicate the actively logged-on users, and the accounting-history .data
items that keep track of the usage statistics of each user. The format of
the items in this file is discussed in later sections.

The ACC files have a tri-level structure, with an ACC account, an ACC
dictionary and an ACC data section.

The BLOCK-CONVERT file contains two unrelated types of items:

1) Items that define the format used in the characters displayed when
the BLOCK-PRINT verb is used.

2) Items that are used to print a descriptive message when the "A"
(assembly-code) option is used when compiling a PICK/BASIC program.

The BLOCK-CONVERT file is a single-level file.

The POINTER-FILE contains items that are "pointers" to binary data
strings. It is referenced implicitly whenever the SAVE-LIST, GET-LIST,
DELETE-LIST, CATALOG or DECATALOG verbs are used. The POINTER-FILE is a
single-level file. The file-defining entry "POINTER-FILE" in the SYSTEM
file must have the code "DC" in line 1. This indicates that the file
contains non-standard, binary data items.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-12

I
J
I
l
I
I
J
I
I
I

I
]

I
I
I
I·· ,

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
[

[

I

The PROCLIB file is a single-level file that contains commonly used
PROCs, such as CT (Copy to Terminal), LISTU (List active users), etc.

The SYSTEM-ERRORS file is a three-level file reserved for logging system
errors. Currently its only use is to store disk errors.

Level 0 SYSTEM dictionary

Levell ACC BLOCK-CONVERT
SYSTEM-ERRORS

(account) dictionary dictionary

Level 2
SYSTEM-ERRORS

dictionary
dictionary

Level 3
SYSTEM-ERRORS

data

SYSTEM-level files

POINTER-FILE PROCLIB

dictionary (account)

ACC

ACC

data

CHAPTER 10 - SYSTE!l MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-13

10.7 THE BLOCK-CONVERT AND POINTER-PILE DICTIONARIES

This section describes the format of entries in the BLOCK-CONVERT, and
POINTER-FILE dictionaries.

BLOCK-CONVERT dictionary:

There are two types of entries in the BLOCK-CONVERT file; type I is the
entry that forms the characters for the BLOCK-PRINT verb. Its format is:

Item-id: is the character to be formed; that is, the item whose item-id
is "C" will form the character C; that whose item-id is "{" will form the
character (, etc.

The first attribute contains a code of the form:

n{c)

where "n" is the width of the character matrix (the depth of all
characters formed is fixed at 8); and the optional "c" is a character
that will replace the item-id in the generation of the BLOCK-PRINT form.

There must be 8 succeeding attributes, each one specifying the format of
a row in the generated form. Each attribute must begin with a "C" or a
"B", specifying a character insertion or a blank insertion respectively,
followed by the number of such insertions needed; optionally, additional
numbers may be specified, separated by commas. Each succeeding number
switches the insertion from character to blank and vice-versa. The sum of
all numbers must equal the character width specified in attribute 1. See
the first example.

The second type of data in the BLOCK-CONVERT file has a
two-hexadecimal-digit item-id, corresponding to the PICK/BASIC opcode
generated by the PICK/BASIC compiler; attribute 1 is the symbolic name
for the opcode. These entries are used by the "A" option of the
PICK/BASIC compiler to generate a listing of the PICK/BASIC object code.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-14

I

J
J
I
I
I
J
J
J
I
I

I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
[

[

I

POINTER-FILE dictionary:

This file contains the pointers to select-lists (stored by the SAVE-LIST
verb) and to cataloged PICK/BASIC programs (stored by the CATALOG verb).
They may be examined, but, like file-pointers,lhould pever be altered in
an! VI! by the ulerl. The format of these items is:

Item-id account-name*x*y

001 CL or CC
002 fid
003 n
004 m

OOS time & date

>COPY BLOCK-CONVERT S 8B (T) [CR]

where "x" is C for a cataloged
program, or "L" for a select-list,
and y is the program-name, or
select-list name.
CL for lists, CC for programs.
Base FID of the program or list.
_ frames in the program or list.
Number of items in a list; null
for a program.
Time and date of generation.

S Item-id; defines format for character "S"
001 7 Defines character width as 7
002 B1,5,lSpecifies string" SSSSS " (1 blank,S S's,l blank)
003 C2,3,2Specifies string "SS SSw
004 C2,5
005 B1,5,lSpecifies string" SSSSS "
006 BS,2
007 C2,3,2
008 B1,S,l
009 B7

8A Item-id (BASIC object-code byte)
001 STOP Identifies object-code (STOP opcode).

Sample items from BLOCK-CONVERT file.

>BLOCK-PRINT S [CR]

SSSSS
SS SS
SS

SSSSS
SS

SS SS
SSSSS

Output using BLOCK-PRINT verb.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-15

10 . 8 THE IlUllISG rILE. LOGON KESSAGES. AND THE PJ.INT -!lUl VERB

Most error messages generated by TCL, ACCESS, PICK/BASIC, PROC or any
other system software are contained in the ERRKSG file. A standard set
of approximately 250 error message items is provided with the PICK base
system. However, the user may change the error messages in the ERRKSG
file, add new error messages, or even create another ERRHSG file for each
account. This can be particularly useful when used in conjunction with the
STOP and ABORT statements in PICK/BASIC, in which the user can specify an
error message and pass parameters to the error message processor.

Items in the ERRKSG file must follow a certain format, in which the
character in each line of the item defines a special operation, as
below.

first
listed

CHARACTER MEANING

jH

I"n)
~<n)

1s<n)

Causes the string following the "H" on be placed in the output
buffer, with no carriage return or line feed. At the end of the
error message item, the string "H+" will inhibit the final
carriage-return/line-feed that is normally output.

Causes the output buffer to be printed, with a carriage-return and
line-feed

As above, and also causes n-l blank lines to be printed.

Places the current date in the output buffer.

Places the current time in the output buffer.

Inserts the next parameter in the list of
passed to the error message processor with the
parameters may be specified by the PICK/BASIC
of a PICK/BASIC STOP or ABORT statement,)
processor in the case of system-generated error

parameters which was
error message. The

program (in the case
or by some system

messages.

Inserts the next parameter right-justified in a field of n blanks.

Same as R(n), but left-justified.

Skips a parameter in the parameter list.

Sets the output buffer pointer to location "n".

SPECIAL ERRKSG FILE ITEMS.

The item "LOGON" in the SYSTEM dictionary contains the request to logon
to the system (typically "LOGON PLEASE").

When a user logs onto an PICK system, the error message specified by the
item "LOGON" in the ERRKSG file is printed on the user's terminal.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
Preliminary PAGE 10-16

I

I
J
I
J
I

I
I
I
]

I
I
I
I
I

I
I
I
I
I
I
I
I

I
I
I
I

I

[

[

I

Therefore, any message which is to be received by all users on the system
immediately upon logging on may be placed in this item. This item must
exist on file even if there is to be no general system message.

The ERRKSG items "335" and "336" contain the connect time messages
displayed when a user logs on or off the system.

Some examples of error message processing are shown in the first figure.

The PRINT-ERR verb allows the user to invoke the error message processor
from TCL. The format is:

>PRINT-ERR file-name item-list

The error messages specified in the item-list will be processed, with a
parameter list of A,B,C,D ... See second figure.

In a PICK/BASIC program, the lines ...

FILE - "BP" ; ID - "1006"
OPEN "",FILE ELSE STOP 201,FILE
READ ITEM FROM ID ELSE STOP 202,ID

Could cause the program to stop with either of the following:

[201] 'BP' IS NOT A FILE NAME
'1006' NOT ON FILE.

If the item "LOGON" in the ERRKSG file for an account looked like:

HHello out there!
L
HIt's now
T
H and all's well!

Then the user would see the following when he logged on:

Hello out there!
It's now 11:22:33 and all's well!

Sample Usage of the Error Message Processor.

CHAPTER 10 - SYSTEM ~INTENANCE Copyright 1988 PICK SYSTEMS
Preliminary PAGE 10-17

j: >PRINT-ERR ERRMSG 201 [CRl
[201] 'A' IS NOT A FILE NAME

>PRINT-ERR ERRMSG 289

PAGE WIDTH:
PAGE DEPTH:
LINE SKIP
LF DElAY
FF DElAY
BACKSPACE
TERM TYPE

TERMINAL PRINTER
A B
C D
E
F
G
H
I

Sample Usage of the PRINT-ERR verb.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
Preliminary PAGE 10-18

I
I
I
I
I
J
I
I
J
J

1
I
J
I
I
I

I
I
I, , "'-

I
I , ..
I
I

I
I

I
I
I
I
[

I
I

10.9 USER IDENTIFICATION ITEMS

Each user has a user identification item stored in the System
Dictionary (SYSTEM). This set of user identification items define
the users that can log on to the system. User identification items
are either file definition items or file synonym definition items.

User identification items are initially created via the CREATE-ACCOUNT
PROC. These items may subsequently be updated via the EDITOR. ENTRIES
IN THE SYSTEM DICTIONARY SHOULD NOT BE UPDATED WHEN ANY OTHER USER IS
LOGGED ON to the system because the system software maintains pointers to
data in the System Dictionary when users log on; updating the System
Dictionary invalidates these pointers. An exception to this rule is when
creating a new account (or a synonym to an existing account). which can
be done at any time since new items are added to the end of the existing
System Dictionary data. and thus do not disturb any pointers to it.

Attributes five through eight of a user identification item contain data
associated with the user's security (lock) codes, password, and system
privileges:

ATTRIBUTE

5

6

7

8

9

Contains the set of retrieval lock-codes associated with the
user; may be multi-valued (separated by value marks). There
is no restriction to the format of individual lock-codes.
This attribute may be null. indicating no lock-codes. (Lock­
code usage is described in the topic titled SECURITY.)

Contains the set of update lock-codes associated with the
user; the same considerations as described for retrieval lock­
codes above.

Contains the user's password, which is a single value. This
attribute may be null. This field is encoded by the PASSWORD
process and should be changed only by the PASSWORD verb.

Contains a code which indicates the level of system privileges
(see below) assigned to the user.

May contain the code "U" to indicate that logon/logoff times
should be logged by the system. May contain the code "R" to
specify the RESTART option.

Attributes one through four and attributes ten through thirteen are as
defined for regular file definition of file synonym definition items (see
topic titled DICTIONARIES). The first figure shows a sample user
identification item for user SMITH.

Attribute 8 contains the system privilege level. Three levels are
available; they are referred to as SYSO (lowest), SYS1, and SYS2
(highest). respectively. Lower levels of system privileges restrict
usage of certain facilities of the system, as described in the second
figure.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-19

Attribute 9 may contain the codes 'U' or 'R', or both. 'U' specifies
that the accounting listing file is to be updated whenever the user logs
on and off this account (see ACCOUNTING FILE). 'R' specifies that the
Restart option is to be set. This causes the LOGON PROC to be
re-executed whenever an WENDW is typed at the DEBUG level.

item SMITH in System DictiOnary

001 D <-------------------------- DICODE
002 2537 <----------------------- Base FID
003 13 <------------------------- Modulo
004 1 <-------------------------- Separation
005 ABC <------------------------ Retrieval lock Code (LIRET)
006 1234 <----------------------- Update Lock Code (LjUPD)
007 PW5 <------------------------ Password
008 SYS2 <----------------------- System Privilege Level
009 U <-------------------------- Update Account File for this user

Sample User Identification Item For User SMITH

FACILITY
Updating of MIDICT

Use of magnetic tape

Use of DEBUG (other than P,
OFF, END and G commands).

Use of DUMP Processor

Use of Assembler and Loader

Use of FILE-SAVE and
FILE-RESTORE processors.

LOWEST PRIVILEGE LEVEL REQUIRED
~e

~e

~o

~o

~o

~o

Required System Privilege Levels.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-20

I
,

~.:
~

I
l
I

I.
~

i
]

I ,
J

I
J
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

r •
[

[

10.10 SECURITY

Security codes may optionally be placed in the LIRET and L/UPD attributes
of a dictionary item to restrict access and update. At Logon time, each
user is assigned the set of security codes which are in his user
identification item. During the session, whenever, an LIRET or L/UPD
code is encountered, a search is made of the user assigned codes for a
match; if no match is found the user is denied access. A security code
may consist of any combination of legal ASCII characters.

LIUT and letuPD

Both file definition ("D" code) and synonym file definition ("Q" code)
items have LIRET (retrieval locks) and L/UPD (update locks) attributes.
When these attributes have values stored, they are known as security
codes. Although there is no prohibition against multiple values for
these attributes, only the first attribute value is used for matching
against the user assigned codes. Since each file may be individually
locked for both update and retrieval, a user must be assigned mUltiple
codes to that set of data he is allowed to access. Using this feature, a
complex "mask" can be constructed for each user, giving each user a
different sub-set of files which he may access.

Security at the file level is invoked at the processor level. The
following processors are assumed to be updating processors and therefore
require a match on the L/UPD attribute in the file definition item: COPY,
EDIT, PICK/BASIC if writing a file, RUN and the Assembler. Other
processors are assumed to be retrieval processors and require a match on
the LIRET attribute in the file definition item.

PICK/BASIC requires a match against LIRET code when the file is opened;
and requires a match against the L/UPD if data is changed in the file.

Failure
L/UPD)
control

to match one of the user security codes with either the LjRET (or
attribute value will generate the following message (and return
to TCL):

[210] FILE xxx IS ACCESS PROTECTED

User Assigned Codes

Each user identification item in the System Dictionary (see topic titled
USER IDENTIFICATION ITEMS) contains the list of security codes assigned
for that particular user. These codes are values for the attributes
LIRET and L/UPD. The lock code in the user-identification item and the
lock code in the file being verified must match.

Security codes may be assigned initially when an account is created via
use of the CREATE-ACCOUNT PROC Security codes may be added or deleted by
upds.ting the appropriate security codes); however, updates to the user
identification item should only be performed when no one else is logged
onto the system.

CHAPTER 10 - SYSTEM'MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-21

Security Code Comparison

Security codes are verified comparing the value in the file dictionary
against the corresponding string of values in the user identification
item. Characters are compared from left to right. An equal (verified)
compare occurs when the value in the file dictionary is exhausted and all
characters match up to that point. This is illustrated below.

When referencing a file using a Q synonym a security code match is made
at all levels (l.e., SYSTEM, K/DICT, and flle dictionary) and therefore a
correspondence must be maintained at all levels in order to process the Q
synonym files. Since the user identification item for the account
containing the primary file is verified for security codes, the user
referencing the Q synonym must have a code defined in this user
identification item which will verify with the first code in the equated
account's user identification item. Therefore, in a user identification
item, only the first code is used to protect the account from Q synonym
accesses,whi1e all the codes in the item are assigned to the user when he
logs on.

FILE DICTIONARY CODE USER IDENTIFICATION CODE RESULT

123 123 Match

12 123 Match

123 12 No Match

nz nZ5 Match

AQ2 AQ No Match

Sample Security Code Comparisons.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-22

I
I
]

I
I
I

I
I
I
I

l
I
J
I
I
I

I

I , ..
I
I
I
I
r ..
I , ..
I
I ..
I
I ..

1
I

10. 11 THE ACCOUNTING HISTORY FILE: AN INTllODUCTION

The Accounting History File is one of the mandatory files in the PICK
system. This file contains accounting history for the system, as well as
the entries that describe the currently active (logged-on) users.

The System dictionary (SYSTEM) contains the file definition item (item-id
'ACC') for the Accounting History File, as illustrated in the figure. The
'ACC' dictionary is set up for examining and listing the data in
Accounting History File via ACCESS (see topic titled THE ACCOUNTING
HISTORY FILE: SUMMARY AND EXAMPLES). There are two types of entries
(items) in the Accounting History File: those that represent active
(logged-on) users, and those that keep track of accounting history.

Active Users Items

The item-id of an active user item in the Accounting History File is the
four-character hexadecimal FID of the PCB of the user's process. If the
PCB's start at FID-5l2, (they proceed in steps of 32 frames from there
on), we see that a user logged on to process zero will have an entry with
an item-id '0200' (512). while a user logged on to process one will have
an entry with an item-id '0220' (544), and so on. Attribute one of an
active user item contains the name of the user (i.e., the item-id of the
user identification item), attribute three the. date logged on, and
attribute four the time logged on. Active user items are created when a
user logs on, and deleted when he logs off.

Accounting History Items

The item-id of an accounting history item is the name of the user (i.e.,
the item-id of the user identification item), with the channel number
concatenated by a "#". For example, if user 'SMITH' logs on to channel
12, when he logs off. the item whose item-id is 'SMITH#12' in the ACC
file will be updated. This allows one to keep track of system usage by
user-id as well as channel number.

Attributes one, two and three are not used.
attributes are described below:

The remainder of the

ATTRIBUTE

4 Dates(s) Logged on. Each unique date is stored. Value marks are
tagged on to the value in this attribute if mUltiple Logoffs occur
on the same date (for LIST alignment purposes). Date is stored in
Pick Computer System date format .

5

6

Time(s) Logged on. An entry is made for each Log-off. representing
the time at which the user Logged on. Time is represented in seconds
past midnight (24- hour clock).

Connect time(s). This entry represents the time in seconds between
the Logon and the Logoff.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
Preliminary PAGE 10-23

7

8

Charge-units. A number representing the CPU usage is added on each
Logoff.

Line-printer pages. A number representing the number of pages routed
to the line-printer for each session.

Note: Attributes 4, 5, 6, 7 and 8 are stored as a "Contro11ing­
dependent" data set, with attribute 4 being the controillng value, and
the others the dependent ones. See the ACCESS reference aanual for a
discussion of the "controlling-dependent" data set format.

The accounting history flle 'ACC' is not automatically updated every time
a user logs off the system. The SYSTEM dictlonary item for the user
must have a 'U' in attribute 9 if the user ls to have his Account file
history items updated. The entries in the Account file contain the
history of each session (logon to logoff). If the SYSTEM dictionary data
has been changed since logon or the history item to the updated is too
large for the work-space, the message number 338 will be printed.

Channel #Item-id Channel # Item-id

o 0200 16 0400
1 0220 17 0420
2 0240 18 0440
3 0260 19 0460
4 0280 20 0480
5 02AO 21 04AO
6 02CO 22 04CO
7 02EO 23 04EO
8 0300 24 0500
9 0320 25 0520
10 0340 26 0540
11 0360 27 0560
12 0380 28 0580
13 03AO 29 o SAO
14 03CO 30 05CO
15 03EO

Channel (Line) numbers and corrosponding Active User Item-IDs.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
Preliminary PAGE 10-24

I

1

" •
I
I
I
1

!
I
I

I
J
I
I
I

I

, ..
I
I ..
I

I
I
I
I

I
[

1
I

10.12 THE ACCOUNTING .HISTOllY PILE: SlOOWlY AND DAHPLES

This topic summarizes the formats of the active user
accounting history items in the Accounting History File.
are sample entries for the Accounting History File.

items and the
Also presented

The first figure summarizes the attributes for the active user items and
the accounting history items. The second figure shows a sample sorted
listing of the active users (users with a value for attribute AI) via an
ACCESS SORT statement. The third figure shows a sample listing of the
accounting history item for user SMITH via an ACCESS LIST statement.

ATTRIBUTE 'ACC' DICTIONARY ACCOUNTING
NUMBER NAME ACTIVE USER ITEM HISTORY ITEM

(item-id) Four-character User name#lineno
hexadecimal PCB-FID

1 NAME User name Not used

2 DATE Date logged on Not used

3 TIME Time logged on Not used

4 DATES Dates logged on

5 TIMES Times logged on

6 CONN Connect time

7 UNITS Charge-units

8 PAGES Number of printer
pages generated.

Summary of Active User Items and Accounting History Items

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-25

>LISTU [CR]

CH# PCBF NAME•.... TIME ... DATE LOCATION

00 0200 CM
01 0220 SYSPROG
02 0240 EL-ROD
03 0260 LC
05 02AO HVE

*06 02CO CM
07 02EO BUG EYE
10 0340 JT

11:02AM 03/22/78 Channel 0
l2:l0PM 03/22/78 Channell
09:11AM 03/22/78 Channel 2
06:59AM 03/22/78 Channel 3
09:55AM 03/22/78 Channel 5
11:25AM 03/22/78 Channel 6
01:29PM 03/21/78 Channel 7
11:34AM 03/22/78 Channel 10

Sample sorted listing of active user items (using LISTU).

>LIST ACC - "SMITH]" (selects items with item-ids
starting with the string "SMITH")

PAGE 1 12:17:22 22 MAR 1978

ACC DATE. TIME... CONN ... UNITS.. PAGES
* * * * SMITH#O 01/13 16:56 00:04 9

01/14 10:13 00:00 5
10:15 00:01 343

02/06 17:02 00:18 41
02/09 10:21 00:17 690
02/23 07:58 00:01 27
03/09 11:35 01:57 378

16:05 00:22 94
SMITH#5 01/13 12:48 02:25 160 5

15:20 00:05 14
15:25 00:00 2
15:28 00~17 110
16:20 02:55 2575 16
19:15 00:00 13

01/16 09:41 06:13 1853 6
15:55 00:12 15

2 ITEMS LISTED.

Sample listing of accounting-history item for user "SMITH".

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-26

i

1 ,
•
I .1'

I

l
I
I
I

1
I
I
I
J
I

, .. ,
•
I

I ,
i

I
I

I

[

I
I

10.13 THE ACCOUNTING BISTOllY FILE: .DIODIC CLIWlING

To avoid overflowing the accounting history
History file for a specific user, the items
cleared.

items in the Accounting
should be periodically

To clear the accounting history items from the ACC file, follow the steps
detailed in the first figure.

The point of overflow is determined by the activity of the user-account
(however, approximately 1000 LogonjLogoffs are allowed). This point can
be calculated by following the procedure detailed in the second figure.

If the accounting history item for a user-account does exceed the
available workspace, the user will be logged off, but the Accounting
History File will not be updated. To recover from this situation, follow
the procedure detailed below.

1. Logon to the SYSPllOG account.

2. Type the following (if you need a listing only):

>SORT ACC WITH NAME LPTR [CR]

3. Type the following:

1.

>SELECT ACC WITH NAME [Cll]
>DELETE ACC [CR]

Procedure to Clear all Accounting History Items.

Use the WHAT verb to determine the number of additional
work-space frames allocated for the system (parameter
WSSIZE in the WHAT display). Multiply this figure by 500
and add 3000.

2. To determine the current size, type:

>STAT ACC ACC-SIZE 'user-name' [Cll]

This will produce the following output:

STATISTICS OF ACC-SIZE:
TOTAL - xxx AVERAGE - yyy COUNT - zzz

3. If the value displayed for TOTAL in step 2 (i.e., xxx)
approaches the ~alue calculated in step 1, then the
user-account is approaching the overflow point.

Determining the point of overflow for an accounting-history item.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-27

10.14 PILE STllUCTUlUt: TIlE lTD AND CROUP COHHARDS

The ITEM and GROUP commands provide information about the item and group
structure of Pick files. Output can be displayed at the terminal or
optionally directed to the line printer.

! RMAT: ITEM file-name ite.-id (options»

This command displays the base FID of the group into which the specified
item-id hashes. If the item is not already on file, the message "ITEM
NOT FOUND" is displayed. In addition, every item-id in that group is
listed along with a character count of the item (in hex). At the end of
the list the following message is displayed:

n ITEMS m BYTES p/q FRAMES

j wher;:~: ::
p is the
q is the

number of items in the group.
total number of bytes used in the group.
number of full frames in the group.

J

number of bytes used in the last frame of the group.

Valid options for this command are as follows:

P - Direct output to line printer.
S - Suppress item list.

FORMAT:
GROUP file-name {(options»)

This command displays the base FID of each group in the specified file.
In addition, every item-id in the group is listed along with a character
count of the item (in hex). At the end of the list for each group the
following message is displayed:

n ITEMS m BYTES p/q FRAMES

where:

n is the number of items in the group.
m is the total number bytes used in the group.
p is the number of full frames in the group.
q is the number of bytes used in the last frame of the group.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-28

1
'I
II

I
I

l

" •

I: '.

J
l ..
I

I
I
I

I' ..
,
II

,
It

I
., •
I ,.
I

If ..

I

Valid options for thi~ command are as follows:

P - Direct output to line printer.
S - Suppress item list.

>ITEM M/DICT A [CR]

27121
0022 FILE-DOC
OOlC bd
0009 A
0011 T-ATT
OOOF DUMP
0018 B/ADD
OOOF DIVX
0014 EDIT-LIST
0028 V/CONV
0022 LISTU
0019 V/MIN
001B ACCOUNT-RESTORE
001D D/CODE
0028 SL
0023 INST-INDEX
0047 SAL
0072 TB
OOOE SAVE
18 ITEMS 591 BYTES 1/91 FRAMES

Displaying data in a group using the ITEM command.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-29

j

j

10.15 FILl STllUCTUllE: THE ISTAT AND HASH-TEST COJOWmS

ISTAT and HASH-TEST are ACCESS verbs that produce file hashing histograms,
ISTAT for specified file items and HASH-TEST on the basis of a
user-specified test modulo.

I STAT

An ACCESS sentence using the ISTAT command is constructed as illustrated
below. The ISTAT command provides a file hashing histogram for the
selected items in the selected file, as illustrated by the examples. For
further information regarding file hashing, refer to the section of this
manual titled VIRTUAL MEMORY OPERATING SYSTEM. HASH-TEST

HASH-TEST produces a file hashing histogram as a result of a
user-specified test modulo. The general form of this verb is as follows:

HASH-TEST (DICT) file-name {item-list} (selection-criteria)

>ISTAT PARCEL [CR]

FILE- PARCEL MODULO- 3 SEPAR- 1 13:50:42 22 MAR 1978
FRAMES BYTES ITKS
000002 00757 027 *»»»»»»»»»»»»»>
000002 00836 030 *»»»»»»»»»»»»»»»
000002 00785 028 *»»»»»»»»»»»»»»

ITEM COUNT- 85, BYTE COUNT-
AVG. ITEMS/GROUP- 28.3, STD. DEVIATION-

2378, AVG. BYTES/ITEM-
1.5, AVG. BYTES/GROUP-

Sample usage of the ISTAT command.

>HASH-TEST PARCEL [CR]

TEST MODULO: 9 [CR]
FlLE- PARCEL MODULO- 9 SEPAR- 1
FRAMES BYTES ITKS
000001 00256 009 *»»»»>
000001 00281 010 *»»»»»
000001 00255 009 *»»»»>
000001 00229 008 *»»»»
000001 00248 009 *»»»»>
000001 00251 009 *»»»»>
000001 00272 010 *»»»»»
000001 00307 011 *»»»»»>
000001 00279 010 *»»»»»

ITEM COUNT-
AVG. ITEMS/GROUP-

85, BYTE COUNT-
9.4, STD. DEVIATION-

13:50:55 22 MAR 1978

2378, AVG. BYTES/ITEM­
.8, AVG. BYTES/GROUP-

Sample usage of the HASH-TEST verb.

27.9
792.6.

27.9
264.2.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-30

i

J

I
I

I
I
1

I
I
I

, ..

,
•

I
• ..
I

I
I

" Ii

I
r
II.

1
I

10.16 DETElHINING NATURE OF GROUP FORMAT ERROIS

10.16.1 GROUP DEFINITION

The term group is used to specify one 'bucket' of storage. A file is made
up of a collection of groups, such that there are the same number of
groups as the number specified for the modulo of the file. Put another
way, the modulo of the file specifies the number of groups which make up
the file .

The hashing algorithm takes the specified item-id and decides in which
group it is or shou14 be stored. The file retrieval or storage routine
then searches that group for the specified item. The hashing algorithm
may be thought of as dividing the item-id by the modulo in order to
obtain the remainder. This remainder is then the 'group number', and
specifies the group which is to be searched.

Within each group the items are stored physically end to end. Each item
is made up of a count field, a key, and the data. The documentation for
this system has conventionally used the term 'item-id' in place of the
term 'key'. It remains that the item-id is the key which is used to look
up the location of the item.

The count field exists only in a file representation of the item. It is
a sixteen-bit binary number, such that the high-order bit is zero,
represented in the file in ASCII hexadecimal notation, and as such takes
up four bytes of storage. It immediately precedes the item-id in the
file. If the item in question is the first item in the group, the count
field starts in the first data byte in the frame. If the item is not the
first item in the group, then the count field starts at the first byte
after the termination mark of the last item.

The count field is used as a pointer to the end of the item. The end of
the item must be an attribute mark followed by a segment mark. If the
count field does not point to this pattern, there is a group format
error, and the group format error handler will be entered.

10.16.2 GROUP FORMAT ERRORS A GROUP FORMAT ERROR IS THE RESULT OF A
HARDWARE ERROR I

A group format error is sensed if the count field does not point at an
attribute mark, segment mark sequence. This may occur if the count is
wrong, or if the data at the end of the item is wrong.

The count field is definitely wrong if any of the four digits which make
up the count field are not ASCII hexadecimal digits, which are X'30'
X'39' or X'4l' - X'46', which are 0-9 and A-F.

The end of item data may be wrong if the count field contains the wrong
ASCII hexadecimal digits, or if the end of item data is actually wrong.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-31

The end of item data may be wrong in several ways. If the item is
contained in a frame, then the end of item data may be wrong in the ways
that the the count field may be wrong. If the item spans a frame
boundary, certain other mechanisms come into play. If a process was in
the process of updating an item, to the extent that the first frame
containing the item was written to disk, but that the last frame was not
written when the process was interrupted by something like a cold start,
then a group format error will occur. If the overflow handler becomes
confused, the frames attached to a group may be acquired by another data
file or by a print file. The difference should be obvious on inspection,
using the DUMP verb. Print files do not normally contain attribute or
value marks and data files do not normally contain carraige-return,
line-feed sequences.

If the damaged frame is the result of an incomplete update, then the
difficulty is localized. Repair of this group will usually attend to the
matter. If the damage appears to be due to co-ownership of the frame,
the problem may be greater. In this case it is best to leave the frame
with the frame to which it has a back-link, presuming that the data is
consistent in that chain. Then cut the forward link in the spurious
chain and terminate the group.

The effect of the group format error handler is to terminate the group at
the end of the last consistent item and cut the forward link out of the
last acceptable frame in the group. The rest of the overflow is
intentionally lost, because of the effect of having two copies of the
same frame referenced in the overflow chain.

The one case in which the group will not be terminated is when a print
file has meandered across the base of the file. In this case it is
probably best to recreate the ·file and selectively restore it. The old
file pointer should be thrown away. Do not use the DELETE-FILE verb on
the old file, because this will further muddy the condition of the
overflow handler.

10.16.3 RECOVERY FROH GFE's

If a group format error is encountered, the system will invoke the group
format error handler. This processor will print the error message to the
terminal and wait for an operator response. The valid operator responses
are:

'D' - which will enter the system debugger.

'E' - which will end the process and return to TCL.

'F' - which will allow the GFE handler to fix the error and continue.

NOTE that fixing the error will undoubtedly cause the loss of at least
one data item. This record normally must be manually recovered! The
recovery strategy is to identify the file affected and do a SEL- RESTORE
on the file. It is best to do this as soon after the group format error
is noticed as possible.

CHAPTER 10 - SYSTEK MAINTENANCE Copyright 1988 PICK SYSTEKS
PAGE 10-32

I
I
I
I
I
I
I
I
I
I
I
I
I

1

,
•

10.17 CENEllATING CBECUUMS: THE CHECK-SUM COlOlAND

The CHECK-SUM comma~ generates a checksum for file items, thus providing
a means to determine if data in a file has been changed.

~RMAT:

:: ~ CHECK-SUM (DICT) file-name (item-list) (attribute) (selection-criteria)

r ..

• flit

I •

r ..
!
[

L
I

A checksum is generated for items in the specified file, or subset of
items if the optional ·item-list" and/or ·selection-criteria" appear.
Furthermore, the checksum may be calculated for one specified attribute.
If no attribute is specified, the 1st default attribute will be used. If
there is no default attribute, or if the AKC is 9999, the entire item
will be included. The checksum will include the binary value of each
character times a positional value. This yields a checksum which has a
high probability of being unique for a given character string. The
dictionary portion is checksummed if the "DICT" option appears. (A
checksum is the arithmetic total, disregarding overflow, of all bytes in
the selected items.)

A message is output, giving checksum statistics, in the following form:
BYTE STATISTICS FOR file-name (or attribute name):

TOTAL - t AVERAGE - a ITEMS - i CKSUM- c BITS - b

where:

t is the total number of bytes in the attribute (or item) included
a is the average number of bytes
i is the number of items
c is the checksum
b is a bit count

The attribute mark trailing the specified attribute (or item) will be
included in the statistics .

To use checksums, the user should issue CHECK-SUM commands for all files,
or portions of files, to be verified and keep the output statistics.
Subsequently, the CHECK-SUM commands can be reissued to verify that the
checksum statistics have not changed. The checksum must be recalculated
whenever the user updates the filel

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-33

I
I)1

10.18 SYSTEJI PllOGIWlKElt (SYSPIlOG) ACCOUNT

Several special faciities are normally used from the System Programmer
(SYSPROG) Account. Procedures on this account are normally performed by
persons more familiar with the overall operation of the system.

To log on to the SYSPROG Account, type the following:

LOGON PLEASE: SYSPRQG.password [CR]

where "password" is the appropriate password set up for SYSPROG.
Alternate logon names (such as SP) may be used.

CREATE-ACCOUNT
ACCOUNT-RESTORE
BUFFERS
LOCK-FRAME
: FILES
:ABS/FILES

DELETE-ACCOUNT
SAVE
SEL-RESTORE
UNLOCK-FRAME
:ABSLOAD
WHAT

Some SYSPROG Verbs and Procs.

10.19 AVAILABLE SYSTEM SPACE: THE POVF COMMAND

The POVF verb displays the system overflow table.

FORMAT:
POVF (Pl

The POVF verb displays the contents of the system overflow table.

The P option forces all printed output to the line printer. the first
line of output is the FID of the first frame in linked overflow, folowed~
by the number of frames in the linked chain. the next lines (up' to 16)
describe blocks of contiguous overflow, and have the following format:

m n p m n p

where:

m is the first frame of a contiguous block.
n is the last frame of the block.
p is the number of frames in the block.

The total number of frames contained in all the contiiuous overflow is
then printed (using error message number 293):

TOTAL NUMBER OF CONTIGUOUS FRAMES : number

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-34

, .• · ... r
I

I
I
J

I
I

I

I
I
]

I
I
I
I
I

r ..
I
I
• it , ..
• •
I ..
, ..
I····· ,

I
I

• ..
I ..

10.20 ClEATING ACCOUNTS

I
I The CREATE-ACCOUNT PROC is used to create new user-accounts.
I /r---J CWTE-ACCOtJR'f ruc

The CREATE-ACCOUNT PROC generates a new account according to given
specifications. It then copies the contents of the NEWAC file (the
prototype M/DICT) to the new user M/DICT. Finally, it adds a file
synonym (Q item) to the account intoSYSPROG's M/DICT. The
CREATE-ACCOUNT PROC is invoked by typing in the PROC name:

>CREATE-ACCOUNT [CR]

The PROC then prompts the user for the required information, as shown
below.

NOTE: The CREATE-ACCOUNT PROC should not be used to create a new synonym
to an existing account; this should be done by using the EDITOR to create
the file synonym definition item (Q-item) in the SYSTEM dictionary.

>CREATE-ACCOUNT
ACCOUNT NAKE?SHERRY
L/RET-CODE(S)?AAA1BBB
L/UPD-CODE(S)?
PRIVILEGES?
MOD, SEP?.1L.l.

PROC is typed in at TCL.
Anything but [CR] is legal.
Multi-valued retrieval code.
[CR] means no lock code.
[CR] means SYSO. May be SYSO, SYS1, or SYS2.
[CR] defaults to 29,1.

CREATE-FILE (DICT SHERRY 37,1

[417] FILE 'SHERRY' CREATED; BASE- 34593 MODULO- 37 SEPAR - 1.

280 ITEMS COPIED
, SHERRY' ADDED
'SHERRY' UPDATED
PASSWORD?~

FINISHED

User's LOGON password.

Sample CREATE-ACCOUNT Usage.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-35

10.21 DELETE-ACCOUNT

I
I ~LETE-ACCOUNT deletes an account and all its files from an PICK

. ~system.

~~ELETE-ACCOUNT is a PROC which runs the program DEL-ACC. The program
lists all the files in the specified account, then requests verification
to delete the account. The files may be listed on the terminal or the
printer.

Requirements to run DELETE-ACCOUNT:

1. You must be logged on to SYSPROG.

2. SYSPROG must have Q-pointers to the KD of the account, and to
SYSTEM.

3. D-items must exist in DICT SYSTEM for SYSPROG and the account
name.

4. SYSPROG must have access to SYSTEM and all files on the account
to be deleted.

ALL USERS SHOULD LOG OFF before running this because an item in the
SYSTEM dictionary will be deleted.

>DELETE-ACCOUNT PROC name

Account Name ?SHERRY Enter account name

List Files on Printer (Y/N) ? To list files on printer, enter Y.

Files to be Deleted in Account: SHERRY 11:29:14 02 APR 88 PAGE 1

FILE Type BASE MOD SEP

GEN/LED D 85344 1 1
GEN/LED D 49911 231 1
BP D 44319 17 5

Still want to Delete Account SHERRY? I
To delete the account, enter Y.

Sample DELETE-ACCOUNT usage.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-36

J
I
I
,
I·

;·

J
J
I
I
I
I
J
I

l
I

I
I
I

: ;~ I······'·

I

I

I
!
[

I
l
I
I
t
E
I
!
[

I

10.22 rILE STATISTICS REPORT

The File Statistics 'Report provides a list of file parameters, such as
name, base, modulo, .and file size. It also provides the order of files
on a FILE-SAVE tape. The report is automatically generated by running a
FILE-SAVE, or may be generated at any time by using the PROC
LIST-FILE-STATS.

The report is broken down by account, with a line of information
generated for each file in the account that includes:

item. id
name
base, modulo, and separation
total file size
total number of frames used
utilization of file space
number of Group Format Errors (GFEs)

If the report is being sent to a printer that prints 132 columns, the
following additional information is included:

average item size
average number of items per group
pad space; that is, unused space

A total line is generated for each account.

The information for the report is kept in the STAT-FILE on the account
that does the FILE-SAVE; this is usually the SYSPROG account. The
FILE-SAVE process creates one item in the STAT-FILE for each file saved
on the file-save tape. The item-ids in the STAT-FILE are of the form

where
t

t:n

tape reel number where the file was dumped (this is 0
was run without dumping data to the tape)

if the SAVE

n file number; this file-number is used in the selective restoration
of files using SEL-RESTORE.

The NAME field of the items in the STAT-FILE contains data in the form:

dictname (dictionary file)
dictname*dataname (data file)

When a FILE-SAVE is started, the STAT-FILE data area is cleared and the
current file statistics information is written into the data area. The
STAT-FILE data area is also empty after a file-restore is done, because
attribute 1 of the file definition is a DY. This is desirable as the
statistics are no longer applicable.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-37

ITK-ID R# ID NAME BASE. MOD S ... SIZE FRAMES 'UT* GFE

1:367 1 367 ACC 9253 1 1 29 1 5
1:368 1 368 ACC 9254 1 1 2,191 5 87
1:369 1 369 ACC*ACC 9255 13 1 54 13 0

*** Totals for user: ACC 2,274 19 23

1:2 1 2 BLOCK-CONVERT 8149 111 8,324 24 69

*The utilization of file space is derived by dividing the size of the
file by the number of frames.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-38

J
I
I
I
1
J
I:·· , i

I
I
I

I
I

I
I
I
I
I

..
I

E
I

I ..
,
II,

I

I
L
I

I

10.23 UTILITY VEllBS: STaIP-SOURCE, LOCK-P'lWIE, UNLOCK-P'lWIE,
CHARGES, AND CHARGE-TO

I This topic describes a number of special utility verbs.

I~;--
~l.SOUICI Vtrb

The STRIP-SOURCE verb is a TCL-II verb used to remove the source code from
Assembly Language programs. This frees large amounts of d:f.sk space back
to the available space pool. Modes with source stripped out can still be
verified against the ABS.

FORMAT:
STRIP-SOURCE file-name item-list

After the verb has been invoked, the user is prompted with:

DESTINATION FILE:

The file-name where the stripped object code is to be stored should then
be entered. For example:

>STRIP-SOURCE PROG * [CR)
DESTINATION FlLE-SPROG [CR]

Here the file PROG containing source programs is stripped and copied to
the file SPROG.

The first six lines of the source item will be copied without source code
stripping. Standard Pick Systems convention for source modes has the
"FRAME" statement in line 1, and other descriptive information in lines
2 through 6; this information is maintained through the STRIP-SOURCE
process.

~LOCK-FRAHE Verb

The LOCK-FRAME verb may be used to core lock a frame.

FORMAT:
LOCK-FRAME number

where "number" is a decimal frame number. The LOCK-FRAME verb responds
with the absolute hexadecimal work address of the memory buffer in
which the frame is corelocked. The frame remains core locked until it
is released by the UNLOCK-FRAME verb, or the system is re-booted.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-39

J VIILOCK-PKAI!!! Verb

The UNLOCK-FRAME verb clears
indicated.

the corelocked buffer status of the frame

FORMAT:
UNLOCK-FRAME number

j /Where "number" is a decimal frame number.

CHAllGES Verb

The CHARGES verb prints the current computer usage since logon as connect
time in minutes and CPU usage in charge-units.

ORMAT:
CHARGES

CHARGE-TO Verb

The CHARGE-TO verb is used to keep track of computer usage for several
projects associated with the same logon name.

FORMAT:
CHARGE-TO name

This verb performs the following:

1.

2.

Terminates the current charge session by
the user's accumulated charge-units,
connect-time statistics.

updating the ACC file with
line printer pages and

Changes the logon name to the original name concatenated with an
asterisk and then the name following "CHARGE-TO".

For example, if the user is currently logged on to SYSPROG, and he types
in the following:

>CHARGE-TO PROJECTI [CR]

the LOGON name in the ACC file for the process will be changed to
"SYSPROG*PROJECTl".

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-40

I
1 ..
I

I

J
I

I

~

I

J
:1 ill

J
I

I

I

I ,
I
.­
• ,
Ii

'" ..
" ..

I
I·' J :::

I

10.24 SYS-CD AND FILE-SAVE TAPES: FORHAT

System restore is ~he process of
system. A bootstrap program, all
loaded from magnetic tape. The
cold-start time.

"bringing up", or creating, the PICK
system software, and all files can be

system configuration is set up at

A system can be restored from a SYS-GEN tape or a file-save tape. There
are three sections on a SYS-GEN tape:

1.

2.

3.

The bootstrap section contains the MONITOR, the configurator, and
some virtual program frames needed to bootstrap the system. There
are 33 tape records in this section, followed by an END-OF-FILE mark
(EOF).

The ABS section, which contains the system software. This section
is preceded by a tape label, which contains the release level, and
terminated by an EOF. This software makes up the PICK Operating
System, the Language processors (ACCESS, PICK/BASIC, PROC, ASSEMBLY),
and the various utility programs.

The FILES section contains a minimum set of PICK files, including
the SYSTEM dictionary, a SYSPROG account, and the POINTER-FILE,
SYS-ERRS, ERRKSG and ACC files. Each account is preceded by a tape
label containing the account name, and is followed by an EOF. The
last account on the tape is followed by two (2) EOF marks (called an
EOD, or END-OF-DATA mark).

A FILE-SAVE tape contains only the third section--Files. There are no
coldstart nor ABS sections on FILE-SAVE tapes, only files.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
Preliminary PAGE 10-41

10.25 FILE-RESTORE

File-restores load previously saved files into the system.

A file-restore is initiated from a bootstrap or from the PROC :FILES.

Sequence of Events in File-restores

The first event in a complete file-restore is the initialization of
available overflow space to the complete range on the system from the
process workspaces (YSSTART) forward to the end of disk (MAXFID).

The file-restore process then proceeds to build the system. It creates
the SYSTEM dictionary and clears it. It reads the first account from
tape and sets up its master dictionary (HD); a pointer to the HD is
placed in the SYSTEM dictionary. The file-restore process next gets the
first file for that account; it creates a space for it and places a
poi.nter to it in the account's Master Dictionary. Next is the data file,
which is restored in one of two ways:

1.

2.

The slow method. The file is created, a pointer is added to the
dictionary, and then the data is loaded. Each item must be hashed
in order to determine its group. This method is necessary if
reallocation is being done, or if the file is the POINTER-FILE.

The fast method. The file is created and items are loaded group by
group; no hashing is necessary, since the group allocation is not
changing. After the file is completely loaded, a pointer is placed
in the dictionary. This is the normal method.

The system determines the appropriate method.

After all the data files and items for the first file have been restored,
the items in the file dictionary are loaded. The next file's dictionary
and data sections are restored in the same manner. When one account is
finished, the next account is restored. After all the accounts have been
restored, the SYSTEM dictionary is restored. This completes the
file-restore.

Account-restores proceed in the same sequence, except that the SYSTEM
Dictionary is already present, and only the pointer to the account Master
Dictionary is added to it.

