


TM PI CK for users 

TM PI CK for users 





TM 
PI CK for users 

MARTIN TAYLOR 

BLACKWELL SCIENTIFIC PUBLICATIONS 

OXFORD LONDON EDINBURGH 

BOSTON PALO ALTO MELBOURNE 

TM 
PICK for users 

MARTIN TAYLOR 

BLACKWELL SCIENTIFIC PUBLICATIONS 

OXFORD LONDON EDINBURGH 

BOSTON PALO ALTO MELBOURNE 



© 1985 by 
Blackwell Scientific Publications 
Editorial offices: 
Osney Mead, Oxford, OX2 OEL 
8 John Street, London, WCIN 2ES 
23 Ainslie Place, Edinburgh, EH3 6AJ 
52 Beacon Street, Boston 

Massachusetts 02108, USA 
667 Lytton Avenue, Palo Alto 

California 94301, USA 
107 Barry Street, Carlton, 

Victoria 3053, Australia 

All rights reserved. No part of this 
publication may be reproduced, stored in 
a retrieval system, or transmitted, in any 
form or by any means, electronic 
mechanical, photocopying, recording or 
otherwise, without the prior permission of 
the copyright owner. 

First published 1985 
Reprinted with corrections 1986 

Photo typeset by 
Oxford Computer Typesetting 

Printed and bound in 
Great Britain at 
The Hollen Street Press Ltd 

British Library 
Cataloguing in Publication Data 

Taylor, M. 
Pick for users. 
1. Pick (Computer operating system) 
I. Title 
001.64'25 QA 76.76.063 

ISBN 0-632-0 1492-X 

DISTRIBUTORS 

USA and Canada 
Blackwell Scientific Publications T nco 
POBox 50009. Palo Alto 
California 94303 

Australia 
Blackwell Scientific Publications 

(Australia) Pty Ltd 
107 Barry Street. 
Carlton, Victoria 3053 

© 1985 by 
Blackwell Scientific Publications 
Editorial offices: 
Osney Mead, Oxford, OX2 OEL 
8 John Street, London, WClN 2ES 
23 Ainslie Place, Edinburgh, EH3 6AJ 
52 Beacon Street, Boston 

Massachusetts 02108, USA 
667 Lytton Avenue, Palo Alto 

California 9430 I, USA 
107 Barry Street, Carlton, 

Victoria 3053, Australia 

All rights reserved. No part of this 
publication may be reproduced, stored in 
a retrieval system, or transmitted, in any 
form or by any means, electronic 
mechanical, photocopying, recording or 
otherwise, without the prior permission of 
the copyright owner. 

First published 1985 
Reprinted with corrections 1986 

Phototypeset by 
Oxford Computer Typesetting 

Printed and bound in 
Great Britain at 
The Hollen Street Press Ltd 

British Library 
Cataloguing in Publication Data 

Taylor, M. 
Pick for users. 
1. Pick (Computer operating system) 
I. Title 
001.64'25 QA76.76.063 

ISBN 0-632-0 1492-X 

DISTRIBUTORS 

USA and Canada 
Blackwell Scientific Publications Inc. 
POBox 50009, Palo Alto 
California 94303 

Australia 
Blackwell Scientific Publications 

(Australia) Pty Ltd 
107 Barry Street, 
Carlton, Victoria 3053 



For lillian 

For lillian 



Acknowledgement 

The author would like to acknowledge the assistance given by Stuart 
Rees of Manchester Polytechnic in the preparation of this book. 

vi 

Acknowledgement 

The author would like to acknowledge the assistance given by Stuart 
Rees of Manchester Polytechnic in the preparation of this book. 

vi 



Contents 

Foreword, ix 

Preface, xi 

1 Introduction, 1 

2 The ACCESS Enquiry Language, 5 

3 Introduction to the Pick Database, 25 

4 The System Editor, 31 

5 Building Dictionaries, 43 

6 The Spooler, 61 

7 More about the Database, 77 

8 Pick and Security, 91 

9 Archiving the Database, 97 

10 Pick BASIC, 103 

11 The PROC Job Control Language, 135 

12 Pick's System Files, 147 

13 Other Pick Commands, 155 

14 The History and Future of Pick, 161 

Appendices 

1 Editor Command Summary, 165 
2 BASIC Command Summary, 167 
3 BASIC Function Summary, 169 
4 Proc Command Summary, 171 
5 The Pick Community, 172 
6 Trademarks, 174 

Glossary, 175 

Index, 178 
vii 

Contents 

Foreword, ix 

Preface, xi 

1 Introduction, 1 

2 The ACCESS Enquiry Language, 5 

3 Introduction to the Pick Database, 25 

4 The System Editor, 31 

5 Building Dictionaries, 43 

6 The Spooler, 61 

7 More about the Database, 77 

8 Pick and Security, 91 

9 Archiving the Database, 97 

10 Pick BASIC, 103 

11 The PROC Job Control Language, 135 

12 Pick's System Files, 147 

13 Other Pick Commands, 155 

14 The History and Future of Pick, 161 

Appendices 

1 Editor Command Summary, 165 
2 BASIC Command Summary, 167 
3 BASIC Function Summary, 169 
4 Proc Command Summary, 171 
5 The Pick Community, 172 
6 Trademarks, 174 

Glossary, 175 

Index, 178 
vii 





Foreword by Pick Systems 

Pick Systems has been labouring for many years to produce a computer 
operating system which is accessible by users. An operating system 
which enables users to utilise a computer without being buried in tech­
nical detail. Pick Systems believe that it has achieved this aim. It is a 
source of great satisfaction and a vindication of all of our efforts that this 
is being recognised. More computers are launched with the Pick operat­
ing system each year, the press follow our achievements and develop­
ments with increasing interest, conventions and exhibitions are con­
vened which are devoted to the Pick operating system. 

Pick is particularly pleased to see the publication of this book which, 
like the operating system, is aimed at the users of computers rather than 
technicians. Pick thinks that no business considering the purchase of a 
computer should fail to consider the Pick operating system and the 
information contained within these pages explains why. 

Frank Pet yak 
National Sales Manager 

Pick Systems 

IX 

Foreword by Pick Systems 

Pick Systems has been labouring for many years to produce a computer 
operating system which is accessible by users. An operating system 
which enables users to utilise a computer without being buried in tech­
nical detail. Pick Systems believe that it has achieved this aim. It is a 
source of great satisfaction and a vindication of all of our efforts that this 
is being recognised. More computers are launched with the Pick operat­
ing system each year, the press follow our achievements and develop­
ments with increasing interest, conventions and exhibitions are con­
vened which are devoted to the Pick operating system. 

Pick is particularly pleased to see the publication of this book which, 
like the operating system, is aimed at the users of computers rather than 
technicians. Pick thinks that no business considering the purchase of a 
computer should fail to consider the Pick operating system and the 
information contained within these pages explains why. 

Frank Pet yak 
National Sales Manager 

Pick Systems 

ix 





Preface 

This is a book about the facilities given to computers by the Pick ™ 
Operating System I. Pick is a computer operating system which has been 
under development for over 20 years and has been commercially avail­
able since 1973. With the advent of the implementation of Pick on small 
multi-user microcomputers, Pick has seen an explosion of popularity. 
There are over 3500 applications written under Pick in just about every 
conceivable commercial requirement. There are 20 manufacturers 
whose computers have Pick implemented, or whose computer runs a 
variant of Pick, and there are more implementations being undertaken 
all the time. All software written under Pick may be transported across 
the whole of this range of equipment. If we include the Pick lookalikes 
in the Pick ·community' there should be over 60,000 computers running 
Pick and approaching 400,000 users of Pick throughout the world by the 
end of 1985. 

The aim of this book is to impart practical information, of benefit to 
users and prospective users of Pick, rather than a comprehensive de­
scription of all Pick's facilities. A comprehensive description would take 
up much more space than one short book allows, and is in any case 
already available in the form of the Pick Reference Manual. This book's 
objective is to take the user to a point where further knowledge can 
easily be gleaned from the Reference Manual. 

A particularly valuable feature of Pick is the ability to produce ad 
hoc reports using the enquiry language, Access. Consequently Access is 
described first, with examples from a simple personnel file. Access is 
certainly a tool that most departmental managers would wish to use and 
its use requires no previous technical knowledge. 

In order to extend the reporting facilities for a Pick database and 
produce more sophisticated reports the user needs to know a little about 
the way that the database is structured and how the system editor works, 
so these are described next. The system editor is a utility which allows 
the modification of any item on the database. These sections will be of 
particular interest to people who are experienced in using Access and 

1. PICK is a trademark of Pick Systems. 

xi 

Preface 

This is a book about the facilities given to computers by the Pick ™ 
Operating System 1. Pick is a computer operating system which has been 
under development for over 20 years and has been commercially avail­
able since 1973. With the advent of the implementation of Pick on small 
multi-user microcomputers, Pick has seen an explosion of popularity. 
There are over 3500 applications written under Pick in just about every 
conceivable commercial requirement. There are 20 manufacturers 
whose computers have Pick implemented, or whose computer runs a 
variant of Pick, and there are more implementations being undertaken 
all the time. All software written under Pick may be transported across 
the whole of this range of equipment. If we include the Pick lookalikes 
in the Pick 'community' there should be over 60,000 computers running 
Pick and approaching 400,000 users of Pick throughout the world by the 
end of 1985. 

The aim of this book is to impart practical information, of benefit to 
users and prospective users of Pick, rather than a comprehensive de­
scription of all Pick's facilities. A comprehensive description would take 
up much more space than one short book allows, and is in any case 
already available in the form of the Pick Reference Manual. This book's 
objective is to take the user to a point where further knowledge can 
easily be gleaned from the Reference Manual. 

A particularly valuable feature of Pick is the ability to produce ad 
hoc reports using the enquiry language, Access. Consequently Access is 
described first, with examples from a simple personnel file. Access is 
certainly a tool that most departmental managers would wish to use and 
its use requires no previous technical knowledge. 

In order to extend the reporting facilities for a Pick database and 
produce more sophisticated reports the user needs to know a little about 
the way that the database is structured and how the system editor works, 
so these are described next. The system editor is a utility which allows 
the modification of any item on the database. These sections will be of 
particular interest to people who are experienced in using Access and 

1. PICK is a trademark of Pick Systems. 

xi 



Xll Preface 

who wish to understand more about the capabilities of their Pick com­
puter. 

The next most important areas for users are the spooler (a utility 
which deals with the production of printed output) and the security 
system (which allows the computer manager to prevent access to sensi­
tive data). These are described in detail, but an understanding of the 
security system can only follow a thorough understanding of the data­
base, so a more detailed description of the database is given. This 
section of the book should provide enough detail for the computer 
manager to be able to cope with most day to day requirements. 

The 'technical' aspects of Pick are Pick BASIC and the job control 
language, Proc, which links all the Pick features. The information given 
here describes concepts, rather than technical details, to enable the user 
to understand his application and, if necessary, to progress to a more 
technical level. Most users need to use Proc more than BASIC and tend 
to add to their Procs by changing menus and setting up permanent 
reports. To facilitate this, Proc is described in a tutorial fashion with the 
aim of showing the reader how Proc is used to set up menus and reports 
and to make the information easy to assimilate. 

Pick 'lookalikes' have already been mentioned. These are computers 
with an operating system which looks like Pick, but which were not in 
fact implemented by, or in the same way as, Pick Systems. These tend to 
have some operational differences to the 'true' Pick standard, but since 
they can be viewed as part of the Pick 'community', these differences 
have been pointed out, where appropriate. The three main Pick look a­
likes are McDonnell Douglas Reality/Sequoia, Prime Information and 
the personal computer database package, Revelation. 

Finally, a word about the presentation of the book. It has been 
thought very important to give a practical approach throughout and 
many examples of actual oper.ation have been given. To this end it has 
been necessary to indicate commands and responses with different 
typefaces. Commands typed into the computer are presented like this: 

A COMMAND TYPED INTO THE COMPUTER BY THE USER 

Where responses from the computer have been incorporated into 
the main text, the responses are in this typeface: 

A RESPONSE TO A COMMAND BY THE COMPUTER 

Other computer output, which might have appeared on a YOU 
screen or might have been hard copy on a printer, is presented in a 
photo-reduced format, as in Fig. P.l. 

XII Preface 

who wish to understand more about the capabilities of their Pick com­
puter. 

The next most important areas for users are the spooler (a utility 
which deals with the production of printed output) and the security 
system (which allows the computer manager to prevent access to sensi­
tive data). These are described in detail, but an understanding of the 
security system can only follow a thorough understanding of the data­
base, so a more detailed description of the database is given. This 
section of the book should provide enough detail for the computer 
manager to be able to cope with most day to day requirements. 

The 'technical' aspects of Pick are Pick BASIC and the job control 
language, Proc, which links all the Pick features. The information given 
here describes concepts, rather than technical details, to enable the user 
to understand his application and, if necessary, to progress to a more 
technical level. Most users need to use Proc more than BASIC and tend 
to add to their Procs by changing menus and setting up permanent 
reports. To facilitate this, Proc is described in a tutorial fashion with the 
aim of showing the reader how Proc is used to set up menus and reports 
and to make the information easy to assimilate. 

Pick 'lookalikes' have already been mentioned. These are computers 
with an operating system which looks like Pick, but which were not in 
fact implemented by, or in the same way as, Pick Systems. These tend to 
have some operational differences to the 'true' Pick standard, but since 
they can be viewed as part of the Pick 'community', these differences 
have been pointed out, where appropriate. The three main Pick looka­
likes are McDonnell Douglas Reality/Sequoia, Prime Information and 
the personal computer database package, Revelation. 

Finally, a word about the presentation of the book. It has been 
thought very important to give a practical approach throughout and 
many examples of actual oper.ation have been given. To this end it has 
been necessary to indicate commands and responses with different 
typefaces. Commands typed into the computer are presented like this: 

A COMMAND TYPED INTO THE COMPUTER BY THE USER 

Where responses from the computer have been incorporated into 
the main text, the responses are in this typeface: 

A RESPONSE TO A COMMAND BY THE COMPUTER 

Other computer output, which might have appeared on a YDU 
screen or might have been hard copy on a printer, is presented in a 
photo-reduced format, as in Fig. P.l. 



Preface Xlll 

PAGE 15:50:53 04 DEC 1985 

DEPARTNENT RATE 

PERSONNEL 4.00 

PRODUCTION 13.38 

TRANSPORT 8.50 
25.88 

6 ITEMS LISTED. 

Fig. P.l. 
PAGE 

DEPART1'lENT 

PERSONNEL 

PRODUCTION 

TRANSPORT 

6 ITEMS LISTED. 

Fig. P.l. 

RATE 

4.00 

13.38 

8.50 
25.88 

Preface Xlll 

15:50:53 04 DEC 1985 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 

I 
I 

I 
I 
I 
I 



Chapter 1 
Introduction 

Computers are devices which are becoming very familiar in our daily 
lives. Their uses are myriad and we can expect to encounter computers 
in many situations. Computers can be found in the home, in classrooms, 
in spacecraft and even in washing machines. Many computers are used 
by businesses for administrative purposes. 

HARDW ARE AND SOFTWARE 

When we talk about computers we usually envisage a box of electronic 
tricks consisting of wires, 'chips' and perhaps flashing lights, tapes and 
floppy disks. This is referred to as 'hardware'. 

Nowadays most people are aware of the idea of a 'program' - some 
set of instructions that the computer can understand and interpret in a 
specific manner to carry out a task. This is referred to as 'software'. 

When programming or simply using a computer, we sometimes take 
for granted the things which seem obvious, that we can 'talk' to a 
computer using a termina'l or keyboard, and that our data will be stored 
in the memory of the computer or on a magnetic disk. These tasks, and 
many others, are carried out by special software called the 'operating 
system'. 

This book is about one such operating system, called Pick. In fact the 
Pick Operating System carries out many tasks not normally associated 
with operating systems. Pick has its own 'database', which enables data 
to be stored and enquired upon simply. The enquiry facilities are given 
by means of a natural English (or French, Spanish or Japanese) lan­
guage feature. Just as words in the English language might be defined in 
the Oxford English Dictionary, so words in the Pick enquiry language 
are also defined in a dictionary. This makes the database familiar to the 
user, apart from being open ended. 

A special version of BASIC is used to update the information held in 
the database, this BASIC is designed around the database and inter­
faces with it very easily. Again the emphasis is very much on the data, 
rather than programming. 

1 

Chapter 1 
Introduction 

Computers are devices which are becoming very familiar in our daily 
lives. Their uses are myriad and we can expect to encounter computers 
in many situations. Computers can be found in the home, in classrooms, 
in spacecraft and even in washing machines. Many computers are used 
by businesses for administrative purposes. 

HARDW ARE AND SOFTWARE 

When we talk about computers we usually envisage a box of electronic 
tricks consisting of wires, 'chips' and perhaps flashing lights, tapes and 
floppy disks. This is referred to as 'hardware'. 

Nowadays most people are aware of the idea of a 'program' - some 
set of instructions that the computer can understand and interpret in a 
specific manner to carry out a task. This is referred to as 'software'. 

When programming or simply using a computer, we sometimes take 
for granted the things which seem obvious, that we can 'talk' to a 
computer using a terminal or keyboard, and that our data will be stored 
in the memory of the computer or on a magnetic disk. These tasks, and 
many others, are carried out by special software called the 'operating 
system'. 

This book is about one such operating system, called Pick. In fact the 
Pick Operating System carries out many tasks not normally associated 
with operating systems. Pick has its own 'database', which enables data 
to be stored and enquired upon simply. The enquiry facilities are given 
by means of a natural English (or French, Spanish or Japanese) lan­
guage feature. Just as words in the English language might be defined in 
the Oxford English Dictionary, so words in the Pick enquiry language 
are also defined in a dictionary. This makes the database familiar to the 
user, apart from being open ended. 

A special version of BASIC is used to update the information held in 
the database, this BASIC is designed around the database and inter­
faces with it very easily. Again the emphasis is very much on the data, 
rather than programming. 

1 



2 Chapter 1 

Computers running Pick are normally 'multi-user' computers. That 
is, more than one person may use the computer at one time. The various 
users of the computer might be carrying out completely different tasks. 
The fact that there are usually other users on the system is completely 
transparent. Pick provides facilities to help the user administer the 
problems caused by multi-user computers, such as providing queuing 
facilities for shared devices, like printers, in the form of a spooler. Pick 
also provides facilities to ensure that data can be kept secure, so that, 
for example, while the Chairman of the company may examine any 
data, the order entry clerk may be forbidden from looking at the 
personnel records. 

Typically a computer system running Pick will consist of a central 
processing unit, where all the computing is actually carried out, and 
several terminals, which may be visual display units (VDUs), or teletype 
printers with a keyboard. It is through the terminals that we address the 
computer and access our data. All the information presented in this 
book relates to operations carried out at a terminal. From now on the 
computer hardware and the electronic tricks are irrelevant. It has no 
more importance than a filing cabinet in an office. 

LOGGING ON 

When a terminal connected to a Pick computer is switched on a message 
appears on the screen: 

LOGON PLEASE: 

the computer is asking you to identify yourself and 'log on' to an 
'account'. All Pick computers have an account called SYSPROG which 
is normally used only by the computer manager, but in principle the 
account name may be anything that has already been defined by the 
computer manager. Let us suppose that there is an account on our 
computer called ADMIN. We can log on to that account by typing 
ADMIN followed by the button marked RETURN or ENTER. Note 
that if the account is called ADMIN the computer will not accept 
'admin'. Pick is 'case sensitive'. If a word is defined in upper case it may 
not also be used in lower case, unless of course it has also been defined 
in lower case. 

If the logon name is rejected, the computer responds by complaining 
with the error message: 

USER 101 

2 Chapter 1 

Computers running Pick are normally 'multi-user' computers. That 
is, more than one person may use the computer at one time. The various 
users of the computer might be carrying out completely different tasks. 
The fact that there are usually other users on the system is completely 
transparent. Pick provides facilities to help the user administer the 
problems caused by multi-user computers, such as providing queuing 
facilities for shared devices, like printers, in the form of a spooler. Pick 
also provides facilities to ensure that data can be kept secure, so that, 
for example, while the Chairman of the company may examine any 
data, the order entry clerk may be forbidden from looking at the 
personnel records. 

Typically a computer system running Pick will consist of a central 
processing unit, where all the computing is actually carried out, and 
several terminals, which may be visual display units (VDUs), or teletype 
printers with a keyboard. It is through the terminals that we address the 
computer and access our data. All the information presented in this 
book relates to operations carried out at a terminal. From now on the 
computer hardware and the electronic tricks are irrelevant. It has no 
more importance than a filing cabinet in an office. 

LOGGING ON 

When a terminal connected to a Pick computer is switched on a message 
appears on the screen: 

LOGON PLEASE: 

the computer is asking you to identify yourself and 'log on' to an 
'account'. All Pick computers have an account called SYSPROG which 
is normally used only by the computer manager, but in principle the 
account name may be anything that has already been defined by the 
computer manager. Let us suppose that there is an account on our 
computer called ADMIN. We can log on to that account by typing 
ADMIN followed by the button marked RETURN or ENTER. Note 
that if the account is called ADMIN the computer will not accept 
'admin'. Pick is 'case sensitive'. If a word is defined in upper case it may 
not also be used in lower case, unless of course it has also been defined 
in lower case. 

If the logon name is rejected, the computer responds by complaining 
with the error message: 

USER 101 



Introduction 3 

and then returns to the logon prompt. 

LOGON PLEASE: 

This is very characteristic of Pick. If you ever enter a command 
which Pick does not understand, there will be an error message. Usually 
this error message will help you to decide what was wrong and enter the 
correct command. 

The next thing that might happen is that the computer will prompt 
with the word: 

PASSWORD: 

If this happens the account is protected by a password and we must 
know the password in order to proceed further. When the password is 
typed, the letters making up the password do not appear on the screen, 
this helps to preserve the security of sensitive data. If the password is 
typed incorrectly the computer will respond: 

PASSWORD? 

LOGON PLEASE: 

and we have to start again from the account name. 
Once this barrier has been overcome the computer will allow us to 

access the account. If we arc accessing an account where a real applica­
tion has already been set up, such as a personnel system or a sales 
ledger, it is more than likely that the master menu for the application 
will appear automatically. If there is no menu the computer will issue a 
'prompt character' which on most systems will be a chevron (» or it 
might be a colon (:). This is 'terminal command level' or TCL. The 
computer is ready for our next command and is asking us what we want 
to do next. 

From TCL we may interrogate the database or execute a program or 
initiate any of the utilities that make up the Pick Operating System. One 
of the utilities available enables LIS to 'log off the computer and return 
to the LOGON PLEASE: prompt. To log off we type the word OFF 
followed by the button marked RETURN or ENTER. This discipline of 
logging off should be carried out whenever we have finished using the 
computer. 

Introduction 3 

and then returns to the logon prompt. 

LOGON PLEASE: 

This is very characteristic of Pick. If you ever enter a command 
which Pick docs not understand, there will be an error message. Usual!y 
this error message will help you to decide what was wrong and enter the 
correct command. 

The next thing that might happen is that the computer will prompt 
with the word: 

PASSWORD: 

If this happens the account is protected by a password and we must 
know the password in order to proceed further. When the password is 
typed, the letters making up the password do not appear on the screen, 
this helps to preserve the security of sensitive data. If the password is 
typed incorrectly the computer will respond: 

PASSWORD? 

LOGON PLEASE: 

and we have to start again from the account name. 
Once this barrier has been overcome the computer will allow us to 

access the account. If we are accessing an account where a real applica­
tion has already been set up, such as a personnel system or a sales 
ledger, it is more than likely that the master menu for the application 
will appear automatically. If there is no menu the computer will issue a 
'prompt character' which on most systems will be a chevron (» or it 
might be a colon (:). This is 'terminal command level' or TCL. The 
computer is ready for our next command and is asking us what we want 
to do next. 

From TCL we may interrogate the database or execute a program or 
initiate any of the utilities that make up the Pick Operating System. One 
of the utilities available enables us to 'log off the computer and return 
to the LOGON PLEASE: prompt. To log off we type the word OFF 
followed by the button marked RETURN or ENTER. This discipline of 
logging off should be carried out whenever we have finished using the 
computer. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



Chapter 2 
The ACCESS Enquiry Language 

In normal circumstances the user of a computer will have an application 
running on the computer, with data and specific procedures already in 
place. His problem is then how to make the most effective use of his 
data outside the normal procedures. In this chapter we shall assume that 
there is an existing application with data stored on the Pick database. 
We shall see how the enquiry language may be used to answer ad hoc 
queries and how the data may be presented in new ways. 

A database is a collection of data stored in an organised manner 
which enables the data to be accessed easily. A telephone directory is an 
example of a database which is not (yet!) found on a computer. The data 
may be as simple as a list of names and addresses or as complex as a 
sales ledger. In Pick, data is stored in 'files'. A file contains a collection 
of data which belongs in the same category. So, in business, one file 
might contain all the names and addresses of our customers, another 
might contain all the order details. Both files would be on the same 
database, so we would not duplicate the names and addresses of the 
customers in the orders on the order file. 

The individual details of a single customer will be held together in a 
'record'. Each record on the file will thus hold the name and address of a 
single customer. The name and the address are called 'fields'. There will 
be one special field of each record which distinguishes the records. This 
is called the 'key' or record identifying field. This has to be something 
unique amongst the records within the file. In the case of a customer list 
it might be an account number. 

A computerised database has to have some method of retrieving the 
information held on the database. We may wish to view the data in 
many ways and interrogate the database. The aim is to answer questions 
like "how many customers have we in Kent?", or "which products do we 
sell the most of?". Pick provides a language to do this. The various 
distributors of Pick call this language by various names. ACCESS, 
RECALL, INFORM, R/LIST, ENGLISH, FRANCAIS, ESPAGNOL 

5 

Chapter 2 
The ACCESS Enquiry Language 

In normal circumstances the user of a computer will have an application 
running on the computer, with data and specific procedures already in 
place. His problem is then how to make the most effective use of his 
data outside the normal procedures. In this chapter we shall assume that 
there is an existing application with data stored on the Pick database. 
We shall see how the enquiry language may be used to answer ad hoc 
queries and how the data may be presented in new ways. 

A database is a collection of data stored in an organised manner 
which enables the data to be accessed easily. A telephone directory is an 
example of a database which is not (yet!) found on a computer. The data 
may be as simple as a list of names and addresses or as complex as a 
sales ledger. In Pick, data is stored in 'files'. A file contains a collection 
of data which belongs in the same category. So, in business, one file 
might contain all the names and addresses of our customers, another 
might contain all the order details. Both files would be on the same 
database, so we would not duplicate the names and addresses of the 
customers in the orders on the order file. 

The individual details of a single customer will be held together in a 
'record'. Each record on the file will thus hold the name and address of a 
single customer. The name and the address are called 'fields'. There will 
be one special field of each record which distinguishes the records. This 
is called the 'key' or record identifying field. This has to be something 
unique amongst the records within the file. In the case of a customer list 
it might be an account number. 

A computerised database has to have some method of retrieving the 
information held on the database. We may wish to view the data in 
many ways and interrogate the database. The aim is to answer questions 
like "how many customers have we in Kent?", or "which products do we 
sell the most of?". Pick provides a language to do this. The various 
distributors of Pick call this language by various names. ACCESS, 
RECALL, INFORM, R/LIST, ENGLISH, FRAN<;AIS, ESPAGNOL 

5 



C
lo

ck
 c

ar
d 

N
am

e 
A

dd
re

ss
 

P
os

it
io

n 
D

ep
ar

tm
en

t 
S

ta
rt

 
R

at
e 

of
 

T
el

ep
ho

ne
 

Se
x 

A
ge

 
nu

m
be

r 
da

te
 

pa
y 

nu
m

he
r 

A
-l

00
 

H
A

L
L

F
 

39
 K

IN
G

 S
T

R
E

E
T

 
S

E
C

R
E

T
A

R
Y

 
P

E
R

S
O

N
N

E
L

 
11

A
U

G
83

 
4.

00
 

7'
:1

0-
29

03
 

M
 

23
 

B
R

IG
H

T
O

N
 

S
U

S
S

E
X

 

B
l-

20
 

JO
H

N
S

O
N

 D
 

3 
C

A
R

R
B

A
N

K
 A

V
 

M
A

N
A

G
E

R
 

T
R

A
N

S
P

O
R

T
 

O
lA

P
R

82
 

4.
50

 
19

7-
35

82
 

M
 

26
 

H
Y

D
E

 
C

H
E

S
H

IR
E

 

A
-4

00
 

T
H

O
M

S
O

N
 A

 J
 

8 
D

U
G

D
A

L
E

 A
V

 
C

U
T

T
E

R
 

P
R

O
D

U
C

T
IO

N
 

26
JA

N
83

 
4.

35
 

73
9-

10
95

 
F 

31
 

C
R

O
W

T
H

O
R

N
E

 
B

E
R

K
S

 

B
-5

23
 

W
R

IG
H

T
 J

 D
 

4 
P

E
N

D
L

E
W

A
Y

 
M

A
C

H
IN

IS
T

 
P

R
O

D
U

C
T

IO
N

 
19

F
E

B
85

 
3.

80
 

49
7-

35
21

1 
M

 
31

 
C

A
M

B
R

ID
G

E
 

B
l-

l 
E

L
L

IS
 K

 
91

 H
O

L
L

A
N

D
 S

T
 

C
U

T
T

E
R

 
P

R
O

D
U

C
T

IO
N

 
05

M
A

R
II

2 
5.

23
 

F 
22

 
E

S
H

E
R

 
S

U
R

R
E

Y
 

C
-1

O
 

R
O

T
H

W
E

L
L

T
M

 
23

0 
H

A
M

IL
 T

O
N

 S
T

 
F

IT
T

E
R

 
T

R
A

N
S

P
O

R
T

 
10

JU
L

84
 

4.
00

 
11

91
-6

86
7 

F 
50

 
C

O
V

E
N

T
R

Y
 

W
A

R
W

IC
K

S
 

Fi
g.

 2
.1

. 
T

he
 d

at
a 

co
m

pr
is

in
g 

th
e 

sa
m

pl
e 

Pe
rs

on
ne

l 
da

ta
ba

se
. 

Clock card Name Address Position Department Start Rate of Telephone Sex Age 
number date pay numoer 

A-l00 HALL F 39 KING STREET SECRETARY PERSONNEL 11AUGX3 4.00 790-2903 M 23 
BRIGHTON 
SUSSEX 

BI-20 JOHNSON D 3 CARRBANK A V MANAGER TRANSPORT 01 APRX2 4.S0 197-3SX2 M 26 
HYDE 
CHESHIRE 

A-400 THOMSON A J X DUGDALE AV CUTTER PRODUCTION 26JANX3 ·US 739-1095 F 31 
CROWTHORNE 
BERKS 

B-523 WRIGHT J D 4 PENDLEWAY MACHINIST PRODUCTION 19FEBX5 3.XO 497-352X M 31 
CAMBRIDGE 

Bl-l ELLIS K 91 HOLLAND ST CUTTER PRODUCTION 05MARX2 5.23 F 22 
ESHER 
SURREY 

C-1O ROTHWELLTM 230 HAMILTON ST FITTER TRANSPORT lOJULX4 4.00 X91-6867 F 50 
COVENTRY 
WARWICKS 

Fig. 2.1. The data comprising the sample Personnel dataoase. 



The ACCESS Enquiry Language 7 

and NIPPON-GO are examples of proprietary names for what is essen­
tially the same language. The official Pick Systems trademark for the 
language is ACCESS so we shall call the enquiry language ACCESS 
throughout. 

As the name ENGLISH implies, ACCESS is a language which is like 
everyday English, it is recognisable as English and is natural in use. To 
illustrate the examples in this section a small personnel file called 
PERSONNEL has been used. PERSONNEL contains the information 
shown in the table in Fig. 2.1 in six records. Note that in this example 
the 'special' or key field is the clock card number. 

An Access enquiry sentence is typed at the keyboard and then sent 
to the computer by pressing the RETURN key. The command may be 
given at any point where you see the Terminal Command Level (TCL) 
prompt, which will be a chevron (» or possibly a colon (:). 

The first word of any Access sentence must be a verb. Examples of 
verbs are LIST, SORT, SELECT, SSELECT (Sort and select), 
COUNT and SUM. This tells the computer what to do. 

The second word of an Access sentence is normally a file name. This 
tells the computer which data the operation is to be carried out on. The 
file name that will be used for all the examples in this chapter is called 
PERSONNEL. 

Other words may follow the file name. The various words are 
separated by a space, just as in written English. 

The simplest possible command is simply a verb and a file name, 
such as: 

LIST PERSONNEL 

which will give a display of all the records in the file, giving a preselected 
default report of certain fields from all the records. In our small sample 
file, this results in the display shown in Fig. 2.2. Just for now, take it for 
granted that a default report appears, the way that this is set up is 
described in the chapter on dictionaries. 

MODIFYING THE REPORT 

The display above will appear on the terminal on which the command is 
typed. The report will halt at the end of the last line of each page and 
will only continue when the user presses the RETURN key. Instead of 
pressing RETURN the user might type CONTROL-Xl, at which point 

1. CONTROL and X are two separate keys which have to be pressed together to generate 
the command, here called CONTROL-X. Do not try to press both keys simultaneously, 
but hold the CONTROL key down and type X. 

The ACCESS Enquiry Language 7 

and NIPPON-GO are examples of proprietary names for what is essen­
tially the same language. The official Pick Systems trademark for the 
language is ACCESS so we shall call the enquiry language ACCESS 
throughout. 

As the name ENGLISH implies, ACCESS is a language which is like 
everyday English, it is recognisable as English and is natural in use. To 
illustrate the examples in this section a small personnel file called 
PERSONNEL has been used. PERSONNEL contains the information 
shown in the table in Fig. 2.1 in six records. Note that in this example 
the 'special' or key field is the clock card number. 

An Access enquiry sentence is typed at the keyboard and then sent 
to the computer by pressing the RETURN key. The command may be 
given at any point where you see the Terminal Command Level (TCL) 
prompt, which will be a chevron (» or possibly a colon (:). 

The first word of any Access sentence must be a verb. Examples of 
verbs are LIST, SORT, SELECT, SSELECT (Sort and select), 
COUNT and SUM. This tells the computer what to do. 

The second word of an Access sentence is normally a file name. This 
tells the computer which data the operation is to be carried out on. The 
file name that will be used for all the examples in this chapter is called 
PERSONNEL. 

Other words may follow the file name. The various words are 
separated by a space, just as in written English. 

The simplest possible command is simply a verb and a file name, 
such as: 

LIST PERSONNEL 

which will give a display of all the records in the file, giving a preselected 
default report of certain fields from all the records. In our small sample 
file, this results in the display shown in Fig. 2.2. Just for now, take it for 
granted that a default report appears, the way that this is set up is 
described in the chapter on dictionaries. 

MODIFYING THE REPORT 

The display above will appear on the terminal on which the command is 
typed. The report will halt at the end of the last line of each page and 
will only continue when the user presses the RETURN key. Instead of 
pressing RETURN the user might type CONTROL-X', at which point 

1. CONTROL and X are two separate keys which have to be pressed together to generate 
the command, here called CONTROL-X. Do not try to press both keys simultaneously, 
but hold the CONTROL key down and type X. 



Chapler 2 

PAGE 09:02:35 12 DEC 1985 

PERSONNEL NANE 

A-lOO 
B1-20 
A-400 
B1-1 
B-523 
C-lO 

HALL F 
JOHNSON D 
THO~lS0N A J 
ELLIS K 
WRIGHT J D 
ROTHI-lELL T H 

6 ITENS LISTED. 

Fig. 2.2. The output produced by 
LIST PERSONNEL 

POSITION 

SECRETARY 
HANAGER 
CUTTER 
CUTTER 
1'1ACHINIST 
FITTER 

RATE STARTED 

4.00 11 AUG 1983 
4.50 01 APR 1982 
4.35 26 JAN 1983 
5.23 05 MAR 1982 
3.80 19 FEB 1985 
4.00 10 JUL 1984 

the report will be terminated and control returned to TeL. This form of 
display can be changed by adding an 'output modifier' to the Access 
sentence. For example. the word LPTR (short for lineprinter) will cause 
the output to appear on a printer. rather than the user's terminal. The 
option (P) may be used instead; this has the same meaning as LPTR. 
Options are single character codes surrounded by brackets. More than 

MODIFIERS 

LPTR 
NOPAGE 
HDR-SUPP 
ID-SUPP 
ONLY 

DBL-SPC 
COL-HDR-SUPP 
HEADING 
FOOTING 
TOTAL 
DET-SUPP 

OPTIONS 

Send output to the system printer. 
Do not halt at the end of the last line of each page. 
Do not display the page heading. 
Do not display the key field. 
Only display the key field (i.e. instead of the default 
report). 
Leave a blank line between each line output. 
Do not display the column headings. 
Use a different heading. 
Use a footing. 
Total a numeric field. 
Display only TOTAL lines. 

C Same as COL-HDR-SUPP 
D Same as DET-SUPP 
H Same as HDR-SUPP 
I Same as ID-SUPP 
N Same as NOPAGE 
P Same as LPTR 

Chapter 2 

PAGE 09:02:35 12 DEC 1985 

PERSONNEL NA~lE POSITION RATE STARTED 

A-100 HALL F 
Bl-20 JOHNSON D 
A-400 THOHSON A J 
81-1 ELLIS K 
B-523 WRIGHT J D 
C-lO ROTHlYELL T ~l 

6 ITE~IS LISTED. 

f'ig. 2.2. The output produced by 
LIST PERSONNEL 

SECRETARY 4.00 11 AUG 1983 
MANAGER 4.50 01 APR 1982 
CUTTER 4.35 26 JAN 1983 
CUTTER 5.23 05 MAR 1982 
NACHINIST 3.80 19 FEB 1985 
FITTER 4.00 10 JUL 1984 

the report will be terminated and control returned to TeL. This form of 
display can be changed by adding an 'output modifier' to the Access 
sentence. For example, the word LPTR (short for lineprinter) will cause 
the output to appear on a printer. rather than the user's terminal. The 
option (P) may be used instead: this has the same meaning as LPTR. 
Options are single character codes surrounded by brackets. More than 

MODIFIERS 

LPTR 
NOPAGE 
HDR-SUPP 
ID-SUPP 
ONLY 

DBL-SPC 
COL-HDR-SUPP 
HEADING 
FOOTING 
TOTAL 
DET-SUPP 

OPTIONS 

Send output to the system printer. 
Do not halt at the end of the last line of each page. 
Do not display the page heading. 
Do not display the key field. 
Only display the key field (i.e. instead of the default 
report). 
Leave a blank line between each line output. 
Do not display the column headings. 
Use a different heading. 
Use a footing. 
Total a numeric field. 
Display only TOTAL lines. 

C Same as COL-HDR-SUPP 
D Same as DET-SUPP 
H Same as HDR-SUPP 
I Same as ID-SUPP 
N Same as NO PAGE 
P Same as LPTR 



The ACCESS Enquiry Language 9 

one option may he specified hy separating the single character codes hy 
commas. 

These options and modifiers may he included in the Access sent­
ences as required, e.g. 

LIST PERSONNEL ID-SUPP DBL-SPC NOPAGE 

LIST PERSONNEL DBL-SPC (I,N) 

Either of these sentence will produce the report shown in Fig. 2.3. 

PAGE 09:04:42 12 DEC 1985 

NANE POSITION RATE STARTED 

HALL F SECRETARY 4.00 11 AUG 1983 

JOHNSON D MANAGER 4.50 01 APR 1982 

THOMSON A J CUTTER 4.35 26 JAN 1983 

ELLIS K CUTTER 5.23 05 ~IAR 1982 

I.JRIGHT J D MACHINIST 3.80 19 FEB 1985 

ROTHWELL T H FITTER 4.00 10 JUL 1984 

6 ITEMS LISTED. 

Fig. 2.3. The output produced by 
LIST PERSONNEL DBL-SPC (I,N) 

In Fig. 2.3 the clock card number has been omitted from the display 
and each line of the report has been separated by a blank line. The 
report is said to be 'double spaced'. 

Note that, except on McDonnell Douglas systems, options must be 
placed at the end of the sentence otherwise they will be ignored. 

SELECTING FIELDS TO BE DISPLAYED 

The information which appears on this 'default' report is not the only 
way of displaying information held on the file. If a list of field names is 
added to the Access sentence, then the information stored in those 
fields will be displayed instead of the default report. Any number of 
fields may be requested in an Access sentence. The field names may 
appear anywhere in the command after the file name and in any order. 
The fields will be displayed as separate columns if the terminal is wide 

The ACCESS Enquiry Language 9 

one option may be specified by separating the single character codes by 
commas. 

These options and modifiers may be included in the Access sent­
ences as required. e.g. 

LIST PERSONNEL ID-SUPP DBL-SPC NOPAGE 

LIST PERSONNEL DBL-SPC (I,N) 

Either of these sentence will produce the report shown in Fig. 2.3. 

PAGE 09:04:42 12 DEC 1985 

NAHE POSITION RATE STARTED 

HALL F SECRETARY 4.00 11 AUG 1983 

JOHNSON D MANAGER 4.50 01 APR 1982 

THOMSON A J CUTTER 4.35 26 JAN 1983 

ELLIS K CUTTER 5.23 05 HAR 1982 

I.ffiIGHT J D t1ACHINIST 3.80 19 FEB 1985 

ROTHWELL T N FITTER 4.00 10 JUL 1984 

6 ITE~1S LISTED. 

Fig. 2.3. The output produced by 
LIST PERSONNEL DBL-SPC (I.N) 

In Fig. 2.3 the clock card number has been omitted from the display 
and each line of the report has been separated by a blank line. The 
report is said to be 'double spaced'. 

Note that, except on McDonnell Douglas systems, options must be 
placed at the end of the sentence otherwise they will be ignored. 

SELECTING FIELDS TO BE DISPLAYED 

The information which appears on this 'default' report is not the only 
way of displaying information held on the file. If a list of field names is 
added to the Access sentence, then the information stored in those 
fields will be displayed instead of the default report. Any number of 
fields may be requested in an Access sentence. The field names may 
appear anywhere in the command after the file name and in any order. 
The fields will be displayed as separate columns if the terminal is wide 



10 Chapter 2 

enough, otherwise each field will occupy a separate line. The column 
displayed on the left will be the 'special' key field but this may be 
suppressed with the ID-SUPP modifier. Subsequent columns will show 
the information from each of the fields specified. These will appear in 
the same order in which they were requested. 

Figures 2.4, 2.5 and 2.6 show three examples of Access commands 
and reports where the default report has been suppressed and replaced 
by particular fields. In Fig. 2.4: 

LIST PERSONNEL NAME ADDRESS 

only the name and address of each employee are shown. Note how Pick 
seems to know how the address should be formatted, with each line of 
the address on a separate line on the report. 

The next example, Fig. 2.5, 

LIST PERSONNEL NAME RATE POSITION 

shows the name, the rate of pay and the position of each of the em­
ployees. In this report note how Pick seems to know that textual data, 
like the name and the position, are formatted one under another start­
ing from the left. but numerical data, like the rate of pay, are formatted 
as we expect to see columns of numbers, formatted to the right. 

The Access sentence: 

LIST PERSONNEL SURNAME OCCUPATION NUMBER (I) 

shown in Fig. 2.6 shows how we can define words which actually 
manipulate the data stored on the file, as in SURNAME, and define 
words which mean the same as other words, synonyms like OCCUPA­
TION and NUMBER. It also shows how we may combine the ideas of 
Access together. Here we have asked that the key field should not be 
displayed by adding the I option. The way in which these words are 
defined is explained in the chapter on dictionaries. 

USING ACCESS TO ASK QUESTIONS 

More often than not we wish to ask questions of the database, rather 
than simply specifying the information to be displayed. These questions 
may take the form of: "Which of our secretaries speak French?"; 
"Which customers with a credit limit over a thousand pounds pay late?" 
and so on. 

10 Chapter 2 

enough. otherwise each field will occupy a separate line. The column 
displayed on the left will be the 'special' key field but this may be 
suppressed with the IO-SUPP modifier. Subsequent columns will show 
the information from each of the fields specified. These will appear in 
the same order in which they were requested. 

Figures 2.4. 2.5 and 2.6 show three examples of Access commands 
and reports where the default report has been suppressed and replaced 
by particular fields. In Fig. 2.4: 

LIST PERSONNEL NAME ADDRESS 

only the name and address of each employee are shown. Note how Pick 
seems to know how the address should be formatted, with each line of 
the address on a separate line on the report. 

The next example, Fig. 2.5, 

LIST PERSONNEL NAME RATE POSITION 

shows the name, the rate of pay and the position of each of the em­
ployees. In this report note how Pick seems to know that textual data, 
like the name and the position, are formatted one under another start­
ing from the left. but numerical data, like the rate of pay, are formatted 
as we expect to see columns of numbers, formatted to the right. 

The Access sentence: 

LIST PERSONNEL SURNAME OCCUPATION NUMBER (I) 

shown in Fig. 2.6 shows how we can define words which actually 
manipulate the data stored on the file, as in SURNAME, and define 
words which mean the same as other words, synonyms like OCCUPA­
TION and NUMBER. It also shows how we may combine the ideas of 
Access together. Here we have asked that the key field should not be 
displayed by adding the I option. The way in which these words are 
defined is explained in the chapter on dictionaries. 

USING ACCESS TO ASK QUESTIONS 

More often than not we wish to ask questions of the database, rather 
than simply specifying the information to be displayed. These questions 
may take the form of: "Which of our secretaries speak French?"; 
"Which customers with a credit limit over a thousand pounds pay late?" 
and so on. 



The A CCESS Enquiry Langllage 

PAGE 09:09:08 12 DEC 1985 

PERSONNEL NMIE ADDRESS 

A-IOO HALL F 39 KING STREET 
BRIGHTON 
SUSSEX 

Bl-20 JOHNSON D 3 CARRBANK AV 
HYDE 
CHESHIRE 

A-400 THOMSON A J 8 DUGDALE AV 
CROWTHORNE 
BERKS 

131-1 ELLIS K 91 HOLLAND ST 
ESHER 
SURREY 

13-523 I·IRIGHT J D 4 PENDLEWAY 
CAMBRIDGE 

C-lO ROTHWELL T M 230 HAllILTON ST 
COVENTRY 
WARWICKS 

6 ITEMS LISTED. 

t'ig. 2.4. The output produced by 
LIST PERSON]\iEL NAME ADDRESS 

PAGE 1 

PERSONNEL NAME 

A-IOO 
131-20 
A-400 
131-1 
B-523 
C-10 

HALL F 
JOHNSON D 
THOMSON A J 
ELLIS K 
WRIGHT J D 
ROTHWELL T. M 

6 ITEMS LISTED. 

Fig. 2.5. The output produced by 

09:10:30 12 DEC 1985 

RATE POSITION 

4.00 SECRETARY 
4.50 MANAGER 
4.35 CUTTER 
5.23 CUTTER 
3.80 MACHINIST 
4.00 FITTER 

LIST PERSONNEL NAME RATE POSITION 

11 

The ACCESS Enquiry Language 

PAGE 1 09:09:08 12 DEC 1985 

PERSONNEL NANE ADDRESS 

A-lOO HALL F 39 KING STREET 
BRIGHTON 
SUSSEX 

BI-20 JOHNSON D 3 CARRBANK AV 
HYDE 
CHESHIRE 

A-400 THONSON A J 8 DUGDALE AV 
CROWTHORNE 
BERKS 

81-1 ELLIS K 91 HOLLAND ST 
ESHER 
SURREY 

B-523 I.JRIGHT J D 4 PENDLEWAY 
CAMBRIDGE 

C-lO ROTHWELL T M 230 HAtlILTON ST 
COVENTRY 
WARWICKS 

6 ITEMS LISTED. 

Fig. 2.4. The output produced by 
LIST PERSONNEL NAME ADDRESS 

PAGE 

PERSONNEL NAME 

A-lOO 
BI-20 
A-400 
81-1 
B-523 
C-I0 

HALL F 
JOHNSON D 
THOMSON A J 
ELLIS K 
WRIGHT J D 
ROTHI.JELL T M 

6 ITEMS LISTED. 

Fig. 2.5. The output produced by 

09:10:30 12 DEC 1985 

RATE POSITION 

4.00 SECRETARY 
4.50 MANAGER 
4.35 CUTTER 
5.23 CUTTER 
3.80 MACHINIST 
4.00 FITTER 

LIST PERSONNEL NAME RATE POSITION 

11 



12 Chupter 2 

PAGE 09:11:49 12 DEC 1985 

SURNMIE OCCUPATION NUHBER 

HALL SECRETARY A-IOO 
JOHNSON MANAGER B1-20 
THONSON CUTTER A-400 
ELLIS CUTTER B1-1 
WRIGHT HACHINIST B-523 
ROTHWELL FITTER C-1O 

6 ITEMS LISTED. 

Hg. 2.6. The output produceu by 
LIST PERSONNEL SURNAME OCCUPATION NUMBER (I) 

We do this by adding the word WITH (or IF which means the same 
thing) followed by the name of the field and relational operator, fol­
lowed by the value to be compared enclosed in double quotes. Relation­
al operators are simply words or abbreviations or symbols which specify 
the type of comparison to be carried out. 

Relational operator 

EO or = or null 
GT or AFTER or > 
LT or BEFORE or < 
GE or >= 
LE or <= 
NE or NOT or # 
NO 

Here are a few examples: 

Meaning 

Equal to 
Greater than 
Less than 
Greater than or equal to 
Less than or equal to 
Not equal to 
Having no value. 

LIST PERSONNEL WITH POSITION "SECRETARY" 
LIST PERSONNEL IF POSITION = "SECRETARY" 
LIST PERSONNEL IF AGE GE "25" 
LIST PERSONNEL WITH NAME < "M" 
LIST PERSONNEL WITH STARTED AFTER "31 JUL 1983" 
LIST PERSONNEL WITH DEPARTMENT NE "TRANSPORT" 
LIST PERSONNEL WITH NO PHONE 
LIST PERSONNEL NAME ADDRESS WITH NO PHONE (I) 

Figure 2.7 shows those members of staff who joined the company 
since 31 July 1983 and is the result of the Access sentence: 

12 Chapter 2 

PAGE 1 09:11:49 12 DEC 1985 

SURNAHE OCCUPATION Nut-illER 

HALL SECRETARY A-lOO 
JOHNSON MANAGER BI-20 
THOHSON CUTTER A-400 
ELLIS CUTTER Bl-l 
WRIGHT NACHINIST B-523 
ROTHWELL FITTER C-lO 

6 ITEMS LISTED. 

Fig. 2.6. The output produced hy 
LIST PERSONNEL SURNAME OCCUPATION NUMBER (I) 

We do this by adding the word WITH (or IF which means the same 
thing) followed by the name of the field and relational operator, fol­
lowed by the value to be compared enclosed in double quotes. Relation­
al operators are simply words or abbreviations or symbols which specify 
the type of comparison to be carried out. 

Relational operator 

EO or = or null 
GT or AFTER or > 
LT or BEFORE or < 
GE or >= 
LE or <= 
NE or NOT or # 
NO 

Here are a few examples: 

Meaning 

Equal to 
Greater than 
Less than 
Greater than or equal to 
Less than or equal to 
Not equal to 
Having no value. 

LIST PERSONNEL WITH POSITION "SECRETARY" 
LIST PERSONNEL IF POSITION = "SECRETARY" 
LIST PERSONNEL IF AGE GE "25" 
LIST PERSONNEL WITH NAME < "M" 
LIST PERSONNEL WITH STARTED AFTER "31 JUL 1983" 
LIST PERSONNEL WITH DEPARTMENT NE "TRANSPORT" 
LIST PERSONNEL WITH NO PHONE 
LIST PERSONNEL NAME ADDRESS WITH NO PHONE (I) 

Figure 2.7 shows those members of staff who joined the company 
since 31 July 1983 and is the result of the Access sentence: 



The ACCESS Enquiry Language 

LIST PERSONNEL WITH STARTED AFTER "31 JUL 1983" 

PAGE 09:17:27 12 DEC 1985 

PERSONNEL NAt'IE POSITION RATE STARTED 

HALL F SECRETARY A-lOO 
B-523 
C-10 

WRIGHT J D MACHINIST 
4.00 11 AUG 1983 
3.80 19 FEB 1985 
4.00 10 JUL 1984 ROTffivELL T M FITTER 

3 ITEtiS LISTED. 
Fig. 2.7. The output produced by 

LIST PERSONNEL 
WITH STARTED AITER "31 JUL 19H3" 

13 

These criteria may he joined together to modify the restrictions by 
the use of the connectives AND and OR. 

For example, Fig. 2.8 shows the report produced by the sentence: 

LIST PERSONNEL WITH POSITION "CUTTER" AND WITH RATE < "5" 

and Fig. 2.9 shows the report produced when the command 

LIST PERSONNEL WITH POSITION "CUTTER" OR WITH POSITION 
"SECRETARY" 

is given. 

PAGE 09:25:19 12 DEC 1985 

PERSONNEL NAME POSITION RATE STARTED 

A-400 THOMSON A J CUTTER 4.35 26 JAN 1983 

END OF LIST 

Fig. 2.8. The output produced by 
LIST PERSONNEL WITH POSITION "CUTTER" 
AND WITH RATE < "5" 

The up arrow character may be used as a 'wild card' character, i.e. 
the sentence 

LIST PERSONNEL WITH RATE "4. ,," 

will display all those employees whose RATE field contains a four 

The ACCESS Enquiry Language 

LIST PERSONNEL WITH STARTED AFTER "31 JUL 1983" 

PAGE 

PERSONNEL NAt-IE POSITION 

A-I00 
B-523 
C-1O 

HALL F SECRETARY 
\.[RIGHT J D MACHINIST 
ROTHlvELL T M FITTER 

3 ITEI1S LISTED. 
Fig. 2.7. The output produced by 

LIST PERSONNEL 

09:17:27 12 DEC 1985 

RATE STARTED 

4.00 11 AUG 1983 
3.80 19 FEB 1985 
4.00 10 JUL 1984 

WITH STARTED AITER "31 JUL 19HT" 

13 

These criteria may be joined together to modify the restrictions by 
the use of the connectives AND and OR. 

For example, Fig. 2.8 shows the report produced by the sentence: 

LIST PERSONNEL WITH POSITION "CUTTER" AND WITH RATE < "5" 

and Fig. 2.9 shows the report produced when the command 

LIST PERSONNEL WITH POSITION "CUTTER" OR WITH POSITION 
"SECRETARY" 

is given. 

PAGE 09:25:19 12 DEC 1985 

PERSONNEL NAME POSITION RATE STARTED 

A-400 THOMSON A J CUTTER 4.35 26 JAN 1983 

END OF LIST 

Fig. 2.8. The output produced by 
LIST PERSONNEL WITH POSITION "CUTTER" 
AND WITH RATE < "5" 

The up arrow character may be used as a 'wild card' character, i.e. 
the sentence 

LIST PERSONNEL WITH RATE "4"" 

will display all those employees whose RATE field contains a four 



14 Chapter 2 

PAGE 09:29:20 12 DEC 1985 

PERSONNEL NAME 

A-lOO 
A-400 
B1-1 

HALL F 
THOMSON A J 
ELLIS K 

3 ITEMS LI STED . 

POSITION 

SECRETARY 
CUTTER 
CUTTER 

Fig. 2.9. The output produced hy 

RATE STARTED 

4.00 11 AUG 1983 
4.35 26 JAN 1983 
5.23 05 HAR 1982 

LIST PERSONNEL WITH POSITION "CUTIER" 
OR WITH POSITION "SECRET ARY' 

character field beginning with 4., so Fig. 2.10 shows everyone who earns 
between 4.00 and 4.99 pounds an hour. 

PAGE 

PERSONNEL NAME 

A-lOO 
Bl-20 
A-400 
C-lO 

HALL F 
JOHNSON D 
THOMSON A J 
ROTHWELL T M 

4 ITEMS LISTED. 

POSITION 

SECRETARY 
MANAGER 
CUTTER 
FITTER 

Fig. 2.10. The output produced by 

09:34:05 12 DEC 1985 

RATE STARTED 

4.00 11 AUG 1983 
4.50 01 APR 1982 
4.35 26 JAN 1983 
4.00 10 JUL 1984 

LIST PERSONNEL WITH RATE "4 ... " 

Access can also search for patterns of characters by including square 
brackets within the double quotes. 

For example, the Access sentence: 

LIST PERSONNEL WITH PHONE "790]" 

will display all the staff whose telephone number begins with the code 
790, as shown in Fig. 2.11. This also shows that the field which is the 
subject of our enquiry need not necessarily be shown in our report. 

PAGE 1 09:35:59 12 DEC 1985 

PERSONNEL NAME POSITION RATE STARTED 

A-lOO HALL F SECRETARY 4.00 11 AUG 1983 

END OF LIST 
Fig. 2.11. The output produced by 

LIST PERSONNEL WITH PHONE "790]" 

14 Chapter 2 

PAGE 09:29:20 12 DEC 1985 

PERSONNEL NAME POSITION RATE STARTED 

A-lOO HALL F SECRETARY 4.00 11 AUG 1983 
A-400 THOMSON A J CUTTER 4.35 26 JAN 1983 
B1-1 ELLIS K CUTTER 5.23 05 ~IAR 1982 

3 ITEMS LI STED. 

Fig. 2.9. The output produced hy 
LIST PERSONNEL WITH POSITION "CUTTER'" 
OR WITH POSITION "SECRETARY' 

character field beginning with 4 .. so Fig. 2. ]() shows everyone who earns 
between 4.00 and 4.99 pounds an hour. 

PAGE 09:34:05 12 DEC 1985 

PERSONNEL NAME 

A-lOO 
Bl-20 
A-400 
C-lO 

HALL F 
JOHNSON D 
THOMSON A J 
ROTHWELL T M 

4 ITEMS LISTED. 

POSITION 

SECRETARY 
MANAGER 
CUTTER 
FITTER 

Fig. 2.10. The output produced hy 

RATE STARTED 

4.00 11 AUG 1983 
4.50 01 APR 1982 
4.35 26 JAN 1983 
4.00 10 JUL 1984 

LIST PERSONNEL WITH RATE "4 ..... 

Access can also search for patterns of characters by including square 
brackets within the double quotes. 

For example. the Access sentence: 

LIST PERSONNEL WITH PHONE "790]" 

will display all the staff whose telephone number begins with the code 
790. as shown in Fig. 2.11. This also shows that the field which is the 
subject of our enquiry need not necessarily be shown in our report. 

PAGE 09:35:59 12 DEC 1985 

PERSONNEL NAME POSITION RATE STARTED 

A-lOO HALL F SECRETARY 4.00 11 AUG 1983 

END OF LIST 
Fig. 2.11. The output produced hy 

LIST PERSONNEL WITH PHONE "790j" 



The A CCESS Enquiry Langllage 15 

In the same way: 

LIST PERSONNEL WITH STARTED = "[1983" 

will display only the PERSONNEL who joined the company in 19X3. 
We can specify that a field must contain a sequence of characters hy 

surrounding the text with square brackets. Figure 2.12 ~h()ws any PER­
SONNEL whose POSITION contains the characters IN and is the result 
of the sentence: 

LIST PERSONNEL WITH POSITION "[IN]" 

PAGE 09:43:21 12 DEC 1985 

PERSONNEL NANE POSITION RATE STARTED 

B-523 IVRIGHT J D MACHINIST 3.80 19 FEB 1985 

END OF LIST 

Fig. 2.12. rhe output produced hy 
LIST PERSON"IEL WITIl POSITION "If!"ij"" 

Record keys may be included in an Access sentence to specify that 
only those indicated should be displayed. Single quotes must surround 
the keys. Figure 2.13 shows the report produced from the Access 
sentence: 

LIST PERSONNEL '8-523' 'C·l0' 

This displays only those employees with the specified record keys. 

PAGE 1 

PERSONNEL NAt1E POSITION 

B-523 
C-lO 

WRIGHT J D I1ACHINIST 
ROTHVIELL T N FITTER 

2 ITEMS LISTED. 

Fig. 2.13. The output produced hy 

09:44:47 12 DEC 1985 

RATE STARTED 

3.80 19 FEB 1985 
4.00 10 JUL 198Lf 

LIST PERSONNEL 'B·523' 'C·!(l' 

SORTING 

Usually we wish to SORT reports in some sequence so that the informa­
tion is readily accessible. It would be extremely difficult to find some-

The ACCESS Dlqllirv Langllage 15 

In the same way: 

LIST PERSONNEL WITH STARTED = "[1983" 

will display only the PERSONNEL who joined the company in 1l)~3. 

We can specify that a field must contain a sequence of characters by 
surrounding the text with square brackets. Figure 2.12 shows any PER­
SONNEL whose POSITION contains the characters IN and is the result 
of the sentence: 

LIST PERSONNEL WITH POSITION "[IN]" 

PAGE 09:43:21 12 DEC 1985 

PERSONNEL NAHE POSITION RATE STARTED 

B-523 WRIGHT J D HACHINIST 3.80 19 FEB 1985 

END OF LIST 
Fig. 2.12. The output produced hy 

LIST PERSONNEL WITH POS[TIOl': "IIN]"" 

Record keys may be included in an Access sentence to specify that 
only those indicated should be displayed. Single quotes must surround 
the keys. Figure 2.13 shows the report produced from the Access 
sentence: 

LIST PERSONNEL '8-523' 'C-10' 

This displays only those employees with the specified record keys. 

PAGE 

PERSONNEL NANE POSITION 

B-523 
C-lO 

WRIGHT J D I1ACHINIST 
ROTHVIELL T M FITTER 

2 ITEMS LISTED. 

Fig. 2.13. The output produced by 

09:44:47 12 DEC 1985 

RATE STARTED 

3.80 19 FEB 1985 
4.00 10 JUL 198Lf 

LIST PERSONNEL '8-523' 'C-j()" 

SORTING 

Usually we wish to SORT reports in some sequence so that the informa­
tion is readily accessible. It would be extremely difficult to find some-



16 Chapter 2 

one's telephone number if the telephone directory were not arranged 
alphabetically. In fact Pick provides sorting facilities through the SORT 
verb. The verb SORT gives the same output as LIST but sorted. The 
sentence 

SORT PERSONNEL 

will give the same output as LIST PERSONNEL but the records will be 
sorted in the ascending order of the key field, which in this case is the 
clock card number, giving the report shown in Fig. 2.14. 

PAGE 09:45:54 12 DEC 1985 

PERSONNEL NA~IE POSITION 

A-lOO HALL F SECRETARY 
A-400 TH0l-1S0N A J CUTTER 
B-523 loJRIGHT J D MACHINIST 
B1-1 ELLIS K CUTTER 
BI-20 JOHNSON D MANAGER 
C-lO ROTHWELL T M FITTER 

6 ITEMS LISTED. 

Fig. 2.14. The output produced by 
SORT PERSONNEL 

RATE STARTED 

4.00 11 AUG 1983 
4.35 26 JAN 1983 
3.80 19 FEB 1985 
5.23 05 MAR 1982 
4.50 01 APR 1982 
4.00 10 JUL 1984 

Any other field may be sorted by adding the word BY and the name 
of the field to be sorted. 

SORT PERSONNEL BY NAME 

will give the same display as Fig. 2.14 sorted alphabetically by NAME, 
this is the report shown in Fig. 2.15. 

PAGE 09:47:58 12 DEC 1985 

PERSONNEL NAHE POSITION RATE STARTED 

B1-1 ELLIS K CUTTER 5.23 05 MAR 1982 
A-lOO HALL F SECRETARY 4.00 11 AUG 1983 
Bl-20 JOHNSON D MANAGER 4.50 01 APR 1982 
C-10 ROTHWELL T M FITTER 4.00 10 JUL 1984 
A-400 THOMSON A J CUTTER 4.35 26 JAN 1983 
B-523 WRIGHT J D MACHINIST 3.80 19 FEB 1985 

6 ITEMS LISTED. 
Fig. 2.15. The output produced by 

SORT PERSONNEL BY NAME 

16 Chapter 2 

one's telephone number if the telephone directory were not arranged 
alphabetically. In fact Pick provides sorting facilities through the SORT 
verb. The verb SORT gives the same output as LIST but sorted. The 
sentence 

SORT PERSONNEL 

will give the same output as LIST PERSONNEL but the records will be 
sorted in the ascending order of the key field, which in this case is the 
clock card number, giving the report shown in Fig. 2.14. 

