

8G35

MB-Guide

to

The pick system

(c) Malcolm Bull

MB-Guide

to

The Pick system

by

Malcolm Bull

MALCOLM BULL Training and Consultancy Services

MB-Guide to The Pick system

(c) MALCOLM BULL 1993

Malcolm Bull
Training and Consultancy Publications
19 Smith House Lane
BRIGHOUSE
HD6 2JY
West Yorkshire
United Kingdom

Telephone: 0484-713577

ISBN: 1 873283 73 3

Edition: 2.5
Updated: 24:09:93

No part of this publication may be photocopied, printed or
otherwise reproduced, nor may it be stored in a retrieval
system, nor may it be transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or
otherwise without prior written consent of Malcolm Bull
Training and Consultancy Services. In the event of any
copies being made without such consent or the foregoing
restrictions being otherwise infringed without such consent,
the purchaser shall be liable to pay to Malcolm Bull Training
and Consultancy Services a sum not less than the purchase
price for each copy made.

Whilst every care has been taken in the production of the
materials, MALCOLM BULL assumes no liability with respect to
the document nor to the use of the information presented
therein.

The Pick system is a proprietary software product of Pick
Systems, Irvine, California, USA. This publication contains
material whose use is restricted to authorised users of the
Pick system. Any other use of the descriptions and
information contained herein is improper.

The use of the names PICK, OPEN ARCHITECTURE, ADVANCED PICK
and all other trademarks and registered trademarks is
gratefully acknowledged and respected.

MB-Guide to The Pick system

Pre f ace

The MB-GlJide to the Pick system looks at the essential
features of the Pick system.

This MB-Guide discusses:

* A general introduction to the Pick system.

* The basic hardware associated with the system.

* The standard software which accompanies the system:
Access, the Pick enquiry language; TCl and the TCl
stacker facilities; the Editor; the Basic language;
Procs; Runoff; Spooler.

* Files: the logical and physical organisation of
accounts, files and items.

The material will be of interest to anyone who is moving to a
Pick system, whether they are completely new to computing or
migrating to Pick from some other computing system.

You will find the the MB-Guide beginner's guide series and
the MB-Master self-tuition courses of interest in conjunction
with the material presented in this MB-Guide.

You may find the following titles in the MB-Guide beginner's
guide series useful in conjunction with the present volume:

Advanced Pick
Operations & system management
Files: sizing & monitoring
Using the Pick Editor

You may find the following MB-Master self-tuition courses of
interest in conjunction with the material presented in this
MB-Guide:

PICK1: Starting Advanced Pick
PICK2: Pick systems management
PICK3: Running your Pick system

This MB-Guide is not intended to present an exhaustive
description of the subject but merely to place it in context
and give the reader enough information to use the facilities
and to survive.

Best use can be made of this MB-Guide if it is read in
conjunction with the reference literature which is provided
for your system. You should amend your copy of this guide so
that it accurately reflects the situation and the commands
which are used on the implementation which you are using. By
doing this, your MB-Guide will become a working document that
you can use in your daily work.

I hope that you enjoy reading and using this MB-Guide and the
others in the series, and welcome your comments.

--------------- -

Section

1
1 . 1
1.2

2
2. 1
2.2
2.3
2.4
2.5
2.6
2.7

3
3. 1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4
4.1
4.2
4.3
4.4

5

6
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

7
7. 1
7.2
7.3
7.4

8
8.1
8.2

MB-Guide to The Pick system

Con ten t s

Introduction to Pick
R83
Advanced Pick

Hardware
Hard disk
Virtual memory
Terminals
Printers
Backing storage devices
Back-up
File-save / restore

Software
Access
TCl
Editor
Basic
Procs
Runoff
Spooler
System generation tools
Other software

Files
File structure
SYSTEM, MD, DICT, data-file linkage
File / item / item-id / data fields
Item format

Access

TCl
COpy verb
CT / lIST-ITEM verbs
TCl options
Editor
Notes about the Pick editor
EDIT commands
ME command
R command
Other commands
EDIT commands miscellaneous commands
EDIT prestore commands
RECOVER-FD
TCl stacker

Basic
looking at Basic
Using a Basic program
Basic statements
Basic functions

Procs
Proc versus Basic
The structure of a Proc

Contents /

Page

1
2
2

4
5
7
8

10
10
10
11

13
13
13
14
14
15
16
16
17
18

19
20
20
22
27

30

32
33
36
37
37
38
38
41
42
44
44
45
47
47

49
49
55
58
58

59
59
60

9
9.1
9.2

10
10. 1
10.2
10.3
10.4

11

12
12.1
12.2
12.3
12.4

13
13. 1
13.2
13.3
13.4
13.5

14

15
15.1

16

MB-Guide to The Pick system

Proc statements

Runoff
Creating / changing Runoff documents
RUNOFF command

Spooler
Users - form-queues - printers
Why do you need to use the spooler?
When do you use the spooler?
Spooler commands

Operations

Using the system
The screen
The keyboard
Typing errors
Reading and writing

switching on
Logging on
Account names
Passwords
When you have logged on
Typing in the commands

In difficulties

Loggi ng off
Switching off

Some jargon

'Contents / 2

62

63
66
66

68
68
70
70
71

73

75
75
75
78
79

80
80
81
81
82
83

84

86
86

87

MB-Guide to The Pick system

Introduction to Pick

The software project which was to become known as the Pick
system was conceived in the mid-1960s by Dick Pick and Don
Nelson working in the USA. The first implementation of the
Pick system appeared around 1974 when Pick and Microdata
(later to become McDonnell Douglas) worked together to
produce a commercial database management system based upon
Microdata hardware; this was known as the Reality system.
Pick parted from Microdata and went on to produce other
versions of the Pick system in collaboration with other
manufacturers and vendors. Since that time, the system has
gone from strength to strength and is available on a wide
range of equipment, from a small single-user PC
implementation up to large systems - such as those used by
local government and police authorities - supporting several
hundred users. Today, you may encounter Pick and Pick-like
systems in many guises. The name of the system may be
different:

Pick! Open Architecture / Advanced Pick
Reality
Prime/Information
Revelation or Advanced Revelation
Ultimate
Unidata
Universe

but whatever the nature of the hardware and whatever
implementation you are using, the underlying database model
is the same as that developed by Pick and Nelson in the
1960's, and with very little effort (and virtually no
un-learning) a programmer can move from one system to
another. In many cases, the software, too, is portable
between the various systems.

The main features of the Pick system include:

* On-line creation and maintenance of data files.

* Multi-user support, allowing many users to work on the
system at the same time.

* Simultaneous access to the same files by several users.

* Unlimited file size.

* Flexible field and record format.

* Spooler software enabling many users to produce printed
output on one (or many) printers.

* Reading / writing data to magnetic tape / diskette
devices.

* The Access enquiry language which allows users to
produce their own reports by means of data dictionaries
created for the files.

* The Basic language allowing users to write their own

Page

MB-Guide to The Pick system

processing routines.

and a great many more which we shall look at in this
MB-Guide.

The Pick system is one of the most powerful means of
performing commercial computing, and with its Access enquiry
language it represents a database management system whose
power is almost unchallenged.

like all computer systems, your Pick system comprises two
parts: the hardware and the software.

1.1 R83

The most popular implementation of Pick is that known as
R83, release 83. Since its original launch in the early
1980s, this release has gone through several versions and the
current version is R83 version 3.1. It is this release
which is the basis for the present MB-Guide.

All other implementations of the system (with the exception
of any mentioned below) are based upon the R83 release. In
most cases, the individual licensees have added their own
facilities and use their own version numbering such as R91,
and these are largely for cosmetic ends, providing front-end
menus by which the users can call up the standard features of
the system.

1.2 Advanced Pick

After the development of the R83 release, Pick Systems made
a number of radical changes to the system:

* File indexing
* Macros
* Menus
* A TCl stacker to store and re-issue TCl commands.

So great were these changes, that they represented more than
just another version of R83. Instead this version,
originally to be called R84, was named OA, Open Architecture.

Further changes were made to the underlying strategy of R83
and OA and this version, known as AP, Advanced Pick, was
announced during 1988.

The major additional features in Advanced Pick were:

* A Update Processor to facilitate the creating and
maintenance of items and files by way of the dictionary
definitions.

* An Output processor based upon Runoff and the Update
Processor, allowing the user to produce documents and
other textual material.

* Additional processing codes to ensure file integrity
and the ability to pass from one file to another during
file processing with the Update processor.

Page 2

MB-Guide to The Pick system

* An ability to interact with other systems, such as DOS
and Unix.

Pick Systems major products are now the R83 release and the
AP release.

This subject is covered separately in the MB-Guides to
Advanced Pick: AP/DOS and AP/NATIVE.

Page 3

MB-Guide to The Pick system

2 Hardware

The Pick system is available on a wide range of equipment.
Some systems are based on personal computers which serve only
one user, others support several users, whilst others will
handle many hundreds of terminals.

I Pr-j nter I

I
OPERATING

I I Backing storage I
SYSTEM

Terminal

Terminal

I I M E M 0 R Y
I Fixed disk I Terminal
I

Terminal C P U

Whatever its size, every Pick system is made up of the same
basic components:

1) The central processor unit and the system itself.

2) The memory: this holds all the data and programs which are
being processed by the various users at any moment.

3) The user terminals: Pick is designed to be used by several
users at one time, each user working from his/her own
terminal. Each terminal is connected to the computer via a
connection known as a port. The actual number of ports
depends upon the particular configuration of the system which
you are using. Pick will support a wide range of terminal
equipment, including VDUs and printer-terminals, but many
features of the system are designed specifically for VDU
terminals and screen displays.

4) The printer: any number of printers may be connected to the
system, and these may be small serial printers or full-size
line-printers. A part of the system software, known as the
spooler, enables two or more users to produce printed reports
at the same time.

5) The backing storage: this is used to pass data from one
system to another and to produce back-up copies of the system
and its files for security purposes. The backing storage
device may be a standard reel-to-reel magnetic tape deck, or
a tape-streamer, or a floppy-disk.

6) The fixed disk: all the programs and the data files created
and processed by the individual users and those used by the
system itself are held permanently on a fixed disk. Disk
storage space is shared by all users of the system, and the
number of disks and the size of the available disk space
depends upon the configuration of your particular system.
The virtual memory feature of Pick means that this disk space
can be regarded as an extension of the memory space.

Based around this fundamental configuration, it is perfectly

Page 4

MB-Guide to The Pick system

feasible to attach other equipment and devices such as
bar-code readers and encoders, plotters, point-of-sales
terminals and fax and telex machines.

A number of commands are available for interrogating the
details about your system. We shall look at these briefly
below. These and other commands are described in the
MB-Guide to operations and systems management.

Let's look more closely at the hardware attached to your
Pick system.

2.1 Hard disk

The most important part of the hardware on the Pick system
is the hard disk. The hard disk is used as an extension of
core (or RAM or memory), allowing the users to access any
part of the database as and when required. This access
mechanism is controlled by the virtual memory feature of the
system.

The storage space on the hard disk is allocated for use by
the system itself, and for general file storage by the users:

ABS frames

PCBs

Work space

User-files
-- - - - - - - - - - -- - - -

Overflow space

* ABS frames: this is the area in which the programs for
all the standard Pick software are held. Special
PICKWARE products, such as CompuSheet+ and Accu/Plot and
Jet, also use these frames for their own special
routines, and a number of frames are set aside for users
to load their own assembly language processing
routines. The ABS section normally occupies about 1024
frames.

* PCBs: the process control blocks for each available
port (plus one for the spooler) are held here. These
hold registers and other control information relating to
each individual process. Each PCB is 32 frames in size.

* Work space: this is an area of virtual memory which is
used as an extension of the PCB as a work area and holds
the information relating to each process. There is one
workspace for each available port (plus one for the
spooler). Each Workspace is 381 frames (that is, 3
times 127 frames) long. On McDonnell Douglas
implementations, each user has 18 frames, unless
additional workspace has been assigned in attribute 8 of
the account-definition item for that account.

Page 5

CORE
636K

00
00
00
00

00

*00
06

MB-Guide to The Pick system

* User-files: finally comes that area of disk which holds
the data files used by the systems and the users. The
SYSTEM file is normally the first file in this area
followed by the MD for the accounts' and their files.
The start of this area is known by the symbolic name
SYSBASE.

* Overflow space: beyond the area occupied by the files
comes the unused area of disk which will be used
whenever new files are created and when an existing file
requires more frames to accommodate additional items
and as files and items grow in size.

The extent of each area may vary according to the
implementation which you are using. There is no fixed
division between the user-files area and the overflow space.
When a file-restore operation has been performed, the disk
is fairly tidy with all the user-files grouped together and
one large chunk of overflow space following. However, in
time, the user-files take over parts of the overflow space as
new files are created and as existing files expand, and
overflow frames occur in the user-file space as existing
files and items are deleted.

A number of commands are available for monitoring disk usage
and the fragmentation of the disk space, and for
interrogating other details about your system. These are
described in the MB-Guide to operations and systems
management.

The WHAT command will display details about your system:

LINES PCBO WSSTART WSSIZE SYSBASE/MOD/SEP MAXFID AVAIL OVERFLOW
7 704 928 127 3595 1 1 1 75582 23982

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00

02CO FF30 121.000 121.1AB 166.602
0380 BF30 170.229 170.147

THE SPOOLER IS INACTIVE.
PRINTER £ 0 IS PARALLEL, INACTIVE, AND ON LINE.
THE PRINTER IS DEFINED AS PARALLEL PRINTER £ O.
ASSIGNED OUTPUT QUEUES: O.
THE NUMBER OF INTER-JOB PAGES TO EJECT IS O.
The SPOOLER is in an unambiguous state.

The POVF command displays figures for the available disk
space, and indicates the fragmentation of the available
space. A typical display might look like this:

Page 6

MB-Guide to The Pick system

6934-
12577-
32658-
57898-

6934
12732
33627
75582

1
156
970

17685

12466- 12514
12907- 13275
45324- 46916

TOTAL NUMBER OF CONTIGUOUS FRAMES

49
369

1593

20823

When creating a new file, the system will scan the above
table for the smallest gap into which the file can be placed
and then allocate these frames to the file and remove them
from the table.

If the available disk space becomes too fragmented, it may
prevent the creation of new files and may make overflow of
existing files inefficient. In such circumstances, a
file-save and file-restore procedure should be carried out.

2.2 Virtual memory

The Pick system uses a virtual memory facility to render all
data (which is permanently stored on hard disk) available in
memory when needed by the users. Frames of data are
continually being read into memory and held there for
inspection, amendment and deletion by the users. The frames
are written back to disk when memory becomes filled with
write-required buffers space must be made for new frames of
data to be brought into memory, and also when the system is
closed down.

In the worst case, the entire contents of memory may be
frames which have been updated in memory but not yet written
back to disk. For this reason, the machine must be properly
shutdown, as described later, and not just switched off,
otherwise the data in memory will be inconsistent with the
data on disk.

Some implementations allow you to control the manner in
which updated buffers are written back to disk, so as to
minimise the danger of losing your data.

Those who are using the system are placed in a queue, first
come, first served; the person at the head of the queue is
allowed to use the system when it is next available.
Typically, each user gets a time-slice of 10 milliseconds in
which to carry out some of his/her work. This is the maximum
time which is allowed for each process before it is
interrupted and placed at the end of a queue of all the
processes waiting to run. A process may be interrupted and
placed in the queue in other circumstances:

* It may have requested data which has to be read from
disk. The process can only continue when the required
data is in memory.

* It may have attempted to read a frame which is
currently being updated.

* It may have issued a SLEEP (or RQM) command to

Page 7

MB-Guide to The Pick system

relinquish its time-slice.

* It may have executed a command which expects the user
to enter data at the keyboard. The process can only
continue when the user has entered the data.

Some implementations allow you to change the duration of the
time-slice.

2.3 Terminals

A set of parameters describes each terminal - the terminal
characteristics - and the operating uses these parameters to
control all input/output to the terminal, to determine the
format (width and depth) of all output reports and also the
terminal display protocol. If a terminal does not have the
correct terminal type and other characteristics, then the
cursor control, and screen display and formatting features
may not work correctly.

The terminal characteristics can be displayed by means of
the TERM command. A typical display from this command might
look like this:

Each terminal is associated with a set of parameters - the
terminal characteristics - which the operating uses to
control all input/output to the terminal. To determine the
format (width and depth) of all output reports and also the
terminal display protocol.

The terminal characteristics can be displayed by means of
the command:

TERM

A typical display from this command might look like this:

TERMINAL
PAGE WIDTH: 79
PAGE DEPTH: 24
LINE SKIP 0
LF DELAY 2
FF DELAY 2
BACKSPACE 8
TERM TYPE I

PRINTER
132

64

These parameters are used by all the standard Pick
processors and changing any of the parameters may affect the
output produced.

+ Page width: the number of characters per line for the
device.