Console Listing Accompanying File-restore

The figure below is an example of a file-restore listing. Each line
corresponds to a file pointer. Each line is indented in accordance with
the level of the file in which the pointer is placed. The file name is
first followed by the base, modulo, and separation of the file as it is
being restored. An (S) following the line indicates that the pointer has
the same base as some other pointer already listed and the file has
already been created.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
Preliminary PAGE 10-42

I

l
J
I
I

I
-" J

I··" {,

,
iii

I
I
I

W· .. , .. , ..
..

I

, ..

I
r ..

[

I

Terminal ae.pon.e for Additional aeels

If the end-of-tape mark is reached before the system finishes the routine
it is executing, the system sends a 'mount next tape' message. When the
next tape is mounted, the process waits for the character C to be
entered. The tape label on the new tape is compared with the previous
label. If the tape label is invalid, a message is displayed and the system
waits for ~he correct tape to be mounted and the character C to be
entered.

The 'incorrect tape label' message can be overridden by entering an 0 at
the prompt. The 0 response causes the system to accept the new reel .

SPOOLER STARTED

SYSTEM 8138,1,1
BLOCK-CONVERT 8138,11,1
SYSTEM-ERRORS 8171,11,1

SYSTEM-ERRORS 8182,11,1
SYSTEM-ERRORS 8193,11,1

PROCLIB 8204,2,3,1
SYSTEM 8138,11,1 (S)
SYSPROG

CURSOR 8252,1,1

ACC 9265,1,1
ACC 9266,1,1

ACC 9267,1,1

SYSTEM dictionary pointer
BLOCK-CONVERT
Pointer to SYSTEM-ERRORS MD
SYSTEM File Dictionary
SYSTEM Data Section
Pointer to PROCLIB MD
Pointer back to SYSTEM
Pointer to SYSPROG MD
DICT of SM file .

SYSTEM pointer to ACC MD
DICT ACC file in ACC account
DATA ACC file

Sample FILE-RESTORE Console Listing.

CHAPTER 10 - SYSTEM !qt.INTENANCE Copyright 1988 PICK SYSTEMS
Preliminary PAGE 10-43

10.26 ERROR RECOVERY DURING FILE LOADS

If parity errors or other errors mar the files section of a FILE-SAVE
tape, some data may be lost. The file-restore will continue, but
operator assistance may be needed.

Parity Error Recovery Procedure

If a parity error is detected on a file restore, the following prompt is
displayed:

PARITY ERROR I ENTER A TO TRY AGAIN
I TO IGNORE?

To retry, enter A. To accept the data block as it is without data
correction, enter I. The specific item and file affected cannot be
determined except as can be judged by the tape position and the current
set of files which have not been completed.

Recovery From Destroyed Pointers

If tape information identifying a file is destroyed, it may be impossible
for the restore to create that file and subsequent files in the right
order. The following messaged is displayed:

ERROR IN DSEGMENT
< ff.ddd
LEVEL (1-3)?

where "ff.ddd" gives the frame and hex displacement of the software
location at which the error was detected.

To continue, enter one of the following:
1 - Search for and continue with the next account on tape
2 - Search for the next dictionary file on tape
3 - Search for the next data file on tape

The response requires the operator's judgment as to the positioning of
files on the tape and the total situation.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
Preliminary PAGE 10-44

I

I
I
I
, •
I
I

I
I

,
II.

r •

I
I
E

I
[

L
I

10.27 SELECTIVE RESTORES

SEL-RESTORE is used to selectively restore individual files or items
from a system or account file-save tape.

Selective restores are performed as follows:

1. Log on to the account with the file to be restored.

2. Mount the tape. NOTE: Selective-restores may be started from any
place on any reel of a multi-tape file-save. To save time in
searching a tape, consult the STAT-FILE listing to determine the reel
on which the file's data starts and mount that reel.

3. Attach the tape unit (T-ATT).

4. To start the restore, enter:

SEL-RESTORE file.name item.list {(options)

where
file.name

item. list

file in which items are placed; this file must be
defined on the account from which the restore is run.

items eligible for restore; an asterisk (*) may be
specified as the item. list to indicate all items on
the tape

options ~he available options are

~ ~. tape is positioned in the desired account

/c This option has effect when the N option is used; it
causes every item before the next end of file to be
a candidate for restore. This ensures that data can
be restored even if a D pointer is damaged on the

/ tape.

/ F/ display all file names for all accounts; this is not
. compatible with the N option

Vr item-ids of the restored items are not to be printed

~ file is to be identified on tape by its file number

~ NOTE: the file number can be found on the
statistics file print-out for the appropriate file
save.

overlay

S / suppresses 'items on file' message

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-45

If the N option is used, the following prompt is displayed:

FILE #:

Enter the file number.

If the N option is not used, the following prompts are displayed:

ACCOUNT NAME ON TAPE:
FILE NAME:

The account name is the name of the account under which the file was
saved on tape, and file name is the name of the file as it appears on the
tape. If <RETURN> is pressed at the file name prompt, the account's
Master Dictionary (KD) is restored.

As the tape is searched, the file names on it are printed, along with the
file numbers; names are indented one space for account names, two spaces
for dictionaries, and three for data file names.

Hints on using SEL-RESTORE

- If a STAT-FILE listing for the tape is available, ensure that the
account names and file names are on the tape.

- If in doubt about the contents of the tape, the files can be listed by
using a SEL-RESTORE of the form:

:SEL-RESTORE TEMP * (F
ACCOUNT-NAME ON TAPE: XXXXX
FILE-NAME: YYY'iY

XXXXX and YYY'iY are fake names that cause the SEL-RESTORE to search the
tape for non-existent data; the F option indicates that file names are
printed out as encountered, along with the file numbers.

- In restoring both the dictionary and data section of a file, restore
the dictionary first (DICT filename). The dictionary items FOLLOW the
data items, so for large files, there may be a considerable pause after
the time that the system has found the file (it stops the printout),
and the actual restore of the items.

- At any point, the tape may be moved back (T-BCK (n)), or
forward-spaced (T-FWD (n» to position it, and a SEL-RESTORE with the
A or N options may be started; this may be faster than restarting the
tape from the beginning when restoring both the dictionary and the data
sections of a file, or when restoring multiple files.

- Account dictionaries (master dictionary items) FOLLOW ALL OTHER FILES
for the account on the tape.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-46

I
I
I

I

J
I
I
I

I
I
I
I
I

• •

,
•

I ,
I
I
I
I
[

[

I

10.28 SYSTEH BACKUP FILE-SAVE

The PICK system has the ability to save the entire disk data base on
magnetic tape and to restore the tape copy, entirely or selectively,
to disk. It is this procedure that provides backup in the event of a
catastrophic failure or error.

IT IS YOUR RESPONSIBLITY TO DO SAVES FREQUENTLY ENOUGH TO ENSURE
ADEQUATE BACKUP FOR YOUR PARTICULAR SITUATION I

The FILE-SAVE procedure protects your valuable data base by creating an
off-line copy of it on magnetic tape. Tape is an inexpensive commodity
when compared to the time and effort invested in your data base. It is
vital that you protect that investment through adequate backup. As a
MINIMUM pratice you should have separate daily backup tape-sets for one
week's time and a monthly backup for each month in the previous year.
Some situations may also need a weekly backup cycle for the past month.
That is, use a separate tape-set for each day of the week, one for each
week of the month and one for each month of the year. The longer cycle
tape-sets should be stored off premises to provide protection in the
event of physical damage such as fire.

ONLY YOU CAN DETERMINE WHAT IS ADEQUATE FOR THE PROTECTION OF YOUR DATA!

FILE-SAVEs are performed as follows:

1. Mount the tape reel onto which you intend to save your data.

2. Enter

FILE-SAVE

3. Several tape functions are performed automatically, then
following prompts are displayed:

List files saved to Crt or Printer? (C or P) -

the

The FILE-SAVE procedure normally creates a list on the terminal of
the files it finds as it saves the data base. It outputs error
messages if it encounters unusual or illegal conditions, but it
attempts to continue to save data. To send the listing to the
printer, enter Y.

Send STAT-FILE report to printer? (Y or N) -

The FILE-SAVE generates a statistics report of the saved data.
print the report, enter Y.

T-DUMP STAT-FILE to tape at end of FILE-SAVE? (Y or N) -

To save the report on to the file-save tape, enter Y.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-47

To

Verify save with dummy SEL-RESTORE? (Y or N) -

The verify checks for parity errors on the save media.

Enter tape label text (without embedded spaces) or <CR> for none
Tape Label -

4. FILE-SAVE then saves your data.

5. Operator intervention is required only if the data to be saved
exceeds one tape reel.

You now have a complete backup of your disk data base.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-48

I', ~

I
III

:I ..

I
II

i~

I

]
, Ii,.""
]',,',' i

I
]

I
I
I

I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
[

I

10.29 THE SAVE VERB

SAVE is the verb that performs a FILE-SAVE; it is called by the
FILE-SAVE PRoe.

The FILE-SAVE PROe sets up a sentence using the SAVE verb.

FORMAT:

OPTION

SAVE {(options)}

Data area is
to be saved.

saved.

MEANING

This option must be present if any files are

File names are printed. If (F) is not specified, just the SYSTEM
file and account-names are listed.

Group Format Errors are repaired. GFEs are also logged in the
STAT-FILE, if the (S) option is present.

Account save.

Output (list of file names) goes to the line printer. If (P) is
not specified, all output goes to the user's terminal.

STAT-FILE items are stored, one for each file saved. Must be
present if a STAT-FILE listing is to be made after the FILE-SAVE.

Output to Magnetic Tape. If the (T) option is not specified,
nothing is be written on magnetic tape. However, the STAT-FILE
will be generated if the (S) option is used.

Files whose file definition items have a "DX" in line 1 are not saved.
Thus, any data file, dictionary or even an entire account may be
prevented from taking up space on the FILE-SAVE tape.

Files whose file definition items have a "DY" in line 1 are saved, but
none of the items in the file or sub-files will be saved. The data
section of the STAT-FILE, for instance, has a "DY" code, because the data
is not valid after a file-restore, and needs not be saved.

To prevent spurious Group Format Error messages from occurring on other
lines while the FILE-SAVE is running, the SAVE processor locks groups as
it saves them. Up to 4 groups may be locked at one time by a file-save
process. These groups are those containing the following:

1. The SYSTEM dictionary pointer for the account being saved.

2. The file dictionary pointer for the dictionary of the file being
saved. This would be a group in the account's MD.

3. The group in the data file being saved.

CHAPTg 10 - SYSTEK MAINTENANCE Copyright 1988 PICK SYSTEMS
Preliminary PAGE 10-49

4. A group in the dictionary of the ACC file.

If a process on another line tries to access data in a locked group, that
process is paused until the file-save finishes saving all the items in
that group and unlocks it.

If the (T) option is specified, the SAVE processor will prompt the user's
terminal:

FILE-SAVE TAPE lABEL -

The response is written on the tape as part of the tape label.

10.29.1 MULTIPLE REEL SAVES

When the data to be saved exceeds the capacity of the
MOUNT NEXT REEL message appears on the terminal screen.
prompt follows the message.

mounted reel, a
A pound sign (#)

Remove the tape reel, which should have rewound itself. Mount and
position the next reel to the BOT (Beginning Of Tape) mark. Make sure
that the media is write-enabled and that the tape drive is on-line. Now
enter one of the following characters at the #, as appropriate:

C - CONTINUE
o - OVERWRITE (used in cases of erroneous tape labels)
Q - QUIT

This procedure also holds true for RESTORING mUltiple reels.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
Preliminary PAGE 10-50

I

3
I
I
I

I
I
I
I
J
1
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
E
I'·' ,

I
I
I
I
[

I

10. 12 THE ACCOUNTING HISTORY FILE: SUHHAllY AND EXAHPLES

This topic summarizes the formats of the active user
accounting history ite~ in the Accounting History File.
are sample entries for' the Accounting History File.

items and the
Also presented

The first figure summarizes the attributes for the active user items and
the accounting history items. The second figure shows a sample sorted
listing of the active users (users with a value for attribute AI) via an
ACCESS SORT statement. The third figure shows a sample listing of the
accounting history item for user SMITH via an ACCESS LIST statement.

ATTRIBUTE 'ACC' DICTIONARY ACCOUNTING
NUMBER NAME ACTIVE USER ITEM HISTORY ITEM

(item-id) Four-character User name#lineno
hexadecimal PCB-FlO

1 NAME User name Not used

2 DATE Date logged on Not used

3 TIME Time logged on Not used

4 DATES Dates logged on

5 TIMES Times logged on

6 CONN Connect time

7 UNITS Charge-units

8 PAGES Number of printer
pages generated.

Summary of Active User Items and Accounting History Items

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-25

>LISTU [CRl

CH# PCBF NAME. TIME... DATE.... LOCATION

00 0200 CM
01 0220 SYSPROG
02 0240 EL-ROD
03 0260 LC
05 02AO HVE

*06 02CO CM
07 02EO BUG EYE
10 0340 JT

11:02AM 03/22/78 Channel 0
12:10PM 03/22/78 Channell
09:11AM 03/22/78 Channel 2
06:59AM 03/22/78 Channel 3
09:55AM 03/22/78 Channel 5
11:25AM 03/22/78 Channel 6
01:29PM 03/21/78 Channel 7
11:34AM 03/22/78 Channel 10

Sample sorted listing of active user items (using LISTU).

>LIST ACC - "SMITH]" (selects items with item-ids
starting with the string "SMITH")

PAGE 1 12:17:22 22 MAR 1978

ACC DATE. TIME... CONN ... UNITS.. PAGES
* * * * SMITH#O 01/13 16:56 00:04 9

01/14 10:13 00:00 5
10:15 00:01 343

02/06 17:02 00:18 41
02/09 10:21 00:17 690
02/23 07:58 00:01 27
03/09 11:35 01:57 378

16:05 00:22 94
SMITH#5 01/13 12:48 02:25 160 5

15:20 00:05 14
15:25 00:00 2
15:28 00~17 110
16:20 02:55 2575 16
19:15 00:00 13

01/16 09:41 06:13 1853 6
15:55 00:12 15

2 ITEMS LISTED.

Sample listing of accounting-history item for user "SMITH".

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-26

I
I
I
I
I
I
I
I
I
I
I
I
I
J
I
I
I
I
I

I
I

I
I
I
I
I
I
I
I
I
I
I
I

I

10.13 THE ACCOUNTING HISTORY rILE: PEllIODIC CLEAllING

To avoid overflowing the accounting history
History file for a specific user. the items
cleared.

items in the Accounting
should be periodically

To clear the accounting history items from the ACC file. follow the steps
detailed in the first figure.

The point of overflow is determined by the activity of the user-account
(however. approximately 1000 LogonjLogoffs are allowed). This point can
be calculated by following the procedure detailed in the second figure.

If the accounting history item for a user-account does exceed the
available workspace. the user will be logged off. but the Accounting
History File will not be updated. To recover from this situation, follow
the procedure detailed below.

1. Logon to the SYSPROG account.

2. Type the following (if you need a listing only):

>SORT ACC WITH NAME LPTR [CR]

3. Type the following:

1.

>SELECT ACC WITH NAME [CR]
>DELETE ACC [CR]

Procedure to Clear all Accounting History Items.

Use the WHAT verb to determine the number of additional
work-space frames allocated for the system (parameter
WSSIZE in the WHAT display). Multiply this figure by 500
and add 3000.

2. To determine the current size, type:

>STAT ACC ACC-SIZE 'user-name' [CR]

This will produce the following output:

STATISTICS OF ACC-SIZE:
TOTAL - xxx AVERAGE - yyy COUNT - zzz

3. If the value displayed for TOTAL in step 2 (i.e., xxx)
approaches the value calculated in step 1, then the
user-account is approaching the overflow point.

Determining the point of overflow for an accounting-history item.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-27

10.14 PILE STl.UCTUltE: TIlE lTD AND GROUP COKHARDS

The ITEM and GROUP commands provide information about the item and group
structure of Pick files. Output can be displayed at the terminal or
optionally directed to the line printer.

FORMAT:

ITEM file-name item-id «options»

This command displays the base FlO of the group into which the specified
item-id hashes. If the item is not already on file, the message "ITEM
NOT FOUND" is displayed. In addition, every item-id in that group is
listed along with a character count of the item (in hex). At the end of
the list the following message is displayed:

n ITEMS m BYTES p/q FRAMES

where:

n is the number of items in the group.
m is the total number of bytes used in the group.
p is the number of full frames in the group.
q is the number of bytes used in the last frame of the group.

Valid options for this command are as follows:

P - Direct output to line printer.
S - Suppress item list.

FORMAT:
GROUP file-name {(options»

This command displays the base FlO of each group in the specified file.
In addition, every item-id in the group is listed along with a character
count of the item (in hex). At the end of the list for each group the
following message is displayed:

n ITEMS m BYTES p/q FRAMES

where:

n is the number of items in the group.
m is the total number bytes used in the group.
p is the number of full frames in the group.
q is the number of bytes used in the last frame of the group.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-28

I

I
I
I
I
I
J
I
I
I
I
J
)

I
I
I
I
I

I

I

I
I
I
I
I
I

I
I
[

[

I

Valid options for this command are as follows:

P Direct output to line printer.
S - Suppress item list.

>ITEM M/DICT A [CR]

27121
0022 FILE-DOC
OOlC bd
0009 A
0011 T-ATT
OOOF DUMP
0018 B/ADD
OOOF DIVX
0014 EDIT-LIST
0028 V/CONV
0022 LISTU
0019 V/MIN
001B ACCOUNT-RESTORE
001D D/CODE
0028 SL
0023 INST-INDEX
0047 SAL
0072 TB
OOOE SAVE
18 ITEMS 591 BYTES 1/91 FRAMES

Displaying data in a group using the ITEM command.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-29

10.15 PILE STRUCTUU: TIl! ISTAT AND BASH-TEST COMKANDS

ISTAT and HASH-TEST are ACCESS verbs that produce file hashing histograms,
ISTAT for specified file items and HASH-TEST on the basis of a
user-specified test modulo.

I STAT

An ACCESS sentence using the ISTAT command is constructed as illustrated
below. The ISTAT command provides a file hashing histogram for the
selected items in the selected file, as illustrated by the examples. For
further information regarding file hashing, refer to the section of this
manual titled VIRTUAL MEMORY OPERATING SYSTEM. HASH -TEST

HASH-TEST produces a file hashing histogram as a result of a
user-specified test modulo. The general form of this verb is as follows:

HASH-TEST (DICT) file-name {item-list} (selection-criteria)

>ISTAT PARCEL [CR]

FILE- PARCEL MODULO- 3 SEPAR- 1 13:50:42 22 MAR 1978
FRAMES BYTES ITMS
000002 00757 027 *»»»»»»»»»»»»»>
000002 00836 030 *»»»»»»»»»»»»»»»
000002 00785 028 *»»»»»»»»»»»»»»

ITEM COUNT- 85, BYTE COUNT-
AVG. ITEMS/GROUP- 28.3, STD. DEVIATION-

2378, AVG. BYTES/ITEM-
1.5, AVG. BYTES/GROUP-

Sample usage of the ISTAT command.

>HASH-TEST PARCEL [CR]

TEST MODULO: 9 [CR]
FILE- PARCEL MODULO- 9 SEPAR- 1
FRAMES BYTES ITMS
000001 00256 009 *»»»»>
000001 00281 010 *»»»»»
000001 00255 009 *»»»»>
000001 00229 008 *»»»»
000001 00248 009 *»»»»>
000001 00251 009 *»»»»>
000001 00272 010 *»»»»»
000001 00307 011 *»»»»»>
000001 00279 010 *»»»»»

ITEM COUNT-
AVG. ITEMS/GROUP-

85, BYTE COUNT-
9.4, STD. DEVIATION-

13:50:55 22 MAR 1978

2378, AVG. BYTES/ITEM­
.8, AVG. BYTES/GROUP-

Sample usage of the HASH-TEST verb.

27.9
792.6.

27.9
264.2.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-30

I' ;'l

I
I
I
I
I
I
I
I
J
I
J
I
J
I

I·· ';-

I
I
I
I
I
I
I
I
I
I
I
I

I
I
[

[

I

10.16 DETEIKINING NATURE OP GaOUp POIKAT KRaOIS

10.16.1 Gaoup DEPINI~ION

The term group is used to specify one 'bucket' of storage. A file is made
up of a collection of groups, such that there are the same number of
groups as the number specified for the modulo ~f the file. Put another
way, the modulo of the file specifies the number of groups which make up
the file.

The hashing algorithm takes the specified item-id and decides in which
group it is or shou14 be stored. The file retrieval or storage routine
then searches that group for the specified item. The hashing algorithm
may be thought of as dividing the item-id by the modulo in order to
obtain the remainder. This remainder is then the 'group number', and
specifies the group which is to be searched.

Within each group the items are stored physically end to end. Each item
is made up of a count field, a key, and the data. The documentation for
this system has conventionally used the term 'item-id' in place of the
term 'key'. It remains that the item-id is the key which is used to look
up the location of the item.

The count field exists only in a file representation of the item. It is
a sixteen-bit binary number, such that the high-order bit is zero,
represented in the file in ASCII hexadecimal notation, and as such takes
up four bytes of storage. It immediately precedes the item-id in the
file. If the item in question is the first item in the group, the count
field starts in the first data byte in the frame. If the item is not the
first item in the group, then the count field starts at the first byte
after the termination mark of the last item.

The count field is used as a pointer to the end of the item. The end of
the item must be an attribute mark followed by a segment mark. If the
count field does not point to this pattern, there is a group format
error, and the group format error handler will be entered.

10.16.2 GROUP POIKAT ERRORS A GROUP FORMAT ERROR IS THE RESULT OF A
HARJ)WARE ERROR'

A group format error is sensed if the count field does not point at an
attribute mark, segment mark sequence. This may occur if the count is
wrong, or if the data at the end of the item is wrong.

The count field is definitely wrong if any of the four digits which make
up the count field are not ASCII hexadecimal digits, which are X'30'
X'39' or X'4l' - X'46', which are 0-9 and A-F.

The end of item data may be wrong if the count field contains the wrong
ASCII hexadecimal dig~ts, or if the end of item data is actually wrong.

CHAPTER 10 - SYSTEKI MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-31

The end of item data may be wrong in several ways. If the item is
contained in a frame, then the end of item data may be wrong in the ways
that the the count field may be wrong. If the item spans a frame
boundary, certain other mechanisms come into play. If a process was in
the process of updating an item, to the extent that the first frame
containing the item was written to disk, but that the last frame was not
written when the process was interrupted by something like a cold start,
then a group format error will occur. If the overflow handler becomes
confused, the frames attached to a group may be acquired by another data
file or by a print file. The difference should be obvious on inspection,
using the DUMP verb. Print files do not normally contain attribute or
value marks and data files do not normally contain carraige-return,
line-feed sequences.

If the damaged frame is the result of an incomplete update, then the
difficulty is localized. Repair of this group will usually attend to the
matter. If the damage appears to be due to co-ownership of the frame,
the problem may be greater. In this case it is best to leave the frame
with the frame to which it has a back-link, presuming that the data is
consistent in that chain. Then cut the forward link in the spurious
chain and terminate the group.

The effect of the group format error handler is to terminate the group at
the end of the last consistent item and cut the forward link out of the
last acceptable frame in the group. The rest of the overflow is
intentionally lost, because of the effect of having two copies of the
same frame referenced in the overflow chain.

The one case in which the group will not be terminated is when
file has meandered across the base of the file. In this case
probably best to recreate the -file and selectively restore it.
file pointer should be thrown away. Do not use the DELETE-FILE
the old file, because this will further muddy the condition
overflow handler.

10.16.3 RECOVERY FROM GFE's

a print
it is

The old
verb on
of the

If a group format error is encountered, the system will invoke the group
format error handler. This processor will print the error message to the
terminal and wait for an operator response. The valid operator responses
are:

'D' - which will enter the system debugger.

'E' - which will end the process and return to TCL.

'F' - which will allow the GFE handler to fix the error and continue.

NOTE that fixing the error will undoubtedly cause the loss of at least
one data item. This record normally must be manually recovered I The
recovery strategy is to identify the file affected and do a SEL- RESTORE
on the file. It is best to do this as soon after the group format error
is noticed as possible.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-32

i
J'" ",

I
I
I
I
I
I
I
I

1
I
I
I
I
I

I
I

> I····

[

I
I
I
(

I
I
I
I

I
I
I
[

I

10.17 GERDATING CHECUtJllS: THE CHEClt-SUH comwm

The CHECK-SUM command generates a checksum for file items, thus providing
a means to determine if data in a file has been changed.

FORMAT:

CHECK-SUM (DICT) file-name (item-list) (attribute) {selection-criteria}

A checksum is generated for items in the specified file, or subset of
items if the optional "item-list" and/or "selection-criteria" appear.
Furthermore, the checksum may be calculated for one specified attribute.
If no attribute is specified, the 1st default attribute will be used. If
there is no default attribute, or if the AMC is 9999, the entire item
will be included. The checksum will include the binary value of each
character times a positional value. This yields a checksum which has a
high probability of being unique for a given character string. The
dictionary portion is checksummed if the "DICT" option appears. (A
checksum is the arithmetic total, disregarding overflow, of all bytes in
the selected items.)

A message is output, giving checksum statistics, in the following form:
BYTE STATISTICS FOR file-name (or attribute name):

TOTAL - t AVERAGE - a ITEMS - i CKSUM- c BITS - b

where:

t
a
i
c
b

is
is
is
is
is

the total number of bytes in the attribute (or item) included
the average number of bytes
the number of items
the checksum
a bit count

The attribute mark trailing the specified attribute (or item) will be
included in the statistics.

To use checksums, the user should issue CHECK-SUM commands for all files,
or portions of files, to be verified and keep the output statistics.
Subsequently, the CHECK-SUM commands can be reissued to verify that the
checksum statistics have not changed. The checksum must be recalculated
whenever the user updates the file!

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-33

10.18 SYSTEM PROGR.AMM:Ell (SYSPllOG) ACCOUNT

Several special faciities are normally used from the System Programmer
(SYSPROG) Account. Procedures on this account are normally performed by
persons more familiar with the overall operation of the system.

To log on to the SYSPROG Account, type the following:

LOGON PLEASE: SYSPRQG.password [CR]

where "password" is the appropriate password set up for SYSPROG.
Alternate logon names (such as SP) may be used.

CREATE-ACCOUNT
ACCOUNT-RESTORE
BUFFERS
LOCK-FRAME
: FILES
:ABS/FILES

DELETE-ACCOUNT
SAVE
SEL-RESTORE
UNLOCK -FRAME
:ABSLOAD
YHAT

Some SYSPROG Verbs and Procs.

10.19 AVAILABLE SYSTEM SPACE: THE POVF COHHAND

The POVF verb displays the system overflow table.

FORMAT:
POVF {(P)

The POVF verb displays the contents of the system overflow table.

The P option forces all printed output to the line printer. the first
line of output is the FID of the first frame in linked overflow, folowed~
by the number of frames in the linked chain. the next lines (up· to 16)
describe blocks of contiguous overflow, and have the following format:

m n p m n p

where:

m is the first frame of a contiguous block.
n is the last frame of the block.
p is the number of frames in the block.

The total number of frames contained in all the conti&uous overflow is
then printed (using error message number 293):

TOTAL NUMBER OF CONTIGUOUS FRAKES : number

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-34

I
I
J

I
I
I
I
I
I

J
I
I
I
I
I

I
I
[

I
I
I
I
I
(

I
I

I
I
[

[

I

10.20 CREATING ACCOUNTS

The CREATE-ACCOUNT PROC is used to create new user-accounts.

CREATE-ACCOUNT mac

The CREATE-ACCOUNT PROC generates a new account according to given
specifications. It then copies the contents of the NEWAC file (the
prototype M/DICT) to the new user M/DICT. Finally, it adds a file
synonym (Q item) to the account intoSYSPROG's M/DICT. The
CREATE-ACCOUNT PROC is invoked by typing in the PROC name:

>CREATE-ACCOUNT [CR]

The PROC then prompts the user for the required information, as shown
below.

NOTE: The CREATE-ACCOUNT PROC should not be used to create a new synonym
to an existing account; this should be done by using the EDITOR to create
the file synonym definition item (Q-item) in the SYSTEM dictionary.

>CREATE-ACCOUNT
ACCOUNT NAME?SHERRY
LjRET-CODE(S)?AAA1BBB
LjUPD-CODE(S)?
PRIVILEGES?
MOD, SEP?.ll...l

PROC is typed in at TCL.
Anything but [CR] is legal.
Multi-valued retrieval code.
[CR] means no lock code.
[CR] means SYSO. May be SYSO, SYS1, or SYS2.
[CR] defaults to 29,1.

CREATE-FILE (DICT SHERRY 37,1

[417] FILE 'SHERRY' CREATED; BASE- 34593 MODULO- 37 SEPAR - 1.

280 ITEMS COPIED
, SHERRY' ADDED
'SHERRY' UPDATED
PASST,JORD?R2D2 User's LOGON password.

FINISHED

Sample CREATE-ACCOUNT Usage.

CHAPTER 10 - SYSTEM, MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-35

10.21 DELETE-ACCOUNT

DELETE-ACCOUNT deletes an account and all its files from an PICK
system.

DELETE-ACCOUNT is a PROC which runs the program DEL-ACC. The program
lists all the files in the specified account, then requests verification
to delete the account. The files may be listed on the terminal or the
printer.

Requirements to run DELETE-ACCOUNT:

1. You must be logged on to SYSPROG.

2. SYSPROG must have Q-pointers to the HD of the account, and to
SYSTEM.

3. D-items must exist in DICT SYSTEM for SYSPROG and the account
name.

4. SYSPROG must have access to SYSTEM and all files on the account
to be deleted.

ALL USERS SHOULD LOG OFF before running this because an item in the
SYSTEM dictionary will be deleted.

>DELETE-ACCOUNT PROC name

Account Name ?SHEBRY Enter account name

List Files on Printer (YIN) ? To list files on printer, enter Y.

Files to be Deleted in Account: SHERRY 11:29:14 02 APR 88 PAGE 1

FILE Type

GEN/LED D
GEN/LED D
BP D

BASE

85344
49911
44319

MOD SEP

1 1
231 1
17 5

Still want to Delete Account SHERRY? 1
To delete the account, enter Y.

Sample DELETE-ACCOUNT usage.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-36

I
I
J
3
I
I
I
I
I
I
I
I
I
i
I
I
I
I
I

i
I
I
I
E
(

I
I
I
r.·
~

I
I
I

~ , , ..

I
I
I
l
I

10.22 FILE STATISTICS lEPORT

The File Statistics Report provides a list of file parameters, such as
name, base, modulo, and file size. It also provides the order of files
on a FILE-SAVE tape. The report is automatically generated by running a
FILE-SAVE, or may be generated at any time by using the PROC
LIST-FILE-STATS.

The report is broken down by account, with a line of information
generated for each file in the account that includes:

item.id
name
base, modulo, and separation
total file size
total number of frames used
utilization of file space
number of Group Format Errors (GFEs)

If the report is being sent to a printer that prints 132 columns, the
following additional information is included:

average item size
average number of items per group
pad space; that is, unused space

A total line is generated for each account.

The information for the report is kept in the STAT-FILE on the account
that does the FILE-SAVE; this is usually the SYSPROG account. The
FILE-SAVE process creates one item in the STAT-FILE for each file saved
on the file-save tape. The item-ids in the STAT-FILE are of the form

where
t

t:n

tape reel number where the file was dumped (this is 0
was run without dumping data to the tape)

if the SAVE

n file number; this file-number is used in the selective restoration
of files using SEL-RESTORE.

The NAME field of the items in the STAT-FILE contains data in the form:

dictname (dictionary file)
dictname*dataname (data file)

When a FILE-SAVE is started, the STAT-FILE data area is cleared and the
current file statist~cs information is written into the data area. The
STAT-FILE data area is also empty after a file-restore is done, because
attribute 1 of the file definition is a DY. This is desirable as the
statistics are no longer applicable.

CHAPTER 10 - SYSTEKKAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-37

Int-ID R# ID NAME•...... BASE. HOD S . .. SIZE FRAKES tUT* GFE

1:367 1 367 ACC 9253 1 1 29 1 5
1:368 1 368 ACC 9254 1 1 2.191 5 87
1:369 1 369 ACC*ACC 9255 13 1 54 13 0

*** Totals for user: ACC 2,274 19 23

1:2 1 2 BLOCK-CONVERT 8149 11 1 8.324 24 69

*The utilization of file space is derived by dividing the size of the
file by the number of frames.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-38

i
l

I
I
I
j

I
I
I
I
I
J

I
I
I
I
I

[

I
I
I
I
I
I
I
t ,
I
I
I
" •
I
I
[

10.23 UTILITY VEllBS: STaIP-SOURCE, LOCIC-lRAHE, URLOCIC-lRAHE,
CHARGES, AND CHARGE-TO

This topic describes a number of special utility verbs.

StRIP-SOUlCE Verb

The STRIp·SOURCE verb is a TCL-II verb used to remove the source code from
Assembly Language programs. This frees large amounts of disk space back
to the available space pool. Modes with source stripped out can still be
verified against the ABS.

FORMAT:
STRIP-SOURCE file-name item-list

After the verb has been invoked, the user is prompted with:

DESTINATION FILE:

The file-name where the stripped object code is to be stored should then
be entered. For example:

>STRIP-SOURCE PROG * [CR]
DESTINATION FILE-SPROG [CR]

Here the file PROG containing source programs is stripped and copied to
the file SPROG.

The first six lines of the source item will be copied without source code
stripping. Standard Pick Systems convention for source modes has the
"FRAME" statement in line I, and other descriptive information in lines
2 through 6; this information is maintained through the STRIP-SOURCE
process.

LOCIC-FRAME Verb

The LOCK-FRAME verb may be used to core lock a frame.

FORMAT:
LOCK-FRAME number

where "number" is a decimal frame number. The LOCK-FRAME verb responds
with the absolute hexadecimal work address of the memory buffer in
which the frame is corelocked. The frame remains core locked until it
is released by the UNLOCK-FRAME verb, or the system is re-booted.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-39

UNLOCK-FRAME Verb

The UNLOCK-FRAME verb clears the corelocked buffer status of the frame
indicated.

FORMAT:
UNLOCK-FRAME number

where "number" is a decimal frame number.

CHAllGES verb

The CHARGES verb prints the current computer usage since logon as connect
time in minutes and CPU usage in charge-units.

FORMAT:
CHARGES

CHARGE-TO Verb

The CHARGE-TO verb is used to keep track of computer usage for several
projects associated with the same logon name.

FORMAT:
CHARGE-TO name

This verb performs the following:

1.

2.

Terminates the current charge session by
the user's accumulated charge-units,
connect-time statistics.

upda ting the
line printer

ACC file with
pages and

Changes the logon name to the original name concatenated with an
asterisk and then the name following "CHARGE-TO".

For example, if the user is currently logged on to SYSPROG, and he types
in the following:

>CHARGE-TO PROJECTl [CR]

the LOGON name in the ACC file for the process will be changed to
"SYSPROG*PROJECT1".

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-40

;
I
J
,I

J
I
I
I
I
I
I
J
I

I
I
I
I
I

I
I
I
I
I
I
I
I
I
I ,
I
I ,
If •

[

L
[

10.24 SYS-GEN AND FILl-SAVE TAPES: PORHAT

System restore is the process of
system. A bootstrap program, all
loaded from magnetic tape. The
cold-start time.

"bringing up", or creating, the PICK
system software, and all files can be
system configuration is set up at

A system can be restored from a SYS-GEN tape or a file-save tape. There
are three sections on a SYS-GEN tape:

1. The bootstrap section contains the MONITOR, the configurator, and
some virtual program frames needed to bootstrap the system. There
are 33 tape records in this section, followed by an ENO-OF-FILE mark
(EOF).

2. The ABS section, which contains the system software. This section
is preceded by a tape label, which contains the release level, and
terminated by an EOF. This software makes up the PICK Operating
System, the Language processors (ACCESS, PICK/BASIC, PROC, ASSEMBLY),
and the various utility programs.

3. The FILES section contains a minimum set of PICK files, including
the SYSTEM dictionary, a SYSPROG account, and the POINTER-FILE,
SYS-ERRS, ERRKSG and ACC files. Each account is preceded by a tape
label containing the account name, and is followed by an EOF. The
last account on the tape is followed by two (2) EOF marks (called an
EOD, or ENO-OF-DATA mark).

A FILE-SAVE tape contains only the third section--Files. There are no
coldstart nor ABS sections on FILE-SAVE tapes, only files.

CHAPTER 10 - SYSTEM MAINTENANCE
Preliminary PAGE 10-41

Copyright 1988 PICK SYSTEMS

10. 25 FILE-RESTORE

File-restores load previously saved files into the system.

A file-restore is initiated from a bootstrap or from the PROC :FILES.

Sequence of Events in File-restores

The first event in a complete file-restore is the initialization of
available overflow space to the complete range on the system from the
process workspaces (WSSTART) forward to the end of disk (MAXFID).

The file-restore process then proceeds to build the system. It creates
the SYSTEM dictionary and clears it. It reads the first account from
tape and sets up its master dictionary (HD); a pointer to the HD is
placed in the SYSTEM dictionary. The file-restore process next gets the
first file for that account; it creates a space for it and places a
pointer to it in the account's Kaster Dictionary. Next is the data file,
which is restored in one of two ways:

1. The slow method. The file is created, a pointer is added to the
dictionary, and then the data is loaded. Each item must be hashed
in order to determine its group. This method is necessary if
reallocation is being done, or if the file is the POINTER-FILE.

2. The fast method. The file is created and items are loaded group by
group; no hashing is necessary, since the group allocation is not
changing. After the file is completely loaded, a pointer is placed
in the dictionary. This is the normal method.

The system determines the appropriate method.

After all the data files and items for the first file have been restored,
the items in the file dictionary are loaded. The next file's dictionary
and data sections are restored in the same manner. When one account is
finished, the next account is restored. After all the accounts have been
restored, the SYSTEM dictionary is restored. This completes the
file-restore.

Account-restores proceed in the same sequence, except that the SYSTEM
Dictionary is already present, and only the pointer to the account Kaster
Dictionary is added to it.

Console Listing Accompanying File-restore

The figure below is an example of a file-restore listing. Each line
corresponds to a file pointer. Each line is indented in accordance with
the level of the file in which the pointer is placed. The file name is
first followed by the base, modulo, and separation of the file as it is
being restored. An (S) following the line indicates that the pointer has
the same base as some other pointer already listed and the file has
already been created.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
Preliminary PAGE 10-42

i

I
I
I
j

I
I
J
I
I
I
J
i
I

I

"'" ,

I
I

I ,

F:·, ...

"'.,
:~

I
l
l
I

Terminal I.esponse fori Additional l.ee1s

If the end-of-tape ma~k is reached before the system finishes the routine
it is executing, the system sends a 'mount next tape' message. When the
next tape is mounted, the process waits for the character C to be
entered. The tape label on the new tape is compared with the previous
label. If the tape label is invalid, a message is displayed and the system
waits for ~he correct tape to be mounted and the character C to be
entered.

The 'incorrect tape label' message can be overridden by entering an 0 at
the prompt. The 0 response causes the system to accept the new reel.

SPOOLER STARTED

SYSTEM 8138,1,1
BLOCK-CONVERT 8138,11,1
SYSTEM-ERRORS 8171,11,1

SYSTEM-ERRORS 8182,11,1
SYSTEM-ERRORS 8193,11,1

PROCLIB 8204,2,3,1
SYSTEM 8138,11,1 (S)
SYSPROG

CURSOR 8252,1,1

ACC 9265,1,1
ACC 9266,1,1

ACC 9267,1,1

SYSTEM dictionary pointer
BLOCK-CONVERT
Pointer to SYSTEM-ERRORS MD
SYSTEM File Dictionary
SYSTEM Data Section
Pointer to PROCLIB MD
Pointer back to SYSTEM
Pointer to SYSPROG MD
DICT of SM file -

SYSTEM pointer to ACC MD
DICT ACC file in ACC account
DATA ACC file

Sample FILE-RESTORE Console Listing.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
Preliminary PAGE 10-43

10.26 ERROR RECOVERY DUlING FILE LOADS

If parity errors or other errors mar the files section of a FILE-SAVE
tape, some data may be lost. The file-restore will continue, but
operator assistance may be needed.

Parity Error Recovery Procedure

If a parity error is detected on a file restore, the following prompt is
displayed:

PARITY ERROR! ENTER A TO TRY AGAIN
I TO IGNORE?

To retry, enter A. To accept the data block as it is without data
correction, enter I. The specific item and file affected cannot be
determined except as can be judged by the tape position and the current
set of files which have not been completed.

Recovery From Destroyed Pointers

If tape information identifying a file is destroyed, it may be impossible
for the restore to create that file and subsequent files in the right
order. The following messaged is displayed:

ERROR IN DSEGMENT
< ff.ddd
LEVEL (1-3)?

where "ff.ddd" gives the frame and hex displacement of the software
location at which the error was detected.

To continue, enter one of the following:
1 - Search for and continue with the next account on tape
2 - Search for the next dictionary file on tape
3 - Search for the next data file on tape

The response requires the operator's judgment as to the positioning of
files on the tape and the total situation.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
Preliminary PAGE 10-44

I
i
I
] ,
~

I
I
I
l
1
J

1
I
I

I

I
[

I

I ,
I
I
[

[

•• •
r ..
I
!

L

10.27 SELECTIVE aES~aES

SEL-RESTORE is used to selectively restore individual files or items
from a system or account file-save tape.

Selective restores are performed as follows:

1. Log on to the account with the file to be restored.

2.

3.

4.

Mount the tape. NOTE: Selective-restores may be started from any
place on any reel of a multi-tape file-save. To save time in
searching a tape, consult the STAT-FILE listing to determine the reel
on which the file's data starts and mount that reel.

Attach the tape unit (T-ATT).

To start the restore, enter:

SEL-RESTORE file.name item.list {(options)

where
file.name

item. list

options

file in which items are placed; this file must be
defined on the account from which the restore is run.

items eligible for restore; an asterisk (*) may be
specified as the item. list to indicate all items on
the tape

the available options are

A tape is positioned in the desired account

C This option has effect when the N option is used; it
causes every item before the next end of file to be
a candidate for restore. This ensures that data can
be restored even if a D pointer is damaged on the
tape .

F display all file names for all accounts; this is not
compatible with the N option

I item-ids of the restored items are not to be printed

N file is to be identified on tape by its file number

o

NOTE: the file
statistics file
s.ave.

number can
print-out for

be found on
the appropriate

overlay items already on the file.

S suppresses 'items on file' message

the
file

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-45

If the N option is used, the following prompt is displayed:

FILE #:

Enter the file number.

If the N option is not used, the following prompts are displayed:

ACCOUNT NAME ON TAPE:
FILE NAME:

The account name is the name of the account under which the file was
saved on tape, and file name is the name of the file as it appears on the
tape. If <RETURN> is pressed at the file name prompt, the account's
Master Dictionary (HD) is restored.

As the tape is searched, the file names on it are printed, along with the
file numbers; names are indented one space for account names, two spaces
for dictionaries, and three for data file names.

Hints on using SEL-RESTORE

- If a STAT-FILE listing for the tape is available, ensure that the
account names and file names are on the tape.

- If in doubt about the contents of the tape, the files can be listed by
using a SEL-RESTORE of the form:

:SEL-RESTORE TEMP * (F
ACCOUNT-NAME ON TAPE: XXXXX
FILE-NAME: YYYYY

XXXXX and YYYYY are fake names that cause the SEL-RESTORE to search the
tape for non-existent data; the F option indicates that file names are
printed out as encountered, along with the file numbers.

- In restoring both the dictionary and data section of a file, restore
the dictionary first (DICT filename). The dictionary items FOLLOW the
data items, so for large files, there may be a considerable pause after
the time that the system has found the file (it stops the printout),
and the actual restore of the items.

- At any point, the tape may be moved back (T-BCK (n)), or
forward-spaced (T-FWD (n» to position it, and a SEL-RESTORE with the
A or N options may be started; this may be faster than restarting the
tape from the beginning when restoring both the dictionary and the data
sections of a file, or when restoring multiple files.

- Account dictionaries (master dictionary items) FOLLOW ALL OTHER FILES
for the account on the tape.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-46

I
i

'1··1
~'

J
I
I
I
I
I
I
J
I

'. I····

I
I

I

[

I
I
I
., •
I
I
I
r • ,
•
I ,

!
I
[

t
I

10.28 SYSTD BACKUP FILE-SAVE

The PICK system has the ability to save the entire disk data base on
magnetic tape and to restore the tape copy, entirely or selectively,
to disk. It is this procedure that provides backup in the event of a
catastrophic failure or error.

IT IS YOUR RESPONSIBLITY TO DO SAVES FREQUENTLY ENOUGH TO ENSURE
ADEQUATE BACKUP FOR YOUR PARTICULAR SITUATION I

The FILE-SAVE procedure protects your valuable data base by creating an
off-line copy of it on magnetic tape. Tape is an inexpensive commodity
when compared to the time and effort invested in your data base. It is
vital that you protect that investment through adequate backup. As a
MINIMUM pratice you should have separate daily backup tape-sets for one
week's time and a monthly backup for each month in the previous year.
Some situations may also need a weekly backup cycle for the past month.
That is, use a separate tape-set for each day of the week, one for each
week of the month and one for each month of the year. The longer cycle
tape-sets should be stored off premises to provide protection in the
event of physical damage such as fire.