PAGE 09:45:54 12 DEC 1985 

PERSONNEL NANE POSITION 

A-lOO HALL F SECRETARY 
A-400 TH0l-1S0N A J CUTrER 
B-523 IVRIGHT J D MACHINIST 
B1-1 ELLIS K CUTrER 
Bl-20 JOHNSON D NANAGER 
C-lO ROTHWELL T M FITTER 

6 ITEHS LISTED. 

Fig. 2.14. The output produced by 
SORT PERSONNEL 

RATE STARTED 

4.00 11 AUG 1983 
4.35 26 JAN 1983 
3.80 19 FEB 1985 
5.23 05 HAR 1982 
4.50 01 APR 1982 
4.00 10 JUL 1984 

Any other field may be sorted by adding the word BY and the name 
of the field to be sorted. 

SORT PERSONNEL BY NAME 

will give the same display as Fig. 2.14 sorted alphabetically by NAME, 
this is the report shown in Fig. 2.1S. 

PAGE 09:47:58 12 DEC 1985 

PERSONNEL NAME POSITION RATE STARTED 

B1-1 ELLIS K CUTrER 5.23 05 HAR 1982 
A-lOO HALL F SECRETARY 4.00 11 AUG 1983 
Bl-20 JOHNSON D MANAGER 4.50 01 APR 1982 
C-lO ROTHWELL T M FITTER 4.00 10 JUL 1984 
A-400 THOMSON A J CUTTER 4.35 26 JAN 1983 
B-523 WRIGHT J D MACHINIST 3.80 19 FEB 1985 

6 ITEMS LISTED. 
Fig. 2.15. The output produced by 

SORT PERSONNEL BY NAME 



The A CCESS Enquiry Language 17 

Note that if you are suppressing the default report, and wish the 
sorted field to be displayed. the name of the sorted field must be 
specified in the list of fields to be displayed. as well as in the sort criteria. 
Figure 2.16 shows the report produced by: 

SORT PERSONNEL 
(verb) (file) 

BY NAME 
(sort by) 

NAME STARTED AGE 
(display fields) 

PAGE 

PERSONNEL NAME 

09:49:21 12 DEC 1985 

STARTED AGE 

Bl-1 ELLIS K 05 MAR 1982 22 
A-lOO HALL F 11 AUG 1983 23 
B1-20 JOHNSON D 01 APR 1982 26 
C-lO ROTffi1ELL T M 10 JUL 1984 50 
A-400 TH0!1S0N A J 26 JAN 1983 31 
8-523 WRIGHT J D 19 FEB 1985 31 

6 ITEHS LISTED. 
Fig. 2.16. The output produced by 

SORT PERSONNEL BY NAME 
NAME STARTED AGE 

The sorting sequence may be reversed by using the word BY -DSND 
(by descending) instead of BY, as in Fig. 2.17. 

SORT PERSONNEL BY-DSND NAME NAME STARTED AGE 

PAGE 09:52:07 12 DEC 1985 

PERSONNEL NAME STARTED AGE 

B-523 WRIGHT J D 19 FEB 1985 31 
A-400 THOMSON A J 26 JAN 1983 31 
C-10 ROTffivELL T M 10 JUL 1984 50 
BI-20 JOHNSON D 01 APR 1982 26 
A-100 HALL F 11 AUG 1983 23 
B1-1 ELLIS K 05 MAR 1982 22 

6 ITEMS LISTED. 
Fig. 2.17. The output produced by 

SORT PERSONNEL BY-DSND NAME 
NAME STARTED AGE 

The most significant sort key is specified first so that 

SORT PERSONNEL BY DEPARTMENT BY AGE NAME DEPARTMENT AGE 

The ACCESS Enquiry Language 17 

Note that if you are suppressing the default report. and wish the 
sorted field to be displayed, the name of the sorted field must be 
specified in the list of fields to be displayed, as well as in the sort criteria. 
Figure 2.16 shows the report produced by: 

SORT PERSONNEL 
(verb) (file) 

BY NAME 
(sort by) 

NAME STARTED AGE 
(display fields) 

PAGE 

PERSONNEL NAME 

09:49:21 12 DEC 1985 

STARTED AGE 

B1-1 ELLIS K 05 MAR 1982 22 
A-lOO HALL F 11 AUG 1983 23 
Bl-20 JOHNSON D 01 APR 1982 26 
C-10 ROTHHELL T M 10 JUL 1984 50 
A-400 THor1S0N A J 26 JAN 1983 31 
B-523 WRIGHT J D 19 FEB 1985 31 

6 ITEHS LISTED. 
Fig. 2.16. The output produced by 

SORT PERSONNEL BY NAME 
NAME STARTED AGE 

The sorting sequence may be reversed by using the word BY-DSND 
(by descending) instead of BY, as in Fig. 2.17. 

SORT PERSONNEL BY-DSND NAME NAME STARTED AGE 

PAGE 

PERSONNEL NAME 

09:52:07 12 DEC 1985 

STARTED AGE 

B-523 WRIGHT J D 19 FEB 1985 31 
A-400 THOMSON A J 26 JAN 1983 31 
C-10 ROTffivELL T M 10 JUL 1984 50 
Bl-20 JOHNSON D 01 APR 1982 26 
A-100 HALL F 11 AUG 1983 23 
B1-1 ELLIS K 05 MAR 1982 22 

6 ITEMS LISTED. 
Fig. 2.17. The output produced by 

SORT PERSONNEL BY-DSND NAME 
NAME STARTED AGE 

The most significant sort key is specified first so that 

SORT PERSONNEL BY DEPARTMENT BY AGE NAME DEPARTMENT AGE 



l~ Chapter 2 

which is shown in Fig. 2.1~, will give a different output to 

SORT PERSONNEL BY AGE BY DEPARTMENT NAME DEPARTMENT AGE 

which is shown in Fig. 2.1l). 

PAGE 09:53:24 12 DEC 1985 

PERSONNEL NAME DEPARTMENT 

A-lOO 
B1-1 
A-400 
B-523 
Bl-20 
C-lO 

HALL F PERSONNEL 
ELLIS K PRODUCTION 
THOMSON A J PRODUCTION 
WRIGHT J D PRODUCTION 
JOHijSON D TRANSPORT 
ROTHHELL T H TRANSPORT 

6 ITEMS LISTED. 

Fig. 2.IS. The output produced by 

AGE 

23 
22 
31 
31 
26 
50 

SORT PERSONNEL BY DEPARTMENT BY AGE 
NAME DEPARTMENT AGE 

PAGE 1 09:55:00 12 DEC 1985 

PERSONNEL NAME DEPARTI1ENT AGE 

B1-1 ELLIS K PRODUCTION 22 
A-lOO HALL F PERSONNEL 23 
Bl-20 JOHNSON D TRANSPORT 26 
A-400 TIIOMSON A J PRODUCTION 31 
B-523 WRIGHT J D PRODUCTION 31 
C-lO ROTHWELL T M TRANSPORT 50 

6 ITEHS LISTED. 

Fig. 2.19. The output produced by 
SORT PERSONNEL BY AGE BY DEPARTMENT 
NAME DEPARTMENT AGE 

HEADINGS AND FOOTINGS 

The output modifiers HEADING and FOOTING are different from the 
other modifiers in that they are not sufficient on their own to complete 
the task in hand. A value, surrounded by double quotes, must im­
mediately follow HEADING or FOOTING. The text which is to appear 
as the heading or footing is placed inside the double quotes. In addition 
a number of output control options may appear within the double quote 

18 Chapter 2 

which is shown in Fig. 2.1~. will give a different output to 

SORT PERSONNEL BY AGE BY DEPARTMENT NAME DEPARTMENT AGE 

which is shown in Fig. 2.19. 

PAGE 09:53:24 12 DEC 1985 

PERSONNEL NAME DEPARTMENT 

A-lOO 
B1-1 
A-400 
B-523 
B1-20 
C-lO 

HALL F PERSONNEL 
ELLIS K PRODUCTION 
THOMSON A J PRODUCTION 
WRIGHT J D PRODUCTION 
JOHijSON D TRANSPORT 
ROTH\~ELL T N TRANSPORT 

6 ITEMS LISTED. 

Fig. 2.1S. The output produced by 

AGE 

23 
22 
31 
31 
26 
50 

SORT PERSONNEL BY DEPARTMENT BY AGE 
NAME DEPARTMENT AGE 

PAGE 

PERSONNEL NAME DEPARTI1ENT 

B1-1 
A-lOO 
B1-20 
A-400 
B-523 
C-lO 

ELLIS K PRODUCTION 
HALL F PERSONNEL 
JOHNSON D TRANSPORT 
THOMSON A J PRODUCTION 
WRIGHT J D PRODUCTION 
ROTHWELL T M TRANSPORT 

6 ITEHS LISTED. 

Fig. 2.19. The output produced by 

09:55:00 12 DEC 1985 

AGE 

22 
23 
26 
31 
31 
50 

SORT PERSONNEL BY AGE BY DEPARTMENT 
NAME DEPARTMENT AGE 

HEADINGS AND FOOTINGS 

The output modifiers HEADING and FOOTING are different from the 
other modifiers in that they are not sufficient on their own to complete 
the task in hand. A value, surrounded by double quotes, must im­
mediately follow HEADING or FOOTING. The text which is to appear 
as the heading or footing is placed inside the double quotes. In addition 
a number of output control options may appear within the double quote 



The ACCESS Enquiry Language 19 

surrounded by single quotes. These options are: 

B Insert the curent break value 
(see BREAK-ON below) 

C Centre the current line 
D Insert the current date 
F Insert the current file name 
L Start a new line 
P Insert the current page number 
T Insert the current time and date 

Print a single quote in the HEADING 

For example, Fig. 2.20 shows a report with a centred heading saying 
'Personnel information' and the page number followed by two blank 
lines, produced by the command: 

LIST PERSONNEL HEADING "Personnel information 'C' Page 'PLL'" 

Personnel information 

PERSONNEL NAHE POSITION 

A-100 HALL F SECRETARY 
Bl-20 JOHNSON D MANAGER 
A-l,OO TIIOMSON A J CUTTER 
B1-1 ELLIS K CUTTER 
8-523 IvRIGHT J D MACHINIST 
C-lO ROTHlvELL T n FITTER 

Fig. 2.20. The output produced by 
LIST PERSONNEL 

Page 

RATE STARTED 

4.00 11 AUG 1983 
4.50 01 APR 1982 
4.35 26 JAN 1983 
5.23 OS I1AR 1982 
3.80 19 FEB 1985 
4.00 10 JUL 1984 

HEADING "Personnel information 'C' Page 'PLL'" 

BREAKING UP THE DATA INTO SECTIONS 

A listing can be sectioned by using the BREAK-ON modifier. The end 
of a section in the report can be indicated by the value of one or more 
fields of information changing their value. For example, if we wished to 
separate the data relating to men from that relating to women, the point 
at which the SEX field became M would indicate the end of the women's 
section. BREAK-ON in front of a field name will cause Access to detect 
the changing field values and section the report. It is normally only 
employed in conjunction with a SORT type verb. If BREAK-ON is 
used with LIST a break would occur every time two records, physically 

The A CCESS Enquiry Language 19 

surrounded by single quotes. These options are: 

B Insert the curent break value 
(see BREAK-ON below) 

C Centre the current line 
D Insert the current date 
F Insert the current file name 
L Start a new line 
P Insert the current page number 
T Insert the current time and date 

Print a single quote in the HEADING 

For example, Fig. 2.20 shows a report with a centred heading saying 
'Personnel information' and the page number followed by two blank 
lines, produced by the command: 

LIST PERSONNEL HEADING "Personnel information 'C' Page 'PLL'" 

Personnel information 

PERSONNEL NAHE POSITION 

A-100 HALL F SECRETARY 
Bl-20 JOHNSON D MANAGER 
A-t,OO T1ImlS0N A J CUTTER 
B1-1 ELLIS K CUTTER 
8-523 IVRIGHT J D HACHINIST 
C-lO ROTHIVELL T II FITTER 

Fig. 2.20. The output produced by 
LIST PERSONNEL 

Page 

RATE STARTED 

4.00 11 AUG 1983 
4.50 01 APR 1982 
4.35 26 JAN 1983 
5.23 05 MAR 1982 
3.80 19 FEB 1985 
4.00 10 JUL 1984 

HEADING "Personnel information 'C' Page 'PLL'" 

BREAKING UP THE DATA INTO SECTIONS 

A listing can be sectioned by using the BREAK-ON modifier. The end 
of a section in the report can be indicated by the value of one or more 
fields of information changing their value. For example, if we wished to 
separate the data relating to men from that relating to women, the point 
at which the SEX field became M would indicate the end of the women's 
section. BREAK-ON in front of a field name will cause Access to detect 
the changing field values and section the report. It is normally only 
employed in conjunction with a SORT type verb. If BREAK-ON is 
used with LIST a break would occur every time two records, physically 



20 Chapter 2 

next to each other in the file, had different values in thc field being 
broken on. 

For example, to separate the employees into male and female, the 
sentence: 

SORT PERSONNEL BY SEX BY NAME NAME AGE BREAK-ON SEX 

would be used; this is shown in Fig. 2.21. 

PAGE 1 

PERSONNEL NAME 

B1-1 
C-10 
A-400 

A-lOO 
Bl-20 
B-523 

*** 

ELLIS K 
ROTHWELL T M 
THOHSON A J 

HALL F 
JOHNSON D 
WRIGHT J D 

6 ITEMS LISTED. 

AGE SEX 

22 F 
50 F 
31 F 

*** 

23 M 
26 M 
31 M 

*** 

Fig. 2.21. The output produced by 

09:59:33 12 DEC 1985 

SORT PERSONNEL BY SEX BY NAME 
NAMEAGEBREA~ONSEX 

The three asterisks, * * *, that are used to break up the report 
indicate the column causing the break. *** is the default used by 
BREAK-ON and may be changed, as you will see. 

Any TOTAL fields will have the TOTAL for that section of the 
report displayed on the BREAK-ON line. For example: 

SORT PERSONNEL BY DEPARTMENT BREAK-ON DEPARTMENT NAME TOTAL 
RATE 

produces the output shown in Fig. 2.22. 

SUMMARY REPORTS 

By using SORT in conjunction with BREAK-ON , TOTAL and DET­
supp it is possible to produce summary reports which only display total 
lines. This technique is very useful when answering questions like, 
"What are the total sales from each salesman?", where the detail of each 

20 Chapter 2 

next to each other in the file, had different values in the field being 
broken on. 

For example, to separate the employees into male and female. the 
sentence: 

SORT PERSONNEL BY SEX BY NAME NAME AGE BREAK-ON SEX 

would be used; this is shown in Fig. 2.21. 

PAGE 09:59:33 12 DEC 1985 

PERSONNEL NAME AGE SEX 

B1-1 
C-lO 
A-400 

A-lOO 
Bl-20 
B-523 

*** 

ELLIS K 
ROTHlvELL T M 
THOMSON A J 

HALL F 
JOHNSON D 
WRIGHT J D 

22 F 
50 F 
31 F 

*** 

23 M 
26 M 
31 M 

*** 

6 ITEMS LISTED. 
Fig. 2.21. The output produced by 

SORT PERSONNEL BY SEX BY NAME 
NAME AGE BREAK-ON SEX 

The three asterisks, * * *, that are used to break up the report 
indicate the column causing the break. *** is the default used by 
BREAK-ON and may be changed, as you will see. 

Any TOTAL fields will have the TOTAL for that section of the 
report displayed on the BREAK-ON line. For example: 

SORT PERSONNEL BY DEPARTMENT BREAK-ON DEPARTMENT NAME TOTAL 
RATE 

produces the output shown in Fig. 2.22. 

SUMMARY REPORTS 

By using SORT in conjunction with BREAK-ON, TOTAL and DET­
SUPP it is possible to produce summary reports which only display total 
lines. This technique is very useful when answering questions like, 
"What are the total sales from each salesman?", where the detail of each 



The ACCESS Enquiry Language 

PAGE 10:01:26 12 DEC 1985 

PERSONNEL DEPART11ENT NAME RATE 

A-IOO PERSONNEL HALL F 4.00 

*,~* 4.00 

A-400 PRODUCTION TH011S0N A J 4.35 
B-523 PRODUCTION WRIGHT J D 3.80 
81-1 PRODUCTION ELLIS K 5.23 

*** 13.38 

Bl-20 TRANSPORT JOHNSON D 4.50 
C-1O TRANSPORT ROTHIVELL T M 4.00 

,~** 8.50 

*** 25.88 

6 ITEMS LISTED. 

Fig. 2.22. The output produced hy 
SORT PERSONNEL BY DEPARTMENT 
BREAK-ON DEPARTMENT NAME TOTAL RATE 

21 

sale made by the salesmen is not required. An example from the 
PERSONNEL file will show the total rates of pay of the personnel 
working in each department: 

SORT PERSONNEL BY DEPARTMENT BREAKcON DEPARTMENT TOTAL RATE 
DET-SUPP ID-SUPP 

This is shown in Fig. 2.23. 

PAGE 

DEPARTIIENT 

PERSONNEL 

PRODUCTION 

TRANSPORT 

6 ITEMS LISTED. 

RATE 

4.00 

13.38 

8.50 
25.88 

Fig_ 2.23. The output produced hy 

10:03:09 12 DEC 1985 

SORT PERSONNEL BY DEPARTMENT 
BREAK-ON DEPARTMENT TOTAL RATE 
DET-SUPP ID-SUPP 

The ACCESS Enquiry Language 

PAGE 10:01:26 12 DEC 

PERSONNEL DEPARTt1ENT NAME RATE 

A-lOO PERSONNEL HALL F 4.00 

*** 4.00 

A-400 PRODUCTION THOtlS0N A J 4.3.'5 
B-523 PRODUCTION WRIGHT J D 3.80 
B1-1 PRODUCTION ELLIS K 5.23 

*** 13.38 

Bl-20 TRANSPORT JOHNSON D 4.50 
C-lO TRANSPORT ROTHlVELL T M 4.00 

*** 8.50 

*** 25.88 

6 ITEMS LISTED. 

Fig. 2.22. The output produced by 
SORT PERSO]\;NEL BY DEPARTMENT 
BREAK-ON DEPARTMENT NAME TOTAL RATE 

21 

1985 

sale made by the salesmen is not required. An example from the 
PERSONNEL file will show the total rates of pay of the personnel 
working in each department: 

SORT PERSONNEL BY DEPARTMENT BREAKcON DEPARTMENT TOTAL RATE 
DET-SUPP ID-SUPP 

This is shown in Fig. 2.23. 

PAGE 1 

DEPARTIIENT 

PERSONNEL 

PRODUCTION 

TRANSPORT 

6 ITEMS LISTED. 

RATE 

4.00 

13.38 

8.50 
25.88 

Fig. 2.23. The output produced by 

10:03:09 12 DEC 1985 

SORT PERSONNEL BY DEPARTME]\;T 
BREAK-ON DEPARTMENT TOTAL RATE 
DET-SUPP ID-SUPP 



22 Chapter 2 

In this case the *** from the total lines in the earlier report are 
replaced by the department names because none of the details of the 
report is being shown. 

The BREAK-ON field name may be followed by text in double 
quotes. The text will be printed on each break line instead of the *** 

which is printed as a default. The following options may be included 
within the text surrounded by single quotes in the same way as the 
HEADING options discussed above. 

B Specifies that this field is the field to be used in place of the HEADING B 
option. 

D Do not display the BREAK if there has only been one item of data since 
the last BREAK. 

L Stops a blank line being output before the BREAK. 
N Resets the page number to one after the BREAK. 
P Start a new page after the BREAK. 
U Underline any fields which are TOTAL fields. 
V Insert the value of the BREAK field at this point in the text. 

Figure 2."24 shows how the report can be broken up with a descrip­
tive piece of text instead of the ***, and is the report produced by: 

SORT PERSONNEL BY DEPARTMENT BREAK-ON DEPARTMENT "Total rates of 
pay in Y" NAME TOTAL RATE 

OTHER ACCESS VERBS 

Although SORT and LIST are probably the most commonly used 
Access verbs, this section would not be complete without a brief over­
view of the capabilities of the other verbs. 

SELECT and SSELECT do not produce any output, apart from the 
number of records selected. SELECT is used to pass the output of an 
Access sentence into another process. The second process could be a 
BASIC program or another Access sentence, for instance. In its sim­
plest form SELECT will pass a list of record keys into the secondary 
process. The secondary process can then read the records and process 
them in whatever way is required. This is typical of the way that one 
would produce reports on pre-printed stationery. SSELECT is the same 
as SELECT except that the records will be sorted into some sequence. 
This means that it should never be necessary to write a sort routine in 
BASIC and that all sorts can be done at the operating system level. 

22 Chapter 2 

In this case the *** from the total lines in the earlier report are 
replaced by the department names because none of the details of the 
report is being shown. 

The BREAK-ON field name may be followed by text in double 
quotes. The text will be printed on each break line instead of the * * * 
which is printed as a default. The following options may be included 
within the text surrounded by single quotes in the same way as the 
HEADING options discussed above. 

B Specifies that this field is the field to be used in place of the HEADING B 
option. 

D Do not display the BREAK if there has only been one item of data since 
the last BREAK. 

L Stops a blank line being output before the BREAK. 
N Resets the page number to one after the BREAK. 
P Start a new page after the BREAK. 
U Underline any fields which are TOTAL fields. 
V Insert the value of the BREAK field at this point in the text. 

Figure 2.24 shows how the report can be broken up with a descrip­
tive piece of text instead of the ***, and is the report produced by: 

SORT PERSONNEL BY DEPARTMENT BREAK-ON DEPARTMENT "Total rates of 
pay in 'V''' NAME TOTAL RATE 

OTHER ACCESS VERBS 

Although SORT and LIST are probably the most commonly used 
Access verbs, this section would not be complete without a brief over­
view of the capabilities of the other verbs. 

SELECT and SSELECT do not produce any output, apart from the 
number of records selected. SELECT is used to pass the output of an 
Access sentence into another process. The second process could be a 
BASIC program or another Access sentence, for instance. In its sim­
plest form SELECT will pass a list of record keys into the secondary 
process. The secondary process can then read the records and process 
them in whatever way is required. This is typical of the way that one 
would produce reports on pre-printed stationery. SSELECT is the same 
as SELECT except that the records will be sorted into some sequence. 
This means that it should never be necessary to write a sort routine in 
BASIC and that all sorts can be done at the operating system level. 



PAGE 

The ACCESS Enquiry Language 

10:04:59 12 DEC 1985 

PERSONNEL DEPARTMENT NAHE RATE 

A-lOO PERSONNEL HALL F 4.00 

Total rates of pay in PERSONNEL 4.00 

A-400 PRODUCTION THOMSON A J 4.35 
B-523 PRODUCTION IVRIGHT J D 3.80 
B1-l PRODUCTION ELLIS K 5.23 

Total rates of pay in PRODUcrION 13.38 

Bl-20 TRANSPORT JOHNSON D 4.50 
C-IO TRANSPORT ROTHWELL T M 4.00 

Total rates of pay in TRANSPORT 8.50 

,~** 25.88 

6 ITEMS LISTED. 

Fig. 2.24. The output produced by 
SORT PERSONNEL BY DEPARTMENT 
BREAK-ON DEPARTMENT "Total rates of pay in 'V'" 
NAME TOTAL RATE 

23 

By extending SELECT with a list of display fields, as in the com­
mand: 

SELECT PERSONNEL WITH AGE >= "25" NAME STARTED 

the list of record keys is replaced by the values of the display fields. In 
this case, the name and the starting date would be selected instead of the 
clock card number. This has two very useful effects. Firstly, this can be 
used as mail merge data with RUNOFF. Secondly, this data can be 
passed in the normal manner into a BASIC program. Thus it will not 
be necessary for the BASIC program to access the file, retrieve the 
records and sort out the data required, All the retrieval is carried out in 
the SELECT pass through the file with a consequential increase in 
efficiency, 

COUNT returns the number of records in the file which match 
whatever selection criteria are specified. Thus COUNT PERSONNEL 
results in the output "6 ITEMS COUNTED". SUM is used to total a 
given field. SUM PERSONNEL RATE would return "TOTAL OF 
RATE IS 25.88". 

T-DUMP and S-DUMP direct the output of the Access sentence to 
the currently active tape or floppy disc backup device. If no display 

PAGE 

The A CCESS Enquiry Language 

10:04:59 12 DEC 1985 

PERSONNEL DEPARTMENT NAME RATE 

A-lOO PERSONNEL HALL F 4.00 

Total rates of pay in PERSONNEL 4.00 

A-400 PRODUCTION THOMSON A J 4.35 
B-523 PRODUCTION \~IGHT J D 3.80 
B1-1 PRODUCTION ELLIS K 5.23 

Total rates of pay in PRODUCTION 13.38 

B1-20 TRANSPORT JOHNSON D 4.50 
C-10 TRANSPORT ROTHWELL T M 4.00 

Total rates of pay in TRANSPORT 8.50 

*** 25.88 

6 ITEMS LISTED. 

Fig. 2.24. The output produced by 
SORT PERSONNEL BY DEPARTMENT 
BREAK-ON DEPARTMENT "Total rates of pay in 'V'" 
NAME TOTAL RATE 

23 

By extending SELECT with a list of display fields, as in the com­
mand: 

SELECT PERSONNEL WITH AGE >= "25" NAME STARTED 

the list of record keys is replaced by the values of the display fields. In 
this case, the name and the starting date would be selected instead of the 
clock card number. This has two very useful effects. Firstly, this can be 
used as mail merge data with RUNOFF. Secondly, this data can be 
passed in the normal manner into a BASIC program. Thus it will not 
be necessary for the BASIC program to access the file, retrieve the 
records and sort out the data required. All the retrieval is carried out in 
the SELECT pass through the file with a consequential increase in 
efficiency. 

COUNT returns the number of records in the file which match 
whatever selection criteria are specified. Thus COUNT PERSONNEL 
results in the output "6 ITEMS COUNTED". SUM is used to total a 
given field. SUM PERSONNEL RATE would return "TOTAL OF 
RATE IS 25.88". 

T-DUMP and S-DUMP direct the output of the Access sentence to 
the currently active tape or floppy disc backup device. If no display 



24 Chapter 2 

fields are specified, the whole record is dumped to the tape. If display 
fields are specified then only those fields will be dumped. 

T-LOAD has the reverse effect of T-DUMP, reading data from the 
tape and storing it on the file indicated. If any selection criteria are 
specified, only the records which obey the selection criteria will be 
retrieved from the tape. Both T-DUMP and T-LOAD are discussed in 
more detail in the chapter on archiving. 

LIST-LABEL and SORT-LABEL output the results of the Access 
sentence to the screen or printer, but instead of being in a columnar 
format the data is rearranged so that it is suitable for printing on sticky 
labels. When the LIST-LABEL command has been typed, the system 
prompts for a second set of details which are used to determine how 
many labels are to be printed across the page, the distance between 
them, the height and width of the labels and the indentations. These 
parameters enable the LIST-LABEL and SORT-LABEL verbs to be 
totally general purpose and capable of printing any label format. 

REFORMAT and SREFORMAT direct the output of an Access 
sentence to another file. Each field specified as a display field will be 
regarded as a sequential description of the record structure of the 
destination f,ile, the first field being used as a record key. When used to 
their best effect these verbs are very useful for creating analysis files 
with information derived from master files and transaction files. 

24 Chapter 2 

fields are specified, the whole record is dumped to the tape. If display 
fields are specified then only those fields will be dumped. 

T-LOAD has the reverse effect of T-DUMP, reading data from the 
tape and storing it on the file indicated. If any selection criteria are 
specified, only the records which obey the selection criteria will be 
retrieved from the tape. Both T-DUMP and T-LOAD are discussed in 
more detail in the chapter on archiving. 

LIST-LABEL and SORT-LABEL output the results of the Access 
sentence to the screen or printer, but instead of being in a columnar 
format the data is rearranged so that it is suitable for printing on sticky 
labels. When the LIST-LABEL command has been typed, the system 
prompts for a second set of details which are used to determine how 
many labels are to be printed across the page, the distance between 
them, the height and width of the labels and the indentations. These 
parameters enable the LIST-LABEL and SORT-LABEL verbs to be 
totally general purpose and capable of printing any label format. 

REFORMAT and SREFORMAT direct the output of an Access 
sentence to another file. Each field specified as a display field will be 
regarded as a sequential description of the record structure of the 
destination file, the first field being used as a record key. When used to 
their best effect these verbs are very useful for creating analysis files 
with information derived from master files and transaction files. 



Chapter 3 
Introduction to the Pick Database 

In the last chapter we assumed that our application and data already 
existed and saw how we might formulate enquiries using data from a 
specific file. In this chapter we will see how the database is arranged, 
how accourits and files are created and how records are structured. 

THE ARRANGEMENT OF THE DATABASE 

The Pick database is arranged in a three level hierarchy. 
At the highest level the SYSTEM consists of a number of 

ACCOUNTS, or users. Each account may access any number of 
FILES, or it may share data by accessing files in other accounts. 

Files are split into two portions, a dictionary portion, and a data 
portion. The dictionary contains records which define the structure of 
the records in the data portion. We usually refer to these records as 
ITEMS. Any file may contain any number of items. Pick will automati­
cally allocate the required disk space and the file will grow or shrink as 
needed. The file size is limited only by the amount of disk space 
available. 

This hierarchy of files can be represented diagrammatically (Fig. 
3.1). 

Access to the records within any file may be made randomly. 
Records consist of an item identifying field, the ITEM-ID, and then any 
number of fields for the data. The item-id is used as a reference to the 
record, as such every record in the file must have a unique item-id. The 
item-id may be regarded as the 'name' of the record or its 'label'. We 
shall often refer to the item-id as the 'key' field. Usually we choose some 
unique aspect of the data to be the item-id. For a customer file the 
item-id might be the customer's account number, for the personnel file 
discussed in the last chapter we chose the clock card number, or we 
might have chosen the national insurance number. If there is no unique 
aspect to the data we might allocate a sequential number as the item-id 
of each record. 

25 

Chapter 3 
Introduction to the Pick Database 

In the last chapter we assumed that our application and data already 
existed and saw how we might formulate enquiries using data from a 
specific file. In this chapter we will see how the database is arranged, 
how accourits and files are created and how records are structured. 

THE ARRANGEMENT OF THE DATABASE 

The Pick database is arranged in a three level hierarchy. 
At the highest level the SYSTEM consists of a number of 

ACCOUNTS, or users. Each account may access any number of 
FILES, or it may share data by accessing files in other accounts. 

Files are split into two portions, a dictionary portion, and a data 
portion. The dictionary contains records which define the structure of 
the records in the data portion. We usually refer to these records as 
ITEMS. Any file may contain any number of items. Pick will automati­
cally allocate the required disk space and the file will grow or shrink as 
needed. The file size is limited only by the amount of disk space 
available. 

This hierarchy of files can be represented diagrammatically (Fig. 
3.1). 

Access to the records within any file may be made randomly. 
Records consist of an item identifying field, the ITEM-ID, and then any 
number of fields for the data. The item-id is used as a reference to the 
record, as such every record in the file must have a unique item-id. The 
item-id may be regarded as the 'name' of the record or its 'label'. We 
shall often refer to the item-id as the 'key' field. Usually we choose some 
unique aspect of the data to be the item-id. For a customer file the 
item-id might be the customer's account number, for the personnel file 
discussed in the last chapter we chose the clock card number, or we 
might have chosen the national insurance number. If there is no unique 
aspect to the data we might allocate a sequential number as the item-id 
of each record. 

25 



26 Chapter 3 

SYSTEM 

~~Ut~OG 

v-------~ 

SYSPROG ADMIN SALES 

~LES WORDS I FILES WORDS I FILES WORDS 
AC A COUNT PERS N LIT ~W8~e~f~S ~'8~T PRSCLIB --5"AVE DEPA~T~~NTS ~~RT 
~ ELECT 

~ ~ ~ 

PERSONNEL DEPARTMENTS 

DICT DATA DICT DATA 

~~fi1,ffsS A-100 CODE T 
91-20 NAME M 

STAR ED 
A-400 P 

~ 
x 

~B 

~ ~ 
Fig. 3.1. The Pick File Hierarchy. 

Any field may be broken up into two further sub-divisions so that, 
for instance, an address would take up only one field with the different 
lines of the address occupying subfields. 

We call the fields ATTRIBUTES, the first sub-divisions VALUES, 
and the second sub-divisions SUB-VALUES. 

The amount of disk space used is minimised, each record occupying 
exactly as much disk space as is required by the data. Files may contain 
records with 1 field of data alongside records with 1000 fields of data. 
Only as much disk space as is actually required will be taken up. 
Records are of completely variable length up to a maximum item size of 
32,767 characters (32 Kbytes). 

Each record in the data portion of the customer file would be of this 
structure. The dictionary of the customer file would contain records 
called ACCOUNT.NUMBER, NAME, ADDRESS and so on. This 
enables Access to format reports with the correct data. However, 
Access cannot be used to create the database in the first place. 

26 Chapter 3 

SYSTEM 

SYSPROG 
AOMIN 

~~ 

SYSPROG ADMIN SALES 

~LES WORDS I FILES WORDS I FILES WORDS 
ACC ACCOUNT PERS N L LI T CUaTOMERS LlaT 
PROeLIB :~~VE DEPA~n:l~NTs ~~RT PR DUCTS S RT 

~ LECT 

~ ~ 

PERSONNEL DEPARTMENTS 

DICT DATA DICT DATA 

~~ff~~ss A-100 ~~R,EE T 
61-20 M 

STAR ED P 

r-\.. 
A-400 x 

B 

~ 

~ ~ 
Fig. 3.1. The Pick File Hierarchy. 

Any field may be broken up into two further sub-divisions so that, 
for instance, an address would take up only one field with the different 
lines of the address occupying subfields. 

We call the fields ATTRIBUTES, the first sub-divisions VALUES, 
and the second sub-divisions SUB-VALUES. 

The amount of disk space used is minimised, each record occupying 
exactly as much disk space as is required by the data. Files may contain 
records with 1 field of data alongside records with 1000 fields of data. 
Only as much disk space as is actually required will be taken up. 
Records are of completely variable length up to a maximum item size of 
32,767 characters (32 Kbytes). 

Each record in the data portion of the customer file would be of this 
structure. The dictionary of the customer file would contain records 
called ACCOUNT.NUMBER, NAME, ADDRESS and so on. This 
enables Access to format reports with the correct data. However, 
Access cannot be used to create the database in the first place. 



Introduction to the Pick Database 

Typical record structure for a customer 

Field number 

Item-id 
1 
2 
3 
4 
5 

etc. 

Description 

Customer account number 
Name 
Address line 1, line 2, line 3 etc. 
Telephone number 
Credit limit 
Contact name 

27 

Most businesses will purchase application programs, written in Pick 
BASIC, to update the database. A single application may be spread 
over several accounts. For a fully integrated accounting system, there 
may be one account for the users dealing with order entry, another 
account for the sales ledger, another for the purchase ledger and so on. 
The datafiles being used by the various aspects of the application would 
probably be shared. 

When a user turns on a terminal attached to a Pick system, he will be 
confronted by a LOGON prompt and he is invited to type in the name 
of the account that he wishes to access. In effect he is entering the 
system via the system file or system dictionary. This is the highest level 
file on the system, and through typing an account name which tallies 
with one of the entries on the system dictionary, he logs on to the 
appropriate account and obtains the privileges associated with it. His 
presence on the account is logged in the ACC file and may be monitored 
by the computer manager using the LISTU utility. 

Every Pick computer has an account called SYSPROG. This is 
usually only used by the person responsible for the management of the 
use of the computer. From now on we shall refer to this person as the 
'system administrator'. If we logon to SYSPROG, we are able to 
execute many commands which are not available in any other account. 
Notably we may initiate archiving routines. 

CREA TING ACCOUNTS 

It is from SYSPROG that the creation of the database begins. In the last 
chapter we saw reference made to a file called PERSONNEL. In the 
introduction we assumed that an account called ADMIN was present on 
the computer that we could log to. We say that the file PERSONNEL is 
in the account ADMIN. . 

Introduction to the Pick Database 

Typical record structure for a customer 

Field number 

Item-id 
1 
2 
3 
4 
5 

etc. 

Description 

Customer account number 
Name 
Address line 1, line 2, line 3 etc. 
Telephone number 
Credit limit 
Contact name 

27 

Most businesses will purchase application programs, written in Pick 
BASIC, to update the database. A single application may be spread 
over several accounts. For a fully integrated accounting system, there 
may be one account for the users dealing with order entry, another 
account for the sales ledger, another for the purchase ledger and so on. 
The datafiles being used by the various aspects of the application would 
probably be shared. 

When a user turns on a terminal attached to a Pick system, he will be 
confronted by a LOGON prompt and he is invited to type in the name 
of the account that he wishes to access. In effect he is entering the 
system via the system file or system dictionary. This is the highest level 
file on the system, and through typing an account name which tallies 
with one of the entries on the system dictionary, he logs on to the 
appropriate account and obtains the privileges associated with it. His 
presence on the account is logged in the ACC file and may be monitored 
by the computer manager using the LISTU utility. 

Every Pick computer has an account called SYSPROG. This is 
usually only used by the person responsible for the management of the 
use of the computer. From now on we shall refer to this person as the 
'system administrator'. If we logon to SYSPROG, we are able to 
execute many commands which are not available in any other account. 
Notably we may initiate archiving routines. 

CREA TING ACCOUNTS 

It is from SYSPROG that the creation of the database begins. In the last 
chapter we saw reference made to a file called PERSONNEL. In the 
introduction we assumed that an account called ADMIN was present on 
the computer that we could log to. We say that the file PERSONNEL is 
in the account ADMIN. 



28 Chapter 3 

But accounts and files have to be created before they can be used. 
Accounts are created by using a 'verb' or utility. available for use only in 
the SYSPROG account. called CREATE-ACCOUNT. To create a new 
account, the command CREATE-ACCOUNT is entered at TCL: 

CREATE-ACCOUNT 

This initiates a series of prompts that are used to set up the account. 
The following example of replies to these prompts represents the sim­
plest set of responses. <CR> means press RETURN without typing in 
anything else. This sets up the default values which are indicated. 
Anything else which is typed in before the carriage return would pver­
write the default values: 

ACCOUNT NAME? ADMIN 
lIRET CODES? <CR> 
lIUPD CODES? <CR> 
PRIVILEGES? <CR> 
MOD,SEP? <CR> 

(default - no codes) 
(default - no codes) 
(default - minimum privileges) 
(default - 29,1) 

[417] FILE 'ADMIN' CREATED: BASE = 29221, MODULO = 29, SEPAR = 1 

213 ITEMS COPIED 
'ADMIN' ADDED 
'ADMIN' UPDATED 

PASSWORD? <CR> (default - no password required for this 
account) 

The prompts deal with the security and size of the account. These 
subjects are dealt with in the chapter on security. The creation of the 
account and the copying of records into it enable the account to be 
logged to and give the basic vocabulary, in terms of commands, to the 
account. As yet, there are no data files within the account, except one, 
the "Master Dictionary" or MD, in which the basic vocabulary is now 
defined. 

CREA TlNG FILES 

We can now log to the new account by entering LOGTO ADMIN. 
There is no password, so the computer will transfer us directly to 

28 Chapter 3 

But accounts and files have to be created before they can be used. 
Accounts are created by using a 'verb' or utility, available for use only in 
the SYSPROG account, called CREATE-ACCOUNT. To create a new 
account, the command CREATE-ACCOUNT is entered at TCL: 

CREATE-ACCOUNT 

This initiates a series of prompts that are used to set up the account. 
The following example of replies to these prompts represents the sim­
plest set of responses. <CR> means press RETURN without typing in 
anything else. This sets up the default values which are indicated. 
Anything else which is typed in before the carriage return would over­
write the default values: 

ACCOUNT NAME? ADMIN 
LlRET CODES? <CR> (default - no codes) 
LlUPD CODES? <CR> (default - no codes) 
PRIVILEGES? <CR> (default - minimum privileges) 
MOD,SEP? <CR> (default - 29,1) 

[417] FILE 'ADMIN' CREATED: BASE = 29221, MODULO = 29, SEPAR = 1 

273 ITEMS COPIED 
'ADMIN' ADDED 
'ADMIN' UPDATED 

PASSWORD? <CR> (default - no password required for this 
account) 

The prompts deal with the security and size of the account. These 
subjects are dealt with in the chapter on security. The creation of the 
account and the copying of records into it enable the account to be 
logged to and give the basic vocabulary, in terms of commands, to the 
account. As yet, there are no data files within the account, except one, 
the "Master Dictionary" or MD, in which the basic vocabulary is now 
defined. 

CREA TlNG FILES 

We can now log to the new account by entering LOGTO ADMIN. 
There is no password, so the computer will transfer us directly to 



Introduction to the Pick Database 29 

ADMIN. There is. as yet, no logon process for the account, so the 
computer will prompt at TCL. 

To create a file the command CREATE-FILE is used; this command 
would creatc a file called PERSONNEL (provided thc command is 
given in an account with sufficient privileges): 

CREATE-FILE PERSONNEL 3 23 

[417] FILE 'PERSONNEL' CREATED; BASE = 32089, MODULO = 3, 
SEPAR = 1 

[417] FILE 'PERSONNEL' CREATED: BASE = 32224, MODULO = 23, 
SEPAR = 1 

The numbers in the command represent the initial size of the file. 
The significance of the size of a file is discussed in Chapter 7. The 
computer appears to have created two files. In fact it has created a 
dictionary, to hold records with names such as ADDRESS, POSITION, 
STARTED and so on, as well as a file which will actually hold the data 
for the PERSONNEL file. 

FILES AND RECORDS 

Each data file that may be accessed has an associated data dictionary 
which describes the data that is held within it. This data dictionary is 
used by Access to extcnd the user's vocabulary when referencing any 
particular file. The dictionary may also contain descriptions of data 
which is held physically on other files but referenced by some key 
information held on the first file. This is often referred to as a JOIN. 

At TCL the utilities LISTFILES, LISTPROCS, LISTVERBS and 
LISTDICT may be used to determine what vocabulary is open to any 
particular user. 

Every file and dictionary on the system is of the same physical 
format, right down from the system dictionary - there are no special 
forms. However some files may be "single level" - that is, they are 
dictionary and data combined. The system dictionary and account master 
dictionaries are examples of these. Furthermore, each file or dictionary 
consists of records. There is no limit to the number of records on any file. 

From this it follows that since file definitions are merely records in 
the master dictionary, there is no limit to the number of files that may be 
accessed from any particular account. Records consist of a record key 
followed by a number of fields, known as attributes. 

Introduction to the Pick Database 29 

ADMIN. There is, as yet, no logon process for the account, so the 
computer will prompt at TCL. 

To create a file the command CREATE-FILE is used; this command 
would create a file called PERSONNEL (provided the command is 
given in an account with sufficient privileges): 

CREATE-FILE PERSONNEL 3 23 

[417] FILE 'PERSONNEL' CREATED; BASE = 32089, MODULO = 3, 
SEPAR = 1 

[417] FILE 'PERSONNEL' CREATED: BASE = 32224, MODULO = 23, 
SEPAR = 1 

The numbers in the command represent the initial size of the file. 
The significance of the size of a file is discussed in Chapter 7. The 
computer appears to have created two files. In fact it has created a 
dictionary, to hold records with names such as ADDRESS, POSITION, 
STARTED and so on, as well as a file which will actually hold the data 
for the PERSONNEL file. 

FILES AND RECORDS 

Each data file that may be accessed has an associated data dictionary 
which describes the data that is held within it. This data dictionary is 
used by Access to extend the user's vocabulary when referencing any 
particular file. The dictionary may also contain descriptions of data 
which is held physically on other files but referenced by some key 
information held on the first file. This is often referred to as a JOIN. 

At TCL the utilities LISTFILES, LISTPROCS, LISTVERBS and 
LISTDICT may be used to determine what vocabulary is open to any 
particular user. 

Every file and dictionary on the system is of the same physical 
format, right down from the system dictionary - there are no special 
forms. However some files may be "single level" - that is, they are 
dictionary and data combined. The system dictionary and account master 
dictionaries are examples of these. Furthermore, each file or dictionary 
consists of records. There is no limit to the number of records on any file. 

From this it follows that since file definitions are merely records in 
the master dictionary, there is no limit to the number of files that may be 
accessed from any particular account. Records consist of a record key 
followed by a number of fields, known as attributes. 



30 Chapter 3 

B-523 
001 WRIGHT J D 
002 4 PEND LEW A YjCAMBRIDGE 
003 MACHINIST 
004 6129 
005 380 
006 497-3528 
007 M 
008 31 

Record key or item-id 
Attribute 1 
Attribute 2 (multi-values) 
Attribute 3 
etc. 

The physical format of one of the PERSONNEL records. 

Any record may be of any length up to 32 Kbytes. Within this it may 
consist of any number of attributes. Unused attributes occupy 1 byte 
unless they are at the end of the record in which case they occupy no 
space. Attributes may be of any size, up to the record limit and the size 
need not be predetermined in any file definition. Indeed corresponding 
attributes in different records can be of completely different lengths 
without taking up any more disk space than is actually necessary for the 
data. 

Records may just consist of attributes, but the Pick System allows 
attributes to be subdivided into two further logical levels, termed multi­
values and sub-values. These would normally be used for repeating 
groups of data, such as lines on a customer order. Some programmers 
will find it convenient to use multi-values when writing an application, 
because instead of having to have one record per line, the whole order 
may be contained· in one record, and yet there will be no loss in 
flexibility as the number of multi-values is not predetermined. A very 
strong argument can be made for using multi-values for data such as 
addresses, where an address may be defined as one multi-valued field 
and would thus have an indeterminate number of lines, whereas on 
conventional database systems the number of lines on addresses has to 
be predetermined, with consequent loss of flexibility. 

30 Chapter 3 

B-523 
001 WRIGHT J D 
002 4 PENDLEWA YjCAMBRIDGE 
003 MACHINIST 
004 6129 
005 380 
006 497-3528 
007 M 
008 31 

Record key or item-id 
Attribute 1 
Attribute 2 (multi-values) 
Attribute 3 
etc. 

The physical format of one of the PERSONNEL records. 

Any record may be of any length up to 32 Kbytes. Within this it may 
consist of any number of attributes. Unused attributes occupy 1 byte 
unless they are at the end of the record in which case they occupy no 
space. Attributes may be of any size, up to the record limit and the size 
need not be predetermined in any file definition. Indeed corresponding 
attributes in different records can be of completely different lengths 
without taking up any more disk space than is actually necessary for the 
data. 

Records may just consist of attributes, but the Pick System allows 
attributes to be subdivided into two further logical levels, termed multi­
values and sub-values. These would normally be used for repeating 
groups of data, such as lines on a customer order. Some programmers 
will find it convenient to use multi-values when writing an application, 
because instead of having to have one record per line, the whole order 
may be contained in one record, and yet there will be no loss in 
flexibility as the number of multi-values is not predetermined. A very 
strong argument can be made for using multi-values for data such as 
addresses, where an address may be defined as one multi-valued field 
and would thus have an indeterminate number of lines, whereas on 
conventional database systems the number of lines on addresses has to 
be predetermined, with consequent loss of flexibility. 



Chapter 4 
The System Editor 

The system editor is a utility which permits on-line modification of any 
item in the database. It may be used to create BASIC programs, Procs, 
data records or dictionaries. It is a line editor - that is, at anyone time 
there is one line of data which may be viewed, entered or amended. 

Although the system editor may allow any item in the database to be 
created or amended, it is not suggested that this is the general method of 
updating the database. Updating is usually done by BASIC programs of 
one form or another. The system editor is a useful tool for system 
administrators and programmers. It is certainly necessary to understand 
the basic workings of the editor if dictionaries or programs are to be 
created, but readers who are not going to be involved in the creation of 
dictionaries or programs may prefer to pass over most of the detailed 
information contained in this chapter. 

You may have already understood that the database consists of files 
such as CUSTOMERS which contain records. All the data files on the 
system are of the same physical structure as are all the records within 
data files. 

A record within a file consists of a key field, called an item-identifier 
or ITEM-ID and a number of fields or attributes. The key field must be 
unique within the file and the record may be accessed directly using the 
key field. The key field may consist of any characters, textual or numer­
ic. The maximum number of characters in a key field is 50. 

There is no restriction on the size of attributes except that the total 
record size is not allowed to exceed 32 Kbytes (32,767 characters). 

ACCESSING RECORDS WITH THE EDITOR 

To use the editor to access any record within a file the general format of 
command, typed at TCL, is: 

ED filename item-idlist 

item-idlist will be the names of the key fields of the items required from 
the file. * may be used to access all of the items in the file. If some items 

31 

Chapter 4 
The System Editor 

The system editor is a utility which permits on-line modification of any 
item in the database. It may be used to create BASIC programs, Procs, 
data records or dictionaries. It is a line editor - that is, at anyone time 
there is one line of data which may be viewed, entered or amended. 

Although the system editor may allow any item in the database to be 
created or amended, it is not suggested that this is the general method of 
updating the database. Updating is usually done by BASIC programs of 
one form or another. The system editor is a useful tool for system 
administrators and programmers. It is certainly necessary to understand 
the basic workings of the editor if dictionaries or programs are to be 
created, but readers who are not going to be involved in the creation of 
dictionaries or programs may prefer to pass over most of the detailed 
information contained in this chapter. 

You may have already understood that the database consists of files 
such as CUSTOMERS which contain records. All the data files on the 
system are of the same physical structure as are all the records within 
data files. 

A record within a file consists of a key field, called an item-identifier 
or ITEM-ID and a number of fields or attributes. The key field must be 
unique within the file and the record may be accessed directly using the 
key field. The key field may consist of any characters, textual or numer­
ic. The maximum number of characters in a key field is 50. 

There is no restriction on the size of attributes except that the total 
record size is not allowed to exceed 32 Kbytes (32,767 characters). 

ACCESSING RECORDS WITH THE EDITOR 

To use the editor to access any record within a file the general format of 
command, typed at TCL, is: 

ED filename item-idlist 

item-idlist will be the names of the key fields of the items required from 
the file. * may be used to access all of the items in the file. If some items 

31 



32 Chapter 4 

have been preselected from the file using SELECT or SSELECT then 
item-idlist may be omitted and the records SELECTed will be used. To 
edit the dictionary portion of a file the word DICT is used before the file 
name. 

Suppose that we wished to edit some of the records on the customers 
file. Those with account numbers 310 and 392, for example. The 
account numbers of the customers are used as the key or item-identify­
ing field. Once the editor is entered the following appears: 

ED CUSTOMERS 310 392 
310 
NEW ITEM 
TOP 

Record 310 does not already exist so the word NEW ITEM are 
printed and the bell is rung. The cursor prompts for an editor command 
at the stop mark and the line pointer is set to 1. The first and subsequent 
attributes may be entered at this point using the insert (I) command. 
Each attribute can be viewed as a separate line. 

Entering the command EX will exit this record without adding it to 
the file, i. e. record 310 still does not exist on the database, and the next 
record appears . 

• EX 
'310' EXITED 
392 
TOP 

Record 392 does exist and may be viewed. The command LIO will 
list the first 10 lines or attributes of the record at which point line 
(attribute) 10 is the line which may be amended . 

. L 10 
001 ACME COMPUTERS LTD 
002 10 HIGH ST.]DOVER]KENT 
003 DOVER 7429 
004T 
005 ABC123 
0066259 
007 A31 O]A 18O]A 199]A200]A21 0]A220]A249]A256]A264]A303 
008 180 

32 Chapter 4 

have been preselected from the file using SELECT or SSELECT then 
item-idlist may be omitted and the records SELECTed will be used. To 
edit the dictionary portion of a file the word DICT is used before the file 
name. 

Suppose that we wished to edit some of the records on the customers 
file. Those with account numbers 310 and 392, for example. The 
account numbers of the customers are used as the key or item-identify­
ing field. Once the editor is entered the following appears: 

ED CUSTOMERS 310 392 
310 
NEW ITEM 
TOP 

Record 310 does not already exist so the word NEW ITEM are 
printed and the bell is rung. The cursor prompts for an editor command 
at the stop mark and the line pointer is set to 1. The first and subsequent 
attributes may be entered at this point using the insert (I) command. 
Each attribute can be viewed as a separate line. 

Entering the command EX will exit this record without adding it to 
the file, i.e. record 310 still does not exist on the database, and the next 
record appears . 

. EX 
'310' EXITED 
392 
TOP 

Record 392 does exist and may be viewed. The command LIO will 
list the first 10 lines or attributes of the record at which point line 
(attribute) 10 is the line which may be amended . 

. LlO 
001 ACME COMPUTERS LTD 
002 10 HIGH ST.]DOVER]KENT 
003 DOVER 7429 
004T 
005 ABC123 
0066259 
007 A31 O]A 180]A 199]A200]A21 0]A220]A249]A256]A264]A303 
008 180 



The System Editor 

009 5000]4750]4625]4075]4900]3650]5675]6925 
010 2971 
EOI010 

33 

The numbers 001 to 010 to the left of this display are only used to 
reference the data using the editor and do not actually form part of the 
record. 00 I is to the left of attribute 1 of the record, {)02 is to the left of 
attribute 2 and so on. 

If \\ie had typed L22 we would have obtained the same response, 
since there are only ten attributes on this record, as indicated by the 
EOI.01O. If we type LlO again, while at the bottom of the record, the 
editor will ring the bell as a warning that the listing is beginning again 
from the top. 

Attributes 2, 7 and 9 have sub-fields of data on them; these sub­
fields are called 'values'. These arc displayed by the editor with a close 
square bracket CD and actually form part of the data. They are field 
delimiters. If you see a backslash, /, the / is representing a sub-value 
delimiter. The 1 and I characters are actually ASCII characters 253 and 
252 respectively. They are entered from the keyboard by holding the 
CONTROL key down and typing] or I. 

INSERTION 

If we wish to append an attribute to the end of this record, we may do so 
by inserting it. Insertion begins on a new line at the end of the line 
currently being viewed. Simply type I for insert . 

.I 
010+ This line has been inserted 
010+ 

In this example a new line has been inserted by typing "This line has 
been inserted". The line is terminated by pressing carriage return and 
the editor prompts with a further 010+ so that more lines may be· 
entered. If no further lines are required, a further entry of carriage 
return will terminate the insertion and the editor will respond with the 
editor prompt character ready for the next command. The editor has 
indicated that the insertion is taking place after line 010 by displaying 
010+ instead of 011. Line 011, should it have existed, would have 
become line 012 after this edit. 

The System Editor 

009 5000]4750]4625]4075]4900]3650]5675]6925 
010 2971 
EOI 010 

33 

The numbers 001 to 010 to the left of this display are only used to 
reference the data using the editor and do not actually form part of the 
record. 001 is to the left of attribute 1 of the record, D02 is to the left of 
attribute 2 and so on. 

I f we had typed L22 we would have obtained the same response, 
since there are only ten attributes on this record, as indicated by the 
EOI.010. If we type LIO again, while at the bottom of the record, the 
editor will ring the bell as a warning that the listing is beginning again 
from the top. 

Attributes 2, 7 and 9 have sub-fields of data on them; these sub­
fields are called 'values'. These are displayed by the editor with a close 
square bracket (]) and actually form part of the data. They are field 
delimiters. If you see a backslash, I, the 1 is representing a sub-value 
delimiter. The 1 and 1 characters are actually ASCII characters 253 and 
252 respectively. They are entered from the keyboard by holding the 
CONTROL key down and typing 1 or I. 

INSERTION 

If we wish to append an attribute to the end of this record, we may do so 
by inserting it. Insertion begins on a new line at the end of the line 
currently being viewed. Simply type I for insert. 

.1 
010+ This line has been inserted 
010+ 

In this example a new line has been inserted by typing "This line has 
been inserted". The line is terminated by pressing carriage return and 
the editor prompts with a further 010+ so that more lines may be' 
entered. If no further lines are required, a further entry of carriage 
return will terminate the insertion and the editor will respond with the 
editor prompt character ready for the next command. The editor has 
indicated that the insertion is taking place after line 010 by displaying 
010+ instead of OIl. Line 011, should it have existed, would have 
become line 012 after this edit. 



34 Chapter 4 

THE EDITOR BUFFERS 

The editor uses two buffers to create or update an item. As an editor 
operation is carried out on a line, the new version of the item is copied 
to the second buffer while updating continues on the item as it is in the 
first buffer. Each further amendment is carried out in the second buffer. 
If you wish to edit the amended item, you must first copy the contents of 
the second buffer back to the first buffer. The second buffer can be 
copied back over the first buffer by means of the F (file buffer) com­
mand. Then editing may continue on the updated version of the record. 

Item-id 191 

001 ACME COMPUTERS 
002 10 HIGH ST 
003 DOVER 7429 
004T 
005 ABC123 
006 6259 

First buffer 
(original) 

001 ACME COMPUTERS 
002 5 STATION RD 
003 DOVER 5524 
004 T 
005 ABC123 
006 6259 

Second buffer 
(changed) 

Before an F command 

001 ACME COMPUTERS 
002 5 ST A nON RD 
003 DOVER 5524 
004 T 
005 ABC123 
006 6259 

First buffer 

001 ACME COMPUTERS 
002 5 STATION RD 
003 DOVER 5524 
004 T 
005 ABC123 
006 6259 

Second buffer 
After an F command 

Fig. 4.1. The editor buffers. 

As a consequence of this dual buffer system you may only edit 
forwards through the item. For instance, having inserted a new line after 
line 10 of record 392, it is not possible to make another amendment to 
attributes 1 to 10 inclusive before restoring the buffers with an F com­
mand . 

.F 
TOP 

After executing the F (file buffer) command the editor places the 
record pointer back at the beginning (top) of the record and we may 
commence a new set of listings and changes. 

34 Chapter 4 

THE EDITOR BUFFERS 

The editor uses two buffers to create or update an item. As an editor 
operation is carried out on a line, the new version of the item is copied 
to the second buffer while updating continues on the item as it is in the 
first buffer. Each further amendment is carried out in the second buffer. 
If you wish to edit the amended item, you must first copy the contents of 
the second buffer back to the first buffer. The second buffer can be 
copied back over the first buffer by means of the F (file buffer) com­
mand. Then editing may continue on the updated version of the record. 

Item-id 191 

001 ACME COMPUTERS 
002 10 HIGH ST 
003 DOVER 7429 
004 T 
005 ABC123 
006 6259 

First buffer 
(original) 

001 ACME COMPUTERS 
002 5 STATION RD 
003 DOVER 5524 
004 T 
005 ABC123 
006 6259 

Second buffer 
(changed) 

Before an F command 

001 ACME COMPUTERS 
002 5 STATION RD 
003 DOVER 5524 
004 T 
005 ABC123 
006 6259 

First buffer 

001 ACME COMPUTERS 
002 5 STATION RD 
003 DOVER 5524 
004 T 
005 ABC123 
006 6259 

Second buffer 
After an F command 

Fig. 4.1. The editor buffers. 

As a consequence of this dual buffer system you may only edit 
forwards through the item. For instance, having inserted a new line after 
line 10 of record 392, it is not possible to make another amendment to 
attributes 1 to 10 inclusive before restoring the buffers with an F com­
mand . 

.F 
TOP 

After executing the F (file buffer) command the editor places the 
record pointer back at the beginning (top) of the record and we may 
commence a new set of listings and changes. 



The System Editor 35 

REPLACING 

Suppose that you wished to change the ABC123 to AB0234 on attri­
bute 6. You may go straight to line 6 Clnd replace it. 

.G6 
006 ABC123 
.R 
006 ABD234 
.F 
TOP 
.G6 
006 ABD234 

We need not have replaced the whole line, however. We could have 
typed: 

.R/C123/D234 

and the editor would have responded: 

006 ABD234 

Note that if C123 had not been unique within the line, only the first 
occurrence of C123 would have been changed to 0234. Also if either of 
the strings C123 or 0234 had contained a backslash then any delimiter 
of our choosing may have been used instead. Further, all editor com­
mand letters may be typed in upper or lower case so r?C123?0234 
means the same as R/C123/0234. 

To append onto the end of an attribute, rather than inserting a new 
line, we use the fact that the editor considers the end of the line to be an 
infinite number of spaces, even though this is not really the case! So to 
add XYZ to the end of attribute 6 we type: 

.g6 
006 ABD234 
.RI IXYZ 
006 ABD234XYZ 
.F 
TOP 

The System Editor 35 

REPLACING 

Suppose that you wished to change the ABC123 to AB0234 on attri­
bute 6. You may go straight to line 6 and replace it. 

.G6 
006 ABC123 
.R 
006 AB0234 
.F 
TOP 
.G6 
006 ABD234 

We need not have replaced the whole line. however. We could have 
typed: 

.R/C123/0234 

and the editor would have responded: 

006 ABD234 

Note that if C123 had not been unique within the line, only the first 
occurrence of C123 would have been changed to 0234. Also if either of 
the strings C123 or 0234 had contained a backslash then any delimiter 
of our choosing may have been used instead. Further, all editor com­
mand letters may be typed in upper or lower case so r?C123?0234 
means the same as R/C123/0234. 

To append onto the end of an attribute, rather than inserting a new 
line, we use the fact that the editor considers the end of the line to be an 
infinite number of spaces, even though this is not really the case! So to 
add XYZ to the end of attribute 6 we type: 

.g6 
006 ABD234 
.RI IXYZ 
006 AB D234XYZ 
.F 
TOP 



36 Chapter 4 

To insert at the beginning of an attribute we usc the null string, viz: 

.G6 
006 ABD234XYZ 
.RI/123 
006 123ABD234XYZ 
.F 
TOP 

and we utilise the null string to deletc charactes from a line: 

.G6 
006 123ABD234XYZ 
.R/123ABOI/ 
006234XYZ 
.F 
TOP 

To enter a null attribute we type an attribute mark. This is ASCII 
character 254 and is the character which Pick uses to separate each 
attribute of data on the record. The editor does not display the attribute 
marks at the end of each line but it is possible to enter them by typing 
COl\TROL up arrow ('). If we include an attribute mark in our replace 
command the effect is to truncate the rcst of the attribute. On some 
systems the data is split into two attributes (IBM and Ultimate) but, on 
most, the rest of the data is thrown away. Note that in the following 
example' represents an attribute mark . 

. G6 
006234XYZ 
.R/3!, 
0062 
.F 
TOP 

Entering an attribute mark during insertion gives empty fields: 

.B (this command takes us to the bottom) 
EOI011 
.1 
011 +"" 
011+ 
.F 
TOP 

36 Chapter 4 

To insert at the beginning of an attribute we use the null string, viz: 

.G6 
006 ABD234XYZ 
.R//123 
006 123ABD234XYZ 
.F 
TOP 

and we utilise the null string to delete charactes from a line: 

.G6 
006 123ABD234XYZ 
.R/123ABO/ / 
006234XYZ 
.F 
TOP 

To enter a null attribute we type an attribute mark. This is ASCII 
character 254 and is the character which Pick uses to separate each 
attribute of data on the record. The editor does not display the attribute 
marks at the end of each line but it is possible to enter them by typing 
CONTROL up arrow ('). If we include an attribute mark in our replace 
command the effect is to truncate the rest of the attribute. On some 
systems the data is split into two attributes (IBM and Ultimate) but, on 
most, the rest of the data is thrown away. Note that in the following 
example ' represents an attribute mark . 

. G6 
006234XYZ 
.R/3/" 
0062 
.F 
TOP 

Entering an attribute mark during insertion gives empty fields: 

.B (this command takes us to the bottom) 
EOI 011 
.1 
011+ .... 

011 + 
.F 
TOP 



The System Editor 

.G11 
011 This line has been inserted 
.L 10 
012 
013 
014 
015 
016 
EOI 016 

37 

This is an extremely useful technique when using the editor to build 
dictionaries where there are usually several null attributes. 

Often we wish to replace a sequence of characters which is not 
unique within the attribute, but nor is it the first occurrence of the 
sequence. To do this we can specify the range of columns on which the 
R command is to operate and the R command will work only on the first 
unique specified sequence within that range of columns. 

Suppose we have an attribute: 

001 ABCDEFGHIJDEFGNOPQ 

and we wish to change the second occurrence of DEFG to KLM. First 
display the column mask by using the C command. 