+ Page depth: the number of lines for the device

+ Line skip: the number of lines to be left at the foot
of the screen. This is the difference between then page
depth value for the screen and the physical depth of

Page 8

MB-Guide to The Pick system

the screen.

+ Line-feed delay: the number of delay characters which
are to be output after each line-feed.

+ Form-feed delay: the number of delay characters which
are to be output after each form-feed, or top-of-form
skip.

+ Backspace: this is the decimal value of the character
which the terminal is to interpret as the back-space
character.

+ Terminal type: this is a code denoting the type of
terminal which is being used. Some of these are shown
below.

A ADDS M Mime
A Adds 580 N Wyse 100
A CIE-ANT N WYS WYSE100
B Ampex 210 P Hewlett-Packard 2621A
B Beehive P Pertec 701
C C-Itoh VT52 Q QVT 102
C DTC R Adds Regent
C VT52 R Regent
0 Datamedia S Soroc
D DEC VT100 S Wyse 60
E Emulog 200 T Mini-Tee 2401
F TV910 T Tee 2402
G GTC T TV920
G IBM 3161 T TV950
H Honeywell VIP 7200 U Ultimate - Volker-Craig
I IBM monitor V Adds Viewpoint
I MM-MON V Ultimate - Viewpoint
J VT100 V Viewpoint
L Lear Seigler ADM-3A W Wyse 50
L LSI X Datagraphix
M Ampex 080 X no cursor control required

If a terminal does not have the correct terminal type, then
the cursor control and formatting features will not work
correctly.

Some implementations hold the terminal characteristics for
each port on the item TERMTYPE on the ERRMSG file, others
store them in items on the DICT section of the ACC file.
When logging on, the terminal characteristics are reset to
the default settings for that port.

The TERM command can be used to reset the terminal
characteristics for the current port. To change the
parameters for the entire system, the System Manager will use
the SET-TERM command. Many implementations have a utility
such as the DEFINE-TERMINAL, to set the characteristics for a
specific terminal type.

The SET-PORT and the SET-BAUD commands may be available to
set the communication characteristics and the baud rate for a

Page 9

MB-Guide to The Pick system

port. You are referred to your system Reference Manual for
the format of this command on your implementation.

2.4 Printers

Two types of printer interface are used: serial and
paralTeT. A printer can be attached to any suitable port on
the Pick system. The STARTPTR command is used to declare the
port a printer and to associate a specific form-queue(s)
with the printer.

Slave printers can be attached to any port which is provided
with an auxiliary output port. When the slave printer is
activated, all output sent to the screen may also be sent to
the slave printer. The appropriate terminal reference manual
will give details of the control sequences which will
activate and deactivate the slave printer.

2.5 Backing storage devices

In addition to the hard disk, the Pick system may be fitted
with one or more of:

* 3.5" floppy diskette,

* 5.25" floppy diskette,

* 0.25" cartridge tape, and/or

* 0.5" reel-to-reel magnetic tape.

These are used to make copies of the contents of the hard
disk, using the file-save and/or account-save features. They
can also be used to archive data - such as last year's
invoices - which are no longer required on the live system.
We use the term backing storage to refer to these devices.
There are a number of TCl commands available for controlling
the backing storage device(s):

SET-8MM T-BSR T-RETEN
SET-DEVICE T-CHK T-REW
SET-FLOPPY T-DET T-SPACE
SET-HALF T-EOD T-STATUS
SET-SCT T-ERASE T-UNlD
SET-TAPE-TYPE T-FSF T-UNlOAD
SET. DT T-FSR T-VERIFY
SET. TM T-FWD T-WEOF
T-ATT T-RDlBl T-WTlBl
T-BCK T-READ
T-BSF T-RET

Further details on the use of these devices is given in the
MB-Guide to using backing storage.

2.6 Back-up

We have already introduced the backing storage devices, and
mentioned that their primary use is for making security

Page 10

MB-Guide to The Pick system

copies of the entire database. The operational aspects of
the system, including file-save / file-restore and
account-save / account-restore are covered in other volumes
in the M8-Guide series:

File-save and file-restore
Files: monitoring and sizing
Operations and systems management
Security
The spooler

Here, we shall look at the general concepts.

2.7 File-save / restore

The entire data resources of your computer system reside on
the hard disk - or disks - which your Pick system uses. It
is obviously important that you make regular copies of the
data on the disk, in case of hardware problems or in case
someone accidentally deletes a file.

There are several ways in which data can be written to
backing storage and recovered from backing storage. The
diagram at the end of this section summarises these. In the
following sections, we shall look at some of these facilities
more closely. These activities are discussed in detail in
the the MB-Guide to FiTe-save & fiTe-restore. There are a
number of TCL commands and utilities associated with these
operations:

:FILES
restores the entire system data files from a file-save
tape.

ABSDUMP
dumps the ABS file to backing storage.

ACCOUNT-RESTORE
restores a single account from a file-save tape or an
account-save tape.

ACCOUNT-SAVE
saves a single account on backing storage.

F-S
an alternative to the FILE-SAVE utility.

FILE-SAVE
saves the entire system on backing storage.

LIST-FILE-STATS
output the file statistics currently held on the
STAT-FILE.

RESTORE-ACCOUNTS
uses a file-save tape to recover all accounts which are
not currently on the system.

S-DUMP
outputs the contents of selected items on a file sorted

Page 11

The

An

SAVE

MB-Guide to The Pick system

according to any specified criteria.

saves the entire system - ABS and/or data files - on
backing storage. This is the fundamental Tel command
which is harnessed by the ACCOUNT-SAVE, FILE-SAVE and
other utilities.

SEl-RESTORE
restores one, several or all the items to a file from a
file-save tape or from an account-save tape.

T-DUMP
dumps one, several or all the items on a file to
magnetic tape.

T-lOAD
restores one, several or all the items on a file from a
magnetic tape produced by the T-DUMP / ST-DUMP command.

VERIFY-SAVE
checks the integrity of a file-save or an account-save
tape.

To save To recover

system File-save File-restore from file-save

B"inary-save Binary-restore from binary-save

account Account-save Account-restore from
account-save or file-save

A f i 1 e T-DUMP file T-lOAD file from T-DUMP

Selective-restore from
account-save or file-save

An item T-DUMP fi le ' item' T-lOAD file from T-DUMP

Selective-restore from
account-save or file-save

Page 12

MB-Guide to The Pick system

3 Software

Just as the logical organisation of the hardware of the the
Pick system is essentially the same for all versions, so
there is a range of software which comes as standard with the
system.

let's look more closely at the software which makes up your
Pick system.

3.1 Access

Access is the Pick database enquiry language. It allows you
and your users to make enquiries about your files and to
produce displayed or printed reports based upon the contents
of those files. These enquiries and reports are produced by
typing English sentences such as:

LIST STOCK DESCRIPTION PRICE

SORT STOCK DESCRIPTION QTY PRICE WITH MATERIAL = "OAK"

SORT STAFF BY DEPARTMENT BY SALARY IF THE SEX = "F" AND
THE AGE < "60"

SORT STOCK BY COLOUR DESCRIPTION TOTAL PRICE

Access is an example of a query 7anguage or an enquiry
7anguage. Access is a flexible and a powerful tool which
enable non-technical users to get the best value from the
data on their database. The language is so powerful that
there is no longer any need to write report programs.
Furthermore, Access is so simple that it can be used by
non-technical users as well as by programmers and analysts.

The language is supported by a collection of field
definitions which the analyst establishes on the data
dictionary for each file. These definitions - for data
elements such as DESCRIPTION, PRICE, QTY and MATERIAL in the
above examples - can be used to extract and report any part
of the database by means of an Access sentence.

We shall look at this topic more closely later in this
MB-Guide. This subject is covered in detail in the MB-Guide
to Access and in the reference literature for your system.

3.2 TCl

The terminal control language - TCl - is the most
fundamental way of controlling and communicating with the
Pick system. By typing in TCl commands, the user is able to
perform a vast number of activities, including:

* Create and maintain data files and their contents.

* Create and maintain user-accounts.

* Copy data from one file to another.

* Create, maintain, compile and execute Basic language

Page 13

MB-Guide to The Pick system

programs.

* Execute standard programs and utility software.

* Create, maintain and invoke procedures written in the
Proc language.

* Control and interrogate the usage made of the system.

* Control the spooler and the printers.

The Tel operations - the verbs - which are available are
defined on a fi le called the master dictionary - the MD.
Each separate account has its own MD. Every time a user
types in a Tel command, the system searches through the MD to
find the definition for the verb in the user's Tel command,
and from this definition it determines what to do. If a
particular account is not to be allowed to use any facility -
such as the Editor - then the EDIT verb can be removed from
the MD of that account. The verbs can also be renamed and
you may even add your own programs to the MD so that they
look and behave like Tel commands.

3.3 Editor

The Pick Editor is a piece of software which enables the
users to create, change and delete the items on their files.
It is a line-editor processing each line of the item in
turn. Since it is rather a complicated tool, it is chiefly
used by technical users for writing Basic programs and Procs.

Most systems offer much more user-friendly - and much more
secure - means of maintaining their files. These may be
specific user-application for handling particular files, or
they may be general software such as Jet, or a similar screen
editor, which displays the entire item which you are
changing and allows you to move the cursor through the text,
changing, deleting and adding text as you go.

These Editors are discussed in the MB-Guide to the Editor
and in the reference literature for your system. We shall
look at the Pick line-editor more closely later in this
MB-Guide.

3.4 Basic

The dialect of Basic which is offered on the various
implementations of the Pick system is a very powerful version
of Dartmouth Basic. The language has been extended to allow
programs to handle Pick disk data files and other aspects of
the system. It has further features, including:

* Optional statement labels.

* Alphanumeric statement labels.

* Several statements on one 1 ine.

* Meaningful variable-names may be used, and
variable-names may be of any length.

Page 14

MB-Guide to The Pick system

* Any variable may hold either numeric data or an
alphanumeric string.

* Structured programming facilities: lOOP statement, CASE
statement, IF ... THEN ... ELSE statement.

* Complex and multiline IF statements.

* Modular programming facilities: GOSUB statements for
using internal subroutines, and CAll and SUBROUTINE
statements for using external, independent subroutines
are also available.

* External subroutines are written and developed as
independent program units and may be used by one or more
programs.

* Use of COMMON data to pass information between programs
and external subroutines.

* File handling facilities: OPEN, READ, WRITE and DELETE
statements.

* locking to prevent several users updating the same
record at the same time.

* Handling output on backing storage: magnetic tape, or
floppy disk.

* Handling the data structure of Pick items: attributes,
values and subvalues.

* Dynamic arrays: any number of elements, deletion and
insertion of elements, sorting elements into sequence as
they are added to the array.

* An interactive debugger to facilitate program testing
and development.

* The power to invoke any TCl commands or Access
sentences from within a program. The results may be
returned for further use within the Basic program.

The language is also known by other names, including
Data/Basic, Pick/Basic and Info/Basic. So powerful is the
language that it really does belie its name.

This subject is covered in detail in the MB-Guide to Basic,
in a number of associated guides and in the reference
literature for your system. We shall look at this topic more
closely later in this MB-Guide.

3.5 Procs

The Proc language was originally provided to allow a user to
save a command or a sequence of several TCl commands as a
single unit on the MD and then invoke this sequence - or
procedure - as a single operation.

Page 15

MB-Guide to The Pick system

Since its inception, the Proc language has become very
sophisticated and has now developed into a programming
language in its own right: there are facilities for accepting
keyboard input and for displaying output, for performing
calculations and for using subroutines.

Procs are particularly useful when a complicated Access
sentence is to be used many times, or when a complex sequence
of operations is to be used by non-technical operators. By
typing in the sentence and saving it as a Proc, it can be
re-used many times simply by typing the name under which it
has been saved.

Th i s subj ect is covered in deta i 1 in the MB-Gu ide to
Creating and using Procs and in the reference literature for
your system. We shall look at this topic more closely later
in this MB-Guide.

The Basic language has facilities to invoke any Tel command
and Access sentence from within a Basic program. This means
that Procs are gradually being replaced by more legible and
more easily maintainable Basic programs.

There is also a Pick Assembler language. This is rarely
used by commercial programmers, and is only of interest to
those who are developing applications - or parts of
applications - which need to utilise the low-level features
of the computer.

3.6 Runoff

One of the fundamental components of Pick is the Runoff text
processing feature. This offers many of the features of
standard word processing systems: text input and output; text
formatting; pagination with headings and footings; indexing;
table of contents. Unfortunately, Runoff is not a wysiwyg -
what you see is what you get - system. The text must be
maintained by the Pick Editor and the format of the final
document is only revealed when it is displayed or printed.
For this reason, Runoff has been superseded by other
proprietary software such as:

* Jet and The Works,

* Keyword

and other similar packages which offer many of the
facilities which we have come to expect of a word processor.
The Advanced Pick system offers the Output Processor as a
standard text processing feature.

This subject is covered in detail in the MB-Guide to Runoff
and in the MB-Gu ide to the Output Processor and in the
reference literature for your system. We shall look at
Runoff more closely later in this MB-Guide.

3.7 Spooler

Since Pick is a multiuser system and any or all of these
users may be producing printed reports at the same time,

Page 16

MB-Guide to The Pick system

there must be some means of controlling the printers and the
printed output. Printed output is monitored and controlled
by a standard piece of Pick software known as the spooler.
This offers facilities for:

* Simple jobs to be printed with no intervention from the
user - the normal situation,

and also for:

* Supporting several printers.

* Producing multiple copies of reports.

* Killing and/or suppressing the output.

* Holding reports for inspection prior to printing and
for overnight printing.

* Stationery alignment.

The ordinary user may work without any knowledge of the
spooler if he/she does not require any of these special
facilities.

This subject is covered in detail in the MB-Guide to the
spooler and in the reference literature for your system. We
shall look at this topic more closely later in this
~-~i~.

3.8 System generation tools

For users who want to develop their own application systems
in a fourth generation language, rather than Basic, Pick is
well supplied with system generation tools such as:

* System Builder / SB+
* Creator
* Libra

and many others. Typically, these systems allow the systems
analyst / programmer to construct a Pick data dictionary and
then use this as a basis for building:

* Data input / validation routines,

* File maintenance routines,

* Data enquiry screens,

* Displayed reports, and

* Printed reports.

This allows systems to be designed, developed, tested and
implemented in a high-level medium, freeing the programmer
from much of the routine of programming - opening files,
reading records, updating files - and allows him/her to
concentrate on the detail and the processing of the
particular application system.

Page 17

MB-Guide to The Pick system

3.9 Other software

Since the Pick system was first implemented, many of its
features have been overtaken by modern technology. As a
result, Pick has shortcomings in certain areas:

* Graphics,
* Spreadsheets,
* Communications,

and in most cases these gaps have been filled by add-on
software. To these, can be added an even wider range of
applications software such as:

* Word processing,
* Stock control, * Payroll processing,
* General ledgers and accounts,
* Financial and credit control,
* Vehicle scheduling,
* Catalogue, index and directory production,

allowing Pick to offer a range of commercial software which
is virtually unrivalled by any other computer system.

Page 18

MB-Guide to The Pick system

4 Files

All the information which you process is organised as files.
There may be a STAFF file to holds details of all the
company's employees; a CLIENT file to holds details of all
the company's customers, and many more. There may be any
number of files on your system.

Each file comprises a number of separate items or records.
Thus, the STAFF file may have one item for employee number
1234 (this may be John Smith), one for employee 2009 (Naren
Khan), another for employee 2531 (Mary Wilkinson), and so
on. There may be any number of items on a file. You can
visualise a file like this:

STAFF
1234

SMITH
2009

KHAN
2531

WILKINSON
MARY
34 GLENDENNING CLOSE
UPPER LASHLEY
WOLVERTON
WV3 5GK
0334-182734 --
LABORATORY
WALKING]READING]LISTENING TO MUSIC -­
WILLIAM HENRY
JOANNA]MICHAEL]NATHAN

Within each file, each item is identified by its item-id or
record key. This is some unique identifier for that item.
Typically, the items on the STAFF file may use the employee
number as their item-id, so the item-id of Mary Wilkinson's
item is 2531. Similarly, the items on the CLIENT file may
use the account number of client reference number as their
item-id.

Each item is made up of a number of data attributes or
fields. Thus, the first attribute of a STAFF item may be the
employee's surname; the second might be the employee's given
names, and so on. There may be any number of attributes in
an item. Normally, all the items on, say, the STAFF file
will have the same number of attributes and these will always
be in the same order. The nature, form and order of the
attributes is determined by the systems analyst when he/she
designs the file.

If a certain employee did not have, say, a telephone number,
then this attribute (attribute 7 in our STAFF file shown
here) would be empty. Some people call this a nu71
attribute.