ONLY YOU CAN DETERMINE WHAT IS ADEQUATE FOR THE PROTECTION OF YOUR DATA!

FILE-SAVEs are performed as follows:

1. Mount the tape reel onto which you intend to save your data.

2. Enter

FILE-SAVE

3. Several tape functions are performed automatically, then
following prompts are displayed:

List files saved to Crt or Printer? (C or P) -

the

The FILE-SAVE procedure normally creates a list on the terminal of
the files it finds as it saves the data base. It outputs error
messages if it encounters unusual or illegal conditions, but it
attempts to continue to save data. To send the listing to the
printer, enter Y.

Send STAT-FILE report to printer? (Y or N) -

The FILE-SAVE generates a statistics report of the saved data.
print the report, enter Y.

T-DUMP STAT· FILE to tape at end of FILE-SAVE? (Y or N)

To save the report on to the file-save tape, enter Y.

CHAPTER 10 - SYSTEM. MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-47

To

Verify save with dummy SEL-RESTORE? (Y or N)

The verify checks for parity errors on the save media.

Enter tape label text (without embedded spaces) or <CR> for none
Tape Label -

4. FILE-SAVE then saves your data.

5. Operator intervention is required only if the data to be saved
exceeds one tape reel.

You now have a complete backup of your disk data base.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-48

I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I

J

I
I
[

I
I
I ,
I
l , ..

E
I

I
[

l
I

10.29 THE SAVE VERB

SAVE is the verb that performs a FILE-SAVE; it is called by the
FILE-SAVE PROC.

The FILE-SAVE PROC sets up a sentence using the SAVE verb.

FORMAT:

SAVE (options)}

OPTION MEANING

D Data area is saved. This option must be present if any files are
to be saved.

F File names are printed. If (F) is not specified, just the SYSTEM
file and account-names are listed.

G Group Format Errors are repaired. GFEs are also logged in the
STAT-FILE, if the (S) option is present.

I Account save.

P Output (list of file names) goes to the line printer. If (P) is
not specified, all output goes to the user's terminal.

S STAT-FILE items are stored, one for each file saved. Must be
present if a STAT-FILE listing is to be made after the FILE-SAVE .

T Output to Magnetic Tape. If the (T) option is not specified,
nothing is be written on magnetic tape. However, the STAT-FILE
will be generated if the (S) option is used.

Files whose file definition items have a "DX" in line 1 are not saved.
Thus, any data file, dictionary or even an entire account may be
prevented from taking up space on the FILE-SAVE tape.

Files whose file definition items have a "DY" in line 1 are saved, but
none of the items in the file or sub-files will be saved. The data
section of the STAT-FILE, for instance, has a "DY" code, because the data
is not valid after a file-restore, and needs not be saved.

To prevent spurious Group Format Error messages from occurring
lines while the FILE-SAVE is running, the SAVE processor locks
it saves them. Up to 4 groups may be locked at one time by a
process. These groups are those containing the following:

1. The SYSTEM dictionary pointer for the account being saved.

on other
groups as
file-save

2. The file dicti,nary pointer for the dictionary of the file being
saved. This would be a group in the account's MD.

3. The group in the data file being saved.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
Preliminary PAGE 10-49

4. A group in the dictionary of the ACC file.

If a process on another line tries to access data in a locked group, that
process is paused until the file-save finishes saving all the items in
that group and unlocks it.

If the (T) option is specified, the SAVE processor will prompt the user's
terminal:

FILE-SAVE TAPE LABEL -

The response is written on the tape as part of the tape label.

10.29.1 MULTIPLE REEL SAVES

When the data to be saved exceeds the capacity of the
MOUNT NEXT REEL message appears on the terminal screen.
prompt follows the message.

mounted reel, a
A pound sign (#)

Remove the tape reel, which should have rewound itself. Mount and
position the next reel to the BOT (Beginning Of Tape) mark. Make sure
that the media is write-enabled and that the tape drive is on-line. Now
enter one of the following characters at the #, as appropriate:

C - CONTINUE
o - OVERWRITE (used in cases of erroneous tape labels)
Q - QUIT

This procedure also holds true for RESTORING mUltiple reels.

CHAPTER 10 - SYSTEM MAINTENANCE
Preliminary PAGE 10-50

Copyright 1988 PICK SYSTEMS

I
I
I
I
I
I
I
I
I
I
I

]

J
I
I

I

I
[

I

I
I
[

[

I
r •
I
l

I

10.30 ACCOUNT-SAVE AND ACCOUNT-IESTORE

The system has the ability to save and restore single accounts. The
ACCOUNT-SAVE PROC allows you to generate a save tape with only one
account on it. The ACCOUNT-RESTORE verb is used to add a single
account to an already existing PICK system.

ACCOUNT-SAy! PROC

The 'ACCOUNT-SAVE' PROC functions similarly to the 'FILE-SAVE' PROC. The
files section contains no System Dictionary pointer or items, and only
one account is saved. No synonym D or Q pointers will be saved. If
STAT-FILE items are generated, they will pertain only to the saved
account.

Account saves are performed as follows:

1. Log onto SYSPROG.

2. Mount a tape with a write ring.

3. Enter

ACCOUNT-SAVE [CR]

4. The following is displayed:

TAPE LABEL IF DESIRED

Enter the text to appear as part of the tape label.

5. The following is displayed:

ACCOUNT NAME?

Enter the name of an account in the system dictionary.

ACCOUNT-USTOU

An Account-restore can be performed from a save of a whole system or from
an Account-save tape. In either case, the account will be restored and a
pointer to the account will be created in the SYSTEM dictionary.

NOTE: The account must not already exist on the system .

Account-restores may be started from any tape of a multi-tape file-save!
To save time in searc4ing a tape, the STAT-FILE listing may be consulted
to determine which reel the account's data starts on, and that reel may
be mounted.

Account restores are performed as follows:

1. Log on to SYSPROG

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-51

2. Mount the tape with the account on it.

3. Enter

ACCOUNT-RESTORE new-account-name [CR]

4. The following is displayed:

ACCOUNT NAME ON TAPE?

Enter the name of the account under which the account was saved.

5. The tape is searched for the account, and the restore proceeds
automatically.

A 'Synonym' segment may be encountered with a base which has not been
found on the tape. This would happen if a D pointer on the saved account
pointed to a file on another account, or if a 'D' segment on the tape was
unrecognizable because of a parity error. In this case, the message
'SYNONYM NOT FOUND'is displayed. The synonym D-pointer will not be
crea.ted but the restore will continue.

RESTORE-ACCOUNTS

The RESTORE-ACCOUNTS PROC automatically restores all accounts from a
FILE-SAVE tape that are not currently on the system. The account names
are read from the tape itself and do not have to be entered. This PROC
can be used, for example, after a system upgrade to restore all the user
accounts.

To use the PROC, enter the following:

RESTORE-ACCOUNTS

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-52

I

I
I

I

I

I
J
J

I
" I·····

I

I

,
•

I
[

l

10.31 SYSTEK STATUS: 'THE VllAT AND WHERE VEIlBS

,
The WHAT verb is QSed to display the system configuration, the I
current status of tts locks and tables, and the location of the I
processes that are logged on. WHERE is used to display data for all I
lines that are logged on; the WHERE verb is a subset of the WHAT verb. I

L// FORMAT:

/

~e available

WHAT {(options)}

IV ~-. m{ -n}

P

US

FORMAT:

options are
lines to display

name of account whose status is
single quotes are required

suppresses display of all locks

directs output to the printer

suppresses the
information

display of the

to be

spooler

suppresses display of the line status

displayed; the

and printer

displays status of all lines including those not logged on

WHERE en} {(options)}

The available options are
m{-n} lines to display

'acct.name' name of account whose status is to be displayed; the
single quotes are required

P directs output to the printer

z displays status of all lines including those not logged on

The default form of the WHERE displays all lines that are logged-on.
Some examples follow:

WHERE 3-5 Displays the return stack for users three through five.

WHERE 'DP' Displays the return stack for all lines logged onto DP.

WHATL Suppresses the locks section.

WHAT LWS Yields only system configuration section.

Forms of the WHAT and WHERE verbs.

CHAPTER 10 - SYSTEM t{AINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-53

J

The WHAT verb displays the state of the system as below (numbers in
brackets are not part of display):

15:03:22 19 JAN 1988
CORE LINES PCBO WSSTART WSSIZE SYSBASE/MOD/SEP MAXFID AVAIL. OVERFLOW
640K 17 512 1056 100 6156 11 1 97799 51234

[1] [2] [3] [4] •.. [5] ...•. [6] [7]

15679 (3D3F)-11

00 00 00 00 00 11 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00

00 0200
01 0220

*02 0240
07 02EO
08 0300
11 0360
16 0400

[11] [12]

7B30
7DBO
7F30
7D30
7D30
5F30
3F30

[13][14]

6.15B 183.123 181.07F
21.033 6.070 6.033 16.1C8 13.042

121.000 121.1AB 166.602
T 6.070 6.033 5.054

6.070 6.033 5.054
11.156 l6.0F4

165.083 l64.04C
[15] ... [16]

SPOOLER IS INACTIVE

PRINTER # 0 IS PARALLEL, INACTIVE, AND ON LINE.
THE PRINTER IS DEFINED AS PARALLEL PRINTER # O.
ASSIGNED OUTPUT QUEUES: 0
THE NUMBER OF INTER-JOB PAGES TO EJECT IS O.
The SPOOLER is in an unambiguous state.

NOTES:

[8]

[9]
[9]
[9]
[9]

[10]

[1] Number of communication lines (terminals) plus one (spoo1er)­
number of processes on system.

[2] PCB-FID for line zero; each following line's PCB-FID is displaced
by 32 frames from PCBO.

[3] Extended work-space starting FID; WSSTART - PCBO + 32*LINES
(including SPOOLER).

[4] Extended work-space size; there are 3 workspaces per line.

[5] System base-FID/modulo/separation; SYSBASE WSSTART +
WSSIZE*3*LINES.

[6] Maximum disk FID

[7] Available overflow space; linked frames + contiguous frames.

[8] Group-locks (if any); format- ddddd (xxxxx)-li where:
ddddd-group FID (decimal); xxxxx-group FID (hex); 11-line nUDlber

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-54

I'·· .

I
'I······

.

i
I
I
J
J
J

J
I
I
J
I
I
I
J

p ,
I

r ...

r
"
i·1 •
[

I
If ... ·
It

r ..
[

L

[9] PICK/BASIC ex.cution locks; there are 64 execution locks and they
start at location 127.A. If a lock is set, the line number of
the process that set the lock is displayed.

[10] System locks; there are 10 system locks and they start at
location 127.0

[11] Line number, preceded by a "*" if your line.

[12] PCB-FID (hex) of line.

[13] PIB-status of line:
7B/FB - Terminal output
SF - Waiting for disk
Typically, spooler is BF

7F/FF - Active, or ready to go
7D - Terminal input
3F - Release Quantum/Sleeping

[14] PIB-status-2: 00 - 70 - Normal; 80 - FO - In DEBUGGER.

[15] T - Tape attached; P - Printer attached.

[16] Current location, followed by subroutine return-stack addresses
with the most recently added address listed first; the format of
the addresses is fff.lli where

fff - decimal FID; 111 - hexadecimal offset into frame

FID addresses of some processes:
5 TCL
6-9 Terminal I/O
13-16 EDITOR
21 DEBUGGER
22-32 ASSEMBLER
53-70 ACCESS Compiler
71-100 LIST
107,109,180-189 BASIC
190-199 BASIC Compiler
200-220 File-save
290-298 RUNOFF
165 SPOOLER

For example, in the preceding example, lines 0, 7, and 8 are in
terminal I/O processes; line 1 is in the debugger.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-55

J
10.32 VElUnIBG SOF'l'WAllE

The VERIFY-SYSTEM PROC checks to see if the system software is
correct.

The VERIFY-SYSTEM PROC generates a checksum for every frame of software
from 1 to 511. These check-sums are compared with those in the ERRMSG
file, in an item named -CHECK-SUM". This item contains the correct
checksum for all the system software frames. Each line in the item
contains a checksum for one frame of code, optionally followed by one or
more hexadecimal limits. If the limits are present, the checksum is
generated only for bytes within the limits. If no limits are present,
the checksum is generated for bytes 0--X·7FF·. This is done because some
frames contain tables which change from time to time, such as the system
overflow table. Table entries are not checksummed, only assembly code.

If all the program frames verify, message 341 is printed:

[341] SYSTEM VERIFIED.

If a frame generates a checksum that does not match
frame in the -CHECK-SUM" item, the FlO of the
checksum and the stored checksum from the item are
342 is printed at the end of the check run:

[342] SYSTEM DOES NOT VERIFY!
THERE ARE n PROGRAM FRAMES WITH MISMATCHES!

the checksum for that
frame, the generated
printed, and message

where n is the number of programs whose check-sums do not match.

The VERIFY-SYSTEM PROC should be run whenever it is suspected that the
system software is in error.

If a mismatch is found, the system software can be restored by performing
an ·ABS restore. For information on ABS restore, see the Installation and
Upgrade Guide.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright 1988 PICK SYSTEMS
PAGE 10-56

I
I
I
I
l
l

, ..
J
1··\·· .{;

i
I
I
J

I
I

[

r •
I
I
[

I

[
r
Itt

l
t
I

" •
I

t ,

Chapter 11

PICK PC-XT

THE PICK SYSTEM

USER MANUAL

PROPRIETARY INFORMATION

This document contains information which is
proprietary to and considered a trade secret of
PICK SYSTEMS. It 1s expressly agreed that it
shall not be reproduced in whole or part,
disclosed, divulged, or otherwise made available
to any third party either directly or indirectly.
Reproduction of this document for any purpose is
prohibited without the prior express written
authorization of PICK SYSTEMS. All rights
reserved.

CHAPTER 11 - IBM PC-XT
Preliminary PAGE 11-1

Copyright 1987 PICK SYSTEMS

CCl!lt"nta

11 PICK PC-XT

11.1
11.1.1
11.2
11.2.1
11. 2.2
11. 2.3
11. 2.4
11. 2.5
11. 2.6
11.3
11.4
11.5
11.6
11.7
11.7.1
11.8
11.9
11.10
11.11
11.12
11.12.1
11.13
11.14
11.15
11.15.1
11.15.2
11.15.3
11.16
11.17
11.18
11.18.1
11.18.2
11.18.3
11.18.4
11.18.5
11.18.6
11.18.7
11.18.8
11.18.9
11.18.10
11.18.11
11.18.12
11.18.13
11.18.14
11.18.15

PICK SYSTEMS IBM PC~XT PACKAGE
THE PICK OPERATING SYSTEM REQUIREMENTS .

INSTALLATION AND BOOT GUIDE
DISK ALLOCATION
BOOTING FROM HARD DISK ..
BOOTjRESTORE FROM FLOPPIES
THE 'A' OPTION
THE 'F' & 'Q' OPTIONS
THE 'K' OPTION

FDISK VERB : FIXED DISK PARTITIONING
OFF -LINE STORAGE : FLOPPY AND TAPE .
COLOR AND MONO VERBS : MEMORY MAPPED MONITOR
PRINT@ FUNCTIONS
TERM TYPES

IBM PC-XT LINE 0: TERM TYPE
IBM PC-XT KEYBOARD DIFFERENCES
SET-KBRD PROGRAM
SET-FUNC PROGRAM
SET-BAUD VERB : SETTING BAUD-RATE (Ports > 0)
POWER -OFF: CONTROLLED SHUT -DOWN . .

REBOOT
FORMAT: FORMATTING FLOPPY DISKETTES
EUROPEAN DATE FORMAT
DOS TO PICK BRIDGE COPYDOS . . .

THE M OPTION - MULTIPLE PICK ITEMS
THE T OPTION - TRANSLATING CHARACTERS
THE F OPTION - FLAG CHARACTERS

PICK TO DOS BRIDGE COPYPICK
ABS EXTENSION
CREATING OR MODIFYING TERM TYPES

CREATE TERMINAL DEFINITION . .
MODIFY TERMINAL DEFINITION . .
DELETE TERMINAL DEFINITION . .
ADD TERMINAL TO SELECTED DEFINITIONS

. DELETE TERMINAL FROM SELECTED DEFINITIONS
EXIT WITHOUT UPDATING SYSTEM-CURSOR . . .
UPDATE SYSTEM-CURSOR TO SELECTED TERMINALS
DEFINING TERMININAL TABLES
TERMINAL TYPE
TERMINAL SIZE
CURSOR ADDRESSING TYPE . .
CURSOR CODE STRINGS
SPECIAL CURSOR CODE STRINGS
COLUMN ONLY CURSOR POSITIONING
CLEAR SCREEN & HOME @(-1)

.-

11-3
11-3

· 11-4
· 11-4

11-4
11-4
11-5
11-5
11~6
11-7
11-8
11-10
11-12

· 11-14
11-14
11-15
11-16
11-16
11-17
11-18
11-18
11-19
11-19
11-20
11-21
11-21
11-22
11-24
11-27
11-28
11-28
11-29
11-30
11-31
11-31
11-31
11-31
11-31
11-31
11-32
11-32
11-34
11-34
11-35
11-35

CHAPTER 11 - IBM PC-XT
Preliminary

Copyright 1987 PICK SYSTEMS
PAGE 11-2

I
I
I
I
I
I
I
J
J
I
J
J
J
J
I
I
I
I

[

I
I
r
lit

I , ..

t
!

I

l
[

11.1 PICK SYSTEMS 11K PC-IT PACIAGE

Enclosed in the PC-XT package are:

* Four (5) diskettes, labeled:
PICK PC SYSTEM #1
PICK PC SYSTEM #2
PICK PC SYSTEM #3
PICK PC DATA FILES #1
PICK PC DATA FILES #2

* PICK User Reference Manual
* End-user License Agreement

(found on outside of package)

11.1.1 THE PICK OPERATING SYSTEM REQUIREMENTS

* IBM PC-XT. Either one or two hard disks are supported

* A minimum of S12K RAM memory.

* Either Monochrome or Color/Graphics monitor.

* Allocation of space for the PICK PC-XT System on the IBM hard disk
must be one block of contiguous cylinders. Refer to Installation card
for minimum cylinders required to install PICK

Hard disk space is allocated by cylinders.
drive each cylinder has four (4) tracks.
bytes, then an IBM cylinder has 34816 bytes.

On a standard IBM 10mb
If each track has 8704

Optionally, one to 2 additional terminals and up to 3 IBM parallel
printers may be connected.

CHAPTER 11 - IBM PC-XT
Preliminary PAGE 11-3

Copyright 1987 PICK SYSTEMS

11.2 INSTALLATION AND BOOT GUIDE

11.2.1 DISK ALLOCATION

When the PICK Operating System is installed it must locate a group of
free and contiguous cylinders to claim for its partition space. If the
other operating systems on the disk have already allocated the entire
disk then they will have to relinquish space before a PICK partition can
be created. In this case the other operating system(s) will have to be
backed up, deleted and then reinstalled into smaller partitions so that
space for PICK can be freed. Each operating system has its own utilities
for installing itself, backing itself up and deleting itself.

Since PICK will install itself on all the remaining available hard disk
space, if other operating systems are to co-reside with PICK, PICK must
be installed last.

A minimum amount of free and contiguous disk space is required before
PICK will install itself. The required space is measured in cylinders.
The number of cylinders required is a function of the number of heads the
hard disk drive has. Please refer to the PC-XT Installation Guide card
for more details.

11.2.2 BOOTING FROM HARD DISK

If the PICK Operating System was marked as active (SEE: FDISK VERB) at
the time the system was last shut off, PICK will boot from the hard disk
when the system is powered up. When the boot process finishes, control
is transferred to the COLDSTART procedure.

11.2.3 BOOT/RESTORE FROM FLOPPIES

Restoring the system means replacing the software and/or data on the hard
disk from a backup media such as floppy diskettes.

Typically, software/data is restored when the running copy is suspected
to to be damaged or when a new copy of the system is available.

To restore the Pick environment on the PC-XT, place PICK PC SYSTEM #1
diskette into the floppy drive and boot the system (CTRL-ALT-DEL).

CHAPTER 11 - IBK PC-XT
Preliminary PAGE 11-4

Copyright 1987 PICK SYSTEMS

I
I
I
I

J
I
I
l
J
J
J
I
J
J
1
I
I
I

[

I

I
I
I
I
I

I
I
I
I
I

l
r •

Following the system sign-on message the screen will display:

OPTIONS: K)ill, A)BS only, F)ile & ASS, Q)uick file & ASS

The 'A', 'F' and 'Q' QPtions are used for restoring PICK.
The 'K' option is used to delete the PICK partition.

11.2.4 THE 'A' OPTION

The 'A' option will restore the PICK Operating System (sometimes refered
to as the Monitor and ASS). Once you have entered an 'A' the following
will occur:

1. The system will
directly to the
boot. At this
restored. The
been altered.

read #1, #2, and #3's contents and then go
COLDSTART PROC just as if you had done a system
point the PICK Operating System has been

accounts and data files, however, will not have

11.2.5 THE 'F' & 'Q' OPTIONS

The options 'F' and 'Q' initiate identical restore procedures. However,
the 'F' option will reformat the PICK hard disk partition before starting
the restore.

The 'Q' option skips the hard disk reformatting, hence 'Quick file &
ASS'. When you have entered an 'F' or a 'Q' the following will occur:

1. PICK hard disk partition reinitialization. (F option only I)

2. The system will read #1, #2, and #3's contents and then prompt
you to load a DATA FILE floppy:

load PICK PC DATA FILES #1 then type 'C' to continue

At this point you will do one of the following things:

a. You will load your #1 FILE-SAVE diskette, if you want
to restore the accounts and data files as they exist on
your last FILE-SAVE.

b. You will load the PICK PC DATA diskette if you want to
restore the accounts and data files as they were when
you first installed the Pick system.

CHAPTER 11 - IBM PC-XT
Preliminary

Copyright 1987 PICK SYSTEMS

j

If loading FILE-SAVE disks. you will be prompted to load
diskettes as necessary by the following:

load PICK PC DATA FILES _2 then type 'C' to continue
LABEL dd mmm yyyy acct.name PIel PC-IT rele.se.revision _

At this point mount the next data diskette in the drive and
type 'C' to continue.

5. When the system has read the data diskette(s) it will go
directly to the COLDSTART PROC just as if you had done a system
boot. At this point the PICK Operating System will have been
restored, a full file-restore accomplished and you will be in
the PICK environment.

11.2.6 THE 'K' OPTION

The 'K' option will delete. or kill, the PICK partition on the hard
disk(s). When you have entered a 'K', the following will occur:

The screen will display the message: "Are you sure (Y or N)". If the
operating system is to be deleted, key in 'Y'. WARNING --- this will
delete all data from the PICK partition. If you don't want the
operating system deleted, key in 'N'. The system will re-display the
OPTIONS (A, F, K , Q) prompt.

CHAPTER 11 - IBM PC-XT
Preliminary PAGE 11-6

Copyright 1987 PICK SYSTEMS

I
I

I
I
I
J
l'···'·'· .!"

J
I

i
l
I
I ., ..
I
I

I

I
I
I
I
I
I
I
I

I
I

11.3 FDISK VERB FIlED DISK PARTITIONING

The verb FDISK has been provided to support the use of IBM's
Fixed Disk Partitioning concept.

FORMAT:
>FDISK (from SYSPROG account)

IBM's Fixed Disk Partitioning concept allows up to four (4) different
operating systems to co-reside on one or two drives. They each
"live" on the hard disk within their own range of contiguous
cylinders. The FDISK verb or command, as implemented under PC DOS
and PICK, allows the user control over which operating system is
currently executing. FDISK allows a user to mark one of the
co-resident operating systems as "active". When the system is
booted, the operating system marked as "active" assumes control of
the machine. Therefore, to move from operating system "A" to
operating system "B", FDISK is invoked, "B" is marked "active" and
when the system is booted system "B" will be active.

The PICK implementation of its FDISK verb closely resembles IBM's PC
DOS FDISK command in both presentation and capabilities.

For users familiar with PC DOS' FDISK, PICK's FDISK differs in two
ways:

1. The create a partition option is non-functional under PICK
because partition creation is handled automatically at system
installation time.

2. The delete partition option will refuse to delete the PICK
partition unless another partition is first made "active". In
the case where PICK is the only operating system this does not
apply.

3. Deleting the PICK partition from drive C will also delete PICK
from drive D, if it exists. With FDISK, the user may view but
not modify the partitions on drive D.

CHAPTER 11 - IBM PC-XT
Preliminary PAGE 11-7

Copyright 1987 PICK SYSTEMS

/
/

/

j
j

J

11.4 OFF-LINE STORAGE FLOPPy AND TAPE

The SET-SCT and SET-FLOPPY verbs are used to set up the peripheral
storage devices.

The PC-XT can use either the floppy diskette drive or a .upported 1/4"
streaming cartridge tape (SCT) as a peripheral storage device. The
desired device is assigned to your line with a SET-FLOPPY or a SET-SCT
command.

Streaming Cartridge Tape (SCT)

FORMAT:
SET-SCT (ILK-SIZE)

This command sets the peripheral storage device to SCT 1/4" tape. The
SET-SCT command also does an automatic tape attach (T-ATT) of the SCT to
your line. The ILK-SIZE is set to 16384 as the default size or it can be
re-specified to values from 2048 to 16384.

Additional SCT commands:

T-RETEN

This command re-tensions the SCT by first forward and then backspacing
the tape its entire length (no data is destroyed). It is recommended
that tapes be re-tensioned before they are used to reduce the occurance
of parity errors.

T-ERASE

This command also re-tensions the SCT by first
backspacing the tape its entire length. In this
entire tape is erased.

T-STATUS

forward and then
case, however, the

This command returns with drive and type information of the currently
assigned peripheral storage device.

T-llEW

This command rewinds the tape to the beginning from its current position.
It is important to do a T-REW after write operations such as T-DUMPS
before the tape is removed from the drive. This is because the T-REW
writes a terminating EOF mark before rewinding the tape.

CHAPTER 11 - IBM PC-XT
Preliminary PAGE 11-8

Copyright 1987 PICK SYSTEMS

I

1
I
I
I
I

1 ..

I

I
I

r ..
[

I
I
r
It

l
I

I

l
L

Floppy Diskette

FORMAT: /
SET-FLOPPY «density,drive)

This command sets the tape device to a floppy drive.
If no options are specified, drive A is the default.

Options for the density parameter are as follows:

S - Standard Density - 360 KB

L - Low Density - 320 KB

Options for the drive parameter are as follows:

A - Floppy Drive A

B - Floppy Drive B

SET-SCT Set tape device to 1/4" tape.

SET-FLOPPY (SB Set tape device to floppy drive B,
standard density

SET-FLOPPY (A Set tape device to floppy drive A.

SET-FLOPPY Set tape device to floppy drive A.

Sample usage of SET-SCT and SET-FLOPPY commands.

Note: Tapes written with Pick data must first be erased prior to being
used with DOS.

See also the PC PERIPHERAL INSTALLATION GUIDE, found in the back of this
manual, for more information.

CHAPTER 11 - IBM PC-~T
Preliminary PAGE 11-9

Copyright 1987 PICK SYSTEMS

11.5 COLOR AND KONO VERBS KEHORY HAPPED KONITOR

Two verbs, COLOR and MONO, have been provided to support the use of
IBM's memory mapped monitors. In addition, PICK/BASIC and PaOC now
support IBM's memory mapped monitors.

FORMAT:

COLOR (foreground color)(,background color)(a.itchea)

The supported colors for background and foreground are:
Black, Blue, Green, Cyan, Red, Magenta, Brown and White

The supported switches are:
/B or /BLINK Activate character blinking

De-activate character blinking
Full intensity foreground
Half intensity foregound
Activate reverse video
De-activate reverse video

/NB or /NOBLINK
/F or /FULL
/H or /HALF
/R or /REVERSE
/NR or /NOREVERSE

STATEMENT

COLOR RED

COLOR ,BLUE

COLOR /B

COLOR /NB/R

COLOR BROWN/F

EXPLANATION

Set foreground to red.

Set background color to
blue.

Activate character blinking.

Deactivate character blinking,
activate reverse video.

Set foreground to brown and
full intensity.

COLOR ,RED/H Set background to red, set
foreground to half-intensity.

COLOR GREEN,CYAN/HALF Set foreground to half intensity
green, background cyan.

Sample usage of the COLOR verb.

The COLOR verb only works on line O. It will refuse to execute if a
COLOR/GRAPHICS adapter is not in the system.

CHAPTER 11 - IBM PC-XT
Preliminary PAGE 11-10

Copyright 1987 PICK SYSTEMS

I
I
l
I
I
I

I

, ..

I

r
lilt

I
I

[

I

[

L

FORMAT:

MONO lavitches)

The supported switches are identical to the
addition of the following:

COLOR verb switches, with the

fU or /UNDERLINE

/NU or /NOUNDERLINE

Activate character underlining

Deactivate character underlining

The KONO verb only works on line O. It will refuse to work if a
monochrome adapter card is not in the system.

CHAPTER 11 - IBM PC-X!
Preliminary PAGE 11-11

Copyright 1987 PIC

11.6 PRINT@ FUNCTIONS

New functions have been added to the PICK/BASIC ·PRINT_@" statement
and the PROC "T" command to support IBM's memory mapped monitors.

·The ·PRINT @n statement and the PROC "Tn command formerly allowed
negative integers in the range -1 to -10 as arguments. For the PICK
PC-XT implementation the argument range has been extended from -1 to -127.

For all PICK machines the ranges break down as follows:

-1 TO -32
-33 to -127

Functions which affect all machines
Functions which are implementation specific

More specifically:

-1 to -10

-11 to -16
-17 to -32

-33 to -40
-41 to -48
-49 to -56
-57 to -64
-65 to -88
-89 to -96
-97 to -127

(across all future PICK implementations)

Remain as defined in the PICK Refernce
Manual
Are defined in the DOC file on SYSPROG
Are reserved for future expansion

(for the IBM PC-XT implementation)

Define background colors
Define full intensity foreground colors
Are reserved for future expansion
Define half intensity foreground colors
Are reserved for future expansion
Define IBM memory mapped monitor modes
Are 'reserved for future expansion

CHAPTER 11 - IBM PC-XT
Preliminary PAGE 11-12

Copyright 1987 PICK SYSTEMS

I
I
J
I
I
I
I
' .. " II

J
J
I
I
i

I

I
I

I
I

I
I
I
[

I
I
I
I
I
I

l
L

PICK/BASIC Examples:

* Clear screen and home the cursor
PRINT @(-1)

* Clear screen and h~me the cursor (same, but more readable)
CLEAR. SCREEN - _@(-1)
PRINT CLEAR. SCREEN

PRQC Examples:

PQ
001 C Clear the screen and home the cursor
002 T (-1)

PQ
001 C Activate Color/Graphics, foreground - blue, background - white
002 T (-93),(-63),(-49)

NOTE: In the SYSPROG account in the
program called DEMO which demonstrates the
memory mapped monitors under PICK/BASIC.

CHAPTER 11 - IBM PC-XT
Preliminary PAGE 11-13

file SYSPROG-PL is a
extended support for

Copyright 1987 PIC

11.7 'l'ERH TYPES

IBH PC -IT LINE 0: TERH TYPE

Term type III"
color/graphics.

is for the IBM memory-mapped monitors; monochrome or
This term type is only to be used on line O.

The following is a table of other active term types for the PC-XT:

A
B
C
D
E
G
I
L
M
P
R
T
V
W

ADDS 580
AMPEX 210
CITOR VT52
DATAMEDIA
ESPRIT
IBM 3161/3163
IBM PC-XT (port 0)
LEAR SIEGLER
AMPEX 80
PERTEC 701
ADDS REGENT
TELEVIDEO 910
ADDS VIEWPOINT
\lYSE 50

PC-XT Term Types

"TERM n" can be typed on any port to invoke the term type that matches
the terminal attached to that line.

A BASIC program called 'TERM-TYPE' can be used to pre-set all term types
on your system. See the 'ADDENDA' file in SYSPROG for more information
on the TERM-TYPE program.

Terminal types can be created and/or modified using the 'DEFINE-TERMINAL'
command. See section 11.19 for instructions.

I
I
I
I
J
I
I
I
I
I
J
I
I
I

I
I

CHAPTER 11 - IBM PC-XT
Preliminary

Copyright 1987 PIC II
PAGE 11-14

I

[

I
I
t

I
I., ! ,
E

[

I·; ;

[

I
I
t
[

[

11.8 IBK PC-%! KEYBOARD DIFFERENCES

Certain capabilities of the IRK System keyboard are disabled under the
PICK Operating System to make the keyboard appear to be a standard CRT
keyboard.

The following is a list of keyboard changes under PICK:

- Keypad area now generates numerics only.

- Backtabs cannot be generated from the keyboard.

- Print screen functions disabled.

- The Function Keys Fl to FlO are user-definable via
included BASIC program SET-FUNC.

the

- The ALT key recognition is disabled except in these cases: the
CTL-ALT-DEL keyboard reset sequence, the ALT nnn special ASCII
character generation sequence, and the ALT key in combination
with user-defined function key.

CHAPTER 11 - IBK PC-XT
Preliminary PAGE 11-15

Copyright 1987 PICK SYSTEMS

11.9 SET-DIm Pl.OGlWI

New SET-KBRD program allows line O's keyboard to be redefined.

FORMAT:

>SET-IBRD <filename> <itemname>

Where <filename> is the name of the file which holds
definition item <itemname>.

Several keyboard definition items are included with the
may be found in the file KEYBOARDS in the account SYSPROG.

FRENCH/FRENCH 2
GERMAN
SPANISH/SPANISH 2
ITALIAN
ENGLISH
USA
DVORAK

The system 'boots-up' using the USA keyboard.

the keyboard

system. These
These include:

You may want to create your own keyboard definition items. An explanation
of how to create such definitions is found in the SYSPROG ADDENDA file.

11.10 SET-FUNC PROGlWI

New SET-FUNC program allows the line 0 function keys to be redefined.

FORMAT:
>SET-FUNC <filename> <itemname>

Where <filename> is the name of the file which holds the function key
definition item <itemname>.

Some example function key definition items are included with the system.
These may be found in the file FUNCKEYS on the SYSPROG account.

The system 'boots-up' with the function keys undefined. If you want to
create your own set of function key definitions, there is an explanation
of how to do so in the SYSPROG ADDENDA file.

CHAPTER 11 - IBM PC-XT
Preliminary PAGE 11-16

Copyright 1987 PICK SYSTEMS

J
I
I
I
I

I
J
I
I

]
.1.
;f

I
i
I
I
I

l

I
I
I
I

I
I
I
I
I
I
I
I
I
I
l
[

11.11 SET-BAUD VERB SETTING BAUD-RATE (Porta> 0)

The SET-BAUD verb allows serial ports to be set to various baud rates.

FORMAT:
>SET-BAUD (line*}.baud-rate

The SET-BAUD verb only effects serial ports. If the line number
parameter is not present. the line that you are logged onto will be used.

Meaningful baud-rates are listed below.

50 forced to 110
75 forced to 110
110
134.5 forced to 150
150
300
600
1200
1800 forced to 2400
2000 forced to 2400
2400
3600 forced to 4800
4800
7200 forced to 9600
9600

Meaningful Baud-Rates.

NOTE: With only 1 serial I/O port, it must be configured as line 1 for
SET-BAUD to work. If a sole serial I/O port is set up as line 2, then the
SET-BAUD will not see it.

STATEMENT EXPLANATION

SET-BAUD 1,4800 Sets port 1 to 4800 baud.
•

SET-BAUD 2,1800 Sets port 2 to 2400 baud.

Sample usage of the SET-BAUD verb.

CHAPTER 11 - IBM PC-XT
Preliminary PAGE 11-17

Copyright 1987 PICK SYSTEMS

11.12 POWEll-orr: CONTROLLED SHUT-DOWN

The use of this verb prior to system power-down ensures that all
write-required frames are flushed from memory to disk.

FORMAT:

>POWEll-orF

The operating system automatically flushes memory buffers to disk
whenever the system has been quiescent for two (2) seconds. If this
automatic flush has already taken place, the system can be powered down
without having to type POWER-OFF.

POWER-OFF will disable all users, flush memory to disk, and put the
machine into a HALTed state from which powering off and then back on is
the only recovery. POWER-OFF only functions if all other users are
logged off. If they are not, you will be informed who is still logged on
and returned to TCL.

Using the POYER-OFF verb is a recommended procedure.

This verb only works on Line O.

11. 12 . 1 UBOOT

REBOOT will allow the PICK System to re-load the operating system
without doing normal BOOTing procedures.

FORMAT:

>UBOOT

A new verb, REBOOT, exists in the Kaster Dictionary of the SYSPROG
account. REBOOT will disable all users, flush memory to disk, and cause
the system to boot, just as if (ALT-CTRL-DEL) had been pressed. REBOOT
only functions if all other users are logged off. If they are not, you
will be informed who is still logged on and returned to TCL.

This verb only works on line zero (0).

CHAPTER 11 - IBM PC-XT
Preliminary PAGE 11-18

Copyright 1987 PICK SYSTEMS

I
I
J
I
I
I
I
I
J
!
I
I
I
J
I
I
I
I
I

I
I
I
[

I
F .. ·.·· •
I'· 1

E

I
I
E
I

[

[

11.13 rOIllAT: FOIlIATTING rLOPPY DISDTTES

This program formats floppy diskettes under the PICK Operating System.

FORMAT:
>FORHAT (from SYSPROG account)

This program formats diskettes in 9 sectored, double-sided format. This
is consistant with IBM's current standard. These diskettes, however, are
NOT usable under PC or MS DOS, because PICK's formatter program does not
build the necessary DOS File Allocation Tables (FAT).

To be useable by PICK, diskettes must format "perfectly". No bad sectors
are allowed. The PICK formatter will display an error message when a bad
diskette is encountered.

11.14 EUROPEAN DATE FORHAT

The European date format is supported on the PC-XT.

FORMAT:
>SET-DATE-EUR

Sets the system to use European date format

>SET-DATE-STD

Sets the system back to non-European data format.

This can be tested by keying in and using the following PICK/BASIC
program:

001 PRINT DATE() 'D/'
002 END

EXAMPLE:
>SET-DATE EUR
>SET-DATE

>SET-DATE-STD
>SET-DATE

CHAPTER 11 - IBM PC-X!
Preliminary

Enter date as: DD/MK/YY

Enter date as: KM/DD/yy

Copyright 1987 PICK SYSTEMS
PAGE 11-19

J

J

11.15 DOS TO PICX RIDGE COPYDOS

The COPYDOS verb allows data contained in the DOS partition to be
transferred into the PICK partition.

FORMAT:
>COPYDOS do.path «options(»)

TO:(filename (itemname)

The syntax for the dospath parameter is as follows:

drive:\(subdirectory\ ..• }dosfilename

For example:

drive:\subdirectoryl\subdirectory2\dosfilename
or

drive:\dosfilename

MEANING

Overwrite existing PICK item.
DOS data is in sequential file mode.
(default)
DOS data is in random file mode.
Translate characters. System prompts for specifics.
Flag characters. System prompts for specifics.
Make Multiple items. System prompts for specifics.

If neither S nor R is specified in the options, the S(equential) option
is assumed.

If neither the T nor F option is specified, the COPYDOS process will
translate the DOS character X'OD' to X'FE'. This causes every DOS line
delimited with a carriage return, to become a PICK attribute. The
linefeed X'OA' and null X'OO' characters are deleted.

The T, F and M options are explained further in the following section.

If the optional
prompt, the DOS
itemname.

PICK itemname is not input, following the 'TO:('
filename (from the dospath parameter) is used as the PICK

Note also, that if the DOS file is larger than 25000 bytes and the M
option has not been specified, the COPYDOS process will automatically
split the file into PICK items and assign the names itemnameO, itemnamel,
etc.

CHAPTER 11 - IBM PC-XT
Preliminary PAGE 11-20

Copyright 1987 PICK SYSTEMS

J
I

I
l
I

I

J

I
i
J
I
I
I

I

I

p ..

I
!

I
I

I

[

I

11.15.1 THE H OPTION MULTIPLE PICK ITEMS

The M option allows for regulation of the size of the targeted PICK
items. This f1exibi1ty can be very useful in aligning DOS data with PICK
attributes.

After entering a response to the' TO:(, prompt the system displays:

INTER LENGTH OF UCORD (01. Dn):

The user may elect to enter a numeric response indicating how many bytes
each data portion of the PICK item will be, or a 'D' followed by a number
to indicate how many PICK attributes (lines) each PICK item will be.

Using the 'Dn' response assumes that the default translate of carriage
return/line feed to attribute marks will be performed.

When the DOS file is converted to multiple items, the items will be
created with boundries established by attribute marks, provided that they
exist in the translated file. Should no attribute marks exist, items
will contain a single attribute with the specified number of bytes.

The PICK item-ids are generated by concatenating the itemname used in the
, TO:(specification with 0 , 1 , 2 , etc. No new PICK item with just
the itemname alone will be created.

Entering a <CR> after the appropriate response causes the COPYDOS process
to begin or, if an F or T option is in effect, further prompting as noted
below.

11.15.2 THE T OPTION TRANSLATING CHARACTERS

The 'T' option is available to translate up to 16 different hex bytes.
Upon entering a response to the' TO:(• prompt, the system will display:

UPLACE:

After entering the hex character to replace, the system displays:

WITH:

Entering identical hex strings in response to both REPLACE: and WITH: ,
causes that character to be deleted from the file.

After entering a response to the WITH: prompt, the system will again
display:

UPLACE:

Entering a <CR> after the UPLACE: prompt, terminates further hex
character prompting, and the system displays:

CHAPTER 11 - IBM PC-XT
Preliminary

OltAY(Y/N) :

PAGE 11-21
Copyright 1987 PICK SYSTEMS

An 'N' response allows the user to re-enter all of the Translate
specifications. A 'Y' response causes the COPYDOS process to begin.

11.15.3 THE F OPTION FLAG CIWlACTDS

The 'F' option is available to Flag up to 16 different hex bytes by
placing a hex'OO' in front of the Flagged hex character.

Entering in different hex bytes in response to the 'REPLACE:' and 'WITH
FLAGGED' prompts, results in a Translation, with the resultant PICK byte
preceded with hex'OO' .

Entering in the same hex byte in response to both prompts, results in
passing that byte unchanged and preceding it with hex'OO'. Note that this
is in contrast with the T option, where specifying the same character,
deletes that character.

If an 'F' option is in effect, upon entering the' TO:(' response the
system will display:

REPLACE:

After entering the hex character to translate or pass, the system
displays:

WITH FLAGGED:

Upon entry of the same character or a replacing character, the system
will prompt for up to 15 additional hex characters to Flag. The system
will prompt for additional characters, until a <CR> is entered at the
REPLACE: prompt. A <CR> causes the system to display:

OlCAY(Y/N) :

An 'N' response allows re-entry of the FLAG specifications.

CHAPTER 11 - IBM PC-XT
Preliminary PAGE 11-22

Copyright 1987 PICK SYSTEMS

I
I

I
I
I
I
I

I
]

]

I
I
I
I

r ..
I
I
I

If
i

I
I
I
I
I
I
I
I
I

[

L
[

In the following example session, note that whenever multiple items are
produced, (even without the M option), that an item with the actual PICK
itemname used in the specification does not exist. The first item is the
specified itemname with a zero appended.

>COPYDOS C:\SUBl\SUB2\DOSFILE (SMT

TO:(PROCLIB PICK.SIDE

ENTER LENGTH OF RECORD (OR Dn):

REPLACE: OD
REPLACE: OA
REPLACE: 2C
REPLACE: <CR>

OKAY(Y/N): Y

READING DIRECTORY
SUBI
SUB2
DOSFILE

WRITING ITEM
PICK.SIDEO
PICK.SIDEI
PICK.SIDE2
PICK.SIDE3

END OF FILE

DS

WITH:
WITH:
WITH:

FE
OA
2A

Sample usage of the COPYDOS utility with the S, M and T option.

CHAPTER 11 - IBM PC-XT
Preliminary PAGE 11-23

Copyright 1987 PIC

11.16 PICK TO DOS BaIDG! COPTPICK

The COPYPICK utility allows data contained in the PICK partition to be
into the DOS partition.

transferr

Since a PICK to DOS transfer is done from a DOS partition,
(available from your PC dealer) contains this utility. It is
command:

COPY A:*.* C:

a DOS disket
loaded with t

This loads the PICK to DOS bridge program, COPYPICK.EXE into the DOS drive C:

FORMAT:

C>COPYPICK

Upon entering a <cr> the system will first prompt for:

Options:

Option Heaning

I

l
I
I
I
i

J
I Include Item-id as a line within the DOS file. The Item-id is alva I

preceeded with a line feed character. This option may be of particul
use when moving all items in a file with the intent of doing addition
processing in the DOS environment. The beginning of an item may I·.

detected by the presence of a line feed either at the beginning of t
file or immediately following another line feed.