001 ABCDEFGHIJDEFGNOPQ 
.C 

1 234 
12345678901234567890123456789012345678901234 

From this we can see that the DEFG we want begins in column 11. 
We might just glance at the string and think that the DEFG we want is 
somewhere between columns 10 and 20. Hence we can enter: 

.R/OEFG/KLM/10-20 
001 ABCDEFGHIJKLMNOPQ 

WILD CARD CHARACTER 

The up arrow character may be used as a wild card character in any 
editor command. This facility may be toggled by executing A as an editor 
command. 

The Svstem Editor 

.Gll 
011 This line has been inserted 
.L 10 
012 
013 
014 
015 
016 
EOI 016 

37 

This is an extremely useful technique when using the editor to build 
dictionaries where there are usually several null attributes. 

Often we wish to replace a sequence of characters which is not 
unique within the attribute. but nor is it the first occurrence of the 
sequence. To do this we can specify the range of columns on which the 
R command is to operate and the R command will work only on the first 
unique specified sequence within that range of columns. 

Suppose we have an attribute: 

001 ABCDEFGHIJDEFGNOPQ 

and we wish to change the second occurrence of DEFG to KLM. First 
display the column mask by using the C command. 

001 ABCDEFGHIJDEFGNOPQ 
.C 

1 2 3 4 
12345678901234567890123456789012345678901234 

From this we can see that the DEFG we want begins in column 11. 
We might just glance at the string and think that the DEFG we want is 
somewhere between columns 10 and 20. Hence we can enter: 

.R/OEFG/KLM/10-20 
001 ABCDEFGHIJKLMNOPQ 

WILD CARD CHARACTER 

The up arrow character may be used as a wild card character in any 
editor command. This facility may be toggled by executing - as an editor 
command. 



38 Chapter 4 

,-, OFF 

,-, ON 

With the up arrow on, any up arrow characters that are entered will 
be interpreted just as up arrows. When the up arrow is off. the wild card 
is on and up arrows will be interpreted as 'any character'. This is useful 
where sequences of characters are nearly, but not quite, the same. 
Suppose we had an attribute in a record which contained the data: 

001 xax]xbx]xcx]xdx 

If we wished to replace all of these values by null we could use four R 
commands and achieve this, but it would be quicker and easier if we 
could use the universal replace command and replace them all at once. 
Universal replace (RU) is the same as R except that it replaces all the 
occurrences instead of just the first. To replace the xs by ys in the above 
example we could type: 

.G1 
001 xax]xbx]xcx]xdx 
.RU/x/y 
001 yay ]yby ]ycy ]ydy 

To change all of these values to null, we might type: 

.RU/x·x/l 
001]]] 

SEARCHING 

Sometimes we wish to find or edit a specific sequence of characters 
within a record. This is done using the L (locate) command. Suppose we 
suspect that the character sequence 'xyz' occurs somewhere in the 
record being examined. We might type: 

.L"xyz 

and if xyz first occurred on line 102 the system would respond: 

102 abcdefghijklmnopqrstuvwxyz 

38 Chapter 4 

,A, OFF 

,A, ON 

With the up arrow on, any up arrow characters that are entered will 
be interpreted just as up arrows. When the up arrow is off, the wild card 
is on and up arrows will be interpreted as 'any character'. This is useful 
where sequences of characters are nearly, but not quite, the same. 
Suppose we had an attribute in a record which contained the data: 

001 xax]xbx]xcx]xdx 

If we wished to replace all of these values by null we could use four R 
commands and achieve this, but it would be quicker and easier if we 
could use the universal replace command and replace them all at once. 
Universal replace (RU) is the same as R except that it replaces all the 
occurrences instead of just the first. To replace the xs by ys in the above 
example we could type: 

.G1 
001 xax]xbx]xcx]xdx 
.RU/x/y 
001 yay]yby]ycy]ydy 

To change all of these values to null, we might type: 

.RU/x Axil 
001 ]]] 

SEARCHING 

Sometimes we wish to find or edit a specific sequence of characters 
within a record. This is done using the L (locate) command. Suppose we 
suspect that the character sequence 'xyz' occurs somewhere in the 
record being examined. We might type: 

.L"xyz 

and if xyz first occurred on line 102 the system would respond: 

102 abcdefghijklmnopqrstuvwxyz 



The System Editor 39 

with the editor ready to edit that line. 
If we wished to locate all the occurrences of 'xyz' in the record we 

could prefix the delimiter" by the number of lines to be examined . 

. L999"xyz 

The system would respond: 

102 abcdefghijklmnopqrstuvwxyz 
276 xyz 
365 This is the third occurrence of xyz 

This time the editor is pointing at line 999. because 999 lines were 
examined. To edit line 365 we must first 'go' to line 365 . 

. G365 
365 This is the third occurrence of xyz 

The delimiter character, shown as ,. above, may in fact be any 
character. A colon is a special delimiter, however. If the command 
above had been issued as: 

.Lxyz 

then the next line beginning with xyz would have been sought. the sytem 
responding: 

276 xyz 

MERGING 

Data may be merged from other records in the file, or from records in 
other files. This is achieved using the ME (merge) command. 

To merge ten lines of data from line 5 of the record FRED the 
command is: 

.ME1D "FRED"5 

The system responding only with the prompt character: 

The editor has executed the command. To view the results of the 
merge, the buffer must first be filed (F), and then the record listed. If 

The System Editor 39 

with the editor ready to edit that line. 
If we wished to locate all the occurrences of 'xyz' in the record we 

could prefix the delimiter .. by the number of lines to be examined . 

. L999"xyz 

The system would respond: 

102 abcdefghijklmnopqrstuvwxyz 
276 xyz 
365 This is the third occurrence of xyz 

This time the editor is pointing at line 999, because 999 lines were 
examined. To edit line 365 we must first 'go' to line 365 . 

. G365 
365 This is the third occurrence of xyz 

The delimiter character. shown as " above. may in fact be any 
character. A colon is a special delimiter, however. If the command 
above had been issued as: 

.L:xyz 

then the next line beginning with xyz would have been sought. the sytem 
responding: 

276 xyz 

MERGING 

Data may be merged from other records in the file, or from records in 
other files. This is achieved using the ME (merge) command. 

To merge ten lines of data from line 5 of the record FRED the 
command is: 

.ME10 "FREO"5 

The system responding only with the prompt character: 

The editor has executed the command. To view the results of the 
merge, the buffer must first be filed (F), and then the record listed. If 



40 Chapter 4 

the system replies EOT OOS instead of just the prompt character, the end 
of the record being merged was reached at line 8, so only 4 lines were 
merged, ), h, 7 and 8. 

If the "start at" field is omitted the editor will default to the begin­
ning of the record, hence: 

.ME10"FRED" 

Will merge the first ten lines of the record FRED. 
To merge data from another file we surround the file and record 

names with round brackets. Hence: 

.ME10 (PERSONNEL FRED)5 

will merge j() lines from the record FRED in the PERSONNEL file, 
beginning at line) and: 

.ME10 (DICT PERSONNEL FRED)5 

will merge the data from the dictionary of the PERSONNEL file. If the 
name of the record to be merged is omitted the editor uses the name of 
the record being edited as the name of the record sought. This facility, 
in its simplest form, can be used to duplicate data already in the record 
being edited. 

To duplicate ten lines of data from the record being edited, to the 
point at which the edit is taking place, the following command is used: 

.ME10""5 

FILI:'IIG 

We file our record using one of the file commands. We may file the 
record and continue editing the same record using the FS (file store) 
command, or we may exit the record at the same time using the FI 
command. Furthermore, we may change the name of the record or even 
file it in a different file using a syntax similar to that discussed for the 
merge command. 

JI FRED 

would file this record under the key FRED. 

JI (PERSONNEL FRED 

40 Chapter 4 

the system replies EOI 008 instead of just the prompt character. the end 
of the record being merged was reached at line 8. so only 4 lines were 
merged. S. 6. 7 and 8. 

If the "start at"" field is omitted the editor will default to the begin­
ning of the record. hence: 

.ME10"FRED" 

Will merge the first ten lines of the record FRED. 
To merge data from another file we surround the file and record 

names with round brackets. Hence: 

.ME10 IPERSONNEL FRED)5 

will merge 10 lines from the record FRED in the PERSONNEL file, 
beginning at line 5 and: 

.ME1O IDleT PERSONNEL FRED)5 

will merge the data from the dictionary of the PERSONNEL file. If the 
name of the record to be merged is omitted the editor uses the name of 
the record being edited as the name of the record sought. This facility, 
in its simplest form, can be used to duplicate data already in the record 
being edited. 

To duplicate ten lines of data from the record being edited. to the 
point at which the edit is taking place, the following command is used: 

.ME10""5 

FILING 

We file our record using one of the file commands. We may file the 
record and continue editing the same record using the FS (file store) 
command, or we may exit the record at the same time using the FI 
command. Furthermore, we may change the name of the record or even 
file it in a different file using a syntax similar to that discussed for the 
merge command. 

JI FRED 

would file this record under the key FRED. 

JI IPERSONNEL FRED 



The System Editor 41 

would file this record in the PERSONNEL file under the kev FRED. 
Note that it is not necessary to close the brackets. 

If we specified a list of key names when we started our edit, we can 
use the filing or exiting commands to escape from the list by appending a 
K (kill) command to the file instruction. Thus F1K will file the record, 
and kill the rest of the ikm-id list typed at TCl with the ED command. 

The EX command is used to exit the record without filing. If the 
record already existed on the file. it will be left exactly as it was before 
the edit. Again EXK will escape any item list. 

To delete the record we usc the FD or FDK command. This is 
somewhat final and it is unfortunate that on QWERTY keyboards the 0 
key is next to the F, making it easy to delete a record by accident. 

If an FD type command is executed accidentally the record may 
be recovered by immediately exiting to TCl and executing the 
RECOVER-FD verb. This must be the next process executed because 
the RECOVER-FD process relies on system buffers not being overwrit­
ten. In most instances the system buffers used will be overwritten by 
other processes. Revelation and Prime versions of Pick are a little better 
in this respect because they check by asking ARE YOU SURE (YIN)'! 
before allowing the record to be deleted. 

PRESTORED COMMANDS 

Prestored commands may be created to be equivalent to any editor 
command. A useful extension to the prestores is to store multiple 
commands by delimiting the commands using a control left square 
bracket (ASCII character 251) or an escape (ESC) character. This can 
be regarded as a 'macro'. The multiple command may then be invoked 
by typing in the prestore command P followed by the command number. 
"Editor charges" may be created by setting up a loop. during which the 
record being edited is filed. This is done by making the prestore com­
mand execute itself. The prestored command is then carried out on 
every record being edited. 

Suppose we wanted to display all the occurrences of string abc in a 
particular file. The following sequence of instructions might be ex­
ecuted: 

ED file * 

XXX 
top 
.Pl L9999"abc[EX[Pl 
.Pl 

The System Editor 41 

would file this record in the PERSONNEL file under the key FRED. 
Note that it is not necessary to close the hrackets. 

If we specified a list of key names when we started our edit. we can 
use the filing or exiting commands to escape from the list hy appending a 
K (kill) command to the file instruction. Thus FIK will file the record, 
and kill the rest of the item-id list typed at TCl with the ED command. 

The EX command is used to exit the record without filing. If the 
record already existed on the file, it will he left exactly as it was hefore 
the edit. Again EXK will escape any item list. 

To delete the record we use the FD or FDK command. This is 
somewhat final and it is unfortunate that on QWERTY keyboards the 0 
key is next to the F, making it easy to delete a record hy accident. 

If an FD type command is executed accidentally the record may 
be recovered by immediately exiting to TCl and executing the 
RECOVER-FD verb. This must he the next process executed hecause 
the RECOVER-FD process relies on system huffers not heing overwrit­
ten. In most instances the system huffers used will be overwritten hy 
other processes. Revelation and Prime versions of Pick are a little better 
in this respect because they check hy asking ARE YOU SURE (YIN)') 
before allowing the record to he deleted. 

PRESTORED COMMANDS 

Prestored commands may be created to be equivalent to any editor 
command. A useful extension to the prestores is to store multiple 
commands by delimiting the commands using a control left square 
bracket (ASCII character 251) or an escape (ESC) character. This can 
be regarded as a 'macro'. The multiple command may then be invoked 
by typing in the prestore command P followed by the command number. 
"Editor charges" may be created by setting up a loop, during which the 
record being edited is filed. This is done by making the prestore com­
mand execute itself. The prestored command is then carried out on 
every record being edited. 

Suppose we wanted to display all the occurrences of string abc in a 
particular file. The following sequence of instructions might be ex­
ecuted: 

ED file * 
XXX 
top 
.P1 L9999"abc[EX[P1 
.P1 



42 Chapter 4 

In this example PI is set to look for the string abc, exit the record anTI 
then execute Pl. When PI is re-executed the edit is taking place on the 
second record and so the second record is searched. This process con­
tinues until the edit list is exhausted by there being no more records left 
to edit and the process exits to TCL. 

Prestore command zero (PO or simply P) is set to L22 automatically 
when you enter the-editor. You may reset -any P command at any stage. 
The prest ore commands will remain operative until you exit the editor. 
That is. they remain in operation as set while you transfer from item to 
item. Only by exiting (e.g. to TCL) do the prestore commands get reset. 

The foregoing is not an exhaustive description of all editor com­
mands. A full description of each editor command can be found in the 
Pick Editor Reference Manual. A summary is presented in Appendix I 
so that reference to the correct section may be made readily. 

42 Chapter 4 

In this example PI is set to look for the string abc, exit the record ana 
then execute Pl. When PI is re-executed the edit is taking place on the 
second record and so the second record is searched. This process con­
tinues until the edit list is exha'usteo by there being no more records left 
to edit and the process exits to TCL. 

Prestore command zero (PO or simply P) is set to L22 automatically 
when you enter the-editor. You may re-set-any P command at any stage. 
The prestore commands will remain operative until you exit the editor. 
That is, they remain in operation as set while you transfer from item to 
item. Only by exiting (e.g. to TCL) do the prestore commands get reset. 

The foregoing is not an exhaustive description of all editor com­
mands. A full description of each editor command can be found in the 
Pick Editor Reference Manual. A summary is presented in Appendix 1 
so that reference to the correct section may be made readily. 



chapter 5 
Building Dictionaries 

The Access enquiry language is dictionary driven. That is, every word 
which can form part of an Access sentence will be found in a dictionary. 
Thus words like LIST, SORT, BY and WITH will have definitions held 
in an account's "master dictionary". These words have meaning when 
used to enquire upon any data file accessed from the account. Words 
such as NAME, ADDRESS and AGE, referred to in the chapter on the 
use of Access, have definitions held in dictionaries associated with a 
specific file. In the chapter on Access, the file was called PERSONNEL. 

ADMIN 
master dictionary 

Contains records with 
item-ids such as:­
LIST 
SORT 
SELECT 
WITH 
BY 
PERSONNEL (file defining) 

One master dictionary per 
account. The words are 
applicable to any file. 

I IL-__________ ~ other file 
dictionaries 

PERSONNEL 

DieT 
Conlains record 
item·ids such 85:­
NAME 
ADDRESS 
AGE 
POSITION 
STARTED 

DATA 
Con'ains record 
ilem-ids such .,;­
A-1OO 
Bl-20 
A-'OO 
B-523 
81·1 
ColO 

Fig. 5.1. Records in the dictionary define the structure of records in the data portion. 

43 

chapter 5 
Building Dictionaries 

The Access enquiry language is dictionary driven. That is, every word 
which can form part of an Access sentence will be found in a dictionary. 
Thus words like LIST, SORT, BY and WITH will have definitions held 
in an account's "master dictionary". These words have meaning when 
used to enquire upon any data file accessed from the account. Words 
such as NAME, ADDRESS and AGE, referred to in the chapter on the 
use of Access, have definitions held in dictionaries associated with a 
specific file. In the chapter on Access, the file was called PERSONNEL. 

ADMIN 
master dictionary 

Contains records with 
item·ids such as:­
LIST 
SORT 
SELECT 
WITH 
BY 
PERSONNEL (file defining) 

One master dictionary per 
account. The words are 
applicable to any file. 

I I ~ other file 
'----------- dictionaries 

PERSONNEL 

DieT 
Contains record 
item-ids such 85:­
NAME 
ADDRESS 
AGE 
POSITION 
STARTED 

DATA 
Containl record 
item-idS such 11:­
A·l00 
81·20 
A·400 
8·523 
81·1 
C·l0 

Fig. 5.1. Records in the dictionary define the structure of records in the data portion. 

43 



44 Chapter 5 

Every data file has a dictionary associated with it. The dictionary 
contains items which are used by Access to display data. Thus any 
dictionary will define the structure of the associated data file. 

THE STRUCTURE OF DICTIONARY RECORDS 

Dictionary items are created using the system editor with the command: 

ED DieT filename dictname 

and have a fixed format: 

Attribute 

Item-id 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Function 

Name (free format). 
A (attribute defining) or S (synonym). 
The number of the attribute being referenced. 
The column heading. 
Controlling and dependent value indicator. 

Conversions to be carried out (for example dates). 
Functions (for example arithmetic (CORRELATIVES)). 
Justification (L (left) R (right) T (text) U 
(unconditional)) . 
Width of field when displayed. 

You must have a dictionary definition for each word that is subse­
quently employed in an Access sentence. Thus in the Access sentence: 

LIST PERSONNEL NAME 

the word NAME appears in the dictionary of the PERSONNEL file as a 
key. The dictionary definition making up the NAME record then deter­
mines exactly what data is displayed by the command. 

The simplest type of dictionary definition will define a field or 
attribute of information of any record from the data section of the file. 
Thus a dictionary definition called NAME may contain the information 
shown in Fig. 5.2: 

The first field, being A or S, is recognised by the operating system as 
meaning that this record may be used as a dictionary definition. There is 
no operational difference between A type and S type definitions. 

44 Chapter 5 

Every data file has a dictionary associated with it. The dictionary 
contains items which are used hy Access to display data. Thus any 
dictionary will define the structure of the associated data file. 

THE STRUCTURE OF DICTIONARY RECORDS 

Dictionary items are created using the system editor with the command: 

ED DieT filename dictname 

and have a fixed format: 

Attribute 

Item-id 
1 
2 
3 
4 
5 
6 
7 
8 
<) 

10 

Function 

Name (free format). 
A (attribute defining) or S (synonym). 
The number of the attribute being referenced. 
The column heading. 
Controlling and dependent value indicator. 

Conversions to be carried out (for example dates). 
Functions (for example arithmetic (CORRELATIVES)). 
Justification (L (left) R (right) T (text) U 
(unconditional)) . 
Width of field when displayed. 

You must have a dictionary definition for each word that is subse­
quently employed in an Access sentence. Thus in the Access sentence: 

LIST PERSONNEL NAME 

the word NAME appears in the dictionary of the PERSONNEL file as a 
key. The dictionary definition making up the NAME record then deter­
mines exactly what data is displayed by the command. 

The simplest type of dictionary definition will define a field or 
attribute of information of any record from the data section of the file. 
Thus a dictionary definition called NAME may contain the information 
shown in Fig. 5.2: 

The first field, being A or S, is recognised by the operating system as 
meaning that this record may be used as a dictionary definition. There is 
no operational difference between A type and S type definitions. 



ED DieT PERSONNEL NAME 
NAME 
TOP 
.L22 
001 A 
002 1 
003 Name of employee 
004 
005 
006 
007 
008 
009 L 
010 20 
EOI 010 

Building Dictionaries 

Fig. 5.2. An ordinary dictionary definition as it appears using the editor. 

45 

The second field tells the system which field or attribute of informa­
tion is to be taken from each data record being displayed. In the 
example above the first field of information will be displayed. 

The third field is used as a column heading for Access output. This is 
completely free format. On output the column heading will be filled out 
to the maximum width of the display with dots (.). If the number of 
characters in the column heading exceeds the width of the field, as 
indicated by attribute ten of the dictionary definition, then the display 
width will be redefined to the width of the column heading. 

For example. if the width of the AGE field in the personnel file is 
defined as 5, the column heading (Age) will be displayed as "Age .. ". 
However. if the width of the AGE field is defined as 2. the actual 
display width will be 3 because there are three letters in the word 
"Age". 

Multiple line column headings may be specified by inserting value 
marks. That is: 

003 Name of]employee 

will appear as a column heading thus: 

Name of.. ................. . 
employee ................... . 

The ninth field of a dictionary definition determines the kind of 
justification to be applied to the data on output. The options are L for 

ED DieT PERSONNEL NAME 
NAME 
TOP 
.L22 
001 A 
002 1 
003 Name of employee 
004 
005 
006 
007 
008 
009 L 
010 20 
EOI 010 

Building Dictionaries 

Fig. 5.2. An ordinary dictionary definition as it appears using the editor. 

45 

The second field tells the system which field or attribute of informa­
tion is to be taken from each data record being displayed. In the 
example above the first field of information will be displayed. 

The third field is used as a column heading for Access output. This is 
completely free format. On output the column heading will be filled out 
to the maximum width of the display with dots (.). If the number of 
characters in the column heading exceeds the width of the field. as 
indicated by attribute ten of the dictionary definition. then the display 
width will be redefined to the width of the column heading. 

For example. if the width of the AGE field in the personnel file is 
defined as 5. the column heading (Age) will be displayed as "Age .. ". 
However. if the width of the AGE field is defined as 2, the actual 
display width will be 3 because there are three letters in the word 
"Age". 

Multiple line column headings may be specified by inserting value 
marks. That is: 

003 Name of]employee 

will appear as a column heading thus: 

Name of.. ................ .. 
employee ................... . 

The ninth field of a dictionary definition determines the kind of 
justification to be applied to the data on output. The options are L for 



46 Chapter 5 

left. R for right and T for text. U results in an unconditionally left 
justified field. This determines what kind of sort will be carried out on 
the data in an Access sentence. Right justified data is sorted in numeric­
al sequence. Left and text justified data are sorted in alphabetical order. 

Text justified data differs from left justified data in the way that line 
wrapping is carried out. Left justified data will be line wrapped, should 
the data be longer than the specified display width, by breaking the data 
at the specified character. Text data will also be line wrapped, but the 
break of the data takes place at the last space so that words are not 
broken in two. Unconditionally justified data is left justified, but does 
not obey any width restrictions, so there is no line wrap. In the following 
example the data is justified in different ways, but in each case the field 
width is defined as 15. 

Left justified 

This is justifi 
ed to the left 

Text justified 

This is 
justified to 
the left 

Unconditionally justified 

This is justified to the left 

Note that text justification does not right justify as well as left justify 
in the way that a word processor might. 

The tenth field of a dictionary definition specifies the number of 
characters to be used for the output width. As indicated earlier, this may 
be overridden if the actual width of the column heading is wider than the 
number specified here. Access calculates the total width of reports from 
the widths of the various dictionary definitions, adding 1 for each field, 
so that a single space will appear between each column. This is com­
pared with the width available on the terminal or printer. If the total 
width is less than the width of the terminal, the report will be displayed 
'across the page'. In this case each line of the report will represent a 
different record and each column will be the output from a single 
dictionary definition. If the total width of the report would be wider 
than the terminal, the report will be displayed 'down the page'. Each 
line then represents a dictionary definition with a blank line between 
records. 

Note that to obtain a neat "down the page" format, you must make 
sure that each dictionary definition has the same width specified and 
that the column headings are already filled out with dots. Otherwise the 

46 Chapter 5 

left, R for right and T for text. U results in an unconditionally left 
justified field. This determines what kind of sort will be carried out on 
the data in an Access sentence. Right justified data is sorted in numeric­
al sequence. Left and text justified data are sorted in alphabetical order. 

Text justified data differs from left justified data in the way that line 
wrapping is carried out. Left justified data will be line wrapped, should 
the data be longer than the specified display width, by breaking the data 
at the specified character. Text data will also be line wrapped, but the 
break of the data takes place at the last space so that words are not 
broken in two. Unconditionally justified data is left justified, but does 
not obey any width restrictions, so there is no line wrap. In the following 
example the data is justified in different ways, but in each case the field 
width is defined as 15. 

Left justified 

This is justifi 
ed to the left 

Text justified 

This is 
justified to 
the left 

Unconditionally justified 

This is justified to the left 

Note that text justification does not right justify as well as left justify 
in the way that a word processor might. 

The tenth field of a dictionary definition specifies the number of 
characters to be used for the output width. As indicated earlier, this may 
be overridden if the actual width of the column heading is wider than the 
number specified here. Access calculates the total width of reports from 
the widths of the various dictionary definitions, adding 1 for each field, 
so that a single space will appear between each column. This is com­
pared with the width available on the terminal or printer. If the total 
width is less than the width of the terminal, the report will be displayed 
'across the page'. In this case each line of the report will represent a 
different record and each column will be the output from a single 
dictionary definition. If the total width of the report would be wider 
than the terminal, the report will be displayed 'down the page'. Each 
line then represents a dictionary definition with a blank line between 
records. 

Note that to obtain a neat "down the page" format, you must make 
sure that each dictionary definition has the same width specified and 
that the column headings are already filled out with dots. Otherwise the 



Building Dictionaries 47 

Across the page format 

NAME ...................................... POSITION ............... TELEPHONE 
FRED BLOGGS BLACKSMITH 123 4567 
JOE BROWN JOINER 234 5678 

Down the page format 

NAME ...................................... FRED BLOGGS 
POSITION ................................. BLACKSMITH 
TELEPHONE ............................ 123 4567 

NAME ...................................... JOE BROWN 
POSITION ................................. JOINER 
TELEPHONE ............................ 234 5678 

Fig. 5.3. Across the page and down the page formats of Access display. 

width allowed for the column headings and fields is the same as for the 
columnar format. and the data is not nicely justified. nor are the column 
headings filled out with dots automatically. 

DEFAULT REPORTS 

During the chapter on Access a meaningful report was obtained by 
simply typing LIST PERSONNEL. The fields to appear on such a 
default report are specified by defining dictionary records with the keys 
1, 2, 3, 4 .... etc .. The data defined by the dictionary record called 1 will 
be displayed as the second column (after the key). the data defined by 2 
will appear as the third column and so on. Apart from this fixed way of 
naming these definitions. they are constructed in exactly the same way 
as other dictionary records. The default report will contain all dictionary 
definitions named in tbis way until there is a gap in the sequence. That 
is, if you have dictionary definitions called 1, 2, 3 and 5, the default 
report will consist of the key and the data defined by dictionary defini­
tions 1, 2 and 3, but not 5. 

Default reports are obtained in a quite different way on Revelation. 
Revelation dictionaries contain two records, @CRT and @LPTR. 
These define the default reports. The list of fields to be displayed on a 
default report is held on attribute 3 of these records and might read 
NAME ADDRESS AGE POSITION etc. The default report defined 
by @CRT is used when listings are being sent to the monitor and the 
default report defined by @LPTR is used when listings are being sent to 
the printer. 

Building Dictionaries 47 

Across the page format 

NAME ...................................... POSITION ............... TELEPHONE 
FRED BLOGGS BLACKSMITH 1234567 
JOE BROWN JOINER 234 5678 

Down the page format 

NAME ...................................... FRED BLOGGS 
POSITION ................................. BLACKSMITH 
TELEPHONE ............................ 1234567 

NAME ...................................... JOE BROWN 
POSITION ................................. JOINER 
TELEPHONE ............................ 234 5678 

Fig. 5.3. Across the page and down the page formats of Access display. 

width allowed for the column headings and fields is the same as for the 
columnar format, and the data is not nicely justified, nor are the column 
headings filled out with dots automatically. 

DEFAULT REPORTS 

During the chapter on Access a meaningful report was obtained by 
simply typing LIST PERSONNEL. The fields to appear on such a 
default report are specified by defining dictionary records with the keys 
1, 2, 3, 4 .... etc .. The data defined by the dictionary record called 1 will 
be displayed as the second column (after the key), the data defined by 2 
will appear as the third column and so on. Apart from this fixed way of 
naming these definitions, they are constructed in exactly the same way 
as other dictionary records. The default report will contain all dictionary 
definitions named in this way until there is a gap in the sequence. That 
is, if you have dictionary definitions called 1, 2, 3 and 5, the default 
report will consist of the key and the data defined by dictionary defini­
tions 1, 2 and 3, but not 5. 

Default reports are obtained in a quite different way on Revelation. 
Revelation dictionaries contain two records, @CRT and @LPTR. 
These define the default reports. The list of fields to be displayed on a 
default report is held on attribute 3 of these records and might read 
NAME ADDRESS AGE POSITION etc. The default report defined 
by @CRT is used when listings are being sent to the monitor and the 
default report defined by @LPTR is used when listings are being sent to 
the printer. 



48 Chapter 5 

CONVERSIONS AND CORRELATIVES 

So far we have discussed the way in which data may be defined by a 
dictionary definition, in order to display that data in its raw form on an 
Access report. Dictionary definitions may be used to manipulate the 
data and to combine this data with data from other fields, within the 
same record or from other records. These manipulations are carried out 
by using "conversions" and "correlatives". The techniques presented 
next may be used either in the conversion field or in the correlative 
field, but first a word on the difference between conversions and cor­
relatives. 

Conceptually a conversion is used for some change in the format of 
data. For instance, a date may be stored in the file as the number of days 
since the 31 st December 1967, but we wish to display the date in one of 
the everyday formats such as 24 OCT 85. This is a very common use of a 
Pick data conversion. 

Correlatives are for defining functions or translations of data from 
one format, like a code, into another format, the second format being 
defined by a record on another file. Students of relational database 
theory call this a JOIN. 

In actual fact the important difference between a conversion and a 
correlative is not to do with the type of data manipulation being carried 
out. The crucial difference is in how Access processes conversions and 
correlatives. 

When the Access processor interprets a dictionary definition, cor­
relatives are processed immediately. The resulting values are then used 
in any sort criteria that have been specified. Conversions are processed 
after the sort but just before the output. To illustrate the use of this, 
consider the example of a date. 

Since dates are held on the database as the number of days since the 
31st December 1967, it is a good idea to use this format to sort the data, 
that is, sort the data numerically, Just before output, but after the sort, 
the data is converted into its external format. It follows from this that 
dates held in this way should have corresponding dictionary definitions 
that use the conversion field to tell Access how to convert the data, and 
also be right justified so that the data is sorted in numerical rather than 
alphabetical sequence. 

In this way we can obtain a chronological sort. If we took a date in its 
real format, such as 24 OCT 85, and tried to sort this either numerically 
or alphabetically, we would not succeed. For example, in both cases 

48 Chapter 5 

CONVERSIONS AND CORRELATIVES 

So far we have discussed the way in which data may be defined by a 
dictionary definition, in order to display that data in its raw form on an 
Access report. Dictionary definitions may be used to manipulate the 
data and to combine this data with data from other fields, within the 
same record or from other records. These manipulations are carried out 
by using "conversions" and "correlatives". The techniques presented 
next may be used either in the conversion field or in the correlative 
field, but first a word on the difference between conversions and cor­
relatives. 

Conceptually a conversion is used for some change in the format of 
data. For instance, a date may be stored in the file as the number of days 
since the 31st December 1967, but we wish to display the date in one of 
the everyday formats such as 24 OCT 85. This is a very common use of a 
Pick data conversion. 

Correlatives are for defining functions or translations of data from 
one format. like a code, into another format. the second format being 
defined by a record on another file. Students of relational database 
theory call this a JOIN. 

In actual fact the important difference between a conversion and a 
correlative is not to do with the type of data manipulation being carried 
out. The crucial difference is in how Access processes conversions and 
correlatives. 

When the Access processor interprets a dictionary definition, cor­
relatives are processed immediately. The resulting values are then used 
in any sort criteria that have been specified. Conversions are processed 
after the sort but just before the output. To illustrate the use of this, 
consider the example of a date. 

Since dates are held on the database as the number of days since the 
31st December 1967, it is a good idea to use this format to sort the data, 
that is, sort the data numerically. Just before output, but after the sort, 
the data is converted into its external format. It follows from this that 
dates held in this way should have corresponding dictionary definitions 
that use the conversion field to tell Access how to convert the data, and 
also be right justified so that the data is sorted in numerical rather than 
alphabetical sequence. 

In this way we can obtain a chronological sort. If we took a date in its 
real format, such as 24 OCT 85, and tried to sort this either numerically 
or alphabetically, we would not succeed. For example, in both cases 



Building Dictionaries 49 

1 NOV 85 would precede 24 OCT 85 I. This is what would happen is the 
date conversion were to be specified in the correlative field. 

CONVERSIONS 

A typical dictionary definition of a date might look like Fig. 5.4. 

DATE.OF.lNVOICE 
001 A 
002 3 
003 Invoice date 
004 
005 
006 
007 0 
008 
009 R 
010 11 

Attribute where the internal format date is held. 
Column heading. 

Specifying a date conversion. 

Fig. 5.4. A dictionary definition with a date conversion. 

The 0 in the conversion field will carry out a date conversion. The 
result will be in the format 18 FEB 1985 with an abbreviated month and 
a four-digit year. This format can be changed. By specifying a number 
up to 4 after the 0, e.g. 02, the number of digits in the year is altered, 
so 02 would output 18 FEB 85. By specifying a delimiter after this, the 
format is changed from an abbreviated month to a numerical month. 
Therefore 02- gives 18-02-85. American formats of dates are usually 
achieved by means of a switch in the operating system modes. Your 
system supplier will be able to advise you on this. 

There are some date conversions which give results other than a 
whole date: DO will generate only the day number of the month; OM 
the month number of the year; DO the quarter number; OY the year 
only; and 02Y will generate a two digit year. OJ will generate the day of 
year, so an internal date format representing the 28th August 1985 
would be displayed as 240. Another date conversion which is supported, 
but not always documented in the manufacturer's Pick Reference manu­
als is OW, which gives the day of the week, 1 being Monday, 2 Tuesday 

1. Alphabetically 1 is before 2. Numerically 1 NOV 85 is before 24 OCT 85 because the 
most significant character (a space which is equivalent to 0) is less than 2.3 NOV 85 would 
also precede 24 OCT 85 in a numerical sort but would follow 24 OCT 85 in an alphabetical 
sort. 

Building Dictionaries 49 

1 NOV 85 would precede 24 OCT 85 I. This is what would happen is the 
date conversion were to be specified in the correlative field. 

CONVERSIONS 

A typical dictionary definition of a date might look like Fig. 5.4. 

DATE.OF.lNVOICE 
001 A 
002 3 
003 Invoice date 
004 
005 
006 
007 0 
008 
009 R 
010 11 

Attribute where the internal format date is held. 
Column heading. 

Specifying a date conversion. 

Fig. 5.4. A dictionary definition with a date conversion. 

The 0 in the conversion field will carry out it date conversion. The 
result will be in the format 18 FEB 1985 with an abbreviated month and 
a four-digit year. This format can be changed. By specifying a number 
up to 4 after the 0, e.g. 02, the number of digits in the year is altered, 
so 02 would output 18 FEB 85. By specifying a delimiter after this, the 
format is changed from an abbreviated month to a numerical month. 
Therefore 02- gives 18-02-85. American formats of dates are usually 
achieved by means of a switch in the operating system modes. Your 
system supplier will be able to advise you on this. 

There are some date conversions which give results other than a 
whole date: DO will generate only the day number of the month: OM 
the month number of the year; DO the quarter number; OY the year 
only; and 02Y will generate a two digit year. OJ will generate the day of 
year, so an internal date format representing the 28th August 1985 
would be displayed as 240. Another date conversion which is supported, 
but not always documented in the manufacturer's Pick Reference manu­
als is OW, which gives the day of the week, 1 being Monday, 2 Tuesday 

I. Alphabetically 1 is before 2. Numerically 1 NOV 85 is before 24 OCT 85 because the 
most significant character (a space which is equivalent to 0) is less than 2.3 NOV 85 would 
also precede 24 OCT 8S in a numerical sort but would follow 24 OCT 85 in an alphabetical 
sort. 



50 Chapter 5 

and so on. OW A and DMA give the day and month in alphabetical 
format. 

The other commonly encountered conversion is a masked decimal 
conversion. It is recommended that decimal numbers are held on the 
database with implied decimal places. 25.14 would therefore be held as 
2514. the number 1 being held on another record as 100. An advantage 
often given by zealous salesmen for doing this is that it saves a byte of 
disk space for each number held! The real reason is that the Access 
processor only carries out calculations with integer values and truncates 
the real numbers at the decimal point. Much inaccuracy will result on 
reports with calculated data derived from real numbers held on the 
database. This can be overcome by using a masked decimal conversion 
in the conversion field. 

Two synonymous conversions are supported to carry out this switch­
ing between decimal and non decimal format, MD and MR. When the 
McDonnell Douglas computers were the only commercially available 
Pick systems only MD was supported. Pick implementations support 
MR. which means exactly the same MD, MD being retained to maintain 
upwards compatibility. Pick also supports ML which acts like MR but 
left justifies any output masks (see below). Thus a two decimal place 
mask is expressed by MD2 or MR2, three decimal places by MD3 or 
MR3. 

In much the same way that the exact format of a date may be 
controlled by the format of the date conversion, so the presentation of 
numbers may be altered by extensions to the masked decimal conver­
sion. Some possibilities are shown in Fig. 5.5. 

Conversion Description Stored Output 

MR2. Commas between OOOs 100000 1,000.00 
MR24 4 decimal places stored 

rounded to 2 d.p on output 67890 6.79 
MRZ Print zero as a null. 0 
MR2%8 Pad out characters with 

eight zeroes and 2 implied 67890 00678.90 
decimal places 

MRE Enclose negatives in <>. ....fJ78 <678> 
MR2CD Suffix negatives with CR 

and positives with DB 678 6.78DB 
with two implied d.p. 

MR###-### Right justified format mask A789 A-789 
ML###-### Left justified format mask 678A 678-A 

Fig. 5.5. Some examples of column mask conversions. 

50 Chapter 5 

and so on. DW A and DMA give the day and month in alphabetical 
format. 

The other commonly encountered conversion is a masked decimal 
conversion. It is recommended that decimal numbers are held on the 
database with implied decimal places. 25.14 would therefore be held as 
2514, the number 1 being held on another record as 100. An advantage 
often given by zealous salesmen for doing this is that it saves a byte of 
disk space for each number held! The real reason is that the Access 
processor only carries out calculations with integer values and truncates 
the real numbers at the decimal point. Much inaccuracy will result on 
reports with calculated data derived from real numbers held on the 
database. This can be overcome by using a masked decimal conversion 
in the conversion field. 

Two synonymous conversions are supported to carry out this switch­
ing between decimal and non decimal format, MD and MR. When the 
McDonnell Douglas computers were the only commercially available 
Pick systems only MD was supported. Pick implementations support 
MR, which means exactly the same MD, MD being retained to maintain 
upwards compatibility. Pick also supports ML which acts like MR but 
left justifies any output masks (see below). Thus a two decimal place 
mask is expressed by MD2 or MR2, three decimal places by MD3 or 
MR3. 

In much the same way that the exact format of a date may be 
controlled by the format of the date conversion, so the presentation of 
numbers may be altered by extensions to the masked decimal conver­
sion. Some possibilities are shown in Fig. 5.5. 

Conversion Description Stored Output 

MR2, Commas between ODDs 100000 1,000.00 
MR24 4 decimal places stored 

rounded to 2 d.p on output 67890 6.79 
MRZ Print zero as a null. 0 
MR2%8 Pad out characters with 

eight zeroes and 2 implied 67890 00678.90 
decimal places 

MRE Enclose negatives in <>. -678 <678> 
MR2CD Suffix negatives with CR 

and positives with DB 678 6.78DB 
with two implied d.p. 

MR###-### Right justified format mask A789 A-789 
ML###-### Left justified format mask 678A 678--A 

Fig. 5.5. Some examples of column mask conversions. 



Building Dictionaries 51 

On Ultimate systems the format masks must be enclosed in brackets 
O. Format masks are not supported by McDonnell Douglas systems. A 
full list of the possibilities can be found in the Pick Reference manual. 

Another 'family' of conversions that might be encountered are·the 
mask character conversions (Me). Masked character conversions carry 
out a variety of functions such as converting data from lower to upper 
case, stripping out non-alpha characters or non-numeric characters and 
converting between decimal and hexadecimal formats. 

MT conversions deal with the presentation of time. As for dates 
there is an internal representation of the time, the number of seconds 
since midnight. One second after one a 'clock in the afternoon may then 
be stored as 46801. An MT conversion will display this as 13:00, i.e. to 
the minute by the 24 hour clock with hours and minutes separated by a 
colon. Other versions of MT allow display in the 12 hour format fol­
lowed by AM or PM (MTH), or additional display of seconds (MTS) or 
both (MTHS). 

The final type of conversion. mentioned here for completeness, is 
the user exit (U) conversion. This is a U followed by a four-digit 
hexadecimal number giving an absolute address in the operating system 
for the execution of an assembler subprogram on the data. These should 
only be used on the explicit instruction of a software or hardware 
supplier. Irretrievable damage can be done by a random jump into the 
operating system. User access to the Pick assembly language is not 
supported by any manufacturer. 

CORRELA TIVES 

Correlatives provide a powerful method of manipulating the data in 
files. They are used to change the data, by carrying out a calculation or 
extracting parts of the data or, perhaps most importantly, using the data 
to translate to another part of the database. This is how the relational 
JOIN is achieved. 

Translations 

Suppose we have a customer master file with details of the customer's 
address, his terms of trading, creelit limit, contact name and so on. It is 
clearly not sensible to have to duplicate this data whenever an order is 
booked for the customer on the orders file. However, we still wish to be 
able to display the customer's details when carrying out an Access listing 
on the Orders file. So there has to be some way of referencing the 

Building Dictionaries 51 

On Ultimate systems the format masks must be enclosed in brackets 
O. Format masks are not supported by McDonnell Douglas systems. A 
full list of the possibilities can be found in the Pick Reference manual. 

Another 'family' of conversions that might be encountered are·the 
mask character conversions (MC). Masked character conversions carry 
out a variety of functions such as converting data from lower to upper 
case, stripping out non-alpha characters or non-numeric characters and 
converting between decimal and hexadecimal formats. 

MT conversions deal with the presentation of time. As for dates 
there is an internal representation of the time, the number of seconds 
since midnight. One second after one o'clock in the afternoon may then 
be stored as 46801. An MT conversion will display this as 13:00, i.e. to 
the minute by the 24 hour clock with hours and minutes separated by a 
colon. Other versions of MT allow display in the 12 hour format fol­
lowed by AM or PM (MTH), or additional display of seconds (MTS) or 
both (MTHS). 

The final type of conversion, mentioned here for completeness, is 
the user exit (U) conversion. This is a U followed by a four-digit 
hexadecimal number giving an absolute address in the operating system 
for the execution of an assembler subprogram on the data. These should 
only be used on the explicit instruction of a software or hardware 
supplier. Irretrievable damage can be done by a random jump into the 
operating system. User access to the Pick assembly language is not 
supported by any manufacturer. 

CORRELATIVES 

Correlatives provide a powerful method of manipulating the data in 
files. They are used to change the data, by carrying out a calculation or 
extracting parts of the data or, perhaps most importantly, using the data 
to translate to another part of the database. This is how the relational 
JOIN is achieved. 

Translations 

Suppose we have a customer master file with details of the customer's 
address, his terms of trading, credit limit, contact name and so on. It is 
clearly not sensible to have to duplicate this data whenever an order is 
booked for the customer on the orders file. However, we still wish to be 
able to display the customer's details when carrying out an Access listing 
on the Orders file. So there has to be some way of referencing the 



52 Chapter 5 

information held on the customer master file via dictionary definitions 
in the dictionary of the orders file. 

In fact. one piece of information will be held on the order file about 
the customer. This will indicate which customer the order is for and will 
probably be the customer's account number. No matter what form this 
is held in, it must be the same as the key field for the customer master 
file. This is used to cross reference or 'translate' to all the other informa­
tion about the customer. 

Suppose the customer account number is held in field six of the 
orders file. The dictionary definition to display the account number is 
therefore quite simple and might appear like the example set out in Fig. 
5.6. 

CUSTOMER 
001 A 
0026 
003 Account Number 
004 
005 
006 
007 
008 
009R 
010 14 

Fig. 5.6. A dictionary definition for a customer account number. 

Now suppose the name of the customer is held in field one of the 
customers file. To display the name rather than the account number we 
start by accessing the account number and translate this into the name 
by using the account number t() cross refer to the customers file. This is 
represented diagrammatically by Fig. 5.7. 

A translation is defined by adding a T correlative to field 8 of the 
dictionary definition. What we do is place a T in field 8 followed by the 
target file name followed by other information which tells the computer 
what to do if the translation cannot be completed successfully, and 
which field on the customers file to use if it can. The new dictionary 
definition, called CUSTOMER.NAME, might look like the example 
shown in Fig. 5.8. 

The T correlative can be expressed symbolically like this: 

Tfilename;fail parameter; input field; output field 

52 Chapter 5 

information held on the customer master file via dictionary definitions 
in the dictionary of the orders file. 

In fact, one piece of information will be held on the order file about 
the customer/. This will indicate which customer the order is for and will 
probably be the customer's account number. No matter what form this 
is held in, it must be the same as the key field for the customer master 
file. This is used to cross reference or 'translate' to all the other informa­
tion about the customer. 

Suppose the customer account number is held in field six of the 
orders file. The dictionary definition to display the account number is 
therefore quite simple and might appear like the example set out in Fig. 
5.6. 

CUSTOMER 
001 A 
0026 
003 Account Number 
004 
005 
006 
007 
008 
009R 
010 14 

Fig. 5.6. A dictionary definition for a customer account number. 

Now suppose the name of the customer is held in field one of the 
customers file. To display the name rather than the account number we 
start by accessing the account number and translate this into the name 
by using the account number t-o cross refer to the customers file. This is 
represented diagrammatically by Fig. 5.7. 

A translation is defined by adding a T correlative to field 8 of the 
dictionary definition. What we do is place a T in field 8 followed by the 
target file name followed by other information which tells the computer 
what to do if the translation cannot be completed successfully, and 
which field on the customers file to use if it can. The new dictionary 
definition, called CUSTOMER. NAME , might look like the example 
shown in Fig. 5.8. 

The T correlative can be expressed symbolically like this: 

Tfilename;fail parameter; input field; output field 



Building Dictionaries 53 

ORDERS CUSTOMERS 

DICT DATA 

CUSTOMER 

CUSTOMER.NAME 

Fig. 5.7. A translation. 

CUSTOMER.NAME 
001 S 
002 6 
003 Customer name 
004 
005 
006 
007 
008 TCUSTOMERS;X;;1 
009 L 
010 25 

DICT DATA 

Fig. 5.8. A dictionary definition which defines a translation (join). 

'fail parameter' tells Access what to do if the record cannot be found in 
the file being translated to. It can take the values B, C, V or X. 

B and V failure conditions are used with Pick BASIC and their full 
significance is outside the scope of this book. Details can be found in the 
Pick Reference Manual. 

Building Dictionaries 53 

ORDERS CUSTOMERS 

DICT DATA 

CUSTOMER 

CUSTOMER.NAME 

Fig. 5.7. A translation. 

CUSTOMER.NAME 
001 S 
0026 
003 Customer name 
004 
005 
006 
001 
008 TCUSTOMERS;X;;1 
009 L 
010 25 

DICT DATA 

Fig. 5.8. A dictionary definition which defines a translation (join). 

'fail parameter' tells Access what to do if the record cannot be found in 
the file being translated to. It can take the values B, C, V or X. 

B and V failure conditions are used with Pick BASIC and their full 
significance is outside the scope of this book. Details can be found in the 
Pick Reference Manual. 



54 

Value 

c 
X 

V 

B 

Chapter 5 

Meaning 

Use the original value instead of a translated value. 

Use null instead of a translated value. 
Record must exist for output, ahort with error message. 

Record must exist for input. 

The parameters which make up the translation are separated by 
semi-colons. This shows that it is not possible to translate to a file with 
semi-colons in the file name and so semi-colons should not be used in 
file names. 

The third parameter in the translation tells Access which field to 
extract from the second file. This is called the output translation. The 
second parameter is not used in Access listings but mav contain the 
same or a different field number. It is called the input translation. 
Translated correlatives may be used in Pick BASIC and it is when using 
them in this way that input translations become significant. 

Suppose that we wished to display the customer's address from the 
orders file rather than the name. Let us suppose that the address is on 
field 2 of the c'ustomers file and is multi-valued. The translation does not 
preserve the multi-valued nature of the field. In fact the value marks, 
which separate the various lines of the address, are changed into spaces. 
Hence the address will not be displayed as multiple lines as is normal for 
multi-valued fields but as a single text field. 

If we wished to display a single line of the address, rather than the 
whole of the address, we now have the problem of sorting out that line 
as opposed to the rest of the address. This can be done by modifying the 
translate correlative. 

Suppose that the line to be extracted is contained in the third value. 
If we enter C3 rather than C, only the third value will be extracted. 

Field 6 of the order contains: 
Field 2 of customer EB9999 is: 

Correlative on the dictionary 
record called ADDRESS on the 
ORDERS file is: 

EB9999 
JOE SMITH 
12 TOWN SQUARE 
DULWICH 

TCUSTOMERS;C3;;2 

54 

Value 

c 
X 

V 

B 

Chapter 5 

Meaning 

Use the original value instead of a translated value. 
Use null instead of a translated value. 
Record must exist for output, abort with error message. 

Record must exist for input. 

The parameters which make up the translation are separated by 
semi-colons. This shows that it is not possible to translate to a file with 
semi-colons in the file name and so semi-colons should not be used in 
file names. 

The third parameter in the translation tells Access which field to 
extract from the second file. This is called the output translation. The 
second parameter is not used in Access listings but may contain the 
same or a different field number. It is called the input translation. 
Translated correlatives may be used in Pick BASIC and it is when using 
them in this way that input translations become significant. 

Suppose that we wished to display the customer's address from the 
orders file rather than the name. Let us suppose that the address is on 
field 2 of the customers file and is multi-valued. The translation does not 
preserve the multi-valued nature of the field. In fact the value marks, 
which separate the various lines of the address, are changed into spaces. 
Hence the address will not be displayed as mUltiple lines as is normal for 
multi-valued fields but as a single text field. 

If we wished to display a single line of the address, rather than the 
whole of the address, we now have the problem of sorting out that line 
as opposed to the rest of the address. This can be done by modifying the 
translate correlative. 

Suppose that the line to be extracted is contained in the third value. 
If we enter C3 rather than C, only the third value will be extracted. 

Field 6 of the order contains: 
Field 2 of customer EB9999 is: 

Correlative on the dictionary 
record called ADDRESS on the 
ORDERS file is: 

EB9999 
JOE SMITH 
12 TOWN SQUARE 
DULWICH 

TCUSTOMERS;C3;;2 



Building Dictionaries 55 

The result of LIST ORDERS CUSTOMER ADDRESS (I) for this 
record is: 

EB9999 DULWICH 

Arithmetic Correlatives 

Dictionary correlatives can also be used to derive information not held 
anywhere on the database, calculating results from raw data held on the 
files being interrogated. This is done by using the A, or arithmetic, 
correlative. 

Suppose that on the orders file there is a field containing quantities 
of product being ordered and another field containing the relevant unit 
prices of these products. The total price of each product is therefore the 
quantity multiplied by the unit price. There will, of course, be dictionary 
definitions set up describing the quantity field and the unit price field. 
The dictionary definition describing the total price looks like Fig. 5.9. 

TOTAL.PRICE 
001 S 
00250 
003 TotallPrice 
004 
005 
006 
007 MR2 
008 AN(OUANTITY)*N(UNIT.PRICE) 
009 R 
010 8 

Fig. 5.9. A dictionary definition with an arithmetic correlative. 

The 50 in the second field simply describes a field which is not used 
on the orders file and is arbitrary. It could actually be a field which is 
used, but this may cause confusion. The data displayed is derived by 
taking the result of the dictionary name QUANTITY and multiplying 
this by the result of the dictionary name UNIT. PRICE. If the data in the 
QUANTITY and the UNIT. PRICE fields is multi-valued then each pair 
of multi-values will be multiplied together to give a multi-valued result. 
Note that if any conversion is specified in the QUANTITY and 
UNIT.PRICE dictionary definitions, such as MR2 suggesting that the 

Building Dictionaries 55 

The result of LIST ORDERS CUSTOMER ADDRESS (I) for this 
record is: 

E89999 DULWICH 

Arithmetic Correlatives 

Dictionary correlatives can also be used to derive information not held 
anywhere on the database, calculating results from raw data held on the 
files being interrogated. This is done by using the A, or arithmetic, 
correlative. 

Suppose that on the orders file there is a field containing quantities 
of product being ordered and another field containing the relevant unit 
prices of these products. The total price of each product is therefore the 
quantity multiplied by the unit price. There wilL of course, be dictionary 
definitions set up describing the quantity field and the unit price field. 
The dictionary definition describing the total price looks like Fig. 5.9. 

TOTAL.PRICE 
001 S 
002 50 
003 Total]Price 
004 
005 
006 
007 MR2 
008 AN(QUANTITY)*N(UNIT.PRICE) 
009R 
010 8 

Fig. 5.9. A dictionary definition with an arithmetic correlative. 

The 50 in the second field simply describes a field which is not used 
on the orders file and is arbitrary. It could actually be a field which is 
used, but this may cause confusion. The data displayed is derived by 
taking the result of the dictionary name QUANTITY and mUltiplying 
this by the result of the dictionary name UNIT.PRICE. If the data in the 
QUANTITY and the UNIT. PRICE fields is multi-valued then each pair 
of multi-values will be multiplied together to give a multi-valued result. 
Note that if any conversion is specified in the QUANTITY and 
UNIT.PRICE dictionary definitions, such as MR2 suggesting that the 



56 Chapter 5 

data is to two decimal places, then this must be reflected in a corres­
ponding conversion in the TOTAL.PRICE definition. 

LIST ORDERS QUANTITY UNllPRICE TOTAL.PRICE 

might result in the following: 

AA9999 20 
10 
12 

1.50 
2.00 
3.02 

30.00 
20.00 
36.24 

Any of the arithmetic operations, +, -, *, I may be included in an A 
correlative as might a colon (:) meaning that the two values are to be 
concatenated. Dictionary definitions which themselves translate to data 
in other files or contain other correlatives may also be included. Con­
stants may be specified by enclosing the constant in double or single 
quotes. The constant 5 is thus represented as "5". Field numbers may be 
included instead of dictionary names and these are specified without 
quotation marks. If the unit price of the products are held in attribute 22 
of the orders file then 

AN (QUANTITY)*22 

evaluates to the same as 

AN(QUANTITY)*N(UNllPRICE). 

Sub-strings may be extracted using A correlatives with a syntax 
similar to the equivalent BASIC function. AN(N AME)["T, "5"] re­
turns five characters starting at character two of whatever data is de­
scribed by the dictionary definition NAME. 

Summations can be carried out on multi-valued data. The A correla­
tive AS(6) will return the sum of any multi-valued data held in field 6 of 
the file. It is important to note that the diferent types of A correlative 
function may be combined so that AS(6-"10") will substract ten from 
each value of field six and total the result. In calculations like this, 
brackets may be used to indicate precedence. In the absence of any 
brackets the normal arithmetic precedence (multiplication and division 
before addition and subtraction) will be applied as in BASIC. 

Details of the other A correlative functions and special operands can 
be found in the Pick Reference Manual. The other functions deal with 
the calculation of remainders and the use of logical operators. Special 
operands allow the introduction of system variables into calculations, 
such as the date or the number of items processed. 

F correlatives carry out the same function as A correlatives but the 

56 Chapter 5 

data is to two decimal places, then this must be reflected in a corres­
ponding conversion in the TOT AL.PRICE definition. 

LIST ORDERS QUANTITY UNllPRICE TOTAL.PRICE 

might result in the following: 

AA9999 20 
10 
12 

1.50 
2.00 
3.02 

30.00 
20.00 
36.24 

Any of the arithmetic operations, +, -, *, / may be included in an A 
correlative as might a colon (:) meaning that the two values are ,to be 
concatenated. Dictionary definitions which themselves translate to data 
in other files or contain other correlatives may also be included. Con­
stants may be specified by enclosing the constant in double or single 
quotes. The constant 5 is thus represented as "5". Field numbers may be 
included instead of dictionary names and these are specified without 
quotation marks. If the unit price of the products are held in attribute 22 
of the orders file then 

AN (QUANTITY)*22 

evaluates to the same as 

AN(QUANTITY)* N( UNIT. PR ICE). 

Sub-strings may be extracted using A correlatives with a syntax 
similar to the equivalent BASIC function. AN(NAME)["2" ,"5"] re­
turns five characters starting at character two of whatever data is de­
scribed by the dictionary definition NAME. 

Summations can be carried out on multi-valued data. The A correla­
tive AS(6) will return the sum of any multi-valued data held in field 6 of 
the file. It is important to note that the diferent types of A correlative 
function may be combined so that AS(6-"10") will substract ten from 
each value of field six and total the result. In calculations like this, 
brackets may be used to indicate precedence. In the absence of any 
brackets the normal arithmetic precedence (multiplication and division 
before addition and subtraction) will be applied as in BASIC. 

Details of the other A correlative functions and special operands can 
be found in the Pick Reference Manual. The other functions deal with 
the calculation of remainders and the use of logical operators. Special 
operands allow the introduction of system variables into calculations, 
such as the date or the number of items processed. 

F correlatives carry out the same function as A correlatives but the 



Building Dictionaries 57 

calculations must be specified in Reverse Polish notation. Other diction­
ary names cannot be referenced from F correlatives and these must be 
specified as absolute field numbers. Parameters to be pushed onto the 
Reverse Polish stack are separated by semi-colons. Hence F;1;2;* multi­
plies data from field 1 by data from field 2. 

In early versions of Pick only F correlatives were supported. From 
the above you can see that it is not easy for people who do not have a 
familiarity with Reverse Polish notation to use F correlatives. A correla­
tives were introduced because of this, but the F correlative is still 
supported to maintain upwards compatibility of older applications. 

The other possibilities for correlatives are used to alter or extract 
data. sometimes dependent on the value of a data item. 

Sub-Field Extraction 

The group extraction correlative, G, extracts a part of the data sur­
rounded by some delimiting character. The delimiting character may be 
any character, including a space, but not including the system delimi­
ters, attribute mark, value mark or sub-value mark. 

Suppose that field 2 of a particular record in our file contained THE 
QUICK BROWN FOX. We can use the G correlative to extract one or 
more of these words by using the spaces as delimiters. We might wish to 
extract the second and third words so that listing this record would 
return QUICK BROWN. The correlative G 1 2 would achieve this. The 
1 following the G says 'miss the first sub-field'. The space tells the 
computer that space is being used as the sub-field delimiter. The 2 
following this says 'take the next two sub-fields'. This was the method 
used to define the SURNAME field used in the example shown in Fig. 
2.6 of the chapter on Access. 

Length, Ranges and Patterns 

The L correlative is used to test data to ensure that the data is of a 
specific length. L3 will only return data which is three characters in 
length. L3,5 will only return data which is between three and five 
characters in length inclusive. A null, or no data, will be returned for 
data outside these constraints. 

In the same way the R correlative may be used to test data to ensure 
that it lies in a specific range. R3,5 will only return data with values 
between three and five inclusive. In addition, multiple ranges may be 
specified with each range separated by a semi-colon. In this way, 

Building Dictionaries 57 

calculations must be specified in Reverse Polish notation. Other diction­
ary names cannot be referenced from F correlatives and these must be 
specified as absolute field numbers. Parameters to be pushed onto the 
Reverse Polish stack are separated by semi-colons. Hence F;1;2;* multi­
plies data from field 1 by data from field 2. 

In early versions of Pick only F correlatives were supported. From 
the above you can see that it is not easy for people who do not have a 
familiarity with Reverse Polish notation to use F correlatives. A correla­
tives were introduced because of this, but the F correlative is still 
supported to maintain upwards compatibility of older applications. 

The other possibilities for correlatives are used to alter or extract 
data, sometimes dependent on the value of a data item. 

Sub-Field Extraction 

The group extraction correlative, G, extracts a part of the data sur­
rounded by some delimiting character. The delimiting character may be 
any character, including a space, but not including the system delimi­
ters, attribute mark, value mark or sub-value mark. 

Suppose that field 2 of a particular record in our file contained THE 
QUICK BROWN FOX. We can use the G correlative to extract one or 
more of these words by using the spaces as delimiters. We might wish to 
extract the second and third words so that listing this record would 
return QUICK BROWN. The correlative Gl 2 would achieve this. The 
1 following the G says 'miss the first sub-field'. The space tells the 
computer that space is being used as the sub-field delimiter. The 2 
following this says 'take the next two sub-fields'. This was the method 
used to define the SURNAME field used in the example shown in Fig. 
2.6 of the chapter on Access. 

Length, Ranges and Patterns 

The L correlative is used to test data to ensure that the data is of a 
specific length. L3 will only return data which is three characters in 
length. L3,5 will only return data which is between three and five 
characters in length inclusive. A null, or no data, will be returned for 
data outside these constraints. 

In the same way the R correlative may be used to test data to ensure 
that it lies in a specific range. R3,5 will only return data with values 
between three and five inclusive. In addition, multiple ranges may be 
specified with each range separated by a semi-colon. In this way, 



58 Chapter 5 

Rl,3;5,10 will aIlow all values from 1 to 3 and also those values between 
5 and 10. Data which does not conform to these limits will be returned 
as null. Note that the R correlative may only be used with numeric data. 

The P correlative tests for pattern matches. The test pattern here 
must be enclosed in brackets so that P(3N) tests for data of exactly three 
numeric charcters. 3A would test for three alpha characters. or 3X for 
three alphanumeric characters. Specific characters may be tested for by 
enclosing these in quote marks and the test may be extended. Hence 
PCA'6N) will return any data beginning with an A and followed by six 
numbers. 

Two rather more simple correlatives are the concatenate (C) correla­
tive, which concatenates data together, and the text extraction correla­
tive, T, which is used to extract a specific number of characters from 
data. This is not to be confused with the translate correlative which, 
although its code is also T, is always followed by a file name. Details can 
be found in the Pick Reference Manual. 

Advanced Correlatives 

The S correlative tests for null or zero data and can be used to substitute 
other data where a null or zero is found. Two substitution parameters 
are required and as usual these are separated by semi-colons. The first 
parameter contains the data to be substituted if the existing data is 
non-nuIl or non-zero. The second contains the data to be substituted if 
the data is null or zero. If the first parameter is * then the original data 
will be retained. Take the dictionary definition CREDIT.LIMIT shown 
in Fig. 5.10: 

CREDIT.LlMIT 
001 S 
0023 
003 Credit]Limit 
004 
005 
006 
007 
008 S;*;'Not set" 
009R 
010 8 

Fig. 5.10. A dictionary definition with a substitution correlative. 

58 Chapter 5 

Rl,3;5,10 will allow all values from 1 to 3 and also those values between 
5 and 10. Data which does not conform to these limits will be returned 
as null. Note that the R correlative may only be used with numeric data. 

The P correlative tests for pattern matches. The test pattern here 
must be enclosed in brackets so that P(3N) tests for data of exactly three 
numeric charcters. 3A would test for three alpha characters, or 3X for 
three alphanumeric characters. Specific characters may be tested for by 
enclosing these in quote marks and the test may be extended. Hence 
PCA'6N) will return any data beginning with an A and followed by six 
numbers. 

Two rather more simple correlatives are the concatenate (C) correla­
tive, which concatenates data together, and the text extraction correla­
tive, T, which is used to extract a specific number of characters from 
data. This is not to be confused with the translate correlative which, 
although its code is also T, is always followed by a file name. Details can 
be found in the Pick Reference Manual. 

Advanced Correlatives 

The S correlative tests for null or zero data and can be used to substitute 
other data where a null or zero is found. Two substitution parameters 
are required and as usual these are separated by semi-colons. The first 
parameter contains the data to be substituted if the existing data is 
non-null or non-zero. The second contains the data to be substituted if 
the data is null or zero. If the first parameter is * then the original data 
will be retained. Take the dictionary definition CREDIT. LIMIT shown 
in Fig. 5.10: 

CREDIT.LlMIT 
001 S 
0023 
003 CreditlLimit 
004 
005 
006 
007 
008 S;*;'Not sef 
009R 
010 8 

Fig. 5.10. A dictionary definition with a substitution correlative. 



Building Dictionaries 59 

If there is a credit limit in field three of records on the file it will be 
shown unchanged. Otherwise the words 'Not set' will appear instead of 
a null value. If we had placed a 4 in place of 'Not set' then field 4 of the 
record would be substituted for null or zero values. 