Some attributes, such as the hobbies (attribute 9) or the
names of the children (attribute 11), may have more than one

Page 19

MB-Guide to The Pick system

value. Such an attribute is said to be a mu7tiva7ued
attribute. In the diagram, I have separated these
mu7tiva7ues by a square bracket, although your terminal may
display some other character in place of the].

For security reasons, it is unwise to let every user have
access to every file; otherwise, anyone could look at, and
change, any record on, say, the STAFF file. Therefore, the
files of your system are grouped into accounts. Thus, the
STAFF file, the PAY.RATES file may be held on the WAGES
account; the CLIENT file, ORDER file, PRICES file and the
STOCK file may be held on the SALES account, and so on. To
use the STAFF file, you must log on to the WAGES account, and
to use the CLIENT file, you must log on to the SALES account.

4.1 File structure

A Pick account is a collection of files which are available
to users of that account.

It is possible may log on to - and use - any account from
any terminal, and there may be any number of people using an
account at any time. In order to be able to log on to an
account, a user must know - and enter correctly:

* The correct account-name - WAGES account or SALES
account in our last illustration, and, if required,

* The password for that account.

Without this information, it is not possible to log on to,
and use, the Pick system.

Details of the accounts on your system are held on a file
called SYSTEM, and your System Manager will maintain the
accounts and the passwords of your system, as required.

4.2 SYSTEM, MD, DICT, data-file linkage

The file hierarchy is of fundamental importance in
understanding the logical structure of the Pick system.

Each box in the diagram represents a fi7e, and each line
represents the pointer-7inkage by which a record on one file

Page 20

MB-Guide to The Pick system

enables the system to locate a file lower down the diagram.

let us have a look at the various components.

The file called SYSTEM is the most important file on any
Pick system, and holds one record for every account on the
system. There may be any number of accounts on your system.
Each system has a number of standard accounts which hold
general files and system administration programs used by the
system manager in particular and all users. Important
amongst these is the SYSPROG account which owns a number of
files which are required by all users, including:

ACC
BLOCK-CONVERT
ERRMSG
POINTER-FILE
PROCLIB

which are made available to all other accounts via a set of
Q-pointers on each MD.

The information in each record on the SYSTEM file points to
the disk location of the master dictionary for that account.
The master dictionary is known variously as MD and MD, and
is a file containing definitions relating to all the files
which you have created on that account, and definitions and
pointers relating to all the standard system files. The MD
also holds:

+ Definitions for all the standard TCl verbs,

+ Definitions for all the standard Access verbs and the
modifiers and connectives,

+ Catalogued program pointers for all the standard system
programs,

+ Catalogued program pointers for all those program which
you have created and catalogued,

+ Pointers to all standard Procs,

+ Pointers to all the Procs which you have created.

On the MD, there is a record relating to each data-file, and
this points to the dictionary section of that file, DICT,
which holds the dictionary definitions which will allow you
to use the Access language to interpret your data records.

In addition to the Access definitions, the DICT of the file
also contains a record called the data-level identifier which
points to the data section of that file.

According to the particular version of the Pick system which
you are using, there may be only one data-level identifier
and one data section - as shown by file A on the left of the
diagram - or there may be several different data-level
identifiers on the DICT of the file, each referring to one of
a number of files which share the same dictionary - as shown

Page 21

MB-Guide to The Pick system

by file e on the right of the diagram.

The data-level identifier may have the same name as the file
to which it refers, or on those implementations which only
allow one data section, the data-level identifier may have
the item-id DL/ID.

The data section of the file contains the true data records
- our sales data, the personnel records, or the invoice
information.

If the file has no data section - as with the file B in the
centre of the diagram - then the data-level identifier on the
DIeT section points back to the DIeT section. This probably
means that you do not not want to use Access with the data
which are held on this file. It may be a file used for
holding programs or Runoff documents, for example. Such a
file is often called a DIeT-only file.

The file-definition items which relate to other files
contain the following information about the file:

The base fid = the frame identifier of the first frame
in the file,

The MOD = the modulo of the file,

The SEP = the separation of the file.,

The L/RET security = the lock-code to retrieve, or read
from, the file,

The L/UPD security
to, the file.

the lock-code to update, or write

There are a couple of esoteric points which you might
appreciate from the above diagram:

+ An account is any file for which there is a pointer on
the SYSTEM file.

+ A master dictionary is any file for which there is a
pointer on the SYSTEM file.

+ An account and its master dictionary are synonymous.

+ A file always has a pointer on the master dictionary of
the account to which it belongs.

+ A file called PROGS held on the SALES account is quite
separate from a file called PROGS held on the WAGES
account.

4.3 File / item / item-id / data fields

The logical storage is accessed in terms of records on files.

* A system comprises a set of accounts.

* Each account owns a set of files.

Page 22

MB-Guide to The Pick system

* A file is a collection of records holding data of a
similar nature. The records on the INVOICE file would
hold information about invoices, the records on the
PERSONNEL file would hold information about the staff
and personnel, and so on. This is identical to the
standard use of the term file within data processing.

* item is the Pick terminology for record.

* item-id is the Pick terminology for record-key.

* attribute is the Pick terminology for field.

* Each item may comprise one or more attributes separated
by attribute-marks. This is ASCII character 254.

* Each attribute may comprise one or more values
separated by value-marks. This is ASCII character 253.

* Each value may comprise one or more subvalues separated
by subvalue-marks. This is ASCII character 252.

Some literature uses the term secondary-value instead of
subvalue.

* Attributes, values, and subvalues are of variable
length, each being terminated by the appropriate
field-separator.

* The various fields - attributes, values, and subvalues
- are identified by their sequential position within the
item.

* Data fields - attributes, values, and subvalues - are
held in variable-length format, each taking up as much
space as necessary.

* Null (empty) fields are represented only by the
associated (following) field-separator - attribute-mark,
value-mark, or subvalue-mark.

Data design and record layout is as important in Pick as in
any other system, and the structure of the data records would
normally be decided by the analyst when the system was
designed. The sort of reorganisation which we have
considered here can, however, be implemented at any time,
provided that the necessary changes are made to the Basic
programs and Access dictionary definitions which process the
file.

All physical storage space on the Pick system is allocated
in terms of frames. A frame is normally 512 bytes, 1024
bytes or 2048 bytes in size. The actual size will depend
upon your implementation. Use the DUMP verb:

DUMP 12345

to see the size of a frame.

Page 23

MB-Guide to The Pick system

A file is created as a set of an integral number of frames
and as more data is added to the file, the size of the file
increases in units of one frame.

No frame is ever shared by two or more files.

MODEL 1: the smallest possible file, therefore, consists of
one frame:

D
This is known as the base frame or the primary fi Ie space.

Only 500 bytes of each frame (or 1000 bytes or 2000 bytes in
the case of the larger frames) are used to record the user's
data. The remaining 12 (or 48 or 96) bytes of each frame are
used by the system, as we shall see in a moment.

As records are added to the file and as the records
themselves increase in size the data will take up more and
more of the available space. Indeed, there may not be
sufficient space in the single frame to accommodate the data.
When this happens, the system looks around for an unused
frame and writes the remainder of the data in this overflow
frame, setting pointers or links from the base frame to the
overflow and back. The overflow frame is almost certainly
not the next frame on disk to the base frame. Someone else's
process will almost certainly have used the next physical
frame before you got a chance to need it.

I, ' I
L-__________ ~ L-__________ ~

The links which tell the system where to go next and to show
where you have come from - are recorded in the first twelve
bytes of each frame.

If the file grows further, then more and more frames will be
tacked on to the end - each linking backwards and forwards.

This is fine, but - because the system does not keep any
sort of index to show which records are in which frame - each
time you need to find a record, you have to start at the
base frame and then read all the way through the intervening
records until you find the one you need. So on average, you
have to scan half the record on the file to find any specific
record. If you are creating a new record, then you have to

Page 24

MB-Guide to The Pick system

read a77 the way through the file, just to be sure that the
record doesn't already exist, and then to append the new
record to the end of the file.

Each time the operating has to move its attention from one
frame to another, it has to read the earlier frame, pick up
the linkage information, move to the next overflow frame and
so on until the frame holding the required item is found.

This is very time-consuming. The more records there are,
the ~Jre time you consume.

MODEL 2: a first improvement which we might make to our
simple model is to create our file as a group of, say, two
contiguous frames:

The first 12 bytes of each frame are still used to hold the
link information, but the mechanical head which reads the
frames will not have to travel so far. Indeed, some
implementations with cache memory will read in a number of
frames at one time, so if the following frame is required it
is already available in cache memory without any need to read
further frames from disk. This speeds up the rate at which
frames can be processed.

As the file increases in size, any overflow frames are
tacked on one at a time exactly as before:

In general, therefore, such a model of the file will speed
up the physical access of the frames, but we still have to
scan through the records to find the one we need.

MODEL 3: the third model of a file is one which consists not
just of one such group of frames but severa7 groups. In this
example, we have three such groups, but you may have any
number of groups.

Page 25

MB-Guide to The Pick system

o

2

The three groups are numbered (conventionally) 0, 1 and 2.

Now, when a record has to be written to the file, the system
takes the record-key and performs an arithmetic calculation
on it. The process is called hashing, as discussed later.
The result of that calculation will be 0 or 1 or 2.
According to this result, the record will then be written
into that group. So each record goes uniquely into one of
the groups.

When a record has to be read from the file, the same hashing
calculation is performed and the appropriate group (0 or 1 or
2) is scanned for the required record, as it was in the
earlier models.

All Pick files are structured in this way.

* Each file consists of a number of groups of frames.

* The number of groups is called the
This is often abbreviated to MOD.
we looked at above had a modulo of
a modulo of 3.

modulo of the file.
The first two files
1. The last file had

* Each group can consist of one or more frames.

* The number of frames in each group is called the
separation of the file. This is often abbreviated to
SEP.

* All the groups in a file have the same separation.

* Each group will overflow as necessary to accommodate
the records which hash into that group.

Each group behaves rather like a separate physical file, and
more overflow frames are tacked on to each group as number of
records in the group grows.

Page 26

MB-Guide to The Pick system

=
<

=
<

There are two further important points:

+ Because of the way in which the hashing a7gorithm
works, it is best to have a prime number for the modulo.
Otherwise, you may find bunching in your file, with
some groups being completely empty whilst others are
full to overflowing.

+ In practice, on those implementations which only read
in one frame at a time, you lose the advantages of
having a separation other than 1 - as justified when we
derived our second model above. In such cases, it is
much better to use a separation of 1 in all instances.

Having a separation of 1 reduces the amount of waste
(unused) space in those groups which are not full.

~t= 1'1
~ __________ ~ ________ ~ L ____________ ~

This last example has a modulo of 3 and a separation of 1.

The modulo and separation are chosen when you create the
file. In general, the larger the average size of the
records, the larger the separation, and the greater the
number of records on the file, the larger the modulo.

This topic is discussed further in the MB-Guide to fiTe
design.

4.4 Item format

Each frame of disk space consists of:

* The linkage bytes. These are the first 12 bytes of the

Page 27

MB-Guide to The Pick system

512-byte frame, or the first 24 bytes of the 1024-byte
frame, and so on, depending upon the frame size used on
your system.

* The data items.

The general format of a physical item is:

where xxxx is a four-byte control field,
item-id, ddd, eee, fff and so on are the
of the item and the character shown here
attribute-mark (hexadecimal FE) and the
segment-mark (hexadecimal FF).

iii is the
data attributes
as A is the
is the

In the case of the first item in the frame shown below,
th i sis:

003C2000 ASETTEE, YELLOW, OAKA18 ADN/l/69 A10000'30'1000'9257'_

* The four-byte control field, 003C in this example,
tells us that the item is 3C (hexadecimal) or 60
(decimal) bytes long. This count is maintained by the
system whenever the item is written to disk and records
the actual physical length of this item.

* The end-of-data marker, or end-of-group marker,
indicating that there is no further data belonging to
this group in the frame. This is the segment mark.

The physical layout can be seen if we dump a frame which
which contains some of the items of our file. For example,
the command:

DUMP 87654 (X

will display the contents of the frame 87654 which the GROUP
or ITEM command might have told us holds some of the items of
our file. The left section shows the hexadecimal data, and
the left section shows the character format.

Typical output might look like this:

FID:

1
51

101
151
201
251
301
351
401
451

87654 : 0 0 0 0 (15666 : ° 0 ° 0)

:003C2000'SETTEE, YELLOW, OAKA18ADN/l/69A10000A30A1:
:OOO'9257'_003D3000'SIDEBOARD, BLUE, ASH'58'MN/5/56:
:'13000 A15'2000'9272'_00361234'CHAIR, RED, OAK A7 ADN:
:/5/88'1000'30 A2000'9234'_00382222'DESK, BLUE, OAK':
:98'MN/16/92'5600'30'1000'9246 A __ :
. . ..

The top line shows the FlO (and any forward and backward

Page 28

MB-Guide to The Pick system

linkage fields, which are 0 since the data in this frame does
not flow from or into any other frames); the data in
parentheses is the hexadecimal equivalent of the decimal
information.

Page 29

MB-Guide to The Pick system

5 Access

Access is a very powerful feature of the Pick system which
allows you to make enquiries about the data on your files and
to produce reports simply by typing in English-language
sentences.

Once you have logged on to the Pick system, and the system
displays the prompt:

you may type in any Access sentence and this will be
processed and the answer - or the report - will be displayed
on your screen or printed on the printer.

For example, a sentence such as:

LIST STOCK DESCRIPTION PRICE

might display a report starting like this:

PAGE 09:29:59 29 JUL 1993

STOCK DESCRIPTION PRICE

8888
5500
2000
1 1 1 1
9000
8000
1000

DESK, GREEN, ASH
TABLE, YELLOW, PINE
SETTEE, YELLOW, OAK
STOOLS, GREEN, PINE
SIDEBOARD, YELLOW, ASH
SETTEE, RED, MAPLE
DESK, GREEN-BLUE, ASH

56.00
50.00

100.00
20.00

130.00
10.00
56.00

showing the item-ids of the items on the STOCK file, together
with the DESCRIPTION and the PRICE of each item. As we shall
see later, words such as DESCRIPTION and PRICE are datanames
which identify parts of the data on the STOCK file. Your
Systems Analyst will tell you which files and which datanames
are available to you. These datanames will have been set up
for you on a dictionary for the file.

Each file has its own dictionary. For example, the
dictionary for the STOCK file might hold datanames such as
DESCRIPTION, PRICE, QUANTITY, MINIMUM-LEVEL, VALUE, LOCATION,
and SUPPLIER, whilst the dictionary for the STAFF file might
have datanames such as NAME, SURNAME, INITIALS, ADDRESS,
TELEPHONE-NUMBER, START-DATE, DATE-OF-BIRTH, and so on.

If we had typed the sentence:

LIST STOCK DESCRIPTION PRICE LPTR

adding the word LPTR to the sentence, then the same report
would have been produced on the printer.

One of the beauties of Access is that it is flexible; you can
ask for the datanames in any order, and you can ask for as
many datanames as you want. If we had typed the sentence:

Page 30

MB-Guide to The Pick system

LIST STOCK PRICE DESCRIPTION QUANTITY

we might have produced the report:

PAGE 09:29:59 29 JUL 1993

STOCK PRICE DESCRIPTION QUANTITY

8888 56.00 DESK, GREEN, ASH 64
5500 50.00 TABLE, YELLOW, PINE 15
2000 100.00 SETTEE, YELLOW, OAK 18
1111 20.00 STOOLS, GREEN, PINE 63
9000 130.00 SIDEBOARD, YELLOW, ASH 99
8000 10.00 SETTEE, RED, MAPLE 6
1000 56.00 DESK, GREEN-BLUE, ASH 8

Each sentence is processed immediately, so if you have made a
mistake, the Access processor will tell you and reject the
sentence without any fuss.

Because the way in which you use Access to communicate with
the computer, Access is sometimes known as a query 7anguage
or an enquiry language. An enquiry language makes it much
easier to produce the reports and to answer the questions
which you need. Before the advent of enquiry languages, the
only solution to these problems was to have a programmer
write one or more special report-production programs for each
user; this would take many days (or even weeks) and would not
be as flexible as the Access enquiry language.

Some versions of the system use other names for the Access
language. You may know the language as Access, Recall,
RetrieVe, or Info/Access. Although we shall use the name
Access, most of the material presented here (unless indicated
otherwise) applies equally to all versions of the language.
If you go on to use enquiry languages on other computer
systems such as DOS or Unix, you may encounter other
languages such as SQL and dBase, and you will see how much
these languages have in common with each other and with
Access.

This subject is covered separately in the MB-Guide to ACCeSs
sentences and the MB-Guide to definitions and dictionaries.

Page 31

MB-Guide to The Pick system

I) TCl

The Tel - terminal control language - is made up of a large
numbers of verbs. These verbs (or commands which use the
verb) are typed in whenever the system is at TCl and waiting
for you to give a command. Each verb does something special
and a number of options are available to extend the main
action of the verb.