N Numeric Item-id's are assumed. This viII allow all items within a file I
be moved to a DOS file in numeric order. aather than a prompt for t
Item-id, a range is requested. All items vithin this range are access
out of the specified file. Should an item not be present, it is ignor ~
and the process continues. II

D Diagnostic mode operation has tvo levels.
character of the option position string,
messages is displayed. If the letter D
greater, a more detailed set of diagnostics

If the letter D is the fir ,
a summary set of diagnost .­
is in option position 2

is presented. I
After the Options request, the system will then prompt for: •

PICK Account Name:

PICK File (DICT FILE or FILE or FILE,DATA):

DOS File

CHAPTER 11 - IBM PC-XT
Preliminary PAGE 11-24

i

Copyright 1987 PICK SYS I
I

I
I
I
I
~ ..
IIiIt

I
I
I
I
I
I
I
I
I
I
I
I
[

I

PICK OCtem or • for all:

A successful transfer ends with the following message:

n item(s). n records/attributes transferred

The DOS file name may be any valid DOS file on any valid DOS device. The DOS
prompt occurs before the request for the Item-id's so several items may be store
the same DOS file. This is done by specifying individual Item-id's. A null It
denotes the end of input and precludes transfering an item with a null item-id.
asterisk '.' is reserved for transfering all items within a file. This means t
single item with an Item-id of asterisk cannot be transfered.

When transfering single items, the message displaying the number of items trans
and the number of records/attributes will accumulate and display the totals trans
to the DOS file.

If an invalid name is entered at any time during the prompt sequence, an approp
error message, such as the following, is displayed:

File XXX in account yyy not found

After a successful transfer, the user will be prompted for another PICK filena
<cr> response causes a prompt for a different PICK account name. A <cr> at the ac
prompt exits the COPYPICK utility.

PICK attribute marks (X'FE') are replaced with a carriage return (X'OD') and line
(X'OA'). This effectively makes each PICK attribute value, a DOS record in the
receive file.

CHAPTER 11 - IBM PC-XT
Preliminary PAGE 11-25

Copyright 1987 PICK SYS

C> COPYPICK

C>

Options:
PICK Account Name: SYSPROG
PICK File (DICT FILE or FILE or FILE,DATA): BP
DOS File FINDX
PICK Item or * for all: FIND

1 Item(s) Converted
47 Attributes Moved

PICK Item or * for all:

1 Item(s) Converted
47 Attributes Moved

PICK File (DICT FILE or FILE or FILE,DATA):
PICK Account Name: <cr>

Sample COPYPICK transfer session.

CHAPTER 11 - IBM PC-XT
Preliminary PAGE 11-26

]

I
l
I
l
I

I
I

i
l
i

I
I
I

Copyright 1987 PICK SYS II

I

I
I

I
I
I
I
I
I
I
I , ..
I
I
I
[

I

11.17 ABS IlTERSION

The size of the ABS: area may be increased to accomadate additional
assembly level requirements.

NOTE: IGNORE THIS SECTION UNLESS YOU FALL INTO ONE OF THE FOLLOWING
CATEGORIES:

1. Your application is comprised of Assembler programs that exceed a
total of 100 frames.

2. Your Assembler program development is anticipated to require more than
100 frames.

During the intial virgin boot procedure, a proprietary message is
displayed. There is a three (3) second window following this proprietary
message. Three percent signs are displayed, about one per second. While
these per-cent signs are appearing, the character 'A' is entered from the
keyboard. The following is displayed:

U% <------- enter 'A' before 3rd %

Enter total ABS frames (4095 >- *ABS >- 512) -

The number of ABS frames may be increased in increments of 32 frames.

The ABS area must reside totally on the first hard disk. (4096 ABS frames
uses 8MB of disk.) The # of cylinders in the disk allocation table must
be adjusted accordingly to reflect any additional ABS space used.

This extension should not be done unless absolutely necessary. Needless
ABS extension negates available disc space.

NOTE: When calling for technical support, your first words should be that
you have an 'ABS EXTENDED SYSTEM' .

CHAPTER 11 - IBM PC-XT
Preliminary PAGE 11-27

Copyright 1987 PIC

11.18 CREATING OR MODIFYING TEIK TYPES

"The DEFINE-TERKINAL" utility can be used to create or modify term
types.

FORMAT:
>DEFINE-TElHINAL (from SYSPROG account)

The DEFINE-TERKINAL utility provides the user a means to customize the
terminal characteristcs functions required for his particular needs. The
utility provides an editor, selection process and "compiler". The
utility is a menu-driven BASIC program which creates, maintains, compiles
and selects up to 26 different terminals for inclusion in the table.
Although only 26 terminals may be selected for inclusion in this utility,
any number of terminals may be defined by this utility.

Upon entering the command "DEFINE-TERMINAL" at TCL, a display and menu
similar to the following will be presented:

System Cursor Definition Utility

The following terminals are defined. Terminals marked with an
(*) are selected to be included in your System Cursor Definition.

*A ADDS
B BEEHIVE
C DTC
D DATAMEDIA
E EKULOG200
G GTC

H HONEYWELL
I IBM3010

*J VT100
*K VT52
*L LSI
*M AMPEX

*N lJYSE100
*Q MIME
*R REGENT
*S SOROC

T TEC
*T TV920

1) Create Terminal Definition
2) Kodify Terminal Definition
3) Delete Terminal Definition
4) Add Terminal to Selected Definitions
5) Delete Terminal from Selected Definitions
EX Exit without updating System-Cursor

*V VIEWPOINT
*W lJYSE50
X DATAGRAPHIX

FI Update System-Cursor to selected terminals

Enter Selection (1-5) or EX or FI:

asterisk

In the following sections, each of the menu choices will be explained.

11.18.1 CREATE TERHINAL DEFINITION

This choice (1) will allow the creation of a new terminal definition. A
terminal definition consists of a series of parameters which the system
requires to control a particular terminal (type, size, control codes,
etc.).

CHAPTER 11 - IBM PC-XT
Preliminary PAGE 11-28

Copyright 1987 PICK SYSTEMS

I
I
I
I
J
I
I
I
I
I
I
I
I

I
I
I
I
I

I
I
I
I
I
I
I
I
E
I
I
I
I
I
I
I
I
[

I

After entering the menu selection (1), the routine will prompt for the
terminal name to be defined.

It will then check if that name already exists. If so, you may opt to
modify the existing definition, or enter another name. If you opt to
modify the existing definition, then the routine will proceed as in the
next section (modification). If the name is new, then you will be asked
if you want to use a copy of an existing terminal definition for the
intial values for the new definition. If so, you will be prompted for
the name of the existing terminal to be used as a "template". This is
useful for defining terminals which are similar to other existing
terminals. If you do not choose to use an existing terminal definition
as a "template", then the routine proceeds to prompt for each of the
parameters for the new definition.

Otherwise, the routine proceeds as in the next section, modification.

11.18.2 MODIFY TERMINAL DEFINITION

This choice (2) will allow the modification of existing terminal
definitions. After entering the menu selection (2), the routine will
prompt for the name of the terminal definition to be modified. If the
name does not exist, you may opt to create it. If you opt to create a
new definition, then the routine proceeds as in the previous section (new
definition). Otherwise, the routine proceeds to the definition
modification mode.

In the terminal definition modification mode, the set of parameters for
the terminal is broken into page size blocks for display and
modification. First, a section of the existing definition is displayed,
then the prompt "Modify Lines?" is issued. You may answer Yes, No
(default) or a list of line numbers to modify (if you answer Yes, you
will be prompted for the list of line numbers). If you answer No, then
the next section of the existing definition is displayed and the process
repeats until the entire definition has been reviewed. Otherwise, you
will be prompted for each of the selected lines to enter new data. At
each of these prompts, the folowing special entries may be made: First,
a carriage return (null value) will cause the data for the line to be
unchanged. Second, entering any number of spaces will cause the data for
the line to be changed to null. Third, entering a single questions mark
(?) will present a brief explanation of the contents of the line, and
then reprompt for input. After all the lines have been prompted for,
then the routine returns to the display section to again review the
selection.

Once all the sectiqns have been reviewed, you will be asked if the
terminal definition! is correct. If not, then the review and modify
process will be repeated, or you may exit without saving any
modifications.

CHAPTER 11 - IBM PC-XT
Preliminary PAGE 11-29

Copyright 1987 PICK SYSTEMS

If the definition is correct, then an attempt will be made to ·compile"
it.

If the compilation detects errors, then you may have to correct the
errors via the modification process. Otherwise, you may .elect the
terminal to be included in the list of terminals for your System-Cursor.

The following is an example of the display portion of the modification
mode:

Terminal - TV920

1. TYPE •...•.•.........•....•••••......• T
2. SCREEN SIZE.......................... 80,24
3. CURSOR ADDRESS CODE L
4. @(X) CURSOR POSITIONING CR STR(CHAR(l2) ,X)
5. @(X,Y) CURSOR ADDRESSING ESC "-" Y X
6. @(-l) CLEAR SCREEN & HOME CHAR(26)
7. @(-2) CURSOR HOME CHAR(30)
8. @(-3) CLEAR TO END OF PAGE ESC "Y"
9. @(-4) CLEAR TO END OF LINE ESC "T"

10. @(-5) START BLINK ESC" "
11. @(-6) STOP BLINK ESC "q"
12. @(-7) START PROTECT ESC ")"
13. @(-S) STOP PROTECT ESC "("
14 . @(-9) CURSOR BACK. BS
15. @(-10) CURSOR UP VT

Modify lines? HQ
Terminal - TV920

16. @(-11) SlAVE ON
17. @(-12) SlAVE OFF
18. @(-13) START REVERSE VIDEO ESC "j"
19. @(-14) STOP REVERSE VIDEO ESC "k"
20. @(-15) START UNDERLINE ESC "1"
21. @(-16) STOP UNDERLINE ESC "m"
22. @(-17) ENABLE PROTECT MODE ESC "&"
23. @(-lS) DISABLE PROTECT MODE ESC "I"
24. @(-99) EMBEDED VISUAL ATTRIBUTES? ... YES

Modify lines? HQ

Is table for terminal TV920 correct? ~

11.lS.3 DELETE TERHINAL DEFINITION

This choice (3) allows for the deletion of terminal definitions. After
entering the menu choice (3), you will be prompted for the name of the
terminal to be deleted.

CHAPTER 11 - IBM PC-XT
Preliminary PAGE 11-30

Copyright 1987 PICK SYSTEMS

I
I
I
I
I
I
J
I
J
I
I
I
I

I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

[

11.18.4 ADD TDlIIRAL! TO SELECTED DEFIRITIONS

This choice (4) a11~ws for the addition of a terminal to the list of
terminals to be included in your System-Cursor. After entering the menu
selection (4), you will be prompted for the name of the terminal to be
added to the list of selected terminals. If the name exists, then the
routine will check if that type of terminal (terminal type in the
definition) has already been selected.

If not, then the desired terminal will be selected.

If the type of the desired terminal has already been selected for another
terminal, then you will be asked if you want to replace the previous
selection with the new selection. If so, the previous selection will be
deleted from the list of selected terminals, and the new selection added.

11.18.5 DELETE TERHINAL FROM SELECTED DEFINITIONS

This choice (5) allows for the deletion of a terminal from the list of
terminals to be included in your System-Cursor.

11.18.6 EXIT WITHOUT UPDATING SYSTEM-CURSOR

This choice (EX) quits the defintion process without updating the
operating System-Cursor. All the modifications and selections made are
preserved.

11.18.7 UPDATE SYSTEM-CURSOR TO SELECTED TERHINALS

This choice (FI) quits the definition process after updating the
operating System-Cursor to the new selections.

11.18.8 DEFINING TERHININAL TABLES

The Terminal Definition Utility is used to define the Terminal Tables
(menu choices 1 and 2). Some of the fields in the Terminal Table which
are required are explained here.

11.18.9 TERHINAL TYPE

The terminal type is a single upper-case letter which identifies the
terminal to the system. The terminal type field in the terminal table
corresponds to the type as set with the TERM command.

CHAPTER 11 - IBM PC-X!
Preliminary PAGE 11-31

Copyright 1987 PICK SYSTEMS

11.18.10 TERKINAL SIZE

The size field contains the screen size in columns and rows.
entered as two numbers separated by a comma (e.g., 80,24).
exceeds the size, then the maximum size is substituted.

11.18.11 CURSOR ADDRESSING TYPE

The size is
If a value

The cursor addressing type is usually a single letter (A, L, T, H, D).
The defined types are "A" for ADDS type addressing, "L" for Lear-Seigler
type addressing, "T" for TEC type addressing, "H" for Hazeltine type
addressing and "D" for decimal type addressing.

All types except "D" produce binary column and row addresses (single byte
for each). "D" type addressing produces one to three digits for column
and row addresses. If "D" type addressing is used, the code may be
followed by two digits (22, 23, 32, 33) to force padding to the desired
number of digits (e.g., "D32" will produce decimal addressing with 3
digits used for the column and 2 digits for the row (leading zeros added
to force the length). "D" alone will use "floating" decimal numbers from
1 to 3 digits.

All cursor addressing codes may be followed by a plus sign "+" which adds
one to the column and row addresses before generating the address codes.
This allows for terminals which define the upper-left corner of the
screen as "1,1" instead of "0,0". Thus, decimal addressing with a three
digit row and column address numbered from "1,1" would be: "D33+".

To determine the proper binary cursor addressing type (A, L, T, H), use
the table provided on the next page. This table shows the column or row
address, and the associated code.

ADDS

TEC

LSI

HAZE

COL - CHAR«INT(X/10)*6)+X)
ROW - CHAR(Y+64)

COL - CHAR(-(l+X»
ROW - CHAR(-l(+Y»

COL - CHAR(X+32)
ROW - CHAR(Y+32)

COL - CHAR(X)
ROW - CHAR(Y)

CHAPTER 11 - IBM PC -XT
Preliminary PAGE 11-32

Copyright 1987 PICK SYSTEMS

I
I
I
I
I
J
I
I
I
I
I
, I'·····

I
I
I
I
I
I
I

I
ADDS ADDS ADDS ADDS

I X Y COL ROW L$I TEC HAZE X Y COL ROW LSI TEC HAZE
--4-- --- ------ ---- ----

I
0 0 nul @ space del nul 40 @ H W (
1 1 soh A I Soh 41 A I V)
2 2 stx B " stx 42 B J U * 3 3 etx C # etx 43 C K T +

I 4 4 eot D $ eot 44 D L S
5 5 eng E , z eng 45 E K R
6 6 ack F & Y ack 46 F N Q

"
7 7 Bel G x bel 47 G 0 P /

Ii 8 8 bs H (w bs 48 H P 0 0
9 9 ht I) v ht 49 I Q N 1

10 10 dIe J * u If 50 P R K 2

I 11 11 del K + t vt 51 Q S L 3
12 12 dc2 L s ff 52 R T K 4
13 13 dc3 K r cr 53 S U J 5

I 14 14 dc4 N Q so 54 T V I 6
15 15 nak 0 / p si 55 U W H 7
16 16 syn P 0 0 dIe 56 V X G 8

I
17 17 etb Q 1 n del 57 W Y F 9
18 18 can R 2 m dc2 58 X Z E
19 19 em S 3 1 dc3 59 Y [D
20 20 space T 4 k dc4 60 C <

[21 21 I U 5 j nak 61 a B
22 22 " V 6 i syn 62 b A >
23 23 # W 7 h etb 63 c @ ?

I 24 $ 8 G can 64 d ? @
25 , 9 F em 65 e a > A
26 & e sub 66 f b B

I
27 d esc 67 g c < C
28 (< c fs 68 h d D
29) b gs 69 i e E
30 0 > a rs 70 p f 9 F

I 31 1 ? Us 71 q g 8 G . ,

32 2 @ 72 h 7 H space r
33 3 A I 73 S i 6 I

I
34 4 B " 74 t j 5 J
35 5 C # 75 u k 4 K
36 6 D [$ 76 v 1 3 L
37 7 E Z , 77 w m 2 M

I 38 8 F Y & 78 x n 1 N
39 9 G X 79 Y 0 0 0

I
I
I
[

CHAPTER 11 - IBM PC-XT Copyright 1987 PICK SYSTEMS

i
Preliminary PAGE 11-33

11.18.12 CDBSOR CODE STRINGS

The cursor code strings are expressions which produce the control and
escape sequences used by the terminal being defined. The expressions
are similar to BASIC syntax, except that a blank may be used between
elements in the expression as well as a colon. Cursor code strings may
consist of the following separated by blanks or colons:

1) Defined control character (e.g., ESC, BS, DEL, etc.)
2) String literal in quotes (e.g., "An, '[0', etc.)
3) Character function (e.g., CHAR(21»
4) Hexidecimal string (e.g., HEX(lB4l»
5) String function (e.g., STR(NUL,5) or STR(CHAR(12),XOO
6) Cursor address variable (e.g., X, Y, or Z)

The cursor address variables (X, Y, Z) cause the specified address (byte
or decimal string) to be inserted into the control string at the
specified position. The variable X contains the column, Y contains the
row, and Z contains the row previously referenced in an @(X,Y) code (or
zero if the last reference was @(-l) or @(-2).

The symbolic name for the control codes and their decimal and
hexidecimal equivalents are shown in the table below. Any of these
codes may be included in the cursor code string. It is often easier to
reference the backspace character as BS instead of CHAR(8) , or NUL
instead of CHAR(O).

CODE DEC HEX CODE DEC HEX CODE DEC HEX

NUL 0 00 DLE 16 10 SP 32 21
SOH 1 01 DC1 17 11 DEL 127 22
STX 2 02 DC2 18 12
ETX 3 03 DC3 19 13
EOT 4 04 DC4 20 14
ENQ 5 05 NAK 21 15
ACK 6 06 SYN 22 16
BEL 7 07 ETB 23 17
BS 8 08 CAN 24 18
HT 9 09 EK 25 19
LF 10 OA SUB 26 1A
VT 11 OB ESC 27 1B
FF 12 OC FS 28 lC
CR 13 OD GS 29 lD
SO 14 OE RS 30 IE
SI 15 OF US 31 IF

11.18.13 SPECIAL CURSOR CODE STRINGS

Most of the cursor code strings are self-explanatory and consist of
control characters, escape sequences, and other obvious codes.

CHAPTER 11 - IBM PC-XT
Preliminary PAGE 11-34

Copyright 1987 PICK SYSTEKS

I'·· ,.

I
I
I

!

I
I
J
I

I

I
I
I
I
I

I
[

I

I

!
r ..
I

I

I
[

11.18.14 COLDHN OBLY CURSOR POSITIONING

The "column only" ~ursor positioning is special because many terminals
do not support this i function. In terminals which do not support this
function, there are three ways to simulate it. Terminals which do
support "column only" positioning (e.g., ADDS), may use the terminal's
normal control sequence (e.g., (CHAR(16) X). For terminals without
"column only" positioning, the function may be simulated two ways.
First, the cursor can be positioned to column zero of the current line
(carriage return), followed by a cursor-right code for the number of
columns required (e.g., CR STR(CHAR(12),X». A variation of this is for
VT-100 type terminals which may use a sequence like: CR ESC "[" X "C"
BS, where the decimal value of X is part of the cursor-right escape
sequence.

The other method of simulating "column only" positioning is less
desirable, but may be effective in some instances. It uses the dummny
cursor address variable Z in place of the Y address in a normal X-Y
cursor address code (e.g., ESC "-" Z X).

11.18.15 CLEAR SCREEN & HOME @(-1)

The Clear Screen & Home code may consist of two different terminal
control sequences (one for clear screen, and one for home). This is the
case for VT-lOO type terminals. Many other terminals combine these into
one control sequence.

CHAPTER 11 - IBM PC-XT
Preliminary PAGE 11-35

Copyright 1987 PIC

I
I
I
I
I
I
I
J
I··; ;;

J
J
J
i
I
I
J
I
I

I
I

I

I
I
I
[.'." ,

[

[

[

I
I

I
I
I
I
I
[

I

Chapter 12

PICK PC IMPLEMENTATIONS

THE PICK SYSTEM

USER MANUAL

PROPRIETARY INFORMATION

This document contains information which is
proprietary to and considered a trade secret of
PICK SYSTEMS. It is expressly agreed that it
shall not be reproduced in whole or part,
disclosed, divulged, or otherwise made available
to any third party either directly or indirectly.
Reproduc~ion of this document for any purpose is
prohibit~d without the prior express written
authorization of PICK SYSTEMS. All rights
reserved.

CHAPTER 12 - PC Implementations Copyright 1988 PICK SYSTEMS
Preliminary PAGE 12-1

Contents

12 PICK PC IMPLEMENTATIONS

12.1
12.2
12.2.1
12.2.2
12.3
12.3.1
12.3.2
12.3.3
12.3.4
12.3.5
12.3.6
12.3.7
12.3.8
12.3.8.1
12.3.8.2
12.4
12.5

INTRODUCTION
USING YOUR SYSTEM

Booting Your System
Shutting Down Your System

INSTALLING YOUR PICK SYSTEM
Preparations
New Installation . . .
Upgrading Your PICK PC
Full System Restore
File Restore from TCL

System

ABS Restore
Deleting the Partition
Configuration Extension

ABS Extension
Overlapped I/O

FIXED DISK PARTITIONING : FDISK
OFF-LINE STORAGE : STREAMING CARTRIDGE TAPE AND

DISKETTES
Streaming Cartridge Tape
Diskette Commands
Additional Verbs . . .
Examples

SETTING THE DATE FORMAT
MEMORY-MAPPED MONITOR

Keyboard Changes . . .

(SCT) Commands

Specifying Color and Display Modes
Keyboard Definition : SET-KBRD . .
Defining Function Keys : SET-FUNC

SERIAL PORTS
Data Carrier Detection : DCD
Flow Control : FC, MODEM . .
Setting Baud-Rate : SET-BAUD
Setting Port Characteristics SET-PORT
Type-Ahead Capability : TA.
Extended Character Set : xes

· 12-3
· 12-4
· 12-4

12-4
. • . 12-5

· 12-5
. . 12-6

12-8
12-8
12-9
12-10
12-10
12-11
12-11
12-12
12-13

12.5.1
12.5.2
12.5.3
12.5.4
12.6
12.7
12.7.1
12.7.2
12.7.3
12.7.4
12.8
12.8.1
12.8.2
12.8.3
12.8.4
12.8.5
12.8.6
12.8.7
12.9
12.9.1
12.9.2
12.10
12.11
12.12
12.13

Displaying Serial Line Characteristics : LIST-PORTS
CREATING OR MODIFYING TERM TYPES DEFINE-TERMINAL

12-16
12-16
12-17
12-18
12-19
12-20
12-21
12-21
12-21
12-23
12-23
12-24
12-24
12-25
12-25
12-26
12-27
12-27
12-28
12-29
12-29
12-33

Tab1e(s)

Menu Options
Describing Terminal Entries

TEST -CURSOR
OPTIMIZING PARALLEL PRINTER PERFORMANCE
DOS TO PICK BRIDGE COPYDOS .
PICK TO DOS BRIDGE COpypICK....

12-1 Cursor Address Codes . . .
12-2 Values Generated by Cursor Codes

· 12-38
12-39
12-41
12-45

12-34
· 12-35

CHAPTER 12 - PC Implementations Copyright 1988 PICK SYSTEMS
Preliminary PAGE 12-2

I
I
I
I
I
I
I
I
I
I
I
I

I
I
I

I
I

[
[
[

I ,
[

l
I
I

I
I
I
I
I
[

[

12.1 INTRODUCTION

The PICK Personal Computer (PC) implementation includes several features
for using the PICK system with your PC. These features include

1

- installing your system

- defining peripheral storage devices

- defining memory-mapped monitor features

- defining serial port and terminal characteristics

1 - copying files between PICK and MS-DOS systems

MS-DOS is a registered trademark of Microsoft Corporation.

CHAPTER 12 - PC Implementations Copyright 1988 PICK SYSTEMS
Preliminary PAGE 12-3

12.2 USING YOUR SYSTEM

Your PC system can have up to four operating systems on it. The one that
has control of the machine <as long as there is no diskette in the floppy
drive) is the one that is on the partition marked 'active' by the FDISK
command. (If a diskette is in the floppy drive, the PC tries to boot
using that diskette.)

When PICK is installed, the installation procedure marks the partition
containing PICK as the active partition. Therefore, any time you boot
your system, unless you change the FDISK parameters or you insert a
diskette in the floppy drive, you will come up in PICK.

12.2.1 Booting Your System

To boot the system, either press <ALT-CTRL-DEL> or turn the machine off,
then on. You come up in the operating system in the active partition.
If you are currently in PICK, you can reboot your system by using the
REBOOT command.

FORMAT:
REBOOT

REBOOT checks that all users are logged off, executes the POWER-OFF verb
which flushes memory to disk, then causes the system to boot just as if
<ALT-CTRL-DEL> had been pressed. REBOOT works only if all other users
are logged off. If any users are still logged on, REBOOT displays their
account ids and line numbers, then returns to TCL.

This verb only works from line O.

12.2.2 Shutting Down Your System

Before turning off your system, you should execute the POWER-OFF verb to
ensure that all write-required frames are flushed from memory to disk.

FORMAT:
POWER-OFF

POWER-OFF disables all users, flushes memory to disk, and puts the
machine into a HALTed state from which powering off and then back on is
the only recovery. POWER-OFF only functions if all other users are
logged off. If they are not, you will be informed who is still logged on
and returned to TCL.

The operating system automatically flushes memory buffers to disk
whenever the system has been quiescent for two seconds. If this
automatic flush has already taken place, the system can be powered down
without having to type POWER-OFF. However, using the POWER-OFF verb is
the recommended procedure.

This verb only works from line O.

CHAPTER 12 - PC Implementations
Preliminary PAGE 12-4

Copyright 1988 PICK SYSTEMS

I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

[

l
I
[

I
I
I
I
I
I
I
I
I
I ,
I
[

[

12.3 INSTALLING YO~ PICK SYSTEH

I
Enclosed with each PICK system are the following diskettes:

PICK R83 PC imp System #1
PICK R83 PC imp System #2
PICK R83 PC imp System #3 (only if using 5-1/4 inch diskettes)
PICK R83 PC imp Data Files #1

NOTE: The imp entry
example, 286 specifies
microprocessor.

specifies the
the PICK system

implementation of hardware; for
for computers based on the 80286

These diskettes are used to install new systems and to restore components
of existing systems when necessary. The diskettes can be used as follows:

- New installation

- Upgrade of existing PICK system

- Full system restore; this replaces the monitor level code, the
operating system object code, and the system level data files

- ABS restore; this replaces the monitor level code and the operating
system object code

- Deletion of the PICK R83 partition

The hardware requirements to install a PICK system include:

- Supported PC implementation with one or two hard disks

- Minimum of 5l2Kb RAM

- Either monochrome or color/graphics monitor

- A minimum of 2.5Mb contiguous space available on the hard disk for a
three user system; each additional user requires an estimated
minimum of O. 2Mb

NOTE: These figures for disk space are estimated minimums. PICK
uses the largest partition that is available.

12.3.1 Preparations

The PICK system requires at least 2.5Mb of contiguous space on the hard
disk for a three user system. If the disk does not have that much space
available, you will have to copy the information from the disk (back up
the disk), delete the existing partitions, create new, smaller
partitions, then reinstall the operating system and other information
back to the disk.

PICK installs itself on the largest available partition; therefore
non-PICK operating systems should be installed before any PICK system.

CHAPTER 12 - PC Implementations
Preliminary PAGE 12-5

Copyright 1988 PICK SYSTEMS

If both the RS3 and OA versions of PICK are to be installed, install a
non-PICK operating system in the middle of the hard disk; this creates
two additional partitions. Then install one PICK; it takes the larger
partition. Install the second PICK; it takes the remaining partition.

For information on creating partitions for non-PICK operating systems,
see the FDISK documentation supplied with that operating system.

12.3.2 New Installation

The first time a PICK system is placed on the computer, the installation
process checks the PICK partition on the hard disk for disk errors, then
loads all required components of the PICK operating system. The
following procedure describes the steps.

1. Insert the diskette labeled PICK RS3 PC imp System #1.
installation, press <ALT-CTRL-DEL> or power up the
partition is checked and a message similar to the
displayed:

PICK's RS3 Ver n.n (date)
Virgin Install - PICK's RS3 Ver n.n (date)

"" Drive initialization
n:bbbbbb status

where
n drive number

To start the
machine. The

following is

bbbbbb number of first block in group of 32 being checked
status blank unless a block in the group is bad; if any block is

bad, the word BAD! is displayed and the drive and block
point to the bad group. The check continues; the
information about bad groups is for your information.
Groups with bad blocks are not used by PICK.

2. After the disk is checked, the following prompt is displayed:

Insert PICK System diskette #2 then type 'c' to continue:

Place the diskette labeled PICK RS3 PC imp System #2 in the drive,
then press C. The information on the diskette is loaded into the
PICK area on the hard disk.

3. If using 5-1/4 inch diskettes, the following prompt is displayed:

Insert PICK System diskette #3 then type 'C' to continue:

Place the diskette labeled PICK RS3 PC imp System #3 in the drive,
then press C. The information on the diskette is loaded into the
PICK area on the hard disk, then the hardware configuration is
displayed.

CHAPTER 12 - PC Implementations Copyright 1988 PICK SYSTEMS
Preliminary PAGE 12-6

I
I
J
I

I
J
I
I
I
i
J
I
I
I
I~·' -

I
I
I

l 4.

[

I
I

6.

I
I
!
17 .

18 .

I
I

I
I
I

9.

The following prompt is displayed:

FILE RESTORE device:
H)igh density floppy,S)tandard density floppy,Q)uarter inch
SCT,O)ld SCT -

If using PICK Data File #1 on 5-1/4 inch diskette, enter H. If using
PICK Data File #1 on 3-1/2 inch diskette, enter S. If using another
media, enter the appropriate letter. (There may be a slight delay
before the character you entered is displayed; this is normal.)

NOTE: Old SCT refers to tapes created by 2.1 and previous versions
of R83, or by the R option of SET-SCT.

The system displays the following:

Load PICK Data Files #1 then type 'C' to continue:

Insert the diskette labeled PICK R83 imp Data Files #1, then press C.
The files used by the system are placed on the hard disk. As each
file is written, its name is displayed, similar to the following:

SPOOLER STARTED

SYSTEM nnnn,n
BLOCK-CONVERT nnnn,n

The system performs a co1dstart, then displays the following:

Linking workspace; one moment please

The system logon prompt is displayed. Two accounts, SYSPROG
TUTOR, are available. To log on to SYSPROG, enter SYSPROG.
system functions are available. For information about the
account, see the chapter PICK TUTORIAL.

and
All

TUTOR

For more information about logging on, see the section on LOGON in
the TCL chapter.

I: CHAPTER 12 - PC Implementations
Preliminary PAGE 12-7

Copyright 1988 PICK SYSTEMS

[

12.3.3 Upgrading Your PICK PC System

Upgrading an existing PICK PC system to a new version of PICK can be done
by saving existing accounts, deleting the existing partition, installing
the new operating system, and then restoring the accounts. The following
procedure describes these steps.

1. Back up the existing system using FILE-SAVE.

2. Insert the R83 diskette labeled PICK R83 PC imp System #1. To start
the procedure, press <ALT-CTRL-DEL> or power up the machine.

3. The following prompt is displayed:

OPTIONS: K)ill, A)BS only, F)ile & ABS, Q)uick file & ABS -

Enter K to delete the existing partition. The following prompt
requesting verification is displayed:

Are you sure? (Y or N)

To verify that the partition is to be deleted, enter Y. To abort the
procedure, enter N.

NOTE: It is important to delete the old partition to ensure that the
correct boot record is put on to the hard disk.

4. The following prompt is displayed:

5.

6.

PICK partition deleted ...
Press <ALT-CTRL-DEL> to reboot.

To continue, press <ALT-CTRL-DEL>.

The procedure is then exactly the same as for a new
The PICK partition is checked for disk errors, then the
system is loaded. To continue, start with step
Installation.

Restore user accounts using RESTORE-ACCOUNTS. This

installation.
new operating
2 under New

restores all
accounts that are not currently on the system; for example, it does
not restore SYSPROG. Alternatively, you can restore each account
individually using ACCOUNT-RESTORE. In this case, do NOT restore
SYSPROG.

12.3.4 Pull System Restore

A full system restore is used to replace the monitor level code, the
operating system object code (the ABS area), and system level data files.
It can also be used to restore an existing system to a previous file save
if, for example, the system has been corrupted in some way.

CHAPTER 12 - PC Implementations
Preliminary PAGE 12-8

Copyright 1988 PICK SYSTEMS

I

I
I
i
"I •
'I
II

I
I
I

11 ..
I
J
I
I
I

[

I

I

I
I
[

I
I
I

I

I
[

[

There are two full I restore processes available. One, the F-1eve1
restore, rechecks thei hard disk before restoring any data; the other, the
Quick restore, restor~s the data without rechecking the disk.

The following diskettes are required for a system restore:

PICK RS3 PC imp System #1
PICK RS3 PC imp System #2
PICK RS3 PC imp System #3 (only if using 5-1/4 inch diskettes)
PICK RS3 PC imp Data Files #1 OR the latest file save tapes from the

existing system

The following procedure outlines the steps.

1. Insert the diskette labeled PICK RS3 PC imp System #1.

2. To start the procedure, press <ALT-CTRL-DEL> or power up the machine.

3. The following prompt is displayed:

OPTIONS: K)ill, A)BS only, F)i1e & ABS, Q)uick file & ABS -

To recheck the disk before restoring the ABS and data files, enter F.
To skip the rechecking, enter Q.

4. The procedure is then exactly the same as a new installation,
starting with step 2. If restoring an existing system. use your
latest file save in place of the original PICK RS3 PC imp Data Files
#1 diskette.

12.3.5 File Restore from TeL

A file restore is used to replace the system data files, usually those
created by a previous file save. This procedure does NOT restore any of
the operating system code.

A file restore can be started from TCL, using the PROC :FILES. The
following procedure outlines the steps.

1. Set the peripheral storage device. using SET-FLOPPY or SET-SCT. as
appropriate.

2. Insert the first reel of data.

3. Ensure that all users are logged off.

4. Enter the following at the TCL prompt (the colon is necessary):

: FILES

5. The system is shutdown, then the files restored.

CHAPTER 12 - PC Implementations Copyright 1988 PICK SYSTEMS
Preliminary PAGE 12-9

12.3.6 ABS aestore

An ABS restore replaces the monitor level code and the operating system
object code (ABS area); it does not update any data files.

The following procedure outlines the steps.

1. Insert the diskette labeled PICK RS3 PC imp System #1. To start the
procedure, press <ALT-CTRL-DEL> or power up the machine.

2. The following prompt is displayed:

OPTIONS: K)ill, A)BS only, F)ile & ABS, Q)uick file & ABS

To restore the ABS, enter A.

3. The following prompt is displayed:

Insert PICK System diskette #2 then type 'C' to continue:

Place the diskette labeled PICK R83 PC imp System #2 in the drive,
then press C.

4. The following prompt is displayed:

Insert PICK System diskette #3 then type 'C' to continue:

Place the diskette labeled PICK RS3 PC imp System #3 in the drive,
then press C. The ABS is loaded into the PICK area on the hard disk,
then the hardware configuration is displayed.

S. The system performs a colds tart and the system logon prompt is
displayed.

12.3.7 Deleting the Partition

To delete an existing PICK partition, use the following procedure:

1. Insert the diskette labeled PICK R83 PC imp System #1. To start the
procedure, press <ALT-CTRL-DEL> or power up the machine.

2. The following prompt is displayed:

OPTIONS: K)il1, A)BS only, F)ile & ABS, Q)uick file & ABS

Enter K to delete the existing partition.
requesting verification is displayed:

Are you sure? (Y or N)

The following prompt

To verify that the partition is to be deleted, enter Y. To abort the
procedure, enter N.

3. The following prompt is displayed:

CHAPTER 12 - PC Implementations
Preliminary PAGE 12-10

Copyright 1988 PICK SYSTEMS

I
I
I

-I
~
~

I
J
I
I
I

I
J
1 •
I
J
I
I
I

[

[

[
[
[
[

[

I
I
I
!
[

I

[
r •
l
[

,
,
,

PICK partittn deleted ...
Press <ALT- -DEL> to reboot.

To reboot using he PICK R83 PC imp
<ALT-CTRL-DEL>. To reboot using another
appropriate diskette. To reboot from
diskettes.

12.3.8 Configuration Extension

System #1 diskette, press
operating system, insert the
the hard disk, remove all

During an initial virgin install procedure, a proprietary message is
displayed. Following this proprietary message, there is a three-second
window during which the install process can be interrupted in order to
change the configuration. The window is noted by the display of percent
signs ('), about one per second. The window is closed when the fourth
percent sign is displayed.

Currently, there are two configuration parameters that can be changed:

- The size of the ABS area may be increased to accommodate additional
assembly level requirements. This extension should not be done
unless absolutely necessary. Needless ABS extension wastes
available disk space.

- Streaming Cartridge Tape (SCT) and disk I/O can be toggled between
overlapped and non-overlapped processing. Overlapped processing is
dependent on the hardware; the default is non-overlapped processing.

After the configuration change
the display of percent signs.

has been made, the system then restarts
You may re-enter either an A or S.

12.3.8.1 ASS Extension

ABS should be extended only in the following cases:

- Your application is composed of assembler programs that exceed a
total of 100 frames.

- Your assembler program development is anticipated to require more
than 100 frames.

To extend your ABS, press the letter A before the fourth per cent sign is
displayed. After A is pressed, the following is displayed:

Enter total ABS frames (704 <- #ABS <- 4096) -

Enter the total number of frames desired.
increased in increments of 32 frames; if
your number up to the next multiple of 32 .

The number of ABS frames is
necessary, the system rounds

CAUTION: The ABS area must reside totally on the first hard disk. (4096
ABS frames use 8Mb of disk.)

CHAPTER 12 - PC Implementations Copyright 1988 PICK SYSTEMS
Preliminary PAGE 12-11

NOTE: If you have extended your ASS and need to call technical support
for any reason, be sure to indicate that you have an 'ABS EXTENDED
SYSTEM' .

12.3.8.2 Overlapped I/O

Overlapped I/O improves the performance of your system when you are using
streaming cartridge tape; however, your hardware must be able to support
the overlapping.

To change the configuration for overlapped I/O, press the letter S before
the fourth percent sign is displayed. The system toggles the overlap,
then displays its current status, similar to the following:

Streaming Tape I/O and Hard Disk I/O will {not} be overlapped.

The actual message displays not, as appropriate.

CHAPTER 12 - PC Implementations Copyright 1988 PICK SYSTEMS
Preliminary PAGE 12-12

I
I
I
1
I
I
I

I
I
I
J

I

I
I
I

[

[

,
•
I
I

[

I

I

I
I
[

12.4 FIlED DISK PARrITIONING DISK
I

The Fixed Disk Partitioning concept allows up to
operating systems to co-reside on one or two drives.
has been provided to support the use of the PC's
Partitioning concept. It can be run only from the SYSPR

FORMAT:
>FDISK

With fixed disk partitions, each operating system resides on the hard
disk within its own range of contiguous cylinders. The FDISK command
allows the user control over which operating system is currently
executing by marking one of the co-resident operating systems as
"active". When the system is booted, the operating system marked as
"active" assumes control of the machine. Therefore, to move from
operating system A to operating system B, invoke FDISK, mark B as
"active", then reboot the system. B is now the active operating system.

The PICK system FDISK is similar to the FDISK implemented under MS-DOS.
It differs from the KS-DOS version as follows:

- The option to create a partition is not functional under PICK
because partition creation is handled automatically at system
installation time.

- The delete part~tion option refuses to delete the PICK partition
unless another partition is first marked "active". In the case
where PICK is the only operating system, this does not apply.

- Deleting the PICK partition from drive C also deletes PICK from
drive D, if it exists. With the PICK FDISK, the user may view but
not modify the partitions on drive D.

FDISK can be used to display the current fixed disk partition parameters
and current disk configuration, or to change the active partition. This
information is kept on the Master Fixed Disk Boot Record (MFDBR); when
the system is booted, the operating system on the partition marked active
in the KFDBR assumes control of the computer. If no partition is marked
active, the system cannot be booted from hard disk.

When FDISK is invoked, a screen similar to the following is displayed:

CHAPTER 12 - PC Implementations
Preliminary PAGE 12-13

Copyright 1988 PICK SYSTEMS

The PICK System
Fixed Disk Setup Program
(c)Copyright PICK Systems 1986, 1987, 1988

FDISK Options

Current fixed disk drive: 1

Choose one of the following:

o. Quit & Return to TCL
1. Create PICK Partition
2. Change Active Partition
3. Delete PICK Partition
4. Display Partition Data
5. Select Next Fixed Disk Drive
6. Undo Changes to Partition Data

Enter choice: []

To exit FDISK and return to the TCL prompt, enter O.

Option I, Create PICK Partition, displays the current partitions defined
in the MFDBR, but does not actually do anything else; it is provided for
compatibility with the MS-DOS FDISK command.

Option 2, Change Active Partition, is used to select the partition that
contains the desired operating system. The partition that is marked
active assumes control the next time the system is booted.

Option 3, Delete PICK Partition, is used to delete from the KFDBR the
reference to the partition that currently has control of the computer
(the currently active partition). If there is more than one partition,
then before the currently active partition can be deleted, another
partition must be marked active using option 2. The only partition that
can be deleted is the currently active partition.

Option 4, Display Partition Data, is used to display the status of all
partitions, and is similar to the following:

PARTITION STATUS TYPE START END CYLNDRS SIZE KB
1 N DOS 0000 0255 0256 31.88
2 A R83 0256 0898 0643 80.06

Total fixed disk space is 899 Cylinders, 111.94 Mbytes

Press ESC to return to FDISK option []

Option 5, Select Next Fixed Disk, displays the statistics for the current
drive, and if the system supports two drives, gives the option to select
one drive or the other. The statistics that are displayed are similar to
the following:

CHAPTER 12 - PC Implementations Copyright 1988 PICK SYSTEMS
Preliminary PAGE 12-14

I
I

I
I
I -.. '.'. ':1 ..

I
I
I
l
I
I
I
I
I

l
[

[

I

I
I

I

I
(i ..

"

I
[

[

Fixed disk! drive is 1 of 1

Headsi. 15
Cy1in~ers.... 899
Sectors ...••• 229245
Mega bytes ..• 111.94

Press ESC to return to FDISK option []

Option 6, Undo Changes to Partition Data, returns the partition settings
in the HFDBR to those that were in effect when FDISK was invoked.

CHAPTER 12 - PC Imp1~mentations
Preliminary PAGE 12-15

Copyright 1988 PICK SYSTEMS

12 • 5 OFF-LINE STORAGE STlUWIING CAllTllIDGE TAPE AND DISDTTES

The PICK PC System supports
both 5-1/4 inch and 3-1/2
devices. The desired device
or a SET-FLOPPY command.
diskettes.)

1/4" streaming cartridge tape (SCT) and
inch diskettes as peripheral storage
is assigned to your line with a SET-SCT

(SET-FLOPPY is used for both sizes of

For information on the installation of peripheral storage devices, see
the PC PERIPHERAL INSTALLATION GUIDE.

12.5.1 Streaming Cartridge Tape (SCT) Commands

The SET-SCT command assigns the peripheral storage device to the SCT
unit. The SET-SCT command also does an automatic tape attach (T-ATT) of
the SCT unit to your line.

FORMAT:

where
buffers

SET-SCT (buffers) ((blk-size)(R))

number of buffers to assign to SCT processing; each buffer
is 512 bytes (1/2Kb). The default (and minimum number) is
128. The maximum number of buffers depends on the size of
main memory for your system; up to one half your memory can
be reserved for buffers. For example, if you have a 512Kb
system, you can have up to 512 buffers.

NOTE: If you are using SCT while other processes are
active, using the maximum number of buffers may adversely
affect the performance of those processes.

blk-size size of one block on the SCT; may be any value between 500
and 32500. For maximum efficiency, it is recommended that
the block size be a multiple of 512. The default block
size is 16384.

R use the old SCT format; the old format writes a 5l2-byte
block between each block of data (the current SCT format is
a continuous stream of blocks of the specified size). The
old format is used by 2.1 and previous versions of R83. If
the R option is specified, the block size must be a
multiple of 512 and must be in the range 2560 and 16384.

The T-RETEN command retensions the SCT by first forwarding,
backspacing the tape its entire length (no data is destroyed).
recommended that tapes be retensioned before they are used to reduce
occurrence of parity errors.

then
It is

the

FORMAT:
T-RETEN

CHAPTER 12 - PC Implementations Copyright 1988 PICK SYSTEMS
Preliminary PAGE 12-16

I
I
J,

I
I
I

J
3
I
I
I
I
I
I

I
I

[

1
[

I
[

I
I
[

I
I
I
I

I
[

I
[

[

The T-ERASE command : also retensions the SCT by first forwarding, then
backspacing the tap~ its entire length; however, T-ERASE also erases the
entire tape.