It is possible to have multiple correlatives on a single dictionary 
definition. A result may be pulled forwards for a subsequent operation. 
Each operation, a separate correlative in its own right, would be sepa­
rated by a value mark in the dictionary definition. Consider the follow­
ing correlative: 

AN(DEPARTMENT): "*": N(MONTH)]TSALES.ANALYSIS;X;; 1 

In this example the sales analysis file is accessed by a key generated 
from the sales department name concatenated to an asterisk and the 
month number viz EXPORT*12. The key is generated by the A correla­
tive. This is then used by the T correlative to access data from the 
SALES.ANALYSIS file. In the same way multiple T correlatives may 
be used to do multiple translations. Consider accessing a salesman's 
name, whose initals are held on the customer master file attribute 12, 
from the orders file on which we only hold the customer account 
number. The dictionary definition might be as shown in Fig. 5.11. 

SALESMAN 
001 S 
002 6 
003 Salesman 
004 
005 
006 
001 
008 TCUSTOMERS;X;;12]TREP.DATA;X;;1 
009 L 
010 20 

Fig. 5.11. A dictionary definition carrying out a series of translations. 

S correlatives are very powerful when combined in this way with A 
correlatives and logical operators which can be used to test that two 
fields are equal or not. Consider the following correlative: 

AN(DELIVERED)=N(ORDERED)] (S;3;4) 

The = tests these for equality and will return a zero if the fields are 
unequal and a 1 if they are equal. The substitution following this results 

Building Dictionaries 59 

If there is a credit limit in field three of records on the file it will be 
shown unchanged. Otherwise the words 'Not set' will appear instead of 
a null value. If we had placed a 4 in place of 'Not set' then field 4 of the 
record would be substituted for null or zero values. 

It is possible to have multiple correlatives on a single dictionary 
definition. A result may be pulled forwards for a subsequent operation. 
Each operation, a separate correlative in its own right, would be sepa­
rated by a value mark in the dictionary definition. Consider the follow­
ing correlative: 

AN(DEPARTMENT): "*": N(MONTH)]TSALESANALYSIS;X;; 1 

In this example the sales analysis file is accessed by a key generated 
from the sales department name concatenated to an asterisk and the 
month number viz EXPORT*12. The key is generated by the A correla­
tive. This is then used by the T correlative to access data from the 
SALES. ANAL YSIS file. In the same way multiple T correlatives may 
be used to do multiple translations. Consider accessing a salesman's 
name, whose initals are held on the customer master file attribute 12, 
from the orders file on which we only hold the customer account 
number. The dictionary definition might be as shown in Fig. 5.11. 

SALESMAN 
001 S 
002 6 
003 Salesman 
004 
005 
006 
007 
008 TCUSTOMERS;X;;12]TREP.DATA;X;;1 
009 L 
010 20 

Fig. 5.11. A dictionary definition carrying out a series of translations. 

S correlatives are very powerful when combined in this way with A 
correlatives and logical operators which can be used to test that two 
fields are equal or not. Consider the following correlative: 

AN(DELIVERED)=N(ORDERED)] (S;3;4) 

The = tests these for equality and will return a zero if the fields are 
unequal and a 1 if they are equal. The substitution following this results 



60 Chapter 5 

in field 3 being displayed if the quantity delivered equals the quantity 
ordered, and field 4 being displayed if the two quantities are not equal. 

60 Chapter 5 

in field 3 being displayed if the quantity delivered equals the quantity 
ordered, and field 4 being displayed if the two quantities are not equal. 



Chapter 6 
The Spooler 

Pick has a facility for handling all output which is not to be printed on 
the terminal executing the job. That is, it handles output directed to a 
system printer or possibly the tape unit. This facility is called the 
spooler. 

When a job is executed which directs output to a printer, such as the 
Access sentence LIST PERSONNEL LPTR, the process of forming the 
report is carried to its conclusion before any printing begins. In fact the 
output is directed to a temporary hold file, which cannot be edited. 
When this process is complete the spooler takes over and the executing 
line is freed to take on another job. If you observe this process the 
printer will appear to begin its operation at the moment that the job is 
complete and the executing line returns to TeL. 

THE NEED FOR A SPOOLER 

There are a number of advantages to this approach. Firstly, if we 
consider the multi-user situation, there may be several users wishing to 
send output to the printer at the same time. However, there may only be 
one printer available on the system. All the users compete for the use of 
the printer. If there were no administrative system to oversee and queue 
the output there would be severe problems. The spooler provides this 
administrative system. 

Secondly, because the output is being directed to a temporary hold 
file on disk, or in memory, the printing process may take place as 
quickly as any other process on the computer. Printers, especially serial 
printers, generally work at a much slower pace than a computer. With a 
spooler handling the slower process of actually printing documents and 
reports and the user free to continue work, a much faster and therefore 
better service can be given to the use.r. 

Thirdly, as the spooler can be instructed to create a permanent hold 
file, rather than a temporary hold file as indicated above, and suppress 
the actual printing process, the printing process can be controlled by the 

61 

Chapter 6 
The Spooler 

Pick has a facility for handling all output which is not to be printed on 
the terminal executing the job. That is, it handles output directed to a 
system printer or possibly the tape unit. This facility is called the 
spooler. 

When a job is executed which directs output to a printer, such as the 
Access sentence LIST PERSONNEL LPTR, the process of forming the 
report is carried to its conclusion before any printing begins. In fact the 
output is directed to a temporary hold file, which cannot be edited. 
When this process is complete the spooler takes over and the executing 
line is freed to take on another job. If you observe this process the 
printer will appear to begin its operation at the moment that the job is 
complete and the executing line returns to TeL. 

THE NEED FOR A SPOOLER 

There are a number of advantages to this approach. Firstly, if we 
consider the multi-user situation, there may be several users wishing to 
send output to the printer at the same time. However, there may only be 
one printer available on the system. All the users compete for the use of 
the printer. If there were no administrative system to oversee and queue 
the output there would be severe problems. The spooler provides this 
administrative system. 

Secondly, because the output is being directed to a temporary hold 
file on disk, or in memory, the printing process may take place as 
quickly as any other process on the computer. Printers, especially serial 
printers, generally work at a much slower pace than a computer. With a 
spooler handling the slower process of actually printing documents and 
reports and the user free to continue work, a much faster and therefore 
better service can be given to the user. 

Thirdly, as the spooler can be instructed to create a permanent hold 
file, rather than a temporary hold file as indicated above, and suppress 
the actual printing process, the printing process can be controlled by the 

61 



62 Chapter 6 

system administrator. The system administrator can ensure that the 
correct paper is loaded into the printer or reprint the report should 
anything unforeseen happen, such as a printer jam. 

There are a whole set of commands within Pick which control the 
spooler. These deal with starting and stopping printers, directing out­
put, and editing hold files. 

The spooler is started automatically when the computer is first 
switched on and Pick is booted. If you examine the display given by the 
WHERE verb on a five user system with one user logged on to line zero, 
you might see the following display: 

WHERE 
*00 0200 FB20 
05 020A BFOO 
06 02eO BFoo 

121.000 
170.055 
170.055 

121.1A2 
170.098 
170.130 

The full significance of this display is explained in the Pick Reference 
Manual. We are only interested in the fact that there appear to be seven 
available lines on our computer, rather than five. 

The sixth port, designated as a printer only port, has had a printer 
started and is waiting to receive output. The seventh, line 06, is the 
spooler, and is not in fact associated with a physical port at all. The 
spooler is usually designated to run on the port number one above the 
maximum allowable port configuration on the computer. 

STARTING AND STOPPING PRINTERS 

To designate a particular line to have a system printer attached we use 
the STARTPTR verb. This verb is followed by a parameter list which 
tells the operating system how the printer is to be regarded. 

The first parameter is ·the printer number. This is an arbitrary 
number between 0 and 19 and may be regarded as the 'name' by which 
the printer is known. Thus you can see that we can have up to 20 
different printers available on the system. On computers which support 
them, up to 4 of these may be parallel printers. 

The second parameter tells the system which jobs are to be run by 
the printer. In the same way that printers are named by giving them an 
arbitrary number, and we may have several printers on a system, we can 
have several jobs known as spool queues, and these are given 'names' as 
arbitrary numbers in the range 0 to 125. This can be envisaged like a 
bank. When you walk into a bank there might be several queues for the 
cashiers and you choose one of them. If each cashier could handle three 

62 Chapter 6 

system administrator. The system administrator can ensure that the 
correct paper is loaded into the printer or reprint the report should 
anything unforeseen happen, such as a printer jam. 

There are a whole set of commands within Pick which control the 
spooler. These deal with starting and stopping printers, directing out­
put, and editing hold files. 

The spooler is started automatically when the computer is first 
switched on and Pick is booted. If you examine the display given by the 
WHERE verb on a five user system with one user logged on to line zero, 
you might see the following display: 

WHERE 
*00 0200 FB20 121.000 121.1 A2 
05 020A BFOO 170.055 170.098 
06 02eo BFOO 170.055 170.130 

The full significance of this display is explained in the Pick Reference 
Manual. We are only interested in the fact that there appear to be seven 
available lines on our computer, rather than five. 

The sixth port, designated as a printer only port, has had a printer 
started and is waiting to receive output. The seventh, line 06, is the 
spooler, and is not in fact associated with a physical port at all. The 
spooler is usually designated to run on the port number one above the 
maximum allowable port configuration on the computer. 

ST ARTING AND STOPPING PRINTERS 

To designate a particular line to have a system printer attached we use 
the ST ARTPTR verb. This verb is followed by a parameter list which 
tells the operating system how the printer is to be regarded. 

The first parameter is ·the printer number. This is an arbitrary 
number between 0 and 19 and may be regarded as the 'name' by which 
the printer is known. Thus you can see that we can have up to 20 
different printers available on the system. On computers which support 
them, up to 4 of these may be parallel printers. 

The second parameter tells the system which jobs are to be run by 
the printer. In the same way that printers are named by giving them an 
arbitrary number, and we may have several printers on a system, we can 
have several jobs known as spool queues, and these are given 'names' as 
arbitrary numbers in the range 0 to 125. This can be envisaged like a 
bank. When you walk into a bank there might be several queues for the 
cashiers and you choose one of them. If each cashier could handle three 



The Spooler 63 

queues at once the analogy would he a little more vivid, for this is the 
capability of each designated printer line. 

The third parameter tells the operating system how many pages to 
eject hetween the completion of each job. This may be any number 
between () and <) and is very useful where reports are being spooled 
without producing permanent hold files since we do not usually wish our 
reports to run end to end without a gap. 

The fourth parameter tells the operating system what type of printer 
is being used (serial or parallel) and where it is - that is, which line 
number for a serial printer or which parallel port number for parallel 
printers. 

The fifth parameter is optional and not usually used. If present, as an 
A, it will initiate an alignment process sending a few lines at a time until 
thc top of page is reached. Most modern printers have an on board 
procedure for set! i ng the top of form. 

The simplest ST ARTPTR command would he of the form: 

ST ARTPTR 0, (01.1 ,S5 

at which point the operating system will reply, somewhat off handedly, 

THE PRINTER CONTROL BLOCK HAS BEEN INITIALIZED 
HOPEFULLY, THE CORRECT PAPER IS IN THE PRINTER, 
AND THE CORRECT LPI IS SET. 

This command would be typical of a system with a single serial 
printer, running on line 5 with a single form feed being output at the 
beginning of each job. 

A more complex example might be: 

STARTPTR 3, (9,20,25). 1 ,S24 

Which would represent printer number 3, which is on serial port 24 
and handles spool queues 9, 20 and 25. Note that the spool queue names 
must be enclosed in brackets so that they may be distinguished between 
the rest of the parameter list. 

To stop a printer we refer to it by its 'name' and use the STOPPTR 
verb. 

STOPPTR 3 

would stop printer number 3. STOPPTR 0-3 would stop all the printers 
0, 1,2 and 3. STOPPTR B is global, and will stop all the printers on the 
system. If the printer number is suffixed by W, the printer port will 
return to TeL only when the printer becomes finally inactive. If 

The Spooler 63 

queues at once the analogy would be a little more vivid, for this is the 
capability of each designated printer line. 

The third parameter tells the operating system how many pages to 
eject between the completion of each job. This may be any number 
between () and 9 and is very useful where reports are being spooled 
without producing permanent hold files since we do not usually wish our 
reports to run end to end without a gap. 

The fourth parameter tells the operating system what type of printer 
is being used (serial or parallel) and where it is - that is, which line 
number for a serial printer or which parallel port number for parallel 
printers. 

The fifth parameter is optional and not usually used. If present, as an 
A, it will initiate an alignment process sending a few lines at a time until 
the top of page is reached. Most modern printers have an on board 
procedure for setting the top of form. 

The simplest ST ARTPTR command would be of the form: 

STARTPTR 0, (0),1,S5 

at which point the operating system will reply, somewhat off handedly, 

THE PRINTER CONTROL BLOCK HAS BEEN INITIALIZED 
HOPEFULLY, THE CORRECT PAPER IS IN THE PRINTER, 
AND THE CORRECT LPI IS SET. 

This command would be typical of a system with a single serial 
printer, running on line 5 with a single form feed being output at the 
beginning of each job. 

A more complex example might be: 

STARTPTR 3, (9,2o,25),1,S24 

Which would represent printer number 3, which is on serial port 24 
and handles spool queues 9, 20 and 25. Note that the spool queue names 
must be enclosed in brackets so that they may be distinguished between 
the rest of the parameter list. 

To stop a printer we refer to it by its 'name' and use the STOPPTR 
verb. 

STOPPTR 3 

would stop printer number 3. STOPPTR 0-3 would stop all the printers 
0, 1, 2 and 3. STOPPTR B is global, and will stop all the printers on the 
system. If the printer number is suffixed by W, the printer port will 
return to TeL only when the printer becomes finally inactive. If 



64 Chapter 6 

STOPPTR is executed when a print file is being output the printer will 
only stop when the print file is completed. 

DIRECTING OUTPUT 

Output is directed at a device by means of the SP-ASSIGN verb. This 
must be executed before the printing process begins, so you will very 
often find a SP-ASSIGN executed in a Proc immediately prior to an 
Access statement or a report printing program. If no SP-ASSIGN has 
been specified, output will be directed at the system printer dealing with 
spool queue zero. The report will be printed as soon as the report has 
been formed and no hold file will be kept. The spool file will therefor~ 
disappear when the report has been printed. This default situation will 
be resurrected if the SP-ASSIGN verb is executed alone, with no 
options. 

To change this the SP-ASSIGN verb is executed along with one or 
more options. These options direct the output to a particular device 
and/or spool queue, determine the timing of printing and the number of 
copies and report the status of the current spooler assignment. With one 
or two exceptions these options may be added in any combination or 
order. 

Options which direct output to specific devices are H, Sand T. The 
H option will create a hold file on disk, S will stop the output being 
directed to the printer and T will direct the output to the tape unit. A 
common SP-ASSIGN command is: 

SP-ASSIGN HS 

This will both create a hold file on disk and suppress output from 
being printed. If this is used the actual printing process will be totally in 
the control of the system adininistrator. 

The spool queue is specified by the F option. This is immediately 
followed by the spool queue number. Note that no spaces are allowed 
between the F and the spool queue number. If you wish to direct output 
through spool queue 3 the correct option is F3. F 3 is wrong and will 
result in three copies being sent through spool queue zero. So to 
enqueue the printout through spool queue number three and create a 
hold file, the command would be: 

SP-ASSIGN HF3 

64 Chapter 6 

STOPPTR is executed when a print file is being output the printer will 
only stop when the print file is completed. 

DIRECTING OUTPUT 

Output is directed at a device by means of the SP-ASSIGN verb. This 
must be executed before the printing process begins, so you will very 
often find a SP-ASSIGN executed in a Proc immediately prior to an 
Access statement or a report printing program. If no SP-ASSIGN has 
been specified, output will be directed at the system printer dealing with 
spool queue zero. The report will be printed as soon as the report has 
been formed and no hold file will be kept. The spool file will therefor~ 
disappear when the report has been printed. This default situation will 
be resurrected if the SP-ASSIGN verb is executed alone, with no 
options. 

To change this the SP-ASSIGN verb is executed along with one or 
more options. These options direct the output to a particular device 
and/or spool queue, determine the timing of printing and the number of 
copies and report the status of the current spooler assignment. With one 
or two exceptions these options may be added in any combination or 
order. 

Options which direct output to specific devices are H, Sand T. The 
H option will create a hold file on disk, S will stop the output being 
directed to the printer and T will direct the output to the tape unit. A 
common SP-ASSIGN command is: 

SP-ASSIGN HS 

This will both create a hold file on disk and suppress output from 
being printed. If this is used the actual printing process will be totally in 
the control of the system administrator. 

The spool queue is specified by the F option. This is immediately 
followed by the spool queue number. Note that no spaces are allowed 
between the F and the spool queue number. If you wish to direct output 
through spool queue 3 the correct option is F3. F 3 is wrong and will 
result in three copies being sent through spool queue zero. So to 
enqueue the printout through spool queue number three and create a 
hold file, the command would be: 

SP-ASSIGN HF3 



The Spooler 65 

From this it follows that the number of copies is simply a number. It 
is best to surround the number with spaces so that it is clear that this is 
not a spool queue assignment. To instruct the last example to create two 
copies the command would be: 

SP-ASSIGN HF3 2 

The C. I and 0 options change the timing of events associated with 
the spooler. As indicated above, the spooler normally begins output at 
the end of the report formation process. If the I option is used, this is 
changed and the output is sent on a linecby-line basis as soon as it is 
printed. This does not slow the executing process down though, it 
simply means that the printer will begin printing before the executing 
process has completed the formation of the report. This only works 
where the output is being printed immediately. If the S option is being 
used to suppress the printing operation, this causes the I option to be 
overridden and hence have no meaning. 

The C option may be used in conjunction with the I option to choke 
the executing process so that it does not get too far ahead of the printing 
process. SP-ASSIGN CI would be used in a situation where a very large 
report was being produced and there was a risk of running out of disk 
space. The C option limits the amount of disk or memory space being 
used to 20 frames, or lOKB. It has no meaning unless there is also an I 
option in effect. 

The 0 option keeps the spool queue open at the end of the forma­
tion of the report. This is useful where a number of associated reports 
are to be produced one after another and keeps them together. If 
SP-ASSIGN HSO is executed all the reports will appear under one hold 
entry. 

The R option is used in conjunction with BASIC programs produc­
ing reports. If a BASIC program is producing several reports simul­
taneously by means of the PRINT ON syntax, the R option can direct 
the output of each of the reports to separate spool queues. R4 would 
therefore affect the report being produced by PRINT ON 4, RO would 
direct the output of a simple PRINT. This would normally be utilised 
with multiple spool queues and printers. SP-ASSIGN R4 F1 would 
therefore direct the PRINT ON 4 report through spool queue 1, 
SP-ASSIGN RO F20 would direct the PRINT report through spool 
queue 20. These commands might be executed one after the other and 
both would be obeyed. 

The Spooler 65 

From this it follows that the number of copies is simply a number. It 
is best to surround the number with spaces so that it is clear that this is 
not a spool queue assignment. To instruct the last example to create two 
copies the command would be: 

SP-ASSIGN HF3 2 

The C, I and 0 options change the timing of events associated with 
the spooler. As indicated above, the spooler normally begins output at 
the end of the report formation process. If the I option is used, this is 
changed and the output is sent on a line-by-line basis as soon as it is 
printed. This does not slow the executing process down though, it 
simply means that the printer will begin printing before the executing 
process has completed the formation of the report. This only works 
where the output is being printed immediately. If the S option is being 
used to suppress the printing operation, this causes the I option to be 
overridden and hence have no meaning. 

The C option may be used in conjunction with the I option to choke 
the executing process so that it does not get too far ahead of the printing 
process. SP-ASSIGN CI would be used in a situation where a very large 
report was being produced and there was a risk of running out of disk 
space. The C option limits the amount of disk or memory space being 
used to 20 frames, or lOKB. It has no meaning unless there is also an I 
option in effect. 

The 0 option keeps the spool queue open at the end of the forma­
tion of the report. This is useful where a number of associated reports 
are to be produced one after another and keeps them together. If 
SP-ASSIGN HSO is executed all the reports will appear under one hold 
entry. 

The R option is used in conjunction with BASIC programs produc­
ing reports. If a BASIC program is producing several reports simul­
taneously by means of the PRINT ON syntax, the R option can direct 
the output of each of the reports to separate spool queues. R4 would 
therefore affect the report being produced by PRINT ON 4, RO would 
direct the output of a simple PRINT. This would normally be utilised 
with multiple spool queues and printers. SP-ASSIGN R4 F1 would 
therefore direct the PRINT ON 4 report through spool queue 1, 
SP-ASSIGN RO F20 would direct the PRINT report through spool 
queue 20. These commands might be executed one after the other and 
both would be obeyed. 



66 Chapter 6 

MANIPULATING HOLD FILES 

If the SP-ASSIGN option included H when a report was produced. a 
hold file will be created. To produce output from a hold file wc use the 
SP-EDIT verb. 

The simplest SP-EDIT verb will take the user through any hold files 
that have been produced on that account and allow the reports to be 
viewed and/or printed. Any reports which are currently being output 
will be excluded from this. To view all the hold files, from whichever 
account they were produced, the format SP-EDIT U is used. To view a 
particular hold file you may enter SP-EDIT followed by the hold file 
number required. SP-EDIT 4 will therefore bring up hold file number 4. 
if it was generated on this account. 

When the SP-EDIT verb has been executed a number of prompts 
appear: 

SP-EDIT 
ENTRY # 1 
DISPLAY (Y/N/S/D/x/(CR))?-

The first prompt is display. Entering Y here will display the first part 
of the spool file on the terminal. N will take us on to the next prompt 
without displaying the entry. S will take us to the spool prompt, D will 
take us to the delete prompt, X will exit this process and return to TeL 
and pressing carriage return will exit this spooler entry and go on to the 
next one. 

STRING:-

If we enter Y or N at display the next prompt will be string. This can 
be used to start the report at any point. It is at its most useful where a 
very long report is being printed and the printer jams, say. on page 89. 
We do not really want to nave to reprint the first 88 pages so the string 
prompt can be used to start the printing process off from page 88. What 
we do is enter a string of characters that first occur on page 88. The 
spooler then hunts for these characters, if it finds them it goes on to the 
spool prompt. If it doesn't it replies STRING NOT FOUND and goes 
back to the string prompt for another try. If we just press carriage return 
here we can go directly on to the spool prompt. 

You might think that this is a very nice idea, but that the difficulty 
would be thinking of a character string which would not have occurred 
until page 88. For this reason it is highly recommended that you always 

66 Chapter 6 

MANIPULA TING HOLD FILES 

If the SP-ASSIGN option included H when a report was produced, a 
hold file will be created. To produce output from a hold file we use the 
SP-EDIT verb. 

The simplest SP-EDIT verb will take the user through any hold files 
that have been produced on that account and allow the reports to be 
viewed and/or printed. Any reports which are currently being output 
will be excluded from this. To view all the hold files, from whichever 
account they were produced, the format SP-EDIT U is used. To view a 
particular hold file you may enter SP-EDIT followed by the hold file 
number required. SP-EDIT 4 will therefore bring up hold file number 4, 
if it was generated on this account. 

When the SP-EDIT verb has been executed a number of prompts 
appear: 

SP-EDIT 
ENTRV # 1 
DlSPLA V IV /N/S/D/X/ICR))?-

The first prompt is display. Entering Y here will display the first part 
of the spool file on the terminal. N will take us on to the next prompt 
without displaying the entry. S will take us to the spool prompt, 0 will 
take us to the delete prompt, X will exit this process and return to TeL 
and pressing carriage return will exit this spooler entry and go on to the 
next one. 

STRING:-

If we enter Y or N at display the next prompt will be string. This can 
be used to start the report at any point. It is at its most useful where a 
very long report is being printed and the printer jams, say, on page 89. 
We do not really want to nave to reprint the first 88 pages so the string 
prompt can be used to start the printing process off from page 88. What 
we do is enter a string of characters that first occur on page 88. The 
spooler then hunts for these characters, if it finds them it goes on to the 
spool prompt. If it doesn't it replies STRING NOT FOUND and goes 
back to the string prompt for another try. If we just press carriage return 
here we can go directly on to the spool prompt. 

You might think that this is a very nice idea, but that the difficulty 
would be thinking of a character string which would not have occurred 
until page 88. For this reason it is highly recommended that you always 



The Spooler 67 

put page numbers on reports. The unique characters can then be 
PAGE RS! 

SPOOL (Y/N=CR!T!TN/F)?-

An entry of Y at the spool prompt will initiate the printing process 
according to the current spooler assignment. N, or carriage return will 
pass on to the delete prompt. T will spool the report to the terminal, 
stopping at the end of each page. This can be aborted at the end of any 
page by typing control-X. TN will spool the report to the terminal but 
will not wait at the end of each page, returning directly to the spool 
prompt. F allows the report to be placed on a file in RUNOFF format. 

An entry of F will result in two extra prompts: 

FILE NAME?-

This is simply the name of the file where you wish the report to be 
placed. If the file does not exist, the system error message: 

[201] xxxx IS NOT A FILE NAME 

will be brought up and the whole editing process will be aborted, exiting 
to TCL. The second prompt is: 

INITIAL ITEM NAME?-

A record id is required here. The report will be placed in this record 
in RUNOFF format. Subsequent records will be created if a page break 
is encountered. Suppose FRED was entered as the initial item name and 
the report is spooled into this item. Page 2 of the report will be filed as 
FREDOOO 1, page 3 will be filed as FRED0002 and so on. The process 
automatically puts the RUNOFF command for chaining these items at 
the end of the preceding item so that the report may be recreated by the 
command: 

RUNOFF file FRED 

Note that any items which already exist with the id of FRED will be 
overwritten when the spooler creates the record. If there are no page 
break (top of form) characters in the text, such as might be produced by 
a BASIC program blindly printing information, a record break will be 
forced after 122R8 characters (12 Kbytes) have been placed into a 
record. Any trailing spaces at the end of a page will be truncated. 

If you have not asked for the hold file to be output to the printer you 

The Spooler 67 

put page numbers on reports. The unique characters can then be 
PAGE 88' 

SPOOL (Y/N=CR/T/TN/F)?-

An entry of Y at the spool prompt will initiate the printing process 
according to the current spooler assignment. N, or carriage return will 
pass on to the delete prompt. T will spool the report to the terminal, 
stopping at the end of each page. This can be aborted at the end of any 
page by typing control-X. TN will spool the report to the terminal but 
will not wait at the end of each page, returning directly to the spool 
prompt. F allows the report to be placed on a file in RUNOFF format. 

An entry of F will result in two extra prompts: 

FILE NAME?-

This is simply the name of the file where you wish the report to be 
placed. If the file does not exist, the system error message: 

[201] xxxx IS NOT A FILE NAME 

will be brought up and the whole editing process will be aborted, exiting 
to TCL. The second prompt is: 

INITIAL ITEM NAME?-

A record id is required here. The report will be placed in this record 
in RUNOFF format. Subsequent records will be created if a page break 
is encountered. Suppose FRED was entered as the initial item name and 
the report is spooled into this item. Page 2 of the report will be filed as 
FREDOOOl, page 3 will be filed as FRED0002 and so on. The process 
automatically puts the RUNOFF command for chaining these items at 
the end of the preceding item so that the report may be recreated by the 
command: 

RUNOFF file FRED 

Note that any items which already exist with the id of FRED will be 
overwritten when the spooler creates the record. If there are no page 
break (top of form) characters in the text, such as might be produced by 
a BASIC program blindly printing information, a record break will be 
forced after 12288 characters (12 Kbytes) have been placed into a 
record. Any trailing spaces at the end of a page will be truncated. 

If you have not asked for the hold file to be output to the printer you 



68 Chapter 6 

are next given the opportunity to delete the hold file. If the hold file is 
being output the process continues with the next hold file. 

DELETE (V IN = CR)?-

An entry of Y will delete the hold file, N or carriage return will leave 
it as is. 

SP-EDIT OPTIONS 

The SP-EDIT verb may be modified with many options - this is a brief 
summary of some of them. A full description may be found in the 
peripheral devices section of the Pick Reference Manual. 

Option 

n 
nom 
Fn 
U 

ace name 
P 
T 
R 

MS 
MD 

Meaning 

Edit spool file n. 
Edit files n to m. 
Edit spool files for form queue n. 
Edit all spool files. 
Edit spool files created on account accname. 
Force output to the printer, despite the current Sp·ASSIGN setting. 
Force output to the tape, despite the current Sp·ASSIGN setting. 
Force output according to the current SP·ASSIGN setting, 
including form queue assignments. 
Spool all hold files, without prompting. 
Delete all hold files, without prompting. (Use carefully!) 

ADMINISTERING THE SPOOLER 

The above describes the way in which the spooler may be used. There 
are a number of verbs by means of which the system administrator may 
see what is happening and where, and to SOl1le extent change the activity 
being carried out by the spooler. 

The LISTPEQS verb displays a table showing the status of all the 
print files on the system, as in Fig. 6.1. 

The first column shows the job number as you might refer to it via 
the SP-EDIT verb. The second shows a rather esoteric status which is of 
no practical benefit. The third shows the line number which generated 

68 Chapter 6 

are next given the opportunity to delete the hold file. If the hold file is 
being output the process continues with the next hold file. 

DELETE (Y/N=CR)?-

An entry of Y will delete the hold file, N or carriage return will leave 
it as is. 

SP-EDIT OPTIONS 

The SP-EDIT verb may be modified with many options - this is a brief 
summary of some of them. A full description may be found in the 
peripheral devices section of the Pick Reference Manual. 

Option 

n 
n-m 
Fn 
U 

accname 
P 
T 
R 

MS 
MD 

Meaning 

Edit spool file n. 
Edit files n to m. 
Edit spool files for form queue n. 
Edit all spool files. 
Edit spool files created on account accname. 
Force output to the printer, despite the current SP-ASSIGN setting. 
Force output to the tape, despite the current SP-ASSIGN setting. 
Force output according to the current SP-ASSIGN setting, 
including form queue assignments. 
Spool all hold files, without prompting. 
Delete all hold files, without prompting. (Use carefully!) 

ADMINISTERING THE SPOOLER 

The above describes the way in which the spooler may be used. There 
are a number of verbs by means of which the system administrator may 
see what is happening and where, and to sOJ1le extent change the activity 
being carried out by the spooler. 

The LISTPEQS verb displays a table showing the status of all the 
print files on the system, as in Fig. 6.1. 

The first column shows the job number as you might refer to it via 
the SP-EDIT verb. The second shows a rather esoteric status which is of 
no practical benefit. The third shows the line number which generated 



The Spooler 

the report. The CP column shows the number of copies that have been 
requested. The FO column shows the spool queue number that the 

PRINTER LIST ELEMENTS 21 DEC 1985 12:52:30 

£ STAT LK LN STATUSES CP FO FRMS DATE TIME ACCT 

1 8080 o H C 2 2 1 20/12/84 14:12:01 SEllINAR 
2 8080 o H C 1 3 1 20/12/84 14:12:22 SEMINAR 
3 8080 o H C 1 0 2 20/12/84 14:25:09 SEMINAR 
4 8080 o H C 1 0 2 20/12/84 14:25:29 SEMINAR 
5 48A5 o P C SO L 1 0 2 21/12/84 12:51:28 SEllINAR 
6 88C1 o H L 1 0 OPEN 21/12/84 12:52:29 SEMINAR 

6 QUEUE ELEMENTS. 8 FRAMES IN USE. 

Fig. 6.1. The output produced by LISTPEQS. 

report is queueing up on. The column headed FRMS shows the number 
of disk frames that are being utilised and is an indication of the size of 
the report. An entry here showing OPEN indicates that this file is being 
created. DATE and TIME are the date and time at which the report was 
produced. ACCT is the name of the account from which the reports 
were generated. 

The STATUSES column shows exactly what is happening to this 
report at the moment. Here is the meaning of the codes used in the 
report shown in Fig. 6.1. A full list of possible codes can be found in the 
Pick Reference Manual. 

Code Meaning 

H A hold ~file has been created. 
P Sent to the printer. 
S Spooled~ 
L Locked (cannot SP-EDIT). 
C Closed (i.e. report completed). 
o Open (i.e. report being output). 

(neither C nor 0) Report not completed. 

LISTPEQS may be modified with a number of options, these are 
summarised as follows: 

The Spooler 6l) 

the report. The CP column shows the number of copies that have been 
requested. The FO column shows the spool queue number that the 

PRINTER LIST ELEHENTS 21 DEC 1985 12:52:30 

£ STAT LK LN STATUSES ep FO FRMS DATE TIME ACeT 

1 8080 o H e 2 2 1 20/12/84 14:12:01 SEllINAR 
2 8080 o H e 1 3 1 20/12/84 14:12:22 SEHINAR 
3 8080 o H e 1 0 2 20/12/84 14:25:09 SEMINAR 
4 8080 o H e 1 0 2 20/12/84 14:25:29 SEHINAR 
5 48A5 ope SO L 1 0 2 21/12/84 12:51:28 SEllINAR 
6 88C1 o H L 1 0 OPEN 21/12/84 12:52:29 SEHINAR 

6 QUEUE ELEMENTS. 8 FRAMES IN USE. 

Fig. 6.1. The output produced by L1STPEQS. 

report is queueing up on. The column headed FRMS shows the number 
of disk frames that are being utilised and is an indication of the size of 
the report. An entry here showing OPEN indicates that this file is being 
created. DATE and TIME are the date and time at which the report was 
produced. ACCT is the name of the account from which the reports 
were generated. 

The STATUSES column shows exactly what is happening to this 
report at the moment. Here is the meaning of the codes used in the 
report shown in Fig. 6.1. A full list of possible codes can be found in the 
Pick Reference Manual. 

Code Meaning 

H A hold file has been created. 
P Sent to the printer. 
S Spooledf 
L Locked (cannot SP-EDIT). 
C Closed (i.e. report completed). 
o Open (i.e. report being output). 

(neither C nor 0) Report not completed. 

LISTPEQS may be modified with a number of options, these are 
summarised as follows: 



70 

Option 

n 
n-Ill 

acctnamc 
A 
C 
F 
L 
P 

Clwprcr6 

Meaning 

display for print file n. 
display for print files n to Ill. 
display jobs created by the account acctnaIllC. 
display jobs for this account only. 
sUIllmary. 
display print files queued for output only. 
includes any deleted hold files. 
output LISTPEQS to the printer. 

What LISTPEQS does for hold files, LISTPTR does for printers. 
The verb LISTPTR gives a table, as in Fig. 6.2, showing the status of all 
the available printers on the system. 

PRINTER ASSIG\ltlEtlTS 

PRINTER OUTPUT QUEUES 
TYPE NUHBER 

SERIAL 
SERIAL 

o 
2 

o 
1 2 

PAGE DEV OR 
SKIP LINE £ 

o 
1 

5 
3 

Fig. 6.2. The output produced hy LISTPTR. 

13:46:43 

STATUS 

ACTIVE 
INACTIVE 

The first column here is the printer type, and may be SERIAL or 
PARALLEL. The second column is the printer number as allocated by 
the STARTPTR verb. The columns headed OUTPUT QUEUES con­
tain the spooler queue output numbers that this printer is currently 
handling. The PAGE SKIP column gives the number of inter-job pages 
that are to be ejected at the end of each printout. again as per the 
STARTPTR specification. DEV will be the printer ordinal for a parallel 
printer or the serial line number for a serial printer. STATUS may be 
ACTIVE, if the printer is currently printing, INACTIVE if it is not, 
STOPPED if the printer has been stopped or UNALLOCATED if it 
has not been started, or stopped in an unusual manner. The presence of 
UNALLOCATED in this display could mean that there are problems to 
be sorted out. 

Again LISTPTR may be followed by one or more of a number of 
options which change its operation. 

SP-ST A TUS gives a wordier version of LISTPTR. Additionally, it 
indicates which job is currently being dealt with and a judgement as to 
whether the printer is on-line or off-line. It also indicates whether the 

70 

Option 

n 
n-m 

acctname 
A 
C 
F 
L 
P 

Chapter 6 

Meaning 

display for print file n. 
display for print files n to m. 
display jobs created by the account acctname. 
display jobs for this account only. 
summary. 
display print files queued for output only. 
includes any deleted hold files. 
output LISTPEQS to the printer. 

What LISTPEQS does for hold files. LISTPTR does for printers. 
The verb LISTPTR gives a table. as in Fig. 6.2. showing the status of all 
the available printers on the system. 

PRINTER ASSIGNt1EtlTS 

PRINTER OUTPUT QUEUES 
TYPE NUHBER 

SERIAL 
SERIAL 

o 
2 

o 
1 2 

PAGE DEV OR 
SKIP LINE £ 

o 
1 

5 
3 

Fig. 6.2. The output produced by L1STPTR. 

13:46:43 

STATUS 

ACTIVE 
INACTIVE 

The first column here is the printer type. and may be SERIAL or 
PARALLEL. The second column is the printer number as allocated by 
the STARTPTR verb. The columns headed OUTPUT QUEUES con­
tain the spooler queue output numbers that this printer is currently 
handling. The PAGE SKIP column gives the number of inter-job pages 
that are to be ejected at the end of each printout, again as per the 
ST ARTPTR specification. DEY will be the printer ordinal for a parallel 
printer or the serial line number for a serial printer. STATUS may be 
ACTIVE. if the printer is currently printing, INACTIVE if it is not, 
STOPPED if the printer has been stopped or UNALLOCATED if it 
has not been started, or stopped in an unusual manner. The presence of 
UNALLOCATED in this display could mean that there are problems to 
be sorted out. 

Again LISTPTR may be followed by one or more of a number of 
options which change its operation. 

SP-ST A TUS gives a wordier version of LISTPTR. Additionally, it 
indicates which job is currently being dealt with and a judgement as to 
whether the printer is on-line or off-line. It also indicates whether the 



The Spooler 71 

Option Meaning 

n Details of printer n only. 
n-m Details of printers n to m only. 

B Details of all possible printers whether or 110t they have been started. 
P Output LISTPTR to the printer. 

spooler is in an 'ambiguous' state. If it is, you should stop the printer 
causing the problem. SP-STATUS also serves another purpose. Occa­
sionally the spooler can appear to be "hung'; that is, jobs are queued for 
output but the spooler appears to be doing nothing with them. The 
spooler is 'asleep' and executing SP-ST A TUS has the effect of waking 
the spooler up. The same options may be used with SP-ST ATUS as with. 
LISTPTR. 

LISTABS may be used to show the SP-ASSIGl'<ment of each line on 
the computer (see Fig. 6.3). 

LINE STATUS COP FORM 
E IES E 

o II 
1 
2 
3 
4 
5 

2 
o 
o 
o 
1 
o 

o 
o 
o 
o 
2 
o 

Fig. 6.3. l'he output produced by L1STABS. 

In this case the first column is the line number, the second shows the 
spooler assignment, the third the number of copies being generated and 
the fourth shows the queue number to which output would be directed. 

IF THINGS GO WRONG 

Spooler problems may arise for many reasons; the problem may be as 
simple as having requested the wrong report to be output via SP-EDIT, 
or may be potentialy disastrous resulting from some hardware problem. 
The LISTPEQS, LISTPTR, SP-ST ATUS and LISTABS verbs will 
probably be of some help in determining the nature of the problem. 
SP-KILL and :ST ARTSPOOLER are the means of fixing the problems. 

The Spooler 71 

Option Meaning 

n Details of printer n only. 
n-m Details of printers n to manly. 

B Details of all possible printers whether or not they have been started. 
P Output LISTPTR to the printer. 

spooler is in an 'ambiguous' state. If it is, you should stop the printer 
causing the problem. SP-ST A TUS also serves another purpose. Occa­
sionally the spooler can appear to be 'hung'; that is. jobs are queued for 
output but the spooler appears to be doing nothing with them. The 
spooler is 'asleep' and executing SP-ST A TUS has the effect of waking 
the spooler up. The same options may be used with SP-ST A TUS as with. 
LlSTPTR. 

LIST ABS may be used to show the SP-ASSIGNment of each line on 
the computer (see Fig. 6.3). 

LINE STATUS COP FORM 
£ IES £ 

0 II 2 0 
1 0 0 
2 0 0 
3 0 0 
4 1 2 
5 0 0 

Fig, 6,3, The output produced by LIST ABS. 

In this case the first column is the line number, the second shows the 
spooler assignment, the third the number of copies being generated and 
the fourth shows the queue number to which output would be directed. 

IF THINGS GO WRONG 

Spooler problems may arise for many reasons; the problem may be as 
simple as having requested the wrong report to be output via SP-EDIT, 
or may be potentialy disastrous resulting from some hardware problem. 
The LISTPEQS, LISTPTR, SP-STATUS and LISTABS verbs will 
probably be of some help in determining the nature of the problem. 
SP-KILL and :ST ARTSPOOLER are the means of fixing the problems. 



72 Chapter 6 

SP-KILL can abort the current printing process, or remove jobs 
enqueued for output and can even be used to delete printers from the 
system entirely. The simplest form of the SP-KILL verb will abort the 
current report being printed on printer zero. The report will continue 
for up to 512 bytes and then terminate with the message ABORT!. This 
is useful where a long report has been initiated by mistake and allowing 
this to come to a conclusion will result in a waste of both paper and time. 

SP-KILL may be followed by a number of options which change its 
operation. 

Option 

n 
n-m 
B 
Fn 

Fn-m 
FB 

Effect 

Kill the current output of printer n. 
Kill the output of printers n to m. 
Kill the output of all printers. 
Stop spool file n from being output, even if it is not 
currently being output but is only queued for output. 
Stop spool files n to m from being output. 
Stop all queued output. 

These options may be followed by one or more of the following. 

Option Effect 

A Limit the effects to spool files created on this account. 
N Suppress the ABORT! message. 
o Stop a report currently being output. 

The F option is interesting because it gives the ability to move print 
files from one spool queue to another. Imagine a situation where there 
are two printers on the system servicing different spool queues. Using 
LlSTPEQS you can determine that the first printer has say 20 print files 
to process whereas the second is inactive. Moving parts of the queue to 
the second printer enables you to speed up the printing process. Care 
has to be exercised though because KILL means exactly that. If no hold 
file has been created the report will be lost. 

Suppose that a particular report that you wanted immediately was 
queuing in spool queue 6 behind another very large report which was 
likely to take an hour to print. When the report that you want was 
produced, the application reported that the printout was being gener­
ated into hold entry number 10. LlSTPEQS confirms that the report is 
queued for output. To dequeue the report execute the command: 

72 Chapter 6 

SP-KILL can abort the current printing process, or remove jobs 
enqueued for output and can even be used to delete printers from the 
system entirely. The simplest form of the SP-KILL verb will abort the 
current report being printed on printer zero. The report will continue 
for up to 512 bytes and then terminate with the message ABORT!. This 
is useful where a long report has been initiated by mistake and allowing 
this to come to a conclusion will result in a waste of both paper and time. 

SP-KILL may be followed by a number of options which change its 
operation. 

Option 

n 
n-m 
B 
Fn 

Fn-m 
FB 

Effect 

Kill the current output of printer n. 
Kill the output of printers n to m. 
Kill the output of all printers. 
Stop spool file n from being output, even if it is not 
currently being output but is only queued for output. 
Stop spool files n to m from being output. 
Stop all queued output. 

These options may be followed by one or more of the following. 

Option Effect 

A Limit the effects to spool files created on this account. 
N Suppress the ABORT! message. 
o Stop a report currently being output. 

The F option is interesting because it gives the ability to move print 
files from one spool queue to another. Imagine a situation where there 
are two printers on the system servicing different spool queues. Using 
LISTPEQS you can determine that the first printer has say 20 print files 
to process whereas the second is inactive. Moving parts of the queue to 
the second printer enables you to speed up the printing process. Care 
has to be exercised though because KILL means exactly that. If no hold 
file has been created the report will be lost. 

Suppose that a particular report that you wanted immediately was 
queuing in spool queue 6 behind another very large report which was 
likely to take an hour to print. When the report that you want was 
produced, the application reported that the printout was being gener­
ated into hold entry number 10. LISTPEQS confirms that the report is 
queued for output. To dequeue the report execute the command: 



The Spooler 

SP-KILL FlO 

PRINT FILE # 10 WAS UNLINKED AND IS AVAILABLE AS A HOLD FILE. 

You might know that the printer which is set up to handle spool 
queue number 1 is free at the moment. The next thing to do is set your 
own SP-ASSIGN status to output to spool queue number I and force 
whatever output you produce to adhere to your SP-ASSIGN status by 
executing the command: 

SP-ASSIGN Fl R 

The next thing to do is to edit the hold file and spool the report: 

SP-EDIT 10 
ENTRY # 10 
DISPLAY (Y/N/S/D/x/(CR))?-S 
SPOOL (Y/N=CRITITN/F)?-Y 

and the report will begin printing immediately on the free printer. 
There is another option for SP-KILL which must be used with 

caution. This is the D option and deletes a printer from the system. 
SP-KILL D will delete printer zero, SP-KILL Dl will delete printer I 
and so on. SP-KILL DB will delete all the printers. There may be 
unpleasant side effects to doing this if the printer being deleted was 
busy. You may find that you cannot restart the printer using 
ST ARTPTR and that the whole spooler has to be restarted. In general it 
is better to execute a STOPPTR first. SP-KILL D should only be used 
when you know that the printer(s) in question are inactive. 

If all else fails and the spooler refuses to behave after treatment with 
SP-STATUS, STOPPTR, STARTPTR and SP-KILL the guaranteed 
cure all is to restart the spooler using the :STARTSPOOLER verb. This 
is equivalent to the process which takes place when the computer is first 
booted, the coldstart process. It has a number of unfortunate side 
effects. Under certain circumstances it can be harmless. in others the 
entire spool queue may be lost and all the printers deleted. It might be 
necessary because the spooler has dropped into the system debugger, or 
is trying to output to a non-existent line. Hardware faults can easily 
affect the spooler. particularly a disk fault resulting in the spooler 
logging lots (many thousands) of disk errors. In this last case it is 
unlikely to be affecting only the spooler and a controlled shut down and 
a call to the maintenance engineers may be necessary anyway. 

The case where the spooler drops into the debugger can be con­
firmed by looking at the WHERE display. 

The Spooler 

SP-KILL F10 

PRINT FILE # 10 WAS UNLINKED AND IS AVAILABLE AS A HOLD FILE. 

You might know that the printer which is set up to handle spool 
queue number 1 is free at the moment. The next thing to do is set your 
own SP-ASSIGN status to output to spool queue number 1 and force 
whatever output you produce to adhere to your SP-ASSIGN status by 
executing the command: 

SP-ASSIGN F1 R 

The next thing to do is to edit the hold file and spool the report: 

SP-EDIT 10 
ENTRY # 10 
DISPLAY (Y IN/S/D/x/(CRII?-S 
SPOOL (Y/N=CRITITN/F)?-Y 

and the report will begin printing immediately on the free printer. 
There is another option for SP-KILL which must be used with 

caution. This is the D option and deletes a printer from the system. 
SP-KILL D will delete printer zero, SP-KILL D1 will delete printer 1 
and so on. SP-KILL DB will delete all the printers. There may be 
unpleasant side effects to doing this if the printer being deleted was 
busy. You may find that you cannot restart the printer using 
ST ARTPTR and that the whole spooler has to be restarted. In general it 
is better to execute a STOPPTR first. SP-KILL D should only be used 
when you know that the printer(s) in question are inactive. 

If all else fails and the spooler refuses to behave after treatment with 
SP-STATUS, STOPPTR, STARTPTR and SP-KILL the guaranteed 
cure all is to restart the spooler using the :ST ARTSPOOLER verb. This 
is equivalent to the process which takes place when the computer is first 
booted, the coldstart process. It has a number of unfortunate side 
effects. Under certain circumstances it can be harmless, in others the 
entire spool queue may be lost and all the printers deleted. It might be 
necessary because the spooler has dropped into the system debugger. or 
is trying to output to a non-existent line. Hardware faults can easily 
affect the spooler, particularly a disk fault resulting in the spooler 
logging lots (many thousands) of disk errors. In this last case it is 
unlikely to be affecting only the spooler and a controlled shut down and 
a call to the maintenance engineers may be necessary anyway. 

The case where the spooler drops into the debugger can be con­
firmed by looking at the WHERE display. 



74 

WHERE 

*00 0200 FB20 
05 02AO F300 
06 02CO BFOO 

121.000 
1B4.1DE 
170.055 

Chapter 6 

121.1A2 
170.0CF 
170.13D 

Each line of this display represents a line on the system, as was 
explained earlier. The first column is the line number. The asterisk 
means that this was the line which executed the WHERE verb. The 
second column is the disk frame number for the beginning of the area 
which the operating system uses as workspace for that line. The third 
column is the status of the line and the subsequent columns represent 
the operating system address at which the line is executing and their 
respective return stack addresses. 

The status column is broken into two parts - the first two characters 
tell us the type of process being carried out; this tends to be different on 
different releases and different computers. If the last two characters are 
40, that process is in the debugger. If the spooler's status is 40, (line 6 
above), this means that the spooler itself has dropped into the debugger 
and you will definitely have to restart the spooler. Normally it is 00. 

If this happens, execute the :STARTSPOOLER verb, normally any 
print files being output which are not hold files will be lost. There are 
options to :STARTSPOOLER with successively more side effects, 
these are discussed in the manual. Generally if this does not get the 
spooler started again successfully it is time to call the engineers. 

OTHER PICK SPOOLERS 

The discussion above has centred on the standard Pick spooler. The 
McDonnell Douglas version, while it has its roots in the same ideas, is 
now quite different. The Ultimate version is slightly different and differs 
mainly in having different verb names. These are set out in Fig. 6.4. 

On McDonnell Douglas systems the SP-ASSIGN verb is very similar 
to the above, although a few options differ. Option I on Pick becomes 
option N on McDonnell Douglas. ST ARTPTR, STOPPTR, 
SP-KILL F, SP-EDIT, LISTPEQS and SP-STATUS are carried out by 
a menu system instigated by the verb SP-JOBS. There is no equivalent 
to LlSTABS. Spool queues may have real names rather than numbers, 
spool queue 1 could be INVOICES, spool queue 2 could be ONE­
PART, spool queue 3 could be TWOPART and so on. The SP-EDIT 

74 

WHERE 

*00 0200 FB20 
05 02AO F300 
06 02CO BFOO 

121.000 
184.1DE 
170.055 

Chapter 6 

121.1A2 
170.0CF 
170.13D 

Each line of this display represents a line on the system, as was 
explained earlier. The first column is the line number. The asterisk 
means that this was the line which executed the WHERE verb. The 
second column is the disk frame number for the beginning of the area 
which the operating system uses as workspace for that line. The third 
column is the status of the line and the subsequent columns represent 
the operating system address at which the line is executing and their 
respective return stack addresses. 

The status column is broken into two parts - the first two characters 
tell us the type of process being carried out; this tends to be different on 
different releases and different computers. If the last two characters are 
40, that process is in the debugger. If the spooler's status is 40, (line 6 
above), this means that the spooler itself has dropped into the debugger 
and you will definitely have to restart the spooler. Normally it is 00. 

If this happens, execute the :STARTSPOOLER verb, normally any 
print files being output which are not hold files will be lost. There are 
options to :STARTSPOOLER with successively more side effects, 
these are discussed in the manual. Generally if this does not get the 
spooler started again successfully it is time to call the engineers. 

OTHER PICK SPOOLERS 

The discussion above has centred on the standard Pick spooler. The 
McDonnell Douglas version, while it has its roots in the same ideas, is 
now quite different. The Ultimate version is slightly different and differs 
mainly in having different verb names. These are set out in Fig. 6.4. 

On McDonnell Douglas systems the SP-ASSIGN verb is very similar 
to the above, although a few options differ. Option I on Pick becomes 
option N on McDonnell Douglas. STARTPTR, STOPPTR, 
SP-KILL F, SP-EDIT, LISTPEQS and SP-STATUS are carried out by 
a menu system instigated by the verb SP-JOBS. There is no equivalent 
to LIST ABS. Spool queues may have real names rather than numbers, 
spool queue 1 could be INVOICES, spool queue 2 could be ONE­
PART, spool queue 3 could be TWOPART and so on. The SP-EDIT 



Pick verb 

STARTPTR 
STOPPTR 
SP-EDIT 
SP-ASSIGN 
SP-ASSIGN 0 
SP-ASSIGN C 
SP-EDIT 
SP-KILL 
SP-KILL Fn 
SP-KILL D 
LlSTPEQS 
LTSTPTR 
LTSTABS 
SP-STATUS 

Fig. 6.4. Ultimate spooler verhs. 

The Spooler 

Ultimate verb 

SP-ST ARTLPTR 
SP-STOPLPTR 
SP-EDIT 
SP-ASSIGN 
SP-OPEN 
SP-CLOSE 
SP-EDIT 
SP-KILL 
SP-DEQ 
SP-DELETELPTR 
SP-LTSTQ 
SP-LlSTLPTR 
SP-LTSTASSIG~ 

SP-STATUS 

75 

part of this operates like a scaled down system editor. Instead of the 
prompt sequence the spooler replies: 

TOP 

and you are looking at the top of the print file. The print file cannot be 
amended, only viewed. The command Ln lists out the next n lines on the 
terminal, so the whole of the hold file may be inspected. P sends the 
report to the printer from the point being inspected. This can cause 
embarrassment if you are not positioned at the top of the report so 
remember to execute a T (top) first. EX exits the hold file and returns to 
the SP-JOBS menu. 

Pick verb 

STARTPTR 
STOPPTR 
SP-EDIT 
SP-ASSIGN 
SP-ASSIGN 0 
SP-ASSIGN C 
SP-EDIT 
SP-KILL 
SP-KILL Fn 
SP-KILL D 
LISTPEQS 
LISTPTR 
LISTABS 
SP-STATUS 

Fig. 6.4. Ultimate spooler verbs. 

The Spooler 

Ultimate verb 

SP-STARTLPTR 
SP-STOPLPTR 
SP-EDIT 
SP-ASSIGN 
SP-OPEN 
SP-CLOSE 
SP-EDIT 
SP-KILL 
SP-DEQ 
SP-DELETELPTR 
SP-LISTQ 
SP-LISTLPTR 
SP-LISTASSIGN 
SP-STATUS 

7S 

part of this operates like a scaled down system editor. Instead of the 
prompt sequence the spooler replies: 

TOP 

and you are looking at the top of the print file. The print file cannot be 
amended. only viewed. The command Ln lists out the next n lines on the 
terminal, so the whole of the hold file may be inspected. P sends the 
report to the printer from the point being inspected. This can cause 
embarrassment if you are not positioned at the top of the report so 
remember to execute a T (top) first. EX exits the hold file and returns to 
the SP-JOBS menu. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

I 
I 

I 

I 
I 
I 
I 



Chapter 7 
More about the Pick Database 

In theoretical terms the Pick Database is of the Relational type, that is, 
the System's Database Management Subsystem can perform certain 
tasks and the Database files may be of such format that they closely 
match the academic definitions of the Relational Database Model. 

These tasks are termed JOIN, PROJECT and SELECT. The file 
formats are called first, second and third normal form. A detailed 
discussion of what these consist of can be found in most texts on 
databases I. It suffices here to say that JOIN, PROJECT and SELECT 
can be obtained by single commands using Access: first normal form is 
achieved easily and second and third normal forms can be generated by 
using additional files. JOINs and SELECTs have already been indicated 
in the chapter on Access. In that chapter, Fig. 2.23 is a PROJECTion. 
However, Pick allows the system designer to move away from the 
normal forms. This might be considered bad practice but the advantages 
that might be gained are probably worth it. 

As described in Chapter 3, the Pick database is implemented on a 
hierarchy of accounts. files and records. This can be represented di­
agrammatically as in Fig. 7.1. 

CREATING FILES 

Files are created by means of the CREATE-FILE utility. The syntax is: 

CREATE-FILE filename modulo, separation modulo, separation 

or 

CREATE-FILE DICT filename modulo, separation 

or 

CREATE-FILE DATA filename modulo, separation 

DICT or DATA are used when it is only required to create a single level 

1. Particularly Database Jor the Small Computer User by Tony Elbra. published by the. 
National Computing Centre. . 

77 

Chapter 7 
More about the Pick Database 

In theoretical terms the Pick Database is of the Relational type, that is, 
the System's Database Management Subsystem can perform certain 
tasks and the Database files may be of such format that they closely 
match the academic definitions of the Relational Database Model. 

These tasks are termed JOIN, PROJECT and SELECT. The file 
formats are called first, second and third normal form. A detailed 
discussion of what these consist of can be found in most texts on 
databases '. It suffices here to say that JOIN, PROJECT and SELECT 
can be obtained by single commands using Access; first normal form is 
achieved easily and second and third normal forms can be generated by 
using additional files. JOINs and SELECTs have already been indicated 
in the chapter on Access. In that chapter, Fig. 2.23 is a PROJECTion. 
However, Pick allows the system designer to move away from the 
normal forms. This might be considered bad practice but the advantages 
that might be gained are probably worth it. 

As described in Chapter 3, the Pick database is implemented on a 
hierarchy of accounts, files and records. This can be represented di­
agrammatically as in Fig. 7.1. 

CREA TlNG FILES 

Files are created by means of the CREATE-FILE utility. The syntax is: 

CREATE-FILE filename modulo, separation modulo, separation 

or 

CREATE-FILE DICT filename modulo, separation 

or 

CREATE-FILE DATA filename modulo, separation 

DICT or DATA are used when it is only required to create a single level 

1. Particularly Database for the Small Computer User by Tony Elbra, published by the, 
National Computing Centre. 

77 



7H Chapter 7 

SYSTEM 
DICTIONARY 
(names of accounts) 

Fig. 7.1. The Pick File Hierarchy. 

file (OICT) or to create a separate DATA portion for a already existing 
dictionary (DATA). 

filename is the name of the file to be created. If the DICT/OA T A 
option is omitted then a dictionary and an associated data portion are 
created. A file-defining item will appear in the master dictionary, which 
defines the dictionary portion of the file, and another will appear in the 
dictionary to define the data portion. These file-defining items are 
ordinary records but the system recognises them as pointers to file 
areas. 

Figure 7.2 shows the structure of a file defining item, as it might 
appear when edited. 

001 D 
002 14325 
003 3 
004 1 
005 
006 
007 
008 
009 L 
010 10 
011 
012 
013 {7," 

Attribute 1 is a 0 
File begins at disk frame 14325 
Modulo is 3 
Separation is 1 
No retrieval lock code 
No update lock code 
Record id conversions 
Record id correlatives 
Record id field is left justified 
Record id field is width 10 

.... File will be resized to 7,1 

Fig. 7.2. The structure of a file defining item. 

7~ Chapter 7 

SYSTEM 
DICTIONARY 
(names of accounts) 

(account vocabulary) 
L----J 

DieT DATA 

L E S I 

~ 

Fig. 7.1. The Pick File Hierarchy. 

file (DIeT) or to create a separate DATA portion for a already existing 
dictionary (D A T A). 

filename is the name of the file to be created. If the DICTIDATA 
option is omitted then a dictionary and an associated data portion are 
created. A file-defining item will appear in the master dictionary. which 
defines the dictionary portion of the file. and another will appear in the 
dictionary to define the data portion. These file-defining items are 
ordinary records but the system recognises them as pointers to file 
areas. 

Figure 7.2 shows the structure of a file defining item, as it might 
appear when edited. 

001 D 
002 14325 
0033 
004 1 
005 
006 
007 
008 
009 L 
010 10 
011 
012 
013 (7,1) 

Attribute 1 is a 0 
File begins at disk frame 14325 
Modulo is 3 
Separation is 1 
No retrieval lock code 
No update lock code 
Record id conversions 
Record id correlatives 
Record id field is left justified 
Record id field is width 10 

.... File will be resized to 7,1 

Fig. 7.2. The structure of a file defining item. 



More about [he Darahase 79 

Attrihutes .:) and 0 of file-defining items are used for update and 
retrieval locks: these are discussed at more length in the section on data 
security. 

Attrihute U of the a file-defining item may he used to resize a file 
when it is restored. The format is (modulo, separation). 

Attrihutes 2, 3 and 4 must not he changed under any circumstances. 
This information is used by the operating system to calculate the posi­
tion of each record in the file. 

The modulo of the file tells the system how many groups of "frames' 
to reserve for the file. A "frame' is an area of disk 512 hytes long. The 
whole of the disk on the Pick computer is divided up into these frames, 
which are numbered sequentially. When the file is created the system 
reserves disk frames specifically for this file from its table of available 
contiguous frames. 

The separaticin of the file tells the system how many contiguous 
frames to reserve for each group to hegin with. Thus hy multiplying 
together the modulo and the separation, this \\ill tell you how many 
frames the file takes up when it is created. If the separation parameter is 
omitted from the CREATE-FILE command then a separation of one is 
assumed. 

The first modulo and separation parameters in the CREATE-FILE 
processor define the dictionary size: the second set defines the data 
portion. For a single level file the second parameters are omitted. 

modulo is 5 

separation is 2 --------------disk 
frame no. 

15103 15104 

15105 15106 

15107 15108 

15109 15110 

15111 15112 

Fig. 7.3. Contiguous disk frames for the primary file space of a file modulo 5, separation 
2. 

More ahout [he Da[ahase 79 

Attributes 5 and 6 of file-defining items are used for update and 
retrieval locks: these are discussed at more length in the section on data 
security. 

Attribute 13 of the a file-defining item may be used to resize a file 
when it is restored. The format is (modulo. separation). 

Attributes 2.3 and 4 must not be changed under any circumstances. 
This information is used by the operating system to calculate the posi­
tion of each record in the file. 

The modulo of the file tells the system how many groups of 'frames' 
to reserve for the file. A 'frame' is an area of disk 512 bytes long. The 
whole of the disk on the Pick computer is divided up into these frames. 
which are numbered sequentially. When the file is created the system 
reserves disk frames specifically for this file from its table of available 
contiguous frames. 

The separation of the file tells the system how many contiguous 
frames to reserve for each group to begin with. Thus by multiplying 
together the modulo and the separation. this will tell you how many 
frames the file takes up when it is created. If the separation parameter is 
omitted from the CREATE-FILE command then a separation of one is 
assumed. 

The first modulo and separation parameters in the CREATE-FILE 
processor define the dictionary size: the second set defines the data 
portion. For a single level file the second parameters are omitted. 

modulo is 5 

separation is 2 ------------disk 
frame no. 

15103 15104 

15105 15106 

15107 15108 

15109 15110 

15111 15112 

Fig. 7.3. Contiguous disk frames for the primary file space of a file modulo 5. separation 
2. 



80 Chapter 7 

Some attempt should be made to estimate the size of file required 
before it is created in terms of the number of records that are expected 
to be in the file and the average number of characters that are expected 
to be in each record. Calculate the total number of characters that are 
expected to be in the file, adding one for each field or subfield of 
information and four for each record to allow for the item length. 
Divide by 500 to get the number of frames required (the first twelve 
bytes of each frame are used by the system). Now you are in a position 
to estimate the best modulo and separation for the file. 

The idea is to optimise the retrieval time for any particular record 
from the file. To do this we wish to create a situation where the data is 
spread evenly through the file and where overflow space is kept to a 
minimum, yet disk space is not used up unnecessarily. Experience seems 
to suggest that 125% full is about optimum. This would suggest that four 
out of five records will be in the primary file space, the primary file 
space will. theoretically, be full, and that at most only one frame fault 
will be required to retrieve a record. The utilisation of any file can be 
monitored by examining the file statistics report which is produced 
whenever a FILE-SAVE or ACCOUNT-SAVE is carried out. 

When the system tries to retrieve a record it carries out a hashing 
algorithm on the record id to determine which group the record will be 
found in. It then begins a sequential search along the records in the 
group until it finds the record it wants. If it comes to the end of the 
frame in the primary file space it will have to frame fault - that is, jump 
to the overflow space indicated by this group. This is very unlikely to be 
contiguous to the area that is being examined currently, so a slight delay 
is experienced while the disk heads reposition themselves. 

To ensure that this access routine behaves just as we would like it, 
we must ensure that the file fills up evenly. Otherwise, we could have a 
situation where one group is empty, and the next group is 300 or 400 per 
cent full. To do this we should choose a prime number for the modulo. 
Numbers that divide by 2, 3 and 5 provide particularly poor distributions 
when used as modulos. 