We have already met a number of the commands - or verbs -
which you use to control the Pick system.

There is a slight, almost academic difference between a verb
and a command in that the verb is the first - and most
important - word, such as:

COpy

whereas a command consists of a verb plus some other
information, such as:

COPY STOCK 1000

This set of verbs and commands make up what is known as Tel,
the term ina I contro I language.

You can issue any TCl command whenever the system displays
the prompt:

When the system is waiting for you like this, it is said to
be at TeL or at TeL level.

The TCl language is the fundamental means of using the
system. The commands within the TCl language provide a large
number of facilities, and we do not have space to discuss
them all here. Included amongst the Tel facilities are:

* Creating, maintaining and deleting accounts, files and
items;

* Enquiring and producing reports about accounts, files
and items;

* Handling the backing storage device;

* Transferring data between the backing storage device
and the main memory;

* Setting and enquiring about the status of the system;

* logging off and logging to other accounts;

* Performing simple arithmetic operations;

* Executing Basic programs to perform specific
application requirements.

The MD entries for the Tel verbs are just ordinary Pick

Page 32

MB-Guide to The Pick system

items. You can look at the items on your MD. There is
nothing mysterious about their content. If you look at any
of the MD items for the verbs, you will see that they all
have the letter P as the first letter of attribute 1.
Because verbs are simply items on the NO you can remove verbs
by deleting the item and you may rename verbs by saving the
item under another name. Any changes to the verbs on your MD
should only be made by the system manager who is responsible
for your computer system.

Strictly speaking, there are of five types of TCl command:

1) Access verbs, such as lIST, SORT, COUNT.

2) TCl I verbs - those which do not require the name of a
file - such as DUMP, POVF, DTX, XTD.

3) TCl II verbs - those which do require a file name -
such as EDIT, COPY, JET-EDIT.

4) Procs: these provide additional facilities not offered
by the standard Pick TCl verbs, such as CT, lISTDICT,
LISTFIlES.

5) Catalogued programs: these are Basic programs which
have been presented in such a way that they can be
invoked simply by typing the name of the program. These
are almost always specific to an installation.

It is not necessary for you to know the distinction between
the various types, and most users are not concerned whether a
certain feature is provided by a system routine - such as
Access or TCl I and TCl II verbs - a Proc or a catalogued
program.

You can use the lISTVERBS command if you want to know what
verbs are available to you. The lISTVERBS command shows all
the verbs which are available on the account.

The reference literature for your own system will give full
details of this topic.

6.1 COpy verb

The COpy verb is particularly valuable because it allows the
user to copy items from one file to another.

The general form of the command is:

COpy source.file source. item. list (options)

where: source.file is the name of the file from which the
items are to be taken, and source. item. 7ist is the 1 ist of
item-ids of the items which are to be copied. If the
source.file is missing, then the process will abandon. If
the source. item. list is missing, then the process will ask
for the ITFM NAMF. If the source. item.list is * then all the
items will be taken from the source.file.

Several options are available, of which the most

Page 33

MB-Guide to The Pick system

frequently-encountered are:

D to delete the source items after a successful copy.
This cannot be used with the T or P option.

N to suppress the pause at the end-of-page when
displaying on the terminal with the T option.

a to overwrite an existing item on the target file with
the same item-id. This cannot be used with the T or P
option.

P to print the items on the printer. This is how you can
print the contents of the items on a file.

T to display the items on the terminal. This is how you
can display the contents of the items on a file.

Some examples are:

COPY FILEl *
to copy all the items from FILEl to another file.

COpy FILEl * (T
to display all the items from FILEl on the terminal.

COPY FILEl ITEMl ITEM2 ITEM3 ITEM4
to copy the four specified items from FILEl to another
file.

COPY FILEl ITEMl ITEM2 ITEM3 ITEM4 (T
to display the four specified items from FILEl on the
terminal.

COPY FILEl ITEMl ITEM2 ITEM3 ITEM4 (P
to print the four specified items from FILEl on the
printer.

COpy FILE1 ITEM1 ITEM2 ITEM3 ITEM4 (D
to copy the four specified items from FILE1 to another
file and delete the source items when they have been
successfully copied.

A select list may feed the COPY statement:

SSELECT FILE1 WITH BALANCE = "0'
COpy FILE (D

to copy those items which satisfy the criterion
(BALANCE = "0") to another file and delete the source
items when they have been successfully copied.

Unless the T and P options are used, the process assumes
that the items are to be copied to a target.file and asks for
the name of the target.file and the target. item. list of the
items:

TO:

The user must then type in the destination of the items.
There are several possible responses:

Page 34

MB-Guide to The Pick system

1) Response 1:

<Return>

in which case the items will be displayed on the terminal
(as with the T option).

2) Response 2:

(target.file

For example:

(FILE2

in which case the items will be copied to the target.file
FILE2 where they will be retained with their original
item-ids. If the 0 option has been specified, then any
existing item-ids on the target.file will be overwritten.
Otherwise, a message will be displayed and the item will be
ignored.

NOTE THE OPEN BRACKET TO INDICATE THAT A FILE NAME FOLLOWS.

3) Response 3:

(target.file target. item. list

For example:

(FILE2 ITEMA ITEMB ITEMC

in which case the item-ids in the target. item. list - ITEMA,
ITEMB, ITEMC - will be used to retain the items on the
target.file FILE2.

NOTE THE OPEN BRACKET TO INDICATE THAT A FILE NAME FOLLOWS.

4) Response 4:

target. item. list

For example:

ITEMA ITEMB ITEMC

in which case the item-ids in the target. item. list will be
used to retain the items on the source.file.

There should be a one to one correspondence between the
item-ids in the source.item.list and those in the
target. item. list.

Note that only the open bracket distinguishes the form:

(FILE2 ITEMA ITEMB ITEMC
from:

ITEMA ITEMB ITEMC ITEMD

Page 35

MB-Guide to The Pick system

If the open bracket is omitted, the response will be assumed
to be of the second type and the items will be copied back on
to the source.fi1e. THIS IS A COMMON SOURCE OF ERROR.

6.2 CT / LIST-ITEM verbs

There are several verbs for printing and displaying the
contents of the items on your files. These are used in
commands such as:

CT fi1e.name item.id
to display the contents of the item on the Terminal
screen.

>CT STOCK 1000

1000
001 DESK, GREEN-BLUE, ASH
002 8
003 MN/17/81
004 5600
005 30
006 2000
007 9278

CT fi1e.name item.idl item.id2
to display the contents of several items on the screen.

CT fi1e.name *
to display the contents of all the items which are held
on the file.

CT fi1e.name item.id (P
to print the contents of the item on the printer.

CT fi1e.name * (P
to print the contents of all the items which are held on
the file.

CT DICT STOCK DESCRIPTION
to display the contents of the DESCRIPTION dictionary
definition item for the STOCK file.

LIST-ITEM fi1e.name 'item.id'
to display the contents of the item on the screen.

LIST-ITEM fi1e.name
to display the contents of all the items which are held
on the file.

LIST-ITEM fi1e.name (P
to print the contents of all the items which are held on
the file.

SORT-ITEM file.name (P
to print the contents of all the items which are hA1d on
the file. The report will be sorted into order of the
item-ids.

Page 36

MB-Guide to The Pick system

6.3 TCl options

There are a number of options which can be applied to the
TCl commands. The range and action of most options vary
according to the particular verb, whilst some options are
available with most verbs. For example:

(P

may be used in a command such as:

lIST STOCK (P

and will direct the output from this and almost any command
to the printer, instead of displaying the output on the
screen, and:

(N

as in:

lIST STOCK (N

will suppress the normal end-of-page pause when you are
displaying output on the screen.

These and many other options may be added to the TCl
commands which you will use. You will become familiar with
the options which are associated with the TCl commands which
you will use. If you are uncertain, the reference manuals
for your system will indicate the options which are available
with each command and what effects those options have.

6.4 Editor

The Pick editor is a line editor and will allow the user to
edit any item on any file. It is particularly useful for:

* Creating and maintaining Basic programs and Procs.

* Creating and maintaining Access attribute-definitions
on the DICT of your data files.

* Creating, changing and deleting test data items. Real
data items will always be maintained by the programs
within your application system.

The Editor is invoked by Tel commands such as these:

EDIT MYPROGS PROG01

EDIT MYFILE ITEM1 ITEM2 ITEM6

EDIT MYPROGS *
SSELECT MYPROGS = "[AMEND]"
EDIT MYPROGS

If you omit the item list and no select list is available,

Page 37

MB-Guide to The Pick system

then the editor will ask you for:

ITEM ID:

If you invoke the editor with a list of items to be
processed, as in the first two examples above, then, when the
editing of an item is terminated (with an FI or FD command),
the next item in the list will be submitted for editing until
the list is exhausted.

We discuss the Editor in more detail in the MB-Guide to
Using the Editor, and in your reference literature.

6.5 Notes about the Pick editor

An editor command may be entered in either lower case or
UPPER CASE. So that:

.DE999
and:

.de999

have the same effect.

The displayed output from an editor command, such as:

.R999/abc/def/

may be suppressed by putting a full stop before the command .

or:
. R999/abc/def/

.r999/abc/def/

in which case the lines will not be displayed as they are
changed.

6.6 EDIT commands

. n

In this and the following sections, we present a summary of
the Pick editor commands which you will encounter. We look
first at the more frequently used EDIT commands. We show the
dot prompt with these commands, although the prompt is
displayed by the Editor and is not entered as a part of the
command .

move the pointer to line number n. this is identical to the
Gn command .

. <Return>

. A

• B

advance the pointer a line at a time.

During a sequence of data lines following an I or R command,
a <Return) indicates the end of the data 1 ines .

repeat the last L command again .

Page 38

MB-Guide to The Pick system

move the pointer to the bottom of the item, the EOF or EOI .

. DE{n}/sssss/{p{-q}}
delete all those of the next n lines, including the current
line, which contain the string sssss in columns p to q
inclusive. For example:

.DE5/HELP/
will delete everyone of the next five lines which contains
the character string HELP. The final delimiter may be
omitted:

.DE5/HELP
unless a range of columns is specified:

.DE7/HELP/l0-99

.DE

. DEn

.DE7

. DEn/

.DE7/

. EX

. EXK

will delete everyone of the next seven lines which contains
the character string HELP 2 anywhere in columns 10 to column
99 inclusive.

If you omit the number of lines:

. DE/PRINT/

then the action differs according to the implementation.

On some, this will delete the current line if it contains
the specified string, the command is thus interpreted as:

.DE1/PRINT/

On others, the editor will scan forwards from the current
line, deleting the first line which is found to contain the
string.

The following special forms of this command are frequently
used:

Delete the current line .

Delete n lines starting with the current line. For example:

will delete the current line and the next 6 lines .

Display and delete n lines starting with the current line.
For example:

will display and delete the current line and the next 6
lines .

Exit from the editor and abandon the processing of the
current item .

Page 39

• F

. FD

. FI

. FS

. Gn

. I

MB-Guide to The Pick system

Exit from the editor and abandon the processing of any
further items in the list item ids .

Move the pointer back to the top of the item and incorporate
any amendments made, and then continue with the editing of
the item .

Delete the current item from disk and terminate the editing
of the item.

If an item has been accidentally deleted by means of the
editor FD command, then it may be recovered by using the
RECOVER-FD verb, as discussed later .

File the item, implement any changes made to the item, write
the item back to the disk, overwriting the original version
if there is one. If you are editing a list of items, then the
next item will be submitted to the editor for processing,
otherwise the editor processing will terminate .

Implement any changes made to the item, write the item back
to the disk, overwriting the original version if there is
one, and continue with the editing process, unlike FI which
exits from the editor.

There are many extensions to these FD I FI I FS commands,
but we do not have space to discuss them in detail here .

Move the pointer to line number n .

Prepare to insert one or more lines after the current line.

The editor will display a prompt of the form:

OOn+

to show that lines are being inserted after line number n.

You can then enter the new information, line by line, each
line being prompted by the same string:

OOn+

An input of null will terminate the insert action.

Care must be taken when it is required to insert blank
(null) lines. The situation may be solved by inserting lines
containing a dummy character string which is then replaced by
null, as illustrated here where we wish to insert three
blank (null) lines after line number 5:

Page 40

.G5

. I
005+ZZZ
005+ZZZ
005+ZZZ
005+
• F
.G6
.R3/ZZZ//
006
007
008

MB-Guide to The Pick system

<Return> only

.1 xxxxx
Insert the single line of data xxxxx after the current line.
There is a space between the I and the data. For example:

.1 PRINT "ENTER NEW ADDRESS"
will insert the line:

. Ln

.L20

PRINT '"ENTER NEW ADDRESS"

immediately after the current line .

Display n lines starting at the line following the current
line. For example:

will display the 20 lines following the current line. If you
omit the number of lines, then the editor will display the
next 1 ine onl y .

. L{n}/sssss/{p{-q}}
displays all those of the next n lines which contain the
string sssss in columns p to q inclusive. For example:

.L20/AREA/
will display those of the next 20 lines which contain the
string AREA in any position in the line .

. L5/AREA/6-12
will display those of the next 5 lines which contain the
string AREA within columns 6 to 12 of the line .

. L/AREA/
will scan the item and display the first line which was
found to contain the string AREA in any position in the line .

. L:xxxxx
Scan the item and display the first line found to begin with
the characters xxxxx.

6.7 ME command

The ME command will import (or merge) text from another item
into the current item. This is particularly useful for

Page 41

MB-Guide to The Pick system

copying text which you have prepared elsewhere .

. ME{n}/iiiii/{m}
will merge n lines from item
the same file as the current
number m in the source item.
immediately after the current
Here are some examples .

iiiii (which is to be found on
item), starting at the line
The text is inserted
line in the item being edited.

. ME5/ANDATA/10
will copy the 5 lines from the item ANDATA, starting with
1 ine 10 (that is, 1 ines 10, 11, 12, 13, and 14) and insert
them after the current line in the item which you are
editing. The item ANDATA will be unchanged. If you omit the
item id, like this:

.ME51110
then this will copy lines 10,11,12,13 and 14 from the
current copy of the item which you are editing and insert
them after the current line.

If the item is to be taken from another file, then the form:

.ME{n}(fffff {iiiii}){m}
will merge n lines from item iiiii on the file fffff,
starting at line number m, and insert them after the current
line in the item being edited. For example, the command:

.ME5(ALLPROGS UPDP)10
will copy lines 10,11,12,13 and 14 from the item with
item id UPDP on the file ALLPROGS.

6.8 R command

. R{n}

The R command is one of the most valuable Editor commands.
Its purpose is to change the text of the 1ine(s) of the
current item, replacing one string of characters by another .

allows you to type in n lines of information which are to
replace the next n lines of the item, starting with the
current line .

. R{n}/string1/string2/{p{-q}}
replaces the string stringl by the string string2 for the
first (left most) occurrence in columns n lines starting at
the current line.

Note the following points about this form of the R command:

1) If you omit the number of lines, then a value of 1 is
assumed. This is standard for the editor.

2) The strings may be of different lengths.

3) Either string may be null.

4) In the examples shown here, we use the I character to
separate the strings, although any character (other than
the colon and numeric digits) may be used. The

Page 42

MB-Guide to The Pick system

separator character must not appear within either
string.

5) If the character ~ is used within string1, it has the
effect of a wild-card character. However, the A command
described below may be used to override this wild card
effect.

6) An attribute mark, that is, <Ctrl> and A character,
within string2 will terminate the line at that point.

Here are some examples:

.R/WAGE/SALARY/
will replace the first occurrence of the character string
WAGE by the string SALARY in the current line .

. R5/WAGE/SALARY/
will replace the first occurrence of the string WAGE by the
string SALARY in the next five lines, starting with the
current line .

. R/WAGE//
will remove the first occurrence of the string WAGE from the
current line .

. R/ /WAGE/
will append the string WAGE to the right hand end of the
current line. The string of spaces must be longer than any
string of spaces which occurs within the line. The AP
command may also be used, as described below .

. R//WAGES/
will insert the string WAGE at the left hand end of the line .

. R/WAGE/SALARY/30-50
will replace the first occurrence of the string WAGE in
columns 30 to 50 (inclusive) by the string SALARY in the
current line .

. R5/WAGE/SALARY/30-50
will replace the first occurrence of the string WAGE in
columns 30 to 50 (inclusive) by the string SALARY in the next
five lines, starting with the current line .

. R/WAGE/SALARY/30
will replace the first occurrence of the string WAGE in
columns 30 onwards by the string SALARY in the current line .

. R/*/-/30-30
will replace any * in column 30 by the - character. Any *
elsewhere in the line will be ignored .

. R5/WAGE/SALARY/30
will replace the first occurrence of the string WAGE in
columns 30 onwards by the string SALARY in the next five
lines, starting with the current line .