FORMAT:
T-ERASE

12.5.2 Diskette Commands

The SET-FLOPPY command sets the peripheral storage device to a
drive. The SET-FLOPPY command also does an automatic tape attach
of the diskette drive to your line.

FORMAT:
SET-FLOPPY {(density,drive)

The options for density are

H High Density; 1.2 Mb for 5-1/4 inch drives, 1.44 Mb for 3-1/2 inch
drives

S Standard Density; 360Kb for 5-1/4 inch drives, 720Kb for 3-1/2 inch
drives

The options for drive are

A Drive A:

B Drive B:

If no options are specified, the drive is set to drive A as the default
and the density is set to the highest density supported by the drive.

Diskettes must be formatted for PICK before they can be used. To format
diskettes, use the verb FORMAT. The density and drive specified by the
last SET-FLOPPY verb are used as the defaults. If any bad sectors are
detected by the format process, the diskette is not usable under PICK.

FORMAT:
FORMAT

After the verb has been entered, a screen similar to the following is
displayed:

BLOCK SIZE 500
PICK System Floppy Disk Format Utility

Format (size) diskette media
Insert di.kette in floppy drive (drive)
and strik~ any key when ready

After the formatting has been completed, statistics similar to the
following are printed:

CHAPTER 12 - PC Implementations Copyright 1988 PICK SYSTEMS
Preliminary PAGE 12-17

/

J

Good format:

Formatting
11111111111111111

completed.

nn bytes total disk space
mm bytes available on disk

Format another (YIN) -

Bad format:

Formatting:
+++-+++++-+- - -+++++­
completed.

nn bytes total disk space
mm bytes available on disk
xx bytes in bad sectors
This diskette is unusable by PICK

Format another (YIN) -

CAUTION! PICK and KS-DOS use different formats for disks.
is formatted for PICK is not usable by KS-DOS.

12.5.3 Additional Verbs

The following verbs can be used with both SCT and diskettes:

T-STATUS

A disk that

This command returns with drive and type information of the currently
assigned peripheral storage device.

T-REW

This command repositions the peripheral storage device to the beginning
of the media. In addition, after write operations using SCT, the T-REW
writes a terminating EOF mark before rewinding the tape.

You should always perform a T-REW before removing the media from the
drive.

CHAPTER 12 - PC Implementations Copyright 1988 PICK SYSTEMS
Preliminary PAGE 12-18

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

r
L

[

[

I

I

!

, ..
[

[.. ' ..

12.5.4 Examples

The following examp~es illustrate the use of the peripheral storage
device commands. i

I
SET-SCT Set tape device to 1/4" tape, use default block size. I

SET-FLOPPY (SB Set tape device to floppy drive B, standard density V SET-FLOPPY (HA Set tape device to floppy drive A, high density.

SET-FLOPPY Set tape device to floppy drive A, highest density I
supported by that drive I

I
Sample usage of SET-SCT and SET-FLOPPY commands.

CHAPTER 12 - PC Implementations Copyright 1988 PICK SYSTEMS
Preliminary PAGE 12-19

12.6 SETTING THE DATE FORMAT

Both European date format and USA data format are supported on the
PICK PC system.

FORMAT:

SET-DATE-EUR

SET-DATE-EUR specifies that the numeric date format is dd/mm/yy.
default display remains dd mon yyyy.

The

FORMAT:

SET-DATE-STD

SET-DATE-STD specifies that the numeric date format is mm/dd/yy. The
default date format remains dd mon yyyy'

For information on setting the date, see the SET-DATE verb in Chapter 3,
Terminal Control Language.

Statement

SET-DATE-EUR

SET-DATE-STD

Description

Sets the date to European format; if a
numeric format is requested, the date is
displayed as 30*9*88, where * is the
specified delimiter.

Sets the date to the USA format; if a
numeric display is requested, the date is
displayed as 9/30/88, where / is the
specified delimiter. The default display
remains 30 Sep 1988.

CHAPTER 12 - PC Implementations Copyright 1988 PICK SYSTEMS
Preliminary PAGE 12-20

1·1
.' I

I

I
I
I
I
I
I
I
I' ",

I
i
I
I
I
I
I

[

• •

I

,
III ,
...

12.7 HENORY-HAPPED MONITOR

On PICK PC systems,1 the device on line 0 is always assumed to be a
memory-mapped monitor. PICK includes verbs to set color, keyboards,
and function keys on memory-mapped monitors.

12.7.1 ~eyboard Changes

The PC memory-mapped monitor keyboard has certain features that are
different from standard CRT capabilities. These features have been
disabled under the PICK Operating System to make the monitor appear to be
a standard CRT keyboard.

The following is a list of changes under PICK:

- Keypad area generates numerics only.

- Backtabs cannot be generated from the keyboard.

- Print screen functions are disabled .

- The function keys FI to FlO are user-definable via the included
BASIC program SET-FUNC.

- The <ALI> key recognition is disabled except in the following cases:

<ALT-CTRL-DEL> reset sequence
<ALT-CTRL-BREAK> system debugger sequence
<ALT-n> character displayed on the vertical face of the

key
<ALT-functionkey> user-defined function key

12.7.2 Specifying Color and Display Hodes

Two verbs are available from TCL that allow you to specify the color and
mode of the monitor on line 0: COLOR and MONO.

FORMAT:
COLOR {foreground color}(,background color} {modes}

The following colors are available for background and foreground:

BlACK, BLUE, GR.E~, CYAN, RED, MAGENTA, BROWN, WHITE

The following modes are available:

IB or IBLINK
INB or INOBLINK
IF or lFULL

Activate character blinking
De-activate character blinking
Full intensity foreground

CHAPTER 12 - PC Impl.mentations
Preliminary PAGE 12-21

Copyright 1988 PICK SYSTEMS

/H or /HALF
/R or /REVERSE
/NR or /NOREVERSE

STATEMENT

COLOR RED

COLOR ,BLUE

COLOR /B

COLOR /NB/R

Half intensity foregound
Activate reverse video
De-activate reverse video

EXPLANATION

Set foreground to red.

Set background color to blue.

Activate character blinking.

Deactivate character
reverse video.

blinking, activate

COLOR BROWN/F

COLOR ,RED/H

Set foreground to brown and full intensity.

Set background to red, set foreground to
half-intensity.

COLOR GREEN,CYAN/HALF Set foreground to half
background cyan.

Sample usage of the COLOR verb.

intensity green,

The COLOR verb works only on line 0 and only if a COLOR/GRAPHICS adapter
is on the system.

FORMAT:
MONO (modes)

The supported switches are identical to the COLOR verb switches, with the
addition of the following:

/U or /UNDERLINE

/NU or /NOUNDERLINE

Activate character underlining

Deactivate character underlining

The MONO verb works only on line 0 and only if a monochrome adapter card
is in the system.

CHAPTER 12 - PC Implementations Copyright 1988 PICK SYSTEMS
Preliminary PAGE 12-22

I
I
I
I
I
I
I
I
I
I
I
J

I
I
I
I
I
I

[

[

r.· .. ·.·. ,
[

r •

, ..

I
E
I

[

£
[

[

12.7.3 Keyboard Definition SET-IBID

,
I

The SET-DRD program
memory-mapped monitors.

FORMAT:

is used to redefine the keyboard
SET-DRD applies only to line O.

>SET-DRD fi1e.name item. name

where
filename name of the file that contains keyboard definitions

item. name name of specific keyboard item

for

Several keyboard definition items are included with the system. These
may be found in the file KEYBOARDS in the account SYSPROG and include:

BRITISH
FRENCH
GERMAN
ITALIAN
SPANISH
USA

The default keyboard is the USA keyboard.
keyboard definition items, see Appendix A,
Items.

12.7.4 Defining Function Keys SET-FUNC

For more information about
Creating Keyboard Definition

The SET-FUNC program is used to redefine the function keys
memory-mapped monitors. SET-FUNC applies only to line O.

FORMAT:
>SET-FUNC fi1e.name item. name

where
filename name of file that contains function key definitions

item. name name of specific function key item

The function keys are initiall.y defined by the default keyboard
definition item. SET-FUNC overrides the default settings or a previously
executed SET-DRD; however, if SET-DRD is executed after SET-FUNC is
executed, the function keys are reset according to the keyboard
definition item used.

Some example function key definition items are included with the system.
These may be found in the file FUNCKEYS on the SYSPROG account. For more
information about function key definitions, see Appendix B, Creating
Function Key Items.

CHAPTER 12 - PC Implementations Copyright 1988 PICK SYSTEMS
Preliminary PAGE 12-23

12 . 8 SERIAL PORTS

Several commands are available that allow you to set
for devices running on the serial ports of your PC.
ar, available include the following:

J DCD Data Carrier Detection
FC Flow Control
MODEM Flow Control
SET-BAUD Baud Rate
SET-PORT Baud Rate, Parity, Stop Bits, Word Length
TA Type Ahead
XCS Extended Character Set

up characteristics.
The commands that

A command, LIST-PORTS, can be used to display the characteristics of all
configured ports.

12.8.1 Data Carrier Detection DCD

The DCD protocol allows the monitor to sense changes in the DCD
signal. When the monitor senses a loss of the DCD signal on a line,
it logs the line off. When the system is booted, the DCD protocol is
deactivated.

FORMAT:

I DCD {line.number}
DCD-ON {line.number}
DCD-OFF (line.number)

DCD can be used to display the current status of DCD protocol on a line;
DCD-ON can be used to activate the data carrier detect (DCD) protocol for
a specified line; DCD-OFF can be used to deactivate the data carrier
detect (DCD) protocol.

If the line number is not specified, the current line is assumed.

NOTE: The cabling for the device must allow the DCD signal to reach the
system. See the cabling instructions for modems in the PICK PERIPHERAL
INSTALLATION GUIDE.

CHAPTER 12 - PC Implementations Copyright 1988 PICK SYSTEMS
Preliminary PAGE 12-24

I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I

[

[

[

, ..

[

I

, ..
I
r ..

12 . 8 . 2 Flow Control!: Fe. HODEH

i

Flow control protoc~l allows the system to monitor the DSR (Data Set
Ready) signal and the software X-ON/X-OFF protocol. When DSR signal
is off or the X-OFF protocol is invoked, the output to the serial
port is suspended.

When the system is booted, flow control

FORMAT:

FC (line.number)
FC-ON (line.number)
FC-OFF {line.number}

on for all ports.

FC can be used to display the current status of flow control on a line;
FC-ON can be used to enable the flow control for a specified line; FC-OFF
can be used to disable the flow control.

If the line number is not specified, the current line is assumed.

Flow control can also be abled or disabled using the MODEM commands.

FORMAT:

MODEM-ON
MODEM-OFF

12.8.3 Setting Baud-Rate SET-BAUD

The SET-BAUD verb allows serial ports to be set to vari

FORMAT:
SET-BAUD (line.number,}baud-rate

The SET-BAUD verb effects only serial
parameter is not present, the bau.d rate is
are currently logged.

The following baud rates are supported:

110
150
300
600

1200

CHAPTER 12 - PC Implementations

2400
4800
9600

19200

Preliminary PAGE 12-25

ports. If the line number
set for the line to which you

Copyright 1988 PICK SYSTEMS

STATEMENT

SET-BAUD 1,4800

SET-BAUD 9600

EXPLANATION

Sets port 1 to 4800 baud.

Sets the current port to 9600 baud.

Sample usage of the SET-BAUD verb.

12.8.4 Setting Port Characteristics SET-PORT

SET-PORT is used to display or define the baud rate, parity, stop
bits, and data length for a specified line (port).

FORMAT:

SET-PORT line.number{,baud,parity,stop.bits,word.len)

where
line.number serial line on which to change setup; if no line is

specified, the current line is assumed. If the line
number is not a valid line number for the current system,
the following message is displayed:

baud

parity

stop. bit

word. len

ILLEGAL LINE NUMBER

the following baud rates are supported:

110
150
300
600

1200

2400
4800
9600

19200

No other values are accepted. If
entered, an error message is displayed.

the following values are supported:

N{ONE}
O{DD)
E{VEN)

no parity
odd parity
even parity

number of stop bits; may be 1 or 2

data length; may be 7 or 8

other values

If no options are entered, the current port settings are displayed.

If an option is not changing, just a comma may ~e entered.

are

CHAPTER 12 - PC Implementations Copyright 1988 PICK SYSTEMS
Preliminary PAGE 12-26

I
I
I
I
I
I
I
I
I
I
I

i·

I···
'···

I
I
I
I
i
I
I

[

I
[

I

I
I
I

I ... ··
It.

[

[

Statement

>SET-PORT 6"N,1,8

Description

Sets
The

the line
baud rate

for the terminal on line 6.
is not changing, so just a

comma was entered.
Line number
Baud rate
Parity
Stop bits
Word length

6
9600
NONE

1
8

12.8.5 Type-Ahead Capability TA

Type-ahead is enabled for all lines when the system is booted. TA
can be used to display the current status of type-ahead; TA-On can be
used to turn on type-ahead; TA-OFF can be is used to turn off
type-ahead.

FORMAT:

TA (line.number)
TA-ON (line.number)
TA-OFF (line.number)

If no line number is specified, the current line is assumed.

NOTE: This command is also valid for line O.

12.8.6 Extended Character Set xes

xes is used to display or turn on or off the extended character set
capability of serial devices on a specified line.

FORMAT:

where

XCS (line.number)
XCS-OFF (line.number)
XCS-ON (line.number)

1ine.number line to affect

CHAPTER 12 - PC Implementations
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 12-27

When XCS is on, the high order bit is not stripped from input that is
transmitted to the system, thus allowing characters in the range 128-239
to be used as unique characters. When XCS is off, the high order bit is
stripped from input, and characters 128-239 are not available.

When the system is booted, the extended character set capability is off.

Statement Description

>XCS Displays current setting of current line.

>XCS-ON 6 Turns on the extended character set
capability on line 6.

12.8.7 Displaying Serial Line Characteristics LIST-PORTS

The current settings of the serial ports on the system can be
displayed using the command LIST-PORTS.

FORMAT:

LIST-PORTS {(Z)

The Z option displays the characteristics for all configured lines. If Z
is not specified, only the lines currently connected are displayed.

The following characteristics are displayed:

Line number
Baud rate
Parity
Stop bits
Word length
Type-ahead
Flow control
Carrier detect
Extended character set

CHAPTER 12 - PC Implementations
Preliminary PAGE 12-28

Copyright 1988 PICK SYSTEMS

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

[

I
I

[

I
I
I

I
I
I
I
I
I
[

I
[

I

12.9 ClEATING OR KODIFYING TIRK TYPES DEFINE-TIRKINAL

The DEFINE-TERMINAL utility can be used to create or modify
types.

FORMAT:

>DEFINE-TERMINAL

The DEFINE-TERMINAL utility can be used to customize the terminal
characteristics functions for your system. The utility is a menu-driven
BASIC program which creates, maintains, and compiles terminal definitions
that are then kept in the CURSOR file on the SYSPROG account. In
addition, the utility can be used to select up to 26 different terminals
from the CURSOR file for inclusion in the System Cursor table of active
terminal definitions for your system. Although only 26 terminals may be
selected for inclusion in this table, any number of terminals may be
defined by this utility.

When DEFINE-TERMINAL is invoked, a menu similar to the following is
displayed:

System Cursor Definition Utility

The following
asterisk (*)
Definition.

terminals are
are selected

defined. Terminals marked with an
to be included in your System Cursor

*A ADDS
B BEEHIVE
C DTC
D DATAMEDIA
E EMULOG200
G GTC

H HONEYWELL
I IBM3010

*J VT100
*K VT52
*L LSI
*M AMPEX

*N lNSE100
*Q MIME
*R REGENT
*s SOROC

T TEC
*T TV920

1) Create Terminal Definition
2) Modify Terminal Definition
3) Delete Terminal Definition
4) Add Terminal to Selected Definitions
5) Delete Terminal from Selected Definitions
EX Exit without updating System Cursor

*V VIEWPOINT
*W lNSESO

X DATAGRAPHIX

FI Update System Cursor to selected terminals

Enter Selection (1-5) or EX or FI:

12.9.1 Kenu Options

Each of the menu options is explained in the following sections.

CHAPTER 12 - PC Implementations
Preliminary PAGE 12-29

Copyright 1988 PICK SYSTEMS

CREATE TERHIRAL DEFINITION

Option 1 allows the creation of a new terminal definition. A terminal
definition consists of a series of parameters which the system requires
to control a particular terminal (type, size, control codes, etc.).

After you enter the menu selection 1, the routine prompts for the
terminal name to be defined. If the name already exists, you may opt to
modify the existing definition or enter another name. If you opt to
modify the existing definition, then the routine will proceed as in the
next section (modification).

If the name is new, you will be asked if you want to use a copy of an
existing terminal definition for the initial values for the new
definition. If so, you will be prompted for the name of the existing
terminal to be used as a "template". This is useful for defining
terminals which are similar to other existing terminals. If you do not
choose to use an existing terminal definition as a "template", then the
routine proceeds to prompt for each of the parameters for the new
definition.

MODIFY TERMINAL DEFINITION

Option 2 allows the modification of existing terminal definitions. After
you enter the menu selection 2, the routine prompts for the name of the
terminal definition to be modified. If the name does not exist, you may
opt to create it. If you opt to create a new definition, then the
routine proceeds as in the previous section (new definition). Otherwise,
the routine proceeds to the definition modification mode.

In the terminal definition modification mode, the set of parameters for
the terminal is broken into page size blocks for display and
modification. First, a section of the existing definition is displayed,
then the prompt "Modify Lines?" is issued. You may enter N (default), Y,
list of line numbers, or a range of line numbers to modify.

If you enter N, the next section of the existing definition is displayed
and the process repeats until the entire definition has been reviewed.

If you enter Y, you are prompted for the line numbers.

If you enter a list of line numbers or a range of line numbers, you are
prompted to enter new data for each of the specified lines. At each of
these prompts, the following entries may be made:

- new parameters; replaces existing values

- a carriage return (null value); causes the data for the line to be
unchanged.

- any number of spaces; causes the data for the line to be changed to
null.

- a single questions mark (1); presents a brief explanation of the
contents of the line, and then reprompts for input.

CHAPTER 12 - PC Implementations Copyright 1988 PICK SYSTEMS
Preliminary PAGE 12-30

I
I
I
I
I
I
I
I
I
I

I
I
J
I
I
I
I
I

[

I
I
[, ..
I
I' J

I
I
I

I

I
[
[.. ..

"

After all the lines have been prompted for, the section and Modify Lines?
prompt are redisp1ayed.

Once all the sectio~s have been reviewed, you will be asked if the
terminal definition i is correct. If not, the review and modify process
will be repeated, or you may exit without saving any modifications.

If the definition is correct, an attempt will be made to ·compi1e" it.
If the compilation detects errors, you can correct the errors via the
modification process. Once the definition is compiled, you can select
the terminal to be included in the list of terminals for your System
Cursor table.

The following is an example of the display portion of the modification
mode:

Terminal - TV920

1. TY'PE....... • .• T
2. SCREEN SIZE............ SO, 24
3. CURSOR ADDRESS CODE L
4. @(X) CURSOR POSITIONING CR STR(CHAR(12) ,X)
5. @(X,Y) CURSOR ADDRESSING ESC "-" Y X
6. @(-l) CLEAR SCREEN & HOME CHAR(26)
7. @(-2) CURSOR HOME CHAR(30)
S. @(-3) CLEAR TO END OF PAGE ESC "Y"
9. @(-4) CLEAR TO END OF LINE ESC "T"

10. @(-5) START BLINK ESC "A"
11. @(-6) STOP BLINK ESC "q"
12. @(-7) START PROTECT ESC ")"
13. @(-S) STOP PROTECT ESC "("
14. @(-9) CURSOR BACK BS
15. @(-10) CURSOR UP VT

Modify lines? NQ
Terminal - TV920

16. @(-ll) ENABLE PROTECT MODE ESC "&"
17. @(-12) DISABLE PROTECT MODE ESC HEX(27)
IS. @(-13) START REVERSE VIDEO ESC "j"
19. @(-14) STOP REVERSE VIDEO ESC "k"
20. @(-15) START UNDERLINE ESC "1"
21. @(-16) STOP UNDERLINE ESC "mil
22. @(-17) SlAVE ON
23. @(-lS) SlAVE OFF
24. @(-19) CURSOR FORWARD FF
25. @(-20) CURSOR DOWN LF
26. @(-21) GRAPHICS CHARACTER SET ON
27. @(-22) GRAPHICS CHARACTER SET OFF ...
2S. @(-23) KEYBOARD LOCK
29. @(-24) KEYBOARD UNLOCK
30. @(-25) CONTROL CHARACTER ENABLE

Modify lines? HQ

CHAPTER 12 - PC Implementations
Preliminary PAGE 12-31

Copyright 1988 PICK SYSTEMS

Terminal: TV920

31. @(-26) CONTROL CHARACTER DISABLE
32. @(-27) WRITE STATUS LINE
33. @(-28) ERASE STATUS LINE
34. @(-29) INITIALIZE TERMINAL MODE
35. @(-30) DOYNLOAD FUNCTION KEYS
36. @(-3l) NON-EMBEDDED STAND-OUT ON
37. @(-32) NON-EMBEDDED STAND-OUT OFF .. .
38. @(-99) EMBEDDED VISUAL ATTRIBUTES? ..
39. @(-lOO) HALF INTENSITY
40. @(-lOl) FULL INTENSITY

Modify lines? BQ
Is table for terminal TV920 correct? ~

DELETE TERMINAL DEFINITION

Option 3 allows for the deletion of terminal definitions. After entering
the menu choice 3, you are prompted for the name of the terminal to be
deleted.

ADD TERMINAL TO SELECTED DEFINITIONS

Option 4 allows for the addition of a terminal to the list of terminals
to be included in your System Cursor table. After entering the menu
selection 4, you are prompted for the name of the terminal to be added to
the list of selected terminals. If the name exists, then the routine
checks if that type of terminal (terminal type in the definition) has
already been selected. If not, the desired terminal is added to the
selected definitions in the System Cursor table.

If the type of the desired terminal has already been selected for another
terminal, you will be asked if you want to replace the previous selection
with the new selection. If so, the previous selection will be deleted
from the list of selected terminals, and the new selection added.

DELETE TERMINAL FROH SELECTED DEFINITIONS

Option 5 allows for the deletion of a terminal from the list of terminals
to be included in your System Cursor table.

EXIT WITHOUT UPDATING SYSTEM CURSOR

Option EX quits the
System Cursor table.
preserved.

definition process without updating the operating
All the modifications and selections made are

CHAPTER 12 - PC Implementations Copyright 1988 PICK SYSTEMS
Preliminary PAGE 12-32

I
I
I
I
I
I
I
I
I
I
J
I
I
I
I
I
I
I
I

l ,
•
I

I
I

I
I
I
I
I
I··,:· ~:"

UPDATE SYSTElI CUllSOll! TO SELECTED TEBXINALS

Option FI quits th~ definition process after updating the operating
System Cursor table *ith the new selections.

12.9.2 Describing Terminal Entries

Some of the entries used in the DEFINE-TERMINAL utility are described
here.

TYPE

The terminal type is a single upper-case letter which identifies the
terminal to the system. The terminal type field in the terminal table
corresponds to the type as set with the TERM command.

SCREEN SIZE

The size field contains the screen size in columns and rows.
entered as two numbers separated by a comma (e.g., 80,24).
exceeds the size, then the maximum size is substituted.

CUllSOll ADDRESS CODE

The size is
If a value

The cursor address code is usually a single letter (A, L, T, H, D). The
defined types are "A" for ADDS type addressing, "L" for Lear-Seigler type
addressing, "T" for TEC type addressing, "H" for Hazeltine type
addressing and "D" for decimal type addressing.

All types except "D" produce binary column and row addresses (single byte
for each). "D" type addressing produces one to three digits for column
and row addresses. If "D" type addressing is used, the code may be
followed by two digits (22, 23, 32, 33) to force padding to the desired
number of digits (e.g., "D32" will produce decimal addressing with 3
digits used for the column and 2 digits for the row (leading zeros added
to force the length). "D" alone will use "floating" decimal numbers from
1 to 3 digits.

All cursor addressing codes may be followed by a plus sign "+" which adds
one to the column and row addresses. before generating the address codes.
This allows for terminals which define the upper-left corner of the
screen as "1,1" instead of "0,0". Thus, decimal addressing with a three
digit row and column address numbered from "1,1" would be: "D33+".

The following table displays the algorithm each of the cursor address
codes uses to positLon the cursor.

CHAPTER 12 - PC Implementations Copyright 1988 PICK SYSTEMS
Preliminary PAGE 12-33

Table 12-1 Cursor Address Codes

CODE

A

L

T

H

Algorithm

COL - CHAR«INT(X/10)*6)+X)
ROW - CHAR(Y+64)

COL - CHAR(X+32)
ROW - CHAR(Y+32)

COL - CHAR(-(l+X»
ROW - CHAR(-(1+Y»

COL - CHAR(X)
ROW - CHAR(Y)

CHAPTER 12 - PC Implementations
Preliminary PAGE 12-34

Copyright 1988 PICK SYSTEMS

I
I
I
I
I
I
I
I
I
I
I
I
I
J
I
I
I
I
I

[
The following table .hows the column or row address, and the associated

[code needed to posit+on the cursor.

I Table 12-2 Values Generated by Cursor Codes

I
A A A A

I X Y COL ROW L T H X Y COL ROW L T H

[
0 0 nul @ space del nul 40 @ H W (
1 1 soh A I soh 41 A I V)
2 2 stx B " stx 42 B J U * 3 3 etx C # etx 43 C K T +

I 4 4 eot D $ eot 44 D L S
5 5 eng E % z eng 45 E M R
6 6 ack F & Y ack 46 F N Q

I 7 7 bel G x bel 47 G 0 P /
8 8 bs H (w bs 48 H P 0 0
9 9 ht I) v ht 49 I Q N 1

I
10 10 dIe J * u If 50 P R M 2
11 11 dc1 K + t vt 51 Q S L 3
12 12 dc2 L s ff 52 R T K 4
13 13 dc3 M r cr 53 S U J 5

E 14 14 dc4 N q so 54 T V I 6
15 15 nak 0 / p si 55 U W H 7
16 16 syn P 0 0 dIe 56 V X G 8

I
17 17 etb Q 1 n dc1 57 W Y F 9
18 18 can R 2 m dc2 58 X Z E
19 19 em S 3 1 dc3 59 Y [D
20 20 space T 4 k dc4 60 \ C <

I 21 21 I U 5 j nak 61 a] B
22 22 n V 6 i 62 b A

A > syn
23 23 # W 7 h etb 63 c @ ?

I 24 $ 8 g can 64 d ... ? @
25 % 9 f em 65 e a > A
26 & e sub 66 f b B

I
27 d esc 67 g c < C
28 (< c fs 68 h d D
29) b gs 69 i e E
30 0 > a rs 70 p f 9 F , 31 1 ? us 71 q g 8 G .. 32 2 @ space 72 r h 7 H
33 3 A

-;;;
I 73 i 6 I s

I
34 4 B] " 74 t j 5 J
35 5 C \ # 75 u k 4 K
36 6 D [$ 76 v 1 3 L
37 7 E Z , 77 w m 2 M

P 38 8 F Y & 78 x n 1 N .. 39 9 G X 79 Y 0 0 0

I
[

CHAPTER 12 - PC Implementations Copyright 1988 PICK SYSTEMS
Preliminary PAGE 12-35

I! II.

CURSOR CODE STRINGS

The cursor code strings are expressions which produce the control and
escape sequences used by the terminal being defined. The expressions are
similar to BASIC syntax, except that a blank may be used between elements
in the expression as well as a colon. Cursor code strings may consist of
the following separated by blanks or colons:

1) Defined control character (e.g., ESC, BS, DEL, etc.)
2) String literal in quotes (e.g., "A", '[0', etc.)
3) Character function (e.g., CHAR(2l»
4) Hexadecimal string (e.g., HEX(lB4l»
5) String function (e.g., STR(NUL,5) or STR(CHAR(12),XOO
6) Cursor address variable (e.g., X, Y, or Z)

The cursor address variables (X, Y, Z) cause the specified address (byte
or decimal string) to be inserted into the control string at the
specified position. The variable X contains the column, Y contains the
row, and Z contains the row previously referenced in an @(X,Y) code (or
zero if the last reference was @(-l) or @(-2).

The symbolic name for the control codes and their decimal and hexadecimal
equivalents are shown in the table below. Any of these codes may be
included in the cursor code string. It is often easier to reference the
backspace character as BS instead of CHAR(8) , or NUL instead of CHAR(O).

CODE DEC HEX CODE DEC HEX CODE DEC HEX

NUL 0 00 OLE 16 10 SP 32 21
SOH 1 01 DCl 17 11 DEL 127 22
STX 2 02 DC2 18 12
ETX 3 03 DC3 19 13
EOT 4 04 DC4 20 14
ENQ 5 05 NAK 21 15
ACK 6 07 SYN 22 16
BEL 7 07 ETB 23 17
BS 8 08 CAN 24 18
HT 9 09 EM 25 19
LF 10 OA SUB 26 1A
VT 11 OB ESC 27 lB
FF 12 OC FS 28 lC
CR 13 00 GS 29 10
SO 14 OE RS 30 lE
SI 15 OF US 31 lF

SPECIAL CURSOR CODE STRINGS

Most of the cursor code strings are self-explanatory and consist of
control characters, escape sequences, and other obvious codes.

CHAPTER 12 - PC Implementations Copyright 1988 PICK SYSTEMS
Preliminary PAGE 12-36

I
I
I
I
I
I
I
I
I
I
I
I
J
1
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
It .. ~

I
I
I
I
I

COLUMN ONLY CURSOR POSITIONING

The "column only" c~rsor positioning is special because many terminals do
not support this ~unction. In terminals which do not support this
function, there are three ways to simulate it. Terminals which do
support "column only" positioning (e.g., ADDS), may use the terminal's
normal control sequence (e.g., (CHAR(16) X). For terminals without
"column only" positioning, the function may be simulated two ways.
First, the cursor can be positioned to column zero of the current line
(carriage return), followed by a cursor-right code for the number of
columns required (e.g., CR STR(CHAR(12) ,X». A variation of this is for
VT-lOO type terminals which may use a sequence like: CR ESC "[" X "C"
BS, where the decimal value of X is part of the cursor-right escape
sequence.

The other method of simulating "column only" positioning is less
desirable, but may be effective in some instances. It uses the dummny
cursor address variable Z in place of the Y address in a normal X-Y
cursor address code (e.g., ESC "-" Z X).

CLEAR SCREEN & HOME @(-1)

The Clear Screen & Home code may consist of two different terminal
control sequences (one for clear screen, and one for home). This is the
case for VT-100 type terminals. Many other terminals combine these into
one control sequence.

CHAPTER 12 - PC Implementations Copyright 1988 PICK SYSTEMS
Preliminary PAGE 12-37

12.10 TEST-CURSOR

The TEST-CURSOR verb tests many of the cursor control definitions.

FORMAT:
TEST-CURSOR

TEST-CURSOR tests the following cursor control definitions:

@(x,y)
@(x)
@(-1)
@(-2)
@(-3)
@(-4)
@(-5)
@(-6)
@(-7)
@(-8)
@(-9)
@(-lO)
@(-ll)
@(-12)
@(-13)
@(-14)
@(-15)
@(-16)
@(-19)
@(-20)

Position cursor at column x, row y
Position cursor at column x in current row
Clear screen and home cursor
Home cursor
Clear from cursor positon to the end of the screen
Clear from cursor position to the end of the line
Blink on
Blink off
Start protected field
Stop protected field
Backspace cursor one character
Move cursor up one line
Enable protect mode
Disable protect mode
Reverse video on
Reverse video off
Underline on
Underline off
Move cursor right
Move cursor down

CHAPTER 12 - PC Implementations Copyright 1988 PICK SYSTEMS
Preliminary PAGE 12-38

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

E
I

I
I
I
I
I
I
I

I
I
I
[

[

12.11 OPTDlIZING P~L PllINTElt PD.POIllARCE

A verb, SET-LPTR, has been provided that allows several parameters
be specified that affect printer performance.

FORMAT:

SET-LPTR (p(,(delay},(burst},(slice})

SET-LPTR is used to specify parameters for parallel printers in order to
optimize system performance. The values for the parameters depend on the
printer type, the number of users on the system, and the aspect of system
performance that is most important. Some values increase the amount of
work the printer can do, but lengthen the time it takes for the system to
respond to users. Other values shorten the time it takes for the system
to respond to users, but decrease the amount of work the printer can do.
It is recommended that in order to find the optimum value for each
system, several values be tested.

The parameters are as follows:

p printer number; may be in range 0-3

delay number of times to attempt to send a character to the printer;
may be in range 1-4095. This number relates to the speed of
the printer and the number of users that are sending jobs to
the printer. If the number is too small, the printer
performance degrades, but if it is too large, response time for
users degrades.

The default is 300.

burst number of characters sent to the printer during one
transmission; may be in range 1-255. This number relates to
the size of the printer buffer; in general, the value 15
provides good performance.

The default is 200.

slice number of time slices the printer waits before receiving its
next time slice; may be in range 1-15. This number relates to
the number of users and number of printers on the system; in
general, a number equal to or greater than the number of users
provides good performance.

The default is 1.

If no parameters are specified, the current settings for all printers are
displayed. If only the printer number is specified, the current settings
for that printer are displayed.

If parameters are entered, only those that are being changed need to be
specified; however, commas are needed to indicate missing values.

CHAPTER 12 - PC Implementations
Preliminary PAGE 12-39

Copyright 1988 PICK SYSTEMS

Statement Description

>SET-LPTR 0 Displays printer settings for printer O.
Printer 0 delay - 300 burst - 200 slice - 1

>SET-LPTR 1",5 Sets the slice for printer 1 to S.
Printer 1 delay - 300 burst - 200 slice - 5

CHAPTER 12 - PC Implementations
Preliminary PAGE 12-40

Copyright 1988 PICK SYSTEMS

I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I

I
[

I
l
I
I
I
I
I
I
I
I
I
I
r
iii

I
[

12 .12 DOS TO Plex BUDGE COPYDOS

The COPYDOS verb allows data contained in the DOS partition to be
transferred into the PICK partition.

FORMAT:

>COPYDOS dospath «options()}}
TO:(filename (itemname)

The syntax for the dospath parameter is as follows:

drive:\(subdirectory\ ... }dosfilename

For example:

OPTIONS

~ J;
0~
~R
1~

X

drive:\subdirectoryl\subdirectory2\dosfilename
or

drive:\dosfilename

MEANING

Display diagnostic information during translation.
Flag characters - system prompts for specifics.
Create indirect item (List Type).
Make multiple items - system prompts for specifics.
OVerwrite existing PICK item.
Parity strip (characters converted to values 0-127).
Flagged or Translated characters are not stripped.
DOS data is in random file mode.
DOS data is in sequential file mode (default).
Translate characters - system prompts for specifics.
Create hexadecimal image of DOS file.

If neither R nor S is specified in the options, the S option is assumed.

If neither the F nor T option is specified, the COPYDOS process will
translate the DOS character X'OD' to X'FE'. This causes every DOS line
delimited with a carriage return to become a PICK attribute. The
linefeed X'OA' and null X'OO' characters are deleted.

The D, F, M, T, and X options are explained further in the following
section.

If the optional PICK itemname
prompt, the DOS filename (from
itemname.

is not input, following the TO:(
the dospath parameter) is used as the PICK

Note also, that if the DOS file
option has not been specified,

is larger than 25000 bytes and the M
the COPYDOS . process will automatically

CHAPTER 12 - PC Implementations
Preliminary PAGE 12-41

Copyright 1988 PICK SYSTEMS

split the file into PICK items and assign the names itemnameO, itemnamel,
etc. - unless the L option has been specified.

THE D OPTION

The D option displays diagnostic information while accessing the DOS file
system. It is intended to be used as a diagnostic tool when data
transfer operations do not complete as expected. . If • lower case 'd'
option is specified, the diagnostic information will be routed to the
spooler.

THE F OPTION FLAG CHARACTERS

The 'F' option is available to Flag up to 16 different hex bytes by
placing a hex'OO' in front of the Flagged hex character.

Entering in different hex bytes in response to the 'REPLACE:' and 'WITH
FLAGGED' prompts, results in a Translation, with the resultant PICK byte
preceded with hex'OO' .

Entering in the same hex byte in response to both prompts,
passing that byte unchanged and preceding it with hex'OO'.
this is in contrast with the T option, where specifying
character, deletes that character.

results in
Note that
the same

If an 'F' option is in effect, upon entering the 'TO:(' response the
system will display:

REPLACE:

After entering the hex character to translate or pass, the system
displays:

WITH FLAGGED:

Upon entry of the same character or a replacing character, the
will prompt for up to 15 additional hex characters to Flag. The
will prompt for additional characters, until a <CR> is entered
REPLACE: prompt. A <CR> causes the system to display:

OKAY(Y/N) :

An 'N' response allows re-entry of the FLAG specifications.

system
system
at the

(Note: Should multiple occurrences of the same replace character be
present, the last occurrence will take precedence.)

THE H OPTION MULTIPLE PICK ITEMS

The M option allows for regulation of the size of the targeted
items. This flexibi1ty can be very useful in aligning DOS data with
attributes.

PICK
PICK

CHAPTER 12 - PC Implementations Copyright 1988 PICK SYSTEMS
Preliminary PAGE 12-42

I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

•

r .. , ..
•

r ..

•

After entering a res~onse to the' TO:(, prompt the system displays:

ENTER LENGtH OF RECORD (OR Dn):

The user may elect to enter a numeric response indicating how many bytes
each data portion ofi the PICK item will be, or a 'D' followed by a number
to indicate how many PICK attributes (lines) each PICK item will be.

Using the 'Dn' response assumes that the default translate of carriage
return/line feed to attribute marks will be performed .

When the DOS
created with
exist in the
will contain

file is converted to mUltiple items, the items will be
boundries established by attribute marks, provided that they
translated file. Should no attribute marks exist, items

a single attribute with the specified number of bytes.

The PICK item-ids are generated by concatenating the itemname used in the
'TO:('specification with 0 , 1 , 2 • etc. No new PICK item with just
the itemname alone will be created.

Entering a <CR> after the appropriate response causes the COPYDOS process
to begin or, if an F or T option is in effect, further prompting as noted
below .

THE T OPTION TRANSLATING CHARACTERS

The 'T' option is available to translate up to 16 different hex bytes.
Upon entering a response to the' TO:(, prompt, the system will display:

REPLACE:

After entering the hex character to replace, the system displays:

WITH:

Entering identical hex strings in response to both REPLACE: and WITH:,
causes that character to be deleted from the file.

After entering a response to the WITH: prompt, the system will again
display:

REPLACE:

Entering a <CR> after the REPLACE: prompt,
character prompting, and the system displays:

OKAY(Y/N) :

terminates further hex

An 'N' response allows the user to re-enter all of the Translate
specifications.
A 'Y' response causes the COPYDOS process to begin.

CHAPTER 12 - PC Implementations
Preliminary PAGE 12-43

Copyright 1988 PICK SYSTEMS

THE X OPTION - IIDAD!CDIAL IlIAG! OF DOS FILE

The X option transfers data from the DOS file to the Pick environment and
stores a hexadecimal image of the DOS file. This option allows data such
as graphics images to be stored in a Pick item without concern for any
special character (segment marks for instance, Hex IFF').

COPYDOS bample

In the following example session, note that whenever mUltiple items are
produced, (even without the M option), that an item with the actual PICK
itemname used in the specification does not exist. The first item is the
specified itemname with a zero appended.

>cOPYDOS C:\SUB1\SUB2\DOSFlLE (SMT

TO:(PROCLIB PICK.SIDE

ENTER LENGTH OF RECORD (OR Dn):

REPlACE: OD
REPlACE: OA
REPlACE: 2C
REPlACE: <CR>

OKAY(Y/N) : Y

READING DIRECTORY
SUBl
SUB2
DOSFILE

WRITING ITEM
PICK.SIDEO
PICK.SIDEl
PICK.SIDE2
PICK.SIDE3

END OF FILE

D5

WITH:
WITH:
WITH:

FE
OA
2A

Sample usage of the COPYDOS utility with the S, M, and T options.

CHAPTER 12 - PC Implementations Copyright 1988 PICK SYSTEMS
Preliminary PAGE 12-44

I
I
I
I
I
I
I
I
J
I
I
I

I
I
..
i·
········

I
I

I

, ..

, ..

If ..

I
[

r •

12.13 PICK TO DOS BlIDGE COPTPICK

I
The COPYFICK utility allows data contained in the PICK partition to
be transferred into the DOS partition.

Since a PICK to
(available from
the command:

DOS transfer is done from a DOS partition, a DOS diskette
your PC dealer) contains this utility. It is loaded with

COPY A:*.* C:

This loads the PICK to DOS bridge program, COPYFICK.EXE into the DOS
drive C:

FORMAT:

C>COPYPICK

After COPYPICK is invoked, the following prompt is displayed:

Options:

The available options include

D Diagnostic mode operation has two levels. If the letter D is the
first character of the option position string, a summary set of
diagnostic messages is displayed. If the letter D is in option
position 2 or greater, a more detailed set of diagnostics is
presented.

1 Include Item-id as a line within the DOS' file. The Item-id is
always preceded with a line feed character. This option may be of
particular use when moving all items in a file with the intent of
doing additional processing in the DOS environment. The beginning
of an item may be detected by the presence of a line feed either at
the beginning of the file or immediately following another line
feed .

N Numeric Item-ids are assumed. This allows all items within a file
to be moved to a DOS file in numeric order. Rather than a prompt
for the Item-id, a range is requested. All items within this range
are accessed out of the specified file. Should an item not be
present, it is ignored and the process continues.

If desired, enter the appropriate option.
press <RETURN>.

The following prompts are displayed:

PICK Account Name:

If no options are desired,

PICK File (DICT FILE or FILE or FILE,DATA):
DOS File
PICK Item or * for all:

CHAPTER 12 - PC Imple*entations
Preliminary PAGE 12-45

Copyright 1988 PICK SYSTEMS

The DOS file name may be any valid DOS file on any valid DOS device. The
DOS file prompt occurs before the request for the Item-ids so several
items may be stored in the same DOS file. This is done by specifying
individual Item-ids. A null Item-id indicates the end of input and
precludes transferring an item with a null item-id. An asterisk (*)
indicates all items within a file are to transferred. This means that a
single item with an Item-id of asterisk cannot be transferred.

When transferring single items, the message displaying the number of
items transferred and the number of records/attributes will accumulate
and display the totals transferred to the DOS file.

If an invalid ' 'name is entered at any time during the prompt sequence, an
appropriate error message, such as the following, is displayed:

File xxx in account yyy not found

A successful transfer ends with the following message:

n Item(s) Converted
n Attribute(s) Moved

After a successful transfer, the user will be prompted for another PICK
item name. A <RETURN> displays the statistics for the last transfer,
then returns to the prompt for the PICK file name. A <RETURN> at the
file name prompt displays the account name prompt. A <RETURN> at the
account prompt exits the COPYPICK utility.

PICK attribute marks (X'FE') are replaced with a carriage return (X'OD')
and line-feed (X'OA'). This effectively makes each PICK attribute value a
DOS record in the DOS receive file.

C>COPYPICK

Options : <RETURN>
PICK Account Name : SYSPROG
PICK File (DICT FILE or FILE or FILE,DATA)
DOS File FINDX
PICK Item or * for all : llHU

1 Item(s) Converted
47 Attribute(s) Moved

PICK Item or * for all : <RETURN>
1 Item(s) Converted

47 Attribute(s) Moved
PICK File (DICT FILE or FILE or FILE,DATA)
PICK Account Name : <RETURN>

C>

<RETURN>

Sample COPYPICK Transfer Session.
'c' Table of Contents 'lc'

CHAPTER 12 - PC Implementations Copyright 1988 PICK SYSTEMS
Preliminary PAGE 12-46

I
'I
II

I

I~, "

I
I
I
I
I
I
I) ;h ."

I

I
I

r
ill

(

I ..
r •
r
II

[

I
I
I
I
I' •
f .. · ..
II.

I
[

Chapter 13

PICK TUTORIAL

THE PICK PC SYSTEM

TUTORIAL

PROPRIETARY INFORMATION

This document contains information which is
proprietary to and considered a trade secret of
PICK SYSTEMS. It is expressly agreed that it
shall not be reproduced in whole or part,
disclosed, divulged, or otherwise made available
to any third party either directly or indirectly.
Reproduct,ion of this document for any purpose is
prohibited without the prior express written
authorization of PICK SYSTEMS. All rights
reserved.