To choose the separation, look at the expected size of any record. 
Obviously if a single record is more than 500 characters then there will 
always be a frame fault unless some action is taken to ensure that the 
end of the record stays in contiguous space. This is why we can set the 
separation. To minimise the disk space wasted, do not calculate separa­
tions as the number of frames required for one record. For instance, to 
allow a separation of 2 for records that are on average expected to be 
600 characters in length, will result in 400 bytes of primary file space 

80 Chapter 7 

Some attempt should be made to estimate the size of file required 
before it is created in terms of the number of records that are expected 
to be in the file and the average number of characters that are expected 
to be in each record. Calculate the total number of characters that are 
expected to be in the file. adding one for each field or subfield of 
information and four for each record to allow for the item length. 
Divide by 500 to get the number of frames required (the first twelve 
bytes of each frame are used by the system). Now you are in a position 
to estimate the best modulo and separation for the file. 

The idea is to optimise the retrieval time for any particular record 
from the file. To do this we wish to create a situation where the data is 
spread evenly through the file and where overflow space is kept to a 
minimum. yet disk space is not used up unnecessarily. Experience seems 
to suggest that 125% full is about optimum. This would suggest that four 
out of five re{;ords will be in the primary file space. the primary file 
space will. theoretically. be full. and that at most only one frame fault 
will be required to retrieve a record. The utilisation of any file can be 
monitored by examining the file statistics report which is produced 
whenever a FILE-SAVE or ACCOUNT-SAVE is carried out. 

When the system tries to retrieve a record it carries out a hashing 
algorithm on the record id to determine which group the record will be 
found in. It then begins a sequential search along the records in the 
group until it finds the record it wants. If it comes to the end of the 
frame in the primary file space it will have to frame fault - that is. jump 
to the overflow space indicated by this group. This is very unlikely to be 
contiguous to the area that is being examined currently. so a slight delay 
is experienced while the disk heads reposition themselves. 

To ensure that this access routine behaves just as we would like it. 
we must ensure that the file fills up evenly. Otherwise, we could have 'a 
situation where one group is empty, and the next group is 300 or 400 per 
cent full. To do this we should choose a prime number for the modulo. 
Numbers that divide by 2.3 and 5 provide particularly poor distributions 
when used as modulos. 

To choose the separation, look at the expected size of any record. 
Obviously if a single record is more than 500 characters then there will 
always be a frame fault unless some action is taken to ensure that the 
end of the record stays in contiguous space. This is why we can set the 
separation. To minimise the disk space wasted, do not calculate separa­
tions as the number of frames required for one record. For instance, to 
allow a separation of 2 for records that are on average expected to be 
600 characters in length, will result in 400 bytes of primary file space 



More about the Database 81 

being wasted on every group in the file. In general. It IS not worth 
increasing the separation to 2 unless you expect records to be at least 
900 characters long. Similarly. increase the separation to 3 if you expect 
the records to be at least 1400 characters long. 

Calculation of required file size can be summarised like this: 

1. Calculate the average record size expected. 
2. Calculate the average numbt;r of records expected. 
3. Separation is ((record size-4(0)/SOO)+ 1. 
4. Frames required is record size " records/SOO. 
S. Primary space required is frames * 100112S. 
6. Modulo is primary space/separation. 
7. Adjust the modulo to the next highest prime number. 

As indicated earlier. this does not limit the size of the file in absolute 
terms because additional frames will be linked to the file as and when 
required. This procedure should optimise the performance of the 
system. 

On a heavily-used system, overflow frames will be allocated in the 
usual manner from the lowest available frame in the overflow space 
table. The overpow space table can be displayed by the POVF utility. 

POVF 

FRAME ID 
9046 
11327-51623 

FRAME ID 
1 9100-9111 

4·0297 

TOTAL NUMBER OF FRAMES AVAILABLE 40310 

12 

In the example above, the first 13 frames required will come from 
relatively low disk space. Thereafter, frames will be taken from the area 
beginning at 11327. Consequently, disk head movement is greater and 
the system response times suffer accordingly. The situation can be 
improved somewhat if the system is restored. On a restore items will be 
taken from the tape drive and be placed in the appropriate group. When 
any particular group is full a frame will be taken from the lowest 
available space in the overflow table, but the overflow table will begin at 
the end of the primary file space so the disk head movement is mini­
mised when retrieving an item which is in the overflow area. Any 
reallocation of file size takes place when the system is restored and this 
will also help. On a heavily used system a routine of regular restores 
(say once every three months) is desirable. 

Dictionaries may have more than one data portion associated with 

More about the Database 81 

being wasted on every group in the file. In generaL it is not worth 
increasing the separation to 2 unless you expect records to be at least 
900 characters long. Similarly. increase the separation to 3 if you expect 
the records to be at least 1400 characters long. 

Calculation of required file size can be summarised like this: 

1. Calculate the average record size expected. 
2. Calculate the average numbc;r of records expected. 
3. Separation is «record size-400)/SOO)+ 1. 
4. Frames required is record size * records/SOO. 
5. Primary space required is frames * 1001125. 
6. Modulo is primary space/separation. 
7. Adjust the modulo to the next highest prime number. 

As indicated earlier. this does not limit the size of the file in absolute 
terms because additional frames will be linked to the file as and when 
required. This procedure should optimise the performance of the 
system. 

On a heavily-used system, overflow frames will be allocated in the 
usual manner from the lowest available frame in the overflow space 
table. The over~ow space table can be displayed by the POYF utility. 

POVF 

FRAME ID 
9046 
11327-51623 40297 

FRAME ID 
9100-9111 

TOTAL NUMBER OF FRAMES AVAILABLE 40310 

12 

In the example above, the first 13 frames required will come from 
relatively low disk space. Thereafter, frames will be taken from the area 
beginning at 11327. Consequently, disk head movement is greater and 
the system response times suffer accordingly. The situation can be 
improved somewhat if the system is restored. On a restore items will be 
taken from the tape drive and be placed in the appropriate group. When 
any particular group is full a frame will be taken from the lowest 
available space in the overflow table, but the overflow table will begin at 
the end of the primary file space so the disk head movement is mini­
mised when retrieving an item which is in the overflow area. Any 
reallocation of file size takes place when the system is restored and this 
will also help. On a heavily used system a routine of regular restores 
(say once every three months) is desirable. 

Dictionaries may have more than one data portion associated with 



82 Chapter 7 

them. When this happens we say that the dictionary is shared hetween 
the two data files. Obviously the data files should have the same logical 
structure when this is required. Similarly data portions may be associ­
ated with more than one dictionary. This might be used to restrict access 
of parts of files to particular users who have their own privileged 
dictionary. When Access accesses data in files with different names than 
the associated dictionary it is necessary to modify the file name, separat­
ing the name of the dictionary and the data file with a comma, as in the 
command: 

LIST PERSONNELPERSONNEL.MANAGER 

Here the dictionary is called PERSONNEL and the data is called 
PERSONNEL.MANAGER. PERSONNEL.MANAGER is a data file 
defined in the dictionary PERSONNEL, quite separate from the PER­
SONNEL data file. 

Similarly, when BASIC is required to OPEN one of these files the 
format would be: 

OPEN ",'PERSONNELPERSONNEL.MANAGER' TO PERSONNELJILE ELSE 

This shows that files must not contain commas in the file name. 
To create multiple data files of this nature a modified form of the 

CREA TE-FILE utility is used. To create a file with two data portions 
and a shared dictionary a sequence of events may take place as follows: 

CREATE-FILE PERSONNEL 1,1 23,1 
CREATE-FILE DATA PERSONNEL PERSONNEL.MANAGER 37,1 

The first command creates a dictionary and data file called PER­
SONNEL. The second creates a single level data file called PERSON­
NEL.MANAGER that will be referenced by the same file dictionary. 

To allow data files to be accessible by more than one dictionary is 
easier. The USING connective is employed, i.e. 

LIST PERSONNEL USING DieT PERSONNEL.MANAGER 

Here the data is contained in an ordinary file called PERSONNEL. 
The dictionary is a quite separate file, which may well have its own 
associated data. Both files could have been created with the simple form 
of the CREATE-FILE processor. In this way the personnel manager 
may uncover information held in the PERSONNEL file which is res­
tricted to senior users of the file. 

82 Chapter 7 

them. When this happens we say that the dictionary is shared between 
the two data files. Obviously the data files should have the same logical 
structure when this is required. Similarly data portions may be associ­
ated with more than one dictionary. This might be used to restrict access 
of parts of files to particular users who have their own privileged 
dictionary. When Access accesses data in files with different names than 
the associated dictionary it is necessary to modify the file name, separat­
ing the name of the dictionary and the data file with a comma, as in the 
command: 

LIST PERSONNEL,PERSONNEL.MANAGER 

Here the dictionary is called PERSONNEL and the data is called 
PERSONNEL.MANAGER. PERSONNEL.MANAGER is a data file 
defined in the dictionary PERSONNEL, quite separate from the PER­
SONNEL data file. 

Similarly, when BASIC is required to OPEN one of these files the 
format would be: 

OPEN ",'PERSONNEL,PERSONNEL.MANAGER' TO PERSONNELJILE ELSE 

This shows that files must not contain commas in the file name. 
To create multiple data files of this nature a modified form of the 

CREATE-FILE utility is used. To create a file with two data portions 
and a shared dictionary a sequence of events may take place as follows: 

CREATE-FILE PERSONNEL 1,1 23,1 
CREATE-FILE DATA PERSONNEL PERSONNEL.MANAGER 37,1 

The first command creates a dictionary and data file called PER­
SONNEL. The second creates a single level data file called PERSON­
NEL.MANAGER that will be referenced by the same file dictionary. 

To allow data files to be accessible by more than one dictionary is 
easier. The USING connective is employed, i.e. 

LIST PERSONNEL USING DICT PERSONNEL.MANAGER 

Here the data is contained in an ordinary file called PERSONNEL. 
The dictionary is a quite separate file, which may well have its own 
associated data. Both files could have been created with the simple form 
of the CREATE-FILE processor. In this way the personnel manager 
may uncover information held in the PERSONNEL file which is res­
tricted to senior users of the file. 



Morc abour tlze Database 

Q POINTERS 

The discussion so far assumes that all the data files to be created in a 
particular account will only be accessed from that account. This need 
not be the case. 

As discussed abme. files arc defined by the system recognising D 
pointcrs in the master dictionary and in thc dictionaries. 0 pointers 
redirect the system to look for the file-defining item in another place. 
This can be used to tcll the systcm that the file is really known by 
another name. or that the file is really in another account. or that the file 
is really associah:d with another dictionary. 

001 0 
002 SMITH 
003 PERSONNEL 
004 
005 
006 
007 
008 
009 l 
010 10 

.... The first attrihute must he Q 
The file is in the account SMITH 
The file is called PERSONNEL 

Attributes :2 to JO may he omitted 

Fig. 7.4. The structure of a Q pointer. 

If attribute 2 is omitted. then the pointer defaults to the account to 
which the user is logged on. If attribute .1 is omitted. then the pointer 
defaults to the master dictionary. Attributes 4 to 10 have the same 
meaning as for 0 pointers. 

The system utility SET-FILE creates a 0 pointer to any given 
account called Q FI LE; this is Llsed as follows: 

SET-FILE SYSPROG NEWAC 

This indicates that the system file NEW AC will bc available from the 
particular account in which the SET-FILE command was executed. 
Subsequent commands sLich as: 

LIST QFILE 

will operate on the NEWAC file until the QFILE is reset by another 
SET-FILE command. 

More about the Data/Jase 

Q POINTERS 

The discussion so far assumes that all the data files to be created in a 
particular account will only be accessed from that account. This need 
not be the case. 

As discussed above. files arc defined by the system recognising D 
pointers in the master dictionary and in the dictionaries. 0 pointers 
redirect the system to look for the file-defining item in another place. 
This can be used to tell the system that the file is really known by 
another name. or that the file is really in another account. or that the file 
is really associated with another dictionary. 

001 n 
002 SMITH 
003 PERSONNEL 
004 
005 
006 
007 
008 
009 L 
010 10 

The first attribute must be Q 
The file is in the account SMITH 
The file is called PERSONNEL 

Attributes 2 to 10 may be omitted 

Fig. 7.4. The structure of a Q pointer. 

If attribute 2 is omitted. then the pointer defaults to the account to 
which the user is logged on. If attribute 3 is omitted. then the pointer 
defaults to the master dictionary. Attributes 4 to 10 have the same 
meaning as for D pointers. 

The system utility SET-FILE creates a 0 pointer to any given 
account called OFILE; this is used as follows: 

SET-FILE SYSPROG NEWAC 

This indicates that the system file NEW AC will be available from the 
particular account in which the SET-FILE command was executed. 
Subsequent commands such as: 

LIST QFILE 

will operate on the NEW AC file until the OFILE is reset by another 
SET-FILE command. 



84 Chapter 7 

POINTER FILES 

In Chapter 3, we saw that all data on the system was held in the same 
way. But there is one exception. This concerns files which are to hold 
programs. These are ordinary files, created in the ordinary way, except 
that the file-defining item in the master dictionary must have a DC in 
attribute 1. not aD. This designates the dictionary of the file to be a 
"pointer file" capable of holding BASIC object code. The dictionary 
and data sections may be used in the ordinary way, but the Pick BASIC 
compiler will add program pointers to the dictionary as programs 
are compiled. Some manufacturers provide a system utility 
CREATE-PFILE to put in the DC automatically on creation, some do 
not and the DC must be edited in after creation. 

Pointer files consist of pointers to the beginnings of either BASIC 
object code or saved lists. The actual object code, and the saved lists are 
not subject to the normal 32K limit on item size because they are merely 
pointed to; no item length is required since no other item may reside in 
the same group of frames. The system file POINTER-FILE is used in 
this way to collect saved lists and operate upon them. 

This POINTER-FILE system does give the programmer a way to get 
over the 32 Kbytes item size limitation on program length. What has to 
be done is to change the BASIC program from an ordinary program into 
a saved list. but in the data portion of a pointer file. This means that 
both dictionary and data sections must be pointer files. The following 
sequence of events will achieve the desired effect. 

I. Create a double pointer file by ensuring that both the dictionary and 
the data sections of the file arc defined as type DC. 

2. EDIT the large program. 

3. File the program with the FIL command instead if Fl. This saves the 
program as a list, consequently the maximum size will be 64K. 

Subsequent operations such as EDIT, BASIC and so on will go 
through the pointer, the object code will be pointed to by the dictionary 
section as usual. 

OTHER FILE TYPES, DX AND DY 

All that remains is to give an indication of the manipulation that may be 
achieved by changing the file type of the file-defining items. 

Placing an X after the 0 or DC in a file-defining item will ensure that 

~4 Chapter 7 

POII'ITER FILES 

In Chapter 3, we saw that all data on the system was held in the same 
way. But there is one exception. This concerns files which are to hold 
programs. These are ordinary files, created in the ordinary way, except 
that the file-defining item in the master dictionary must have a DC in 
attribute 1, not a D. This designates the dictionary of the file to be a 
"pointer file" capable of holding BASIC object code. The dictionary 
and data sections may be used in the ordinary way, but the Pick BASIC 
compiler will add program pointers to the dictionary as programs 
are compiled. Some manufacturers provide a system utility 
CREATE-PFILE to put in the DC automatically on creation, some do 
not and the DC must be edited in after creation. 

Pointer files consist of pointers to the beginnings of either BASIC 
object code or saved lists. The actual object code, and the saved lists are 
not subject to the normal 32K limit on item size because they are merely 
pointed to: no item length is required since no other item may reside in 
the same group of frames. The system file POINTER-FILE is used in 
this way to collect saved lists and operate upon them. 

This POINTER-FILE system does give the programmer a way to get 
over the 32 Kbytes item size limitation on program length. What has to 
be done is to change the BASIC program from an ordinary program into 
a saved list. but in the data portion of a pointer file. This means that 
both dictionary and data sections must be pointer files. The following 
sequence of events will achieve the desired effect. 

1. Create a double pointer file by ensuring that both the dictionary and 
the data sections of the file are defined as type DC. 

2. EDIT the large program. 

3. File the program with the FIL command instead if FI. This saves the 
program as a list, consequently the maximum size will be 64K. 

Subsequent operations such as EDIT, BASIC and so on will go 
through the pointer, the object code will be pointed to by the dictionary 
section as usual. 

OTHER FILE TYPES, DX AND DY 

All that remains is to give an indication of the manipulation that may be 
achieved by changing the file type of the file-defining items. 

Placing an X after the 0 or DC in a file-defining item will ensure that 



Alore about rhe Database 

the file is never saved on a backup operation. This means that if the 
system is subsequently restored the file will no longer exist. 

Placing a Y after the D or DC in a file-defining item will ensure that 
the data in the file is not saved on a backup operation. On a subsequent 
restore the file will exist, but it will be empty. 

THE PHYSICAL LAYOUT OF THE DATABASE 

The physical representation of the database is quite different to the 
logical representation. All of the available disk is divided up into 512-
byte sections called frames. The frames each have a unique number 
starting at 1 and incrementing sequentially from there on. 

Frames may be linked together. When this happens a record of the 
forward link is maintained in the first linked frame and a record of the 
backward link is maintained in the second linked frame. In this way any 
number of frames may be linked together and so data structures which 
cannot fit into a single frame can be accommodated. 

disk frame 
16339 , 

16340 23974 

~ 
16341 , 39628 

16342 

18595 

16343 

primary space 

Fig. 7.5. A file which has one group with two overflow frames and another with one 
overflow frame. 

More about the Database 

the file is never saved on a backup operation. This means that if the 
system is subsequently restored the file will no longer exist. 

Placing a Y after the D or DC in a file-defining item will ensure that 
the data in the file is not saved on a backup operation. On a subsequent 
restore the file will exist, but it will be empty. 

THE PHYSICAL LAYOUT OF THE DATABASE 

The physical representation of the database is quite different to the 
logical representation. All of the available disk is divided up into 512-
byte sections called frames. The frames each have a unique number 
starting at 1 and incrementing sequentially from there on. 

Frames may be linked together. When this happens a record of the 
forward link is maintained in the first linked frame and a record of the 
backward link is maintained in the second linked frame. [n this way any 
number of frames may be linked together and so data structures which 
cannot fit into a single frame can be accommodated. 

disk frame 
16339 .. 

16340 23974 

16341 , 39628 

16342 

18595 

16343 

primary space 

Fig. 7.S. A file which has one group with two overflow frames and another with one 
overflow frame. 



86 Chapter 7 

The first twelve bytes of any frame contain information about the 
frame. Thus bytes 12-511 are available for data. More specifically: 

Byte () 
Byte 1 
Bytes 2-5 
Bytes 6-lJ 
Byte \0 
Byte 11 
Bytes 12-511 

- Unused. 
- Number of forward linked contiguous frames 
- Next linked frame ID 
- Previous linked frame ID 
- Number of backward linked contiguous frames 
- Unused 
- Data 

A data record can only appear within the data portion of a frame. 
Physically. records are arranged with a record length, followed by the 
item ID followed by the record attributes. The last attribute is termin­
ated by an attribute mark, and the end of the item is designated by a 
segment mark (ASCII character 255). like this: 

0029ITEM-ID' ATTRIBUTE,ONE' ATTRIBUTE,TWO' __ 

If the record is the last in the group, two segment marks mark the end 
and the item length field will point to the second segment mark. The 
record length is 4 bytes long and represents the number of characters 
from the beginning of the record length to the end of the last attribute 
on the record inclusive. Thus the maximum size of a record is 32Kbytes. 
This restriction is to be lifted in the next major enhancement of Pick. 
Open Architecture. 

The physical format of the data can be displayed by the DUMP verb. 
The syntax is 

DUMP frameid1-frameid2 options 

Frameid can be in decimal or, if preceded by a full stop, in hexade­
cimal. Options available include: 

Option 

G 

L 

N 

P 

X 

Meaning 

The dump is to be a dump of the whole group beginning at 
frameidl. The display continues by dumping further frames 
following the forward links. 

Display the links only. 

Do not wait for carriage return to be pressed at the end of a 
page of output. 

The DUMP display is to be sent to the printer. 

Data is displayed with the hexadecimal ASCII codes as well 
as in character format. 

Chapter 7 

The first twelve bytes of any frame contain information about the 
frame. Thus bytes 12-511 are available for data. More specifically: 

Byte 0 
Byte I 
Bytes 2-5 
Bytes 6-l) 
Byte 10 
Byte II 
Bytes 12-511 

- Unused. 
- Number of forward linked contiguous frames 
- Next linked frame ID 
- Previous linked frame ID 
- Number of backward linked contiguous frames 
- Unused 
- Data 

A data record can only appear within the data portion of a frame. 
Physically. records are arranged with a record length. followed by the 
item ID followed by the record attributes. The last attribute is termin­
ated by an attribute mark. and the end of the item is designated by a 
segment mark (ASCII character 255). like this: 

0029ITEM-1D -A TTRIBUTE,ONE· A TTRIBUTE,TWO· __ 

If the record is the last in the group. two segment marks mark the end 
and the item length field will point to the second segment mark. The 
record length is 4 bytes long and represents the number of characters 
from the beginning of the record length to the end of the last attribute 
on the record inclusive. Thus the maximum size of a record is 32Kbytes. 
This restriction is to be lifted in the next major enhancement of Pick. 
Open Architecture. 

The physical format of the data can be displayed by the DUMP verb. 
The syntax is 

DUMP frameidl-frameid2 options 

Frameid can be in decimal or, if preceded by a full stop. in hexade­
cimal. Options available include: 

Option 

G 

L 

N 

P 

X 

Meaning 

The dump is to be a dump of the whole group beginning at 
frameidl. The display continues by dumping further frames 
following the forward links. 

Display the links only. 

Do not wait for carriage return to be pressed at the end of a 
page of output. 

The DUMP display is to be sent to the printer. 

Data is displayed with the hexadecimal ASCII codes as well 
as in character format. 



More aboUl the Database 87 

Figure 7.6 shows the output produced hy a DUMP command with 
the hexadecimal option. 

DUMP 24356 X 

FID: 2435(, II 0 () 0 ( SF24 : (J 11 () 0 ) 

(1001 303OJS],) Mill I JI32 3334FE41 6C706861 1 :00S9IiAI231I'Alphn: 
0011 20496E64 75737472 69657320 4C7464FE 17 : Industries Ltd" : 
0021 'l2'l'i3R2() 4S61(,C73 74(,56164 20436C6F JJ :2513 Halstead no: 
0031 7'l61FD52 616lJ73G2 6F74746F 6DFD4C61 49 : se IRamsbol tor;] j La: 
0041 f,E6'l6171 6fl(,9726'l FE4D7220 536D6974 65 :ncashire'flr Smi I: 
0051 bll2EFF'll 30l030FE FF303033 44485337 fll :h.A5000' 003DIIS7 : 
0061 16l5341'T 5109676D 61204C74 64FE3120 97 :654 ASigma Ltd" 1 : 
0071 'i46F776E 20537175 617265FD 4C656963 113 :Town Squnre]Leic: 
OOS] 65737465 72FE4D72 2042726F 776EFE31 12') :ester"'Mr Brown Al : 
009] ]0311303U F[FFlUlU 35414542 '19393939 11,5 :0000' _OOSAEB99'l9: 
OOAI FE426574 61 :i()lllb F 72706F72 (,) 74696F 161 : 'Ileta Corporalio: 
(JOlll hl:204'!6E 611Tl'IlIJ l6353020 53746169 177 : n Inc'90650 Stili: 
OUII 6E746F6E :'()4L(,F75 6C657l>6l n(,4F!J51 193 :nLon 1l0ulevardlS: 
OODI 616E2044 r,96567(,F FD4J61FD 555]!~lFE 209 :<In Diego ICa jIISA': 
OOEl 42204C69 n746572 FE3U(J30 30]OFEFF 225 :ll ListerAlOr)()(J' : 
OOFI FFFEFFFF 113OJ030 30FEFFFF FE353o:l0 241 10000' "SOU: 
U101 'IOITITI'!" FLllllC;FB 45454545 45454545 257 :0' ,_05 [EEEEEEE1,: 

Fig. 7.6. The type of output produced by DUMP with an X option, 

GROUP FORMAT ERRORS 

Any computer system can he subject to unforeseen events, such as a 
sudden power failure or a hardware failure. The Pick Operating System, 
in common with many others, does not take kindly to an uncontrolled 
shutdown. If such an event takes place and the computer is in the 
process of updating a record, the record might not be written away in 
exactly the correct format. Consequently the data cannot be read prop­
erlyand appears to be corrupted. We call this problem a 'group format 
error' . 

This is not to say that group format errors cannot be coped with. 
Indeed it is the mark of a good operating system that such serious 
problems are rare, but can be fixed. 

A group format error (GFE) occurs when an item length appears to 
be incorrect, or forward/backward links are incorrect. It can also occur 
in process workspace, as a 'phantom' GFE. A group format error is 
probably the nastiest problem that can be encountered on a Pick system. 
Fortunately, it is probably one of the rarest. 

More about the Database 87 

Figure 7.6 shows the output produced by a DUMP command with 
the hexadecimal option. 

DUMP 24356 X 

FID: 2435(, () 0 0 0 ( 51'24 : (J 0 0 0 ) 

(JOOI 3030353') 48413132 33341'1'41 6C706861 I :0059I1AI234'Alph3: 
0011 2049f)E64 75737472 69657320 4C7464FE 17 : Industries Ltd' : 
0021 32353820 48616C73 74656164 20436C6F 33 :258 Halstead Clo: 
003] 7365FDS2 616D7J62 61'747461' 6DFD4C61 49 :se]RamsbottomlLu: 
0041 6E636173 68697265 FE4D7220 536D6974 (,5 : ncash i re '~lr Smil : 
0051 682EFEJ,) 303030FE FF303033 44485337 81 :h. '5000' 003DIIS7: -
0061 3635341'1' 5369676D 61204C74 64FD120 'J? :654'Sigma Lt d' I : 
0071 546f"776E 2(JS37175 617265FD 4C656963 113 :Town SquarelLeic: 
OOSI G57374(,S 72FE4D72 2042726F 776EFE31 129 :ester'~lr Brown'l : 
0091 3030303U FEFF303U 35414542 'j'J393939 145 :0000' 005AEB99Q9: 
(JOA] FE426,)74 ()] 204 'J6F 727061'72 61746961' 161 : 'Beta -Corporatio: 
OOBI 6E2049GE 63FE3910 363')3020 53746169 177 :n Inc'90650 Stili: 
OUCI (,E74(,F6E 2()42hF7'l 6C6,) 7(,6 I 72()4FD,)3 1<)3 :nton lloulevclrd ]S: 
OOlll (, I () E2044 (,9(, ')6 76F FD4361FD 555341FE 209 :iJ.n lliego]Ca]lISA': 
OOEI 42204C(,9 7'l74(,S72 FDI303U 3030FEFF 225 :Fl Lister'1000G' : 
OOFI FFFEFFFI' 313lJJ01O 3GFEFFFF FE35303G 241 10GOO' 'SOU: 
()101 30FEFF'FF fF~)J5FR 4'l4~4,)45 45454545 257 :O'=-G5[ EEEEEEICI,: 

Fig. 7.6. The type of output produced by DUMP with an X option. 

GROUP FORMAT ERRORS 

Any computer system can be subject to unforeseen events, such as a 
sudden power failure or a hardware failure. The Pick Operating System, 
in common with many others, does not take kindly to an uncontrolled 
shutdown. If such an event takes place and the computer is in the 
process of updating a record, the record might not be written away in 
exactly the correct format. Consequently the data cannot be read prop­
erly and appears to be corrupted. We call this problem a 'group format 
error' . 

This is not to say that group format errors cannot be coped with. 
Indeed it is the mark of a good operating system that such serious 
problems are rare, but can be fixed. 

A group format error (GFE) occurs when an item length appears to 
be incorrect, or forward/backward links are incorrect. It can also occur 
in process workspace, as a 'phantom' GFE. A group format error is 
probably the nastiest problem that can be encountered on a Pick system. 
Fortunately, it is probably one of the rarest. 



88 Chapter 7 

What is of concern is that encountering a group format error can lose 
user data and can require a great deal of technical expertise to sort out. 
It almost certainly means that something is wrong with the computer 
hardware or that a system mode has been corrupted. 

Systems where assembler language programming is going on are big 
trouble where GFEs are concerned. Assembler language programming 
should never be carried out on live and working systems. Ideally. if 
assembler language programming must be done the programmer should 
have his own system and he can live with his own problems. This is the 
main reason why manufacturers are so reluctant to release the assemb­
ler and will cancel maintenance contracts where assembler language 
programming is carried out. Only very experienced and competent 
personnel should carry out assembler programming and a very good 
reason should be required before any assembler programming is under­
taken. The system provides enough utilities to be able to solve an) 
normal data processing requirement without recourse to the assembler. 

A group format error is reported by the system. Without warning: 

GROUP FORMAT ERROR nnnnn 

will appear. nnnnn will be the frame id of the frame where the problem 
has occurred. At the moment that the GFE is reported. the system 
administrator should endeavour to stop any further processing on the 
system. Users should not log off at this point but simply stop. Make a 
note of nnnnn and DUMP the frame to try to establish what file is 
affected. The GFE handler will have been invoked on the process which 
detected the GFE and will be prompting for action. Valid actions are: 

D - enter the system debugger 

E - end the process and exit to TeL 

F - allow the GFE handler t,o try to fix the GFE and the process will 
continue. This is not recommended! The GFE handler will simply 
put an end of group mark at the end of the last piece of good data. 
Any records which are in the same group but begin after this point 
will effectively be lost. To recover the lost records the GFE still has 
to be fixed, or the records restored from the last back up. If the data 
has changed it will have to be reentered. 

It is best to do nothing on the terminal where the GFE has 
occurred but go to another terminal and DUMP the frame where 
the GFE has been reported. 

If the file can be positively identified the question is how does 
the GFE manifest itself? 

88 Chapter 7 

What is of concern is that encountering a group format error can lose 
user data and can require a great deal of technical expertise to sort out. 
It almost certainly means that something is wrong with the computer 
hardware or that a system mode has been corrupted. 

Systems where assembler language programming is going on are big 
trouble where GFEs are concerned. Assembler language programming 
should never be carried out on live and working systems. Ideally. if 
assembler language programming must be done the programmer should 
have his own system and he can live with his own problems. This is the 
main reason why manufacturers are so reluctant to release the assemb­
ler and will cancel maintenance contracts where assembler language 
programming is carried out. Only very experienced and competent 
personnel should carry out assembler programming and a very good 
reason should be required before any assembler programming is under­
taken. The system provides enough utilities to be able to solve any 
normal data processing requirement without recourse to the assembler. 

A group format error is reported by the system. Without warning: 

GROUP FORMAT ERROR nnnnn 

will appear. nnnnn will be the frame id of the frame where the problem 
has occurred. At the moment that the GFE is reported. the system 
administrator should endeavour to stop any further processing on the 
system. Users should not log off at this point but simply stop. Make a 
note of nnnnn and DUMP the frame to try to establish what file is 
affected. The GFE handler will have been invoked on the process which 
detected the GFE and will be prompting for action. Valid actions are: 

D - enter the system debugger 

E - end the process and exit to TeL 

F - allow the GFE handler t.o try to fix the GFE and the process will 
continue. This is not recommended! The GFE handler will simply 
put an end of group mark at the end of the last piece of good data. 
Any records which are in the same group but begin after this point 
will effectively be lost. To recover the lost records the G FE still has 
to be fixed, or the records restored from the last back up. If the data 
has changed it will have to be reentered. 

It is best to do nothing on the terminal where the GFE has 
occurred but go to another terminal and DUMP the frame where 
the GFE has been reported. 

If the file can be positively identified the question is how does 
the GFE manifest itself? 



More about the Database 

It is likely to be of one or more of the following classes: 

(1) The item length is incorrect. 

(2) The item length is not a hexadecimal number. 

89 

(3) The item does not terminate with an attribute mark - segment mark 
sequence. 

(4) The item-id hashes into the wrong group. 

(5) The frame linkages are incorrect, in this case the forward link 
probably points to another file. or a spooler entry. The backward 
link of the forward link frame may not point back to the forward 
linking frame. 

(6) No data is identifiable as records. This is probably a phantom GFE, 
that is. it is in the user's workspace. Logoff the offending process 
and the GFE should go away. 

If technical help is not immediately available and the GFE is in a file 
where critical data appears. the following procedure might help: 

First stop all users from carrying on work. They should not log off, 
just stop using the computer. If the frame where the GFE is has got 
mixed up with the free disk space table. it could get re-used by another 
user and the problem will be made worse. 

Then T-DUMP the file using the syntax T-DUMP ONLY filename if 
there are default dictionary items. This will dump most of the good 
items to the tape with the GFE being reported in the bad group. 

Next use the editor to delete the D poillter which defines the data 
portion of the file (ED DIeT filename filename then FD). This will 
mean that the frames currently being used by the file will be 'black 
holed' and cannot be used by any process. Furthermore, if there is any 
conflict over linkages (forward linking into a print file for instance), the 
conflict is removed. Do not try to DELETE-FILE the file because the 
frames used will be returned to the overflow table for reuse. If some of 
the frames are already being used by a print file the GFE could come 
back again. 

Now recreate the data section of the file via 

CREATE-FILE (DATA filename mod, sep 

where mod and sep are the original modulo and separation of the data 
file. This will allocate a new set of frames to the file. 

The next thing that has to be done is to fill up the data file. To do this 
SEL-RESTORE the file from the last back up. 

To bring the file up to date as much as possible T-LOAD the file 

More about the Database 

It is likely to be of one or more of the following classes: 

(I) The item length is incorrect. 

(2) The item length is not a hexadecimal number. 

89 

(3) The item does not terminate with an attribute mark - segment mark 
sequence. 

(4) The item-id hashes into the wrong group. 

(5) The frame linkages are incorrect, in this case the forward link 
probably points to another file, or a spooler entry. The backward 
link of the forward link frame may not point back to the forward 
linking frame. 

(6) No data is identifiable as records. This is probably a phantom GFE, 
that is, it is in the user's workspace. Logoff the offending process 
and the GFE should go away. 

If technical help is not immediately available and the GFE is in a file 
where critical data appears, the following procedure might help: 

First stop all users from carrying on work. They should not log off, 
just stop using the computer. If the frame where the GFE is has got 
mixed up with the free disk space table, it could get re-used by another 
user and the problem will be made worse. 

Then T-DUMP the file using the syntax T-DUMP ONLY filename if 
there are default dictionary items. This will dump most of the good 
items to the tape with the GFE being reported in the bad group. 

Next use the editor to delete the 0 pointer which defines the data 
portion of the file (ED DICT filename filename then FD). This will 
mean that the frames currently being used by the file will be 'black 
holed' and cannot be used by any process. Furthermore, if there is any 
conflict over linkages (forward linking into a print file for instance), the 
conflict is removed. Do not try to DELETE-FILE the file because the 
frames used will be returned to the overflow table for reuse. If some of 
the frames are already being used by a print file the GFE could come 
back again. 

Now recreate the data section of the file via 

CREATE-FILE (DATA filename mod, sep 

where mod and sep are the original modulo and separation of the data 
file. This will allocate a new set of frames to the file. 

The next thing that has to be done is to fill up the data file. To do this 
SEL-RESTORE the file from the last back up. 

To bring the file up to date as much as possible T-LOAD the file 



90 Chapter 7 

from the T-DUMP tape that was used earlier. Use the (0) overlay 
option so that records that have changed will he restored correctly. 

Now delete any items that were deleted from the file since the last 
file save. The SEL-RESTORE brought these back. Additionally, if any 
records that were in the group with the GFE had been changed since the 
file save, the changes have to be done again since these will not have 
been present on the T-DUMP. The only data missing now is any data 
which has been created since the last file save and which happened to 
hash into the bad group. Adequate manual procedures should exist so 
that this can be done. 

90 Chapter 7 

from the T-DUMP tape that was used earlier. Use the (0) overlay 
option so that records that have changed will be restored correctly. 

Now delete any items that were deleted from the file since the last 
file save. The SEL-RESTORE brought these back. Additionally, if any 
records that were in the group with the GFE had been changed since the 
file save, the changes have to be done again since these will not have 
been present on the T-DUMP. The only data missing now is any data 
which has been created since the last file save and which happened to 
hash into the bad group. Adequate manual procedures should exist so 
that this can be done. 



Chapter 8 
Pick and Security 

Pick provides many facilities to ensure that the computer is secure. This 
is because the subject of security is approached from many different 
angles. The system administrator will want to ensure that his system 
cannot be accessed by unauthorised users, and also that authorised users 
may only access data to which they are entitled. Technical considera­
tions, such as record locking, are dealt with in the chapter on BASIC. 

Most of this chapter deals with the SYSTEM dictionary. The 
SYSTEM dictionary is the highest level file in the database hierarchy 
(see Chapter 3). It contains records whose item-ids arc the same as the 
account names which are available on the computer. 

The SYSTEM dictionary can be accessed as an ordinary file by 
logging to the SYSPROG account. Thus the following procedure may 
be used to edit the SYSTEM entry for the ADMIN account: 

LOGTO SYSPROG 
PASSWORD: 

then at TCL enter 

ED SYSTEM ADMIN 

PASSWORDS 

The first level of security for the system is password protection, which 
may be applied to any account, and ought to be applied to all accounts. 
When a user enters a valid account name at the LOGON prompt, or 
tries to LOGTO another account from TCL, he will be confronted with 
a PASSWORD prompt. Before he will be allowed to log on to the 
account he must type the correct password. If he gets the password 
wrong he will be returned to the LOGON prompt. An unauthorised 
attempt to LOGTO the account from another will result in the user 
being returned to TCL in his original account. 

A utility is provided within SYSPROG for setting or changing 
the passwords of accounts. This utility is Invoked by typing the word 
PASSWORD at TCL. The program prompts for the account name and 

91 

Chapter 8 
Pick and Security 

Pick provides many facilities to ensure that the computer is secure. This 
is because the subject of security is approached from many different 
angles. The system administrator will want to ensure that his system 
cannot be accessed by unauthorised users, and also that authorised users 
may only access data to which they are entitled. Technical considera­
tions, such as record locking, are dealt with in the chapter on BASIC. 

Most of this chapter deals with the SYSTEM dictionary. The 
SYSTEM dictionary is the highest level file in the database hierarchy 
(see Chapter 3). It contains records whose item-ids are the same as the 
account names which are available on the computer. 

The SYSTEM dictionary can be accessed as an ordinary file by 
logging to the SYSPROG account. Thus the following procedure may 
be used to edit the SYSTEM entry for the ADMIN account: 

LOGTO SYSPROG 
PASSWORD: 

then at TCL enter 

ED SYSTEM ADMIN 

PASSWORDS 

The first level of security for the system is password protection, which 
may be applied to any account, and ought to be applied to all accounts. 
When a user enters a valid account name at the LOGON prompt, or 
tries to LOGTO another account from TCL, he will be confronted with 
a PASSWORD prompt. Before he will be allowed to log on to the 
account he must type the correct password. If he gets the password 
wrong he will be returned to the LOGON prompt. An unauthorised 
attempt to LOGTO the account from another will result in the user 
being returned to TCL in his original account. 

A utility is provided within SYSPROG for setting or changing 
the passwords of accounts. This utility is invoked by typing the word 
PASSWORD at TCL. The program prompts for the account name and 

91 



92 Chapter 8 

the new password and then stores a code representing the new password 
in the SYSTEM dictionary. 

Many systems have this kind of password protection, but it can be 
overridden because some facility is provided by which the user may look 
up the password. The Pick password system works by storing a password 
checksum on attribute 7 of the SYSTEM dictionary'. This may be 
edited but will give no clue as to the actual password. When the user 
types a password at LOGON the system takes whatevcr he has entered 
as a password and calculates a checksum. This calculated checksum is 
compared with the checksum stored on the SYSTEM dictionary. If they 
match the user is logged on, if not, he is not allowed to log on. 

However, this checksum may be edited out of the SYSTEM diction­
ary. If this happens, the password protection is removed and no pass­
word check is carried out. Password protection will also be removed if 
the checksum is changed to non hexadecimal data. The unscrupulous 
user may then LOGTO the protected account without being hindered 
by a password. Nevertheless, unless he replaces the checksum when he 
has finished, the unauthorised access will be detected because the sys­
tem administrator will notice that the password protection has dis­
appeared from the account. 

This unauthorised access will only have been possible if the user 
were able to gain access to the SYSTEM dictionary. Clearly the 
SYSTEM dictionary should be protected if any data is to be secure. 
SYSTEM should only be accessible from SYSPROG. If SYSPROG is 
properly password protected, naive users will not be able to remove 
password protection from accounts. This is because they will need to 
access SYSTEM to access the password protection. To access SYSTEM 
they first must LOGTO SYSPROG. If SYSPROG is password pro­
tected they cannot, without first removing password protection from 
SYSPROG. To do that they need to access SYSTEM - back to square 
one! 

UPDA TE AND RETRIEVAL LOCKS 

If the unauthorised user has technical knowledge, he can break out of 
this circle by creating a Q pointer in the master dictionary of his 
(authorised) account. If he can get to TeL and knows how to use the 
editor and the format of a Q pointer to SYSTEM, then he has enough 

L McDonnell Douglas, Revelation and Information hold the password on attribute 7 as a 
password, not a checksum. On these systems the password may be viewed and changed 
with the editor. 

92 Chapter 8 

the new password and then stores a code representing the new password 
in the SYSTEM dictionary. 

Many systems have this kind of password protection. but it can be 
overridden because some facility is provided by which the user may look 
up the password. The Pick password system works by storing a password 
checksum on attribute 7 of the SYSTEM dictionari. This may be 
edited but will give no clue as to the actual password. When the user 
types a password at LOGON the system takes whatever he has entered 
as a password and calculates a checksum. This calculated checksum is 
compared with the checksum stored on the SYSTEM dictionary. If they 
match the user is logged on, if not, he is not allowed to log on. 

However, this checksum may be edited out of the SYSTEM diction­
ary. If this happens, the password protection is removed and no pass­
word check is carried out. Password protection will also be removed if 
the checksum is changed to non hexadecimal data. The unscrupulous 
user may then LOGTO the protected account without being hindered 
by a password. Nevertheless, unless he replaces the checksum when he 
has finished, the unauthorised access will be detected because the sys­
tem administrator will notice that the password protection has dis­
appeared from the account. 

This unauthorised access will only have been possible if the user 
were able to gain access to the SYSTEM dictionary. Clearly the 
SYSTEM dictionary should be protected if any data is to be secure. 
SYSTEM should only be accessible from SYSPROG. If SYSPROG is 
properly password protected, naive users will not be able to remove 
password protection from accounts. This is because they will need to 
access SYSTEM to access the password protection. To access SYSTEM 
they first must LOGTO SYSPROG. If SYSPROG is password pro­
tected they cannot, without first removing password protection from 
SYSPROG. To do that they 'need to access SYSTEM - back to square 
one! 

UPDATE AND RETRIEVAL LOCKS 

If the unauthorised user has technical knowledge, he can break out of 
this circle by creating a Q pointer in the master dictionary of his 
(authorised) account. If he can get to TCL and knows how to use the 
editor and the format of a Q pointer to SYSTEM, then he has enough 

i. McDonnell Douglas, Revelation and Information hold the password on attribute 7 as a 
password, not a checksum. On these systems the password may be viewed and changed 
with the editor. 



Pick and Security 93 

knowledge to do this. System administrators who think that their users 
will not have access to this information should consider that anyone who 
reads this book will be armed with enough knowledge to do this. Clearly 
some other mechanism is required to protect SYSTEM and this is 
available in the form of update and retrieval locks. 

Update locks prevent unauthorised processes from updating pro­
tected information. Retrieval locks prevent unauthorised processes 
from even reading the data that they protect. Retrieval locks are set by 
placing codes in attribute 5 of a file-defining item. Update locks are set 
by placing codes in attribute 6 of a file-defining item. The keys to the 
locks are distributed automatically at LOGON time. The retrieval keys 
that an authorised user gains are held in attribute 5 of his SYSTEM 
entry. The update keys are in attribute 6. He may update any file which 
has locks which match his update keys. plus any file which has a subset 
of his update keys. Similarly for retrieval. Both the locks and the keys 
may be multi-character and multi-valued but there is a significant differ­
ence between multi-character codes and multi-valued codes. 

If a user obtains a retrieval key of ABC he may access any file which 
has a lock of A. AB or ABC if. however. his key is A(value mark)B(va­
lue mark)C the files that he may access will have keys of A. Bar C. Files 
locked by AB. without a value mark. will be forbidden. Each of the 
values of the retrieval keys is regarded as a separate key and so any 
subset of any of the keys will be allowed. 

The system of update and retrieval locks and codes enables the 
system administrator to protect the SYSTEM file. If the SYSTEM file is 
retrieval protected. then only users whose privileges allow them will 
be able to edit. and therefore remove, password protection. The 
SYSPROG account should be the only account whose retrieval key 
matches the SYSTEM retrieval lock. Thus only an authorised LOGTO 
SYSPROG will allow the SYSTEM file to be viewed. Because the 
password protection cannot be removed from SYSPROG, unauthorised 
accesses are prevented and the SYSTEM file is safe. The potential user 
may now create Q pointers to SYSTEM from his own account but he 
will still not be able to access it. He will be rewarded by the system 
responding with 

[2101 FILE 'SYSTEM' IS ACCESS PROTECTED. 

and returning him to TCL. 
Any file may be similarly protected but good security starts with the 

SYSTEM file. Any computer which has the SYSTEM file unprotected 
can be broken into because it is this file which contains the keys to the 

Pick and Security 93 

knowledge to do this. System administrators who think that their users 
will not have access to this information should consider that anyone who 
reads this book will be armed with enough knowledge to do this. Clearly 
some other mechanism is required to protect SYSTEM and this is 
available in the form of update and retrieval locks. 

Update locks prevent unauthorised processes from updating pro­
tected information. Retrieval locks prevent unauthorised processes 
from even reading the data that they protect. Retrieval locks are set by 
placing codes in attribute 5 of a file-defining item. Update locks are set 
by placing codes in attribute 6 of a file-defining item. The keys to the 
locks are distributed automatically at LOGON time. The retrieval keys 
that an authorised user gains are held in attribute 5 of his SYSTEM 
entry. The update keys are in attribute 6. He may update any file which 
has locks which match his update keys, plus any file which has a subset 
of his update keys. Similarly for retrieval. Both the locks and the keys 
may be multi-character and multi-valued but there is a significant differ­
ence between multi-character codes and multi-valued codes. 

If a user obtains a retrieval key of ABC he may access any file which 
has a lock of A, AB or ABC; if. however, his key is A(value mark)B(va­
lue mark)C the files that he may access will have keys of A, B or C. Files 
locked by AB, without a value mark, will be forbidden. Each of the 
values of the retrieval keys is regarded as a separate key and so any 
subset of any of the keys will be allowed. 

The system of update and retrieval locks and codes enables the 
system administrator to protect the SYSTEM file. If the SYSTEM file is 
retrieval protected, then only users whose privileges allow them will 
be able to edit, and therefore remove, password protection. The 
SYSPROG account should be the only account whose retrieval key 
matches the SYSTEM retrieval lock. Thus only an authorised LOGTO 
SYSPROG will allow the SYSTEM file to be viewed. Because the 
password protection cannot be removed from SYSPROG, unauthorised 
accesses are prevented and the SYSTEM file is safe. The potential user 
may now create Q pointers to SYSTEM from his own account but he 
will still not be able to access it. He will be rewarded by the system 
responding with 

[210] FILE 'SYSTEM' IS ACCESS PROTECTED. 

and returning him to TCL. 
Any file may be similarly protected but good security starts with the 

SYSTEM file. Any computer which has the SYSTEM file unprotected 
can be broken into because it is this file which contains the keys to the 



94 Chapter 8 

other accounts and the password checksums. If SYSTEM is protected, 
the only way to break into the system is via the symbolic debugger. Only 
an assembler programmer would be competent to do this. 

PREVENTING ACCESS TO TCL 

In some situations it may not be desirable to allow users to reach TCL. 
The system administrator may not want the people who are entering 
data to have the opportunity of using Access. 

For the system administrator who wishes to stop his users getting to 
TCL, the system debugger poses a problem. Clearly, his menus and 
programs may not in themselves allow the user to reach TCL, but if the 
user hits the break key and types END the system will very kindly 
deposit him at TCL. The menus and programs may have inhibited the 
use of the break key. This is acceptable with mature software, where the 
system manager knows there are no bugs and so no situations where 
infinite loops or even less serious program errors may occur. The 
problem is that even in the best written software the occasion will arise 
where pressing the break key is the best way out, for instance a situation 
where a terminal has accidentally been switched off. For this reason the 
break key should only be inhibited for short periods of time. 

Pick does provide an answer to this problem of the system debugger. 
When accounts are created, a file defining item is placed in the 
SYSTEM dictionary. The justification field (attribute 9) is set at L. If the 
system manager changes this to R, the effect is to prevent escapes to 
TCL from the system debugger. When the user types END in the system 
debugger in an account with R justification the system executes the 
LOGON proc for that account and does not trap to TCL. In addition, 
the user can be prevented from typing anything but END, OFF, G or P 
while in the system debugger by his being assigned lower privileges. 
When the account is created via the CREATE-ACCOUNT facility in 
SYSPROG, the system prompts for the privileges to be assigned to any 
user logging on to the account. Basically the choices are SYS2, SYS 1 
and SYSO. A user obtaining SYS2 privileges cannot be prevented from 
using the system debugger or any other operation once at the TCL level. 
A user with SYSI privileges will not be able to use the system debugger. 
In addition, he will not be able to use the frame DUMP utility at TCL, 
initiate file saves or use the assembler and mode load (MLOAD) 
facilities. A user with SYSO privileges cannot do any of these either. In 
addition, he will be precluded from updating his master dictionary, 

94 Chapter 8 

other accounts and the password checksums. If SYSTEM is protected, 
the only way to break into the system is via the symbolic debugger. Only 
an assembler programmer would be competent to do this. 

PREVENTING ACCESS TO TCL 

In some situations it may not be desirable to allow users to reach TCL. 
The system administrator may not want the people who are entering 
data to have the opportunity of using Access. 

For the system administrator who wishes to stop his users getting to 
TCL, the system debugger poses a problem. Clearly, his menus and 
programs may not in themselves allow the user to reach TCL, but if the 
user hits the break key and types END the system will very kindly 
deposit him at TCL. The menus and programs may have inhibited the 
use of the break key. This is acceptable with mature software, where the 
system manager knows there are no bugs and so no situations where 
infinite loops or even less serious program errors may occur. The 
problem is that even in the best written software the occasion will arise 
where pressing the break key is the best way out, for instance a situation 
where a terminal has accidentally been switched off. For this reason the 
break key should only be inhibited for short periods of time. 

Pick does provide an answer to this problem of the system debugger. 
When accounts are created, a file defining item is placed in the 
SYSTEM dictionary. The justification field (attribute 9) is set at L. If the 
system manager changes this to R, the effect is to prevent escapes to 
TCL from the system debugger. When the user types END in the system 
debugger in an account with R justification the system executes the 
LOGON proc for that account and does not trap to TCL. In addition, 
the user can be prevented from typing anything but END, OFF, GorP 
while in the system debugger by his being assigned lower privileges. 
When the account is created via the CREATE-ACCOUNT facility in 
SYSPROG, the system prompts for the privileges to be assigned to any 
user logging on to the account. Basically the choices are SYS2, SYSI 
and SYSO. A user obtaining SYS2 privileges cannot be prevented from 
using the system debugger or any other operation once at the TCL level. 
A user with SYSI privileges will not be able to use the system debugger. 
In addition, he will not be able to use the frame DUMP utility at TCL, 
initiate file saves or use the assembler and mode load (MLOAD) 
facilities. A user with SYSO privileges cannot do any of these either. In 
addition, he will be precluded from updating his master dictionary, 



Pick and Security 95 

creating files or using the tape facilities in any way. A system manager 
employing these techniques may feel that his data is safe and unautho­
rised update or disclosure may be prevented. 

User privileges may be changed by editing the SYSTEM entry for 
the relevant account. They will be found on attribute 8. 

UPDA TING THE ACC HISTORY FILE 

One more detail of the account defining item in SYSTEM that the 
system manager might find useful is the ability to update the accounting 
(ACe) file with LOGON and LOGOFF details. This would result in an 
audit trail of each access of the various accounts. The ACC file will hold 
details of: the line which accessed the account; the time and date at 
which the access occurred; how long the user was logged on; the number 
of CPU units used; and the number of printer pages that were created. 
This information may be listed at any time by the system manager typing 
LIST ACC in SYSPROG at TCL, or LIST ACC 'SMITH#l' will give 
the access details for the account SMITH on line 1. 

This process is initiated by having a U in the justification field of the 
account's SYSTEM entry. If the restart option for inhibiting access to 
TCL from the system debugger as discussed above is also required, then 
the justification field may be RU. 

If the update facility is being used, the system manager should note 
that the system will not automatically carry out any housekeeping. The 
ACC file will continue to grow, adding details of each access until it is 
manually cleared. Failure to regularly clear the ACC file will both 
increase the time required for LOGON and use unnecessary disk space. 
If the ACC file is to be cleared by means of the CLEAR-FILE verb, 
then it should only be done when there are no other users on the system 
and should be immediately followed by logging off. This is because the 
ACC file also holds details of the current users on the system. If the 
ACC file is cleared and any routine is executed which accesses informa­
tion about the current users, for instance the user exit U50BB, then all 
the users will appear to be logged onto an account called UNKNOWN. 
LISTU will return [401] NO ITEMS PRESENT because this is simply 
an Access listing of the ACC file. 

Pick and Security 95 

creating files or using the tape facilities in any way. A system manager 
employing these techniques may feel that his data is safe and unautho­
rised update or disclosure may be prevented. 

User privileges may be changed by editing the SYSTEM entry for 
the relevant account. They will be found on attribute 8. 

UPDA TING THE ACC HISTORY FILE 

One more detail of the account defining item in SYSTEM that the 
system manager might find useful is the ability to update the accounting 
(ACC) file with LOGON and LOGOFF details. This would result in an 
audit trail of each access of the various accounts. The ACC file will hold 
details of: the line which accessed the account; the time and date at 
which the access occurred; how long the user was logged on; the number 
of CPU units used; and the number of printer pages that were created. 
This information may be listed at any time by the system manager typing 
LIST ACC in SYSPROG at TCL. or LIST ACC 'SMITH#l' will give 
the access details for the account SMITH on line 1. 

This process is initiated by having a U in the justification field of the 
account's SYSTEM entry. If the restart option for inhibiting access to 
TCL from the system debugger as discussed above is also required, then 
the justification field may be RU. 

If the update facility is being used. the system manager should note 
that the system will not automatically carry out any housekeeping. The 
ACC file will continue to grow, adding details of each access until it is 
manually cleared. Failure to regularly clear the ACC file will both 
increase the time required for LOGON and use unnecessary disk space. 
If the ACC file is to be cleared by means of the CLEAR-FILE verb, 
then it should only be done when there are no other users on the system 
and should be immediately followed by logging off. This is because the 
ACC file also holds details of the current users on the system. If the 
ACC file is cleared and any routine is executed which accesses informa­
tion about the current users, for instance the user exit U50BB, then all 
the users will appear to be logged onto an account called UNKNOWN. 
LISTU will return [401] NO ITEMS PRESENT because this is simply 
an Access listing of the ACC file. 





Chapter 9 
Archiving the Database 

The subject of computer security would not be complete without some 
discussion on the topic of recovery procedures, i.e. what do you do 
when the computer breaks down and the data on the system is lost? 

On a typical computer which is used in a business environment, it is 
essential to be able to recover from a disaster. The prospect of losing the 
company's data is simply unthinkable. Yet it can happen. During the life 
of any computer running any operating system it probably will happen. 
All we can do is minimise the effects of a system crash by having sensible 
back up procedures. 

Pick provides three methods of backing up the database onto magne­
tic media, usually a tape device. These methods are to save the whole 
database. a single account, or a single file. 

SA VING THE WHOLE OAT ABASE 

On the system administrator's account, SYSPROG, there is a verb to 
make a logical save of the whole database. This verb is FILE-SAVE. 
When this command is given, every account is saved on the tape 
together with all the files within those accounts. Any data in overflow 
space on the disk is saved with the data from the primary space. On 
most Pick computers a file-save tape begins with a dump of a boot 
program and the assembler programs making up the operating system. 
This is referred to as the ABS (assembler and boot strap) section. The 
ABS section is followed by the data from the database, account by 
account. 

This procedure can be modified to save a selection of accounts by 
editing a DX into attribute 1 of the account defining items in the 
SYSTEM dictionary. Any account which has a DX instead of a D will be 
omitted from the FILE-SAVE. When using this method, be sure to 
return the DXs to Ds when the save has been completed, otherwise the 
accounts will not be saved on subsequent archives. 

97 

Chapter 9 
Archiving the Database 

The subject of computer security would not be complete without some 
discussion on the topic of recovery procedures, i.e. what do you do 
when the computer breaks down and the data on the system is lost? 

On a typical computer which is used in a business environment, it is 
essential to be able to recover from a disaster. The prospect of losing the 
company's data is simply unthinkable. Yet it can happen. During the life 
of any computer running any operating system it probably will happen. 
All we can do is minimise the effects of a system crash by having sensible 
back up procedures. 

Pick provides three methods of backing up the database onto magne­
tic media, usually a tape device. These methods are to save the whole 
database, a single account, or a single file. 

SAVING THE WHOLE DATABASE 

On the system administrator's account, SYSPROG, there is a verb to 
make a logical save of the whole database. This verb is FILE-SA YE. 
When this command is given, every account is saved on the tape 
together with all the files within those accounts. Any data in overflow 
space on the disk is saved with the data from the primary space. On 
most Pick computers a file-save tape begins with a dump of a boot 
program and the assembler programs making up the operating system. 
This is referred to as the ABS (assembler and boot strap) section. The 
ABS section is followed by the data from the database, account by 
account. 

This procedure can be modified to save a selection of accounts by 
editing a DX into attribute 1 of the account defining items in the 
SYSTEM dictionary. Any account which has a DX instead of a D will be 
omitted from the FILE-SA YE. When using this method, be sure to 
return the DXs to Ds when the save has been completed, otherwise the 
accounts will not be saved on subsequent archives. 

97 



98 Chapter 9 

RESTORING THE WHOLE DATABASE 

In the event of disaster, the whole database can be restored from the 
initial power up of the computer. The precise details vary from compu­
ter to computer but eventually the terminal connected to line 0 will 
display a prompt saying OPTION followed by a list of possible options, 
amongst which will be F. The F option carries out a reload of the 
operating system and the entire database contained on a tape generated 
using FILE-SAVE. The disk is, in effect, reinitialised and each account 
and file is restored in the most economical way possible. Any data in 
overflow will probably still be in overflow but the overflow space will be 
allocated next to the primary space, so you might see an improvement in 
response times where files have become fragmented across the disk. 
Any files which have been allocated resize parameters on attribute 13 of 
the file definition items will be resized at this point. At the end of the 
restoration process all the lines will be sent to the LOGON prompt and 
the system will be ready for use. 

These two 'side effects' of restoring mean that it is a good idea to 
restore the database periodically even though the data has not been lost. 

SA VING A SINGLE ACCOUNT 

The ACCOUNT-SAVE verb available in SYSPROG provides a means 
of saving the data files associated with a single account. A tape label will 
be placed at the beginning ofthe save with the account name, the system 
date and your own comments, which are prompted for. The command 
is: 

ACCOUNT-SAVE 

the system prompts are: 

TAPE LABEL IF REQUIRED:­

ACCOUNT NAME:-

Any data files which are accessible from the account but actually 
belong in another account and are only pointed to by Q pointers, will 
not be included in the save. The Q pointer itself will be saved, as a part 
of the master dictionary. 

98 Chapter 9 

RESTORING THE WHOLE DATABASE 

In the event of disaster, the whole database can be restored from the 
initial power up of the computer. The precise details vary from compu­
ter to computer but eventually the terminal connected to line 0 will 
display a prompt saying OPTION followed by a list of possible options, 
amongst which will be F. The F option carries out a reload of the 
operating system and the entire database contained on a tape generated 
using FILE-SA YE. The disk is, in effect, reinitialised and each account 
and file is restored in the most economical way possible. Any data in 
overflow will probably still be in overflow but the overflow space will be 
allocated next to the primary space, so you might see an improvement in 
response times where files have become fragmented across the disk. 
Any files which have been allocated resize parameters on attribute 13 of 
the file definition items will be resized at this point. At the end of the 
restoration process all the lines will be sent to the LOGON prompt and 
the system will be ready for use. 

These two 'side effects' of restoring mean that it is a good idea to 
restore the database periodically even though the data has not been lost. 

SA VING A SINGLE ACCOUNT 

The ACCOUNT-SA YE verb available in SYSPROG provides a means 
of saving the data files associated with a single account. A tape label will 
be placed at the beginning of the save with the account name, the system 
date and your own comments, which are prompted for. The command 
is: 

ACCOUNT-SAVE 

the system prompts are: 

TAPE LABEL IF REQUIRED:­

ACCOUNT NAME:-

Any data files which are accessible from the account but actually 
belong in another account and are only pointed to by Q pointers, will 
not be included in the save. The Q pointer itself will be saved, as a part 
of the master dictionary. 



Archiving the Database 99 

RESTORING A SINGLE ACCOUNT 

The ACCOUNT-RESTORE verb is used to restore a single account 
and its data files from an ACCOUNT-SAVE tape or a FILE-SAVE 
tape. The format of the verb is: 

ACCOUNT-RESTORE accountname 

the system will prompt with: 

ACCOUNT NAME ON TAPE:-

The account is restored as accountname. Note that the account may be 
named differently on the tape. 

Both the FILE-SAVE and ACCOUNT-SAVE processes generate 
file statistics in the file STAT-FILE in SYSPROG. These may be listed 
using Access and show the size of each file and how full the files are. 
This information can be used to periodically resize files which get 
heavily into overflow and so 'tune' system performance. The STAT­
FILE also records the instances of any group format errors, or bad data, 
that have been encountered. It is a good idea to execute the Access 
statement 

LIST STAT-FILE WITH GFE > "0" 

after every FILE-SAVE. If this does not print out the message NO 
ITEMS PRESENT, there are problems on the database and these 
should be identified and fixed before any further processing is allowed. 

SAVING A SINGLE FILE 

There is a whole range of verbs for tape handling at the lowest level. 
T-DUMP is an Access verb used for dumping records from any file to 
tape. T-LOAD will load those same records from a tape onto a data file 
and is also an Access verb. Usually only the simplest forms of T-DUMP 
and T-LOAD are used: 

T-DUMP filename 

or 

T-LOAD filename 

Archiving the Database 99 

RESTORING A SINGLE ACCOUNT 

The ACCOUNT-RESTORE verb is used to restore a single account 
and its data files from an ACCOUNT-SAVE tape or a FILE-SAVE 
tape. The format of the verb is: 

ACCOUNT-RESTORE accountname 

the system will prompt with: 

ACCOUNT NAME ON TAPE:-

The account is restored as accountname. Note that the account may be 
named differently on the tape. 

Both the FILE-SAVE and ACCOUNT-SAVE processes generate 
file statistics in the file STAT-FILE in SYSPROG. These may be listed 
using Access and show the size of each file and how full the files are. 
This information can be used to periodically resize files which get 
heavily into overflow and so 'tune' system performance. The ST AT­
FILE also records the instances of any group format errors, or bad data, 
that have been encountered. It is a good idea to execute the Access 
statement 

LIST STAT-FILE WITH GFE > "0" 

after every FILE-SAVE. If this does not print out the message NO 
ITEMS PRESENT, there are problems on the database and these 
should be identified and fixed before any further processing is allowed. 

SAVING A SINGLE FILE 

There is a whole range of verbs for tape handling at the lowest level. 
T-DUMP is an Access verb used for dumping records from any file to 
tape. T-LOAD will load those same records from a tape onto a data file 
and is also an Access verb. Usually only the simplest forms of T-DUMP 
and T-LOAD are used: 

T-DUMP filename 

or 

T-LOAD filename 



100 Chapter 9 

but because these verbs are Access verbs the whole power of Access can 
be brought into play to dump a selection of the records, for example: 

T-DUMP PERSONNEL WITH AGE> "65" 

or 

T-LOAD PERSONNEL WITH DEPARTMENT "PRODUCTION" 

S-DUMP can be used to dump the records to tape sorted in a 
particular order, which is useful where the tape is to be read on to a 
computer utilising sequential file structures. 