. R999/'//30
will delete the 30th character from this and the next 998

Page 43

MB-Guide to The Pick system

lines. The ~ character here is the normal ~ above the figure
6 on the keyboard .

. R999/STopr /
will delete all the text beyond the word STOP in the current
line. The ~ character here ;s created by typing the
sequence:

<Ctr1> •

where ~ is the normal character .

. RU5/WAGE/SALARY/
either of these will replace all occurrences of the string
WAGE by the string SALARY in the next five lines, starting
with the current line .

. RU5/WAGE/SALARY/20-90
either of these will replace all occurrences of the string
WAGE by the string SALARY in columns 20 to 90 of the next
five lines.

6.9 Other commands

.T

• X

. XF

move the pointer back to the top of the item (line 000). any
amendments wh i ch have "",en made will not be seen unt i 1 an F
or FS command is issued .

cancel the effect of the last ME or R or I command .

is available on some implementations and will allow you to
cancel the effect of all changes made since the last F or FS
command.

6.10 EDIT commands: miscellaneous commands

. ?

. ?1

. C

in this section, we describe the remaining commands. You may
find them of use once you have mastered the elementary set
described earlier.

The editor prestore commands are discussed later .

display the current line number. On some implementations,
the file name and item id are also displayed. This is an
alternative to ?1 below .

display the file name and the item id of the item which is
being edited. On some implementations, the size of the item
and the current line number are also displayed. This is an
alternative to ? above .

display the column mask showing the column numbers. This is
useful when replacing a specific string in a specific
position.

Page 44

.Nn

. S?

. 5

MB-Guide to The Pick system

advance the pointer by n lines .

display a message showing the current size of the item being
edited, and the amount of workspace available for expansion
of the item. This is an alternative to ?S on some
implementations .

switch the line number display off and on .

. TB abc ... Z

. Un

. Z

. Zp-q

set tabulator stops at columns a, b, c and so on, allowing
the <Tab> key to be used to shift input text along to the
next available tab setting. This is useful when entering
Basic programs or tables of information to be processed by
Runoff .

move the pointer back n lines up the item. The command U,
without a numeric parameter, has no effect .

reset the zoning set by a Zp-q command and is equivalent to
Zl-999 .

display only columns p to q of the lines of the item. For
example:

.Zl-70
will truncate the displayed lines at column 70, although the
entire line will be considered when issuing commands such as
Land R.

set and unset a switch which indicates that the character A

is to be regarded as a normal keyboard character and not as
the attribute mark.

6.11 EDIT prestore commands

If you are using a complicated editor command over and over
again, then you may store the command and recall it when
required.

Any editor command can be stored by entering a P, followed
by the command to be stored. For example:

.P L23

will store the command L23. Some implementations need a
space before the command, others do not.

This stored command may then be activated by giving the
command Palone:

. P

Page 45

MB-Guide to The Pick system

and this will then have the same effect as issuing the
original command:

.L23

Up to ten stored commands may be active at anyone time,
each being identified by its store number: P, P1 through to
P9. PO and P are equivalent. The terms prestore and prestored
commands are used in this context.

Thus, we might prestore a command such as:

.P6 R999/!/./

and then invoke this, as and when required, by:

.P6

Most implementations usually apply the store command:

.P L23

on entry to the editor, so that the simple:

.P

command will display up to one screen full of data. The
contents of the other prestores will be as left when they
were last used on the current port. The PD command can be
used to check the contents.

All ten prestores are used in the same way, and each will
generally be used to store a separate command. For example,
let us imagine that we wish to change the string WAGE to the
string SALARY in attribute 7 of an item, then we might store
the commands:

.P1 G7

.P2 R/WAGES/SALARY/

and then every time you issue the command:

.P1

this will move the pointer to line (attribute) 7 of the
item, and:

.P2

this will change the string WAGE to the string SALARY.

It is poss-ib1e to store a sequence of several commands in
one prestore. This is done by separating the individual
commands by the <Esc) escape character:

The <Esc> character is entered by the ESCAPE key or by the
sequence <Ctr1>[on some keyboards.

Page 46

MB-Guide to The Pick system

An example of such a command might be:

.Pl G7[R/WAGES/SAlARY/

You may even program the Pick editor so that a particular
sequence recalls itself. For example:

.P1 R999/WAGES/SAlARY/[FI[P1

This is particularly useful when making a number of changes
to a list of items, a process which otherwise might need a
complex program to scan and change the items. This is
illustrated by the following sequence:

:EDIT PAYROll *
.Pl G3[R/PERSONNEl/P[F
.P2 G3[R/ADMINISTRATION/A[F
.P P1 [P2[FI[P3
.P

The effect of this sequence is change the string PERSONNEL
to P, the string ADMINISTRATION to A in attribute 3 of all
items on the PAYROll file.

6.12 RECOVER-FD

If an item has been accidentally deleted by means of the
editor FD command, it may be recovered by using the
RECOVER-FD verb immediately after the editor has terminated.
The RECOVER-FD verb requests:

INPUT ITEM ID*

to which you must enter the item id of the item which was
deleted. The item will be then be saved on the original
file. The state of the recovered item will be as prior to the
last use of the editor.

RECOVER-FD is a TCL verb and the recovery must be done
immediately after the deletion. If any other activity is
performed before the RECOVER-FD is issued, then the item may
be irretrievable.

6.13 TCl stacker

The TCl stacker - sometimes called the dot processor - is a
feature which allows you to recall the last TCL command which
you entered and issue it again. A TCL stacker is available
on many implementations of the Pick system.

The actual commands which you use to recall and amend your
commands will differ, depending upon which system you are
using. Details of what your TCL stacker can do will be
displayed if you enter the command:

. ?

Those presented here are typical.

Page 47

MB-Guide to The Pick system

The Tel command:

• 1

will recall the last Tel command which you entered; the
command:

.2

will recall the next-to-last Tel command which you entered,
and so on. Elsewhere, you might encounter the commands:

and:
.X2

for the same purpose. In some cases, the command will be
displayed and then you may amend the command by means of the
<Backspace> key or by typing extra text on the end.

If you want to see what commands are stored, then the
command:

.L

will display the current contents of the stack. Up to 20
Tel commands will be held at anyone time. A command such
as:

.l9

will display the contents of entry number 9 in the stack.

If you want to edit the contents of the stack, then the
command:

• E

will pass the current contents of the stack for you to amend
by means of the Editor.

The Tel stacker may also have facilities for amending the
commands in the stack and for saving specific commands (or a
sequence of commands) permanently on a file, and there may
also be facilities for recalling such saved commands later.

Although its general principles are the same, the contents
of the Tel stacker on Advanced Pick are handled differently
from those outlined here.

Page 48

MB-Guide to The Pick system

7 Basic

Basic is a version of the original Dartmouth Basic which has
been extended to allow the programmer to take advantage of
the features of the Pick system. There are major differences
between Basic and the dialects which are available in other
environments such as DOS.

Each Basic program is held as a separate item on a file, and
comprises a sequence of Basic statements, the source
program. The source program is created and maintained by one
of the standard editors and converted into an executable
form, the object program, by the compiler. This object
program can then be executed, whenever required.

The language is covered in more detail in a number of
MB-Guides including the MB-Guide to the Basic 7anguage.
Here, we shall look at a few general points about the Bas;c
language.

7. 1 Look; ng at Bas i c

Diagram 1 shows a typical Basic program - which I've called
CALC01.

PROGFILE
CALCOl
* Program to demonstrate some features
* of the Basic programming language

* * Version A
**
10 PRINT 'What is your name':

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025 33
026
027
028
029
030
031
032 99

INPUT NAME
IF NAME='END' THEN STOP
PRINT 'Hello, ':NAME:'!'

* Ask for the range of numbers
22 PRINT 'What is the end of the range of numbers':

INPUT FINISH
IF FINISH='END' THEN STOP
IF NUM(FINISH) THEN GOTO 30
PRINT 'You must enter a number'
GOTO 22

30 * Clear the screen
PRINT @(-1):

* Calculate and display the numbers
PRINT 'Square root', 'Number', 'Square', 'Cube'
PRINT
FOR X=l TO FINISH

PRINT SQRT(X), X, X*X, X*X*X
NEXT X
PRINT

* Another range of numbers?
PRINT 'Do you want more numbers,
INPUT RESPONSE
IF RESPONSE='YES' THEN GOTO 22
IF RESPONSE='END' THEN GOTO 99
IF RESPONSE NE 'NO' THEN GOTO 33
PRINT

, :NAME:

Page 49

MB-Guide to The Pick system

034 END L033 PRINT 'Thank you, ':NAME

Diagram 1: A Basic program -------------------------------

This program has been established as an item on a file
called PROGFILE where it has been saved with the item-id
CALC01. When we execute this program, the screen display
might look like that in Diagram 2.

What is your name?Bill
He 110, Bi 11 !
What is the end of the range of numbers?14

Square root Number

1 1
1 .4142 2
1.732 3
2 4
2.236 5
2.4494 6
2.6457 7
2.8284 8
3 9
3.1622 10
3.3166 11
3.4641 12
3.6055 13
3.7416 14

Do you want more numbers, Bill?NO
Thank you, Bill

Diagram 2: The program output

Square

1
4
9
16
25
36
49
64
81
100
121
144
169
196

Many of the statements are self-explanatory, but the
following points are of interest:

Cube

1
8
27
64
125
216
343
512
729
1000
1331
1728
2197
2744

* The numbers shown down the left of this list (001 to
034) are the 7ine-numbers of the individual lines in the
program, shown only when we display the source program.
These numbers are not a part of the text of the program
itself .

* The lines which begin with an asterisk are comments and
we include these to explain what the program is doing.
The computer ignores these comments when it is executing
the program.

* Some lines begin with a number; these are statement
7abels and they serve as destinations when we want to
jump about the program with GOTO and other statements.
Here we use statement labels:

Page 50

10
22
30
33
99

MB-Guide to The Pick system

Many programmers have reservations about the use of
GOTO statements. We address this in a moment, when we
look at an alternative version of the program.

* A PRINT statement such as:

PRINT 'What is your name':

displays the message:

What is your name

on the screen. The final colon holds the cursor in
position after the word name.

* The INPUT statement:

INPUT NAME

displays a question mark and waits for the user to type
in some information, and when he/she presses the
<Return> key, that information will be placed in a
variab7e called NAME.

* The IF statement:

IF NAME='END' THEN STOP

tests whether the contents of the variable called NAME
(just typed in by the user) is the word:

END

and, if so, the STOP statement is executed and the
program terminates.

* The statement:

PRINT 'Hello, ':NAME:'!'

again displays something on the screen. This time, it
displays a message made up of the word:

Hello,

followed by the contents of the variable called NAME,
followed by the exclamation mark; the colon is used to
join the parts together. So, when our user entered his
name as:

B ill

this PRINT statement displayed:

Hello, Bill!

* The statement:

IF NUM(FINISH) THEN GOTO 30

Page 51

MB-Guide to The Pick system

can be read as "if the information which is stored in
the variable called FINISH is a number, then go to the
statement labelled 30, otherwise carryon to the
following statement".

* The statement:

GOTO 22

causes the processing to jump to the statement labelled
22 (at line number 011). Note that this refers to the
statement label and not the sequential line-number 022.
Statement labels may be numeric, as here, or they may
be alphanumeric, as in the program in Diagram 3 below.

* The statement:

PRINT @(-1):

is a special usage of the PRINT statement which clears
the screen.

* The statement:

PRINT 'Square root', 'Number', 'Square','Cube'

is another form of the PRINT statement which displays
the heading line.

* The next group of statements:

FOR X=l TO FINISH
PRINT SQRT(X), X, X*X, X*X*X

NEXT X

are particularly interesting because they cause the
statement at line 23 to be repeated for the number of
times requested by the user.

* The FOR statement and the NEXT statement will always
appear as a pair like this, controlling the repetition
of the statements in between.

* If our user had answered 32 when the program asked:

What is the end of the range of numbers

then the number 32 would be stored in the variable
called FINISH, and the FOR and NEXT statements would
cause the statement:

PRINT SQRT(X), X, X*X, X*X*X

to be repeated, with the variable called X taking all
the values from 1 to 32.

* In processing the PRINT statement, the program will
calculate the three values SQRT(X) (that is, the square
root of the number held in X), X times X (that is, X
squared), and X cubed, and then display these on one

Page 52

MB-Guide to The Pick system

line.

* At the moment when the variable called X contained the
number 12, the displayed line would show the four values
3.4641, 12, 144, 1728.

* The final statement:

END

indicates that this is the end of the program and, when
it is executed it causes the program execution to stop
(exactly like the STOP statement which we saw earlier).

* We can put spaces within the statement; such
indentation makes it easier to read.

* The text of the statements is normally entered in
upper-case letters.

Although this program works perfectly well, it would be much
easier to understand and to amend if it were written as a
structured program. This is possible with Basic, as this
alternative version of the program illustrates. Program
CALC02 in Diagram 3 shows the same processing written as a
series of subroutines and using some of the program
structures which Basic offers. The use of subroutines
greatly clarifies the action of the program and makes it
easier to read and understand; each separate subroutine is a
self-contained piece of coding which goes about its business
without affecting anything else; only the variables NAME and
FINISH are used to pass data between the main processing loop
(in lines 006 to 018) and the subroutines (in lines 021
onwards). If we ever need to change our program, we can
happily amend the coding in the subroutines knowing that we
are not likely to affect other parts of the program, provided
that the data going to and from the subroutines is as
before. It would be less easy to amend the program CALC01.

To reach a subroutine, we use a statement such as:

GOSUB GET.USER.NAME

and this passes the flow of our processing down to the
statement labelled GET.USER.NAME. When we next encounter
the:

RETURN

statement, the flow of processing is transferred back to
where it came from and continues from the statement following
the GOSUB GET.USER.NAME statement.

In this program, we make great use of a structure known as a
loop. This has the general form:

LOOP
action A

UNTIL condition is true DO
action B

Page 53

MB-Guide to The Pick system

REPEAT

The general effect of the LOOP structure is:

* Carry out action A,

* Test the condition,

* If the condition is true, then leave the LOOP and carry
on with the statement following the REPEAT;

* If the condition is not true, then carry out action B
and then go back to the beginning of the LOOP once more.

Look at the coding starting at the statement labelled
GET.USER.NAME and follow the action of the LOOP there.

Some of the conditions in our program are fairly
complicated, for example:

UNTIL (NUM(FINISH) AND FINISH>l) OR FINISH='END' DO

will repeat the LOOP until the data entered by the user (and
stored in the variable called FINISH) is either:

* A number and greater than 1 (this is a new condition
that I've imposed, so that the user doesn't enter 1 or a
number less then 1),

or:

* The word END.

You will notice that, unlike CALeOl, we have very few GOTO
statements in this program. This makes it easier to follow
the flow of the processing, and enables us to discover how we
reached a certain point in the processing (we might need
this information if something has gone wrong with the program
and it is not doing the right thing), There is, in fact,
only one GOTO statement in this program - at line 013; this
handles what is known as an exception condition (when the
user has asked to abandon the processing) and allows us to
leave the main process and go to the end of the job.

PROGFILE
000 CALC02
001 * Program to demonstrate some features
002 * of the Basic programming language
003 *
004 * Version 2 - using subroutines
005 **
006 GOSUB GET.USER.NAME
007 GOSUB WELCOME
008 LOOP
009 GOSUB GET.RANGE
010 UNTIL FINISH='ENO' 00
011 GOSUB CALCULATE
012 GOSUB ASK.FOR.MORE
013 IF RESPONSE='NO' THEN GOTO FINISH

Page 54

014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

MB-Guide to The Pick system

REPEAT
FINISH: * End of job

PRINT
PRINT 'Thank you,
STOP

, :NAME

**
* Subroutines
GET.USER.NAME: ** Get user's name ********************

LOOP
PRINT 'What is your name':
INPUT NAME; NAME=TRIM(NAME)

UNTIL NAME NE " DO
PRINT 'You must enter your name'

REPEAT
RETURN

WELCOME: ** Print welcome message ********************
PRINT 'Hello, ':NAME:'!'
RETURN

GET.RANGE: ** Find range of numbers ******************
LOOP

PRINT 'What is the end of the range of numbers':
INPUT FINISH

UNTIL (NUM(FINISH) AND FINISH>l) OR FINISH='END' DO
PRINT 'You must enter a number'

REPEAT
RETURN

CALCULATE: ** Calculate and display the range ********
PRINT @(-l):'Square root', 'Number', 'Square', 'Cube'
PRINT
FOR X=1 TO FINISH

PRINT SQRT(X), X, X*X, X*X*X
NEXT X
RETURN

ASK.FOR.MORE: ** Ask if there are more numbers *******
LOOP

PRINT
PRINT 'Do you want more numbers, ':NAME:
INPUT RESPONSE; RESPONSE=TRIM(RESPONSE)

UNTIL RESPONSE='YES' OR RESPONSE='NO' DO
PRINT 'Enter YES or NO'

REPEAT
RETURN
END

Diagram 3: Structured program using in-line subroutines ---

7.2 Using a Basic program

The development of a Basic program goes through several
stages, and the programmer will use a standard set of Pick
tools. Each program must be:

1) Written and saved as an item on a file. The Editor is
used for this stage:

EDIT PROGFILE CALC01

2) Comp i 1 ed :

BASIC PROGFILE CALC01

Page 55

MB-Gu;de to The Pick system

3) Executed:

RUN PROGFILE CALC01

Whenever you make any changes - whether it be to correct a
mistake in your calculations, or to add new features to the
program - you must go back to stage (1) and change the source
version of your program.