CHAPTER 13 - TUTORIAL
Preliminary PAGE 13-1

Copyright 1988 PICK SYSTEMS

13

13.1
13.2
13.3
13.3.1
13.4
13.4.1
13.4.2
13.5
13.5.1
13.6
13.6.1
13.7
13.8
13.9
13.9.1
13.10

Contents

PICK TUTORIAL

INTRODUCTION
LOGON
TCL or TERMINAL CONTROL LANGUAGE

ACCESS
ACCESS SENTENCE SYNTAX

SORTING WITH ACCESS
DESCENDING SORTS WITH ACCESS

CONTROL BREAKS WITH ACCESS . .
HEADINGS & FOOTINGS WITH ACCESS

HEADING & FOOTING OPTIONS
TOTAL MODIFIER

SELECTION-CRITERIA: "WITH"
CREATING A FILE
DEFINING DICTIONARY ATTRIBUTES

BUILD.DICT PROGRAM
INPUT.DATA PROGRAM

CHAPTER 13 - TUTORIAL
Preliminary PAGE 2

. 13-3
13-4
13-5

. 13-6
13-10
13-11
13-12
13-13
13-14
13-14
13-16
13-19
13-20
13-21
13-21
13-23

Copyright 1988 PICK SYSTEMS

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

[

[

I ..

1
I
I
• ,
I
I

I
[

PICK PC-XT TUTORIAL

13.1 INTRODUCTION

This tutorial will guide the new user of PICK through the basic operations
of the system.

This tutorial will allow the new user to:

Learn how to log on to the system
Get data from the files produced into meaninfu1 reports
Create data files
Define data file content

The PICK System uses some terms that are a little different than those
used by most systems in data processing. Basic comparisons could be:

PICK SYSTEM

Item
Item-id
Attribute

CHAPTER 13 - TUTORIAL
Preliminary PAGE 13-3

OTHER SYSTEMS

Record
Key
Field

Copyright 1988 PICK SYSTEMS

13.2 LOGON

When the system is booted up, or turned on, it verifies the
operating system and has the user enter the time and date. Time
is entered as 24-hour military time, therefore, when it is 2:00
PM, the time is entered as 14:00. The date is entered as
MM-DD-TI.

The system will then display a message that it is verifying the
system. This means that it is checking each frame of system code
to make sure that everything is the way it should be.

When this is complete, the system will display:

Logon

Logging on is the means by which an account is entered. You
must be logged on to an account in order to do any data
processing. Every account has a Master Dictionary which
contains all file names for that account and verbs that will
cause the system to perform specific actions.

The name of the account that will be used to learn the system is
called TUTOR.

To enter the PC-XT Tutorial Account, key in:

TUTOR <CR>

NOTE: <CR> means to press the Carriage Return key.

The screen will display:

PASSWORD:

The password for the TUTOR account is LEARN. When this is keyed
in the system will not display it. If keyed in incorrectly, the
system will return with the message:

USER 1D?

Key in TUTOR again. and carefully key in LEARN for the password.

The system will enter the account. and display the TCL prompt
(» .

CHAPTER 13 - TUTORIAL
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 13-4

I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I

[

t
r ..

I
[

[

13.3 TCL or TERHINAL CONTROL LANGUAGE

The TUTOR account is set up to display the TCL prompt. Unless
the system is set, up to automatically enter a program or another
process the user will be at TCL.

TCL is shorthand for Terminal Control Lanuage. The user can
tell if they are at TCL because a ">" prompt displays at the
left-hand side of the screen. TCL is the basic way that the
user communicates with the PICK Operating System.

Verbs can be entered at TCL to access files. Verbs are commands
such as LIST, SORT, COPY, etc. TCL commands are not executed
until a carriage return (noted as <CR» is entered.

Although the tutotrial is primarily concerned with ACCESS
commands, it should be pointed out that there are a
variety of other commands which are also entered at the
TCL prompt. All of them may be found in the PICK USER'S
MANUAL. A few useful ones are noted here. The user may
enter these commands any time the system is displaying the
TCL prompt (>).

>TIKE Outputs system time and date.

>LISTU List all ports (users) currently logged on the
system.

>POVF Display the available space (frames) on the disk.

>LISTFILES List the files on this account.

The user should consult the PICK USER'S MANUAL for
additional options and commands which are available at
TCL.

CHAPTER 13 - TUTORIAL
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 13-5

13.3.1 ACCESS

ACCESS is a powerful, yet easy-to-use database retrieval
language. ACCESS commands are entered at TCL. Let's enter a
simple ACCESS command to see how the system works:

>LIST CUST

Where:
LIST
CUST

is the ACCESS verb to list a file
is the name of the file

The screen will display:

PAGE 1 17:53:38
21 JAN 1985

CUST : 1006
COMPANY TRACK AUTOMOTIVE
CONTACT JACK NORTON
ADDRESS 7812 MAIN STREET
CITY NEWARK
STATE NJ
ZIP 07182
TELEPHONE (206) 555-8347
INV# 17254 23846 48776 49003 55241
AM! $11.27 $392.72 $371.82 $984.84 $93.89
DATE 1 15 DEC 1984 31 DEC 1984 15 JAN 1985 25 JAN 1985
01 APR 1985

CUST : 1000
COMPANY ACME HARDWARE COMPANY
CONTACT JOHN THOMPSON
ADDRESS 1134 BRISTOL PKWAY
CITY IRVINE
STATE CA
ZIP 92714
TELEPHONE (714) 555-9384

The system will display 22 lines of data on the screen. Of
course, most reports are more than a screenfu1, so to see the
remainder, key a <CR>. If one screenfu1 is enough information,
then press the <CNTL> and <X> keys simultaneously. The listing
will terminate and the system will return to TCL.

CHAPTER 13 - TUTORIAL
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 13-6

I
I
I
I

I
I
I
,I

I
I
I
I
I
I
I
I
I
I

r ..

r .. ,
I.

r.··
If.

Ii

"

[

[

The definitions on the attributes that were displayed are:

COST#
COMPANY
"COMPANY"
CONTACT
"CONTACT'
ADDRESS
"ADDRESS"
CITY
STATE
ZIP
TELEPHONE
TELEPHONE
INV#
AMT
DATE 1

- The it~m-id of this item in the COST file
The first attribute, defined as both "1" and

The second attribute, defined as both "2" and

The third attribute, defined as both "3" and

- The fourth attribute, defined as both "4" and CITY
- The fifth attribute, defined as both "5" and STATE
- The sixth attribute, defined as both "6" and ZIP

The seventh attribute, defined as both "7" and

- The eighth attribute, defined as both "8" and INV#
- The ninth attribute, defined as both "9" and AMT
- The tenth attribute, defined as both "10" and DATE1

CHAPTER 13 - TUTORIAL
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 13-7

The attributes are defined in a section of the file called the
File "DICT". Each file has a dictionary section and a data
section. When a LIST command is given the system will look at
the file dictionary and display all sequential fields defined as
I, 2, 3, etc. If these have not been defined, then the system
will display only the item-id for each item in the file.

The attributes INV#, AHT and DATEI are called multi-valued
attributes. In other words, there is more than one value in the
field. Attributes can be broken down into values and these
values further broken down into sub-values to define data.

This COST file has synonym attributes defined. This means that
whether the field is entered as "1" or "COMPANY" the result will
be the same, because both are defined exactly the same way in
the dictionary of COST.

The user may define any number of synonym definitions, which are
helpful because the user doesn't have to remember which
attribute is number four, but can call up the data by specifying
a meaninful synonym (e.g., "CITY" or "SHIP.TO.CITY" , etc.).

If a listing was to be sorted by the Customer Number, the
command would be:

>SORT COST <CR>

The screen will display:

PAGE 1 17:53:11
21 JAN 1985

COST : 1000
COMPANY ACME HARDWARE COMPANY
CONTACT JOHN THOMPSON
ADDRESS 1134 BRISTOL PKWAY
CITY IRVINE
STATE CA
ZIP 92714
TELEPHONE (714) 555-9384
INV# 48372 49182 50192 51327 82712
AHT $512.13 $439.98 $283.47 $283.74 $182.73
DATE 1 28 OCT 1984 18 NOV 1984 15 DEC 1984 31 DEC 1984
15 JAN 1985

CHAPTER 13 - TUTORIAL
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 13-8

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

[

" .. ' .. iii>
it

1.1.· It

[

CUST : 1001
COMPANY NEWTON DEVELOPMENT
CONTACT THOMAS N~ON
ADDRESS 1970 S~ STREET
CITY HUNTINGTON BEACH
STATE CA
ZIP 92785
TELEPHONE (714) 555-9283

Notice that this time, the difference is that the CUST items are
sorted in order.

It should be evident that these two commands are very similar.
The real difference being that one lists the items in the order
they are stored on the disk, and the other sorts the items by
the item-id.

CHAPTER 13 - TUTORIAL
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 13-9

13.4 ACCESS SENTENCE SYNTAX

ACCESS is an English-like inquiry language. Each ACCESS
"sentence" must consist of a verb followed by a file name.

A verb is an action-oriented word which will invoke a specific
ACCESS processor. The LIST CUST statement above is an example
of the simplest form of an ACCESS command. (See 6.2 ACCESS
verbs) .

However, ACCESS commands may be made even more useful, using the
verb and file name and then adding selection criteria, sort
keys, output specifications and print limiters, to get custom
reports. (See 6.4 Rules for generating ACCESS sentences).

To list the file and only see certain 'attributes, key in:

>LIST CUST COMPANY CITY STATE <CR>

The screen will display:

PAGE 1 17:54:06
21 JAN 1985

CUST COMPANY CITY STATE

1006 TRACK AUTOMOTIVE NEWARK NJ
1000 ACME HARDWARE COMPANY IRVINE CA
1007 MESA TRAVEL AGENCY HUNTINGTON BEACH CA
1001 NEWTON DEVELOPMENT HUNTINGTON BEACH CA
1008 WORD ALBEGRA CHICAGO IL
1002 UPTOWN PRINTERS LOS ANGELES CA
1009 MY TIMES MAGAZINE NEWARK NJ
1003 RITE-WAY DRUGS CHICAGO IL
1010 PICK SYSTEMS IRVINE CA
1004 LIKE-NU UPHOLSTERY CHICAGO IL
1005 A -1 APPLIANCES NEWARK NJ

11 ITEMS LISTED.

NOTE: >LIST CUST 1 4 5 <CR> would have produced an identical
listing.

(See 6.26 LIST verb)

Notice that this time the data displayed across the screen in a
horizontal fashion rather than down the page as in the first two
listings. This is because a screen can only display 79
characters. ACCESS will check to see if the generated report
will be wider than 79 characters. If it is, then the listing is
done vertically. If the listing fits into 79 characters, the
8ystem will list the data horizQntally as shown above.

CHAPTER 13 - TUTORIAL
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 13-10

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

r ..
, ..

[

.,.
I .. · . ..

[

13.4.1 SORTING WItH ACCESS

To produce a report that lists only certain fields, is sorted by
zip code and lists only the company name, city and zip code,
enter:

Where:

SORT
CUST
BY ZIP
COMPANY
CITY
ZIP

>SORT CUST BY ZIP COMPANY CITY ZIP

is the ACCESS verb
is the file name
is the attribute to sort by
is the first attribute to display.
is the second attribute to display.
is the third attribute to display.

The screen will display:

PAGE 1
21 JAN 1985

18:02:00

CUST. COMPANY.................. CITY................ ZIP ..

1005
1006
1009
1008
1003
1004
1002
1007
1000
1010
1001

A -1 APPLIANCES
TRACK AUTOMOTIVE
MY TIMES MAGAZINE
WORD ALBEGRA
RITE-WAY DRUGS
LIKE-NU UPHOLSTERY
UPTOWN PRINTERS
MESA TRAVEL AGENCY
ACME HARDWARE COMPANY
PICK SYSTEMS
NEWTON DEVELOPMENT

11 ITEMS LISTED.

NEWARK
NEWARK
NEWARK
CHICAGO
CHICAGO
CHICAGO
LOS ANGELES
HUNTINGTON BEACH
IRVINE
IRVINE
HUNTINGTON BEACH

07152
07182
07273
60611
60623
60681
90099
92647
92714
92714
92785

NOTE: >SORT CUST BY 6 1 4 6 <CR> would have produced an
identical listing.

(See 6.27 SORT verb)

CHAPTER 13 - TUTORIAL
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 13-11

13.4.2 DESCENDING SORTS WITH ACCESS

If the report was to be sorted with zip codes in the order 99999
to 00001, instead of the usual 00001 to 99999, the ACCESS
command would be:

>SORT COST BY-DSND ZIP COMPANY CITY ZIP

PAGE 1 17:55:05
21 JAN 1985

COST. COMPANY.................. CITY................ ZIP ..

1001
1000
1010
1007
1002
1004
1003
1008
1009
1006
1005

NEWTON DEVELOPMENT
ACME HARDWARE COMPANY
PICK SYSTEMS
MESA TRAVEL AGENCY
UPTOWN PRINTERS
LIKE-NO UPHOLSTERY
RITE-WAY DRUGS
WORD ALBEGRA
MY TIMES MAGAZINE
TRACK AUTOMOTIVE
A-1 APPLIANCES

11 ITEMS LISTED.

HUNTINGTON BEACH
IRVINE
IRVINE
HUNTINGTON BEACH
LOS ANGELES
CHICAGO
CHICAGO
CHICAGO
NEWARK
NEWARK
NEWARK

92785
92714
92714
92647
90099
60681
60623
60611
07273
07182
07152

NOTE: >SORT COST BY-DSND 6 1 4 6 <CR> would have produced an
identical listing.

BY-DSCD tells ACCESS to sort this attribute in descending order,
9-0 for numbers and Z-A for alphabetic characters.

(See 6.27.1 BY-DSND modifier)

CHAPTER 13 - TUTORIAL
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 13-12

I
I
I
I
I
I
I
I
!
I
I
I
I
I
I
I
I
I
I

[

:-1

•

I
[

[

[

r
II.

13.5 CONTROL BREAlS WITH ACCESS

If the list is to be separated into categories, for instance
city, then the command would be:

>SORT CUST BY CITY COMPANY BREAK-ON CITY

PAGE 1
21 JAN 1985

CUST. COMPANY.................. CITY

1003
1004
1008

1001
1007

1000
1010

1002

1005
1006
1009

RITE-WAY DRUGS
LIKE-NU UPHOLSTERY
WORD ALlEGRA

NEWTON DEVELOPMENT
MESA TRAVEL AGENCY

ACME HARDWARE COMPANY
PICK SYSTEMS

UPTOWN PRINTERS

A-I APPLIANCES
TRACK AUTOMOTIVE
MY TIMES MAGAZINE

11 ITEMS LISTED.

CHICAGO
CHICAGO
CHICAGO

HUNTINGTON BEACH
HUNTINGTON BEACH

IRVINE
IRVINE

LOS ANGELES

NEWARK
NEWARK
NEWARK

19:43:33

NOTE: >SORT CUST BY 4 1 BREAK-ON 4 <OR> would have produced an
identical listing.

(See 6.25 CONTROL BREAKS)

CHAPTER 13 - TUTORIAL
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 13-13

13.5.1 BEADINGS & PooTINGS WITH ACCESS

Reports may have either a heading or a footing so that the
person reading it can readily ascertain what report they are
looking at.

To this end, ACCESS has HEADING and FOOTING directives.
the following ACCESS sentence:

Key in

>SORT COST COMPANY CITY STATE HEADING "MY FIRST PICK
REPORT 'CL' TODAYS DATE IS 'DCL' PAGE 'PCL'"

The result should look like:

MY FIRST PICK REPORT
TODAYS DATE IS 23 JAN 1985

PAGE 1

COST. COMPANY.................. CITY................ STATE

1000 ACME HARDYARE COMPANY IRVINE CA
1001 NElJTON DEVELOPMENT HUNTINGTON BEACH CA
1002 UPTOYN PRINTERS LOS ANGELES CA
1003 RITE-YAY DRUGS CHICAGO IL
1004 LIKE-NU UPHOLSTERY CHICAGO IL
1005 A-I APPLIANCES NEYARK NJ
1006 TRACK AUTOMOTIVE NEYARK NJ
1007 MESA TRAVEL AGENCY HUNTINGTON BEACH CA
1008 YORD ALBEGRA CHICAGO IL
1009 MY TIMES MAGAZINE NEYARK NJ
1010 PICK SYSTEMS IRVINE CA

11 ITEMS LISTED.

NOTE: >SORT COST 1 4 5 HEADING ... <CR> would have produced an
identical listing.

(See 6.20 HEADINGS & FOOTINGS)

13.6 HEADING & POOTING OPTIONS

The date on the report will be the current date that the report
is run. The heading text must be enclosed in double quotes (")
after the word heading. The mnemonics enclosed in single quotes
(') must be within the HEADING double quotes and is telling the
system:

There are
footing.

C - Center the line
L - perform a Line feed
D - todays Date
P - incrementing Page number

other parameters that can be
The only difference between a

used in a heading or
HEADING and a FOOTING

CHAPTER 13 - TUTORIAL
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 13-14

i
I
• 11

2
I
I
i

, ..
J
I
I
I
I
I
I

I
I

r ..

r ..
[

[

r ..

[

l

directive is that a heading prints at the top of each page and a
footing at the bottom. Otherwise. the way they are used is
exactly the same. ACCESS can generate both a heading and a
footing on the same page.

(See 6.20 HEADINGS & FOOTINGS)

CHAPTER 13 - TUTORIAL
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 13-15

13.6.1 TOTAL MODIFIER

To total specific attribute values, consider the following
example:

<CR>

WHERE:

break

totaled

>SORT COST BREAK-ON COMPANY TOTAL AM! INV# DATE1

SORT
COST
BREAK-ON
COKPANY
TOTAL

is the ACCESS verb
is the file name
causes a break-on output when value changes
is the attribute to BREAK-ON
totals all values of following attribute upon

AM! is the attribute containing the values to be

INV#
DATE 1

is an attribute to display
is an attribute to display

The result should be:

PAGE 1 20:04:18
21 JAN 1985

CUST. COMPANY.................. AM!... INV#...... DATE1 ...
1000 ACME HARDWARE COKPANY $512.13 48372 28 OCT 1984

$439.98 49182 1~ NOV 1984
$283.47 50192 15 DEC 1984
$283.74 51327 31 DEC 1984
$182.73 82712 15 JAN 1985

1001 NEWTON DEVELOPMENT

1002 UPTOWN PRINTERS

1003 RITE-WAY DRUGS

CHAPTER 13 - TUTORIAL
Preliminary

$1,702.05

$489.38 18473
$384.98 28374
$184.89 39475
$852.43 48567
$348.78 50572

$2,260.46

$453.34 19573
$118.40 20773
$394.68 36574
$938.73 40112
$384.06 50283

$2,289.21

$105.48 19567
$483.05 29845
$306.74 38945
$384.62 46355
$483.84 59375

$1,763.73

28 SEP 1984
27 OCT 1984
15 NOV 1984
20 DEC 1984
25 JAN 1985

23 NOV 1984
24 JAN 1985
20 MAR 1985
01 APR 1985
23 APR 1985

28 OCT 1984
15 DEC 1984
31 DEC 1984
25 JAN 1985
02 APR 1985

Copyright 1988 PICK SYSTEMS
PAGE 13-16

I
I
I , ..
I
I
i
• iii

I
I
I
I
I
I
I
I ..
I

Ir'
L

1004 $437.34 19573 18 NOV 1984 LIKE-NU UPHOLSTERY

f
$823.78 28563 15 DEC 1984
$192.82 39573 31 DEC 1984 ... $981.82 48956 24 JAN 1985
$815.31 51113 01 APR 1985

~

t~ *** $3,251. 07 ..
• 1005 A -1 APPLIANCES $182.71 18372 18 NOV 1984
H:

$45.81 18299 15 DEC 1984 .. $293.73 20478 31 DEC 1984
$102.87 40394 25 JAN 1985

I $18.72 49907 26 FEB 1985

*** $643.84
flit
J .. 1006 TRACK AUTOMOTIVE $11.27 17254 15 DEC 1984

$392.72 23846 31 DEC 1984
.!!jl¥ $371.82 48776 15 JAN 1985

$984.84 49003 25 JAN 1985
lit $93.89 55241 01 APR 1985

P *** $1,854.54

• 1007 MESA TRAVEL AGENCY $1,927.00 10287 28 OCT 1984

r PAGE 2 20:04:26
21 JAN 1985 ..
CUST COMPANY AKT ••• INV# DATEL .. , $29.19 20389 23 FEB 1985

It $293.98 30816 29 MAR 1985
$239.29 41176 31 DEC 1984

• $192.93 52891 09 MAR 1985
*'" • *** $2,682.39

! 1008 WORD ALBEGRA $382.81 19673 24 SEP 1984
$912.23 29837 29 JAN 1985
$391.93 39478 10 MAR 1985

[$938.71 55982 09 APR 1985
$938.03 59102 26 JUN 1985

10 JUL 1985

"' L *** $3,563.71

1009 MY TIMES MAGAZINE $12.82 10284 13 SEP 1984
It $239.39 20678 22 OCT 1984 .. $391. 90 34817 19 DEC 1984

$563.32 59836 13 FEB 1985

f $168.23 59902 26 JVN 1985 .. 08 JUL 1985

*** $1,375.66 .. 1010 PICK SYSTEMS $38.18 19573 14 SEP 1984
$28.19 22014 28 OCT 1984 , .. CHAPTER 13 - TUTORIAL Copyright 1988 PICK SYSTEMS

Preliminary PAGE 13-17
",

!* lit

11 ITEMS LISTED.

(See 6.21 TOTAL MODIFIER)

CHAPTER 13 - TUTORIAL
Preliminary

$349.53 34001
$493.61 48900
$10.53 52261

$920.04

$22,306.70

15 DEC 1984
31 DEC 1984
27 OCT 1984

Copyright 1988 PICK SYSTEMS
PAGE 13-18

I
I
I
J
I
I
I
I
I
]

J
I
!
I
J
I
I
I
I

[

r
ill

...... t" ..
[

I

I

[

1

13.7 SELECTION-CB.ITEllIA: "WITH"

To make a selection from one of the attributes of the file. the
ACCESS command line could be:

>SORT CUST BY CITY COMPANY CITY ZIP VITH CITY - "CHICAGO"
<OR>

The result should be:

PAGE 1 09:35:28
24 JAN 1985

CUST. COMPANY.................. CITY

1003
1004
1008

RITE-VAY DRUGS
LIKE-NU UPHOLSTERY
VORD ALBEGRA

3 ITEMS LISTED.

(See 6.10 SELECTION-CRITERIA)

CHICAGO
CHICAGO
CHICAGO

Experiment with the CUST file and ACCESS commands. More detailed
explanations and other commands may be found in the ACCESS
chapter of the PICK USER REFERENCE MANUAL.

CHAPTER 13 - TUTORIAL
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 13-19

13.8 CREATING A FILE

All data on the PICK System is in files. Data files have two
portions to them, the DICT portion and the DATA portion.

The DICT of a file has all of the attributes of the data file
defined in it. The DICT controls how many characters to
allocate an attribute upon output, whether it is 1eft- or
right-justified on a report, the column heading to print for an
attribute on a report and other paramemters.

The DATA portion of a file contains the data. All of the ACCESS
commands in the examples have been run against the data portion
of the file CUST.

The PICK System stores data on the disk in "frames". A frame is
512 bytes (or characters). If one frame is full, then the
system will automatically attach another frame to it so that a
file can "grow" naturally.

When a file is created, the user must specify how many frames
should be initially allocated for the DICT and DATA portions of
the file. This is generally figured by how many characters
there are going to be in an item (record) and how many items
will be in the file.

Let's create a file called NAMES and then define what the fields
will be and enter data. To do this, key in:

>CREATE-FILE NAMES 3 7 <CR>

WERE:

CREATE-FILE
NAMES
3
7

is the
is the
is the
is the

TCL command to create a file
file name
number of frames to allocate to the DICT
number of frames to allocate to the DATA

portion of the file

The numbers 3 and 7 indicate the number of frames to be reserved
for the' DICT and DATA portions of the file respectively. This
is referred to as the MODULO of the file.

After the CREATE-FILE command is keyed in, the system will
respond with:

[417] FILE 'NAMES' CREATED; BASE - 3017, MODULO - 3, SEPAR - 1.
(417) FILE 'NAMES' CREATED; BASE - 5200, MODULO - 7, SEPAR - 1.

The two lines that are returned by the system refer to the DICT
and DATA portions respectively. BASE is the starting frame
address, MODULO is how many frames were specified and SEPAR
(separation) is always 1.

CHAPTER 13 - TUTORIAL
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 13-20

I
I
I
I
I
I
I
I
I
J
I
I
I

I
I
I
I

I ... ,., ... "
L

" ..

•

r ..

[

[

l

13.9 DEFINING DICTIORAllY ATTB.IBUTES

The DICT portion of the file has items that define what the data
will be in the DATA portion of the file.

A PICK/BASIC program is on the TUTOR account that will allow you
to define the DICT section of your NAMES file.

13.9.1 BUILD.DICT PROGRAM

To enter the Dictionary Definition program, key in:
>BUILD.DICT <CR>

The screen will prompt to enter the file name:
ENTER FILE NAME: NAMES <CR>

If the file NAMES has not been created, then the system will
return an error message that the file cannot be found. Return
to the section on creating a file and create the NAMES file .

The entry screen will display:

ATTRIBUTE D E FIN I T ION ENTRY

File DICT is: NAMES

This ITEM-ID is: 1

Enter attribute name/description:

Enter attribute justification (L, R, T, U):

Enter attribute output length:

The BUILD.DICT program will allow the definition of up to ten
(10) attribute definitions. The Item-id for these definition
items start with "1" and increments for each new definition
entered (up to 10). In a name and address file the definitions
would probably be:

DESCRIPTION

NAME
ADDRESS
CITY
STATE
ZIP

JUSTIFICATION

L
L
L
L
R

LENGTH

20
20
20

2
5

The BUILD.DICT program will prompt for the description,
justification and output length for each attribute defining item.

Whatever is defined as the DESCRIPTION will be the column
heading on a report that is produced through ACCESS.

CHAPTER 13 - TUTORIAL
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 13-21

JUSTIFICATION refers to whether the data should line up at the
left or right of the field. Alpha/numeric data is generally
specified as being left justified and numeric data is generally
specified as being right justified. The difference for numeric
fields is:

LEFT JUSTIFY

1001
101
10001

RIGHT JUSTIFY

1001
101

10001

The LENGTH refers to the column width of an attribute upon
output. If data is entered in an attribute that is longer than
the defined length there is no error. However, that data will
"wrap" on a horizontally listed report if it has more characters
in the attribute than was defined in the length. This should not
be a problem if fields are realistically defined for the length.
of the data.

While using the dictionary attribute definition program, if
there is a question on an input field, press "?n as the first
character and a help screen will display for that attribute.

After the description, justification and length have been
defined for an attribute definition item, the system will prompt:

ALL FIELDS CORRECT? (Y/N)

If the data entered suits you, then key an upper case "yn and
press the carriage return. If there needs to be a change, press
nNw and the cursor will return to the description field to allow
different entry.

If all data is correct and nyn is entered, the system will
prompt;

ENTER ANOTHER ATTRIBUTE DEFINITION (Y/N):

Enter a ny" and press carriage return until all the fields
desired have been defined.

The program will automatically increment the Item-ID by 1.
Again, only ten (10) attributes may be defined using this
program. When all attributes have been defined answer the last
prompt with an "Nn and the system will return to TCL.

CHAPTER 13 - TUTORIAL
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 13-22

.' I'·····

I
I
I
I
I
I
I
I
I
I
I····'·' '<

I
I
I
I
I
I
I

r ...

r.· .. · .. ·. Ii.

I

!
!

I' ..
(' .. '.' ,',

I
[

l

13.10 INPUT.DATA raoolAH

There is a program on the TUTOR account called INPUT.DATA. This
program will allow you to enter information into the DATA
portion of the NAMES file.

To use this program, key in:

>INPUT.DATA <CR>

The screen will prompt:

ENTER FILE NAME: NAMES <CR>

Key in NAMES and press carriage return. If the NAMES file has
not been created the system will return an error message.
Return to the section on creating a file and create the NAMES
file.

The screen will display:

D A T A ENTRY S C R E E N

File name is: NAMES

Enter unique ID:

Below this will be the descriptions that were defined for the
DICT NAMES using the BUILD.DICT program. If there are no
prompts for inputting data fields, then return to the BUILD.DICT
program to create them.

Each item (or record) MUST HAVE A UNIQUE ID. This can be almost
anything the user wants. For the purposes here, we suggest you
use 101, 102, 103, etc.

After the Item-ID is entered, press carriage return to go from
line to line and enter the appropriate data. When finished, the
system will display:

DO YOU WANT TO ENTER ANOTHER ITEM? (YIN)

Press "Y" to enter another
to signal that data entry is
to TCL.

item into the NAMES file. Press "N"
complete and the system will return

Once the data has been entered, return to the section on ACCESS
and try some of the commands on your data. Since the file
dictionary contains sequential item-ids (' 1,2 ... 10), the command
"LIST NAMES" will default to show as many attributes as you have
consecutively defined.

CHAPTER 13 - TUTORIAL
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 13-23

I
I
I
I
I
J
I
J
I

J
I
I
I
I
I
I
I
J

(

[

[

[

I
I
l
I
I

I
I

I

[

[

r ...
r
IiIr

Appendices

THE PICK SYSTEM

USER HANUAL

PROPRIETARY INFORMATION

This document contains information which is
proprietary to and considered a trade secret of
PICK SYSTEMS. It is expressly agreed that it
shall not be reproduced in whole or part,
disclosed, divulged, or otherwise made available
to any third party either directly or indirectly.
Reproduction of this document for any purpose is
prohibited without the pri.or express written
authorization of PICK SYSTEMS. All rights
reserved.

APPENDICES
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 1

APPENDICES
Preliminary

Copyright 1988 PICK SYSTEMS
PAGE 2

J
I
1
I
J
I
J
I
I

I
J
I
J
I
I
I
I, ~ "

I

[

l
I
[

I
I

I
!

I

I

Appendix A

DEFINING KEYBOARDS

Several keyboard definition items
character that is transmitted when
following factors:

- the scan code that is generated

- the keyboard that is in effect

- the condition of the key

are included with the system.
a key is pressed depends on

- whether a special 'lead-in' key was pressed

SCAN CODES

The
the

Each key generates a scan code when it is pressed. Figure A-I shows the
scan codes generated by an 84-key keyboard; Figure A-2 shows the scan
codes generated by a 101-key keyboard; Figure A-3 shows the scan codes
generated by a 102-key keyboard. These are representative keyboards; to
determine the actual scan codes generated by a system, refer to the
technical documentation for that system.

KEYBOARDS

Keyboards are defined for 84-, 101-, and l02-key keyboards as items in
the file KEYBOARDS in the account SYSPROG and include:

BRITISH-84
BRITISH-10l
FRENCH-84
FRENCH-102
GERMAN-84
GERMAN-102
ITALIAN-84
ITALIAN-102
SPANISH-84
SPANISH-102
USA-84
USA-10l

The default keyboard is based on the USA 101-key keyboard as it is
shipped. The actual default keyboard is coded into the PICK operating
system and cannot be modified. The default keyboard is selected each
time the system is booted. To change the keyboard to a different
definition, use the SET-KBRD command. The keyboard definitions
themselves can be modified by changing the item in the KEYBOARD file.
Items can also be added or deleted from the KEYBOARD file.

APPENDIX A - DEFINING KEYBOARDS Copyright 1988 PICK SYSTEMS
PAGE A-l

59 60 1 69 70

71 72 73

~5 76 77.

t79 80 81

·82 83

Figure 1 84-Keyboard Layout

111ts411165 66 rm~I[@I~l oso

82 rm §
83 ~ rr81

Figure 2 lOl-Keyboard Layout

APPENDIX A - DEFINING KEYBOARDS Copyright 1988 PICK SYSTEMS
PAGE A-2

84

55

§l

78

I
I
I
I
I
I
J
I
3
J
I
I
I
I
I
I
J
I
I

[

[

[

[

I
I
[,
I
I
E
I
I
r ..

[

[

l
" L

Figure 3 102-~.yboard Layout

APPENDIX A - DEFINING KEYBOARDS Copyright 1988 PICK SYSTEMS
PAGE A-3

CONDITION OF lEY

The condition of the key depends on whether the key is pressed by itself,
with the <SHIFT> key, with the <CTRL> key, or with the <ALT> key. Each
KEYBOARD item is made up of four sets of attributes that correspond to
the four conditions of the key recognized by PICK.

The keyboard definitions for keys pressed by themselves are intended for
lower case letters and characters displayed on the lower part of the key.
The keyboard definitions for keys pressed with the <SHIFT> key are
intended for upper case letters and characters displayed on the upper
part of the key. The keyboard definitions for keys pressed with the
<CTRL> key are intended for the standard ASCII control characters. The
keyboard definitions for keys pressed with the <ALT> key are intended for
the characters displayed on the vertical face of the keys.

In addition,
keypad that
include the
off.

the upper case definitions include the keys on the numeric
are pressed when NUMLOCK is on; the lower case definitions
keys on the numeric keypad that are pressed when NUMLOCK is

LEAD-IN CHARACTERS

Several alphabets use diacritical marks with certain vowels. These
diacritical marks are supported by use of special lead-in character keys.
When a lead-in character key is pressed, the system waits for the next
key to be pressed before transmitting any character. If the next key
that is pressed has a form with the diacritical mark, that character is
displayed. If there is no form of the letter with a diacritical mark,
nothing is displayed.

The following lead-in characters are supported:

Keyboard
Character

o

"

Characters in
KEYBOARD item

FA
FB
FC
FD
FE

Character
Name

Degree
Circumflex
Accent Acute
Accent Grave
Diaresis (umlaut)

NOTE: The values for the diacritical marks resemble PICK system
delimiters; they are NOT delimiters, however. The values were chosen
because no key normally generates these values.

GETTING THE CHARACTER

When a key is pressed, the system determines the scan code and the
condition of the key. It then uses the scan code as an index into the
item for the active keyboard. The keyboard is made up of four sets of
attributes, one for each condition of the key.

APPENDIX A - DEFINING KEYBOARDS Copyright 1988 PICK SYSTEMS
PAGE A-4

I
I

I
I
I
I
J
I

I
I
I
J
I
I
I
I
I

[

[

[

[

I
I

I
I
I
[

I

[

[

Each set of attributes contains 128 entries, divided into eight
attributes. Each attribute contains sixteen 2-digit hexadecimal numbers
that define the characters to be generated. The first hex number
corresponds to scan code 0, the next number to scan code 1, etc.

For example, assume that the key that generates scan code 16 is pressed
by itself. The system looks up the sixteenth entry in the table for the
lower case entries, that is, the first character in the second attribute
in the set of attributes for lower case entries. If the USA keyboard is
active, this produces the character equivalent to the hexadecimal value
71, which a lower case q. If the French keyboard is active, this
produces the character equivalent to the hexadecimal value 61, which is a
lower case a.

The tables used to create the items are listed in the following pages.

These definitions affect line 0 (memory-mapped monitor) only.

APPENDIX A - DEFINING KEYBOARDS Copyright 1988 PICK SYSTEMS
PAGE A-S

BRITISH 84-Key Keyboard

* Note: X'FF' means ignore this keystroke

* Scan Codes

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

*

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

*

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

*

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

Upper Case Definitions

IFFIIBI21122 9CI2412515EI2612AI2812915FI2BI081FII
151157145152 5415915514914FI5017BI7DIODIFFI411531
144146147148 4AI4BI4CI3AI4017CIFFI7EI5AI581 431 56 1
14214EI4DI3C 3EI3FIFFIFIIFFI20lFFI501511521531541
155156157158 591FIIFFI3713813912DI3413513612BI311
13213313012E FFIFIIFFIFFIFlIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFfIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI

Lower Case Definitions

IFfl1BI3113213313413513613713813913012DI3DI081091
1711771 6517217417917516916FI7015BI5DIODIFFI611731
16416616716816AI6BI6CI3BI271SCIFFI2317AJ78J631761
16216EI6DI2CI2EI2FIFFI2AIFFI20lFFI401411421431441
145146147J48J491FFIFFIFFIIAIFFI2DJ1SIFFI0612BIFFI
I~IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFJFFI
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
JFFJFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFJ

Control Key Definitions

IFFI1BIFFIFFIFFIFFIFFI1EIFFIFFIFFIFFI1FIFFI7FIFFI
1111 17JOSI121 14 11911SI0910FI1011BI1DIOAIFFIOl1131
10410610710810AIOBIOCIFFIOOJ1CIFFIFFI1AI181031161
I0210EIODIFFIFFIFFIFFIFFIFFI20lFFI 20 1211221231 24 1
1251261271281291FFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFfIFFIFFIFFIFFIFFIFFIFFJFFIFFJFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFJFFIFFJFFIFFIFFIFFIFFJFFIFFIFFIFFI

Alternate Key Definitions

IFFIFFIFFIFFIFFIFFIFFIFfIFFIFFIFFIFFIFFIFFIFFIFFI
IFlIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFfIFFIFFIFFIFfIFFIFFIFlIFFIFFIFFIFFIFFIFFIFFI
IfFIFFIFFIFfIFFIFFIFFIFFIFFI20lFFI30131132133134 1
1351361371381391FFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFJ
IFFIFFIFfIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFJFFIFFJFFI
IFFIFFIFfIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFJFFIFFIFFIFFIFFJFFJFFIFFJFFJFFIFFIFFIFIIFFI

APPENDIX A - DEFINING KEYBOARDS Copyright 1988 PICK SYSTEMS
PAGE A-6

I
I
J
I
I
I
I
J
I
J
I
I
I
i
I
I
I
I
I

[
[
r
~

F • •

E
I
I
I

I ,
•

* Define BRITISH 101.key keyboard

* * Note: X'FF' means ignore this keystroke
*

* Scan Codes

0·15
16·31
32-47
48-63
64-79
80-95
96-111

112-127

*

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

*

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

*

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

Upper Case Definitions

IFFI1BI2114012312412515EI2612A 2812915FI2B 081FFI
1511571 4515215415915514914FI50 7BI7DIODIFF 411531
144 14614714814AI4BI4CI3AI2217E FFI7CI5AI58 431561
14214EI4DI3CI3EI3FIFFI2AIFFI20 FFI50151152 531541
1551561571581591FFIFFI37138139 2DI34135136 2BI311
13213313012EIFFIFlIFFI5AI5BIFF FlIFfIFFIFF FfIFFI
IFlIFlIFlIFfIFFIFFIFlIFFIFFIFFIFlIFFIFFIFlIFFIFFI
IUIFFIFFIUIUIFFIUIUIFFIUIUIUIFFIFFIUIUI

Lower Case Definitions

IFfl1BI3113213313413513613713813913012DI3DI081 09 1
171177165172174 17917516916FI7015BI5DIODIFFI611731
16416616716816AI6BI6CI3BI27160lFFI5CI7AI781631761
16216EI6DI2CI2EI2FIFFI2AIFFI20lFFI401411421431441
1451461471481491FFIFFIFFI1AIFFI2DI151FFI0612BIFFI
IOAIFFIFFIFFIFFIFFIFFI4AI4BIFFIFFIFFIFFIFFIFFIFFI
IFFIFlIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFfIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI

Control Key Definitions

IFFI1BIFFI00 IFFIFFIFFI1EIFFIFFIFFIFFI1FIFFI7FIFFI
11111710511211411911510910FI1011BI1DIOAIFFI011131
10410610710810AIOBIOCIFFIFFIFFIFF11CI1A1181031161
1021 0E IODIFFIFFIFFIFFIFFIFFI20lFFI20121122123124 1
1251261271281291FFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFfIFFIFFIFFIFFIFFI2AI2BIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFlIFFIFFIFFIFFIFFI

Alternate Key Definitions

IFFIFFIFFIFFIFFIFFIFFIFFIFlIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFlIFFIFFIFFIFF FFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFl FFIFFIFFIFFIFFIFFIFFIFFIFFI
IFlIFFIFlIFFIFFIFFIFl FFIFFI 20 lFEI30131132133134 1
1351361371381391FlIFE FlIFFIFEIFlIFFIFFIFFIFFIFFI
IFlIFFIFFIFFIFFIFFIFF 3AI3BIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFlIFFIFFIFF FFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFfIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI

APPENDIX A - DEFINING KEYBOARDS Copyright 1988 PICK SYSTEMS
PAGE A-7

* Define FRENCH 84-key keyboard
* * Note: X'FF' means ignore this keystroke

* Scan Codes

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

*

0-15
16-31
32-47
4S-63
64-79
80-95
96-111

112-127

*

0-15
16-31
32-47
4S-63
64-79
80-95
96-111

112-127

*

0-15
16-31
32-47
4S-63
64-79
80-95
96-111

112-127

Upper Case Definitions

IFFI1BI3113213313413513613713S139130lFAI5FI081FfI
14115AI4s15215415915s14914FIsOlFEI2AIODIFFI511531
14414614714814AI4BI4CI4DI2s13EIFFI9CI571581431561
1421 4E I3FI2EI2FI2BIFfIFFIFFI20lFFI501511521s3154 1
1551561571581591FlIFFI3713813912DI3413513612BI311
13213313012EIFFIFfIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFlIFFIFFIFFIFlIFFIFFIFFIFlIFFIFFIFIIFFI

Lower Case Definitions

IFFI1BI261S212212712S1151SA 211S71S512912DI081091
16117AI6s17217417917s16916F 70lFBI2410DIFFI711731
16416616716816AI6BI6CI6DIFC 3CIFFIE61771781631761
16216EI2CI3BI3AI3DIFFI2AIFF 20lFFI401411421 431 44 1
14s1461471481491FFIFFIFFIlA FFI2DI151FFI0612BIFFI
10AIFFIFFIFFIFFIFFIFFIFFIFF FFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI

Control Key Definitions

IFFI1BI00IFFIFFIFFIFFI1EIFFIFFIFFIfFIFFI1FI7FIFFI
10111AI0511211411911510910FI1011BI1DIOAIFFI111131
1041061 07 10SIOAIOBIOCIODIFFI1CIFFIFFI171181031161
10210EIFFIFFIFFIFFIFFIFFIFFI20lFFI201211221231241
1251261271281291FFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI

Alternate Key Definitions

IFFIFFI40lFFI231FFIFFI5EIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI5BI5DIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFlIFFIFflFFI5CIFFIFFIFFIFFIFFIFFI
IFfIFFIFflFflfFifFIFfIFFIFFI20lFFI301311321331341
1351361371381391FFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFlIFFIFFIFlIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFfIFFIFlIFlIFFIFFIFFIFFIFFIFFIFFIFFIFFIFfIFFI
IfFlFFIFFIFFIFFIFFIFFIFfIFFIFfIFFIFFIFFIFFIFFIFFI

APPENDIX A - DEFINING KEYBOARDS Copyright 1988 PICK SYSTEMS
PAGE A-8

I
I
I
I
I
I
I
I
I
J
I
I
I
I
I
I
J
I
I

[
[
[

[
[

I
[

I
I
I
I
I
I
I
r • ,
•

l

* Define FRENCH 102-key keyboard
*
* Note: X'FF' means ignore this keystroke

*
Scan Codes

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

*

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

*

0-1S
16-31
32-47
48-63
64-79
80-95
96-111

112-127

*

0-1S
16-31
32-47
48-63
64-79
80-95
96-111

112-127

Upper Case Definitions

IFFI1BI31132133 3413S136137138139130lFAI2BI081FF
14115h14SIS21S4 S91SS14914FISOlFEI9CIODIFFIS11S3
14414614714814A 4BI4CI4DI2SIFFIFFIE61S71S81431S6
14214EI3FI2EI2F 1SIFFI2AIFFI20lFFISOIS11S21S31S4
ISSIS61S71S81S9 FFIFFI3713813912DI3413S13612BI31
13213313012EIFF FFI3EISAISBIFFIFlIFlIFFIFFIFFIFF
IFlIFlIFlIFFIFl FlIFFIFFIFlIFlIFlIFlIFFIFFIFFIFF
IFlIFlIFFIFFIFl FlIFlIFlIFFIFFIFFIFFIFFIFFIFFIFF

Lower Case Definitions

IFFI1BI2618212212712812DI8AISFI8718512913DI081 091
16117AI6S17217417917S16916FI70lFBI2410DIFFI711731
164166 6716816AI6BI6CI6DI971FFIFFI2AI771781631761
16216E 2CI3BI3AI211Ffl2AIFFI20lFFI401411421431441
145146 471481491FFIFFIFFlLAIFFI2DI1SIFFI0612BIFFI
104IFf FFIFFIFFIFFI3CI4AI4BIFFIFFIFFIFFIFFIFFIFFI
IFFIFl FFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFl FFIFfIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI

Control Key Definitions

FFI1BIFFIFFIFF FFI1BIFFIFFI1CI1E 0011DIFFI7FIFFI
011LAI05112114 1911SI0910FI10lFF FF OAIFFI111131
04106107108104 OBIOCIODIFFIFFIFF FF 171181031161
0210EIFFIFFIFF FFIFFIFFIFFI20lFF 20 211221231241
2S126127128129 FFIFFIFFIFFIFFIFF FF FFIFFIFFIFFI
FFIFFIFlIFFIFF FFIFFI2AI2BIFFIFFIFF FFIFFIFFIFFI
FFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFF FFIFFIFFIFFI
FFIFIIFFIFFIFfIFFIFFIFFIFFIFFIFFIFF FFIFFIFFIFFI