S-DUMP PERSONNEL BY NAME 

The other tape handling verbs deal with the control of the tape. 

T-ATI 
T-BCK 
T-CHK 
T-DET 
T-EOD 
T-FWD 
T-RDLBL 
T-READ 
T-REW 
T-SPACE 
T-UNLOAD 
T-WEOF 
T-WTLBL 

Attach the tape unit. 
Move the tape back one tape file. 
Check a tape file for parity errors. 
Detach the tape unit. 
Move the tape to the end of the data currently held on the tape. 
Move the tape forward one tape file. 
Read a tape label. 
Read the tape and dump to the terminal. 
Rewind the tape to the beginning. 
Move the tape forwards over multiple files .. 
Rewind the tape and detension tape arms (Not all systems) 
Write an end of file marker. 
Write a tape label. 

CHECKING TAPES 

Using the T-CHK verb we can check a tape for parity errors, but this 
does not guarantee that the data on the tape can actually be read, or that 
the data is sensible. There is a method to check tapes which requires the 
computer to read every scrap of information on the tape and this 
involves the use of the SEL-RESTORE verb. 

SEL-RESTORE is ordinarily used to restore a single record or 
whole file from a FILE-SAVE or ACCOUNT-SAVE tape. The format 
is: 

SEL-RESTORE filename itemlist 

with the computer prompting: 

100 Chapter 9 

but because these verbs are Access verbs the whole power of Access can 
be brought into play to dump a selection of the records, for example: 

T-OUMP PERSONNEL WITH AGE> "65" 

or 

T-LOAO PERSONNEL WITH DEPARTMENT "PRODUCTION" 

S-DUMP can be used to dump the records to tape sorted in a 
particular order, which is useful where the tape is to be read on to a 
computer utilising sequential file structures. 

S-OUMP PERSONNEL BY NAME 

The other tape handling verbs deal with the control of the tape. 

T-AIT 
T-BCK 
T-CHK 
T-DET 
T-EOD 
T-FWD 
T-RDLBL 
T-READ 
T-REW 
T-SPACE 
T-UNLOAD 
T-WEOF 
T-WTLBL 

Attach the tape unit. 
Move the tape back one tape file. 
Check a tape file for parity errors. 
Detach the tape unit. 
Move the tape to the end of the data currently held on the tape. 
Move the tape forward one tape file. 
Read a tape label. 
Read the tape and dump to the terminal. 
Rewind the tape to the beginning. 
Move the tape forwards over multiple files. 
Rewind the tape and de tension tape arms (Not all systems) 
Write an end of file marker. 
Write a tape label. 

CHECKING TAPES 

Using the T-CHK verb we can check a tape for parity errors, but this 
does not guarantee that the data on the tape can actually be read, or that 
the data is sensible. There is a method to check tapes which requires the 
computer to read every scrap of information on the tape and this 
involves the use of the SEL-RESTORE verb. 

SEL-RESTORE is ordinarily used to restore a single record or 
whole file from a FILE-SAVE or ACCOUNT-SAVE tape. The format 
is: 

SEL-RESTORE filename itemlist 

with the computer prompting: 



Archiving the Database 101 

ACCOUNT NAME ON TAPE: 

FILE NAME ON TAPE: 

When these have been entered the tape is searched for the account and 
file specified. The name of every file that is encountered during this 
search is printed out. When the desired file is found the items from that 
tape file are restored into the destination file on the database and the 
restore halts with a message saying how many records were restored. 

If a fictitious account name and file name on tape are specified, the 
SEL-RESTORE process will go through the whole process as described 
above, but of course it will not succeed in finding the specified account 
or file so the whole tape will be read. It is this process which gives the 
surety that the tape is good and that it may be reread. 

SEL-RESTORE has a number of options which change its effect 
slightly. These enable tape files to be referenced via a sequential num­
ber or enable restores to be commenced in the middle of a tape rather 
than at the beginning. These are all described in the Pick Reference 
Manual. 

TAPE DEVICES 

So far reference has been made to a 'tape' attached to the computer. 
Some systems may have more than one device which may be regarded as 
a tape. Notably, on small systems, there may be a floppy disk unit. This 
will only be regarded as a tape device, i.e. used for sequential storage of 
files rather than a device to hold part of the database. Consequently, 
'rewind' in this context means position the disk head at the 'beginning' 
of the disk, or sequence of files, and 'forward' and 'backward' refer to 
moving along the file sequence. 

Where there is more than one tape device available, say a floppy 
disk and also a four-track 1/4-inch tape unit or a nine-track 1/2-inch tape 
unit, only one of these may be logically 'attached' at once. Systems 
capable of these configurations are supplied with verbs to attach the 
correct device, usually SET-FLOP, SET-CTAPE and SET-9. Any sub­
sequent tape operation will be directed at that device until a different 
tape device is attached. 

Archiving the Database 101 

ACCOUNT NAME ON TAPE: 

FILE NAME ON TAPE: 

When these have been entered the tape is searched for the account and 
file specified. The name of every file that is encountered during this 
search is printed out. When the desired file is found the items from that 
tape file are restored into the destination file on the database and the 
restore halts with a message saying how many records were restored. 

If a fictitious account name and file name on tape are specified, the 
SEL-RESTORE process will go through the whole process as described 
above, but of course it will not succeed in finding the specified account 
or file so the whole tape will be read. It is this process which gives the 
surety that the tape is good and that it may be reread. 

SEL-RESTORE has a number of options which change its effect 
slightly. These enable tape files to be referenced via a sequential num­
ber or enable restores to be commenced in the middle of a tape rather 
than at the beginning. These are all described in the Pick Reference 
Manual. 

T APE DEVICES 

So far reference has been made to a 'tape' attached to the computer. 
Some systems may have more than one device which may be regarded as 
a tape. Notably, on small systems, there may be a floppy disk unit. This 
will only be regarded as a tape device, i.e. used for sequential storage of 
files rather than a device to hold part of the database. Consequently, 
'rewind' in this context means position the disk head at the 'beginning' 
of the disk, or sequence of files, and 'forward' and 'backward' refer to 
moving along the file sequence. 

Where there is more than one tape device available, say a floppy 
disk and also a four-track 1/4-inch tape unit or a nine-track 1/2-inch tape 
unit, only one of these may be logically 'attached' at once. Systems 
capable of these configurations are supplied with verbs to attach the 
correct device, usually SET-FLOP, SET-CTAPE and SET-9. Any sub­
sequent tape operation will be directed at that device until a different 
tape device is attached. 





Chapter 10 
Pick BASIC 

INTRODUCTION 

The main high-level programming language available with Pick is a 
much enhanced form of BASIC called Pick BASIC l . In this discussion a 
knowledge of Dartmouth BASIC will be assumed and we will confine 
ourselves to the features of the language and techniques that might be 
applied rather than a blow-by-blow description of each of the commands 
and functions available. A full description of the commands and func­
tions can, in any case, be found in the Pick BASIC manual. A summary 
can be found in appendices 2 and 3. 

BASIC programs are written as records in data files using the system 
editor. The name of the record is therefore the name of the program. It 
is a compiled language, object code being generated which is stored 
somewhere on the disk. However this is not a 'true' compiler as the 
object code is not the same as the native machine code. The object code 
is more like Pascal P code and is itself interpreted at run time. A pointer 
to the exact place where the object code is stored is maintained in the 
dictionary of the program file. For this reason program files are slightly 
different from ordinary files. Since the dictionaries contain pointers, we 
call them pointer files. The system knows that a file is a pointer file by 
the file-defining item in the master dictionary containing a DC instead 
of aD. 

McDonnell Douglas systems and Revelation are different in not 
requiring the dictionary of the file to be a pointer file. Object code is 
stored as a separate record in the data portion of the file with a record id 
which is the program name prefixed by a dollar or pound sign. So for a 
program called TEST. the object code will be stored in a record called 
$TEST. 

To compile a BASIC program we use the verb BASIC or its 
synonym COMPILE: 

J. Known as Data BASIC on McDonnell Douglas Systems, Info BASIC on Information 
and RIBASIC on Revelation. 

103 

Chapter 10 
Pick BASIC 

INTRODUCTION 

The main high-level programming language available with Pick is a 
much enhanced form of BASIC called Pick BASIC!. In this discussion a 
knowledge of Dartmouth BASIC will be assumed and we will confine 
ourselves to the features of the language and techniques that might be 
applied rather than a blow-by-blow description of each of the commands 
and functions available. A full description of the commands and func­
tions can, in any case, be found in the Pick BASIC manual. A summary 
can be found in appendices 2 and 3. 

BASIC programs are written as records in data files using the system 
editor. The name of the record is therefore the name of the program. It 
is a compiled language, object code being generated which is stored 
somewhere on the disk. However this is not a 'true' compiler as the 
object code is not the same as the native machine code. The object code 
is more like Pascal P code and is itself interpreted at run time. A pointer 
to the exact place where the object code is stored is maintained in the 
dictionary of the program file. For this reason program files are slightly 
different from ordinary files. Since the dictionaries contain pointers, we 
call them pointer files. The system knows that a file is a pointer file by 
the file-defining item in the master dictionary containing a DC instead 
of aD. 

McDonnell Douglas systems and Revelation are different in not 
requiring the dictionary of the file to be a pointer file. Object code is 
stored as a separate record in the data portion of the file with a record id 
which is the program name prefixed by a dollar or pound sign. So for a 
program called TEST, the object code will be stored in a record called 
$TEST. 

To compile a BASIC program we use the verb BASIC or its 
synonym COMPILE: 

I. Known as Data BASIC on McDonnell Douglas Systems, Info BASIC on Information 
and R/BASIC on Revelation. 

103 



104 Chapter ]() 

BASIC filename programlist 

where program list may be a single program name or a list of programs to 
be compiled. If programlist is an asterisk (*) then all the programs in the 
file will be compiled. The compile command may be followed by options 
surrounded by brackets. These are described in the BASIC reference 
manual and cover the production of a map of the variables, a listing to 
the printer, suppressing of end of line markers and so on. 

Successful compilation will result in the production of the object 
code. The program may then be executed using the RUN verb: 

RUN filename program name 

The object code is then interpreted by the BASIC run-time part of 
Pick. The compilation stage does not take the source code down to 
machine code leveL but only to intermediate object code which is 
interpreted by the run-time package. The object code is, however, 
reentrant. This means that should more than one user be running the 
program at once, only one copy of the object code will be held in 
memory, with all of the users sharing it. 

If there were compilation errors no object code would be produced. 
The compiler would make some attempt to indicate what was wrong and 
the programmer must fix this before object code can be produced. If the 
compilation error has been the result of a change to an existing (work­
ing) program the original object code will remain, unaltered. 

Here is a rather contrived example of a sequence of error messages 
from the compiler: 

[Bl13] LINE 1 TERMINATOR MISSING 
001 PRINT THIS IS "AN ERROR 

[Bll0] LINE 1 'END' STATEMENT MISSING 
[Bl00] LINE 1 COMPILATION ABORTED; NO OBJECT CODE PRODUCED 

The terminator missing was indicated by the printing of the offend­
ing line and the up arrow. As there was an error, compilation then 
ceased. The compiler does not continue to find all the errors, but it does 
resolve any backward references, so it might report END statement 
missing or a missing NEXT statement and so on. Hence you should only 
take notice of the first error message, the rest might be spurious. 

Should we wish it, programs may be subsequently catalogued: 

CATALOG filename programlist 

104 Chapter ]0 

BASIC filename programlist 

where program list may be a single program name or a list of programs to 
be compiled. If program list is an asterisk (*) then all the programs in the 
file will be compiled. The compile command may be followed by options 
surrounded by brackets. These are described in the BASIC reference 
manual and cover the production of a map of the variables. a listing to 
the printer. suppressing of end of line markers and so on. 

Successful compilation will result in the production of the object 
code. The program may then be executed using the RUN verb: 

RUN filename programname 

The object code is then interpreted by the BASIC run-time part of 
Pick. The compilation stage does not take the source code down to 
machine code level. but only to intermediate object code which is 
interpreted by the run-time package. The object code is. however. 
reentrant. This means that should more than one user be running the 
program at once. only one copy of the object code will be held in 
memory, with all of the users sharing it. 

If there were compilation errors no object code would be produced. 
The compiler would make some attempt to indicate what was wrong and 
the programmer must fix this before object code can be produced. If the 
compilation error has been the result of a change to an existing (work­
ing) program the original object code will remain, unaltered. 

Here is a rather contrived example of a sequence of error messages 
from the compiler: 

[B113] LINE 1 TERMINATOR MISSING 
001 PRINT THIS IS "AN ERROR 

[B110] LINE 1 'END' STATEMENT MISSING 
[B100] LINE 1 COMPILATION ABORTED; NO OBJECT CODE PRODUCED 

The terminator missing was indicated by the printing of the offend­
ing line and the up arrow. As there was an error, compilation then 
ceased. The compiler does not continue to find all the errors, but it does 
resolve any backward references, so it might report END statement 
missing or a missing NEXT statement and so on. Hence you should only 
take notice of the first error message, the rest might be spurious. 

Should we wish it, programs may be subsequently catalogued: 

CATALOG filename programlist 



Pick BASIC 105 

Cataloguing placcs a verh definition into the master dictionary of the 
account in which the program was catalogued so that the program may 
he executed via a single word command: 

programname 

Programs written as suhroutines must he catalogued. Once cata­
logued any subsequent recompilations will he automatically reflected in 
the catalogued programs except on McDonnell Douglas systems where 
catalogued programs must always be recatalogued. This is hecause. on 
McDonnell Douglas systems. the process of cataloguing takes a copy of 
the object code and places it into a global pointer file. Subsequent 
compilation only updates the dollar object code version. It is of interest 
to note that this method of cataloguing programs results in a perform­
ance improvement on McDonnell Douglas systems because the object 
code can he retrieved faster. 

VARIABLE STRVCTURES 

One of the main strengths of Pick BASIC is in the variable structures 
that are available to the programmer. There is no such thing as real. 
integer or string variables. All variables are treated as strings. In arith­
metic operations the string values are converted to numbers hefore the 
arithmetic operation is carried out. This process is transparent to both 
programmer and user unless an attempt is made to carry out an arithme­
tic operation on non numeric data. If this happens the run-time error 
message: 

LINE nnn NON NUMERIC DATA USED WHERE NUMERIC REQUIRED, 
ZERO USED 

is output and processing continues. 
Consequently there is no need to suffix string variahles with a $. The 

statement: 

PRINT X 

would print the value of X whether X was a string or a numher. X may 
also be used interchangeably as a string and a number within the same 
program. 

Since the BASIC is compiled, rather than interpreted, the variables 
are given addresses at compile time and this means that we are ahle to 

Pick BASIC 105 

Cataloguing places a verh definition into the master dictionary of the 
account in which the program was catalogued so that the program may 
he executed via a single word command: 

programname 

Programs written as suhroutines must he catalogued. Once cata­
logued any suhsequent recompilations will he automatically reflected in 
the catalogued programs except on McDonnell Douglas systems where 
catalogued programs must always he recatalogued. This is hecause. on 
McDonnell Douglas systems. the process of cataloguing takes a copy of 
the object code and places it into a glohal pointer file. Suhsequent 
compilation only updates the dollar ohject code version. It is of interest 
to note that this method of cataloguing programs results in a perform­
ance improvement on McDonnell Douglas systems hecause the object 
code can be retrieved faster. 

V ARIABLE STRUCTURES 

One of the main strengths of Pick BASIC is in the variahle structures 
that are availahle to the programmer. There is no such thing as real. 
integer or string variables. All variables are treated as strings. In arith­
metic operations the string values are converted to numbers hefore the 
arithmetic operation is carried out. This process is transparent to both 
programmer and user unless an attempt is made to carry out an arithme­
tic operation on non numeric data. If this happens the run-time error 
message: 

LINE nnn NON NUMERIC DATA USED WHERE NUMERIC REQUIRED, 
ZERO USED 

is output and processing continues. 
Consequently there is no need to suffix string variables with a $. The 

statement: 

PRINT X 

would print the value of X whether X was a string or a number. X may 
also be used interchangeably as a string and a number within the same 
program. 

Since the BASIC is compiled, rather than interpreted, the variables 
are given addresses at compile time and this means that we are able to 



106 Chapter 10 

give names of any length to variables. Hence variable names will, 
hopefully, be meaningful. 

The rules as to the exact nature of variable naming are much the 
same as for any other BASIC. Variable names may not begin with a 
number, nor may they contain an arithmetic operator (+/_*A%&). 
BASIC command words such as PRINT are forbidden, although 
BASIC function names, such as COUNT, are allowed. The reader can 
decide upon the advisability of this! 

Variables are not, as a matter of course, assigned a default value of 
zero, or null, as with many BASICs. If a variable is used in a function or 
computation before it has been assigned a value the error message: 

LINE nnn VARIABLE HAS NOT BEEN ASSIGNED A VALUE, ZERO USED! 

is output and processing will continue. 
Constants are assigned in the usual fashion. Strings may be enclosed 

in single or double quotes or backslashes. The availability of three string 
delimiters enables the other delimiters to be assigned to variables. 
Numeric constants do not have to be surrounded with string delimiters. 
All the following are valid: 

X = "ABC' 

Y = "Steven's" 
Z = 'he said "hello'" 

XX = /backslash enclosed/ 
YY = 2 

ZZ = "2" 

Real arrays with up to two dimensions are supported. These must be 
dimensioned before any element is referenced via the DIM statement. 
Once dimensioned, the number of elements may not be changed. 

Dynamic Arrays 

There is a type of array structure available within Pick BASIC which is 
often much more useful than a real array. This type of array is called a 
dynamic array. The dynamic array's usefulness stems from the fact that 
its structure exactly reflects the structure of records on the database. It 
is completely floating length. It has, potentially, three dimensions. The 
first dimension represents attributes, the second dimension represents 
values and the third dimension represents sub-values. 

106 Chapter 10 

give names of any length to variables. Hence variable names will, 
hopefully, be meaningful. 

The rules as to the exact nature of variable naming are much the 
same as for any other BASIC. Variable names may not begin with a 
number, nor may they contain an arithmetic operator (+/-*'%&). 
BASIC command words such as PRINT are forbidden, although 
BASIC function names, such as COUNT, are allowed. The reader can 
decide upon the advisability of this! 

Variables are not, as a matter of course, assigned a default value of 
zero, or null, as with many BASICs. If a variable is used in a function or 
computation before it has been assigned a value the error message: 

LINE nnn VARIABLE HAS NOT BEEN ASSIGNED A VALUE, ZERO USED! 

is output and processing will continue. 
Constants are assigned in the usual fashion. Strings may be enclosed 

in single or double quotes or backslashes. The availability of three string 
delimiters enables the other delimiters to be assigned to variables. 
Numeric constants do not have to be surrounded with string delimiters. 
All the following are valid: 

X = "ABC' 

Y = "Steven's" 
Z = 'he said "hello'" 
XX = Ibackslash enclosedl 

YY = 2 
ZZ = "2" 

Real arrays with up to two dimensions are supported. These must be 
dimensioned before any element is referenced via the DIM statement. 
Once dimensioned, the number of elements may not be changed. 

Dynamic Arrays 

There is a type of array structure available within Pick BASIC which is 
often much more useful than a real array. This type of array is called a 
dynamic array. The dynamic array's usefulness stems from the fact that 
its structure exactly reflects the structure of records on the database. It 
is completely floating length. It has, potentially, three dimensions. The 
first dimension represents attributes, the second dimension represents 
values and the third dimension represents sub-values. 



Pick BASIC 107 

Any BASIC variable, including elements of real arrays, is potential­
ly a dynamic array. As an example consider the following data held as a 
record on the database: 

001 Fred Smith 
002 Unit 57AJTown Square Industrial Park]Sheffield]S Yorkshire 
003 B 124551B 12677]B 127901B 121l26]B 13004 
004 67531 I 25000j61l02/R969516R25/66229]61l67 !1220()0I50465 
005 SYK 
006 MT 

Now suppose that this data has been read into a dynamic array, 
called FRED. 

FRED<2,4,1> 

represents attribute 2, value 4, sub-value 1 of the variable FRED, or in 
this case'S Yorkshire'. 

Subsets of these arc supported. Hence: 

FRED<2.1> 

represents attribute 2, value 1 of the variable FRED, 'Unit 57A'. Any 
sub-values within value 1 are also included. 

FRED<2> 

represents the whole of attribute 2 of the variable FRED including any 
values and sub-values. In the example this would be 'Unit 57 A]Town 
Square Industrial Park ]Sheffield IS Yorkshire'. 

If FRED were a real array then: 

FRED(2) <1,II> 

would represent the lIth value of the first attribute of the second 
element of the array FRED. 

We use dynamic arrays in the same way as any other variable. Thus: 

FRED<I,II> = 'ABC' 

would assign the value ABC to the 11th value of attribute 1 of FRED. 
Further: 

NEXT.ORDER.NO = FRED<3.II> 

would assign whatever value FRED<3,II> had to the variable 

Pick BASIC 107 

Any BASIC variable, including elements of real arrays, is potential­
ly a dynamic array. As an example consider the following data held as a 
record on the database: 

001 Fred Smith 

002 Unit 57 A ]Town Square Industrial Park ]Sheffield]S Yorkshire 

003 B 12455]B 12677]B 12790]B 12826]B 13004 

0046753/125000]6802/89695]6825/66229]6867/122000/50465 

005 SYK 

006 MT 

Now suppose that this data has been read into a dynamic array, 
called FRED. 

FRED<2,4,l> 

represents attribute 2, value 4, sub-value 1 of the variable FRED, or in 
this case 'S Yorkshire'. 

Subsets of these are supported. Hence: 

FRED<2J> 

represents attribute 2, value 1 of the variable FRED, 'Unit 57A'. Any 
sub-values within value 1 are also included. 

FRED<2> 

represents the whole of attribute 2 of the variable FRED including any 
values and sub-values. In the example this would be 'Unit 57 A ]Town 
Square Industrial Park ]Sheffield]S Yorkshire'. 

If FRED were a real array then: 

FRED(2) < 1 ,II> 

would represent the 11th value of the first attribute of the second 
element of the array FRED. 

We use dynamic arrays in the same way as any other variable. Thus: 

FRED< 1 ,II> = 'ABC' 

would assign the value ABC to the 11th value of attribute 1 of FRED. 
Further: 

NEXT.ORDER.NO = FRED<3JI> 

would assign whatever value FRED<3,I1> had to the variable 



IOH Chapter 10 

NEXT. ORDER. NO. If II had the value 3 in the example above, this 
would result in NEXT.ORDER.NO being assigned the value B 12790. 

There are also functions for manipulating dynamic arrays. The func­
tion DELETE will delete dynamic array elements. For example: 

FRED = DELETE(FRED,2JLO) 

would delete the IIth value of attribute 2 of FRED, assigning the result 
back to FRED. If II had the value 3 this would have the effect of 
deleting the third value of the address in the above example. The data 
which was in value 4 would become value 3, value 5 would become value 
4, and so on. The rest of the data would be left unchanged. An abbrevi­
ated form of DELETE is also supported. This consists of leaving off any 
trailing zeroes meaning 'the whole of. Hence: 

FRED = DELETE(FRED,2,II,O) 

is the same as: 

FRED = DELETE(FRED.2JI) 

Insertions are achieved via the INSERT function: 

FRED = INSERT(FRED,2,I,O,"ABC") 

which will insert the value ABC at the first value of attribute 2 of 
FRED. All following values are pushed out by I, thus value I will 
become value 2 and so on. Note that there is no albbreviated form of the 
INSERT function. If this were carried out on the data example above 
the address would become: 

ABC]Unit 57 A ]Town Square Industrial Park ]Sheffield]S Yorkshire 

The rest of the data would be unchanged. 
If the value -1 is used for any of the parameters in DELETE, 

INSERT or the assignment functions then the argument -1 is taken to 
mean the last attribute, value or sub-value. Thus: 

FRED<I,-l> = "ABC" 

will add a new value (ABC) to the end of attribute 1 of FRED, no 
matter how many values are already on the attribute. In the example 
this would make the first attribute multivalued, resulting in: 

Fred Smith ]ABe 

with all the other data unchanged. 

108 Chapter 10 

NEXT.ORDER.NO. If II had the value 3 in the example above, this 
would result in NEXT.ORDER.NO being assigned the value B 12790. 

There are also functions for manipulating dynamic arrays. The func­
tion DELETE will delete dynamic array elements. For example: 

FRED = DELETE(FRED,2,[I.O) 

would delete the 11th value of attribute 2 of FRED, assigning the result 
back to FRED. If II had the value 3 this would have the effect of 
deleting the third value of the address in the above example. The data 
which was in value 4 would become value 3, value 5 would become value 
4, and so on. The rest of the data would be left unchanged. An abbrevi­
ated form of DELETE is also supported. This consists of leaving off any 
trailing zeroes meaning "the whole of. Hence: 

FRED = DELETE(FRED.2JI,O) 

is the same as: 

FRED = DELETE(FRED.2JI) 

Insertions are achieved via the INSERT function: 

FRED = INSERT(FRED.2.1.0."ABC") 

which will insert the value ABC at the first value of attribute 2 of 
FRED. All following values are pushed out by I. thus value 1 will 
become value 2 and so on. Note that there is no albbreviated form of the 
INSERT function. If this were carried out on the data example above 
the address would become: 

ABClUnit 57A]Town Square Industrial Park]Sheffield]S Yorkshire 

The rest of the data would be unchanged. 
If the value -1 is used for any of the parameters in DELETE, 

INSERT or the assignment functions then the argument -1 is taken to 
mean the last attribute, value or sub-value. Thus: 

FRED<l.-l> = "ABC" 

will add a new value (ABC) to the end of attribute I of FRED, no 
matter how many values are already on the attribute. In the example 
this would make the first attribute multivalued, resulting in: 

Fred Smith ]ABe 

with all the other data unchanged. 



Pick BASIC 109 

EXTRACT and REPLACE 

The assignment functions can also be achieved h) dynamic arra) func­
tions. Thus: 

FRED< \.-1> = "ABC" 

is exactly the same as 

FRED = REPLACE(FRED.l.-l.O,"ABC") 

Also 

BIT.OF.FRED = FRED<l.l> 

is exactly the same as 

BIT.OF.FRED = EXTRACT(FRED,l.l.O) 

The EXTRACT and REPLACE functions existed long before the 
simple assignment functions. They are retained in the language so that 
older applications may still be used. This is a good example of Pick's 
commitment to transportability. 

One extremely useful dynamic array function is the LOCATE func­
tion. This is used to locate specific data within a given dynamic array. 

Suppose we had a dynamic array FRED, which contained the fol­
lowing data: 

ABClEFG JG HIlJKL JMN OP 

As usual the I character has been used to denote a value mark so 
attribute 1 value 2 of FRED (FRED< 1,2» is EFG. If we wanted to 
locate where EFG was within the dynamic array. we may use the 
LOCATE function. We would write: 

LOCATE("EFG",FRED.LFOUND) ELSE FOUND = U 

The first parameter is the data to be located. The second is the name 
of the dynamic array to be searched. The third is the attribute number to 
be searched. 

The program will search across the values of FRED, looking for 
EFG. If the third parameter had been omitted the system would have 
searched down the attributes, matching first attribute I, then attribute 2 
and so on. If we had followed this by another comma and then another 
number, we could have searched along the sub-values of a particular 
value. 

At this stage we have determined the piece of data which is to be 

Pick BASIC \09 

EXTRACT and REPLACE 

The assignment functions can also be achieved by dynamic array func­
tions. Thus: 

FRED< 1. - 1> = "ABC' 

is exactly the same as 

FRED = REPLACE(FRED.I.-I.(),"ABC') 

Also 

BIT.OF.FRED = FRED<l.l> 

is exactly the same as 

BIT.OF.FRED = EXTRACT(FRED.I.I.()) 

The EXTRACT and REPLACE functions existed long before the 
simple assignment functions. They are retained in the language so that 
older applications may still be used. This is a good example of Pick's 
commitment to transportability. 

One extremely useful dynamic array function is the LOCATE func­
tion. This is used to locate specific data within a given dynamic array. 

Suppose we had a dynamic array FRED. which contained the fol­
lowing data: 

ABC]EFGIGHI]JKLIMNOP 

As usual the 1 character has been used to denote a value mark so 
attribute 1 value 2 of FRED (FRED< 1.2» is EFG. If we wanted to 
locate where EFG was within the dynamic array, we may use the 
LOCATE function. We would write: 

LOCATE("EFG",FRED,LFOUND) ELSE FOUND = 0 

The first parameter is the data to be located. The second is the name 
of the dynamic array to be searched. The third is the attribute number to 
be searched. 

The program will search across the values of FRED, looking for 
EFG. If the third parameter had been omitted the system would have 
searched down the attributes. matching first attribute I, then attribute 2 
and so on. If we had followed this by another comma and then another 
number, we could have searched along the sub-values of a particular 
value. 

At this stage we have determined the piece of data which is to be 



110 Chapter 10 

searched. We follow this by a semi-colon and the name of another 
variable. If the value EFG is found in the dynamic array, the variable 
FOUND will be set to the position number in which it was found. Thus, 
in the example above FOUND will be set to 2 when the statement has 
been executed. If EFG had not been found in FRED<I>, the ELSE 
clause would have been executed and FOUND would have been set to 
zero. 

An ELSE clause is mandatory in a LOCATE statement but this 
could be NULL (Le. do nothing). In this case the value of the 'set' 
variable (FOUND) would be set to one past the last position examined. 
In the above example, if EFG had not been present, FOUND would 
have been set to 6, since 5 values would have been examined. 

This is useful where the data is in no particular sequence. But 
sometimes the data is in sequence and we wish to preserve that sequ­
ence. It would be very useful if LOCATE could respect the seq uence of 
data and tell us where to insert data that does not already exist, and in 
fact it can. This is done by adding another parameter onto the LOCATE 
function: a 'by' parameter. 

Suppose the data we were trying to locate was FG H instead of EFG. 
We wish to maintain the list of data in alphabetical order and we want to 
end up with FGH inserted into the third value: 

LOCATE("FGW.FRED.1:FOUND;"AL") ELSE NULL 

will set FOUND to 3. The "AL" is the sort sequence. it stands for 
Ascending Left justified. The LOCATE will give up as soon as it finds a 
value greater than the data being considered, in this case after the 
second value. So the variable FOUND will be set to 3. We can now use 
this value to INSERT into FRED: 

FRED = INSERT(FRED.1.FOUND,O."FGW) 

Other sort sequences that may be used are DL (Descending Left 
justified) and AR and DR (Ascending and Descending Right justified) 
for numeric data. 

Implementation Differences 

McDonnell Douglas have implemented a different syntax for insert, 
delete and locate dynamic array functions. While they maintain the 
same syntax for insert and delete as well as their new commands, INS 
and DEL, they do not support the Pick LOCATE syntax. Locate on a 
McDonnell Douglas computer has the following syntax: 

110 Chapter 10 

searched. We follow this by a semi-colon and the name of another 
variable. If the value EFG is found in the dynamic array, the variable 
FOUND will be set to the position number in which it was found. Thus, 
in the example above FOUND will be set to 2 when the statement has 
been executed. If EFG had not been found in FRED<l>, the ELSE 
clause would have been executed and FOUND would have been set to 
zero. 

An ELSE clause is mandatory in a LOCATE statement but this 
could be NULL (i.e. do nothing). In this case the value of the 'set' 
variable (FOUND) would be set to one past the last position examined. 
In the above example, if EFG had not been present, FOUND would 
have been set to 6, since 5 values would have been examined. 

This is useful where the data is in no particular sequence. But 
sometimes the data is in sequence and we wish to preserve that sequ­
ence. It would be very useful if LOCATE could respect the sequence of 
data and tell us where to insert data that does not already exist, and in 
fact it can. This is done by adding another parameter onto the LOCATE 
function: a 'by' parameter. 

Suppose the data we were trying to locate was FG H instead of EFG. 
We wish to maintain the list of data in alphabetical order and we want to 
end up with FGH inserted into the third value: 

LOCATEC'FGH",FRED.l :FOUND:"AL") ELSE NULL 

will set FOUND to 3. The "AL" is the sort sequence, it stands for 
Ascending Left justified. The LOCATE will give up as soon as it finds a 
value greater than the data being considered, in this case after the 
second value. So the variable FOUND will be set to 3. We can now use 
this value to INSERT into FRED: 

FRED = INSERT(FRED.l,FOUND.O."FGW) 

Other sort sequences that may be used are DL (Descending Left 
justified) and AR and DR (Ascending and Descending Right justified) 
for numeric data. 

Implementation Differences 

McDonnell Douglas have implemented a different syntax for insert, 
delete and locate dynamic array functions. While they maintain the 
same syntax for insert and delete as well as their new commands, INS 
and DEL, they do not support the Pick LOCATE syntax. Locate on a 
McDonnell Douglas computer has the following syntax: 



Pick BASIC 111 

LOCATE string IN var BY sort. seq SETTING found ELSE 

INPUT AND OUTPUT 

Pick BASIC provides a number of functions and commands to facilitate 
the elementary tasks of input and output. Input may be taken by 
utilising one or other of the forms of the INPUT statement. Output is 
usually produced by a form of the PRINT statement. 

INPUT 

INPUT, in its rawest form, is as simple as requesting that input be taken 
from the keyboard and stored in a BASIC variable, for example: 

INPUT XX 

We may modify this to input n characters by adding an input width 
parameter: 

INPUT XX,2 

This may be used to take one character from the keyboard, followed 
by a carriage return or two characters without a carriage return. With 
the simpler form of the INPUT statement, any number of characters up 
to 140 may be entered. After the 140th character the system will add a 
carriage return. This is because the size of the input buffer is limited to 
140 characters. Each character typed will be echoed back to the termin­
al, including the carriage return. Hence we must beware of using this 
form of INPUT on the bottom line of the VDU since using a simple 
INPUT there will result in the VDU scrolling up a line. We can suppress 
the echoing of the carriage return by adding a colon to the end of the 
INPUT statement like this: 

INPUT XX: or INPUT XX,2: 

On McDonnell Douglas systems only, we can also force a carriage 
return to be entered and suppress the automatic carriage return on the 
limited length input by appending an underline character: 

INPUT XX,L or INPUT XX,2:_ 

There is a more complex form of the INPUT statement available 
which can cope with cursor positioning and predisplay the value of the 
input variable. When used with the INPUTERR and INPUTTRAP 
statements it can also carry out simple validation and error handling. 

Pick BASIC 111 

LOCATE string IN var BY sort.seq SETTING found ELSE ...... . 

INPUT AND OUTPUT 

Pick BASIC provides a number of functions and commands to facilitate 
the elementary tasks of input and output. Input may be taken by 
utilising one or other of the forms of the INPUT statement. Output is 
usually produced by a form of the PRINT statement. 

INPUT 

INPUT, in its rawest form, is as simple as requesting that input be taken 
from the keyboard and stored in a BASIC variable, for example: 

INPUT XX 

We may modify this to input n characters by adding an input width 
parameter: 

INPUT XX,2 

This may be used to take one character from the keyboard, followed 
by a carriage return or two characters without a carriage return. With 
the simpler form of the INPUT statement, any number of characters up 
to 140 may be entered. After the 140th character the system will add a 
carriage return. This is because the size of the input buffer is limited to 
140 characters. Each character typed will be echoed back to the termin­
al, including the carriage return. Hence we must beware of using this 
form of INPUT on the bottom line of the YDU since using a simple 
INPUT there will result in the YDU scrolling up a line. We can suppress 
the echoing of the carriage return by adding a colon to the end of the 
INPUT statement like this: 

INPUT XX: or INPUT XX,2: 

On McDonnell Douglas systems only, we can also force a carriage 
return to be entered and suppress the automatic carriage return on the 
limited length input by appending an underline character: 

INPUT XX,2- or INPUT XX,2:~ 

There is a more complex form of the INPUT statement available 
which can cope with cursor positioning and predisplay the value of the 
input variable. When used with the INPUTERR and INPUTTRAP 
statements it can also carry out simple validation and error handling. 



112 Chapter ]0 

The format is: 

INPCT (u (:\(I.:'i):XX 

In this example the value of XX would be displayed at column 30 
row -" of the screen. The cursor would then be repositioned at column 30 
row -" and the variable may be amended. If the user just presses return, 
the variable will be unchanged. Full details of the use of this family of 
instructions can be found in the Pick BASIC Reference Manual. 

PRINT 

In common with all BASICs. the PRINT statement provides the ability 
to produce output. 

PRI"lT XX 

will output the current value of the variable XX followed by a carriage 
return. 

PRINT XX: 

will suppress the output of the final carriage return. When the output is 
to appear on a terminaL this has the effect of leaving the cursor at the 
end of the output. 

PRINT XX:' ':YY 

will output the current value of XX, followed by three spaces and the 
current value of YY and a carriage return. 

PRI"-JT XX,YY 

will output the values of XX and YY in a simple columnar format. 
Mixtures of concatenated and columnar format are also allowed, for 
example: 

PRINT XX,YY:' ':ZZ 

Functions and calculations may also be included in the expression: 

PRINT XX,YY+lJNT (XX):".O<)," 

Formatting 

The simple PRINT statement is not really enough to enable the compre­
hensive handling of screen layouts and report formatting, although with 
many BASICs this is all that is provided. Two facilities are provided 
with Pick BASIC which make the programmer's life a lot easier. These 
are cursor control functions and output formatting capabilities. 

112 Chapter ]0 

The format is: 

INPUT (a (3(),:'l):XX 

In this example the value of XX would be displayed at column 30 
row 5 of the screen. The cursor would then be repositioned at column 30 
row 5 and the variable may be amended. If the user just presses return, 
the variable will be unchanged. Full details of the use of this family of 
instructions can be found in the Pick BASIC Reference Manual. 

PRINT 

In common with all BASICs, the PRINT statement provides the ability 
to produce output. 

PRINT XX 

will output the current value of the variable XX followed by a carriage 
return . 

PRINT XX: 

will suppress the output of the final carriage return. When the output is 
to appear on a terminal, this has the effect of leaving the cursor at the 
end of the output. 

PRINT XX:' ':YY 

will output the current value of XX, followed by three spaces and the 
current value of YY and a carriage return. 

PRI~T XX,YY 

will output the values of XX and YY in a simple columnar format. 
Mixtures of concatenated and columnar format are also allowed, for 
example: 

PRINT XX,YY:' ':ZZ 

Functions and calculations may also be included in the expression: 

PRINT XX,YY+UNT (XX):".OO" 

Formatting 

The simple PRINT statement is not really enough to enable the compre­
hensive handling of screen layouts and report formatting, although with 
many BASICs this is all that is provided. Two facilities are provided 
with Pick BASIC which make the programmer's life a lot easier. These 
are cursor control functions and output formatting capabilities, 



Pick BA\IC 113 

The @ Function 

The @ function provides the capahility to place the cursor at predeter­
mined cursor positions. The format is: 

(II (X.Y) 

X heing the horizontal column position across the VOU and Y heing the 
vertical row position down the VOU. The origin (0.0) is at the top left 
hand corner of the VOU. In practice this is used with the PRINT 
statement: 

PRINT ((/ (20.10):""The value of X is ":X 

The (cl function will operate with any terminal for which the drivers 
are present within the operating system. The driver heing used is con­
trolled hy the TERM setting descrihed in Chapter 13. Many different 
terminal drivers may he supported including VT100. ADDS and TELE­
VIDEO. The actual drivers provided to the end user vary from manu­
facturer to manufacturer so it is hest to liaise with your supplier vis-(I-vis 
supported terminals. Some licensees have a tahle driven system so that 
almost any terminal may he attached and will work with no cnding 
changes. 

The (ci function also supports a singlc parameter format (el (X). i.e. 
column X on the current row. hut many terminals will not support the 
resuiting escape sequence so it is hetter to stick to the row. col syntax for 
transportability purposes. In addition the 'true' Pick systems support a 
number of terminal control functions using the (eil function with a 
negative parameter: 

@(-1) 

@(-2) 
@(-3) 

@(-4) 

@(-5) 

@(-6) 
@(-7) 

@(-8) 

@(-9) 
@(-1O) 

Clears the screen and places the cursor at the home position 
(0.0). 

Places the cursor at the home position. 
Clears the screen from the current cursor position to the end of 
the screen. 
Clears the screen from the current cursor position to the end of 
the current line. 
Starts blinking on subsequently printed data. 
Turns hlinking off. 
Initiates a protected field (data within a protected field cannot 
be subsequently overwritten). 
Ends a protected field. 
Backspaces the cursor one character position. 
Moves the cursor position up one line. 

Pick BASIC 113 

The @ Function 

The @ function provides the capability to place the cursor at predeter­
mined cursor positions. The format is: 

(0 (X.Y) 

X being the horizontal column position across the VDU and Y being the 
vertical row position down the VDU. The origin (0,0) is at the top left 
hand corner of the VDU. In practice this is used with the PRINT 
statement: 

PRINT (il (20.1O):·The value of X is ":X 

The (il function will operate with any terminal for which the drivers 
are present within the operating system. The driver being used is con­
trolled by the TERM setting described in Chapter 13. Many different 
terminal drivers may be supported including VT100. ADDS and TELE­
VIDEO. The actual drivers provided to the end user vary from manu­
facturer to manufacturer so it is best to liaise with your supplier ~'is-i1-vis 
supported terminals. Some licensees have a table driven system so that 
almost any terminal may be attached and will work with no coding 
changes. 

The ra function also supports a single parameter format (if (X). i.e. 
column X on the current row, but many terminals will not support the 
resulting escape sequence so it is better to stick to the row, col syntax for 
transportability purposes. In addition the 'true' Pick systems support a 
number of terminal control functions using the raj function with a 
negative parameter: 

@(-l) 

@(-2) 
@(-3) 

@(-4) 

@(-S) 
@(-6) 
@(-7) 

@(-8) 
@(-9) 
@(-lO) 

Clears the screen and places the cursor at the home position 
(0,0). 

Places the cursor at the home position. 
Clears the screen from the current cursor position to the end of 
the screen. 
Clears the screen from the current cursor position to the end of 
the current line. 
Starts blinking on subsequently printed data. 
Turns blinking off. 
Initiates a protected field (data within a protected field cannot 
be subsequently overwritten). 
Ends a protected field. 
Backspaces the cursor one character position. 
Moves the cursor position up one line. 



114 Chapter 10 

The IBM PC implementation supports many more negative para­
meter @ functions than this. These cover underlining and the use of 
colour. As the operating system is enhanced further, many more screen 
control functions will be incorporated into the @ function. 

These functions may only be used on terminals that have equivalent 
escape sequences to support the particular features. In general it may be 
assumed that all terminals will support @(-1) and @(-2), few will 
support @( -7) and @( -8) and most will support the rest. 

Formatting Output 

Pick BASIC supports format masks. Format masks are used to output 
data over a mask and handle justification. They are handled within a 
PRINT statement by following the variable to be printed by a mask. For 
instance: 

PRINT XX 'L#20' 

will print the value of the variable XX left justified and fill out the value 
with spaces to make a field 20 wide. If XX is longer than 20 characters it 
will be truncated on output to 20, although the value of XX will be left 
unchanged. In this instance # is special character meaning to fill with 
spaces. Correspondingly we may right justify the data: 

PRINT XX 'R#20' 

This is useful where columns of numbers are to be output. 
Format masks are potentially very powerful. We may change the fill 

character by specifying the character to be used instead of the # sign. If 
XX had the value 100.00 and we wrote: 

PRINT XX 'R= 10' 

the system would output: 

====100.00 

We often hold a scaled value because data is not normally held with 
decimal places on the database. For instance, 100.00 might be held as 
10000. To cater for this, a number of decimal places may be indicated by 
the format mask, by prefixing the format character with the number of 
decimal places to be used. If XX has the value 10000: 

PRINT XX 'R2=1O' 

114 Chapter 10 

The IBM PC implementation supports many more negative para­
meter @ functions than this. These cover underlining and the use of 
colour. As the operating system is enhanced further, many more screen 
control functions will be incorporated into the @ function. 

These functions may only be used on terminals that have equivalent 
escape sequences to support the particular features. In general it may be 
assumed that all terminals will support @( -1) and @( - 2). few will 
support (cL( - 7) and @( -8) and most will support the rest. 

Formatting Output 

Pick BASIC supports format masks. Format masks are used to output 
data over a mask and handle justification. They are handled within a 
PRINT statement by following the variable to be printed by a mask. For 
instance: 

PRINT XX 'L#20' 

will print the value of the variable XX left justified and fill out the value 
with spaces to make a field 20 wide, If XX is longer than 20 characters it 
will be truncated on output to 20, although the value of XX will be left 
unchanged. In this instance # is special character meaning to fill with 
spaces. Correspondingly we may right justify the data: 

PRINT XX 'R#20' 

This is useful where columns of numbers are to be output. 
Format masks are potentially very powerful. We may change the fill 

character by specifying the character to be used instead of the # sign. If 
XX had the value 100.00 and we wrote: 

PRINT XX 'R= 10' 

the system would output: 

====100.00 

We often hold a scaled value because data is not normally held with 
decimal places on the database. For instance, 100,00 might be held as 
10000. To cater for this, a number of decimal places may be indicated by 
the format mask, by prefixing the format character with the number of 
decimal places to be used. If XX has the value 10000: 

PRINT XX 'R2=1O' 



Pick BASIC 115 

will result in 

====100.00 

We may also extend the mask by specifying alternative spacing 
characters. Suppose we had an American telephone number of the 
form, area code (3 numeric) local code (3 numeric) local number (4 
numeric). We might store this as a lO-digit number but output it in a 
format mask breaking up the sections with a dash (-) thus: 

PRINT "12345671)90" "L#3-#3-#4"' 

and this would produce 

123-45&-7890 

with any extra characters truncated after the zero if left justified and 
before the 1 if right justified. 

A variety of facilities are provided by format masks: for determining 
the type of negative indicator, i.e. -1 could be output as -lor (1) or 
1 DR; to output commas between thousands; to utilise a descaling factor 
with rounding; to suppress leading zeroes; or to output a currency 
symbol before the value. The use of these is fully described in the Pick 
BASIC Programmers Reference Manual. 

On Ultimate systems the format mask is treated slightly differently 
in that the format mask after the justification must be enclosed in 
parentheses, for example: 

PRINT XX "L#3"' Pick standard 
PRINT XX "'L( #3)" Ultimate 

On Prime Information a format function, FMT, is used: 

PRINT FMT(XX,'L#3') 

Directing Output 

It is, of course, not enough to be able to direct output to the user's 
terminal. In any application hard copy is required. Pick BASIC allows 
for this by offering a facility to choose the output device. PRINTER ON 
will direct any subsequent output via PRINT statements to the spooler. 
The spooler will then direct the output to whatever device is currently 
assigned to the spooler. PRINTER OFF reverses this. 

We can actually output to several separate reports at once by mod-

Pick BASIC 115 

will result in 

====100.00 

We may also extend the mask by specifying alternative spacing 
characters. Suppose we had an American telephone number of the 
form, area code (3 numeric) local code (3 numeric) local number (4 
numeric). We might store this as a lO-digit number but output it in a 
format mask breaking up the sections with a dash (-) thus: 

PRINT "1234567890" "L#3-#3-#4" 

and this would produce 

123-456-7890 

with any extra characters truncated after the zero if left justified and 
before the 1 if right justified. 

A variety of facilities are provided by format masks: for determining 
the type of negative indicator, i.e. -1 could be output as -lor (1) or 
1 DR; to output commas between thousands; to utilise a descaling factor 
with rounding; to suppress leading zeroes; or to output a currency 
symbol before the value. The use of these is fully described in the Pick 
BASIC Programmers Reference Manual. 

On Ultimate systems the format mask is treated slightly differently 
in that the format mask after the justification must be enclosed in 
parentheses, for example: 

PRINT XX "L#3" Pick standard 
PRINT XX "L(#3)" Ultimate 

On Prime Information a format function, FMT, is used: 

PRINT FMT(XX:L#3') 

Directing Output 

It is, of course, not enough to be able to direct output to the user's 
terminal. In any application hard copy is required. Pick BASIC allows 
for this by offering a facility to choose the output device. PRINTER ON 
will direct any subsequent output via PRINT statements to the spooler. 
The spooler will then direct the output to whatever device is currently 
assigned to the spooler. PRINTER OFF reverses this. 

We can actually output to several separate reports at once by mod-



116 Chapter 10 

ifying the PRINT statements. A normal PRINT statement can be re­
garded as output to report number zero. If we modified: 

PRINT X 

to 

PRINT ON 2 X 

the output would be directed to report number 2. Up to 255 separate 
reports can be produced simultaneously using this method. 

When the spooler receives the output it waits until all the output has 
been received, before sending it to the system printer. Actually the 
spooler waits for the spool file to be 'closed'. The spool file is automati­
cally closed when the program completes its execution, but we can 
artificially close the spool file and obtain the report so produced. This is 
necessary where reports are being produced interactively and the user 
does not exit from the program between report production. The com­
mand which closes the spool file is PRINTER CLOSE. 

Apart from on McDonnell Douglas systems, there is a command to 
direct output to the YDU regardless of the current printer assignment. 
The syntax is exactly the same as for PRINT, the only difference being 
that the command is CRT, not PRINT, for example: 

CRT 'This output is always sent to your terminal" 

The CRT statement is undocumented in most manufacturers BASIC 
manuals. 

Headings and Footings 

The other BASIC input and output functions are designed to make life 
easier, particularly when producing multiple page reports. The main 
problem when producing multiple page reports is usually that the prog­
ram has the rather tedious task of keeping track of exactly how many 
print lines have been output, and controlling headings and footings in 
the correct format. Pick BASIC can (optionally) take care of all of this. 
The HEADING and FOOTING statements may be used to specify 
headings and footings respectively. The number of lines on the report is 
then controlled by the setting of the TERM command, the number of 
lines in the HEADING and FOOTING statements and the appearance 
of PAGE commands, which would override the automatic page throw 
produced when the page is full. 

116 Chapter 10 

ifying the PRINT statements. A normal PRINT statement can be re­
garded as output to report number zero. If we modified: 

PRINT X 

to 

PRINT ON 2 X 

thc output would be directed to report number 2. Up to 255 separate 
reports can be produced simultaneously using this method. 

When the spooler receives the output it waits until all the output has 
been received, before sending it to the system printer. Actually the 
spooler waits for the spool file to be 'closed'. The spool file is automati­
cally closed when the program completes its execution, but we can 
artificially close the spool file and obtain the report so produced. This is 
necessary where reports are being produced interactively and the user 
does not exit from the program between report production. The com­
mand which closes the spool file is PRINTER CLOSE. 

Apart from on McDonnell Douglas systems, there is a command to 
direct output to the YOU regardless of the current printer assignment. 
The syntax is exactly the same as for PRINT, the only difference being 
that the command is CRT, not PRINT, for example: 

CRT 'This output is always sent to your terminal'" 

The CRT statement is undocumented in most manufacturers BASIC 
manuals. 

Headings and Footings 

The other BASIC input and output functions are designed to make life 
easier, particularly when producing multiple page reports. The main 
problem when producing mUltiple page reports is usually that the prog­
ram has the rather tedious task of keeping track of exactly how many 
print lines have been output, and controlling headings and footings in 
the correct format. Pick BASIC can (optionally) take care of all of this. 
The HEADING and FOOTING statements may be used to specify 
headin~s and footings respectively. The number of lines on the report is 
then controlled by the setting of the TERM command, the number of 
lines in the HEADING and FOOTING statements and the appearance 
of PAGE commands, which would override the automatic page throw 
produced when the page is full. 



Pick BASIC 117 

There arc a few problems with adopting this approach to hard copy 
output. Firstly the number of lines output is controlled b\ the number of 
carriage returns that have been sent to the device. This means that we 
cannot utilise the (a function when sending the output to a terminal. 
Secondly the HEADING and FOOTING will only appear on print file 
O. There is no equivalent syntax for the PRIl\'T ON commands. Hence 
HEADING and FOOTING only have a limited application. 

Despite these dra\\'backs, HEADING and FOOTIl\'G are potential­
ly quite powerful. The syntax for FOOTING is the same as for HEAD­
ING. Here is an example of the use of the HEADING statement: 

HEADING "This is the heading for my report" 

and this is the simplest case. Rather like the Access HEADING modi­
fier. control options can be included within the HEADING statement: 

HEADING "This is the heading for my report produced on 'D'" 

The heading will be output as specified. but the D in single quotes is 
regarded as an option. D is replaced by the system date in the format 
DD MMM YY. The single quotes arc thrown away and do not appear in 
the heading. To get a single quote into the heading you must enter two 
single quotation marks together. The various options available arc the 
same as for the Access HEADING modifier discussed earlier and 
include printing the date. giving extra lines. printing the page number 
and centring text. 

PROGRAMMING STRUCTURES 

Pick BASIC is a structured programming language, that is. facilities 
exist within the language so that it may be used in a structured way. 
These facilities include structures for controlling conditions and for 
looping. There arc also a number of 'failure' constructs. For instance. 
the command which reads data from the database will fail if the data 
which it is expecting to find is not there. Therefore READ commands 
have a structure which allows the programmer to specify the action 
taken if the READ fails. 

Conditional Constructs 

There are numerous syntaxes available for the IF statement. The 
elementary form of the IF statement is: 

Pick BASIC 117 

There are a few problems with adopting this approach to hard copy 
output. Firstly the number of lines output is controlled by the number of 
carriage returns that have been sent to the device. This means that we 
cannot utilise the (iJ function when sending the output to a terminal. 
Secondly the HEADING and FOOTING will only appear on print file 
O. There is no equivalent syntax for the PRINT ON commands. Hence 
HEADING and FOOTING only have a limited application. 

Despite these drawbacks. HEADING and FOOTING are potential­
ly quite powerful. The syntax for FOOTING is the same as for HEAD­
ING. Here is an example of the use of the HEADING statement: 

HEADING "Thi, is the heading for my report" 

and this is the simplest case. Rather like the Access HEADING modi­
fier. control options can be included within the HEADING statement: 

I lEADING "This is the heading for my report produced on 'D'" 

The heading will be output as specified. but the 0 in single quotes is 
regarded as an option. 0 is replaced by the system date in the format 
DO MMM YY. The single quotes are thrown away and do not appear in 
the heading. To get a single quote into the heading you must enter two 
single quotation marks together. The various options available are the 
same as for the Access HEADING modifier discussed earlier and 
include printing the date. giving extra lines. printing the page number 
and centring text. 

PROGRAMMING STRUCTURES 

Pick BASIC is a structured programming language. that is. facilities 
exist within the language so that it may be used in a structured way. 
These facilities include structures for controlling conditions and for 
looping. There are also a number of 'failure' constructs. For instance, 
the command which reads data from the database will fail if the data 
which it is expecting to find is not there. Therefore READ commands 
have a structure which allows the programmer to specify the action 
taken if the READ fails. 

Conditional Constructs 

There are numerous syntaxes available for the IF statement. The 
elementary form of the IF statement is: 



118 Chapter 10 

IF condition THEN command 

where condition is some boolean expression that the computer will 
evaluate as 1 or 0, i.e. TRUE or FALSE. If the condition is true, the 
command after the THEN will be executed, if false it will not be. Here 
are some examples of valid conditions: 

x =! 

X# ! 

x> ! 

X<! 

X >= ! 
X GT! 
XGE 1 
X 
X> AND Y < 0 
X #" OR Y =" 

X = " OR (X = "A" AND Y = ") 
NOT(X) 
X MATCHES 'lA4N' 
NOT(X MATCHES '''ABC'3N') 

NUM(X) 
ALPHA(X) 

A more 'structured' form of the IF statement is the multi-line IF: 

IF condition THEN 

sequence of instructions 

END 

In this example the sequence of instructions is executed if the condi­
tion is true. This is easier to read and maintain than either multiple 
statements on one line, or a GOSUB, or a convoluted set of GOTOs. 

Extending this, we may add an ELSE clause. In the elementary case: 

IF condition THEN command ELSE command 

and in the structured method: 

118 Chapter 10 

IF condition THEN command 

where condition is some boolean expression that the computer will 
evaluate as 1 or 0, i.e. TRUE or FALSE. If the condition is true, the 
command after the THEN will be executed, if false it will not be. Here 
are some examples of valid conditions: 

x =! 

X # ! 

X>! 

X<! 

X >= ! 

X GT! 

X GE ! 

X 
X> AND Y < 0 
X #" OR Y =" 

X = " OR (X = "A" AND Y = ") 
NOT(X) 
X MATCHES 'lA4N' 

NOT(X MATCHES "'ABC3N') 

NUM(X) 

ALPHA(X) 

A more 'structured' form of the IF statement is the multi-line IF: 

IF condition THEN 

sequence of instructions 

END 

In this example the sequence of instructions is executed if the condi­
tion is true. This is easier to read and maintain than either multiple 
statements on one line, or a GOSUB, or a convoluted set of GOTOs. 

Extending this, we may add an ELSE clause. In the elementary case: 

IF condition THEN command ELSE command 

and in the structured method: 



Pick BASIC 119 

IF condition THE!\, 

sequence of instructions 

END ELSE 

sequence of instructions 

END 

In a less elegant form, we may write: 

IF condition ELSE 

omitting the THEN clause altogether, although I would maintain that: 

IF NOT (condition) THEN 

was much better. 
Where there are more than two conditions that may result, nested IF 

statements become laborious to program and difficult to maintain. For 
this reason a multiple IF is supported, called CASE. The syntax is: 

BEGIN CASE 
CASE condition 

sequence of instructions 

CASE condition.2 

sequence of instructions 

CASE condition.3 

etc. 
END CASE 

If CASE 1 (or even CASE 1 = 1 if this is clearer), which would always 

Pick BASIC 119 

IF condition THEN 

sequence of instructions 

END ELSE 

sequence of instructions 

END 

In a less elegant form, we may write: 

IF condition ELSE 

omitting the THEN clause altogether. although I would maintain that: 

IF NOT (condition) THEN 

was much better. 
Where there are more than two conditions that may result, nested IF 

statements become laborious to program and difficult to maintain. For 
this reason a multiple IF is supported, called CASE. The syntax is: 

BEGIN CASE 
CASE condition 

sequence of instructions 

CASE condition.2 

sequence of instructions 

CASE condition.3 

etc. 
END CASE 

If CASE 1 (or even CASE 1 = 1 if this is clearer), which would always 



120 Chapter 10 

evaluate as 'true', were the last condition, it would represent a 'catch 
all', i.e. otherwise do this. Here is an example of the use of CASE: 

BEGIN CASE 
CASE AGE < n 

PRINT "Infant"' 

CASE AGE < 11 
PRINT "Junior"' 

CASE AGE < In 
PRINT "Senior" 

CASE 1 
PRINT "'Adult"· 

END CASE 

From an efficiency point of view, CASEs should be structured so 
that the most commonly encountered condition to be expected should 
come first. This is because the system tries each case in turn until it finds 
one that is true. The rest are ignored and execution continues after the 
END CASE statement. 

There is a third type of conditional statement, the computed GOTO 
or GOSUB. This is not as acceptable from the structured programming 
point of view. 

If a variable, II, could have any value from 1 to 10, the programmer 
might find it convenient to write: 

ON II GOSUB 0100,0200,0300,0400,0500, etc. 

If II is 1, the subroutine beginning at the statement label 0100 is 
executed, if 2, the subroutine at 0200, if 3, the subroutine at 0300, and 
so on. This is not quite as bad as its close cousin: 

ON II GOTO 0100,0200,0300,0400,0500, etc. 

In this case each of the program sections beginning at 0100, 0200, 
etc. respectively would probably terminate with another GOTO making 
the code rather tortuous and hence difficult to maintain. 

Failure Conditions 

There are a number of statements within Pick BASIC which must have 
an ELSE clause to tell the system what should happen if the command 
fails. These are: 

OPEN 

120 Chapter ]0 

evaluate as 'true', were the last condition, it would represent a 'catch 
all', i.e. otherwise do this. Here is an example of the use of CASE: 

BEGIN CASE 

CASE AGE < h 

PRINT "Infant" 

CASE AGE < II 

PRINT "Junior"' 

CASE AGE < Ih 

PRINT "Senior" 

CASE I 

PRINT "Adult"· 

END CASE 

From an efficiency point of view. CASEs should be structured so 
that the most commonly encountered condition to be expected should 
come first. This is because the system tries each case in turn until it finds 
one that is true. The rest are ignored and execution continues after the 
END CASE statement. 

There is a third type of conditional statement. the computed GOTO 
or GOSUB. This is not as acceptable from the structured programming 
point of view. 

If a variable. II. could have any value from 1 to 10. the programmer 
might find it convenient to write: 

ON II GOSUB 0100,0200,0300.0400,0500. etc. 

If II is I. the subroutine beginning at the statement label 0100 is 
executed. if 2, the subroutine at 0200, if 3, the subroutine at 0300, and 
so on. This is not quite as bad as its close cousin: 

ON II GOTO 0IOOJJ200,0300.0400.0500, etc. 

In this case each of the program sections beginning at 0100, 0200, 
etc. respectively would probably terminate with another GOTO making 
the code rather tortuous and hence difficult to maintain. 

Failure Conditions 

There are a number of statements within Pick BASIC which must have 
an ELSE clause to tell the system what should happen if the command 
fails. These are: 

OPEN 



Pick BASIC 

READ, MATREAD AND READV 
LOCATE 
READNEXT 
READT AND WEOF 

121 

All of these support the multi-line construct, which must be termin­
ated by an END. In addition they may have an optional THEN clause, 
for example: 

OPEN ",'PERSONNEL' TO PERSONNEL.FILE THEN 
PRINT 'PERSONNEL file opened OK' 

END ELSE 
PRINT 'It is impossible to open the PERSONNEL file' 
PRINT 'Process aborted' 
STOP 

END 

LOOPING 

There are two forms of loop construct supported in Pick BASIC. One of 
them, FOR/NEXT, is probably available in every BASIC on the market 
today. The syntax is: 

FOR var = startval TO stopval 

sequence of instructions 

NEXT var 

where var is a variable name which is given the starting value indicated 
by startval. It is incremented by one each time around the loop. The loop 
is exited when var exceeds the value indicated by stopval. 

FOR/NEXT is used when some operation is required to be carried 
out a fixed number of times. The variable var will probably be used at 
some time during the operation as a pointer to some data or as a 
counter. The generalised syntax of FOR/NEXT is: 

FOR var = startval TO stopval STEP stepval 

sequence of instructions 

NEXT var 

Here stepval is the increment. Stepval may be a positive or negative 

Pick BASIC 

READ, MATREAD AND READY 

LOCATE 

READNEXT 
READT AND WEOF 

121 

All of these support the multi-line construct, which must be termin­
ated by an END. In addition they may have an optional THEN clause, 
for example: 

OPEN ".'PERSONNEL· TO PERSONNEL.FILE THEN 
PRINT 'PERSONNEL file opened OK' 

END ELSE 
PRINT 'It is impossible to open the PERSONNEL file' 
PRINT 'Process aborted' 

STOP 
END 

LOOPING 

There are two forms of loop construct supported in Pick BASIC. One of 
them, FOR/NEXT, is probably available in every BASIC on the market 
today. The syntax is: 

FOR var = startval TO stopval 

sequence of instructions 

NEXT var 

where var is a variable name which is given the starting value indicated 
by startval. It is incremented by one each time around the loop. The loop 
is exited when var exceeds the value indicated by stopval. 

FOR/NEXT is used when some operation is required to be carried 
out a fixed number of times. The variable var will probably be used at 
some time during the operation as a pointer to some data or as a 
counter. The generalised syntax of FOR/NEXT is: 

FOR var = startval TO stopval STEP stepval 

sequence of instructions 

NEXT var 

Here stepval is the increment. Stepval may be a positive or negative 



122 Chapter 10 

integer or a non-integer number. If stepval is negative, the loop will be 
executed while var exceeds or equals stopval. 

Pick BASIC also supports two interesting extensions to FORI 
NEXT. These give the ability to execute a set of instructions a fixed 
number of times but only WHILE some condition exists or UNTIL 
some condition arises. 

The syntax is: 

FOR var = startval TO stopval UNTIL condition 

or 
FOR var = startval TO stopval WHILE condition 

sequence of instructions 

NEXT var 

Or generalised: 

FOR var = startval TO stopval STEP stepval UNTIL condition 

or 
FOR var = startval TO stopval STEP stepval WHILE condition 

sequence of instructions 

NEXT var 

The loop is exited at the point at which var exceeds stopval or at the 
point at which the condition becomes true (false in the case of WHILE) 
whichever occurs first. If the loop is exited by virtue of the condition var 

will be set to its last value with which the loop was executed plus one 
step value (usually one). This is not true if the condition causes an exit 
before the loop has been executed once when var will equal startval. 