* Each Basic program is created and saved as an item on a
program file. This item is your source program and
consists of statements in the Basic language. We have
already seen the source code in item CALC01 on the file
PROGFILE.

* The source program must be converted into a form which
can be executed. This translation process is known as
compiTation and it performed by a piece of software
known as the campi Ter. This executable version of your
program ;s produced by the compiler and is called the
object program. This will be created as item CALC01 on
the DICT section of the file PROGFILE, in our example.
If you have made any mistakes, such as spelling the word
PRINT incorrectly, then the compiler will reject these
and no object program will be produced.

At this stage, there will be two versions of your program:
the source version, which you can read and understand, and
the object version, which the system can understand and
execute.

You write and save
your program

I EDIT

Basic source program
CALC01

which you can read
and understand

BASIC
Object version

CALC01
which the operating

system can understand
and execute

I RUN

The system
executes your program

If a Basic program uses externaT subroutines, such as are
called by statements of the form:

CALL CALC.SUB.01
or:

CALL CALC.SUB.02(VALUE,RATE,2)

then the external subroutine(s) must be catalogued. This is
achieved by commands such as:

CATALOG PROGFILE CALC.SUB.01

Page 56

MB-Guide to The Pick system

and places a pointer to the object code on the MD so that
the subroutine can be located when required.

DICT
section

data
section

Program file

ICALC01

MD

Of L_CO_1 _-'

Program file

DICT ~v
section~ L __ IC_MA ___ L=C=O=1===~ ______ ~

data
section CALC01

source
program

Frames on disk

Object
program

Frames on disk

Page 57

MB-Guide to The Pick system

7.3 Basic statements

7.4

The Basic language offers the following statements:

EQUATE MAT READV

* EXECUTE MATREAD READVU
ABORT EXIT MATREADU RELEASE
BEGIN CASE FILE MATWRITE REM
BREAK FOLD MATWRITEU RETURN
CALL FOOTING NULL REWIND
CAPTURING FOR I NEXT ON ... GOSUB ROOT
CASE GO I GOTO ON ... GOTO RQM
CASING GOSUS OPEN SELECT
CHAIN HEADING OUT SLEEP
CLEAR IF PAGE STOP
CLEARFILE IN PRECISION SUBROUTINE
COMMON INCLUDE PRINT TCLREAD
COMMON Icom! INPUT PRINTER UNLOCK
CRT INPUT @ PROCREAD WEOF
DATA INPUTERR PROCWRITE WRITE
DEBUG INPUT ERROR PROGRAM WRITET
DELETE INPUTNULL PROMPT WRITEU
DIMENSION INPUTTRAP READ WRITEV
ECHO LOCATE READNEXT WRITEVU
END LOCK READT
ENTER LOOP! REPEAT READU

The reference literature for your own system wi 1 1 give full
details of this topic.

Basic functions

The Basic language offers a great many standard functions
for performing specific processing. These are called and
used as required, and do not have be included or declared as
with some languages.

@ COUNT ICONV OCONV SPACE
ASS DATE INDEX PWR SQRT
ACCESS DCOUNT INSERT REM STR
ALPHA DELETE INT REPLACE SYSTEM
ASCII DTX LEN RND TAN
CHAR EBCDIC LN SEQ TIME
COLl EXP MOD SIN TIMEDATE
COL2 EXTRACT NOT SORT TRIM
COS FIELD NUM SOUNDEX XTD

The reference literature for your own system wi 1 1 give full
details of this topic.

Page 58

MB-Guide to The Pick system

8 Procs

The original purpose of the Proc language was to provide a
means of writing a processing sequence which could be used to
invoke one or more TCl commands, and, together with the now
obsolete batch processor which allowed users to add, change
and delete items, it served all the fundamental needs of the
technical user in the very first implementations of the Pick
system. Just as a processing sequence written in the Basic
language is called a program, so a processing sequence
written in the Proc language is called a Proc. A great many
of the fundamental utilities, such as:

lISTFIlES
lISTDICT file.name
FILE-SAVE

are implemented as Procs. Since its inception, the Proc
language has been expanded to encompass many programming
features. As a programming medium, however, it has many
limitations and it has largely been superseded by the Basic
language. Full details can be found in the MB-Guide to
Creating and using Procs and in your reference literature.

8.1 Proc versus Basic

Since Basic is a very powerful programming tool, why is
there a need to persist with Procs? There is still a
requirement for the technical user to be familiar with Procs
for several reasons, and in certain environments, there is a
strong case to be argued for the use of simple Procs by the
non-technical user.

let us imagine that a user has a frequent need to dump a
copy of the STOCK file to backing storage. The TCl commands
to carry out this action are shown in sequence (a) of the
diagram below. To automate the process, it is much quicker
and simpler to create a Proc, such as that in sequence (b),
rather than create the equivalent Basic program, as shown in
(c), since the program must be compiled before use and would
occupy much more space (for both the source and the object
forms of the program) than would the Proc.

a b c
Tel commands A Proc A Basic program

>T-ATT PQN EXECUTE 'T-ATT'
>T-REW HT-ATT EXECUTE 'T-REW'
>T-DUMP STOCK P EXECUTE 'T-DUMP STOCK'
>T-REW HT-REW EXECUTE 'T-REW'
>T-CHK P EXECUTE 'T-CHK'
>T-REW HT-DUMP STOCK EXECUTE 'T-REW'
>T-DET P EXECUTE 'T-DET'

HT-REW END
P
HT-CHK
P
HT-REW
P
HT-DET

Page 59

MB-Guide to The Pick system

I P

The use of a Proc will save the end-user a lot a typing and
avoid the chance of making mistakes when the Proc becomes a
part of the live application system.

The main advantages of the Proc language over Basic are:

+ A Proc is a quick and simple means of issuing (and
reissuing) a sequence of one or more Tel commands and/or
Access sentences.

+ A Proc is fairly simple to create, amend and use.
Non-technical users may need a little practice with the
editor and with the concept of Procs before they get it
right.

+ The Proc processor is interpretive and the Proc does
not have to be compiled each time it is changed and may
be used straightaway.

The main disadvantages of the Proc language, as compared to
Basic are:

Because the Proc processor is interpretive, any errors
will only be revealed as an attempt is made to execute
an offending statement.

It is not easy to read and comprehend a Proc. Even
with copious comments, the action of the statements can
seem obscure or arcane.

Since there are no structured programming facilities
and all processing control is achieved by means of GOTO
and subroutine call statements, maintenance can be
difficult, not to say dangerous.

Only simple arithmetic can be performed, adding /
subtracting a constant from a value held in the input
buffer.

Proc has few data and string handling capabilities.

The concept of program variables is replaced by a set
of dynamic-array buffers in which each element is
identified by its position. This is prone to errors and
mistakes.

All these points - especially the last one - make it very
difficult (and daunting) for anyone attempting to modify
someone else's (or even their own) Procs.

8.2 The structure of a Proc

A Proc is an item consisting of a sequence of Proc
statements. The statements are written one statement to one
attribute (or line) of the item.

let us look at a simple Proc which will issue the Access

Page 60

MB-Guide to The ~ick system

sentence which we would type in as:

SORT STOCK WITH LEVEL = "0" DESCRIPTION LEVEL

We might be in a situation where one of our users, Sally,
needs to produce this report every day and, in order to make
her life simpler, she has asked us to set up a Proc which
will allow her to type in:

SALLYOOl

and the report will be produced. The Proc might look like
this:

MD
000 SALLYOOl
001 PQ
002 H SORT STOCK WITH LEVEL = "0" DESCR LEVEL
003 P

There are three important elements in this Proc:

* The PQ statement tells the system that this is a Proc;

* The Proc statements beginning with the letter H build
up a string of characters in a storage area known as the
output buffer. Each H statement appends another string
of characters to the end of the output buffer. We could
build up the output buffer by issuing one long command
(as in the first example), or by using a sequence of
shorter strings.

* Finally, the P statement processes the command which
has been constructed in the output buffer.

We would create a Proc such as this and save it on the MD,
with the item-id SALLYOOl in this case. Whenever she needs
to produce the report, Sally will type in the command:

SALLYOOl

and the Access report will be produced immediately.

A Proc may issue several TCL commands and/or Access
sentences, like this:

MD
000 SALLY002
001 PQ
002 H SORT STOCK WITH LEVEL = "0" DESCR LEVEL LPTR
003 p
002 H SORT STOCK WITH LEVEL < "0" DESCR LEVEL LPTR
003 p
002 H SORT STOCK WITH LEVEL > "0" OESCR LEVEL LPTR
003 P
002 H OFF
003 p

Page 61

8.3

MB-Guide to The Pick system

Procs can - and do - become more complicated, offering
facilities for:

* Displaying and printing messages and results.

* Carrying out tests and decisions on the data.

* Picking up data from the TCl command which invoked the
Proc.

* Asking the user for data as the Proc executes.

Indeed, Procs are able to perform many of the actions of a
Basic program ... but, as we have said, a Basic program is
much easier to read, write and maintain than would be the
equivalent Proc.

Proc statements

The Proc language offers the following statements.

+n H{x}« 0 ST OFF / ON
-n H{x}< P STOFF
A{s}{n}{,m} Hx PH STON
B IF A{n}{ ,m} PP T
BO IF {E} A{n} PQ Uxxxx
C IF {E} E PW Xix}
D{n}{,m}{+} IF {E} S PX (f i)
F IHx RI{n} [f iJ
G n IN{p} RO []
GO n IP{p} Sn
GO A{n} IS{p} SP
GOTO n IT SS

The reference literature for your own system will give full
details of this topic.

Page 62

MB-Guide to The Pick system

9 Runoff

The Runoff text processing system is a standard part of the
Pick system, and is provided for the production of documents,
manuals, specifications, and any similar printed matter.

It can also be used as a tool within Basic programs,
displaying and/or printing messages, explanations, help texts
and so on. Using Runoff in this way reduces the programming
effort in formatting and outputting the text, and the fact
that the text is held outside the program makes it more
flexible and easier to amend the text at any time.

A document may consist of a single piece of text, or it may
be composed of a number of smaller clauses and paragraphs
joined together into a single document as it is output.

Each document - or section of text which is to be included
in another document - is created as an item on a file. The
individual lines (or attributes) of the item comprise:

1) The text which is to appear in the document, and

2) Commands which control the format and the appearance of
the document.

Runoff is a tool for outputting the document. It does not
include an input facility, and one of the standard editors
must be used for this activity to create the text item for
Runoff.

We only have space for a brief summary of Runoff and its
features. A full description of Runoff can be found in the
the reference literature for your system and in the MB-Guide
to Runoff.

A typical item, may look like this:

Input text
.* Demo document
This is typical of the format of a Runoff document. It is

made up of lines of text and (optionally) Runoff command
lines. Some commonly-encountered Runoff commands are:
.INDENT MARGIN 5
.NOFILL

.NOJUSTIFY

.FILL

.INDENT MARGIN

.INDEX

.JUSTIFY

.NOFILL
. INDENT MARGIN -5
.FILL
.JUSTIFY
All Runoff commands begin with a dot in the first position.

Any line which does not begin with a dot is assumed to be a
line of text for inclusion in the document.
Unless you include Runoff commands to indicate otherwise,

Runoff will automatically:

Page 63

MB-Guide to The Pick system

.INDENT MARGIN 5

.PARAGRAPH -2
* fill up the lines to the required length,
* pad the lines with spaces so as to justify the right

margin (that is, make the right margin even).
* capitalise the first letter of each sentence.
* indent the first line of each paragraph by five spaces.
* produce 60-character long lines.
* produce 23 lines per page for a document which is

displayed on the screen (or 60 lines per page for printed
documents), taking these details from your terminal
characteristics .
. INDENT MARGIN -5
.PARAGRAPH 0
Runoff will also put two blanks between sentences.
The lines of text may be as long or as short as necessary.

If the lines of text follow a .FILL command, then the text
will be rearranged so as to fill up the line.
text which follows a .NOFILL command (such as the list

above) will be left exactly as it was typed in by the author.
If a line starts with a space, then Runoff interprets this

as a new paragraph.

This document would be created as an item on a file - using
one of the editors, using a command such as:

EDIT MY. TEXT SAMPLE

When this item is processed with a command such as:

RUNOFF MY. TEXT SAMPLE

to display the document, or:

RUNOFF MY.TEXT SAMPLE (P

to print the document, then the final document would look
like this:

Output document
This is typical of the format of a Runoff document. It

is made up of lines of text and (optionally) Runoff command
lines. Some commonly-encountered Runoff commands are:

.NOJUSTIFY

.FILL

.INDENT MARGIN

.INDEX

.JUSTIFY

.NOFILL

All Runoff commands begin with a dot in the first
position. Any line which does not begin with a dot is
assumed to be a line of text for inclusion in the document.

Unless you include Runoff commands
otherwise, Runoff will automatically:

* Fill up the lines to the required length,

Page 64

to indicate

MB-Guide to The Pick system

* Pad the lines with spaces so as to justify the right
margin (that is, make the right margin even).

* Capitalise the first letter of each sentence.

* Indent the first line of each paragraph by five spaces.

* Produce 60-character long lines.

* Produce 23 lines per page for
displayed on the screen (or 60
printed documents), taking these
terminal characteristics.

a document which is
lines per page for
details from your

Runoff will also put two blanks between sentences.

The lines of text may be as long or as short as necessary.
If the lines of text follow a .FILL command, then the text
will be rearranged so as to fill up the line .

Text which
above) will
author.

follows a
be left

. NOFILL command (such as the
exactly as it was typed in by

list
the

If a line starts with a space, then Runoff interprets this
as a new paragraph.

Obviously, Runoff is not a wysiwyg - what you see is what
you get - system and the actual appearance of the document is
only seen when it is finally output to the screen or printed
on the printer. This fact, together with the requirement
that the author (and/or typist) must be familiar with the
Pick editor - or similar software - in order to create and
maintain the document, means that Runoff is not a
particularly user-friendly tool.

Runoff is provided with the sole purpose of producing
printed (or displayed) matter. If you have used more
sophisticated word processing software you will miss:

* The ability to handle diagrams and illustrations.

As with the Pick system in general, Runoff does not
handle graphics and has no facilities for including
artwork and diagrams within the text, beyond simple
boxes and tables. If required, these must be added
later.

* The ability to use a range of fonts and type-faces.

Runoff has standard facilities for using bold-face and
underlining, but any other effects - such as italics -
must be implemented by including the required
printer-codes within the text. But since Runoff regards
these codes as a part of the text, their use may upset
the line format.

But it does seem a pity that so many people who, with a
little effort, could learn to use Runoff ignore it completely

Page 65

MB-Guide to The Pick system

in favour of other cosmetically more attractive pieces of
word processing software, thereby wasting a perfectly usable
software tool.

Indeed, Runoff has one decided advantage over a great many
pieces of more-sophisticated word processing software: it can
use one basic document in a great many other documents.
This simplifies the maintenance and production of documents
such as contracts and specifications, which are invariably
built up from a selection of standard paragraphs and
clauses. With Runoff, any changes made to the basic document
or clause are automatically reflected when the master
document is next printed.

9.1 Creating / changing Runoff documents

The Runoff software does not include any means of creating
and/or changing your documents. Runoff is solely concerned
with the output of the formatted documents, displaying them
on the screen or printing them on a printer.

The contents of the document must be maintained by the Pick
line-editor or some other proprietary software which may be
available to allow you to amend and correct your Runoff
documents.

Each Runoff document - or section which is to be used in
another Runoff document - is created as an item on a file.
With each file, each item is uniquely identified by its
item-id. The illustrations in the previous section show how
each item comprises a number of lines (attributes), and each
line is either a Runoff command (if it starts with a full
stop in the first position) or a line of text.

9.2 RUNOFF command

The RUNOFF command is used to produce a displayed or a
printed copy of a document. The command is typed in directly
at Tel and the general format of the command is:

RUNOFF {DICT} filename itemlist {(options)

where filename is the name of file holding the document(s)
which are to be output, and itemlist is a sequence of one or
more item-ids for documents on the file and these are
specified in the order in which they are to appear in the
output document;

The options allow you to change the normal Runoff processing
in some way. For example, you might use:

P to output the document to the printer.

s to suppress the boldface and underline effects.