Alternate Key Definitions

IFIIFIIFFI7EI2317BISBI7CI60 SCISEI40lSDI7DIFFIFFI
IFFIFFIFFIFFIFFIFFIFlIFlIFl FFIFFIOFIFFIFFIFFIFFI
IFFIFlIFFIFlIFlIFlIFFIFFIFF FFIFlIFFIFFIFFIFFIFFI
IFlIFFIFlIFFIFFIFFIFFIFFIFF 20lFFI301311321331341
13S1361371381391FFIFFIFFIFF FFIFFIFFIFFIFFIFFIFFI
IFFIFfIFFIFFIFFIFFIFFI3AI3B FFIFFIFFIFFIFFIFFIFFI
IFFIFfIFFIFFIFFIFFIFFIFFIFF FFIFFIFFIFFIFFIFFIFFI
IUIFFIUIUIUIUIUIUIUUIUIUIUIUIUIUI

APPENDIX A - DEFINING KEYBOARDS Copyright 1988 PICK SYSTEMS
PAGE A-9

* Define GERMAN 84-key keyboard
* * Note: X'FF' means ignore this keystroke

* Scan Codes

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

*

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

*

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

*

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

Upper Case Definitions

IFFI1BI211221151 24 12512612FI2812913DI3FIFCI081FFI
15115714515215415AI5514914FI5019AI2AIODIFFI411531
14414614714814A14B14C19918E13EIFF15Els91581431561
14214EI4DI3BI3AI5FIFFIFFIFFI20lFFI501511521531541
1551561571581591FFIFFI3713813912DI3413513612BI311
132 133 13012EIFFIFFIFFIFFIFFIFFIFfIFFIFFIFfIFFIFFI
IFFIFfIFFIFfIFFIFFIFFIFfIFFIFFIFFIFFIFFIFfIFFIFFI
IFfIFFIFFIFfIFFIFFIFFIFFIFFIFFIFFIFfIFFIFFIFFIFFI

Lower Case Definitions

IFFI1BI31132133134135136137138139130lEI1FDI081091
171177165172 7417AI7516916FI7018112BIODIFFI611731
164166167168 6AI6BI6CI9418413CIFFI231791781631761
16216EI6DI2C 2EI2DIFFI2AIFFI20lFFI401411421431441
145146147148 491FFIFFIFFI1AIFfl2DI151FFI0612BIFFI
10AIFFIFFIFF FFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFF FFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFF FFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI

Control Key Definitions

IFFIIBIFFI00IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI7FIFFI
11l1 17 1051121141LAIl510910FIlOl1BIlDIOAIFFI011 13 1
1041061 0710810AIOBIOCIFFIFFIlCIFFI1EI191181031161
10210EIODIFFIFFI1FIFFIFFIFFI20 lFFI20121122123124 1
1251261271281291FFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFIIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFfIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI

Alternate Key Definitions

IFFIFFIFFI40lFFIFfIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI5BI5DIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFIFFIFFI5CIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFIFflFFI20lFFI301311321 331341
1351361371381391FFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI

APPENDIX A - DEFINING KEYBOARDS Copyright 1988 PICK SYSTEMS
PAGE A-10

I
I
I
I
I
I
I
I
I
I
I
I
I
J
I
I
J
I
I

[
[
[

I
I
I
I
I
I
I
I
I
I
I

* Define GERMAN 102-key keyboard
*
* Note: X'FF' means ignore this keystroke

* Scan Codes

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

*

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

*

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

*

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

Upper Case Definitions

IFFI1BI2112211512412512612F 2812913DI3FIFCI081FlI
15115714515215415A15514914F 5019AI2AIODIFFI 41 153 1
144146147f4814A14B14C19918E FAIFll271591581 431561
14214EI4DI3BI3AI5FIFll2AIFl 20lFll501511521531 54 1
1551561571581591FlIFll37138 3912DI3413513612BI311
1321331 30 12E IFlIFFI3EI5AI5B FFIFlIFlIFlIFlIFFIFFI
IFFIFlIFFIFlIFlIFlIFlIFlIFfIFFIFFIFfIFFIFfIFFIFFI
IFFIFFIFFIFFIFFIFfIFFIFFIFFIFFIFFllFllFlFFIFFIFFI

Lower Case Definitions

IFFI1BI31 32133134135136137138139130lE11FPI081091
171177165 7217417AI7516916FI7018112BIODIFII611731
164166167 6816AI6BI6CI9418415EIFFI231791781631761
16216EI6D 2Cl2EI2DIFFI2AIFFI20lFFI401411421431441
145146147 481491FFIFFIFIlLAIFFI2DI151FFI0612BIFFI
10AIFFIFF FFIFFIFFI3CI4AI4BIFFIFIIFFIFFIFFIFFIFFI
IFFIFFIFF FFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFF FFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI

Control Key Definitions

IFFI1BIFFIFFIFFIFFIFFIFFIFFI1BI1DIFFI1CIFFI7FIFFI
11111710511211411AI1510910FI10lFFIFFIOAIFFI011131
10410610710810AIOBIOCIFFIFFI1EIFFIFFI191181031161
10210EIODIFFIFFI1FIFFIFFIFFI20lFFI201211221231241
1251261271281291FFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFI2AI2BIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI

Alternate Key Definitions

IFFIFFIFFIFFIFFIFfIFFIFF 7BI5BI5DI7DI5CIFFIFFIFFI
140lFfIFFIFFIFFIFFIFFIFF FFIFFIFfl7EIFIIFFIFFIFF
IFFIFFIFFIFFllFlFFIFFIFF FFIFFIFFIFFIFF FfIFFIFF
IFFIFFIE61FFIFFIFFIFFIFF Ffl20lFfl30131 32133134
1351361371381391FFIFFIFF FFIFFIFFIFFIFF FFIFFIFF
IFFIFFIFFIFFIFFIFFI7CI3A 3BIFFIFFIFFIFF FFIFFIFF
IFFIFFIFFIFfIFFIFFIFIIFFIFIIFFIFFIFFIFF FFIFIIFF
IFFIFFIFFIFFIFFIFFIFFIFFIFfIFFIFFIFFIFF FFIFFIFF

APPENDIX A - DEFINING KEYBOARDS Copyright 1988 PICK SYSTEMS
PAGE A-11

* Define ITALIAN 84-key keyboard
*
* Note: X'FF' means ignore this keystroke

*
Scan Codes

*

*

*

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

Upper Case Definitions

IFFI1BI211 22 19CI2412512612FI2812913DI3FI5EI081FfI
15115714515215415915514914FI5018212AIODIFFI411531
14414614714814AI4BI4CI4012313EIFFI1515AI581431561
14214EI4DI3BIJAI5FIFFIFFIFFI20lFFI5015115215JI541
1551561571581591FflFFI3713813912DI3413513612BI311
13213313012EIFFIFFIFFIFFIFflFfIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFfIFFIFFIFfIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFfIFFIFFIFFIFFIFFIFFIFfIFFIFfIFfIFFIFFIFFI

Lower Case Definitions

IFFI1BI31132133134135136137138139130127 8DI081091
17117716517217417917516916FI7018AI2BIOD FFI611731
16416616716816AI6BI6CI9518513CIFFI9717A 78163176
16216EI6DI2CI2EI2DIFFI2AIFFI20lFFI40141 42143144
1451461471481491FFIFFIFFI1AIFFI2DI151FF 0612BIFF
10AIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFF FFIFFIFF
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFF
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFF

Control Key Definitions

IFFI1BIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI1EI7FIFFI
111117105112114 1191151091 0FI1011BI1DIOAIFFI011131
10410610710810AIOBIOCI00IFFI1CIFFIFFI1AI181031161
1021 0EIODIFFIFFI1FIFFIFFIFFI20 lFFI201211221231241
1251261271281291FFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFlfFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IfflFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFfIFFIFFIFFI

* Alternate Key Definitions

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

IFFIFFIFFIFFIFFIFFIFFIFFIFflFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFlfFlfFIFFIFFISBISDIFFIFFIFFIFFI
IFFIFfIFFIEFIFFIfFIFFIFflFFI5CIFFIFFIFFIFFIFFIFFI
IFfIFFIFfIfFIFFIFFIFFIFFlffl20lFFI301311321 33 134 1
135 1361371381391FfIFFIFFIFfiFFIFFIFFIFFIFFIFFIFFI
IFfIFFIFFIFFIFFIFFlfFlfFIFFIFFIFfIFFIFFIFFIFflFFI
IfflFflFFIFflFFlfFIFFIFFIFfIFFIFFIFflFflfFIFFlfFI
IFfIFFIFFIFfIFFIFfIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI

APPENDIX A - DEFINING KEYBOARDS Copyright 1988 PICK SYSTEMS
PAGE A-12

I
I
I
I
I

•

I
I
I
J
I
I
I
I
I
I
I
J
I
I

[

t
[

[

[

E
I
I
E
I
I
I
I
I
I
r •
I
[

[

* Define ITALIAN 102·key keyboard
*
* Note: X'FF' means ignore this keystroke

* Scan Codes

0-15
16-31
32-47
4S-63
64-79
SO-95
96·111

112-127

*

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

*

0-15
16-31
32·47
48-63
64-79
SO-95
96-111

112-127

*

0·15
16·31
32·47
4S-63
64-79
80-95
96·111

112·127

Upper Case Definitions

IFFI1BI2112219CI2412512612FI2S12913DI3FI5EIOSIFFI
15115714515215415915514914FI5018212AIODIFFI411531
144 1461 471 4S14AI4BI4CIS71A217CIFFI1515AI5S1431561
1421 4EI4DI3BI3AI5FIFFI2AIFfl20lFFI501511521531541
15515615715S1591FFIFFI3713S13912DI3413513612BI311
132 13313012EIFFIFFI3EI5AI5BIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFllFlFFIFFIFFIFFIFfIFFIFFIFFI

Lower Case Definitions

IFFI1BI31132133134135136 3713S 391301271SDI081091
171177165172174179175169 6FI70 SAI2BIODIFFI611731
16416616716816AI6BI6Cl95 8515C FFI9717AI7S1631761
16216EI6DI2CI2EI2DIFFI2A FFI20 FFI401411421431441
14514614714S1491FFIFFIFF 1AIFF 2DI151FFI0612BIFFI
IOAIFFIFFIFFIFFIFFI3CI4A 4BIFF FFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFIFF FFIFF FfIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFIFF FFIFF FFIFFIFFIFfIFFIFFI

Control Key Definitions

IFFI1BIFFIFFIFFIFFIFfIFFIFfIFFIFFIFFIFFI1EI7FIFFI
11111710511211411911510910FI1011BI1DIOAIFFI01113
10410610710810AIOBIOCI00IFFI1CIFFIFFlLAI18103116
10210EIODIFFIFFI1FIFFIFflFFI20lFFI20121122123124
12512612712S1291FFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFF
IFFIFFIFFIFFIFFIFFIFFI2AI2BIFFIFFIFFIFFIFfIFFIFF
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFfIFfIFFIFFIFFIFF
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFF

Alternate Key Definitions

IFFIFF FFIFFIFFIFIIFFIFFIFfIFFIFFIFFIFFIFFIFFIFFI
IFFIFf FFIFFIFFIFFIFFIFFIFFIFFI5BI5DIFFIFFIFFIFFI
IFfIFI FfiFFIFflFflFFI401231FFIFFIFFIFFIFFIFFIFFI
IFFIFF FFIFFIFflFfIFFIFFIFFI20lFFI301311321331341
135136 3713S1391FfIFFIFFIFfIFFIFFIFFIFFIFIIFFIFFI
IFFIFF FFIFFIFFIFFIFFI3AI3BIFFIFFIFFIFFIFfIFFIFFI
IFFIFfIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFfIFfIFFIFfIFfIFFIFFIFfIFFIFFIFFI

APPENDIX A - DEFINING KEYBOARDS Copyright 1988 PICK SYSTEMS
PAGE A-13

* Define SPANISH 84-key keyboard
*
* Note: X'FF' means ignore this keystroke

* SCan Codes

0-15
16-31
32-47
4S-63
64-79
SO-95
96-111

112-127

*

0-15
16-31
32-47
4S-63
64-79
80-95
96-111

112-127

*

0-15
16-31
32-47
4S-63
64-79
80-95
96-111

112-127

*

0-lS
16-31
32-47
4S-63
64-79
80-95
96-111

112-127

Upper Case Definitions

IFfl1BIAPIA812312412S12FI2612AI2S12915FI2BI081FFI
1511571451521541S91S514914FISOIFEIEBIODIFFI411531
14414614714814AI4BI4CIA513AI3EIFFISOl5AIS81431S61
1421 4EI4DI3FI211221FFIFFIFFI20lFFISOl511521531S41
ISSIS61571SSIS91FFIFFI3713813912DI3413S13612BI311
13213313012EIFflFfIFFIFfIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFIFFlfFlFFlfFlFFIFFIFFIFFIFFI
IFFIFIlfFlFfIFFIFFlfFlFIIFIlfFlFFIFFIFFIFfIFFIFFI

Lower Case Definitions

IFFI1BI3113213313413513613713813913012DI3DIOSI091
171177165172174 7917S16916FI70lFPIFCIODIFFI611731
16416616716816A 6BI6CIA413BI3CIFFI8717AI7S1631761
16216EI6DI2CI2E 271FFI2AIFFI20lFFI401411421431441
14514614714S149 FFIFFIFFI1AIFFI2DI151FFI0612BIFFI
10AIFFIFFIFFIFF FFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFF FFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFF FFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI

Control Key Definitions

IFFI1BIFFI00IFFIFFIFFIFFIFFIFFIFFIFFI1FIFFI7FIFFI
1111171051121141191 15 109 10FI1011BI1DIOAIFFIOl1131
I0410610710SIOAIOBIOCIFFIFFI1CIFFIFFlLAl1SI031161
10210EIODIFFIFFIFFIFFIFFIFFI20lFFI20121122123124 1
12512612712S1291FFIFFIFFIFfIFFIFFIFFIFFIFFIFfIFFI
IFFIEFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFfIFFIFFIFFIFFI
IFFIFFIFFIFFIFfIFFIFFIFFIFFIFFIFFIFFIFFIFfIFFIFFI
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFfIFFIFFIFFIFFIFFI

Alternate Key Definitions

IFFIFFIFFI40lFF FfIFFIFFIFFlfFlFFIFFIFfIFFIFFIFFI
IFFIFFIFFIEFIFF FFIEFIFFIFflFflSBI5DIFFIFFIFFIFFI
IFFIFIIFFIFFIFI FFIFFIFFIFIISCIFIIFFIFFIFIIFFIFFI
IFFIFIIFfIFFIFF FFIFflFIIFII20lFFI301311321331341
13S13613713S139 FfIFFIFfIFFIFFIFfIFFIFfIFFIFfIFFI
IFIIFFIFFIFFIFI FfIFIIFFIFFIFfIFIIFFIFFIFFIFfIFFI
IFIlfFlFFIFFIFF FfIFFIFFIFFIFFIFFIFFIFFlfFlFFIFFI
IFFIFFIFfIFfIFF FfIFFIFFIFFIFfIFFIFFIFFIFFIFFIFFI

APPENDIX A - DEFINING KEYBOARDS Copyright 1988 PICK SYSTEMS
PAGE A-14

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

[

L
I
[

[

t
[

I
I
I
• ,
I
E
E
I

* Define SPANISH 102-key keyboard
*
* Note: X'FF' means ignore this keystroke

* Scan Codes

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

*

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

*

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

*

0-15
16-31
32-47
4S-63
64-79
80-95
96-111

112-127

Upper Case Definitions

IFfl1BI2112216012412512612FI2S12913DI3FIASIOSIFfI
ISl1571451S21541S915514914FISOIlBI2AIODIFfl411S31
14414614714814A14BI4CIASIFEIA6IFfI80ISAIS8143IS61
14214EI4DI3BI3AISFIFFlZAIFfl20lFfISOlS11S21S31541
ISSIS61S71S81S91FflFFI371 3S 13912DI3413S13612BI311
1321331 30 12EIFFIFfl3EISAISBIFfIFFIFflFfIFFIFfIFFI
IFfIFfIFfIFFIFFIFfIFfIFfIFFIFfIFfIFfIFFIFfIFfIFFI
IFFIFFIFFIFFIFFIFlIFlIFFIFFIFFIFfIFFIFFIFFIFFIFFI

Lower Case Definitions

IFFIIBI3113213313413SIJ6137138 39130 1271API081091
171177165 7217417917516916FI70 FCI2BIODIFF 611731
164166167 6816AI6BI6CIA41FPIAZ FFI8717AI78 631761
16216EI6D 2CI2EI2DIFFI2AIFFI20 FFI40141142 431441
145146147 481491FFIFFIFFlLAIFF 2DliSIFFI06 2BIFFI
IOhIFFIFF FFIFFIFFI3CI4AI4BIFF FFIFFIFFIFF FFIFFI
IFFIFFIFF FFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFF FFIFFI
IFFIFfIFF FFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFF FFIFFI

Control Key Definitions

IFFI1BIFFIFFIFFIFFIFFIFFIFlIFFIFFIFFIFFIFFI7F FFI
11111710S11211411911SI0910FII011BI1DIOAIFFI01 131
10410610710810AIOBIOCIFFIFFI1CIFFIFFlLAI18103 161
10210EIODIFFIFFIIFIFFIFFIFFI20lFFI2012112212J 241
12S1261271281291FFIFFIFFIFFIFFIFFIFFIFFIFFIFF FFI
IFFIFFIFFIFFIFFIFFIFFI2AI2BIFFIFFIFFIFFIFFIFF FFI
IFfIFFIFFIFfIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFF FFI
IFFIFFIFFIFFIFFIFFIFFIFFIFfIFFIFFIFFIFFIFFIFF FFI

Alternate Key Definitions

IFFIFFI7CI401231FFIFFlAAIFFIFFIFFIFFIFFIFFIFFIFFI
IFfIFF FFIFlIFlIFlIFFIFlIFlIFfISBISDIFFIFFIFFIFFI
IFlIFF FliFlIFlIFlIFlIFll7BISCIFFI7DIFFIFFIFFIFFI
IFFIFl FliFlIFlIFFIFFIFflFfl20lFFI301311321331341
135136 371381391FfIFFIFFIFfIFFIFflFfIFFIFfIFFIFFI
IFFIFF FflFflFflFflFll3AI3BIFFIFFIFfIFFIFFIFFIFFI
IFfllF FfIFfIFfIFfIFFIFFIFfIFFIFFIFfIFFIFFIFfIFFI
IFFIII FfIFFIFlIFfIFFIFlIFFIFFIFFIFFIFFIFFIFlIFFI

APPENDIX A - DEFINING KEYBOARDS Copyright 1988 PICK SYSTEMS
PAGE A-IS

* Define USA 84-key keyboard
*
* Note: X'FF' means ignore this keystroke

* Scan Codes

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

*

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

*

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

*

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

Upper Case Definitions

IFfl1BI2114012312412515EI2612AI2812915FI2BI081FFI
15115714515215415915514914FI5017BI7DIODIFFI411531
14414614714814AI4BI4CI3AI2217EIFFI7CI5AI581431561
14214EI4DI3CI3EI3FIFFIFFIFFI20lFFI501511521531541
1551561571581591FFIFFI3713813912DI3413513612BI311
1321331 30 12EIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFfIFFIFFIFFIFFIFFIFFIFfIFFIFFIFFIFFIFFIFFI

Lower Case Definitions

IFFI1BI3113213313413513613713813913012DI3DI081091
17117716517217417917516916FI7015BI5DIODIFFI61173
16416616716816AI6BI6CI3BI27160lFFI5CI7AI781 63176
16216EI6DI2CI2EI2FIFFI2AIFFI20lFFI40141142143144
1451461471481491FFIFFIFFlLAIFFI2DI151FFI0612BIFF
10AIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFF
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFF
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFF

Control Key Definitions

IFFI1BIFFI00IFFIFFIFFI1EIFFIFFIFFIFFI1FIFFI7FIFFI
11111Zl0511211411911510910FI1011BIIDIOAIFFI011131
104106107108 OAIOBIOCIFFIFFIFFIFFIIClLAI18103116
10210EIODIFF FFIFFIFFIFFIFFI20lFFI201211221231 24
125126127128 291FFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFF
IFFIFFIFFIFF FFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFF
IFFIFFIFFIFF FFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFF
IFFIFFIFFIFF FfIFfIFFIFFIFFIFFIFFIFFIFFIFFIFFIFF

Alternate Key Definitions

IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFIFFIFFI 20 lFFI301311321331341
1351361371381391FFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFfIFFIFFIFFIFfIFFIFFIFFIFFIFFIFFI
IFFIFFIFfIFFIFFIFFIFFIFFIFFIFFIFfIFFIFFIFFIFfIFFI
IFFIFfIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI

APPENDIX A - DEFINING KEYBOARDS Copyright 1988 PICK SYSTEMS
PAGE A-16

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
]

I
I

[

[

[

!
[

I
I
I
I
E
I
I
I
I
[

I
[

E

* Define USA 101-key keyboard
*
* Note: X'FF' means ignore this keystroke

* Scan Codes

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

*

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

*

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

*

0-15
16-31
32-47
48-63
64-79
80-95
96-111

112-127

Upper Case Definitions

IFfl1BI2114012312412515EI2612AI2812915FI2BI081FFI
15115714515215415915514914FI5017BI7DIODIFFI411531
144146 4714814A14B14C13A12217EIFF17C15A1581431561
14214E 4DI3CI3EI3FIFFIFFIFFI20lFFI501511521531541
155156 571581591FFIFFI3713813912DI3413513612BI311
132133 3012EIFIIFFIFFI5AI5BIFFIFfIFFIFFIFFIFFIFFI
IFFIFF FFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFF FFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI

Lower Case Definitions

IFFI1BI31132133134135136137138139 3012DI3DI081091
17117716517217417917516916FI7015B 5DIODIFFI611731
16416616716816AI6BI6CI3BI27160lFF 5CI7AI781 63 1761
16216EI6DI2CI2EI2FIFFI2AIFFI20lFF 401411421431441
1451461471481491FFIFFIFFlLAIFFI2D 151FFI0612BIFFI
IOAIFFIFFIFFIFFIFFIFFI4AI4BIFFIFF FFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFF FFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFF FFIFFIFFIFFIFFI

Control Kev Definitions

IFFIIBIFFI00IFFIFFIFFIIEIFFIFFIFFIFFIIFIFFI7FIFFI
11111710511211411911510910FIIOliBIIDIOAIFFI011131
104106 0710810AIOBIOCIFFIFFIFFIFFIICIIAI18103 161
10210E ODIFFIFFIFFIFFIFFIFFI20lFFI20121122123 241
125126 271281291FFIFFIFFIFFIFFIFFIFFIFFIFFIFF FFI
IFFIFF FFIFFIFFIFFIFFI2AI2BIFFIFFIFFIFFIFFIFF FFI
IFFIFF FFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFF FFI
IFFIFF FFIFIIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFF FFI

Alternate Key Definitions

IFFIFFIFFIFFIFfIFFIFFIFFIFFIFFIFFIFFIFFIFFIFfIFFI
IFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFfIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIFFIFFIFFIFFIFFIFFIFFIFFI20lFFI30131132133134 1
1351361371381391FFIFFIFFIFFIFFIFFIFFIFFIFFIFFIFFI
IFFIlFIFFIFFIFFIFFIFFI3AI3BIFFIFFIFFIFFIFFIFFIFFI
IFFIElllllFFIFFllFIFFllFIFFIFFIFFIFFIFFIFFIFFIFll
IFllEFIFFIFFIFllFFIFllFFllFIFFIFFIFFIFFIFFIFFIFFI

APPENDIX A - DEFINING KEYBOARDS Copyright 1988 PICK SYSTEMS
PAGE A-17

I
I
I
I
I
I
I
J
I
J
I
I
I
I
I
I
I
I
I

-~ ..

r ..
I
I
I
I
L
[

Appendix B

DEFINING FUNCTION KEYS

The function keys can be defined in two ways. They can be part of the
overall keyboard definition item in the KEYBOARD file, or they can be
defined as items in the FUNCKEYS file. The definitions in the KEYBOARD
file can be selected by using the SET-KBRD verb; the definitions in the
FUNCKEYS file can be selected by using the SET-FUNC verb. These
definitions affect line 0 (memory-mapped monitor) only.

The default function keys are based on the USA lOl-key keyboard as it is
shipped. The actual default function keys are coded into the PICK
operating system and cannot be modified. The default function keys are
loaded each time the system is booted.

Each item in the FUNCKEYS file consists of four attributes with 12
hexadecimal values each. Attribute 1 contains the values to be
transmitted when the function key is pressed with the <SHIFT> key;
attribute 2 contains the values to be transmitted when the function key
is pressed by itself; attribute 3 contains the values to be transmitted
when the function key is pressed with the <CTRL> key; attribute 4
contains the valued to be transmitted when the funct~on key is pressed
with the <ALT> key.

Within each attribute, the first value corresponds to function key 1, the
second value corresponds to function key .2, and so on.

NOTE: The function keys generate scan codes 59-68 and 87-88.
information about scan codes, see Appendix A.)

(For

Three items are currently included in the FUNCKEYS file: DEFAULT, TEST,
and NULL. The function key definitions in DEFAULT are the same as those
that are loaded when the system is booted; the function key definitions
in TEST are for demonstrations; the function key definitions in NULL can
be used to clear all function key definitions .

Figure B-1 displayes the DEFAULT item, Figure B-2 displays the TEST item,
and Figure B-3 displays the NULL item.

NOTE: Function keys echo two characters. The first character is STX
(ASCII character 02) and cannot be changed; the second is the character
in the KEYBOARD or FUNCKEYS item and can be changed.

APPENDIX B - DEFINING FUNCTION KEYS Copyright 1988 PICK SYSTEMS
Preliminary PAGE B-1

DEFAULT
001 *
002 * Define default function keys
003 *
004 505152535455565758595A5B
005 404142434445464748494A4B
006 202122232425262728292A2B
007 303132333435363738393A3B
008 *

function key + shift
function key only
function key + ctrl
function key + alt

Figure 1 DEFAULT Item in FUNCKEYS File

TEST
001 *
002 * Define function keys for testing
003 *
004 4142434445464748494A4B4C
005 5152535455565758595A5B5C
006 2122232425262728292A2B2C
007 3132333435363738393A3B3C
008 *

function key + shift
function key only
function key + ctr1
fu.nction key + a1t

Figure 2 TEST Item in FUNCKEYS File

NULL
001 *
002 * Define function keys to null
003 *
004 FFFFFFFFFFFFFFFFFFFFFFFF
005 FFFFFFFFFFFFFFFFFFFFFFFF
006 FFFFFFFFFFFFFFFFFFFFFFFF
007 FFFFFFFFFFFFFFFFFFFFFFFF
008 *

function key + shift
function key only
function key + ctrl
function key + alt

Figure 3 NULL Item in FUNCKEYS File

APPENDIX B - DEFINING FUNCTION KEYS Copyright 1988 PICK SYSTEMS
Preliminary PAGE B-2

I
I
I.
......
.~

III

I
I
I
I
I

I

I I
I
I
I I I
I,
I I I
I
I

I
I
I
I

[

[

I
[

[

I
I
I
I
I
I
I
I
I
I
I
I
I

, 8-19
*, 3-11
+, 5-37

, 5-37, 9-15
A - modifier, 6-54
A command, 5-17
A correlatives, 6-125
A indicator, 7-62, 7-63
A option, 7-53, 7-55, 7-61, 7-111
A-items, 2-7, 2-26, 2-28, 6-10
ABORT statement, 9-41
Aborted, 7-62
ABS, 10-56
ABS EXTENSION, 12-11, 11-27
ABS frames, 10-9
ABS function, 9-42
ABS load, 10-41
ABS Restore, 12-10
ACC File

Index

TERM-TYPE, 3-27, 10-12, 10-23, 10-25,
10-27

ACCESS - input conversions, 6-34
ACCESS attribute names, 6-7
ACCESS delimiters, 6-27
ACCESS file-names, 6-7
ACCESS item-ids, 6-7
ACCESS item-lists, 6-7
ACCESS modifiers, 6-7
ACCESS options, 6-7, 6-55
ACCESS output specifications, 6-7
ACCESS print limiters, 6-7
ACCESS selection criteria, 6-7
ACCESS sentence, 6-9
ACCESS statements - formation, 6-7, 6-9
ACCESS verbs, 6-7, 6-17
Accessing a file, 2-5, 9-130
Accessing files in other accounts, 2-22
Accessing item-id, 9-131
Accessing multi-values, 6-72
Accessing single attributes, 9-136
Account name: print file, 7-62
Account specification, 2-25
ACCOUNT-RESTORE, 10-51
ACCOUNT-SAVE, 10-51
Accounting file, 10-23, 10-25
Accounting history item, 10-23, 10-25,

10-27
Accounting history update, 10-19
accountname example, 7-67
accountname option, 7-25
accountname option in SP-EDIT, 7-30
accountname specification, 7-61
ACTIVE, 7-68
Active user item, 10-23
Additional workspace, 10-6

Index PAGE

AGAIN command - Editor, 4-14
ALIGN, 7-35, 7-41, 7-43, 7-62
All items, 3-11
ALPHA function, 9-43
Alternate dictionary definition, 6-13
AM, 2-15
AMC, 2-26
Amc of 9998 or 9999, 6-10
Ampersand in RUNOFF, 8-19
AN - modifier, 6-54
AND clause, 6-43
AND clause and selection, 6-43
AND clauses, 6-41
AND connective, 6-19, 6-24, 6-41
ANDed selection criteria, 6-43
ANDed value phrases, 6-41
ANY - modifier, 6-54
ARE - modifier, 6-54
Arithmetic capability, 5-37
Arithmetic functions, 6-125
Arithmetic operators, 9-25
Array passing, 9-48
Arrays, 9-13, 9-67
Arrays (dynamic) - Deletion, 9-66
Arrays (dynamic) - Extraction, 9-78
Arrays (dynamic) - Insertion, 9-96
Arrays (dynamic) - Replacement, 9-139
Arrays - Dynamic, 9-13
Arrays - Dynamic, LOCATE, 9-100
AS command - Editor, 4-33
ASCII - codes, 9-194
ASCII Codes, 12-27
ASCII conversions, 6-116
ASCII function, 9-44
Assembly Formatting, 4-33
Assigning values to variables, 9-45
Assignment - Array, 9-106
Assignment indicators, 7-73
Assignment interrogation, 7-19., 7-20,

7-21, 7-73
Assignment specification, 7-15
Assignment statement, 9-45
Assignment status, 7-73
Attribute 7, 6-34
Attribute 7 in selection, 6-30
Attribute definition items, 2-7, 2-26,

6-10
Attribute definitions,

6-10
Attribute mark count, 2-26
Attribute names, 2-7, 2-26, 6-10
Attribute values - breaking 00, 6-61
Attributes, 2-3, 2-15

. Attributes - Accessing, 9-163
Attributes - controlling, 6-97, 6-99

1 Copyright 1988 PICK SYSTEMS

Attributes - dependent, 6-97, 6-99
Attributes - Updating, 9-163

Index

Automatic execution of a PROC at LOGON,
3-7

Available, 7 -62
Available print file control record,

7-63
Available space, 10-7, 10-34
B, 5-15
B - RUNOFF Command, 8-5
B -debug command, 9-170
B option, 7-49, 7-53, 7-55, 7-57, 7-68
'B' option, 6-56, 6-64
Backspacing, 3-3
Backup, 10-47
BASE, 2-11
BASIC

Format Masks, 9-93
Numeric Masks, 9-93

BASIC - IF statement, 9-92
BASIC compiler error messages, 9-190
BASIC compiler options, 9-17, 9-19
BASIC debugger, 9-20, 9-165
BASIC debugger - Breakpoint Table,

9-170
BASIC debugger - Changing a variable,

9-172
BASIC debugger - Commands, 9-197
BASIC debugger - Execution control,

9-171
BASIC debugger - Messages, 9-199
BASIC debugger - Trace table, 9-169
BASIC debugger - usage, 9-167
BASIC file structure, 9-11
BASIC intrinsic function summary, 9-188
BASIC language definition, 9-5
Basic Output Formatting, 9-124
BASIC program - Cataloging, 9-21
BASIC program - Debugging, 9-165, 9-167,

9-169, 9-171
BASIC program - Decataloging, 9-21
BASIC program - Executing, 9-20
BASIC program - Running, 9-20
BASIC program - Sharing, 9-21
BASIC PROGRAM FILE STRUCTURE, 2-31
BASIC run.- time error messages, 9 -192
BASIC symbol tables items, 9-165
BASIC syntax summary, 9-184
Baud Rate, 12-26
BEGIN ~AGE - RUNOFF Command, 8-5
Being Output, 7-62
.bf, 8-19
BLANK as delimiter, 6-15
Blanks - PICK/BASIC, 9-12
BLOCK-CONVERT, 10-14

Index PAGE

BLOCK-CONVERT file, 10-12
BLOCK-PRINT, 3-13
BKS of a file, 2-11
BO, 5-15
Boldface, 8-20
BOLDFACE in RUNOFF, 8-19
Boolean expressions, 9-33
Boolean functions, 9-113
Booting Your System, 12-4
BOTTOM command - Editor, 4-12
BOX - RUNOFF Command, 8-5
BOX OFF - RUNOFF Command, 8-5
BP - RUNOFF Command, 8-5
BP and line skipping, 8-5
BP from SP-EDIT, 7-39
Branch, 9-88, 9-117
Branch - Conditional, 9-49
BREAK - RUNOFF Command, 8 - 5
BREAK OFF statement, 9-46
BREAK ON statement, 9-46
BREAK-ON modifier, 6-63
Breaking on attribute values, 6-61
Breakpoint Table - PICK/BASIC debugger,

9-170
Buffer pointers, 5-15
Buffers in the Editor, 4-5
Buffers, PROC, 5-8
BY modifier, 6-69
BY-DSND modifier, 6-69
BY-EXP modifier, 6-72
BY-EXP-DSND modifier, 6-72
C, 5-37
C - code, 6-108
C - output option, 6-50
C - RUNOFF Command, 8-6
C Command - Editor, 4-36
C definition code, 6-99
C indicator, 7-62, 7-63. 7-73
C option, 7-61, 7-81
C specification. 7-17, 7-21
'C' option, 6-56
CALL statement, 9-47
Calling a subroutine, 5-43
Calling another PROC, 5-41
Capitalize sentences - RUNOFF Command,

8-5
CASE statement, 9-49
CATALOGed programs, change in storage,

9-11
Cataloging PICK/BASIC programs, 9-21
CENTER - RUNOFF Command, 8-6
CHAIN - RUNOFF Command, 8-6
CHAIN from SP-EDIT, 7-39
CHAIN statement, 9-50
Changes: SP-ASSIGN, 7-15

2 Copyright 1988 PICK SYSTEMS

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

[

[

I:····· .,

[

[

[

I
E
I
I
I
I
I
I
I
I
I

Changing copy count, 7-28
Changing form number, 7-28
Changing output queue, 7-28
Changing the form number, 7-37

Index

Changing the output queue specification,
7-37

CHAPTER command in RUNOFF, 8-7
CHAR function, 9-52
[character, 6-37
Character manipulation, 6-130
CHARGE-TO, 3-15
CHARGES, 3-15
CHECK-SUM, 10-33
Choked output, 7-17
Choked output example, 7-23
Choked print file generation, 7-17
Clear screen, 9-38
CLEAR statement, 9-53
CLEAR-FILE, 2-32, 2-35
CLEARFILE statement, 9-54
Clearing a file, 2-32, 2-35
Clearing ACC file, 10-27
Clearing buffers, 5-25
Clearing variable values, 9-53
CLOCK Verb, 3-16
Close print file, 7-15
Closed, 7-62
Coding techniques, 9-174
COL-HDR-SUPP modifier, 6-50
COLl()/COL2() function, 9-55
Cold-start, 10-41
Colds tarts , 7-81
COLON - EDITOR, 4-9
Color, 12-21
Columnar format, 6-45
Columnar Positions - Editor, 4-36
.* Command, 8-7
? Command - Editor, 4-35, 4-36
Commands - PICK/BASIC debugger, 9-197
Comment lines, 5-37
Comments in RUNOFF, 8-7
COMMON statement, 9-56
Common variables, 9-56
Compiler error messages, 9-190
Compiling a PICK/BASIC program, 9-15
Complex item-lists, 6-21, 6-26
Computed branch, 9-117
Concatenating print files, 7-17, 7-111
Concatenation, 6-108, 9-27
Condit~onal branch, 9-92, 9-94
Conditional execution, 5-29
Conditional values, 6-37
Configuration, 10-53
Configuration Extension, 12-12
Connectives, 6-24

Index PAGE

Connectives - AND, 6-19
Connectives - logical, 6-19
Connectives - OR, 6-19
Constants, 9-23
CONTENTS command in RUNOFF, 8 -7
Continuous output to the terminal, 7-38
Control - breaks, 6-63
Control Characters in RUNOFF, 8-19
Control-H, 3-3
Control-R, 3-3
Control-Y, 3-3
Control-X, 3-3
Controlling attributes, 6-97, 6-99
Controlling definition code, 6-99
CONVERSION codes, 6-101
Conversion operator, F - code, 6-117
Conversions - ASCII, 6-116
Conversions - user, 6-116
CONVERSIONS w/sort keys, 6-70
Copy - Array, 9-106
Copy count, 7-15, 7-19
Copy count change, 7-28, 7-31
Copy count specification, 7-62, 7-73
Copy processor, 2-37, 2-38
COPY processor options, 2-40
COPY-LIST verb, 6-88
COPYDOS, 12-41, 11-20
Copying a select-list, 6-88
Copying data, 2-37, 2-38
Copying data to the terminal or

line-printer, 2-40
Copying file to file - REFORMAT &

SREFORMAT, 6-79
CORRELATIVE codes, 6-101
Correlatives - Repeat for mu1tiva1ues,

6-120
CORRELATIVES w/ sort keys, 6-70
COS function, 9-58
Count field, 10-31
Count field of an item, 2-15, 6-10
Count field size, 10-31
Count field storage form, 10-31
COUNT function, 9-59
COUNT verb, 6-81
CREATE-ACCOUNT, 10-19, 10-35
CREATE-FILE, 2-32, 2-33
Creating a file, 2-32, 2-33
Creating a new account, 10-35
Creating a PICK/BASIC program, 9-15
Creating Null Lines - Editor, 4-26
Creating', 9-15
CRT command in RUNOFF, 8-7
CRT Statement, 9-60
CS - RUNOFF Command, 8-5
<CTRL> characters - special, 3-4

3 Copyright 1988 PICK SYSTEMS

Current buffer, PROC, 5-8
Current Date, 3-19
Current line concept, 4-5
Current Line? - Editor, 4-35
Cursor addressing, 3-25
Cursor control, 5-23, 9-38
D, 5-21
D - code, 6-110
D -debug command, 9-170
D definition code, 6-99
D option, 7-25, 7-28, 7-53, 7-57
D response, 7-36
'D' option, 6-56, 6-64
D-items, 2-7, 2-20, 2-28
Data --selection by, 6-30
Data evaluation, 6-30
Data existance -- algorithm, 6-31
Data existence, 6-31
Data file as dictionary, 6-13
Data format errors in files, 10-31
Data input, 4-18, 5-19
Data Length, 12-26
Data movement, PROC, 5-8
Data representation, 9-23
Data restore, 10-42, 10-44
DATA statement, 9-61
Data-level files: multiple, 2-25
Date

Setting, 3-16, 3-19, 12-20
Date conversion - input, 6-34
Date format, 6-110

Default; 12-20
Standard, 12-20

DATE() function, 9-63
DCD-OFF, 12-24
DCD-ON, 12-24
DCOUNT function, 9-64
$ -debug command, 9-173
Debugger, 3-31

Index

Debugging PICK/BASIC programs, 9-165,
9-167, 9-169

Decata10ging PICK/BASIC programs, 9-21
Default output specification, 6-49
Default print file to tape record

length, 7-37
Default relational connective, 6-28
Default tape record size, 7-97
Default: SP-ASSIGN, 7-22
Defining a new file, 2-33
Delete column specifications, 4-21
DELETE command - Editor, 4-21
DELETE function, 9-66
DELETE statement, 9-65
DELETE-ACCOUNT, 10-36
DELETE-FILE, 2-32, 2-35, 2-36

Index PAGE

DELETE-LIST verb, 6-86
DELETE: SP-EDIT, 7-35
Deleting a file, 2-32, 2-36
Deleting an account, 10-36
Deleting input line, 3-3
Deleting Lines, 4-21
Deletion -- forced, 7-28
Delimiters in ACCESS, 6-27
Dependent attributes, 6-97, 6-99
Dependent definition code, 6-99
DET-SUPP modifier, 6-66
Detaching a printer, 7-52, 7-57
Detaching a printer: examples, 7-57
DICT modifier, 6-67
Dictionaries, 2-3, 2-7, 6-10
Dictionaries, sharing of, 2-9
DIH statement, 9-67
Direct file access, 2-5
Disenqueuing a print file, 7-52, 7-55
Disk usage, 10-3
DISPLAY: SP-EDIT, 7-35, 7-36
Displaying a frame, 10-10
Displaying group data, 10-28
Displaying output queues, 7-67
Displaying parameters, 5-21
Displaying prestored commands, 4-39
Displaying the print file control

records, 7-60
DOS TO PICK BRIDGE, 12-41, 11-20
DTX function, 9-69
Dummy amc, 6-10
DUMP, 10-10
Dynamic arrays, 9-13, 9-66, 9-139
Dynamic arrays, EXTRACT, 9-78
Dynamic arrays ,INSERT, 9-96
Dynamic arrays ,LOCATE, 9-100
E - debug command, 9-171
E option, 7-61
EACH connective, 6-30
EACH modifier, 6-24
EBCDIC function, 9-70
EBCDIC to ASCII: print files, 7-111
ECHO ON/OFF statement, 9-71
EDIT verb, 4-7
EDIT-LIST verb, 6-88
Editing a PICK/BASIC program, 9-15
Editing a select-list, 6-88
Editing an item, 4-7
Editing fuctions, 3-3
Editing Q-items, 2-22
Editing', 9-15
EDITOR buffers, 4-5
EDITOR command summary, 4-9

. EDITOR command syntax, 4-9
EDITOR messages, 4-41

4 Copyright 1988 PICK SYSTEMS

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

[

l
[

[
[

I

I
I
I
I
I
I

I
I
I
I~· .