DO Loops 

DO loops allow an exit upon a condition at some point during the loop 
rather than looping a predetermined number of times. The syntax is: 

LOOP 

122 Chapter 10 

integer or a non-integer number. If stepval is negative, the loop will be 
executed while var exceeds or equals stopval. 

Pick BASIC also supports two interesting extensions to FORI 
NEXT. These give the ability to execute a set of instructions a fixed 
number of times but only WHILE some condition exists or UNTIL 
some condition arises. 

The syntax is: 

FOR var = startval TO stopval UNTIL condition 
or 
FOR var = startval TO stopval WHILE condition 

sequence of instructions 

NEXT var 

Or generalised: 

FOR var = startval TO stopval STEP stepval UNTIL condition 
or 
FOR var = startval TO stopval STEP stepval WHILE condition 

sequence of instructions 

NEXT var 

The loop is exited at the point at which var exceeds stopval or at the 
point at which the condition becomes true (false in the case of WHILE) 
whichever occurs first. If the loop is exited by virtue of the condition var 
will be set to its last value with which the loop was executed plus one 
step value (usually one). This is not true if the condition causes an exit 
before the loop has been executed once when var will equal startval. 

DO Loops 

DO loops allow an exit upon a condition at some point during the loop 
rather than looping a predetermined number of times. The syntax is: 

LOOP 



Pick BASIC 123 

pre condition processing 

UNTIL condition DO 

post condition processing 

REPEAT 

Like the conditional FOR/NEXT, the UNTIL clause may be re­
placed by a WHILE clause. DO loops are excellent devices for proces­
sing dynamic arrays. Take the example of a customer order with a 
number of product lines stored as a multi-valued attribute. We wish to 
carry out some processing on each of the lines. One approach might be 
to count the number of multi-values and then handle this with a FORI 
NEXT loop. Alternatively the following code may be more appropriate: 

11=0 

LOOP 
II=II+l 
* Take each product code in turn. 
* If none remain, 
* product code will be null. 
PRODUCT.CODE = ORDER<PRODUCT.LINE,II> 
UNTIL PRODUCT.CODE = ' , DO 

post condition processing 

REPEAT 

The loop exits when the product code attribute has been exhausted 
and this is again readily understarldable and easily maintainable. 

FILE I/O AND RECORD LOCKING 

Updating Files with Pick BASIC 

Because Pick BASIC supports a variable structure which exactly mirrors 
the physical structure of the database, reading and writing data to and 
from files is a very simple matter. 

Pick BASIC 123 

pre condition processing 

UNTIL condition DO 

post condition processing 

REPEAT 

Like the conditional FOR/NEXT, the UNTIL clause may be re­
placed by a WHILE clause. DO loops are excellent devices for proces­
sing dynamic arrays. Take the example of a customer order with a 
number of product lines stored as a multi-valued attribute. We wish to 
carry out some processing on each of the lines. One approach might be 
to count the number of multi-values and then handle this with a FOR/ 
NEXT loop. Alternatively the following code may be more appropriate: 

II = 0 
LOOP 

II=II+l 
* Take each product code in turn. 
* If none remain, 
* product code will be null. 
PRODUCT.CODE = ORDER<PRODUCT.LINE,II> 
UNTIL PRODUCT.CODE = ' , DO 

post condition processing 

REPEAT 

The loop exits when the product code attribute has been exhausted 
and this is again readily understarldable and easily maintainable. 

FILE I/O AND RECORD LOCKING 

Updating Files with Pick BASIC 

Because Pick BASIC supports a variable structure which exactly mirrors 
the physical structure of the database, reading and writing data to and 
from files is a very simple matter. 



124 Chapter 10 

Essentially there are four operations that may be carried out in 
relation to files. Files may be opened, and data may be read, written or 
deleted. 

Opening Files 

In common with most languages files must be opened before a file 
transaction may be carried out. This is achieved via the OPEN state­
ment. We may have as many files as we like open at once with Pick 
BASIC and there is no need to subsequently close files once they have 
been finished with. There is no advantage to be gained from closing files 
and in fact there is no facility provided to do so. 

The normal syntax of the OPEN statement is as follows: 

OPEN' " 'filename' TO variable.name ELSE command 

and from here on the file is referred to by its BASIC variable name 
rather than its actual name. Since the first parameter is null, the system 
understands us to mean the data portion of the file. To open the 
dictionary portion we specify the first parameter as DICT. An ELSE 
clause is mandatory and tells the system what to do if the file is not 
accessible from the account in which the program is executed. On most 
Pick systems, opening files is a task which takes up a considerable 
amount of processing power so files should only be opened once where 
this is possible. If file references are to be made in subroutines; as well 
as in main line programs, it is as well to open the file in the main line 
program and pass the file variable to the subroutine as a parameter, or 
in COMMON. Then the file need not be reopened in the subroutine. 

The above syntax is not the only supported syntax but it is the one 
which is supported universally both by 'true' Pick systems, and by 
McDonnell Douglas and the look-alikes. It is also the best syntax from 
the point of view of readability and maintainability of the program. 

On 'true' Pick systems only, the following syntax may be used: 

OPEN 'filename' TO variable.name ELSE command 

Here filename may be a filename alone, implying the data section, 
or DIeT filename for the dictionary. It may also be DATA filename 
and again the data section would be opened. 

Most systems support the syntax: 

OPEN' ','filename' ELSE command 

124 Chapter 10 

Essentially there are four operations that may be carried out in 
relation to files. Files may be opened, and data may be read, written or 
deleted. 

Opening Files 

In common with most languages files must be opened before a file 
transaction may be carried out. This is achieved via the OPEN state­
ment. We may have as many files as we like open at once with Pick 
BASIC and there is no need to subsequently close files once they have 
been finished with. There is no advantage to be gained from closing files 
and in fact there is no facility provided to do so. 

The normal syntax of the OPEN statement is as follows: 

OPEN' " 'filename' TO variable. name ELSE command 

and from here on the file is referred to by its BASIC variable name 
rather than its actual name. Since the first parameter is null, the system 
understands us to mean the data portion of the file. To open the 
dictionary portion we specify the first parameter as DICT. An ELSE 
clause is mandatory and tells the system what to do if the file is not 
accessible from the account in which the program is executed. On most 
Pick systems, opening files is a task which takes up a considerable 
amount of processing power so files should only be opened once where 
this is possible. If file references are to be made in subroutines, as well 
as in main line programs, it is as well to open the file in the main line 
program and pass the file variable to the subroutine as a parameter, or 
in COMMON. Then the file need not be reopened in the subroutine. 

The above syntax is not the only supported syntax but it is the one 
which is supported universally both by 'true' Pick systems, and by 
McDonnell Douglas and the look-alikes. It is also the best syntax from 
the point of view of readability and maintainability of the program. 

On 'true' Pick systems only, the following syntax may be used: 

OPEN 'filename' TO variable.name ELSE command 

Here filename may be a filename alone, implying the data section, 
or DICT filename for the dictionary. It may also be DATA filename 
and again the data section would be opened. 

Most systems support the syntax: 

OPEN' ','filename' ELSE command 



Pick BASIC 125 

without the TO statement. Subsequent reads and writes on the file are 
then achieved by specifying the READ or WRITE without the file 
parameter. Note that only one file may be opened at once in this 
manner. The file being referenced is the one that was last opened in this 
manner. There is of course nothing to stop us opening other files with 
the 'normal' syntax and referencing them in the 'normal' way, as well as 
having the simplified method, but I would definitely recommend that 
for program clarity this method if not used. In the Pick reference 
manual it is called the null file variable. 

Reading Data from the Database 

There are three methods of reading data from the database once a file 
has been opened. We may read data into a dynamic array, a real array 
or a single attribute variable. In all cases we must specify the file being 
read. via the name allocated in the OPEN statement and the key to 
reference the actual record required. We must also specify what should 
happen if the record does not exist by supplying an ELSE clause. 

The syntax used for reading a dynamic array is: 

READ var FROM filevar,keyname ELSE command 

Here vaT is a Pick BASIC variable name representing a dynamic 
array. The whole of the record keyname is read from the file repre­
sented by filevar. Attribute 1 of the record is placed into var<l>, 
attribute 2 into var<2>, attribute 3 into var<3>, and so on up to the end 
of the record. If the null file variable is being used the filevar parameter 
is omitted. 

For a real array we write: 

MATREAD var FROM filevar,keyname ELSE command 

Here var is the name of a real array which has previously been 
dimensioned. Again the whole of the record is read but this time 
attribute 1 is placed into var(l), attribute 2 into var(2) etc. Any elements 
left over after the end of the record are set to null. If the record contains 
more attributes than there are elements in the array the treatment 
differs on different implementations. On some machines the extra attri­
butes are placed as a dynamic array on the end of the last element, on 
others the program will abort into the symbolic debugger with the 
message: 

Pick BASIC 125 

without the TO statement. Subsequent reads and writes on the file are 
then achieved by specifying the READ or WRITE without the file 
parameter. Note that only one file may be opened at once in this 
manner. The file being referenced is the one that was last opened in this 
manner. There is of course nothing to stop us opening other files with 
the 'normal' syntax and referencing them in the 'normal' way, as well as 
having the simplified method, but I would definitely recommend that 
for program clarity this method if not used. In the Pick reference 
manual it is called the null file variable. 

Reading Data from the Database 

There are three methods of reading data from the database once a file 
has been opened. We may read data into a dynamic array, a real array 
or a single attribute variable. In all cases we must specify the file being 
read, via the name allocated in the OPEN statement and the key to 
reference the actual record required. We must also specify what should 
happen if the record does not exist by supplying an ELSE clause. 

The syntax used for reading a dynamic array is: 

READ var FROM filevar,keyname ELSE command 

Here var is a Pick BASIC variable name representing a dynamic 
array. The whole of the record keyname is read from the file repre­
sented by filevar. Attribute 1 of the record is placed into var<l>, 
attribute 2 into var<2>, attribute 3 into var<3>, and so on up to the end 
of the record. If the null file variable is being used the filevar parameter 
is omitted. 

For a real array we write: 

MATREAD var FROM filevar,keyname ELSE command 

Here var is the name of a real array which has previously been 
dimensioned. Again the whole of the record is read but this time 
attribute 1 is placed into var( 1), attribute 2 into var(2) etc. Any elements 
left over after the end of the record are set to null. If the record contains 
more attributes than there are elements in the array the treatment 
differs on different implementations. On some machines the extra attri­
butes are placed as a dynamic array on the end of the last element, on 
others the program will abort into the symbolic debugger with the 
message: 



126 Chapter 10 

LINE nnn ; MATREAD NUMBER OF ELEMENTS EXCEEDS VECTOR SIZE 

If we wish to read a single attribute from a record we must specify 
which attribute using READY: 

READY var FROM filevar,keyname,attno ELSE command 

Here var becomes a single attribute variable with the contents of 
attribute attno from the record. If the attribute contains values or 
subvalues, these will be included, hence var could still be a dynamic 
array. READY is a little quicker than a READ simply because there is 
less data transfer from disk to central memory. It is useful where a single 
piece of data is required from a record. However one READ is quicker 
than two READYs so if more than one piece of data is required READ 
the data rather than READYing it. 

Locking 

Multi-user systems usually require a system of record locking so that the 
integrity of the data may be ensured. Consider the example of a stock 
file where one record is held per product. One of the attributes on the 
record represents the current stock quantity which is updated by some 
despatch procedure and also by a production process. User 1 despatches 
some of the product and the program reads the stock record in order to 
update it. At almost the same time user 2 is producing the product and 
his program reads the same record in order to update it. User 1 subtracts 
the delivered quantity from the stock and writes the record back to the 
stock file. Then user 2 adds the produced quantity to the original stock 
figure and writes that back to the stock file. The stock file will be 
incorrect because the effect of the delivery was not known when user 2 
read the stock record. The stock file will hold the last written figure. In 
this case the stock file will 190k as if the delivery were never made. 

We stop this happening by letting user 1 lock the record when he 
reads it. User 2 then has to wait until user 1 has written the record back 
to the file before he may read it. The programmer specifies that this 
happens by appending aU, for Update lock, to the READ, MAT­
READ or READY command. The commands then become READU, 
MATREADU and READYU respectively. The lock is automatically 
reset when the corresponding record is written back to the file. If we 
wish to reset the locks set in the program without writing the record we 
may do this via the RELEASE command. In fact if we decide not to 
write the record back, we must execute the RELEASE command, 
otherwise the record will remain locked. 

126 Chapter 10 

LINE nnn ; MATREAD NUMBER OF ELEMENTS EXCEEDS VECTOR SIZE 

If we wish to read a single attribute from a record we must specify 
which attribute using READY: 

READY var FROM filevar,keyname,attno ELSE command 

Here var becomes a single attribute variable with the contents of 
attribute attno from the record. If the attribute contains values or 
subvalues, these will be included, hence var could still be a dynamic 
array. READY is a little quicker than a READ simply because there is 
less data transfer from disk to central memory. It is useful where a single 
piece of data is required from a record. However one READ is quicker 
than two READYs so if more than one piece of data is required READ 
the data rather than READYing it. 

Locking 

Multi-user systems usually require a system of record locking so that the 
integrity of the data may be ensured. Consider the example of a stock 
file where one record is held per product. One of the attributes on the 
record represents the current stock quantity which is updated by some 
despatch procedure and also by a production process. User I despatches 
some of the product and the program reads the stock record in order to 
update it. At almost the same time user 2 is producing the product and 
his program reads the same record in order to update it. User I subtracts 
the delivered quantity from the stock and writes the record back to the 
stock file. Then user 2 adds the produced quantity to the original stock 
figure and writes that back to the stock file. The stock file will be 
incorrect because the effect of the delivery was not known when user 2 
read the stock record. The stock file will hold the last written figure. In 
this case the stock file will 190k as if the delivery were never made. 

We stop this happening by letting user 1 lock the record when he 
reads it. User 2 then has to wait until user 1 has written the record back 
to the file before he may read it. The programmer specifies that this 
happens by appending a U, for Update lock, to the READ, MAT­
READ or READY command. The commands then become READU, 
MATREADU and READYU respectively. The lock is automatically 
reset when the corresponding record is written back to the file. If we 
wish to reset the locks set in the program without writing the record we 
may do this via the RELEASE command. In fact if we decide not to 
write the record back, we must execute the RELEASE command, 
otherwise the record will remain locked. 



Pick BASIC 127 

If it happens that something untoward happens while the lock is set, 
for instance the user pushes the BREAK key and exits to TCL, the lock 
will still be set. To enable recovery from this situation, there is a verb on 
the SYSPROG account, CLEAR-BASIC-LOCKS, which will clear the 
locks set by any port. 

Writing to Files 

As you might expect, there is a corresponding WRITE statement for 
each of the forms of the READ statement. Thus for dynamic arrays we 
write: 

WRITE vaT ON filevar ,keyname 

and for real arrays: 

MATWRITE var ON filevar,keyname 

Each of these will create a new record on the file, called keyname. If 
a record called keyname already exists, it will be overwritten. The single 
attribute version of WRITE behaves a little differently, in that it will 
still create a new record if one does not already exist, but if the record 
does exist, only the attribute indicated will be overwritten. The rest of 
the record will be left alone. The syntax of WRITEV is: 

WRITEV var ON filevar,keyname,attno 

Again, if the null file variable is being used, the filevar parameter is 
omitted and if attno is -1 then var is appended onto a new attribute at 
the end of the record. 

Deleting Records 

The DELETE statement (as opposed to the DELETE function) is used 
to delete whole records from files. The syntax is: 

DELETE filevar,keyname 

THE TECHNICAL ASPECTS OF SECURITY 

Most of the programmer's worries about security centre around pre­
venting conflicts when updating or retrieving information from the 
database. The solutions will centre upon the judicious use of facilities 
provided by the BASIC language. 

Pick BASIC 127 

If it happens that something untoward happens while the lock is set, 
for instance the user pushes the BREAK key and exits to TCL, the lock 
will still be set. To enable recovery from this situation, there is a verb on 
the SYSPROG account, CLEAR-BASIC-LOCKS, which will clear the 
locks set by any port. 

Writing to Files 

As you might expect, there is a corresponding WRITE statement for 
each of the forms of the READ statement. Thus for dynamic arrays we 
write: 

WRITE var ON filevar,keyname 

and for real arrays: 

MATWRITE var ON filevar,keyname 

Each of these will create a new record on the file, called keyname. If 
a record called keyname already exists, it will be overwritten. The single 
attribute version of WRITE behaves a little differently, in that it will 
still create a new record if one does not already exist, but if the record 
does exist, only the attribute indicated will be overwritten. The rest of 
the record will be left alone. The syntax of WRITEV is: 

WRITEV var ON filevar,keyname,attno 

Again, if the null file variable is being used, the filevar parameter is 
omitted and if attno is -1 then var is appended onto a new attribute at 
the end of the record. 

Deleting Records 

The DELETE statement (as opposed to the DELETE function) is used 
to delete whole records from files. The syntax is: 

DELETE filevar,keyname 

THE TECHNICAL ASPECTS OF SECURITY 

Most of the programmer's worries about security centre around pre­
venting conflicts when updating or retrieving information from the 
database. The solutions will centre upon the judicious use of facilities 
provided by the BASIC language. 



128 Chapter 10 

The Need for Record Locking 

Suppose we have a situation where a change is to be made to some 
existing information on a customer file. The computer software is highly 
integrated and the customer file may be being accessed from several 
terminals at the same time. Orders are being entered; the sales ledger is 
being operated; despatches are being made and so on. Each of these 
functions utilises the customer master file and the credit controller 
wants to start changing credit limits. How does the programmer ensure 
that changes to the customer file do not affect the other business 
operations? Further, how does he ensure that two users do not attempt 
to make different changes to a customer's credit limit? 

Group Locking 

The READU, MATREADU and READVU statements have already 
been discussed in the section on BASIC file updating. Briefly. these 
statements lock a part of a file from further retrieval by other users 
while the user who has read from the file manipulates the information. 
The lock is released when the file is updated or this user executes a 
RELEASE statement. Other users wishing to access records within the 
same group have to wait and a periodic bell is sent to their terminal to 
indicate that the data is being manipulated. This is a powerful system of 
locking but the programmer must be aware of its limitations. 

Firstly, a whole group of the file is locked. In a file of modulo 100 
this would result in 1 % of the file being locked. Larger files have a 
smaller percentage locked, but smaller files have a larger percentage 
locked. In the worst case, a file with a modulo of 1 will have the whole of 
the file locked against other users. 

Following on from this, it is not a good idea to READU a record and 
then carry out a lot of processing on the record and file the record. The 
operator might go to lunch in between, leaving part of the file locked! It 
is recommended that an ordinary READ is carried out at the beginning 
of the process, then the processing should be carried out. Finally the 
record is reread with an update lock, amended and immediately written 
back. 

Regrettably, this still leaves a problem to be solved. If user 1 
READUs record A from a file to carry out changes and then user 2 is 
unlucky enough to edit the same record the editor will retrieve the 
record! The editor only checks record locks at file time. So if the record 
is filed from the editor the bell will begin to sound. It will sound until 

128 Chapter 10 

The Need for Record Locking 

Suppose we have a situation where a change is to be made to some 
existing information on a customer file. The computer software is highly 
integrated and the customer file may be being accessed from several 
terminals at the same time. Orders are being entered; the sales ledger is 
being operated; despatches are being made and so on. Each of these 
functions utilises the customer master file and the credit controller 
wants to start changing credit limits. How does the programmer ensure 
that changes to the customer file do not affect the other business 
operations? Further, how does he ensure that two users do not attempt 
to make different changes to a customer's credit limit? 

Group Locking 

The READU, MATREADU and READVU statements have already 
been discussed in the section on BASIC file updating. Briefly, these 
statements lock a part of a file from further retrieval by other users 
while the user who has read from the file manipulates the information. 
The lock is released when the file is updated or this user executes a 
RELEASE statement. Other users wishing to access records within the 
same group have to wait and a periodic bell is sent to their terminal to 
indicate that the data is being manipulated. This is a powerful system of 
locking but the programmer must be aware of its limitations. 

Firstly, a whole group of the file is locked. In a file of modulo 100 
this would result in 1 % of the file being locked. Larger files have a 
smaller percentage locked, but smaller files have a larger percentage 
locked. In the worst case, a file with a modulo of 1 will have the whole of 
the file locked against other users. 

Following on from this, it is not a good idea to READU a record and 
then carry out a lot of processing on the record and file the record. The 
operator might go to lunch in between, leaving part of the file locked! It 
is recommended that an ordinary READ is carried out at the beginning 
of the process, then the processing should be carried out. Finally the 
record is reread with an update lock, amended and immediately written 
back. 

Regrettably, this still leaves a problem to be solved. If user 1 
READUs record A from a file to carry out changes and then user 2 is 
unlucky enough to edit the same record the editor will retrieve the 
record! The editor only checks record locks at file time. So if the record 
is filed from the editor the bell will begin to sound. It will sound until 



Pick BASIC 129 

user I has filed his changes. then will go right ahead and file the edited 
changes on top of it. so losing the changes of user l. He who files last. 
files loudest! The moral of this story is that the editor should never be 
used on live. sensitive data unless it is strictly controlled. 

The 'Deadly Embrace' 

It is not good practice to lock records from several files at once. 
Consider user 1 locking a record in file 1 and then another record in file 
2. User 2 locks records in the same groups of the same files from another 
program but does it by locking file 2 and then file 1. User 1 locks file 1 
and then has to stop because user 2 has locked file 2. User 2 stops 
because user 1 has locked file l. This is the classical 'deadly embrace'. 
The only way out of this is is for the system administrator to execute the 
SYSPROG verb CLEAR-BASIC-LOCKS and then sort out the con­
sequences manually. Where this situation can arise it should be tackled 
in one of two ways. Either the system administrator imposes the disci­
pline of always reading files in the same order, or the semaphore locking 
system can be employed. 

This is a system where each interactive process is given a number in 
the range 1 to 64. At update time the processes execute the appropriate 
LOCK and a semaphore will be set. This can be envisaged as a door 
with only one key. Only one person can have the key at anyone time. 
Anyone else who wants the key has to wait until the first person has 
finished with it. In a similar way, a second process wishing to update the 
same file set will be stopped at the LOCK. LOCK has the advantage of 
having an ELSE clause so the programmer can decide what to do if the 
lock is set, but still suffers from the disadvantage that other processes 
(such as the editor) will not respect the semaphore locks. The general 
format of the LOCK command is: 

LOCK lock.no ELSE command 

Remember that semaphores have to be unset as well as set and that 
they should not be left set for too long. To unset a semaphore lock 
execute the command UNLOCK lock.no. 

Basic Coding Techniques for Record Locking 

True record locking can be implemented from BASIC by using an extra 
file for storing locks. Suppose we wished to lock a particular record on a 

Pick BASIC 129 

user 1 has filed his changes, then will go right ahead and file the edited 
changes on top of it. so losing the changes of user 1. He who files last, 
files loudest! The moral of this story is that the editor should never be 
used on live, sensitive data unless it is strictly controlled. 

The 'Deadly Embrace' 

It is not good practice to lock records from several files at once. 
Consider user 1 locking a record in file 1 and then another record in file 
2. User 2 locks records in the same groups of the same files from another 
program but does it by locking file 2 and then file 1. User 1 locks file 1 
and then has to stop because user 2 has locked file 2. User 2 stops 
because user 1 has locked file 1. This is the classical 'deadly embrace'. 
The only way out of this is is for the system administrator to execute the 
SYSPROG verb CLEAR-BASIC-LOCKS and then sort out the con­
sequences manually. Where this situation can arise it should be tackled 
in one of two ways. Either the system administrator imposes the disci­
pline of always reading files in the same order. or the semaphore locking 
system can be employed. 

This is a system where each interactive process is given a number in 
the range 1 to 64. At update time the processes execute the appropriate 
LOCK and a semaphore will be set. This can be envisaged as a door 
with only one key. Only one person can have the key at anyone time. 
Anyone else who wants the key has to wait until the first person has 
finished with it. In a similar way, a second process wishing to update the 
same file set will be stopped at the LOCK. LOCK has the advantage of 
having an ELSE clause so the programmer can decide what to do if the 
lock is set, but still suffers from the disadvantage that other processes 
(such as the editor) will not respect the semaphore locks. The general 
format of the LOCK command is: 

LOCK lock. no ELSE command 

Remember that semaphores have to be unset as well as set and that 
they should not be left set for too long. To unset a semaphore lock 
execute the command UNLOCK lock.no. 

Basic Coding Techniques for Record Locking 

True record locking can be implemented from BASIC by using an extra 
file for storing locks. Suppose we wished to lock a particular record on a 



130 Chapter 10 

file. Coding like the following will achieve thIs quite welL while still not 
protecting against the editor: 

* 
" The first section ensures that only one user may set a lock 
* at a time 

LOOP 
SET = I 

LOCK 1 ELSE 
ROM : * This statement will sleep for 1 sec 
SET = 0 : * Try again someone else was setting a lock 

END 
UNTIL SET DO 

REPEAT 
* 
* Now check that the required record is not already locked 

* 

SET = 0 
LOOP 

READ LOCK.ITEM FROM LOCK.FILE,FILENA!v1E:"*":ID THEN 

* 
* Record is locked because the record is present 
* 

* 

PRINT "Locked" 

END ELSE 

* Record is not locked so lock it 

* 
WRITE USER ON LOCK.FILE,NAME:"*":ID 
SET = 1 

END 
UNTIL SET DO 

REPEAT 

* 
* Finally release the semaphore lock to allow other users to 
* check and set locks 

* 
UNLOCK 1 

and then to unset the lock we simply delete the lock record: 

DELETE LOCK.FILE,FILE.NAME:"*":ID 

130 Chapter 10 

file. Coding like the following will achieve thiS quite welL while still not 
protecting against the editor: 

* The first section ensures that only one user may set a lock 

at a time 

LOOP 
SET = I 

LOCK I ELSE 

ROM : * This statement will sleep for I sec 
SET = 0 : * Try again someone else was setting a lock 

END 
UNTIL SET DO 

REPEAT 

" Now check that the required record is not already locked 

SET = 0 

LOOP 
READ LOCK. ITEM FROM LOCK.FILE.FILE.NAME:"*":ID THEN 

• Record is locked because the record is present 

PRINT "Locked" 

END ELSE 

* Record is not locked so lock it 

WRITE USER ON LOCK.FILE,NAME:"*":ID 
SET = 1 

END 
UNTIL SET DO 

REPEAT 

• Finally release the semaphore lock to allow other users to 
* check and set locks 

UNLOCK 1 

and then to unset the lock we simply delete the lock record: 

DELETE LOCK.FILE,FILE.NAME:"''':ID 



Pick BASIC 

EXTERNAL SUBROUTINE FACILITIES 

131 

Pick BASIC provides three means of transferring processing from the 
BASIC program to the rest of the system, other than stopping the 
program. We may CALL another program, we may ENTER another 
program or we may CHAIN to another process. 

External Subroutines, CALL 

CALL allows the calling of a subroutine by another program. When the 
called subroutine has completed its processing, control is passed back to 
the calling program and processing continues at the statement after the 
CALL. The general syntax is: 

CALL subname(parameterl, parameter2, ...... , paramcterN) 

Subname is the name of the subroutine to be called. Both the sub­
routine and the calling program must be catalogued in order to do this. 
The subroutine must begin with a SUBROUTINE statement which 
matches the CALL: 

SUBROUTINE subname(parameterl, parameter2, ....... , parameterN) 

although the variable names given to the parameters in the subroutine 
need not be the same as those passed. The subroutine is terminated and 
control passed back to the calling program by a RETURN statement. 

Parameters may also be passed from program to subroutine and vice 
versa by a COMMON statement: 

COMMON parameterl, parameter2. parameter3, ......... , parameterN 

There is no limit to the length of either the COMMON statement or 
the passed parameter list although it is generally better to keep para­
meter lists short and pass data in COMMON because the COMMON 
statement utilises a common data area whereas a copy of the parameters 
is taken for the subroutine. 

Programs with COMMON statements may call subroutines with no 
COMMON statement although the subroutine will not then be able to 
access any of the data in the COMMON area. The reverse is not true 
however. programs with no COMMON may not call subroutines with a 
COMMON statement as the variable map would then be corrupted. In 
general it is permissible to call subroutines whose COMMON statement 
is equal to or shorter than the calling program, but not those whose 
COMMON is longer than the calling program. 

Pick BASIC 

EXTERNAL SUBROUTINE FACILITIES 

131 

Pick BASIC provides three means of transferring processing from the 
BASIC program to the rest of the system, other than stopping the 
program. We may CALL another program, we may ENTER another 
program or we may CHAIN to another process. 

External Subroutines, CALL 

CALL allows the calling of a subroutine by another program. When the 
called subroutine has completed its processing, control is passed back to 
the calling program and processing continues at the statement after the 
CALL. The general syntax is: 

CALL subname(parameterl, parameter2, ....... parameterN) 

Subname is the name of the subroutine to be called. Both the sub­
routine and the calling program must be catalogued in order to do this. 
The subroutine must begin with a SUBROUTINE statement which 
matches the CALL: 

SUBROUTINE subname(parameterl, parameter2, ....... , parameterN) 

although the variable names given to the parameters in the subroutine 
need not be the same as those passed. The subroutine is terminated and 
control passed back to the calling program by a RETURN statement. 

Parameters may also be passed from program to subroutine and vice 
versa by a COMMON statement: 

COMMON parameter!, parameter2, parameter3, ......... , parameterN 

There is no limit to the length of either the COMMON statement or 
the passed parameter list although it is generally better to keep para­
meter lists short and pass data in COMMON because the COMMON 
statement utilises a common data area whereas a copy of the parameters 
is taken for the subroutine. 

Programs with COMMON statements may call subroutines with no 
COMMON statement although the subroutine will not then be able to 
access any of the data in the COMMON area. The reverse is not true 
however, programs with no COMMON may not call subroutines with a 
COMMON statement as the variable map would then be corrupted. In 
general it is permissible to call subroutines whose COMMON statement 
is equal to or shorter than the calling program, but not those whose 
COMMON is longer than the calling program. 



132 Chapter 10 

An interesting facility with CALL is the ability to call indirectly. 

CALL (11subname( parameters) 

would call a subroutine whose name was held in the BASIC yariable 
subname. This is useful where the subroutine to be called depended upon 
some input yalue. for instance. Rather than have a multiple CASE and 
several CALLs, the problem can be handled in a single statement. The 
assumption being made is that the same parameter list will be used for 
all the possible called subroutines. 

Transferring Control, ENTER 

The ENTER statement allows control to be passed to another program. 
No parameter list may be passed and any data which is required to be 
communicated to the entered program must be placed in COMMON. 
Control is not passed back to the calling program when the entered 
program has completed processing. For this reason you must not 
ENTER a program from a subroutine or else the return stack main­
tained by the operating system will be corrupted. As for called sub­
routines the entered program must be catalogued and the indirect form 
is supported. The syntax is: 

ENTER progname 

or 

ENTER (rlprogname 

Transferring to Other Processes, CHAIN 

CHAIN allows escape from the BASIC program to any valid TCL 
command. This could be an Access listing, a Proc, a system command 
such as WHO or another program either executed or via the RUN verb. 
Control is not passed back to the calling program after use. The com­
mand must be passed as a string, either directly, enclosed in quotes, or 
indirectly by assembling the command string beforehand into a BASI C 
variable and passing that. 

COMMAND = "LISTU" 
CHAIN COMMAND 

or 
CHAIN "LISTU·' 

132 Chapter 10 

An interesting facility with CALL is the ability to call indirectly. 

CALL (cLsubname(parameters) 

would call a subroutine whose name was held in the BASIC variable 
subname. This is useful where the subroutine to be called depended upon 
some input value. for instance. Rather than have a multiple CASE and 
several CALLs. the problem can be handled in a single statement. The 
assumption being made is that the same parameter list will be used for 
all the possible called subroutines. 

Transferring Control, ENTER 

The ENTER statement allows control to be passed to another program. 
No parameter list may be passed and any data which is required to be 
communicated to the entered program must be placed in COMMON. 
Control is not passed back to the calling program when the entered 
program has completed processing. For this reason you must not 
ENTER a program from a subroutine or else the return stack main­
tained by the operating system will be corrupted. As for called sub­
routines the entered program must be catalogued and the indirect form 
is supported. The syntax is: 

ENTER progname 
or 

ENTER @progname 

Transferring to Other Processes, CHAIN 

CHAIN allows escape from the BASIC program to any valid TCL 
command. This could be an Access listing, a Proc. a system command 
such as WHO or another program either executed or via the RUN verb. 
Control is not passed back to the calling program after use. The com­
mand must be passed as a string, either directly, enclosed in quotes, or 
indirectly by assembling the command string beforehand into a BASIC 
variable and passing that. 

COMMAND = "LISTU" 
CHAIN COMMAND 

or 
CHAIN "LISTU" 



Pick BASIC 133 

If you are to chain to a BASIC program you have the option of 
reinitialising the variable map or, by adding an I option, to pass all the 
data on a one for one mapping. This is difficult to use because the first 
named variable in the calling program becomes the first named variable 
in the chained program, the second the second and so on. 

Input may be stacked for any process using the DATA statement. 
There may be any number of DATA statements placed before the 
CHAIN statement which will pass data via INPUT statements in a 
BASIC program or TCL prompts or Proc prompts on a first in first out 
basis. 

In this example the program chains to a copy process where the 
stacked input in the DATA statement contains the destination of the 
copy. (The COPY command is described in Chapter 13.) 

DATA "(YESTERDA YS-INVOICES)" 
CHAIN "COPY TODA YS-INVOICES *" 

PROGRAMMI~G FOR EFFICIENCY 

The following are hints and explanations that will help to optimise the 
performance of a given application: 

1. A void the use of large dynamic arrays. 

Dynamic arrays are very convenient and their use is to be applauded 
because of their contribution to easy maintainability. However, to ac­
cess the lOOth attribute of a dynamic array, the system starts at the 
beginning and examines each character, counting the attribute marks as 
it goes. Having passed the 99th attribute mark, the extraction of the 
lOOth can begin. It can be seen that this is an inefficient process. 

2. Equate real array elements. 

A similar process to retrieving dynamic array elements is applied to real 
arrays. but this can be circumnavigated by EQUATEing the array 
elements to other variable names, e.g.: 

EQUATE TRADE.TERMS TO ARRAY(lO) 

In this case, the address of the array element, rather than the 
beginning of the array, will be recorded as being the address of the 
variable. It also has the laudable effect of making the program more 
readable if meaningful variable names are used. 

Pick BASIC 133 

If you are to chain to a BASIC program you have the option of 
reinitialising the variable map or, by adding an I option, to pass all the 
data on a one for one mapping. This is difficult to use because the first 
named variable in the calling program becomes the first named variable 
in the chained program, the second the second and so on. 

Input may be stacked for any process using the DATA statement. 
There may be any number of DATA statements placed before the 
CHAIN statement which will pass data via INPUT statements in a 
BASIC program or TCL prompts or Proc prompts on a first in first out 
basis. 

In this example the program chains to a copy process where the 
stacked input in the DATA statement contains the destination of the 
copy. (The COPY command is described in Chapter 13.) 

DATA '"(YESTERDA YS-INVOICESr 
CHAIN '"COPY TODA YS-INVOICES *" 

PROGRAMMING FOR EFFICIENCY 

The following are hints and explanations that will help to optimise the 
performance of a given application: 

I. A void the use of large dynamic arrays. 

Dynamic arrays are very convenient and their use is to be applauded 
because of their contribution to easy maintainability. However, to ac­
cess the lOOth attribute of a dynamic array, the system starts at the 
beginning and examines each character, counting the attribute marks as 
it goes. Having passed the 99th attribute mark, the extraction of the 
IOOth can begin. It can be seen that this is an inefficient process. 

2. Equate real array elements. 

A similar process to retrieving dynamic array elements is applied to real 
arrays, but this can be circumnavigated by EQUATEing the array 
elements to other variable names, e.g.: 

EQUATE TRADE.TERMS TO ARRAY(lO) 

In this case, the address of the array element, rather than the 
beginning of the array, will be recorded as being the address of the 
variable. It also has the laudable effect of making the program more 
readable if meaningful variable names are used. 



134 Chapter 10 

3. Use COMMON variables, rather than parameter lists when passing 
data to and from subroutines. 

COMMON lists are more efficient than parameter lists because they are 
not copied into a new area of workspace when the subroutine is called. 
Files, in particular, should be opened to COMMON variables so that 
they do not have to be re-opened in subroutines. The opening of files is 
a relatively time-consuming process. Remember that although it is 
permissible to call subroutines with no or smaller COMMON blocks 
than the calling process, it is not permissible to call a subroutine with a 
bigger COMMON block. This will corrupt the local variable area on 
return from the subroutine, causing unpredictable results! 

134 Chapter 10 

3. Use COMMON variables, rather than parameter lists when passing 
data to and from subroutines. 

COMMON lists are more efficient than parameter lists because they are 
not copied into a new area of workspace when the subroutine is called. 
Files, in particular, should be opened to COMMON variables so that 
they do not have to be re-opened in subroutines. The opening of files is 
a relatively time-consuming process. Remember that although it is 
permissible to call subroutines with no or smaller COMMON blocks 
than the calling process, it is not permissible to call a subroutine with a 
bigger COMMON block. This will corrupt the local variable area on 
return from the subroutine, causing unpredictable results! 



Chapter 11 
The PROC Job Control Language 

This chapter shows how the various facilities provided by the Pick 
Operating System can be linked together using the job control language, 
PROC. 

Procs provide a method of storing one or more commands which 
may have been entered at TCL so that those commands may be invoked 
with a single word command. Proc has a number of features that take it 
beyond the realms of a simple job controller in that there are facilities 
for screen formatting, taking in input and testing the validity of that 
input. and branching and subroutine facilities. 

Procs are interpreted at run time. No compilation phase is necessary. 
Like BASIC programs, Procs exist as records on files and so the method 
of entry is via the system editor. The first attribute of any Proc must be 
PQ. Pick uses this to identify the record as an executable Proc. If the 
Proc is placed into the master dictionary of any account the Proc can 
then be executed by typing in the name of the Proc at TCL. The system 
utility LISTU is an example of a Proc which executes an Access listing. 

Although Procs can pass control to any system utility, Access com­
mand or BASIC program, control will always pass back to the calling 
Proc when the process is terminated. Only when the Proc is exhausted, 
or specifically exited, is control passed back to TCL. 

Procs operate by manipulating an input buffer and an output buffer. 
Both input and output buffers are further divided into primary and 
secondary buffers. There are therefore four buffers that will be operated 
upon. 

Data that is typed in at TCL passes into the primary input buffer. 
Data which is used to process a particular activity is placed into the 
primary output buffer. A simple example will clarify this. Suppose we 
wished to execute the Access statement 

SORT PERSONNEL BY NAME WITH AGE> "25" NAME AGE DEPARTMENT 

from a Proc. 

135 

Chapter 11 
The PROC Job Control Language 

This chapter shows how the various facilities provided by the Pick 
Operating System can be linked together using the job control language, 
PROC. 

Procs provide a method of storing one or more commands which 
may have been entered at TCL so that those commands may be invoked 
with a single word command. Proc has a number of features that take it 
beyond the realms of a simple job controller in that there are facilities 
for screen formatting, taking in input and testing the validity of that 
input, and branching and subroutine facilities. 

Procs are interpreted at run time. No compilation phase is necessary. 
Like BASIC programs, Procs exist as records on files and so the method 
of entry is via the system editor. The first attribute of any Proc must be 
PQ. Pick uses this to identify the record as an executable Proc. If the 
Proc is placed into the master dictionary of any account the Proc can 
then be executed by typing in the name of the Proc at TCL. The system 
utility LISTU is an example of a Proc which executes an Access listing. 

Although Procs can pass control to any system utility, Access com­
mand or BASIC program, control will always pass back to the calling 
Proc when the process is terminated. Only when the Proc is exhausted, 
or specifically exited, is control passed back to TCL. 

Procs operate by manipulating an input buffer and an output buffer. 
Both input and output buffers are further divided into primary and 
secondary buffers. There are therefore four buffers that will be operated 
upon. 

Data that is typed in at TCL passes into the primary input buffer. 
Data which is used to process a particular activity is placed into the 
primary output buffer. A simple example will clarify this. Suppose we 
wished to execute the Access statement 

SORT PERSONNEL BY NAME WITH AGE> "25" NAME AGE DEPARTMENT 

from a Proc. 

135 



136 Chapter 11 

PRIMARY INPUT PRIMARY OUTPUT 

Anything we type The command 
goes in here to be processed 

SECONDARY INPUT SECONDARY OUTPUT 

Errors from the Data for the 
command just command being 

processed processed 

Fig. 11.1. The PROC buffers. 

Since we wish to execute this as a single word command, the Proc 
must be placed in the master dictionary. We shall give the name 
REPORT to the record placed into the master dictionary which forms 
the Proc. The command to create this record is: 

ED MD REPORT 
New Item 
Top 

To indicate that .this is a Proc the first line must be PO. so we insert 
this: 

.1 
001 PO 
002 

The command to be executed must now be placed into the primary 
output buffer. We tell the Proc that the following data is destined for the 
primary output buffer (POB) by prefixing the data with the letter H. It 
might be a good idea to annotate the Proc to ease maintenance and we 
can do this by prefixing comments with the letter C: 

002 C 
003 C The Access report comes next 
004 C 
005 HSORT PERSONNEL BY NAME WITH AGE> "25" NAME AGE DEPART­
MENT 

136 Chapter 11 

PRIMARY INPUT PRIMARY OUTPUT 

Anything we type The command 
goes in here to be processed 

SECONDARY INPUT SECONDARY OUTPUT 

Errors from the Data for the 
command just command being 

processed processed 

Fig. 11.1. The PROC buffers. 

Since we wish to execute this as a single word command, the Proc 
must be placed in the master dictionary. We shall give the name 
REPORT to the record placed into the master dictionary which forms 
the Proc. The command to create this record is: 

ED MD REPORT 
New Item 
Top 

To indicate that this is a Proc the first line must be PO, so we insert 
this: 

.1 
001 PO 
002 

The command to be executed must now be placed into the primary 
output buffer. We tell the Proc that the following data is destined for the 
primary output buffer (POB) by prefixing the data with the letter H. It 
might be a good idea to annotate the Proc to ease maintenance and we 
can do this by prefixing comments with the letter C: 

002C 
003 C The Access report comes next 
004 C 
005 HSOR.T PERSONNEL BY NAME WITH AGE> "25" NAME AGE DEPART­
MENT 



The PROC Job Control Language 137 

Having filled the output buffer, we tell the Proc to process the 
contents of the output buffer by typing the letter P: 

006 P 
007 
JI 
'REPORT' filed 

We then file the Proc and we can now execute it by typing 
REPORT. We could have written line 5 in several stages as follows: 

005 HSORT PERSONNEL 
006 H BY NAME 
007 H WITH AGE> "25" 
DOS H NAME AGE DEPARTMENT 

Each successive H command adds to the end of the POB. Note that 
each line except the first has a space at the beginning. If we had not had 
a space, the contents of the POB at process time would have been: 

SORT PERSONNELBY NAMEWITH AGE> "25"NAME AGE DE­
PARTMENT 

and the Access processor would have aborted with the error message 

PERSONNELBY IS NOT A FILENAME. 

Suppose now that the process we wish to execute is an Access 
SELECT, the results of which are to be pipelined into a BASIC prog­
ram, and the BASIC program will prompt for the file name on which we 
are working. 

Clearly we can put the select into the POB and execute that, but how 
do we prevent the BASIC program name from just being added onto 
the end of the POB? The answer is that we place the subsequent 
instructions into the secondary output buffer (SOB). Data is placed into 
the SOB via the H command as for the POB, but first we must tell the 
Proc that following statements are destined for the secondary, and not 
the primary output buffer, by turning on the 'stack'. The SOB repre­
sents stacked input for the process which is to be executed, so the file 
name can be placed here too. A carriage return is indicated by suffixing 
a left chevron «) to the H command. Thus this Proc is as follows: 

001. PO 
002 C 
003 C An example of the use of the secondary output buffer 
004 C 

The PROC Job Control Language 137 

Having filled the output buffer, we tell the Proc to process the 
contents of the output buffer by typing the letter P: 

006 P 
007 
JI 
'REPORT' filed 

We then file the Proc and we can now execute it by typing 
REPORT. We could have written line 5 in several stages as follows: 

005 HSORT PERSONNEL 
006 H BY NAME 
007 H WITH AGE> "25" 
008 H NAME AGE DEPARTMENT 

Each successive H command adds to the end of the POB. Note that 
each line except the first has a space at the beginning. If we had not had 
a space, the contents of the POB at process time would have been: 

SORT PERSONNELBY NAMEWITH AGE> "2S"NAME AGE DE­
PARTMENT 

and the Access processor would have aborted with the error message 

PERSONNELBY IS NOT A FILENAME. 
Suppose now that the process we wish to execute is an Access 

SELECT, the results of which are to be pipelined into a BASIC prog­
ram, and the BASIC program will prompt for the file name on which we 
are working. 

Clearly we can put the select into the POB and execute that, but how 
do we prevent the BASIC program name from just being added onto 
the end of the POB? The answer is that we place the subsequent 
instructions into the secondary output buffer (SOB). Data is placed into 
the SOB via the H command as for the POB, but first we must tell the 
Proc that following statements are destined for the secondary, and not 
the primary output buffer, by turning on the 'stack'. The SOB repre­
sents stacked input for the process which is to be executed, so the file 
name can be placed here too. A carriage return is indicated by suffixing 
a left chevron «) to the H command. Thus this Proc is as follows: 

DOt PO 
002 C 
003 C An example of the use of the secondary output buffer 
004 C 



138 

005 HSSELECT PERSONNEL 
006 H BY NAME 
007 H WITH AGE> "25" 
008 C 

Chapter 11 

009 C Now turn on the stack with the STON command 
010 C 
011 STON 
012 HRUN PROGFILE PROGNAME< 
013 HPERSONNEL< 
014 P 

Now let us change the first problem so that the exact data being 
displayed is not specified. We are going to tell the Proc at run-time 
which field is to be displayed by using the syntax REPORT NAME. 
Thus the field to be displayed comes into the Proc in the primary input 
buffer (PIB) and needs to be moved to the correct place in the POB 
before the report is executed. We need to be able to point at the right 
place in the PIB and move only the second word of the command. 

Proc maintains pointers to enable us to do this and spaces are used to 
break up the buffers so that they are in clements. With our TeL 
command REPORT NAME. the word REPORT is in element 1 of the 
PIB and the word NAME is in element 2. When we move data from one 
buffer to another. we move only one element. However. it is important 
to realise that the data moved is relative to the pointer. so we have to 
control the positioning of the pointer. The S command will position the 
pointer and the A command will move data from the PIB to the POB. 

The first Proc can now be rewritten to read: 

001 PO 
002 C 
003 C A general purpose PERSONNEL report invoked by REPORT fieldname 
004 C 
005 C The next command positions the input buffer pointer 
006 C at the beginning of the PIB 
007 Sl 
008 C 
009 C Now the main body of the report 
010 HSORT PERSONNEL 
011 H BY NAME 
012 H WITH AGE> "25" 
013 C 
014 C The next command moves the second element relative to the 

138 

005 HSSELECT PERSONNEL 
006 H BY NAME 
007 H WITH AGE> "25" 
008 C 

Chapter 11 

009 C Now turn on the stack with the STON command 
010 C 
011 STON 
012 HRUN PROGFILE PROGNAME< 
013 HPERSONNEL< 
014 P 

Now let us change the first problem so that the exact data being 
displayed is not specified. We are going to tell the Proc at run-time 
which field is to be displayed by using the syntax REPORT NAME. 
Thus the field to be displayed comes into the Proc in the primary input 
buffer (PIB) and needs to be moved to the correct place in the POB 
before the report is executed. We need to be able to point at the right 
place in the PIB and move only the second word of the command. 

Proc maintains pointers to enable us to do this and spaces are used to 
break up the buffers so that they are in elements. With our TeL 
command REPORT NAME. the word REPORT is in element I of the 
PIB and the word NAME is in element 2. When we move data from one 
buffer to another. we move only one element. However. it is important 
to realise that the data moved is relative to the pointer. so we have to 
control the positioning of the pointer. The S command will position the 
pointer and the A command will move data from the PIB to the POB. 

The first Proc can now be rewritten to read: 

001 PO 
002 C 
003 C A general purpose PERSONNEL report invoked by REPORT fieldname 
004 C 
005 C The next command positions the input buffer pOlilter 
006 C at the beginning of the PIB 
007 Sl 
008 C 
009 C Now the main body of the report 
010 HSORT PERSONNEL 
011 H BY NAME 
012 H WITH AGE> "25" 
013 C 
014 C The next command moves the second element relative to the 



The PROC Job Control Language 

015 C input buffer pointer to the POB 
016 C 
017 A2 
018 P 

139 

Note that there was no need to put an extra space between "25" and 
A2 because the command A2 will automatically place a space there. 

After the data has been transferred, the input buffer pointer points 
to the character after the data transferred. This means that if you 
execute another A2 command, the fourth element relative to the begin­
ning of the PIB, and not the second, will be transferred. 

The next problem is to check that a parameter has indeed been 
entered in the TeL command, but if it has not been. to prompt for the 
field name and use that. To do this we need to be able to test the PIB 
and branch if something has been entered. If it has not. we need to 
output a prompt and input the field name. 

The test will be carried out using the IF command. The branch is 
specified by a G command, with a branch to a statement label. The 
output is specified with the 0 command and the input will be taken with 
the IP command. The Proc logic before the report is amended is as 
follows: 

001 PO 
002 C 
003 C If the data has already been entered then OK 
004 C OtherWise we will get it 
005 C 
006 C Here is the test 
007 C 
008 S1 
009 IF A2 G 10 
010 C 
011 C Here IS the prompt 
012 C 
013 S2 
014 OPlease enter a field name 
015 C 
016 C Here is the Input 
017 C 
0181P 
019 C 
020 C And here is the branch destination. statement labelled 10 

The PROC Job Control Language 

015 C input buffer pointer to the POB 
016 C 
017 A2 
018 P 

139 

Note that there was no need to put an extra space between "25" and 
A2 because the command A2 will automatically place a space there. 

After the data has been transferred, the input buffer pointer points 
to the character after the data transferred. This means that if you 
execute another A2 command, the fourth element relative to the begin­
ning of the PIB, and not the second, will be transferred. 

The next problem is to check that a parameter has indeed been 
entered in the TeL command, but if it has not been, to prompt for the 
field name and use that. To do this we need to be able to test the PIB 
and branch if something has been entered. If it has not, we need to 
output a prompt and input the field name. 

The test will be carried out using the IF command. The branch is 
specified by a G command, with a branch to a statement label. The 
output is specified with the 0 command and the input will be taken with 
the IP command. The Proc logic before the report is amended is as 
follows: 

001 PO 
002 C 
003 C If the data has already been entered then OK 
004 C Otherwise we will get it 
005 C 
006 C Here IS the test 
007 C 
008 Sl 
0091FA2Gl0 
010 C 
011 C Here is the prompt 
012 C 
013 S2 
014 OPlease enter a field name 
015 C 
016 C Here IS the Input 
017 C 
018 IP 
019 C 
020 C And here IS the branch destination, statement labelled 10 



140 Chapter 11 

021 C 
022 10 HSORT PERSONNEL 
........ etc. 

The next extension to the problem is that we wish to validate the 
input. We will prompt for the age to be used in the selection criteria of 
the Access sentence. This is achieved by comparing the input against a 
pattern match. After the IP command we would write: 

019 Sl 
020 IF A2 # (2N) G 1 

that is. if the second element of the PIB does not match two numbers. 
then branch to statement label 1. This would be at the Proc line which 
outputs the prompt. IF can test for allowed values. for instance IF A2 = 
FRED G I. or forbidden values, IF A2 # FRED G 1. or ranges. IF A2 
> 100 G I. Note that when testing for specific string values. there is no 
need to wrap the string in quotes as with BASIC. The second statement 
can be any Proc command. even another IF. so we might construct a test 
such as this: 

IF A2 > lOO IF A2 < 1000 Oln range 

[ is used to represent less than or equal to and 1 is used for greater 
than or equal to. 

A powerful extension to the IF command is the ability to test for 
error conditions. Suppose we have a program which inputs a file name 
and then tries to open the file. If the file cannot be opened, the program 
might execute a STOP 201 and use the system error message to report 
that the file cannot be opened. When control is passed back to the Proc, 
further processing may depend on the success of the previous process. 
The ability to trap for the error condition is thus very useful and is 
carried out like this: 

IF E = 201 G 5 

A variation of this is a test for a select list operation. If the result of a 
GET-LIST or SELECT resulted in an error condition. such as the list 
not exiting on file or NO ITEMS PRESENT. there will be no select to 
drive the next process. Normally the next process is in stacked input and 
the Proc does not regain control after the execution of the SELECT to 
test for the error. However we may stack a null to force the Proc to 
regain control and then test for a successful SELECT. Consider the 
following Proc: 

140 

021 C 
022 10 HSORT PERSONNEL 
........ etc. 

Chapter 11 

The next extension to the problem is that we wish to validate the 
input. We will prompt for the age to be used in the selection criteria of 
the Access sentence. This is achieved by comparing the input against a 
pattern match. After the IP command we would write: 

019 Sl 
020 IF A2 # (2N) G 1 

that is. if the second clement of the PIB does not match two numbers. 
then branch to statement label 1. This would be at the Proc line which 
outputs the prompt. IF can test for allowed values. for instance IF A2 = 

FRED G I. or forbidden values. IF A2 # FRED G I. or ranges. IF A2 
> 100 G I. Note that when testing for specific string values. there is no 
need to wrap the string in quotes as with BASIC. The second statement 
can be any Proc command. even another IF. so we might construct a test 
such as this: 

IF A2 > 100 IF A2 < toOO OIn range 

[ is used to represent less than or equal to and 1 is used for greater 
than or equal to. 

A powerful extension to the IF command is the ability to test for 
error conditions. Suppose we have a program which inputs a file name 
and then tries to open the file. If the file cannot be opened. the program 
might execute a STOP 201 and use the system error message to report 
that the file cannot be opened. When control is passed back to the Proc. 
further processing may depend on the success of the previous process. 
The ability to trap for the error condition is thus very useful and is 
carried out like this: 

IFE=20IG5 

A variation of this is a test for a select list operation. If the result of a 
GET-LIST or SELECT resulted in an error condition. such as the list 
not exiting on file or NO ITEMS PRESENT. there will be no select to 
drive the next process. Normally the next process is in stacked input and 
the Proc does not regain control after the execution of the SELECT to 
test for the error. However we may stack a null to force the Proc to 
regain control and then test for a successful SELECT. Consider the 
following Proc: 



The PROC Job Control Language 

001 PO 
002 HGET-LiST FRED 
003 STON 
004 C 
005 C Stack a null 
006 H< 
007 P 
008 C 
009 C Now test that GET-LIST was okay 
010 IF # S G 10 
011 C 
012 C If you got to here it was okay 
013 HRUN PROGFILE PROGNAME 
014 P 
01510 Continue 

141 

These examples of Procs are getting a little too long to keep them in 
the master dictionary. Long items should not be maintained in the 
master dictionary because this increases the chance of overflow in the 
master dictionary. If the master dictionary is in overflow, it will take 
longer to open any file whose definition item is in the overflow area, or 
execute any process whose verb definition is in the overflow area. 
Master dictionaries in overflow have quite serious implications for 
general system response times. 

To keep the Procs short, and yet retain the functionality, we put 
them outside the master dictionary. Master dictionary Procs should 
contain only two lines, PO and then an instruction to transfer to the real 
procfi1e. 

001 PO 
002 (EG-PROCLIB EXAMPLE) 

This Proc simply transfers control to the Proc EXAMPLE in the file 
EG-PROCLIB. If the Proc is called EXAMPLE in the master diction­
ary, it is only necessary to place the file name in parenthesis. The Proc 
processor will default to the Proc with the same name as this one. No 
parameter passing facilities are required because the Proc buffers are 
global and remain unchanged on passing from Proc to Proc. We could 
also call the second Proc as a subroutine by putting the file and Proc 
name in square brackets: 

001 PO 
002 [EG-PROCLlB] 

The PROC Job Control Language 

001 PO 
002 HGET -LIST FRED 
003 STON 
004 C 
005 C Stack a null 
006 H< 
007 P 
008 C 
009 C Now test that GET-LIST was okay 
010 IF # S G 10 
011 C 
012 C If you got to here It was okay 
013 HRUN PROGFILE PROGNAME 
014 P 
015 10 Continue 

141 

These examples of Procs are getting a little too long to keep them in 
the master dictionary. Long items should not be maintained in the 
master dictionary because this increases the chance of overflow in the 
master dictionary. If the master dictionary is in overflow. it will take 
longer to open any file whose definition item is in the overflow area. or 
execute any process whose verb definition is in the overflow area. 
Master dictionaries in overflow have quite serious implications for 
general system response times. 

To keep the Procs short. and yet retain the functionality. we put 
them outside the master dictionary. Master dictionary Procs should 
contain only two lines. PO and then an instruction to transfer to the real 
procfile. 

001 PO 
002 (EG-PROCLIB EXAMPLE) 

This Proc simply transfers control to the Proc EXAMPLE in the file 
EG-PROCLIB. If the Proc is called EXAMPLE in the master diction­
ary, it is only necessary to place the file name in parenthesis. The Proc 
processor will default to the Proc with the same name as this one. No 
parameter passing facilities are required because the Proc buffers are 
global and remain unchanged on passing from Proc to Proc. We could 
also call the second Proc as a subroutine by putting the file and Proc 
name in square brackets: 

001 PO 
002 [EG-PROCLlBj 



142 Chapter I J 

Again the Proc processor will default the transfer to the Proc in 
EG-PROCLIB with the same name as the calling Proc. Subroutine 
facilities are useful where a long hatch process is heing put together. A 
set of explicitly named subroutine calls is much more readahle, and 
hence maintainable, than a single level main line Proc which executes 
reports, archives. analysis programs and so on. Note that any subroutine 
from which you intend to return must have an exit statement X (RTN on 
McDonnell Douglas systems. where the command X will exit to TCL). 

The syntax for an internal suhroutine call is opened and closed 
square brackets followed hy a statement label. Processing continues 
from that label onwards until an exit command is encountered. when 
control passes hack to the calling point. For example: 

010 Call subroutine at statement 100 
011 C 
012 []100 

This idea mav he extended to external subroutines, so [EG-PROC­
LIB EXAMPLE I 100 would transfer control to statement 100 of the 
Proc EXAMPLE in the file EG-PROCLIB. However this style of Proc 
is not clear and is verv difficult to maintain. 

Y ()u will very often find that Procs are useful for menus because of 
their ability to chain around and regain control when a process is 
complete. Menus are often put together with the T (terminal output) 
command rather than the simple () command. The main reason for this is 
that there are cursor control functions within the T command which do 
not exist for O. Here is an example of a menu Proc: 

001 PO 
002 C 
003 C General purpose sales administration menu 
004 C 
005 Clear the screen and output heading 
006 1 T (-1), "Alpha corporation", (60,0), "Order entry" 
007 T (10,2),"1 Update the order book" 
008 T (10,3),"2 Enter goods despatched" 
009 T (10.4),"3. Enter returns" 
010 T (10,51."4. Log off 
011 2 T (10,101. "Please enter an option " 
012 C 
013 C Now take the input and branch on reply 
014 C 
015 Sl 

142 Chapter 11 

Again the Proc processor will default the transfer to the Proc in 
EG-PROCLIB with the same name as the calling Proc. Subroutine 
facilities are useful where a long batch process is being put together. A 
set of explicitly named subroutine calls is much more readable. and 
hence maintainable. than a single level main line Proc which executes 
reports, archives. analysis programs and so on. Note that any subroutine 
from which you intend to return must have an exit statement X (RTN on 
McDonnell Douglas systems. where the command X will exit to TCl). 

The syntax for an internal subroutine call is opened and closed 
square brackets followed by a statement label. Processing continues 
from that label onwards until an exit command is encountered. when 
control passes back to the calling point. For example: 

010 Call subroutine at statement 100 
011 C 
012 [J 100 

This idea may be extended to external subroutines, so [EG-PROC­
LIB EXAMPLE] 100 would transfer control to statement 100 of the 
Proc EXAMPLE in the file EG-PROCLIB. However this style of Proc 
is not clear and is very difficult to maintain. 

You will very often find that Procs are useful for menus because of 
their ability to chain around and regain control when a process is 
complete. Menus are often put together with the T (terminal output) 
command rather than the simple 0 command. The main reason for this is 
that there are cursor control functions within the T command which do 
not exist for O. Here is an example of a menu Proc: 

001 PO 
002 C 
003 C General purpose sales administration menu 
004 C 
005 Clear the screen and output heading 
006 1 T (-1). "Alpha corporation", (60,0), "Order entry" 
007 T (10,2)."1 Update the order book" 
008 T (10,3),"2 Enter goods despatched" 
009 T (10,4),"3 Enter returns" 
010 T (10,5),"4 Log off" 
011 2 T (10,10),"Please enter an option" 
012 C 
013 C Now take the input and branch on reply 
014 C 
015 Sl 



The PROC Job Control Language 

016 IP 
017 IF A = 1 G 10 
018 IF A = 2 G 20 
019 IF A = 3 G 30 
020 IF A = 4 G 40 
021 G 2 
022 C 
023 C Update the order book 
024 C 
025 10 rOR-PROCLIB UPDATE-ORDERS] 
026 G 1 
027 C 
028 Continued 

143 

The T command can therefore be used to output cursor control and 
cursor positioning like the BASIC @ function, or to output data, 
enclosed in double quotation marks, like the PRINT statement. Con­
catenation is specified by the commas, but the T command never auto­
matically appends a carriage return to the end of the output. If this is 
required, each T command must be followed by an (). There are also 
four output commands which may be specified with T. l3. or any word 
beginning with B, such as Bell. will ring the terminal bell, C or Clear will 
clear the screen. I followed by a number will output the ASCII character 
represented by the number, and X followed by a two-digit hexadecimal 
number will output the relevant ASCII character calculated in hex. 

OTHER PROC COMMANDS 

There are a number of other Proc commands for manipulating 
buffers and moving pointers. These are summarised in appendix 4 and 
are described in full in the Pick Reference Manual. The commands not 
described above should be used only rarely. It is possible to develop 
whole systems using Proc, but this is not recommended. A golden rule 
with Procs is 'keep it simple'. Complex Procs are easy to write and a 
nightmare to maintain. 

"Pick like" computer systems invariably have major differences 
when it comes to Proc. The Pick Proc language corresponds to McDon­
nell Douglas's "Old Proc". These are still supported, even on the newest 
versions of McDonnell Douglas equipment. Users wishing to maintain 
compatability with Pick should therefore only use Old Proc on McDon­
nell Douglas. The McDonnell Douglas New Proc has a number of 
enhancements over Old Proc. 

The PROC Job Control Language 

016 IP 
017 I F A = 1 G 1 0 
018 IF A = 2 G 20 
019 IF A = 3 G 30 
020 I F A = 4 G 40 
021 G 2 
022 C 
023 C Update the order book 
024 C 
025 10 [OR-PROCLIB UPDATE-ORDERS] 
026 G 1 
027 C 
028 Continued ... 

143 

The T command can therefore be used to output cursor control and 
cursor positioning like the BASIC ((I function, or to output data, 
enclosed in double quotation marks, like the PRINT statement. Con­
catenation is specified by the commas, but the T command never auto­
matically appends a carriage return to the end of the output. If this is 
required, each T command must be followed by an O. There are also 
four output commands which may be specified with T. B. or any word 
beginning with B, such as BelL will ring the terminal bell, C or Clear will 
clear the screen. I followed by a number will output the ASCII character 
represented by the number. and X followed by a two-digit hexadecimal 
number will output the relevant ASCII character calculated in hex. 

OTHER PROC COMMANDS 

There are a number of other Proc commands for manipulating 
buffers and moving pointers. These are summarised in appendix 4 and 
are described in full in the Pick Reference Manual. The commands not 
described above should be used only rarely. It is possible to develop 
whole systems using Proc, but this is not recommended. A golden rule 
with Procs is 'keep it simple'. Complex Procs are easy to write and a 
nightmare to maintain. 