U to output the entire document in UPPER-CASE.

Some examples of RUNOFF commands might be:

RUNOFF MB.TEXT SAMPLE1

Page 66

MB-Guide to The Pick system

RUNOFF MB.TEXT SAMPLEl (P

RUNOFF MB.TEXT CHAPl CHAP2 CHAP3

Page 67

MB-Guide to The Pick system

10 Spooler

The Pick system is a multiuser system and there may be
several people using the same computer at the same time. Any
- or all - of these users may ask for a printed report to be
produced simply by issuing an Access sentence such as:

SORT STOCK BY PRICE DESCRIPTION TOTAL VALUE lPTR

with the lPTR modifier, or a TCl command such as:

COpy DICT STOCK * (P

with the P option, or by executing a Basic program which
uses the:

PRINTER ON

statement to print a report or produce some other sort of
listing. If all the users were to ask for a report at the
same time, there could be problems unless the system has some
means of resolving the competition for the printer resources.

The spooTer is a standard part of the Pick system and
controls the production and output of all the reports and
other output sent to the printer by the various users.

Whenever you perform a task which produces printed output,
the spooler collects the output - line by line - as it is
produced and stores this on a temporary disk file until the
process finishes. When the process is complete your terminal
is released and is then free to perform other tasks. In the
meantime, the spooler takes care of the output, holding the
various reports in a queue until the printer is free and your
report can be printed. When the report has been output and
no longer required, the temporary disk file is deleted.

T I r: Process
e I SORT STOCK
r --)--
m

n
a
1

I Spooler I
lPTR I I I
---)

I ~
}-- i

n
t
e
r

If there were no spooler, whenever you sent a report to the
printer, you would have to wait until your entire job had
finished and all the reports were completely printed before
your terminal would be released and you could continue with
other work.

10.1 Users - form-queues - printers

The diagram below shows the linkage between the users and
the printer(s) which are available on the system. The
linkage consists of the form-queues. There may be any number

Page 68

MB-Guide to The Pick system

of users, any number of form-queues and any number of
printers. Each form-queue is identified by name, and each
printer is identified by number.

User 1 Fqueue 0

Fqueue 1

Fqueue 2

Fqueue 3

This linkage1is established
by the SP-ASSIGN command
for each user

Printer 1

Printer 2

Printer 3

Printer 4

This linkage is established by
the STARTPTR command, and is
set up by the System Manager

The first part of the linkage is that between the users and
the form-queues:

* A user may send his/her print jobs to just one
form-queue (user 1 is linked to the form-queue 0 only).
Unless they issue an SP-ASSIGN command to change this
linkage, all users are connected to the form-queue O.

* A user may be linked to several queues (User 2 is
linked to Form-queue 1 and Form-queue 2).

* Several users may be linked to the same queue (user 2
and user 3 are both linked to Form-queue 2).

* This association is set up by the SP-ASSIGN command
which is issued by each user. We shall discuss this
later.

The second part of the linkage is between the form-queues
and the printers:

* A form-queue may be linked to just one printer (the
form-queue 0 is linked to Printer 1 only).

* A form-queue may be linked to several printers
(Form-queue 3 is linked to Printer 3 and Printer 4).

If a job is sent to form-queue 3, it will be printed on
whichever of printers 3 and 4 is free.

* Several form-queues may be linked to the same printer
(Form-queue 2 and Form-queue 3 are both linked to
Printer 3).

Page 69

MB-Guide to The Pick system

* This association, set up by STARTPTR commands issued by
the System Manager, is system-wide.

10.2 Why do you need to use the spooler?

We have seen that the spooler is necessary to handle the
conflicting demands when several users are attempting to use
the same printer (or printers) at the same time.

The spooler also handles the de-spooling of your reports
after the process - the Access process, the Tel command or
the Basic program which produced them - has terminated,
controlling the reports as they are sent to the printer.
This means that, once your report has been sent to the Pick
spooler, your terminal is free for you to carryon with some
other work. Some systems tie up your terminal from the
moment that you issue the request to produce a report right
until the very last line has been printed.

10.3 When do you use the spooler?

If you only want:

* To print a single copy of your output,

* On the main printer,

* As soon as the printer is free,

then you do not need to concern yourself with the spooler.
You can simply carry out the work which produces the reports
and these will be collected by the spooler and printed when
your turn comes in the queue.

However, the spooler is much more useful than this and there
are simple facilities which allow you to change this state of
affairs:

* You may assign your report(s) to the queue associated
with any of the printers which are available on your
system.

* It is possible for a single program to produce several
different reports: a payroll program might produce pay
cheques, pay slips, departmental returns, and so on. In
such cases, the spooler will allow you to specify that
each of the reports be directed to a different printer,
or some of the reports be directed to one printer, and
other reports to another.

* You may specify that a sequence of reports be collected
together and output as a single report.

* You may ask for your reports to be dumped to backing
storage diskette/tape for storage and printing when
required.

* You may ask that the first part of a report be printed
first, allowing the operator to line up any special

Page 70

MB-Guide to The Pick system

pre-printed stationery such as invoices or cheques.

* You may request the spooler to suppress the output.

* You may request the spooler to hold the report on the
queue after the job is completed.

When a report is held on one of the spooler queues, you may:

* Inspect it - to check the results before printing.

* Delete it - the results may be wrong.

* Move it to another queue - from where it will be output
to another printer.

* Change the number of copies - you can produce several
copies of a report without repeating the request.

* Hold the report for printing overnight - it may be too
large to print during the day.

* Hold the report until you have had a chance to load and
line-up the stationery on to the printer - you may want
to print on cheques or special stationery.

* Copy the report and save it as an item on a file - you
may want to incorporate an output report into some other
documentation or save it for later use.

For these reasons, it is worth thinking about what the
spooler can do for you.

10.4 Spooler commands

The spooler is a standard piece of software which controls
all output which the users send to the printers connected to
the Pick system. This subject is covered separately in the
MB-Guide to the Spooler.

The fundamental TCl commands associated with the spooler
include:

:STARTSPOOlER
LISTABS
LISTPEQS
LISTPTR
SP-ASSIGN
SP-ClOSE
SP-EDIT
SP-KILl
SP-OPEN
SP-STATUS
SP-TAPEOUT
STARTPTR
STARTSPOOlER
STOPPTR

Because some users find it difficult to remember and use all
these commands, many implementations have front-end menu

Page 71

MB-Guide to The Pick system

routines which allow the user to select the work which is to
be done, and the routines then invoke the appropriate
commands from the above list.

The reference literature for your own system will give full
details of this topic.

Page 72

MB-Gulde to The Pick system

11 Operations

Because of the nature of the Pick system, it is not
necessary to have a full-time operator in the traditional
sense of someone who is responsible for running jobs,
mounting tapes and diskettes, and so on; the individual users
are themselves the operators. Nevertheless, there is a need
for someone with responsibility for performing a number of
domestic and control tasks. The actual title of the person
(or persons) responsible for these duties depends upon the
organisation; it may be Operations Manager, System Manager,
Chief programmer or Operator. In this MB-Guide, we shall use
the term System Manager.

Activities to be performed regularly as part of a standard
rota are:

* Switching the machine on and off.

* Housekeeping activities and keeping the place tidy:
da i ly.

* Checking and setting the current time and date on the
system clock/calendar: dai ly.

* Cleaning the equipment - especially the terminals, the
printer(s) and the read/write heads of the diskette/tape
units: weekly.

* Fi le-save routines: dai ly or more frequently if there
is much activity on the files.

* File-restore routines: weekly or monthly, according to
the fragmentation of the disk space.

* Producing and monitoring the file statistics: this can
be done after each file-save, but it may only be
necessary to save the last few copies of the report.

* Monitoring the size and shape of the files on the
various accounts, using the statistics from the most
recent file-save, reporting any notable situations and
recommend'ing that specific fi les be reorganised: weekly.

* Monitor the standard accounts, the standard files and
their contents: monthly.

* Monitor the ACC file and account usage: weekly or more
frequently according to the amount of data which is
logged.

* Verifying the ABS frames: monthly.

* Producing reports on the standard files.

* Monitor the error log file and report any problems to
the system engineer: weekly.

* Liaising with the maintenance engineer, arranging the
periodic preventive maintenance visits and reporting any

Page 73

MB-Guide to The Pick system

system errors such as GFEs: month7y.

* Additional activities to be performed as required or as
necessary:

+ Account-save.
+ Selective restore.
+ Create-account / delete account.
+ Archiving.
+ Trouble-shooting Activities:

Restoring the ABS frames,
Fixing group format errors.
Performing coldstart and warmstart.

These topics are covered in detail in other booklets in the
MB-Guide series.

Page 74

MB-Guide to The Pick system

12 Using the system

Now let's us look at the operational aspects of using the
Pick system.

Most of your work will be carried out using a terminal
equipped with a screen and a keyboard.

12.1 The screen

The screen serves two functions:

1) To display all the information as you type it in. This
allows you to check what you have typed.

2) To display the output produced by the programs and
other software which you use.

Whenever you use the computer, you should ensure that:

* You can see and read the screen comfortably and without
any strain,

* The screen is well positioned. You may be able to
adjust the height and angle of the screen to suit you.

* That the brightness and contrast are comfortable.
There will be one or more knobs for you to adjust the
screen image.

12.2 The keyboard

The keyboard is the main method by which you will pass
information and commands to the computer.

You don't have to be a skilled typist, but you will find it
easier to use the system when you have become familiar with
the layout of the keyboard.

The actual layout of the keyboard depends upon the
manufacturer and the model which you are using. Typically,
it looks like this:

DDDDDDDDDDDD
DDDDDDDDDD
DDDDDDDDDDD

A Shift IDDDDDDDDDDI A Shift

I I
If you are new to keyboards, you should pay particu~ar

Page 75

MB-Guide to The Pick system

attention to the following parts of the keyboard:

* The main body of the keyboard containing the letters
and, along the top, the numbers 1 to 0 and the special
characters ! to +

* The space bar along the bottom of the keyboard.

* The <Return> or <Enter> key.

* The <Backspace> key. This may be marked BKSP or BACK
SPACE or it may simply have a left-pointing arrow. You
will use this key to correct any mistakes by deleting
the last character which you typed in. As you press the
<Backspace> key, the characters will be erased one by
one from the screen display.

You must make such corrections before you have pressed
the <Return> key to send the information to the
computer.

* The letters and numbers keys.

* The <Shift> key. There are two identical <Shift> keys
at each side of the keyboard. These are used exactly
like the shift key on a normal typewriter to select the
upper choice from those keys which show two characters.

If you have used a typewriter keyboard before, you may
recall that:

* The letters may be entered in UPPER-CASE or lower-case.

* If the <Caps Lock> is set on, and you press the [A]
key, you will send the capital letter A to the computer.

* If the <Caps Lock> is not set on, and you press the [A]
key, you will send the small letter a to the computer.

* If the <Caps Lock> is set on, and you press the <Shift>
key and the [A] key, you will send the capital letter a
to the computer.

* If the <Caps Lock> is not set on, and you press the
<Shift> key and the [A] key, you will send the small
letter A to the computer.

* If you press the [! 1] key on the top row, you will
send the number f to the computer.

* If you press the <Shift> key and the [! 1] key on the
top row, you will send the! character to the computer.

* When you have typed all your information, you will
press the <Return> key to send all the information to
the computer.

The key which we have called <Return> in the text may look
like the large key shown to the right of the keyboard in the
diagram above, or it may be:

Page 76

MB-Guide to The Pick system

or I <-1 Enter I
In addition to the numbers which are shown on the top row of
the keyboard, there may also be a numeric key pad. This also
allows you to enter the numbers and certain special
characters, such as * and. The numeric key pad is only
effective when the <Num Lock> key is set on.

Your system may also use:

* The <Esc> key. The escape key is used by some programs
so that you can indicate that you want to finish or
abandon the current process.

* The function keys along the top of the keyboard,

* The cursor control keys. These are four keys, each
with an arrow pointing north, south, east or west.

* The <Ctrl> key.
special meaning
You will always
special control

The control key is used to give a
to the ordinary keys of the keyboard.
be told when and where to use these
characters.

For example, if you are told to press control-M or:

<Ctrl> M

you will hold down the <Ctrl> key and, whilst holding
this down, press the M key at the same time.

You should only use this last set of keys when you are
instructed to do so.

There may be other keys marked with names such as:

DEL
DELETE
END
HOME
INSERT
Ins
PAGE DOWN
PgDn
PAGE UP
PgUp
PAUSE
PRINT SCREEN
SCROLL LOCK

Do not use these last keys unless you are specifically
instructed to do so.

Page 77

MB-Guide to The Pick system

12.3 Typing errors

You can correct typing errors by using the <Backspace> key
to go back and correct your mistakes before you press the
<Return> or the <Enter> key. However, there will be almost
certainly be times when you type in the wrong information.
What happens then?

In many cases, the software may recognise that you have made
a mistake and will reject the information after displaying
some suitable message. This is possible when the computer
has been instructed (by the standard software, by the
programmer or the analyst) what it is to accept. Thus, if
you are typing in an amount of money and you mean to enter
the sum:

123.50

then it is fairly easy for the programmer to arrange for the
software to reject amounts such as:

THE CAT SAT ON THE MAT
SUNDAY
IZ3.50

and even:

-123.50

may be unacceptable at that point. In the same manner, the
programs will probably reject invalid dates such as:

29 FEB 1991
39 JAN 1991
-10 DEC 1990

But the software may be unable to detect that you meant:

123.50

when you actually typed:

132.50

or that you wanted:

21 JAN 1991

when you actually typed:

12 JAN 1991

Some application systems may give you an opportunity to
change the information which you have entered before it is
finally accepted by the computer. For example, the system
may ask you:

OK? ENTER Y TO PROCEED OR LINE-NUMBER TO CHANGE

and you can then correct the offending information.

Page 78

MB-Guide to The Pick system

If you do make a mistake which you cannot (or did not)
correct, then you should make a written note of what, when
and where the mistake occurred and then report the matter to
your supervisor.

12.4 Reading and writing

It is particularly easy to make mistakes when you are
reading information from handwritten documents and typing
this into the computer system.

For this reason, some people prefer to write special forms
of those letters and numbers which are likely to be
confused. Some of these are shown below.

1 I / r
2 2 Z
3 ~
5 Y S
9 ~
0- ~ 0

In their handwritten form, these figures and letters are
usually distinguished by having:

* An extra horizontal line as with the figure 0, the
upper-case letter Z and the figure 7, or

* An exaggerated serif, as with the upper-case letters I
and S, or

* An exaggerated tail, as with the lower-case letters g
and z. It is most likely that the alphabetic
information which you encounter will be in upper-case
letters.

Page 79

MB-Guide to The Pick system

13 Switching on

There are one or two simple points to remember when you
start to use your computer terminal:

1) Switch on the power at the electricity socket.

2) Switch on the terminal.

3) Check the brightness and contrast.

4) Press the <Return> or <Enter> key.

The system should then respond with a message such as:

LOGON PLEASE

If the computer does not respond with a message such as
this, press the <Return> or <Enter> key again. If it still
fails to react, then:

5) Check that the power cable is connected to the back of
the terminal.

and:

6) Check that the computer cable is connected to the back
of the terminal.

If all the connections are satisfactory but there is no
response from the computer, then you should call your
supervisor or the System Manager.

13.1 Logging on

In order to identify you and make the necessary files
available to you, the system needs to know which account you
wish to use. You do this by entering the name of your
account. This process is known as Togging on to the
computer.

To log on to the computer, you need to know:

* The name of the account which you want to use,

and you may also be asked for:

* The password for that account.

If the system reacts by displaying:

LOGON PLEASE

and you make too many unsuccessful attempts to enter the
correct logon code, the system will lock you out. To
reactivate the terminal, you must:

a) Type any key, and then

b) Press the <Return> key (or the <Enter> key) twice.

Page 80

MB-Guide to The Pick system

The system should then ask you to LOGON PLEASE as before.

13.2 Account names

An account is simply a working environment in which you have
access to all the files which you need, but in which you
cannot reach those that you do not need.

In order to identify you and make the necessary files
available to you, the system needs to know which account you
wish to use. You do this by entering the name of your
account. This process is known as 70gging on to the
computer. We shall look at this later.

Write down the name of the account which you will use and
make a note of the sort of work which you will carry out when
you log on to that account. If there are several accounts
available to you, make a note for each one.

Account(s) available to you

If you have forgotten the name of your account, you must ask
your System Manager.

Any number of people may be using the computer at the same
time, and any or all of these may be logged on to the same
account. When several people are logged on to the same
account, each of these people may be working quite
independently of the others, or they may be using the same
programs and processing data on the same files.

13.3 Passwords

For security reasons, some accounts may be protected by a
password. You must never write down the password which you
will use to log on to your accounts. The password will
change from time to time and it will jeopardise the security
of your system if an unauthorised person knows your account
name and the password and is thereby able log on to your
account.