EDITOR options, 4-7
ELSE clause, 9-92
Empty group, 2-15
END -debug command, 9-173
End of group data, 2-15
ENTER statement, 9-73
Entering data, 4-18
ENTRY #, 7-25, 7-62, 7-89
ENTRY # mark for PROC, 7-89
EOI, 4-5
EQU/EQUATE statement, 9-74
ERRKSG File

SEQ Item, 6-131
Sort Order, 6-131

Error message numbers: STOPPTR, 7-49
Error message numbers: T-ATT, 7-99
Error messages, 10-16
Error messages - Compiler, 9-190
Error messages - Run-time, 9-192
Error messages: print file

disenqueuement, 7-59

Index

Error messages: print file termination,
7-58

Error messages: printer detachment,
7-59

Error messages: SP-KILL, 7-58
Error messages: SP-KILL D, 7-59
Error messages: SP-KILL F, 7-59
Error messages: STARTPTR, 7-46
Error messages: STOPPTR, 7-51
Error testing, 5-35
ESCAPE character, 4-37
Evaluation of data under selection,

6-30
EVERY modifier, 6-24
EX command - Editor, 4-29
Examples of programming, 9-176, 9-177,

9-178, 9-179, 9-181
EXECUTE statement, 9-75
Executing a PICK/BASIC program, 9-20
Executing a PROC, 5-6
Executing a PROC-generated statement,

5-39
Executing TCL statements from BASIC,

9-50
Execution control - PICK/BASIC debugger,

9-171
Execution inter.ruption, 3-31
Existence test, 6-31
Exit SP-EDIT, 7-36
Exit SPOOL T, 7-38
Explicit item-ids, 6-27
Explicit item-ids and lists, 6-27
Explicit item-lists, 6-21
Exploding sort, 6-72

Index PAGE

EXPONENTIAL function, 9-77
Expressions, 9-25
Expressions - Boolean, 9-33
Expressions - Logical, 9-33
Expressions - Relational, 9-29, 9-31
Extended Character Set, 12-27
Extents of a file, 2-11
External subroutines, 9-47, 9-48
EXTRA ABS, 11-27
EXTRACT function, 9-78
Extraction - text, 6-109
F, 5-15
F - code, 6-117
F - code operands, 6-120
F - code, P(ropagate), 6-117
F command, 4-5
F command - Editor, 4-28
F command in RUNOFF, 8-7
F option, 6-96, 7-53, 7-55, 7-61
F response, 7-35, 7-38, 7-39
'F' option, 6-56
F-code stack operations, 6-123
FC, 12-25
FD command - Editor, 4-29
FI command - Editor, 4-28
FID, 10-3, 10-9, 10-10
FIELD function, 9-80
FILE - modifier, 6-54
File access, 3-11, 9-130, 9-136
File access method, 2-5
File area, 10-7
File BMS, 2-11
File copy, 2-38
File definition items, 2-7, 2-20
File extents, 2-11
File hashing statistics, 10-30
File hierarchy, 2-3
File items, 2-5
File items structure, 9-13
File levels, 2-3
File management processors, 2-32
FILE NAME- prompt, 7-39.
File pointers, 2-20
File restore, 10-41, 10-42, 10-44,

10-45, 12-9
File save, 10-49
File space on disk, 10-7
File statistics, 6-91, 6-92
File statistics report, 10-37
File structure, 10-28
File synonym definition items, 2-22,

3-20
File translation, 6-114
File-name, 2-7
FILE-SAVE, 10-47, 10-49

5 Copyright 1988 PICK SYSTEMS

Files, 10-7
FILL command in RUNOFF, 8-7
floppy diskettes, 12-17
Floppy Disks

Formatting, 12-17
Fn option group, 7-30
Fn specification, 7-19, 7-21
'Fn' option, 6-56
Fn-m option group, 7-30
FOOTING command in RUNOFF, 8-8
FOOTING statement, 9-81
FOOTINGS, 6-56
FOR - modifier, 6-54
FOR statement, 9-83
FOR ... NEXT statement, 9-85
Form number, 7-19
Form number change, 7-28, 7-31, 7-37
Form number: hold file, 7-37
Form queue, 7-15
Form queue specification, 7-74
Form specification, 7-41, 7-62, 7-68
Format - columnar, 6-45
Format - date, 6-110
Format - non-columnar, 6-45
Format - time, 6-113
Format conversion, 9-44, 9-70
FORMAT ERROR- GROUP AT xxxx message,

10-31
Format masking, MR & KL, 6-128
Format of a frame, 10-9
Format of dictionary items, summary,

2-28
Format of frames, 10-10
FORMAT Verb, 12-17
Formated terminal output, 5-23
Formats of verbs, 3-12
Forming item-lists, 6-21
Forming output specifications, 6-45
Forming selection criteria, 6-24
Forming statements, 6-9
Forming value-lists, 6-24
Frame, 10-3, 10-9
Frame format, 10-9, 10-10
Frame identifier, 10-3
Frame links, 10-9, 10-10
FS command - Editor, 4-28
@ function, 9-38, 9-93
Functions - mathematical, 6-117
G - code, 6-103
G - debug command, 9-171
G indicator, 7-62, 7-63
Generating check-sums, 10-33
GET-LIST verb, 6-23, 6-86
GLOSSARY, 1-18
GO, 5-27

Index

Index PAGE

GOSUB statement, 9-87
GOTO command - Editor, 4-12
GO(TO} statement, 9-88
GRAND-TOTAL modifier, 6-60
GROUP, 10-28
Group extraction, 6-103
Group format errors, 10-31
Group number, 10-31
Group, definition of, 10-31
Group-format errors, 10-31
H, 5-25
H - output option, 6-50
H indicator, 7-62, 7-63, 7-73
H option, 6-93, 7-25, 7-37
H specification, 7-16, 7-21
Handling numbers, 6-128
HASH-TEST, 10-30
HASH-TEST verb, 6-92
Hashing algorithm, 2-19, 10-31
Hashing information, 10-30
HDR-SUPP, 7-37
HDR-SUPP modifier, 6-50
HEADING command in RUNOFF, 8-8
HEADING.statement, 9-89
HEADINGS, 6-56
Headings - options, .6-56, 6-64
Hierarchy of logical connectives, 6-21
Hierarchy of operators, 9-25
Hierarchy, files, 2-3
HILITE command in RUNOFF, 8-9
HOLD ENTRY #, 7-25, 7-62, 7-89
Hold file -- system admissability, 7-26
Hold file -- tape labels, 7-27
Hold file creation, 7-15, 7-16
Hold file deletion, 7-25
Hold file display, 7-36
Hold file enquement, 7-37
Hold file error message number, 7-89
Hold file interrogation, 1-25
Hold file manipulation, 7-25
Hold file number, 7-62
Hold file output, 7-25, 7-37
Hold file to data file option, 7-28
Hold files -- locked, 7-26
Hold files -- Unlocked, 7-26
Hold files: tape record size, 7-38
Hold files: to tape, 7-37
Holdfile control record, 7-62
Hyphens in RUNOFF, 8-9
I - output option, 6-50
I command in RUNOFF, 8-9
I indicator, 7-62, 7-63, 7-73
I option, 6-93, 7-81
I specification, 7-17, 7-21
ICONV function, 9-91

6 Copyright 1988 PICK SYSTEMS

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
J
I
I

[

[

[

r
It..

[

I
I
I
I
I
I

I
I
I
[

ID-SUPP modifier, 6-50
IF, 5-29, 5-31, 5-33
IF E Command, 5-35
IF modifier, 6-24
IF S Command, 5-35
IF statement, 9-92
IF-ELSE form, 9-92
IH, 5-25
Illegal characters in item-ids, 6-16
1M command in RUNOFF, 8-9
Immediate output, 7-15, 7-17, 7-62
Implicit item-lists, 6-23
in, 8-19
IN - modifier, 6-54
In Statement, 9-96
INACTIVE, 7-68
INCLUDE statement, 9-91
INDENT in RUNOFF, 8-9
INDENT MARGIN in RUNOFF, 8-9
INDEX command in RUNOFF, 8 -10
INDEX function, 9-92
INDEX printing in RUNOFF, 8-13
Indirect subroutine calls, 9-48
INITIAL ITEM- prompt, 7-39
Initial page eject suppression, 7-41
Initial system files, 2-30
Initializing a printer, 7-41
Input, 9-96
Input buffers, PROC, 5-8
INPUT command - Editor, 4-16
INPUT Command in RUNOFF, 8-10
Input conversions, 6-34
Input null Attributes, 4-23
Input null lines, 4-23
INPUT statement, 9-93
INPUTERR statement, 9-95
INPUTNULL statement, 9-95
INPUTTRAP statement, 9-95
INSERT command - Editor, 4-18
INSERT function, 9-96
Inspecting print files being output,

7-31
INT function, 9-97
Internal Date, 6-112
Interprogram transfers, 9-73
Interrupting a process, 3-31
Intrepretive execution of PROCs, 5-6
I STAT , 10-30
ISTAT verb, 6-91
ITEM, 10-28
Item count field, 2-15
Item length count, 10-31
Item list, 3-11
Item physical storage, 2-19
Item retrieval, 10-31

Index

Index PAGE

Item selection, 6-43
Item aequence from SPOOL F, 7-39
Item structure, logical, 2-17
Item structure, physical, 2-15
Item-id defintion with Q-pointers, 6-14
Item-id delimiters, 6-27
Item-id selection, 6-27, 6-28
Item-id selection - tests, 6-27
Item-id selection and lists, 6-28
Item-id specification, 6-15
Item-id structure, 6-15
Item-ids, 2-3, 2-5
Item-ids at TCL, 6-15
Item-lists - complex, 6-21
Item-lists - explicit, 6-21
Item-lists - formation, 6-21
Item-lists - implicit, 6-23
Item-lists - simple, 6-21
Items, 2-3, 2-5
ITEKS - modifier, 6-54
J command in RUNOFF, 8-10
Justification, 6-39
JUSTIFY command in RUNOFF, 8-10
K -debug command, 9-170
Key, 10-31
Keyboards, 12-21
Killing a print job, 7-52, 7-53
L - code, 6-104
L -debug command, 9-173
L indicator, 7-62, 7-64
L option, 7-25, 7-26, 7-36, 7-61, 7-81
'L' grand-total option, 6-60
'L' option, 6-64
'L'option, 6-56
Labels, 5-27, 5-29
Labels - Statement, 9-12
LC Command in RUNOFF, 8-10
LEFT MARGIN in RUNOFF, 8-10
[- left-bracket, 6-26
Left-bracket ([), 6-26
LEN function, 9-98
Levels, file, 2-3
Limiting printing of multiple values,

6-47
LINE LENGTH setting in RUNOFF, 8-10
Line-printer characteristics, 3-25
LINK-WS, 10-6
Linking to another PROC, 5-41
Linking work-space, 10-6
Linking workspace, 7-81
Links in a frame, 10-10
LIST command - Editor, 4-11
LIST verb, 6-67
LIST-FILE-STATS, 10-37
LIST-ITEK verb, 6-96

7 Copyright 1988 PICK SYSTEMS

LIST-LABEL verb, 6-76
LIST-PORTS, 12-28
LISTABS verb, 7-73
LISTPEQS and SP-EDIT, 7-28
LISTPEQS by output queue, 7-67
LISTPEQS display definitions, 7-62
LISTPEQS examples, 7-65
LISTPEQS verb, 7-60
LISTPTR examples, 7-69
LISTPTR verb, 7-68
Lists and explicit item-ids, 6-27
Lists and item-id selection, 6-28
Lists of selected item-ids or values,

6-84, 6-86, 6-88
Literal strings, 5-25
Load Previous Valu.e operator, 6-122
Loading a T-DUMP tape, 6-93
LOCATE statement, 9-100
LOCK statement, 9-102
Locked hold files, 7-26
Locked print file, 7-62
Locked print files, 7-64
Logical connectives, 6-19
Logical connectives - hierarchy, 6-21
Logical expressions, 9-33
Logical functions, 9-113
Logical item structure, 2-17
Logical operators, 9-29
LOGOFF, 3-5
LOGON, 3-5
LOGON message, 10-16
LOGON PROC, 3-7
LOGTO, 3-8
LOOP statement, 9-104
Looping, 9-83, 9-85, 9-104
Looping capability, 5-37
LOYER CASE Comms.nd in RUNOFF, 8 -10
Lower case control, 8-19
LOYER CASE setting in RUNOFF, 8-10
LP -debug command, 9-173
LPTR Command in RUNOFF, 8 -10
LPTR modifier, 6-67
LPV operator, 6-122
M command - Editor, 4-33
M option, 7-25, 7-28
m-n option, 7-28
m-n option in SP-EDIT, 7-30
Macro Expansion, 4-33
Magnetic tape dump and load, 6-93
Mask Character conversions, 6-130
Mask Conversions, 6-128
Mask conversions - input, 6-35
Masking Data

Index

MS Processing Code, 6-131, 9-35, 9-93
Masking functions, 6-35

Index PAGE

Masking print files to upper case,
7-111

Master Dictionary, 2-3
QFILE, 3-20

MAT statement, 9-106
MATCH operator, 9-31
Matching - Pattern, 9-31
Mathematical functions, 6-117, 6-125
MATREAD statement, 9-108
MATREADU statement, 9-109, 9-110
MATWRITE statement, 9-111
MATWRITEU statement, 9-112
Max-length of zero, 6-61
Maximum FID, 10-7
Maximum item size from SPOOL F, 7-39
MC - code, 6-130
MC functions, 6-35
KD conversion, 6-35
KD option, 7-40
KD option group, 7-28
Memory, virtual, 10-3
Memory-Mapped Monitor, 12-21
MERGE command - Editor, 4-18
MERGE DEFAULTS, 4-19
MERGING items from other files, 4-19
Messages - PICK/BASIC debugger, 9-199
Messages output by the EDITOR, 4-41
Messaging other users, 3-17
MINIMAL MERGE, 4-19
KL - code, 6-128
KL conversion, 6-35
MOD function, 9-138
MODEM, 12-25
MODIFIERS - ACCESS, 6-52
MODULO, 2-11, 2-13, 10-31
Mono, 12-21
MOUNT NEXT REEL response, 10-43
KR - code, 6-128
KR conversion, 6-35
MS (Mask Sequence) Code, 6-69, 6-131
MS option, 7-37
MS option group, 7-28
MSG (TCL-I verb), 3-17
MSP option group, 7-27
MST option group, 7-27
MT - code, 6-113
Multi-line IF statements, 9-94
Multiple data file Q-pointers, 2-25
Multiple data files, 2-25
Multiple data files for a dictionary,

2-9
Multiple line headings, 6-10, 6-45
Multiple Replacements - Editor, 4-26
KX - code, 6-116
N - debug command,9-l71

8 Copyright 1988 PICK SYSTEMS

I
I
I
I
I
I
I
I
J
I
I
I
I
I
I
I
I
I
I

[

[.•... ,

[

[

E
I
I
I
I

I
I ,
•
I
I
I
L

N command in RUNOFF, 8-11
N indicator, 7-62, 7-63

Index

N option, 6-96, 7-25, 7-49, 7-53, 7-55,
7-57, 7-61, 7-68

n option in SP-EDIT, 7-30
N response, 7-35, 7-36, 7-37
n specification, 7-21
'N' option, 6-64
n-m option, 7-25, 7-49, 7-53, 7-55,

7-57, 7-61, 7-68
Names of attributes, 6-10
NATURAL LOGARITHM function, 9-99
NB - operand, 6-59
NCS Command in RUNOFF, 8-10, 8-11
NO - operand, 6-59
New account creation, 10-35
NEXT command - Editor, 4-12
Next hold file, 7-36
NEXT statement, 9-83
NF command in RUNOFF, 8-11
NJ command in RUNOFF, 8-11
No Close, 7-62
NOCAPITALIZE SENTENCES in RUNOFF, 8-10,

8-11
NOFILL mode in RUNOFF, 8-11
NOJUSTIFY command in RUNOFF, 8-11
Non-columnar format, 6-45
Nopage option in SP-EDIT, 7-38
NOPAGING command in RUNOFF, 8-11
NO PARAGRAPH command in RUNOFF, 8-11
NOT connective, 6-30
NOT ENOUGH WORK SPACE, 10-6
NOT function, 9-113
NULL - EDITOR, 4-11
NULL statement, 9-114
NUM function, 9-115
Numbers - Statement, 9-12
Numeric Mask, 9-35
0, 5-21
o indicator, 7-62, 7-63, 7-73
o option, 6-93, 7-53, 7-55
o response, 10-43

. 0 specification, 7-21
OCONV function, 9-116
OF - modifier, 6-54
OFF, 3-5
OFF LINE, 7-74
ON GOSUB stateaent, 9-87
ON GOTO statement, 9-117
ON LINE, 7-74
ONLY modifier, 6-50
Open print file, 7-15
Open print files, 7-17
OPEN statement, 9-118
Opening a file, 9-118

Index PAGE

Operands - F-code, 6-120
Operations - F-code, 6-123
Operators, 9-25
Operators - Logical, 9-29
Operators - relational, 6-19, 9-29
" option, 6-56, 8-18
Options, 3-3, 3-11
OPTIONS - ACCESS, 6-52, 6-55
Options - Compiler, 9-15, 9-17, 9-19
Options - Compiler A, C, E, L, and P,

9-17
Options - Compiler M, S, and X, 9-19
Options - heading, 6-64
Options - Headings, 6-56
Options - output control, 6-64
Options - Runtime A, 0, E, I, N, P and

S, 9-20
Options, COpy processor, 2-40
Options: general protocols, 7-86
Options: SP-KILL, 7-53
OR - modifier, 6-54
OR connective, 6-19, 6-24, 6-40
ORed selection criteria, 6-42
OUT Function, 9-119
Output buffers, PROC, 5-8
Output control - options, 6-64
Output of data, 9-122
Output of spool files on tape, 7-101,

7-111
Output queue change, 7-28, 7-31
Output queue links, 7-62
Output queue number, 7-19
Output queue servicing, 7-19
Output queue specification, 7-15, 7-19,

7-41, 7-62, 7-68, 7-73, 7-74
Output queue specification change, 7-37
Output specification, 7-15
Output specification - default, 6-49
Output specifications - formation, 6-45
Output to file, REFORMAT & SREFORMAT,

6-79
Output to Tape, REFORMAT & SREFORMAT,

6-79
Output to terminal, 5-21
Outputting a hold file, 7-37
Overflow space, 10-7, 10-34
Overlapped I/O, 12-12
Override tape label, 10-43
P, 5-39
P - code, 6-106
P - option, 6-67
P -debug command, 9-173
P indicator, 7-62, 7-63, 7-73
P option, 6-96, 7-27, 7-37, 7-61
P option and PROC, 7-28

9 Copyright 1988 PICK SYSTEMS

'P' grand-total option, 6-60
'P' option, 6-56, 6-64
PO command initialization, 4-38
PAGE NUMBER command in RUNOFF, 8-11
Page skip display, 7-68
Page skip specification, 7-41, 7-74
PAGE statement, 9-119
Pagination on serial printers, 7-41
PAPER LENGTH command in RUNOFF, 8-11
PARAGRAPH setting in RUNOFF, 8-11
Parallel printer, 7-41, 7-68
Parameters, PROC, 5-8
Parity, 12-26
Password, 10-19
PASSWORD Verbs, 3-18
Pattern matching, 5-33, 9-31
Pattern testing, 5-33
PC -debug command, 9-173
PD command, 4-39
peripheral storage devices, 12-16
PH, 5-39
Physical item structure, 2-15
PICK TO DOS BRIDGE, 12-45, 11-24
PICK/BASIC, 9-15, 9-93
PICK/BASIC - ABORT, 9-41
PICK/BASIC - ABS, 9-42
PICK/BASIC - ALPHA, 9-43
PICK/BASIC - ASCII, 9-44
PICK/BASIC - BREAK ON/OFF, 9-46
PICK/BASIC - CALL, 9-47
PICK/BASIC - CALL, 9-48
PICK/BASIC - CASE, 9-49
PICK/BASIC - CHAIN, 9-50
PICK/BASIC - CHAR, 9-52
PICK/BASIC - CLEARFlLE, 9-54
PICK/BASIC - COL1() / COL2(), 9-55
PICK/BASIC - Comma, Colon, 9-124
PICK/BASIC - COMMON, 9-56
PICK/BASIC - COS, 9-58
PICK/BASIC - CRT, 9-60
PICK/BASIC - DATA, 9-61
PICK/BASIC - DATE(), 9-63
PICK/BASIC - DELETE, 9-65
PICK/BASIC - DIM, 9-67
PICK/BASIC - DTX, 9-69
PICK/BASIC - EBCDIC, 9-70
PICK/BASIC - ECHO ON/OFF, 9-71
PICKjBASIC - END, 9-72
PICK/BASIC - ENTER, 9-73
PICK/BASIC - EQUATE, 9-74
PICK/BASIC - EXECUTE, 9-75
PICK/BASIC - EXP, 9-77
PICK/BASIC - FIELD, 9-80
PICK/BASIC - FOOTING, 9-81
PICK/BASIC - FOR ... NEXT, 9-83

Index

Index PAGE

PICK/BASIC - GOSUB, 9-87
PICK/BASIC - GOTO, 9-88
PICK/BASIC - HEADING, 9-89
PICK/BASIC - ICONV, 9-91
PICK/BASIC - IF (multi-line), 9-94
PICK/BASIC - IF (single-line), 9-92
PICK/BASIC - INCLUDE, 9-91
PICK/BASIC - INPUT, 9-93
PICK/BASIC - input functions, 9-95
PICK/BASIC - INT, 9-97
PICK/BASIC - LEN, 9-98
PICK/BASIC - LN, 9-99
PICK/BASIC - LOCK, 9-102
PICK/BASIC - LOOP, 9-104
PICK/BASIC - MAT, 9-106
PICK/BASIC - MATREAD, 9-108
PICK/BASIC - MATREADU, 9-109, 9-110
PICK/BASIC - MATWRITE, 9-111
PICK/BASIC - MATWRITEU, 9-112
PICK/BASIC - MOD, 9-138
PICK/BASIC - NULL, 9-114
PICK/BASIC - HUM, 9-115
PICK/BASIC - OCONV, 9-116
PICK/BASIC - ON ..• GOSUB, 9-87
PICK/BASIC - ON ... GOTO, 9-117
PICK/BASIC - OPEN, 9-118
PICK/BASIC - PAGE, 9-119
PICK/BASIC - PRINT, 9-122
PICK/BASIC - PRINTER ON/OFF/CLOSE,

9-125
PICK/BASIC - PROCREAD, 9-126
PICK/BASIC - PROCWRITE, 9-127
PICK/BASIC - PROMPT, 9-128
PICK/BASIC - READ, 9-130
PICK/BASIC - READU, 9-133, 9-135
PICK/BASIC - READVU, 9-133, 9-135
PICK/BASIC - RELEASE, 9-137
PICK/BASIC - REM, 9-138
PICK/BASIC - RETURN (TO), 9-140
PICK/BASIC - REWIND, 9-141
PICK/BASIC - RND, 9-142
PICK/BASIC - RQM, 9-147
PICK/BASIC - SEQ, 9-145
PICK/BASIC - SIN, 9-146
PICK/BASIC - SLEEP, 9-147
PICK/BASIC - SPACE, 9-148
PICK/BASIC - STOP, 9-150
PICK/BASIC - STR, 9-151
PICK/BASIC - SUBROUTINE, 9-47
PICK/BASIC - SYSTEM, 9-152
PICK/BASIC - TAN, 9-155
PICK/BASIC - TRIM, 9-157
PICK/BASIC - UNLOCK, 9-158
PICK/BASIC - WEOF, 9-159
PICK/BASIC - WRITE, 9-160

10 Copyright 1988 PICK SYSTEMS

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1;···1 .• •

I
I

[

I
[

[

[

[

I
!

I
I
I
I

I

" •
I
[

1

PICK/BASIC - WRITET. 9-161
PICK/BASIC - WRITEU. 9-162
PICK/BASIC - WRITEVU. 9-162
PICK/BASIC - XTD. 9-164
PICK/BASIC compiler. 9-15
PICK/BASIC compiler options. 9-15
PICK/BASIC EXECUTION from PROC. 9-22
PICK/BASIC program - Compiling, 9-15
'PN' option, 6-56
POINTER FILE. 2-31
POINTER-FILE. 10-12. 10-14
Positioning buffer pointers, 5-15
POVF, 10-34
POWER function, 9-129
PP, 5-39
Precedence of operators. 9-25
PRECISION declaration. 9-120
Predefinition example, 7-24
Predefinition of print files, 7-20
PRESTORE command (P), 4-37
Prestore command length, 4-37
Prestore facility, 4-37
Prestores, repeating, 4-38
Primary file space, 2-11, 2-13
PRINT command in RUNOFF, 8-13
Print file being output, 7-74
Print file control data in the PROC

secondary input buffer, 7-28
Print file control record, 7-60, 7-62
Print file control record identifier,

7-62
Print file copy count specification,

7-15
Print file creating line number, 7-62
Print file creation account, 7-62
Print file creation date, 7-62
Print file creation time, 7-62
Print file definition, 7-15
Print file deletion, 7-40

Index

Print file deletion: forcing, 7-40
Print file disenquement error messages,

7-59
Print file disenqueuement examples,

7-56
Print file enquement timing, 7-17
Print file generation account, 7-74
Print file inspection, 7-26, 7-31
Print file length, 7-74
Print file output priority, 7-45
Print file predefinition, 7-15, 7-20
Print file predefinition exiample, 7-24
Print file queue, 7-19
Print file scheduling, 7-45
Print file selection, 7-25
Print file selection: SP-EDIT, 7-25

Index PAGE

Print file size, 7-62
Print file status, 7-62
Print file storage, 7-40
Print file storage release, 7-17
Print file termination error messages,

7-58
Print file termination examples, 7-54
Print file to data file, 7-39
Print file to data file conversion,

7-38
Print file to tape, 7-15, 7-25, 7-27,

7-35
Print file to tape , 7-37
Print file to tape example, 7-23
Print file to tape record length, 7-37
Print file to tape: messages, 7-37
Print file to user terminal, 7-38
Print file: Display, 7-36
Print file: enqueuing, 7-37
Print files: closing, 7-20
Print files: controling storage use,

7-17
Print files: disenqueuing, 7-52, 7-55
Print files: killing, 7-52
Print files: killing, 7-53
Print files: multiple, 7-20
Print files: termination, 7-53
PRINT INDEX in RUNOFF, 8-13
Print jobs: terminating, 7-52
Print limiters, 6-47
PRINT ON, 7-16
PRINT ON example, 7-24
PRINT statement, 9-122
PRINT-ERR, 10-16
PRINT-ON assignment specification, 7-15
PRINT-ON specification, 7-20
Printer, 7-62
Printer alignment, 7-41, 7-43
Printer allocation, 7-74
Printer characteristics, 3-25
Printer copy, 2-40
Printer detachment error messages, 7-59
Printer device, 7-68
Printer device address, 7-41
Printer initialization, 7-41
Printer line number, 7-68
Printer line specification, 7-41
PRINTER ON/OFF/CLOSE statements, 9-125
Printer ordinal, 7-41, 7-74
Printer output: suppression, 7-15
Printer pagination, 3-25
Printer reinitia1ization, 7-41
Printer status, 7-68, 7-74
Printer type, 7-41, 7-68, 7-74
Printers

11 Copyright 1988 PICK SYSTEMS

Characteristics, 3-27
Configuration, 12-39

Printers: logical detachment, 7-52,
7-57

Printing multiple copies, 7-19
Priority: print file output, 7-45
Privilege level, 10-19
PROC and HOLD ENTRY #, 7 -25
PROC and SP-EDIT, 7-25, 7-28
PROC command summary. 5-11
PROC control of SP-EDIT, 7-28
PROC control: STOPPTR, 7-49
PROC execution, 5-6
PROC i/o buffers, 5-8

Index

PROC secondary input buffer, 7-28, 7-89
PROC secondary input buffer use, 7-88
PROCLIB file, 10-12
PROCREAD statement, 9-126
PROCWRITE statement, 9-127
Program, 9-12, 9-15
Programming examples, 9-176, 9-177,

9-178, 9-179, 9-181
> prompt, 3-3
PROMPT statement, 9-128
Propagate operator, F - code, 6-117
Purging a file. 2-32, 2-35
Purging an account, 10-36
Putting a terminal to sleep, 3-22
PtJ, 5-39
PX, 5-39
Q-items, 2-7, 2-20, 2-22, 2-28
Q-pointers, 2-22, 2-24

Creating with SET-FILE, 3-20
Q-pointers to multiple data files, 2-25
QFile, 3-20
QSELECT verb, 6-23, 6-88
R - code, 6-105
R - repeat operand, 6-120
R indicator, 7-62. 7-64
R option, 7-25, 7-28, 7-31, 7-37, 7-62
'R' option, 6-64
Random file access, 2-5
READ command in RUNOFF, 8-13
READ statement, 9-130
Reading a T-DUMP tape, 6-93
Reading a tape, 5-19
Reading the terminal, 5-19
READNEXT in RUNOFF, 8-13
READNEXT statement, 9-131
READU statement, 9-133, 9-135
READV statement. 9-136
READVU statement. 9-133. 9-135
Reallocation parameter, 2-20
REFORMAT - ACCESS file updating, 6-79
Reformat files - REFORMAT & SREFORMAT,

Index PAGE

6-79
REFORMAT verb. 6 -79
Relational connective -- default, 6-28
Relational connective: default. 6-33
Relational connectives. 6-27. 6-34
Relational expressions. 9-29, 9-31
Relational operators. 6-19. 9-29
Relational testing. 5-31
RELEASE statement. 9-137
REM function, 9-138
Remarks - PICK/BASIC. 9-12
Removing a printer. 7-52, 7-57
Removing strange item-ids. 6-16
REPEAT statement, 9-104
REPLACE COMMAND-EDITOR, 4-23
REPLACE function, 9-139
REPLACE UNIVERSAL - EDITOR, 4-23
Requeued, 7-62
Requeued print files, 7-64
Resetting buffers, 5-25
Restart option, 10-19
Restarting a printer, 7-41
Restoring an account, 10-51
Restoring PC Systems, 12-8
Restoring the system, 10-41, 10-42,

10-44
Retrieval locks, 10-19, 10-21
Return from subroutine, 5-39
RETURN (TO) statements, 9-140
REWIND statement. 9-141
Rewinding tape, 7-102
RI. 5-25
] - right-bracket, 6-26
Right-bracket (]), 6-26
Rn specification, 7-20. 7-21
aND function, 9-142
RO, 5-25
RQM statement. 9-147
Rules for generating ACCESS statements,

6-9
Run-time error messages, 9-192
Running a PICK/BASIC program, 9-20
RUNOFF - .* Command, 8-7
RUNOFF - comments, 8-7
RUNOFF - hyphens. 8 -9
RUNOFF C option, 8-6, 8-13
RUNOFF Commands, 8-5
RUNOFF 1 option, 8-6, 8-13
RUNOFF Introduction, 8-3
RUNOFF J option, 8-9
RUNOFF options, 8-3
RUNOFF S option, 8-20
RUNOFF Tab Setting, 8-19
RUNOFF Underlining, 8-19
RUNOFF Upper/Lower Case, 8-19

12 Copyright 1988 PICK SYSTEMS

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

[

1
[

[

[

I
I
I
I
I
I
I
I
I

•

•
..
L

Index

Summation operator, F - code, 6-117
Summing an attribute value, 6-82
Suppress print output, 7-15, 7-16
Suppressing control-break data, 6-61
Suppressing detail with control-breaks,

6-66
SVM, 2-15
Synonym attribute names, 6-10
Synonym file definition items, 2-22
SYS-GEN tape format, 10-41
SYSPROG account, 10-34
System configuration, 10-53
System Date, 3-19, 12-20
System dictionary, 2-3
SYSTEM file, 10-12
System files, 2-30
SYSTEM function, 9-152
System Performance, 12-12, 12-39
System privileges, 10-19
System restore, 10-41, 10-42, 10-44
System software, 10-56
System status, 10-53
System Time, 3-21
SYSTEM-level files, 10-12
T - code, 6-109
T indicator, 7-62, 7-63
T option, 7-25, 7-27, 7-37
T option and PROC, 7-28
T response, 7-35, 7-38
T response during SPOOL T, 7-38
T specification, 7-16, 7-21, 7-37
'T' option, 6-56
T-ATT, 7-97, 7-99
T-BCR, 7-102
T-CHK, 7-104
T-conversion, 6-35
T-DET, 7-101
T-DUMP, 7-105
T-DUMP tape record size default, 7-97
T-DUMP verb, 6-93
T-EOD, 7-102
T-ERASE, 12-17
T-FWD, 7-102
T-LOAD, 7-105
T-LOAD verb, 6-93
T-RDLBL, 7-113
T-READ, 7-108, 7-109
T-RETEN, 12-17
T-REW, 7-102, 12-18
T-SPACE, 7-102
T-STATUS, 12-18
T-\JEOF, 7-104
TA, 12-27
Tab Setting Characters in RUNOFF, 8-19
Table look-ups, 6-114

Index PAGE

Table of Contents in RUNOFF, 8-7
TABS, 3-23, 8-22
Tabs in RUNOFF, 8-22
TABS Verb, 3-23
TAN function, 9-155
Tape, 7-62
Tape attachment, 7-97, 7-99
Tape control in PROC, 7-90
Tape detachment, 7-101
Tape dump to printer, 7-108, 7-109
Tape dump to terminal, 7-108, 7-109
Tape error message numbers, 7-90
Tape i/o verbs, 6-93
Tape input, 5-19
Tape label creation, 7-113
Tape label problem, 10-43
Tape label suppression, 7-27, 7-37
Tape label use, 7-113
Tape labels, 7-16, 7-113
Tape labels -- Hold file to tape, 7-27
Tape labels: supression, 7-25
TAPE modifier, 6-93
Tape output, 7-15, 7-16
Tape print file specification example,

7-23
Tape print files: retreival, 7-111
Tape record size, 7-16, 7-27, 7-97,

7-99 '
Tape record size defaults, 7-99
Tape record size for print files, 7-27
Tape record size with SP-EDIT, 7-27
Tape record size: hold files, 7-38
Tape verbs, 7-13
Tape: backspacing, 7-102
Tape: checking after write, 7-104
Tape: forward spacing, 7-102
Tape: general considerations, 7-93
Tape: reading files, 7-105
Tape: rewinding, 7-102
Tape: specifying block size, 7-97, 7-99
Tape: writing end-of-file, 7-104
Tape: writing files, 7-105
TB command - Editor, 4-31
TCL level, 3-3
TCL processors, 3-3
TCL prompt, 3-3
TCL statements, 3-3
TCL verb definitions, 3-12
TCL verbs, 3-3

15

FORMAT, 12-17
PASSWORD, 3-18
SET-DATE, 3-19
SET-DATE-STD, 12-20
SET-FILE, 3-20
SET-LPTR, 12-39

Copyright 1988 PICK SYSTEMS

SP-EDIT to tape. 7-27
SP-EDIT to tape in PROC. 7-90
SP-EDIT: Copy count change. 7-28
SP-EDIT: Form number change. 7-28
SP-EDIT: form number selection, 7-30
SP-EDIT: output queue change, 7-28
SP-EDIT: output queue selection, 7-30
SP-EDIT: print file inspection, 7-31
SP-EDIT: tape record size, 7-27
SP-EDIT: without the prompts, 7-28
SP-EDITing all hold files, 7-30
SP-KILL, 7-52, 7-53
SP-KILL D. 7-52, 7-57
SP-KILL D error messages. 7-59
SP-KILL D examples. 7-57
SP-KILL error messages, 7-58. 7-59
SP-KILL examples, 7-54
SP-KILL F, 7-52. 7-55
SP-KILL F examples, 7-56
SP-KILL options, 7-53
SP-OPEN. 7-15, 7-19. 7-20
SP-STATUS verb, 7-74
SP-STOP replacement. 7-49
SP-TAPEOUT verb, 7-111
SPACE command in RUNOFF. 8-18

Index

SPACE function. 9-148 .
SPACING command in RUNOFF. 8-18
Special <CTRL> characters, 3-4
Special characters. 8-20
Special Characters in RUNOFF. 8-19
SPOOL F. 7-39
SPOOL F and the form of the resulting

item, 7-39
SPOOL F: item sequence. 7-39
SPOOL F: maximum item size, 7-39
SPOOL T. 7-38
SPOOL T control, 7-38
SPOOL T exit. 7-38
SPOOL T responses, 7-38
SPOOL TN. 7-38
SPOOL TN and form-feeds, 7-38
SPOOL TN and the TERM verb. 7-38
Spool to tape example, 7-23
SPOOL: SP-EDIT, 7-35. 7-37
Spooled, 7-62
Spooler activity, 7-74
Spooler entry number. 7-62
Spooler verbs, 7-13
Spooler: initialization. 7-81
Spooler: reinitialization, 7-81
Spooling -- forced, 7-28
Spooling print files to a printing

terminal, 7-38
Spoolng a print file, 7-37
SQRT function, 9-149

SREFORKAT - ACCESS file updating, 6-79
SREFORHAT verb, 6-79
SS select secondary input buffer, 5-13
SSELECT verb. 6-23, 6-84
ST select output buffer, 5-13
Stacked Output in PROCs, 5-25
STANDARD command in RUNOFF. 8-18
Standard RUNOFF settings, 8-18
Start buffer mark, 4-37
Starting a printer, 7-41
STARTPTR and co1dstarts, 7-43
STARTPTR error messages, 7-46
STARTPTR verb, 7-41
STARTSPOOLER, 7-81
:STARTSPOOLER verb, 7-81
STAT verb. 6-83
STAT-FILE. 10-37
Stat-file report, 10-47
Statement labels, 9-12
Statement numbers, 5-27, 5-29
Statistics of a file, 6-91, 6-92
Statistics of an attribute value, 6-83
Statistics of files, 10-37
Statistics of hashing, 10-30
Status indicators: print file, 7-63
Status of the system, 10-53
STOFF select primary output buffer,

5-13 .
STON select secondary output buffer,

5-13
Stop Bits, 12-26
STOP statement, 9-150
Stoping a printer, 7-49
STOPPED, 7-68
STOPPTR error messages, 7-51
STOPPTR verb, 7-49
STR function, 9-151
streaming tape, 12-16
String, 9-23
String expressions, 9-27
String functions, 6-117
String searching, 6-26
STRING-: SP-EDIT, 7-35
STRINGS - EDITOR, 4-9
Sub-lists using WITHIN. 6-75
Sub-strings. 9-27, 9-80. 9-92
Sub-strings. LOCATE. 9-100
Sub-values, 2-15
Subroutine, 5-43
SUBROUTINE statement. 9-47
Subroutines, 9-47. 9-87, 9-140
Subroutines - External, 9-47
SUBTOTALS - generating. 6-63
SUM verb. 6-82
Summary of dictionary items, 2-28

Index PAGE 14 Copyright 1988 PICK SYSTEMS

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I

[

[

[

[

• ..
I ,
"

I ..
I
Ii

•

• iii

RUNOFF', 8-19
S, 5-15
S - code, 6-107
S command - Editor, 4-31
S indicator, 7-62, 7-63
S option, 6-96, 7-25, 7-28, 7-41
S option in BASIC, 9-165
S response, 7-35, 7-36
S specification, 7-16, 7-21
S-DUMP, 7-105
S? Command - Editor, 4-35
Sample PROC, 5-45, 5-46, 5-47
SAVE INDEX command in RUNOFF, 8 -17
SAVE-LIST verb, 6-86
Saving an account, 10-51
Saving data, 10-49
SCT Support, 12-12
SECTION command in RUNOFF, 8-17
Security, 10-19, 10-21
Security codes, 10-21
SEL-RESTORE, 10-45
SELECT statement, 9-143
SELECT verb, 6-23, 6-84
Select-list, 3-11
Select-list testing, 5-35
Select-lists, 6-84, 6-86, 6-88
Selecting file extents, 2-13
Selecting items, 9-131, 9-143
Selecting MODULO, 2-13
Selecting output queues to SP-EDIT,

7-30
Selecting PROC buffers, 5-13
Selection - relational connectives,

6-34
Selection - value strings, 6-33
Selection -- data evaluation, 6-30
Selection by data value, 6-30
Selection criteria, 6-26, 6-42, 6-43
Selection criteria - formation, 6-24
Selection criterion, 6-30
SELECTION PROCESSOR, 6-27
Selective restore of files, 10-45
Semicolon - PICK/BASIC, 9-12
Sending a print file to a data file,

7-39
Sentences, 6-9
SEQ function, 9-145
Sequential file access, 2-5
Serial Port Characteristics, 12-28
Serial.printer, 7-41, 7-68
Serial printer page length, 7-41
SET TABS in RUNOFF, 8-17
SET-DATE Verb, 3-19
SET-DATE-STD Verb, 12-20
SET-FILE Verb, 3-20

Index

Index PAGE

SET-FLOPPY, 12-16, 12-17, 11-8
SET-LPTR Verb, 12-39
SET-PORT Verb, 12-26
SET-SCT, 12-16, 11-8
SET-TIME Verb, 3-21
Setting buffer pointers, 5-15
SETTING TABS, 3-23
Sharing dictionaries, 2-9
Sharing PICK/BASIC programs, 9-21
Simple item-lists, 6-21
SINE function, 9-146
Single Character Output, 9-119
Single-level files, 2-3, 2-20, 2-33
SIZE field, 6-10
SIZE? - Editor, 4-35
SK command in RUNOFF, 8-18
SKIP command in RUNOFF, 8-18
SLEEP (TCL-I verb), 3-22
SLEEP statement, 9-147
Sort - Exploding, 6-72
Sort Keys, 6-69
Sort Specifications

MS Processing Code, 6-131
SORT verb, 6-69
SORT-ITEM verbs, 6-96
SORT-LABEL verb, 6-76
Sorting by multi-values, 6-72
SP command in RUNOFF, 8-18
SP select primary input buffer, 5-13
SP-ASSIGN, 7-15
SP-ASSIGN -- General Form, 7-21
SP-ASSIGN ? assignment interrogation,

7-19
SP-ASSIGN and SP-EDIT, 7-37
SP-ASSIGN C example, 7-23
SP-ASSIGN changes, 7-15
SP-ASSIGN default, 7-22
SP-ASSIGN examples, 7-22
SP-ASSIGN Fn -- output queue, 7-19
SP-ASSIGN n -- copy count, 7-19
SP-ASSIGN Rn -- print file

predefinition, 7-20
SP-ASSIGN Rn example, 7-24
SP-ASSIGNment display, 7-73
SP-ASSIGNment parameter change, 7-31
SP-CLOSE, 7-15, 7-19, 7-20
SP-EDIT, 7-25
SP-EDIT examples, 7-33
SP-EDIT exit, 7-36
SP-EDIT look, 7-26
SP-EDIT options, 7-25
SP-EDIT print file selection, 7-25
SP-EDIT prompts, 7-35
SP-EDIT R, 7-62
SP-EDIT termination messages, 7-26

13 Copyright 1988 PICK SYSTEMS

SET-TIME, 3-21
TABS, 3-23
TERM-TYPE, 3-27

TCL-I VERBS, 3-10
TCL-II VERBS, 3-11
TCL-PROC interface, 5-6
TERM, 3-25
TERM-TYPE Verb, 3-27
Terminal Characteristics, 3-25
Terminal copy, 2-40
Terminal cursor control, 5-23, 9-38
Terminal Definitions, 12-38
Terminal emulating a serial printer,

7-38
Terminal input, 5-19, 9-93
Terminal output, 5-21
Terminal output, Formated, 5-23
Terminal type code, 3-25
Terminals

Characteristics, 3-27
Terminating a PROC, 5-39

Index

Terminating execution, 3-31
Termination of PICK/BASIC program, 9-72
Test for existence, 6-31
TEST PAGE in RUNOFF, 8-18
Test-Cursor', 12-38
Testing item-ids, 6-27
Testing parameters, 5-31, 5-33
Text extraction, 6-109
Text strings, 5-25
Tfi1e - code, 6-114
THE - modifier, 6-54
The TERM verb and SP-EDIT, 7-38
Throwaway modifiers, 6-54
Time

Setting, 3-16, 3-21
TIME (TCL-I Verb), 3-28
Time conversion - input, 6-35
Time format, 6-113
TIME() function, 9-156
TlMEDATE() function, 9-156
TN response, 7-35, 7-38
TOP command - Editor, 4-12
TOTAL - evaluation sequence, 6-59
TOTAL - modifier, 6-58
Total limiters, 6-58
TOTAL modifier, 6-63, 6-64
Trace table - PICK/BASIC debugger,

9-169
Trailing blank lines -- truncation,

7-28
Transfer of control, 5-27
Translate conversion, 6-35
Translation of attribute data, 6-114
TRIM function, 9-157

Index PAGE

TW option group and PROC, 7-28
Type-Ahead Capability, 12-27
U, 8-18
U - code, 6-116
U option, 7-25, 7-111
U option in SP-EDIT, 7-30
U response during SPOOL T, 7-38
'U' grand-total option, 6-60
'U' option, 6-64
UC command in RUNOFF, 8-18
UNALLOCATED, 7-68
Unconditional branch, 9-88
Underlining, 8-20
Underlining in RUNOFF, 8-19
UNLOCK statement, 9-158
Unlocked hold files, 7-26
Unprintable Characters, 4-36
UP command - Editor, 4-11
A _ up-arrow, 6-26
Up-arrow (A), 6-26
UP-ARROW - EDITOR, 4-10
Update locks, 10-19, 10-21
Updating single attributes, 9-136
Upgrading PC Systems, 12-8
Upper and lower case, 8-19
Upper case control, 8-19
UPPER CASE in RUNOFF, 8-18
Upper/Lower Case in RUNOFF, 8-19
USA Date Format, 12-20
User Accounts

Passwords, 3-18
USER conversions, 6-116
User identfication items, 10-12
User identification items, 10-19
User terminal as serial printer, 7-38
USING connective, 6-13
V option, 7-25, 7-28, 7-39
'V' option, 6-64
Value phrase, 6-33
Value phrases, 6-40
Value phrases: ANDed, 6-41
Value string, 6-30
Value strings, 6-40
Value taken from data, 6-31
Value-lists - Formation, 6-24
Values, 2-15
Values -- selection by, 6-30
Variable length records, 2-3
Variable values - Clearing, 9-53
Variables, 9-23
Vectors, 9-67
Verb definitions, 3-3
Verb formats, 3-12
Verbs, 7-13
VERIFY-SYSTEM, 10-56

16 Copyright 1988 PICK SYSTEMS

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

E
[

!
[

r
Ira

' .. ' ..•. It

I
I
I
!
" &

" ..
I
li

I
[

L

Virtual memory. 10-3
W, 2-15
Woption. 7-25, 7-37. 7-49
WEOF statement, 9-159
WHAT, 10-53
WHERE, 10-53
WHO (TCL-I verb). 3-30
Wildcard Toggle - Editor. 4-36
WITH connective, 6-30
WITH modifier, 6-24
With phrase. 6-30
? with SP-ASSIGN. 7-19
WITHIN modifier, 6-75
WITHOUT connective, 6-30
WITHOUT EACH, 6-30
Work-space. additional, 10-6
WORKSPACE BEING LINKED; WAIT, 10-6
WRITE statement, 9-160
WRITET statement, 9-161
WRITEU statement, 9-162
WRITEV statement. 9-163
WRITEVU statment, 9-162
Writing the terminal, 5-21
X, 5-39
X indicator, 7-53, 7-62, 7-64
X option, 7-41
X response, 7-35
X response during SPOOL T, 7-38
XCS, 12-27
XTD function, 9-164
Y response, 7-35, 7-36, 7-37
Z -debug command, 9-173
Z command - Editor, 4-31

Index

Index

PAGE 17 Copyright 1988 PICK SYSTEMS

I
I
I
I
J
I
I
]

I
I
I
1
I
I
I
I
i
I
I