If you have forgotten the password for your account, or if
it has been changed whilst you were on holiday, you must ask
your System Manager. Your System Manager will also change
your password from time to time and he/she will inform you of
the new password which you will use to log on to your
account.

When you switch on a terminal which is connected to the
system, there will be displayed a message inviting you to:

Page 81

MB-Guide to The Pick system

LOGON PLEASE:

and before you can do any work whatsoever, you must 70g on
to identify yourself and indicate which account you are going
to use. You do this simply by typing in the name of the
account you wish to use.

If you do not know - or have forgotten - the name of your
account, then you cannot log on to the system.

If your account is locked by means of a password, then you
will be invited to enter this password before being allowed
to proceed.

Beyond this standard Pick security, you may be using an
application system which makes further checks on your
identity and authorization before you are allowed to use the
system.

When you have successfully logged on to your account, you
can then start your work.

13.4 When you have logged on

When you log on to the system, anyone of several things may
happen:

1) You may be thrown straight into the business system for your
organisation.

2) There may be a request for some further identification,

3) A series of menus may be displayed from which you will select
the work which you wish to carry out.

4) The computer may simply display the:

symbol and wait for you to issue a command. When the system
is at this stage, it is said to be at TeL. This means that
the system is waiting for you to type in an instruction in
the Terminal Command Language, TCL. We shall look at the TCL
language later.

If you are using some versions of the system, these may
display the colon:

symbol instead of the> and wait for you to issue a TCL
command.

Make a note of what happens when you log on to your own
system. If there are several accounts available to you, make
a note of what happens for each one.

Page 82

MB-Guide to The Pick system

Account name

When you log on ...

13.5 Typing in the commands

When any information is to be entered at the keyboard -
whether it is a TCl command or an Access sentence - there are
a number of standard conventions which are designed to make
your life easier:

<Ctr1> R to redisplay the sentence which you are currently
typing in;

<Ctrl> W to backspace the last word of the sentence which
you are currently typing in;

<Ctrl> X to ignore the sentence which you are currently
typing in and start again. This avoids your
backspacing to the beginning of the line.

When you are producing a long Access report and this halts
at the bottom of the page waiting for you to press <Return>,
you may terminate the report by entering:

<Ctrl> X

Instead of <Return>. The sequence:

<Ctrl> E

may also be acceptable on some implementations.

When you are entering any information at the keyboard, it
does not matter if you type more than 80 characters (the
width of the screen), the cursor will drop on to the
following line and you can carryon typing. You may enter up
to 140 characters at one time. However, if you attempt to
type more than 140 characters, then the 140th character will
terminate that input process, just as if you had pressed the
<Return> key.

Page 83

MB-Guide to The Pick system

14 In difficulties

There may be occasions when you get into a situation where:

1) The work you are doing gets into trouble and stops with
the system displaying something like:

1123

*
or it might display something like:

I 123.45

2) The computer may appear to be doing nothing, or it may
seem to be a loop and doing the same thing over and over
again indefinitely. In this case, your supervisor or
the System Manager may tell you to press the:

<Break>

key. The system will then respond with one of the two
sequences shown above.

Whenever the computer displays one of the sequences shown
above, you may enter any of the following commands:

<Return)
used on its own, the <Return) key has no effect, except
to repeat the * or the ! prompt.

<line feed>
instructs
possible.
below.

<Ctrl> J

the system to continue the processing, if
This is identical to the G command described

instructs the system to continue the processing, if
possible. This is identical to the <line feed> command
described above, and is valuable if you are using a
terminal with no <line feed> key.

ENO<Return)
instructs the system to terminate the processing and
return to TCl or, if the account automatically invokes a
Proc, to this logon Proc.

ENO<line feed>
On some implementations, this will terminate the current
activity and return the processing to TCl or, if the
activity was invoked from a Proc, to the calling Proc.

OFF<Return>
OFF<line feed>

instructs the system to terminate the current activity
and log off the account.

G<Return>
G<line feed>

Page 84

MB-Guide to The Pick system

instructs the system to continue the processing, if
possible. This is identical to the <Line feed> command
described above, and is valuable if you are using a
terminal with no <Line feed) key.

P<Return)
instructs the system to switch the terminal print output
function ON or OFF, and suppress the display to the
terminal screen.

You should always consult your supervisor or the System
Manager before you use any of these commands, otherwise you
may lose some of the data or you may undo a lot of work which
you or someone has performed.

The part of the system which is in control when either of the
sequences:

or:

I123

*

I 123.45

is displayed is known as the debugger. It is intended to
allow a technical programmer to debug or solve the problem
which has occurred. So, if you want to report such a fault
to someone, you will tell them that:

" ... it has gone into the Basic debugger

in the first case, where the asterisk is displayed, or:

" ... it has gone into the system debugger

in the second case, where the exclamation mark is displayed.

Page 85

MB-Guide to The Pick system

15 Logging off

When you have finished all your work and no longer need to
use the computer system, you will log off. This instructs
the computer to ignore you and your terminal until you (or
someone else) logs on again.

If you are working within an application system, then there
may be some formal way of finishing your processing and
logging off.

If you are using Tel, then you will log off by entering the:

OFF

command.

You may then switch off your terminal, or you may wish to
log on again.

If you simply want to log on to another account, you may do
this directly by entering a command such as:

lOGTO WAGES

which will terminate your work on the current account and
then log you on to the WAGES account. If there is a password
on the WAGES account, you will be asked to enter this.

15.1 Switching off

If you have finished using your terminal - you may have
finished work for the time being, you may be going to lunch,
or you may be going home at the end of the day - then you
will:

1) log off, as we have just described.

2) Switch off the terminal.

3) Switch off the power at the wall socket.

Your supervisor or the System Manager will tell you of any
other security measures which apply to you.

Page 86

MB-Guide to The Pick system

16 Some jargon

It will be useful if you become familiar with the words which
are used in this MB-Guide and elsewhere in the literature
about the computer system. The most important words and
concepts are summarised here.

Access
The enquiry language which is available on the Pick
system and which allows you to make enquiries and to
produce reports by typing in an English sentence. The
language is also known by other names such as English,
Info/Access and Recall.

Account
A set of related files which are grouped together and
accessible to anyone who logs on to that account.

It is usual to group all such files together into one
account. When you 70g on to the computer system, you
will specify the name of the account which you want to
use; this will give you access to the files on that
account.

Attribute
The Pick terminology for a field or a data field of a
record.

Each field of a Pick data item is known as an
attribute. Within the item, the attributes are separated
by the attribute mark (ASCII character 254).

Each attribute contains any number of va7ues separated
by value-marks.

Each value contains any number of subva7ues separated
by subvalue-marks.

Attributes, values, and subva1ues are of variable
length, each being terminated by the appropriate
field-separator.

The various data fields - the attributes, values, and
subva1ues - are identified by their sequential position
within the item.

A field which contains no data is known as a null
field. You should distinguish between a null field
(which contains no data whatsoever) and a field which
contains only spaces. When you are entering information
at the keyboard, you will normally represent a null
field just by hitting the <Return> key.

Null fields are represented only by the associated
(following) field-separator - attribute-mark,
value-mark, or subva1ue-mark.

Page 87

MB-Guide to The Pick system

Basic

Byte

Fi 7e

The language which is used to write programs for the
computer. There are many such programming languages
available. The standard Pick system can handle programs
written in the Basic language and the Proc language.

A unit of storage (comprising 8 bits). Each character
(each letter, each digit, each comma, each space, each
full stop, and so on) occupies one byte of storage in
the computer's memory.

A collection of items holding data of a similar nature.
This is identical to the standard use of the term file
within conventional data processing.

A file may contain any number of items (or records).

Frame
The operating system moves its information around in
chunks of 512 bytes. Such a 512-byte chunk is known as
a frame. In each frame, the first 12 bytes are used by
the operating system for control purposes, the remaining
500 bytes are used to store data. On some systems, the
frames may be 1024 bytes (24 control bytes plus 1000
data bytes), 2048 bytes (48 control bytes plus 2000 data
bytes) or more in extent. A frame is equivalent to a
sector of disk.

Hardware

Item

The general term used to describe all the mechanical
devices associated with a computer system. The hardware
includes: the central processing unit; the terminal;
the printers; the connecting wires and circuits. See
also SOFTWARE.

The Pick term for a data record. Each file consists of
any number of items. Each item consists of the item-id
which identifies the item, followed by none, one or more
attributes separated by attribute-marks.

Item-id
The Pick term for a record key. The item-id uniquely
identifies each item on a Pick file.

Log on
To identify yourself to the computer system; this tells
the operating system the name of the account which you
wish to use.

Operating system
A program which controls all aspects of the computer's
work. The operating system is active all the time and
takes care of: identifying and accepting/rejecting users
as they log on; the printed output which is sent to the
printer by the various users; accepting the users'
instructions and commands; carrying out the work invoked
by the users.

Page 88

MB-Guide to The Pick system

We are concerned with the Pick system. Other operating
systems are available: Unix DOS; CP/M.

Password

Proc

A second piece of information (additional to the
account name) which may be required when you log on to
the computer system. For security purposes, the
password may be changed from time to time.

A sequence of instructions (such as an Access sentence
or a TCl command and possibly with other instructions in
the Proc language), which has been saved under a single
name so that it can easily be recalled in future.

The name is also used to refer to the language which is
used to write such processing routines. The language is
peculiar to the Pick system.

Program
A sequence of instructions which are submitted to the
computer and which instructs the computer exactly how a
certain task is to be performed.

Report
Any list of information which is displayed on your
screen or printed on the printer.

Software
Any computer program, although the name is usually
reserved for programs which are supplied by someone
outside your organisation. See also HARDWARE.

Spooler
That part of the system software which controls the
output which the users send to the printer(s).

Page 89

MB-Guide to The Pick system

I n d e x

! prompt 84
* prompt 84
: FI LES 11

<Backspace> key 76
<Bksp> key: See <Backspace>

KEY 76
<Break> key 84
<Caps Lock> key 76
<Ctrl> J 84
<Ctrl> key 77
<Ctrl> R key 83
<Ctrl> W key 83
<Ctrl> X key 83
<Enter> key 76
<Esc> key 77
<Line feed> 84
<Num Lock> key 77
<Return> key 76, 84
<Shift> key 76

ABS frames 5
ABSDUMP 11
ACC file 21
Access 13, 30, 87
Access sentence 83
Access verbs 33
Account 20, 87
Account name 81
ACCOUNT-RESTORE 11
Account-restore 11
ACCOUNT-SAVE 11
Account-save 11
Advanced Pick 2
Assembly language 16
Attribute 19, 23, 87, 88
Attribute-mark 23

Back-up 10
Backing storage 10
Backward link 29
Base frame 24
BASIC 55
Basic 14, 49, 87, 88

functions 58
" programs 49
" statements 58
Bits 88
BLOCK-CONVERT file 21
Bunching 27
Byte 88

Cartridge tape 10
Changing Runoff documents 66
Commands 32
COPY 33
Creating Runoff documents 66

Creator 17
CT 36
Cursor control key 77

Data-level identifier 21
Dataname 30
Debugger 85
DEFINE-TERMINAL 10
Diagram 68
DICT 20
DIeT-only file 22
Disk space 6
Diskette 10
DUMP 28

EDIT 55
Editor 14, 37, 38
Editor commands 38, 44
End-of-data marker 28
End-of-group marker 28
End-of-item marker 28
ENDcLine feed> 84
END<Return> 84
ERRMSG file 21
Error 78

F-S 11
Field 19
Field; See ATTRIBUTE 23
F i 1 e 1 9, 20, 22, 88
File hierarchy 20
File structure 20
File-restore 11
FILE-SAVE 11
Floppy diskette 10
Form-queue 68
Forward link 29
Frame 23, 88
Function key 77

G<Line feed> 85
G<Return> 84
Group 25

Hard disk 5
Hardware 4, 88
Hashing 26
Hashing algorithm 27

In difficulties 84
Info/Access 31
Item 19, 23, 88
Item format 27
Item-id 19, 23, 88

Jargon 87
Jet 14

Page 1

MB-Guide to The Pick system

Key 88
Keyboard 75

Letter key 76
Libra 17
Link; See BACKWARD LINK;

FORWARD LINK 24
LIST-FILE-STATS 11
Log on 87, 88
Logging off 86
Logging on 80
Long sentences 83
LPTR 68

M/DICT; See MASTER
DICTIONARY 20

Magnetic tape 10
Master dictionary 20, 33
MD; See MASTER DICTIONARY

20, 33
ME command 41
Mistake 78
MOD; See MODULO 26
Modulo 26
Mu1tivalue 20

Null attribute 19
Null field 23
Number key 76

OFF<Line feed> 84
OFF<Return> 84
Open Architecture 2
Operating system 88
Operational duties 73
Operations 73
Options on TCL commands 37
Overflow 24

P option 68
P<Return> 85
Parallel printer 10
Password 81, 89
PCB 5
Pick 1
Pick hardware 4
Pick release 2
Pick software 13
Pointer 24
POINTER-FILE file 21
POVF 6
Prestore commands 45
Primary file space 24
Prime number 27
Prime/Information
Printer 10, 68
PRINTER ON 68
Proc 89
Proc statements 62

Page 2

PROCLIB fi 1e 21
Procs 15, 33, 59, 60, 89
Program 89
Program control block 5
Prompt 32

R command 42
R83 release 2
Reality 1
Recall 31
Record 19
Record key 19
Record-key; See ITEM-ID 23
Record; See ITEM 23
RECOVER-FD 47
Report 89
RESTORE-ACCOUNTS 11
Restoring data 11
RetrieVe 31
Revelation 1
RUN 55
RUNOFF 66
Runoff 16
Runoff documents 63

S-DUMP 11
SAVE 12
Saving data 11
SB+ 17
Screen 75
Secondary-value 23
SEL-RESTORE 12
SEP; See SEPARATION 26
Separation 26
Serial printer 10
SET-8MM 10
SET-BAUD 9
SET-DEVICE 10
SET-FLOPPY 10
SET-HALF 10
SET-SCT 10
SET-TAPE-TYPE 10
SET. DT 10
SET.TM 10
Slave printer 10
Software 13, 18, 89
Space bar 76
Spooler 16, 68, 70, 71, 89
Spooler default 70
Stacker 47
STARTPTR 10
Subvalue 23, 87
Subva1ue-mark 23
Switching off 86
Switching on 80
SYSBASE 6
SYSTEM 20
System architecture 20
System Builder 17

MB-Guide to The Pick system

System generation tools 17
SYSTEM-lOG file 74

T- verbs 10
T-ATT 10
T-BCK 10
T-BSF 10
T-BSR 10
T-CHK 10
T-DET 10
T-DUMP 12
T-EOD 10
T-ERASE 10
T-FSF 10
T-FSR 10
T-FWD 10
T-lOAD 12
T-RDlBl 10
T-READ 10
T-RET 10
T-RETEN 10
T-REW 10
T-SPACE 10
T-STATUS 10
T-UNlD 10
T-UNlOAD 10
T-VERIFY 10
T-WEOF 10
T-WTLBl 10
TCl 13, 32
TCl commands 32
TCl options 37
TCl prompt 32
TCl stacker 47
TERM 8
Terminal 8
Terminal characteristics 8
Terminal control language;

See TCl 32
Terminal type 8
Terminate a report 83
Time-slice 7
Typing Access sentences 83
Typing commands 83
Typing error 78

Ultimate
Universe
User 68

Value 23, 87
Value-mark 23
Verbs 32
VERIFY-SAVE 12
Virtual memory 5, 7

What is the spooler? 68
When do you use the spooler?

70

When you have logged on 82
Why do you need to use the

spooler? 70
Word processing 16
Workspace 5

Page 3

MB-Guide to The Pick system

MB-Guide beginners guides

The following titles are available in the MB-Guide series:

* Access definitions & dictionaries
* Access sentences
* Advanced Pick
* Advanced Pick: AP/DOS
* Advanced Pick: AP/NATIVE
* Basic language * Basic programming topics: 1
* Basic programming topics: 2
* Basic symbolic debugger
* CompuSheet+
* Creating and using Procs
* DOS for Pick users
* Development standards
* ENGLISH
* Error Messages
* File design
* File-save & file-restore
* Files: file sizing tables
* Files: monitoring & sizing
* Group format errors
* Jet word processing
* MB-EDITOR: Screen editor
* Operations & systems management
* Pick fundamentals
* Pick on the PC
* Pick terminology
* Producing training courses
* Program design
* Reality
* Runoff text processing
* Security
* Spooler
* System debugger
* System design
* The Pick system
* Using Pick
* Using backing storage
* Using the Jet editor
* Using the Pick editor
* uniVerse for Pick users

In preparation

* Accu/Plot
* Basic programming topics: 3
* Mathematics for computing
* Pick: reference tables
* Programming in C
* SQL * System health check
* commercial computing