"Pick like" computer systems invariably have major differences 
when it comes to Proc. The Pick Proc language corresponds to McDon­
nell Douglas's "Old Proc". These are still supported, even on the newest 
versions of McDonnell Douglas equipment. Users wishing to maintain 
compatability with Pick should therefore only use Old Proc on McDon­
nell Douglas. The McDonnell Douglas New Proc has a number of 
enhancements over Old Proc. 



144 ChapTer 11 

New Procs are distinguished from Old Procs in that the first line of 
the Proc is PON. not PO. Almost all the Old Proc commands are 
supported. but it is not possible to call a PO type Proc from a rON type 
Proc or vice versa. 

Some commands are prefixed by N - IP becomes l'<IP. and H 
becomes NH. for instance. Some commands have changed their mean­
ing - F and B do not affect the positioning of the stack pointer. as in 
Pick. Instead. they are GO-type commands. respectively saying go 
forwards. or backwards to the next Proc marker. indicated by an M. The 
whole area of moving data from one buffer to another has been en­
hanced by the addition of a MY command. Within this the input and 
output buffer elements may be directly referenced as ·variables·. % 1 
represents the first element of the currently active input buffer. %2 the 
second. and so on. # 1 represents the first element of the currently active 
output buffer. Thus the command: 

MY # I (ic I 

will move the first clement of the input buffer to the first element of the 
output buffer. The output buffer is processed in the normal way by the 
execution of a P command. 

Perhaps the biggest area of enhancement is the addition of file 110 
facilities, the file buffer and the select buffer. 

In the same way that the input buffer elements can be represented by 
%n. there is a method of accessing the file buffer. & 1.1 represents 
attribute I of a record in file buffer area 1. & 1.2 represents attribute 2 
and so on. The select buffer is referenced as !I or !2. So MY &l.1 #1 
will move the first element of the output buffer to attribute 1 of the 
record in the first area of the file buffer. 

This allows us to retrieve and update information on the database. A 
class of commands is provided specifically for file handling. The com­
mands are F-OPEN, F-READ and F-WRITE, they correspond rough­
ly to the OPEN, READ and WRITE commands in BASIC. F-OPEN 
and F-READ must be followed by a statement which tells the Proc what 
to do if the file (or record) cannot be opened (or read). F-OPEN 1 
SALES would open the SALES file to file buffer area 1. Any subse­
quent read into this area or write from this area will operate on the 
SALES file. 

F-READ 1 % 1 would read the record with a key described by the 
first element of the PIB into file buffer area 1. To write this back to the 
file you simply write F-WRITE 1. 

144 Chapter 11 

New Procs are distinguished from Old Procs in that the first line of 
the Proc is PON, not PO. Almost all the Old Proc commands are 
supported, but it is not possible to call a PO type Proc from a PON type 
Proc or vice versa. 

Some commands are prefixed by N - IP becomes NIP, and H 
becomes NH, for instance. Some commands have changed their mean­
ing - F and B do not affect the positioning of the stack pointer, as in 
Pick. Instead, they are GO-type commands, respectively saying go 
forwards, or backwards to the next Proc marker, indicated by an M. The 
whole area of moving data from one buffer to another has been en­
hanced by the addition of a MY command. Within this the input and 
output buffer elements may be directly referenced as ·variables'. % 1 
represents the first element of the currently active input buffer. %2 the 
second, and so on. # 1 represents the first element of the currently active 
output buffer. Thus the command: 

MY #1 7r 1 

will move the first element of the input buffer to the first element of the 
output buffer. The output buffer is processed in the normal way by the 
execution of a P command. 

Perhaps the biggest area of enhancement is the addition of file 110 
facilities, the file buffer and the select buffer. 

In the same way that the input buffer elements can be represented by 
%n, there is a method of accessing the file buffer. & 1.1 represents 
attribute 1 of a record in file buffer area 1. & 1.2 represents attribute 2 
and so on. The select buffer is referenced as !l or !2. So MY & l.1 # 1 
will move the first element of the output buffer to attribute 1 of the 
record in the first area of the file buffer. 

This allows us to retrieve and update information on the database. A 
class of commands is provided specifically for file handling. The com­
mands are F-OPEN, F-READ and F-WRITE, they correspond rough­
ly to the OPEN, READ and WRITE commands in BASIC. F-OPEN 
and F-READ must be followed by a statement which tells the Proc what 
to do if the file (or record) cannot be opened (or read). F-OPEN 1 
SALES would open the SALES file to file buffer area 1. Any subse­
quent read into this area or write from this area will operate on the 
SALES file. 

F-READ 1 % 1 would read the record with a key described by the 
first element of the PIB into file buffer area 1. To write this back to the 
file you simply write F-WRITE 1. 



The PROC Job Control Language 145 

There are ten file buffer areas, so up to ten files may be opened at 
once. If more than one record from the same file is to be manipulated at 
once, separate buffer areas must be opened for each record. Note that 
there is no record locking facility. 

The new Proc file 110 facilities are useful for quick checks on the 
status of system or global application data. It is not recommended that 
extensive file update routines arc written in Proc. The cryptic nature of 
the Proc language makes maintenance difficult. All Procs, whether they 
be to Pick standard or McDonnell Douglas New Proc standard, should 
be kept as short as possible for this reason. Procs should be written in 
manageable modules. A module should either carry out a single task, 
such as an Access select followed by a BASIC program, or should be a 
list of other modules or tasks, like a menu or a batch processing 
sequence. 

Prime Information and Revelation do not have any Proc language. 
Both have the concept of a 'paragraph' which is simply a list of state­
ments that could have ben entered at TCL. contained in a record. Both 
also have an extra statement in the BASIC language which lends in­
teresting possibilities to these systems. The EXECUTE and PER­
FORM statements can be made to execute any statement from BASIC 
that could have otherwise only been executed from TCL. These are very 
like the CHAIN statement that was discussed in the chapter on BASIC, 
with one important difference. When the initiated process has been 
completed control passes back to the BASIC program at the statement 
after the EXECUTE. This means that any system function may be 
called as a subroutine directly from BASIC. 

The PROC Job Control Language 145 

There are ten file huffer areas, so up to ten files may he opened at 
once. If more than one record from the same file is to he manipulated at 
once. separate huffer areas must he opened for each record. Note that 
there is no record locking facility. 

The new Proc file 110 facilities are useful for quick checks on the 
status of system or glohal application data. It is not recommended that 
extensive file update routines are written in Proc. The cryptic nature of 
the Proc language makes maintenance difficult. All Procs, whether they 
he to Pick standard or McDonnell Douglas New Proc standard, should 
he kept as short as possihle for this reason. Procs should he written in 
manageahle modules. A module should either carry out a single task, 
such as an Access select followed hy a BASIC program, or should he a 
list of other modules or tasks, like a menu or a hatch processing 
sequence. 

Prime Information and Revelation do not have any Proc language. 
Both have the concept of a 'paragraph' which is simply a list of state­
ments that could have hen entered at TCL. contained in a record. Both 
also have an extra statement in the BASIC language which lends in­
teresting possihilities to these systems. The EXECUTE and PER­
FORM statements can be made to execute any statement from BASIC 
that could have otherwise only heen executed from TCL. These are very 
like the CHAIN statement that was discussed in the chapter on BASIC, 
with one important difference. When the initiated process has heen 
completed control passes hack to the BASIC program at the statement 
after the EXECUTE. This means that any system function may he 
called as a suhroutine directly from BASIC. 





Chapter 12 
Pick's System Files 

When a computer is delivered with the Pick operating system the 
supplier will also deliver a 'basic' system, This basic system consists of 
the operating system itself and at least one account. 

This account is called SYSPROG and is the account where system 
administration functions are carried out such as creating other accounts, 
archiving, restarting the spooler and so on, 

SYSPROG contains a number of files which contain information 
used by various of the Pick utilities, In general, it is not a good idea to 
create new files in the SYSPROG account since these will be lost in 
subsequent upgrades to the operating system which will be delivered 
with a new SYSPROG, 

SYSTEM 

One of the files to be found in SYSPROG is called SYSTEM. This is the 
system dictionary and is the only file on the computer which is in a fixed 
place on the disk. As discussed in the chapter on the Pick database, 
SYSTEM contains the names of the various accounts available on the 
computer, including SYSPROG itself. By editing this the system admi­
nistrator may change update and retrieval keys, privilege levels and 
account justification. The other fields in these records must not be 
amended, 

To get a list of all the accounts making up the database, we can use 
the Access command: 

SORT ONLY SYSTEM 

One of the records held on SYSTEM is called LOGON. This does 
not define an account name, but contains the logon message in 
ERRMSG format (see below), Other records do not define accounts 
but contain Q pointers. These are synonym, or alternative, logon names 
for existing accounts, An example of this type, delivered with the basic 
system, is the Q pointer COLDSTART which is an alternative logon 

147 

Chapter 12 
Pick's System Files 

When a computer is delivered with the Pick operating system the 
supplier will also deliver a 'basic' system. This basic system consists of 
the operating system itself and at least one account. 

This account is called SYSPROG and is the account where system 
administration functions are carried out such as creating other accounts. 
archiving. restarting the spooler and so on. 

SYSPROG contains a number of files which contain information 
used by various of the Pick utilities. I n generaL it is not a good idea to 
create new files in the SYSPROG account since these will be lost in 
subsequent upgrades to the operating system which will be delivered 
with a new SYSPROG. 

SYSTEM 

One of the files to be found in SYSPROG is called SYSTEM. This is the 
system dictionary and is the only file on the computer which is in a fixed 
place on the disk. As discussed in the chapter on the Pick database. 
SYSTEM contains the names of the various accounts available on the 
computer. induding SYSPROG itself. By editing this the system admi­
nistrator may change update and retrieval keys. privilege levels and 
account justification. The other fields in these records must not be 
amended. 

To get a list of all the accounts making up the database, we can use 
the Access command: 

SORT ONLY SYSTEM 

One of the records held on SYSTEM is called LOGON. This does 
not define an account name, but contains the logon message in 
ERRMSG format (see below). Other records do not define accounts 
but contain Q pointers. These are synonym, or alternative, logon names 
for existing accounts. An example of this type, delivered with the basic 
system, is the Q pointer COLDST ART which is an alternative logon 

147 



148 Chapter 12 

name for SYSPROG. An examination of the MD entry COlDST ART 
will reveal the Proc executed when the system is booted. Obviously, it is 
possible to enter the SYSPROG account by typing lOGTO COl­
DST ART but only at the expense of executing the final part of the boot 
procedure. 

ERRMSG 

ERRMSG contains all the system error messages. If garbage is entered 
at TCl the system responds with the error message: 

[3] VERB? 

This is held as a record on the ERRMSG file with an item-id of 3. 
Since the error messages are ordinary records on an ordinary file they 
may be amended with the editor to suit individual tastes. 

In fact, the ERRMSG records act like a very simple command 
language. Each attribute of an ERRMSG record begins with a com­
mand letter which is used by the error message handler to manipulate 
the rest of that attribute. ERRMSG 3 has a single attribute like this: 

E VERB? 

The E is recognised by the error message handler and means 'output 
the error message number in square brackets followed by whatever text 
follows' . 

An A as the first character inserts a parameter into the error mes­
sage. This can be used to illustrate how the ERRMSG file can be used in 
conjunction with BASIC. ERRMSG 201 looks like this: 

201 
001 E ' 
002 A 
003 H ' IS NOT A FILENAME 

If the BASIC statement STOP 201, "INVOICES" is executed, error 
message 201 will be output as the program halts and the word IN­
VOICES will be used as a parameter resulting in the error message: 

[201] 'INVOICES' IS NOT A FILENAME. 

Several parameters may be passed in this way, separated by com­
mas, each A in the ERRMSG record taking the next parameter from 
the list. If the command character is X, then a parameter will be skipped 
without being output. 

148 Chapler 12 

name for SYSPROG. An examination of the MD entry COlDST ART 
will reveal the Proc executed when the system is booted. Obviously. it is 
possible to enter the SYSPROG account by typing lOGTO COl­
DST ART but only at the expense of executing the final part of the boot 
procedure. 

ERRMSG 

ERRMSG contains all the system error messages. If garbage is entered 
at TCl the system responds with the error message: 

[3] VERB? 

This is held as a record on the ERRMSG file with an item-id of 3. 
Since the error messages are ordinary records on an ordinary file they 
may be amended with the editor to suit individual tastes. 

In fact, the ERRMSG records act like a very simple command 
language. Each attribute of an ERRMSG record begins with a com­
mand letter which is used by the error message handler to manipulate 
the rest of that attribute. ERRMSG 3 has a single attribute like this: 

E VERB? 

The E is recognised by the error message handler and means 'output 
the error message number in square brackets followed by whatever text 
follows' . 

An A as the first character inserts a parameter into the error mes­
sage. This can be used to illustrate how the ERRMSG file can be used in 
conjunction with BASIC. ERRMSG 201 looks like this: 

201 
001 E' 
002 A 
003 H ' IS NOT A FILENAME 

If the BASIC statement STOP 201,"INVOICES" is executed, error 
message 201 will be output as the program halts and the word IN­
VOICES will be used as a parameter resulting in the error message: 

[201] 'INVOICES' IS NOT A FILENAME. 

Several parameters may be passed in this way, separated by com­
mas, each A in the ERRMSG record taking the next parameter from 
the list. If the command character is X, then a parameter will be skipped 
without being output. 



Pick's Systems Files 149 

If the A is followed by a number in brackets. these parameters will 
be formatted left justified. A(10) would therefore take a parameter and 
left justify in a field of ten spaces. Right justification can be specified by 
a command of R. rather than A. 

If the command character is H. whatever text follows the H will be 
output. The error message number will not prefix this message. nor will 
a carriage return be output at the end. To get a carriage return the 
command character L is used. 

An individual D will output the current date. T will output the 
current time and S(20) will output 2U spaces. 

The verb PRINT-ERR can be used to display the ERRMSG records 
as they will be output. so if you wish to add messages into the ERRMSG 
file for use with BASIC these can be tested with the PRINT-ERR verb. 

PRINT-ERR ERRMSG 201 

results in: 

[201] 'A' IS NOT A FILENAME. 

Error message 335 contains the message displayed when the user 
logs on to an account. A nice touch is to edit your company's name in 
here. Error message 336 is the log off message. 

BLOCK-CONVERT 

The BLOCK-CONVERT file contains the character definitions for use 
with the BLOCK-PRINT verb. 

The key for the records in BLOCK-CONVERT is the character 
being defined. The first field is a number which defines the width of the 
block character. 

Subsequent fields either begin with a B (output spaces or blanks), or 
C (output the character). Switches between blanks and characters are 
specified by commas (value mark on McDonnell Douglas). B 1,5, I 
therefore outputs a space followed by five of the character followed by a 
final space. 

The BLOCK-PRINT verb is used to print enlarged messages on a 
terminal or printer. The format used is: 

BLOCK-PRINT message 

BLOCK-PRINT HELLO will result in the output shown in Fig. 12.l. 
If the BLOCK-PRINT command is followed by a P option. (P). the 

output will be directed to the sytem printer. BLOCK-PRINT is usef\1\ 

Pick's Systems Files 149 

If the A is followed by a number in brackets. these parameters will 
be formatted left justified. A( 10) would therefore take a parameter and 
left justify in a field of ten spaces. Right justification can be specified by 
a command of R. rather than A. 

If the command character is H. whatever text follows the H will be 
output. The error message number will not prefix this message. nor will 
a carriage return be output at the end. To get a carriage return the 
command character L is used. 

An individual D will output the current date. T will output the 
current time and S(20) will output 20 spaces. 

The verb PRINT-ERR can be used to display the ERRMSG records 
as they will be output. so if you wish to add messages into the ERRMSG 
file for use with BASIC these can be tested with the PRINT-ERR verb. 

PRINT-ERR ERRMSG 201 

results in: 

[201] 'A' IS NOT A FILENAME. 

Error message 335 contains the message displayed when the user 
logs on to an account. A nice touch is to edit your company's name in 
here. Error message 336 is the log off message. 

BLOCK-CONVERT 

The BLOCK-CONVERT file contains the character definitions for use 
with the BLOCK-PRINT verb. 

The key for the records in BLOCK-CONVERT is the character 
being defined. The first field is a number which defines the width of the 
block character. 

Subsequent fields either begin with a B (output spaces or blanks), or 
C (output the character). Switches between blanks and characters are 
specified by commas (value mark on McDonnell Douglas). Bl,5,1 
therefore outputs a space followed by five of the character followed by a 
final space. 

The BLOCK-PRINT verb is used to print enlarged messages on a 
terminal or printer. The format used is: 

BLOCK-PRINT message 

BLOCK-PRINT HELLO will result in the output shown in Fig. 12.1. 
If the BLOCK-PRINT command is followed by a P option, (P), the 

output will be directed to the sytem printer. BLOCK-PRINT is usef\1\ 



150 Chapter 12 

1111 IlH EEEEEE LL LL oooooa 
I III Iill EE LL LL 00 00 
Il!l Hll EE LL LL 00 00 
HHHHHIIH EEEEE LL LL 00 00 
IlH HH EE LL LL 00 00 
HI! IIH EE LL LL 00 00 
HH IlII EEEEEE LLLLLL LLLLLL 000000 

Fig. 12.1. The output produced by BLOCK-PRINT HELLO. 

on systems where a lot of reports are produced on a single printer. The 
BLOCK-PRINT output makes the division between reports obvious, 
which enables the reports to be separated easily. 

ACC 

The ACC file contains details of the lines that are currently in use. It is 
also the file which stores the logon details for accounts which update the 
accounting file. (See creating accounts.) 

The LISTU verb uses the information stored in the ACC file to give 
a report showing the logon details for each user. The instruction: 

LlSTU 

will result in a report similar to the one shown in Fig. 12.2. 

Cfl# PCllF NAl-lF ••.••• THIE •• DATE •••••. LOCATIO,'J, •.••••••.••... 

':'00 0200 SEmNAk 1<);54 07 ~IAR 85 DemonstraUon ;U·b.l 

OJ 0220 SYSPROG 15:34 07 ~IAR 85 Development of f i ce 
03 0260 AIWlN 10:09 07 ~IA!~ 85 Employment offiCi' 
04 (mlO SALES 09;25 07 HAR f35 Order clerk 

Fig. 12.2. The output produced by LlSTU. 

In this report CH# is the line number that the user's terminal is 
attached to. PCBF indicates the disk frame address where the user's 
workspace begins. NAME is the account that the user is logged on to. 
TIME and DATE are the time and date at which the logon occurred. 
LOCA nON represents the physical location of the terminal. This is 
held in the dictionary of the ACC file and can be maintained by the 
system administrator. The location is changed using the system editor. 

150 Chapter 12 

1111 Ill! EEE:EE:E LL LL 000000 
llI! !ill EE LI. LL 00 00 
!If! HH EE LL LL OD DD 
HHHHHI!H E:EEEE LL LL 00 or1 
IIH HH EE LL LL OD DO 
lIB lIB EE LL LL DO 00 
Hll Ill! EEEEEE LLLLLL LLLLLl , 000000 

Fig. 12.1. The output produced by BLOCK-PRINT HELLO. 

on systems where a lot of reports are produced on a single printer. The 
BLOCK-PRINT output makes the division between reports obvious, 
which enables the reports to be separated easily. 

ACC 

The ACC file contains details of the lines that are currently in use. It is 
also the file which stores the logon details for accounts which update the 
accounting file. (See creating accounts.) 

The LISTU verb uses the information stored in the ACC file to give 
a report showing the logon details for each user. The instruction: 

LlSTU 

will result in a report similar to the one shown in Fig. 12.2. 

CIl# PCBF NMIE •••••• Tum •• DATE •••••• LOCATION ••.•••.••.••.•• 

':'00 02CJ(J SEmNAR 19:54 07 ~IAR 85 Demonsl:raL:i.on ;lr(~a 

OJ onCJ SYSPROG 15:34 07 ~IAR 85 Development office 
OJ CJ260 AmlIN 10:09 07 MAR 85 Employment office 
04 CJ280 SALES 09:25 07 ~IAR 85 Order clerk 

Fig. 12.2. The output produced by LlSTU. 

In this report CH# is the line number that the user's terminal is 
attached to. PCBF indicates the disk frame address where the user's 
workspace begins. NAME is the account that the user is logged on to. 
TIME and DATE are the time and date at which the logon occurred. 
LOCATION represents the physical location of the terminal. This is 
held in the dictionary of the ACC file and can be maintained by the 
system administrator. The location is changed using the system editor. 



Pick's Systems Files 151 

In the above example attribute 1 of the record 01 in DICT ACC says 
"Development office", so if the terminal is ever physically moved, this 
record should be amended. 

The historical information generated by the logon process can be 
displayed by typing the Access command: 

LIST ACC WITH DATE 

This might result in a report such as Fig. 12.3. 
In this report, the column headed ACC shows the account which was 

PAGE 

Ace ......... DATE. TH1E ..• CONN ... UNITS PAGES .. , 
',' ::~ ~:~ 

PERSONNEL#4 08/02 14:09 O():OO 2 
10/02 15:33 01 :L12 164654 101 
11/02 09:52 00:26 166650 LI 

10:26 02:51 165131 I 
14:32 OJ: 05 166447 

15/02 08:4LI 00:02 167734 
16/02 13:22 00:01 167669 

miD OF LIST 

Fig. 12.3. The output produced by LIST ACC WITH DATE. 

logged onto and the line number where the logon took place. DATE 
and TIME are the date and time when the logon occurred. CONN is the 
elapsed time in hours and minutes that the user spent in the account. 
UNITS are the number of CPU milliseconds that were used. This is 
useful where a user is to be charged for the use of the computer. The 
TCL command CHARGES may be used at any time to show the CPU 
millisecond usage at any time. The column headed PAGES shows the 
number of pages of output that were processed through the spooler. 

Where accounts are set up to record this historical information, a 
record will be created for each line logging on to those accounts. 
However, there is no automatic mechanism for clearing out this in­
formation when it has been finished with. What happens is that the 
ACC file just grows and grows, so it should be a matter of routine that 
the ACC file is periodically cleared, using the CLEAR-FILE com­
mand. 

Pick's Systems Files 151 

In the above example attribute 1 of the record 01 in DICT ACC says 
"Development office", so if the terminal is ever physically moved, this 
record should be amended. 

The historical information generated by the logon process can be 
displayed by typing the Access command: 

LIST ACC WITH DATE 

This might result in a report such as Fig. 12.3. 
In this report, the column headed ACC shows the account which was 

PAGE 

Ace ......... DATE. TU1E ... CONN ••• UN [TS PACES 
'.' '.' '.' '.' 

PERSONNEL#4 08/02 14:09 OO:(JO 2 
10/02 15:33 01 :!,2 164654 IOJ 
11/02 09:52 00:26 ]66650 !, 

10:26 (J2:'i1 165J:\1 I 
14:32 0] : (J') ](,(,447 

15/02 08:4!, 00:02 167734 
1 (,/02 13:22 00:01 1676(,') 

mlD Of LIST 

Fig. 12.3. The output produced by LIST ACC WITH DATE. 

logged onto and the line number where the logon took place. DATE 
and TIME are the date and time when the logon occurred. CONN is the 
elapsed time in hours and minutes that the user spent in the account. 
UNITS are the number of CPU milliseconds that were used. This is 
useful where a user is to be charged for the use of the computer. The 
TCL command CHARGES may be used at any time to show the CPU 
millisecond usage at any time. The column headed PAGES shows the 
number of pages of output that were processed through the spooler. 

Where accounts are set up to record this historical information, a 
record will be created for each line logging on to those accounts. 
However, there is no automatic mechanism for clearing out this in­
formation when it has been finished with. What happens is that the 
ACC file just grows and grows, so it should be a matter of routine that 
the ACC file is periodically cleared, using the CLEAR-FILE com­
mand. 



152 Chapter 12 

SYSPROG-PL AND PROCLIB 

SYSPROG-PL and PROCLIB contain a number of programs and Procs 
which have been supplied by Pick Systems and/or the manufacturer. 
The PASSWORD utility for changing the account passwor'ds, the LIS­
TU Proc and the ACCOUNT-SAVE Proc are examples of these. 
Usually PROCLIB is supplied as a system level file, so it looks as if it js 
an account. However it does not have any of the usual master dictionary 
definitions, so if you try to logto PROCLIB you will probably see the 
following error message: 

ERRMSG [ERRMSG] 340 0 12765 0 

The only thing that you can do at this point is hit the BREAK key 
and type OFF. In general do not attempt to log to PROCLIB, 
ERRMSG, SYSTEM, ACC or BLOCK-TERM as these are all system 
level files. These should be password protected and the password should 
be forgotten. 

NEWAC 

NEWAC contains all the verbs, program, Proc and file definitions 
which are used to set up new accounts, The CREATE-ACCOUNT 
utility copies all the records from NEW AC into a new master dictionary 
when an account is created. If you wish to prevent certain verbs from 
being in all accounts, deleting the definition from NEW AC will ensure 
that the verbs are never set up in the first place. On the other hand, if 
you have developed an application general to all accounts, new accounts 
can be automatically set up to have access to the application by copying 
the relevant program, Proc and file definitions into NEW AC. 

OTHER FILES 

There may be other files delivered within SYSPROG. There may be a 
file called SYSTEM-OBJECT which contains the object code for the 
operating system and a file called JET-MODES which contains the 
object code for the JET word processor. These should never be 
amended. If they are amended, and the object code is reloaded, the 
system will probably crash. 

Some manufacturers supply a table of terminal drivers, called CUR­
SOR. Many manufacturers supply free utilities for graphics, spread-

152 Chapter 12 

SYSPROG-PL AND PROCLIB 

SYSPROG-PL and PROCLIB contain a number of programs and Procs 
which have been supplied by Pick Systems and/or the manufacturer. 
The PASSWORD utility for changing the account passwords, the LIS­
TU Proc and the ACCOUNT-SAVE Proc are examples of these. 
Usually PROCLIB is supplied as a system level file, so it looks as if it,is 
an account. However it does not have any of the usual master dictionary 
definitions, so if you try to logto PROCLIB you will probably see the 
following error message: 

ERRMSG [ERRMSG] 340 0 12765 0 

The only thing that you can do at this point is hit the BREAK key 
and type OFF. In general do not attempt to log to PROCLIB, 
ERRMSG, SYSTEM, ACC or BLOCK-TERM as these are all system 
level files. These should be password protected and the password should 
be forgotten. 

NEWAC 

NEW AC contains all the verbs, program, Proc and file definitions 
which are used to set up new accounts. The CREATE-ACCOUNT 
utility copies all the records from NEW AC into a new master dictionary 
when an account is created. If you wish to prevent certain verbs from 
being in all accounts, deleting the definition from NEW AC will ensure 
that the verbs are never set up in the first place. On the other hand, if 
you have developed an application general to all accounts, new accounts 
can be automatically set up to have access to the application by copying 
the relevant program, Proc and file definitions into NEWAC. 

OTHER FILES 

There may be other files delivered within SYSPROG. There may be a 
file called SYSTEM-OBJECT which contains the object code for the 
operating system and a file called JET-MODES which contains the 
object code for the JET word processor. These should never be 
amended. If they are amended, and the object code is reloaded, the 
system will probably crash. 

Some manufacturers supply a table of terminal drivers, called CUR­
SOR. Many manufacturers supply free utilities for graphics, spread-



Pick's Systems Files 153 

sheets andlor application generation. which may he delivered as sepa­
rate accounts or other files within S YSPROG. 

In general. if you do wish to amend or add to any of the system files. 
such as BLOCK-CONVERT or ERRMSG. you have to he prepared to 
lose the changes if the operating system gets upgraded. Otherwise. you 
must make provision for your changes to he saved. For this reason it is 
not a good idea to create your own files or develop your own programs 
in SYSPROG. 

Pick's Systems Files 153 

sheets and/or application generation. which may he delivered as sepa­
rate accounts or other files within SYSPROG. 

In general. if you do wish to amend or add to any of the system files. 
such as BLOCK-CONVERT or ERRMSG. you have to he prepared to 
lose the changes if the operating system gets upgraded. Otherwise. you 
must make provision for your changes to he saved. For this reason it is 
not a good idea to create your own files or develop your own programs 
in SYSPROG. 





Chapter 13 
Other Pick Commands 

This chapter provides a description of the use of some important Pick 
commands which do Qot fit easily into the other sections of this book. 

FILE HANDLING 

Although CREATE-ACCOUNT and CREATE-FILE have been de­
scribed at length, there are other verbs which deal with the clearing and 
deletion of data. 

DELETE-ACCOUNT will delete a whole account, complete with 
its data files. It is a verb which is only available in SYSPROG. A listing 
of all the files which will be deleted is given, and the system administra­
tor must confirm that the account is to be deleted before the process is 
carried out. All the disk space that was occupied by the data in the 
account is returned to the overflow table. It is not permissible to delete 
an account while a FILE-SAVE is being carried out. It is advisable that 
all users should be logged off when this takes place. 

DELETE-FILE will delete a single data file and its associated 
dictionary. The format is: 

DELETE-FILE filename 

CLEAR-FILE will clear either the dictionary or data portion of a 
file. The file still exists and may be accessed, but no records will remain. 
The file is 'empty'. DICT or DATA must be specified in the command: 

CLEAR-FILE DATA filename 

The COPY command allows data to be copied, within the same file 
or across files. The format is: 

COPY filename itemlist 

and the system responds: 

TO: 

155 

Chapter 13 
Other Pick Commands 

This chapter provides a description of the use of some important Pick 
commands which do Dot fit easily into the other sections of this book. 

FILE HANDLING 

Although CREATE-ACCOUNT and CREATE-FILE have been de­
scribed at length, there are other verbs which deal with the clearing and 
deletion of data. 

DELETE-ACCOUNT will delete a whole account, complete with 
its data files. It is a verb which is only available in SYSPROG. A listing 
of all the files which will be deleted is given, and the system administra­
tor must confirm that the account is to be deleted before the process is 
carried out. All the disk space that was occupied by the data in the 
account is returned to the overflow table. It is not permissible to delete 
an account while a FILE-SAVE is being carried out. It is advisable that 
all users should be logged off when this takes place. 

DELETE-FILE will delete a single data file and its associated 
dictionary. The format is: 

DELETE-FILE filename " 

CLEAR-FILE will clear either the dictionary or data portion of a 
file. The file still exists and may be accessed, but no records will remain. 
The file is 'empty'. DICT or DATA must be specified in the command: 

CLEAR-FILE DATA filename 

The COpy command allows data to be copied, within the same file 
or across files. The format is: 

COPY filename itemlist 

and the system responds: 

TO: 

155 



156 Chapter 13 

where a new item list or file name may be specified. If the copying is to a 
different file, the file name must be prefixed by a bracket, for instance: 

To:(newfilename 

COPY can be followed by a number of options which: (a) allow for 
the records to be deleted as they are copied; (b) allow any existing 
records to be overwritten; or (c) allow records to be copied to the 
terminal, printer or tape, rather than another file. 

COPY may be driven by an Access SELECT, rather than a specific 
item list. It is extremely useful for updating 'grandfather, father, son' 
file systems. 

TERMINAL CHARACTERISTICS 

Pick has two commands which allow terminal characteristics to be set. 
These deal with the width and depth of the terminal and system printers, 
the type of terminal and specific functions, such as line feed delay and 
the back space character. SET-TERM, a SYSPROG only verb, sets the 
terminal characteristics for all users. TERM sets the terminal character­
istics for a specific user. TERM is overridden by SET-TERM when the 
user logs across accounts. If 

TERM 

is entered the current settings are displayed, as shown in Fig. 13.1: 

PAGE WIDTH: 
PAGE DEPTH: 
LINE SKIP: 
LF DELAY: 
FF DELAY: 
BACKSPACE: 
TERM TYPE: 

TERMINAL 
79 
23 
o 
2 
2 
8 
R 

Fig. 13.1. The output produced by TERM. 

PRINTER 
80 
60 

To change any of these we type TERM followed by the parameters 
separated by commas. For example, to change the printer width to 132, 
leave everything else unchanged: 

TERM ...... 132 

156 Chapter 13 

where a new item list or file name may be specified. I f the copying is to a 
different file, the file name must be prefixed by a bracket, for instance: 

To:(newfilename 

COPY can be followed by a number of options which: (a) allow for 
the records to be deleted as they are copied; (b) allow any existing 
records to be overwritten; or (c) allow records to be copied to the 
terminal, printer or tape, rather than another file. 

COpy may be driven by an Access SELECT, rather than a specific 
item list. It is extremely useful for updating 'grandfather, father, son' 
file systems. 

TERMINAL CHARACTERISTICS 

Pick has two commands which allow terminal characteristics to be set. 
These deal with the width and depth of the terminal and system printers, 
the type of terminal and specific functions, such as line feed delay and 
the back space character. SET-TERM, a SYSPROG only verb, sets the 
terminal characteristics for all users. TERM sets the terminal character­
istics for a specific user. TERM is overridden by SET-TERM when the 
user logs across accounts. If 

TERM 

is entered the current settings are displayed, as shown in Fig. 13.1: 

PAGE WIDTH: 
PAGE DEPTH: 
LINE SKIP: 
LF DELAY: 
FF DELAY: 
BACKSPACE: 
TERM TYPE: 

TERMINAL 
79 
23 
o 
2 
2 
8 
R 

Fig. 13.1. The output produced by TERM. 

PRINTER 
SO 
60 

To change any of these we type TERM followed by the parameters 
separated by commas. For example, to change the printer width to 132, 
leave everything else unchanged: 

TERM ...... 132 



Other Pick Commands 157 

The terminal type parameter allows different terminals to be used on 
the same system. If the terminal driver is present (your system supplier 
will advise on this), all of the cursor control and report formatting 
functions will work correctly after an alteration to the TERM setting. 

Baud rates of terminals are changed using the SET-BAUD com­
mand. SET-BAUD 9600 will set the baud rate to 9600 at the computer 
end for this line. Hopefully, you can then manually change the terminal 
to match! 

'CROSS TERMINAL' FUNCTIONS 

Pick provides facilities for sending messages to other terminals on the 
same computer, and logging on and logging off other terminals. 

MSG * All users please log off. 

would send the message" All users please log off." to all users. 

MSG ADMIN Please telephone computer manager 

would send the message "Please telephone computer manager." to any 
line logged on to the ADMIN account. The message is immediately 
relayed onto the user's screen, ringing the terminal bell in the process so 
as to get attention. 

15:06:28 08 MAR 1985 FROM SYSPROG: 
Please telephone computer manager. 

The disadvantage of this is that any formatted screen being used at that 
moment will be spoilt. 

LOGON will log another terminal on to a specific account. It is a 
SYSPROG only verb and will only operate if the line is currently logged 
off. This is useful where you wish to start a 'phantom' job. An account 
can be set up with a logon Proc which carries out the required task. 
Logging on a spare line, or an unused terminal to this account will 
initiate the process. This only works on computers which do not require 
data terminal ready (DTR) on the serial interface. 

If you are logging lines on, without having a physical device 
attached, then there is a need for a way to log these off. The verb 
LOGOFF does this. Note that if you ever execute LOGOFF accidental­
ly. when meaning OFF for instance. and just press return when promp­
ted for the line number, terminal zero will be logged off. The best way 
out of this is to press the BREAK key and type END or OFF. 

Other Pick Commands 157 

The terminal type parameter allows different terminals to be used on 
the same system. If the terminal driver is present (your system supplier 
will advise on this), all of the cursor control and report formatting 
functions will work correctly after an alteration to the TERM setting. 

Baud rates of terminals are changed using the SET-BAUD com­
mand. SET-BAUD 9600 will set the baud rate to 9600 at the computer 
end for this line. Hopefully, you can then manually change the terminal 
to match! 

'CROSS TERMINAL' FUNCTIONS 

Pick provides facilities for sending messages to other terminals on the 
same computer, and logging on and logging off other terminals. 

MSG * All users please log off. 

would send the message "All users please log off." to all users. 

MSG ADMIN Please telephone computer manager. 

would send the message "Please telephone computer manager." to any 
line logged on to the ADMIN account. The message is immediately 
relayed onto the user's screen, ringing the terminal bell in the process so 
as to get attention. 

15:06:2808 MAR 1985 FROM SYSPROG: 
Please telephone computer manager. 

The disadvantage of this is that any formatted screen being used at that 
moment will be spoilt. 

LOGON will log another terminal on to a specific account. It is a 
SYSPROG only verb and will only operate if the line is currently logged 
off. This is useful where you wish to start a 'phantom' job. An account 
can be set up with a logon Proc which carries out the required task. 
Logging on a spare line, or an unused terminal to this account will 
initiate the process. This only works on computers which do not require 
data terminal ready (DTR) on the serial interface. 

If you are logging lines on, without having a physical device 
attached, then there is a need for a way to log these off. The verb 
LOGOFF does this. Note that if you ever execute LOGOFF accidental­
Iy, when meaning OFF for instance, and just press return when promp­
ted for the line number, terminal zero will be logged off. The best way 
out of this is to press the BREAK key and type END or OFF. 



158 

RUNOFF 

Chapter 13 

Runoff is a straightforward text processing system. Many applications 
have documentation supplied in Runoff format but today most users 
prefer to produce documents with one or other of the proprietary word 
processing systems and so Runoff has less importance than it used to. 
The Pick Reference Manual has the full details of how to set up docu­
ments using Runoff. When set up. documents may be output using the 
RUNOFF verb. The verb format is: 

RUNOFF filename itemlist 

the option P may be used to output the document to the system printer. 
If you have a printer which only has upper case letters. such as a barrel 
line printer. the option U may be used to output the document wholly in 
upper case. 

ST ARTING THE PICK SYSTEM 

Whenever a computer running the Pick operating system is switched on. 
the terminal attached to port 0 is assumed to be a system console. Thus. 
that terminal ,must also be switr;hed on. 

The power up procedure is different depending on the manufacturer 
and so will not be covered here. Somehow the system has to be 'boot­
strapped'. On the small multi-user microcomputers this is achieved 
simply by switching on. On larger systems a procedure of manipulating 
front panel switches has to be carried out. 

When the system has been bootstrapped. the option message will be 
sent to the system console. 

OPTIONS (X.F)= 

and the system will be prompting for X or F. 
A reply of X will coldstart the system, i.e. the system will be made 

ready for use and will utilise the data already stored on the hard disk. 
The spooler will be started and workspace will be assigned to each port. 

A reply of F will restore data from the tape device. The spooler will 
be started and workspace will be assigned to each port as for the 
coldstart but a complete file restore will take place. Meanwhile any file 
reorganisation will take place. All the data currently on the hard disk 
will be overwritten or lost. This procedure will normally be carried out 
whenever upgrades or some type of maintenance are carried out, or as a 
file reorganisation exercise. 

158 

RUNOFF 

Chapter 13 

Runoff is a straightforward text processing system. Many applications 
have documentation supplied in Runoff format but today most users 
prefer to produce documents with one or other of the proprietary word 
processing systems and so Runoff has less importance than it used to. 
The Pick Reference Manual has the full details of how to set up docu­
ments using Runoff. When set up, documents may be output using the 
RUNOFF verb. The verb format is: 

RUNOFF filename itemlist 

the option P may be used to output the document to the system printer. 
If you have a printer which only has upper case letters, such as a barrel 
line printer, the option U may be used to output the document wholly in 
upper case. 

ST ARTING THE PICK SYSTEM 

Whenever a computer running the Pick operating system is switched on, 
the terminal attached to porrO is assumed to be a system console. Thus, 
that terminal must also be swit(;hed on. 

The power up procedure is different depending on the manufacturer 
and so will not be covered here. Somehow the system has to be 'boot­
strapped'. On the small multi-user microcomputers this is achieved 
simply by switching on. On larger systems a procedure of manipulating 
front panel switches has to be carried out. 

When the system has been bootstrapped, the option message will be 
sent to the system console. 

OPTIONS (X.F)= 

and the system will be prompting for X or·F. 
A reply of X will coldstart the system, i.e. the system will be made 

ready for use and will utilise the data already stored on the hard disk. 
The spooler will be started and workspace will be assigned to each port. 

A reply of F will restore data from the tape device. The spooler will 
be started and workspace will be assigned to each port as for the 
coldstart but a complete file restore will take place. Meanwhile any file 
reorganisation will take place. All the data currently on the hard disk 
will be overwritten or lost. This procedure will normally be carried out 
whenever upgrades or some type of maintenance are carried out, or as a 
file reorganisation exercise. 



Other Pick Commands 159 

When either of these procedures is complete the system will auto­
matically log on to the COLDSTART account. This is a synonym 
account to SYSPROG but the logon Proc COLDST ART will be ex­
ecuted. This will probably set the time and date on systems which do not 
have a battery backed clock. and then verify the system modes. The 
verification stage calculates check sums on all the assembler modes 
which make up the Pick operating system and compares the result with a 
presto red list of check sum results. Any mismatches are reported and 
generally indicate that there is corruption in the ABS section of the disk. 
If this happens, the system should be bootstrapped from a backup 
device. 

The printer will then be started on the appropriate line(s) and the 
default terminal characteristics for your system will be set. 

The coldstart procedure will terminate by logging off the system 
console and sending the LOGON message to every line on the system. 
The system console now has no further significance and is free for usc as 
a normal terminal. 

Any user now switching on his tcrminal will receive the logon mes­
sage: 

LOGON PLEASE: 

and is invited to type in the namc of his account. 
The process of verifying that the operating system is working cor­

rectly may be carried out from TCL in SYSPROG. It is possible that 
hardware errors could cause the ABS area to become corrupt. The 
VERIFY-SYSTEM verb verifies that it is not. Suppliers will often ask 
that a VERIFY-SYSTEM is carried out if you are experiencing recur­
ring problems, such as operating system errors like CROSSING 
FRAME LIMITS or FORWARD LINK ZERO. 

Other Pick Commands 159 

When either of these procedures is complete the system will auto­
matically log on to the COLDSTART account. This is a synonym 
account to SYSPROG but the logon Proc COLDST ART will be ex­
ecuted. This will probably set the time and date on systems which do not 
have a battery backed clock, and then verify the system modes. The 
verification stage calculates check sums on all the assembler modes 
which make up the Pick operating system and compares the result with a 
prestored list of check sum results. Any mismatches are reported and 
generally indicate that there is corruption in the ABS section of the disk. 
If this happens, the system should be bootstrapped from a backup 
device. 

The printer will then be started on the appropriate line(s) and the 
default terminal characteristics for your system will be set. 

The coldstart procedure will terminate by logging off the system 
console and sending the LOGON message to every line on the system. 
The system console now has no further significance and is free for use as 
a normal terminal. 

Any user now switching on his terminal will receive the logon mes­
sage: 

LOGON PLEASE: 

and is invited to type in the name of his account. 
The process of verifying that the operating system is working cor­

rectly may be carried out from TCL in SYSPROG. It is possible that 
hardware errors could cause the ABS area to become corrupt. The 
VERIFY-SYSTEM verb verifies that it is not. Suppliers will often ask 
that a VERIFY-SYSTEM is carried out if you are experiencing recur­
ring problems, such as operating system errors like CROSSING 
FRAME LIMITS or FORWARD LINK ZERO. 





Chapter 14 
The History and Future of Pick 

Pick has been aroun.d for a long time, a very long time in terms of 
computer industry development. Twenty years ago two gentlemen, Don 
Nelson and Dick Pick, designed a "General Information Retrieval Lan­
guage System" (GIRLS) for the company TRW on a US army project 
- a data storage and retrieval system to be used in conjunction with the 
Cheyenne helicopter. 

This software, re-named General Information Management, or 
GIM, was delivered to the army in 1969 and was implemented on an 
IBM mainframe. GIM incorporated some of the basic features of what 
we now know as Pick. It had database features and an English language 
enquiry language. An updated version was still being operated by the 
Central Intelligence Agency in 1981 and may well be in use even today. 

No real commercial use was made of GIM, so when the project was 
completed, Dick Pick was able to research his own work, which was 
deemed to be public domain because it had been developed under the 
auspices of the US Department of Defense. 

The first commercial implementation of the operating system was on 
the Microdata 1 l60() 8-bit CPU. Pick, although still not known as such, 
had its own theoretical instruction set. However to implement it re­
quired something a little more sophisticated than the Microdata chip 
could supply, and a French company, Intertechnique, was engaged to 
manufacture and supply a firmware board which could interpret the 
instruction set, now called REAL. 

Thus in 1973 the Reality operating system was born. Microdata 
began to market their new product by appointing dealers throughout the 
world. Intertechnique marketed it as Realitie on mainland Europe and a 
company called Computer ~achinery Company (CMC) were the Brit­
ish dealers. 

The system had obtained a medium amount of success in the years 
1973 to 1976 and about a thousand end user implementations were 

1. The name Microdata was changed to McDonnell Douglas Computer Systems in late 
1984. 

161 

Chapter 14 
The History and Future of Pick 

Pick has been around for a long time, a very long time in terms of 
computer industry development. Twenty years ago two gentlemen, Don 
Nelson and Dick Pick, designed a "General Information Retrieval Lan­
guage System" (GIRLS) for the company TRW on a US army project 
- a data storage and retrieval system to be used in conjunction with the 
Cheyenne helicopter. 

This software, re-named General Information Management, or 
GIM, was delivered to the army in 1969 and was implemented on an 
IBM mainframe. GIM incorporated some of the basic features of what 
we now know as Pick. It had database features and an English language 
enquiry language. An updated version was still being operated by the 
Central Intelligence Agency in 1981 and may well be in use even today. 

No real commercial use was made of GIM, so when the project was 
completed, Dick Pick was able to research his own work, which was 
deemed to be public domain because it had been developed under the 
auspices of the US Department of Defense. 

The first commercial implementation of the operating system was on 
the Microdata 1 1600 8-bit CPU. Pick, although still not known as such, 
had its own theoretical instruction set. However to implement it re­
quired something a little more sophisticated than the Microdata chip 
could supply, and a French company, Intertechnique, was engaged to 
manufacture and supply a firmware board which could interpret the 
instruction set, now called REAL. 

Thus in 1973 the Reality operating system was born. Microdata 
began to market their new product by appointing dealers throughout the 
world. Intertechnique marketed it as Realitie on mainland Europe and a 
company called Computer ~achinery Company (CMC) were the Brit­
ish dealers. 

The system had obtained a medium amount of success in the years 
1973 to 1976 and about a thousand end user implementations were 

1. The name Microdata was changed to McDonnell Douglas Computer Systems in late 
1984. 

161 



162 Chapter 14 

obtained. CMC were taken over by Microdata and Microdata in their 
turn were taken over by McDonnell Douglas. CMC were very successful 
in selling to large corporations in the UK who were quick to realise the 
value of such a flexible computer system. Dick Pick, however, became 
disenchanted with his continued involvement with Microdata and he left 
to found his own company, Pick and Associates. 

Pick and Associates began to import computers from Intertechni­
que, implemented the operating system and sold it as Evolution. They 
also implemented Pick on the Honeywell Level 6 minicomputers for a 
company called the Ultimate Corporation. A royalties lawsuit with 
Microdata began which went on for several years. It ended with both 
parties retaining rights to the operating system. Microdata and Dick 
Pick were reconciled early in 1984. Ultimate subsequently purchaseci 
their rights to the Pick operating system outright and implemented Pick 
on the DEC LSI 11 to fill out the bottom end of their range. Dick Pick 
sold out his holding in Pick and Associates to Evolution Computer 
Systems who were subsequently taken over by Applied Technology 
Ventures Inc. 

Around 1980 Pick developed a technique which would transfer prog­
rams written in the REAL assembler language into any given chip 
instruction set. This made "software" implementations possible like 
those implemented using 68000 and 8086 technology. This meant that 
special boards were no longer necessary and speeded up new imple­
mentations. 

THE "LOOKALIKES" 

Around 1979 Pick "Iookalikes" began to emerge. Devcom produced the 
Information System running on the Prime 50 series of computers. This 
appeared to be a powerful option. Its disadvantage, however, was that it 
was implemented on top of the Primos operating system and required a 
large amount of central memory to run effectively. In its favour it did 
have excellent communications facilities, which the others did not have. 
More recently, Cosmos implemented the Revelation system with PCI 
DOS on the IBM PC which has been described as "the best (database 
management system) available". 

Subsequently Dick Pick, in his new company, Pick Systems, man­
aged to surround himself with excellent marketing staff. They obtained 
commissions from many manufacturers to implement the Pick Operat­
ing System on their equipment to enable them to offer it as an option. 

Pick Systems always control the implementation of Pick on a new 

162 Chapter 14 

obtained. CMC were taken over by Microdata and Microdata in their 
turn were taken over by McDonnell Douglas. CMC were very successful 
in selling to large corporations in the UK who were quick to realise the 
value of such a flexible computer system. Dick Pick, however, became 
disenchanted with his continued involvement with Microdata and he left 
to found his own company, Pick and Associates. 

Pick and Associates began to import computers from Intertechni­
que, implemented the operating system and sold it as Evolution. They 
also implemented Pick on the Honeywell Level 6 minicomputers for a 
company called the Ultimate Corporation. A royalties lawsuit with 
Microdata began which went on for several years. It ended with both 
parties retaining rights to the operating system. Microdata and Dick 
Pick were reconciled early in 1984. Ultimate subsequently purchaseo 
their rights to the Pick operating system outright and implemented Pick 
on the DEC LSI 11 to fill out the bottom end of their range. Dick Pick 
sold out his holding in Pick and Associates to Evolution Computer 
Systems who were subsequently taken over by Applied Technology 
Ventures Inc. 

Around 1980 Pick developed a technique which would transfer prog­
rams written in the REAL assembler language into any given chip 
instruction set. This made "software" implementations possible like 
those implemented using 68000 and 8086 technology. This meant that 
special boards were no longer necessary and speeded up new imple­
mentations. 

THE "LOOKALIKES" 

Around 1979 Pick "lookalikes" began to emerge. Devcom produced the 
Information System running on the Prime 50 series of computers. This 
appeared to be a powerful option. Its disadvantage, however, was that it 
was implemented on top of the Primos operating system and required a 
large amount of central memory to run effectively. In its favour it did 
have excellent communications facilities, which the others did not have. 
More recently, Cosmos implemented the Revelation system with PC! 
DOS on the IBM PC which has been described as "the best (database 
management system) available". 

Subsequently Dick Pick, in his new company, Pick Systems, man­
aged to surround himself with excellent marketing staff. They obtained 
commissions from many manufacturers to implement the Pick Operat­
ing System on their equipment to enable them to offer it as an option. 

Pick Systems always control the implementation of Pick on a new 



The History and Future of Pick 163 

device. This contrasts with the implementation policy for Unix systems 
which have been carried out hy many institutions resulting in many 
flavours of Unix, e.g. Unix System Y, Berkeley Unix, Xenix etc., 
whereas there is only one Pick. This has not stopped licensees who own 
their implementations, i.e. Microdata and Ultimate, from developing 
their systems away from the mainstream Pick, albeit only slightly. 

There are an increasing number of manufacturers and distributors 
who are more than pleased to say that their computer runs the Pick 
operating system. These range from the Reality through 16-bit micro­
computers such as the Fujitsu 2000 to 32-hit systems such as the C.ltoh 
680 range to large minicomputers like the Microdata Sequoia. Another 
way of looking at this is by number of users. There are single-user 
systems, multi-user microcomputer systems and small and large mini­
computers. The IBM 4300 implementation is already able to handle 
about 100 users. Pick Systems estimate that the installed user base of 
authorised Pick computers is over 30,000. This does not include the 
look-alikes such as Revelation which is reported to have shipped 20,000 
by the beginning of 1985 and is delivering hundreds of copies every 
month. Pick Systems intend to double the number of Pick computers 
installed during 1985. If we remember that Pick is inherently a multi­
user system, there are probably in excess of 300,000 terminals with 
access to a computer running the Pick operating system. 

THE FUTURE 

Pick Systems have already announced that the real Pick operating 
system (as opposed to Revelation) is available for the IBM PC-XT. This 
represents another direction in marketing for them. For the first time 
Pick Systems themselves, rather than a manufacturer or distributor, are 
to be the direct vendors. In the United States, Pick on the XT will sell 
for around half of the expected Unix price. Buyers will be able to 
purchase the software separate from the hardware. These factors may 
well combine to give Pick a long awaited boost both in number of users 
and in the general awareness of the computer industry. 

Amongst the newer licensees for the Pick operating system are 
WICAT of Australia, Nixdorf, Tao Engineering and the Harris Trust of 
Switzerland with an implementation on the Pinnacle. 

Apart from spreading across hardware, Pick Systems are still de­
veloping the operating system. The next official major upgrade, initially 
entitled R84 but now renamed Open Architecture, will see the removal 
of the 32K maximum record size restriction, introduce enhanced com-

The History and Future of Pick 163 

device. This contrasts with the implementation policy for Unix systems 
which have been carried out by many institutions resulting in many 
flavours of Unix, e.g. Unix System V, Berkeley Unix, Xenix etc., 
whereas there is only one Pick. This has not stopped licensees who own 
their implementations, i.e. Microdata and Ultimate, from developing 
their systems away from the mainstream Pick, albeit only slightly. 

There are an increasing number of manufacturers and distributors 
who are more than pleased to say that their computer runs the Pick 
operating system. These range from the Reality through 16-bit micro­
computers such as the Fujitsu 2000 to 32-bit systems such as the C.ltoh 
680 range to large minicomputers like the Microdata Sequoia. Another 
way of looking at this is by number of users. There are single-user 
systems, multi-user microcomputer systems and small and large mini­
computers. The IBM 4300 implementation is already able to handle 
about 100 users. Pick Systems estimate that the installed user base of 
authorised Pick computers is over 30,000. This does not include the 
look-alikes such as Revelation which is reported to have shipped 20,000 
by the beginning of 1985 and is delivering hundreds of copies every 
month. Pick Systems intend to double the number of Pick computers 
installed during 1985. If we remember that Pick is inherently a multi­
user system, there are probably in excess of 300,000 terminals with 
access to a computer running the Pick operating system. 

THE FUTURE 

Pick Systems have already announced that the real Pick operating 
system (as opposed to Revelation) is available for the IBM PC-XT. This 
represents another direction in marketing for them. For the first time 
Pick Systems themselves, rather than a manufacturer or distributor, are 
to be the direct vendors. In the United States, Pick on the XT will sell 
for around half of the expected Unix price. Buyers will be able to 
purchase the software separate from the hardware. These factors may 
well combine to give Pick a long awaited boost both in number of users 
and in the general awareness of the computer industry. 

Amongst the newer licensees for the Pick operating system are 
WICAT of Australia, Nixdorf, Tao Engineering and the Harris Trust of 
Switzerland with an implementation on the Pinnacle. 

Apart from spreading across hardware, Pick Systems are still de­
veloping the operating system. The next official major upgrade, initially 
entitled R84 but now renamed Open Architecture, will see the removal 
of the 32K maximum record size restriction, introduce enhanced com-



164 Chapter 14 

munications facilities such as X25 and SNA, provide transaction logging 
features, support phantom processes and introduce a C compiler, 
amongst other things. Many of these features have already been im­
plemented at Pick Systems and the next stage is for the licensees to 
implement the enhancements on their equipment. It goes without saying 
that all existing software written under Pick will be upwards compatible. 

Pick Systems are also working on a co-processor, code named Vul­
ture - a 32-bit processor which will plug into a host machine running 
Pick and carry out most of the processing requirements, leaving the host 
machine to handle input and output. This will not only increase through­
put but also extend the number of terminals that may be supported by a 
single CPU. 

THE STANDARD OPERATING SYSTEM 

Having described the various facilities that make up the Pick Operating 
System, the enormous potential of Pick should now be clear. Although 
Pick is not the right answer for all applications, it is ideal for the 
commercial environment. Pick's database approach gives flexibility, in 
that ad hoc requirements can be responded to, independence, in that 
users are not totally reliant on the availability of technical experts, and 
efficiency, in that new applications may use the data associated with 
existing applications. 

It is not expected that any operating system will become the 'stan­
dard' for all applications. Each operating system will have its speciality. 
Pick's speciality is business and administration. It is in the areas of 
business and administration that Pick will be the standard that others try 
to match. 

164 Chapter 14 

munications facilities such as X25 and SNA, provide transaction logging 
features, support phantom processes and introduce a C compiler, 
amongst other things. Many of these features have already been im­
plemented at Pick Systems and the next stage is for the licensees to 
implement the enhancements on their equipment. It goes without saying 
that all existing software written under Pick will be upwards compatible. 

Pick Systems are also working on a co-processor, code named Vul­
ture - a 32-bit processor which will plug into a host machine running 
Pick and carry out most of the processing requirements, leaving the host 
machine to handle input and output. This will not only increase through­
put but also extend the number of terminals that may be supported by a 
single CPU. 

THE STANDARD OPERATING SYSTEM 

Having described the various facilities that make up the Pick Operating 
System, the enormous potential of Pick should now be clear. Although 
Pick is not the right answer for all applications, it is ideal for the 
commercial environment. Pick's database approach gives flexibility, in 
that ad hoc requirements can be responded to, independence, in that 
users are not totally reliant on the availability of technical experts, and 
efficiency, in that new applications may use the data associated with 
existing applications. 

It is not expected that any operating system will become the 'stan­
dard' for all applications. Each operating system will have its speciality. 
Pick's speciality is business and administration. It is in the areas of 
business and administration that Pick will be the standard that others try 
to match. 



Appendices 

APPENDIX 1 - EDITOR COMMANDS 

This is a brief explanation of all of the commands available in the system 
editor. Commands suffixed by * have been explained more fully in the 
text. All of the commands are explained in full in the Pick Reference 
Manual. 

1* 
R* 
Rn 
Rla/b * 

Rl/b * 
Rla/b/n * 
Rla/b/n-m * 
RU/a/b * 

Rn/a/b 

RUn/a/b 
Ln * 
L"a * 
Ln"a * 
L"a"n-m 

L:a * 
A 
Gn * 
n * 
DE * 
DEn 
F* 
FI * 
FI item * 
FI(f i * 
FIO(f i 

FIL 
FIK* 
FILK 

Insert data on a new line after the current line. 
Replace the whole of the current line. 
Replace the whole of the next n lines. 
Replace the first occurrence of string a by b. 
Place string b at the beginning of the current line. 
Replace string a occurring in column n by string b. 
Replace string a occurring in columns n to m by string b. 
Replace unconditionally all occurrences of string a by string b 
in the current line. 
Replace the first occurrence of string a by string b in the next 
n lines. 
Replace unconditional a by b in the next n lines. 
List the next n lines. 
Locate the next occurrence of string a. 
Locate the first occurrence in the next n lines of string a. 
Locate the next occurrence of string a occurring between 
columns n to m. 
Locate the next line beginning with string a. 
Again, repeat the last locate command. 
Go to line n. 
Go to line n. 
Delete the current line. 
Delete the next n lines. 
File current buffer. 
File and exit record. 
File, renaming the record item and exit record. 
File in file f as record i and exit the record. 
File in file f as record i overwriting any existing record and 
exit the record. 
File the record as a list. 
File the record, exit and exit any iteIIllist, i.e. return to TeL. 
File the record as a list and exit any itemlist. 

165 

Appendices 

APPENDIX 1 - EDITOR COMMANDS 

This is a brief explanation of all of the commands available in the system 
editor. Commands suffixed by * have been explained more fully in the 
text. All of the commands are explained in full in the Pick Reference 
Manual. 

1* 
R* 
Rn 
Rla/b * 

RI/b * 
Rla/b/n * 
Rla/b/n-m * 
RU/a/b * 

Rn/a/b 

RUn/a/b 
Ln * 

L"a * 

Ln"a * 
L"a"n-m 

L:a * 

A 
Gn * 
n * 
DE * 
DEn 
F* 
FI * 
FI item * 
FI(f i * 
FIO(f i 

FIL 
FIK* 
FILK 

Insert data on a new line after the current line. 
Replace the whole of the current line. 
Replace the whole of the next n lines. 
Replace the first occurrence of string a by b. 
Place string b at the beginning of the current line. 
Replace string a occurring in column n by string b. 
Replace string a occurring in columns n to m by string b. 
Replace unconditionally all occurrences of string a by string b 
in the current line. 
Replace the first occurrence of string a by string b in the next 
n lines. 
Replace unconditional a by b in the next n lines. 
List the next n lines. 
Locate the next occurrence of string a. 
Locate the first occurrence in the next n lines of string a. 
Locate the next occurrence of string a occurring between 
columns n to m. 
Locate the next line beginning with string a. 
Again, repeat the last locate command. 
Go to line n. 
Go to line n. 
Delete the current line. 
Delete the next n lines. 
File current buffer. 
File and exit record. 
File, renaming the record item and exit record. 
File in file f as record i and exit the record. 
File in file f as record i overwriting any existing record and 
exit the record. 
File the record as a list. 
File the record, exit and exit any itemlist, i.e. return to TeL. 
File the record as a list and exit any itemlist. 

165 



166 

FIC 
FD * 
FDK 
FS * 
FS item 
FS (f i 
FSO(f i 

EX * 

EXK * 
EXT 
MEn"id" * 
MEn"id"m * 
MEn(f i * 
X 
XF 

T 
B 
Un 
Nn 
Wn 
, * 
TB n,n .. 
C* 
? 
S? 
Zn-m 
P * 

Pn 
Pn c 

Appendix 1 

File the record and compile (Revelation only). 
File delete, delete this record from filename and exit record. 
File delete, exit record and any item-idlist, i.e. return to TCL. 
File the record on the database but continue editing. 
File the record naming it as item. 
File the record on file f record i. 
File the record on file f record i overwriting any existing 
record. 
Exit from this record leaving the record unchanged on the 
database. 
Exit from this record and kill item-idlist return to TCL. 
Revelation version of EXK. 
Merge n attributes from record id in this file. 
Merge n attributes from id beginning at attribute m. 
Merge n attributes from file f record i. 
Reverse the effect of the last I, R or DE command. 
Reverse the effect of all the changes since the last F com­
mand. 
Go to the top of the record. 
Go to the bottom of the record. 
Go up n lines. 
Go to the next nth line. 
List 22 lines up to line n. (McDonnell Douglas only). 
Toggle'. ' is a wild card character for any string. 
Set tabs to be n,n, ... etc. 
Display column number mask. 
Display current line and item id. 
Display the current size of the record. 
Display only columns n to m. 
Execute prestore command 0 (set to L22 on entry to the 
editor). 
Execute prestore command n. 
Set prestore command n to c. 

166 

FIC 
FD * 
FDK 
FS * 
FS item 
FS (f i 
FSO(f i 

EX * 

EXK * 
EXT 
MEn"id" * 
MEn"id"m * 
MEn(f i * 
X 
XF 

T 
B 
Un 
Nn 
Wn 
A * 
TB n,n .. 
C* 
? 
S? 
Zn-m 
P * 

Pn 
Pn c 

Appendix 1 

File the record and compile (Revelation only). 
File delete, delete this record from filename and exit record. 
File delete, exit record and any item-idlist, i.e. return to TCL. 
File the record on the database but continue editing. 
File the record naming it as item. 
File the record on file f record i. 
File the record on file f record i overwriting any existing 
record. 
Exit from this record leaving the record unchanged on the 
database. 
Exit from this record and kill item-idlist return to TCL. 
Revelation version of EXK. 
Merge n attributes from record id in this file. 
Merge n attributes from id beginning at attribute m. 
Merge n attributes from file f record i. 
Reverse the effect of the last I, R or DE command. 
Reverse the effect of all the changes since the last F com­
mand. 
Go to the top of the record. 
Go to the bottom of the record. 
Go up n lines. 
Go to the next nth line. 
List 22 lines up to line n. (McDonnell Douglas only). 
Toggle A. A is a wild card character for any string. 
Set tabs to be n,n, ... etc. 
Display column number mask. 
Display current line and item id. 
Display the current size of the record. 
Display only columns n to m. 
Execute prestore command 0 (set to L22 on entry to the 
editor). 
Execute prestore command n. 
Set prestore command n to c. 



BASIC Command Summary 

APPENDIX 2 - BASIC COMMAND SUMMARY 

167 

This is a brief explanation of all the commands available under Pick 
BASIC. Commands suffixed by * are explained more fully in the text. 
All the commands are described in full in the Pick Reference Manual, 
except those suffixed with t which are sometimes omitted. Commands 
suffixed by § are not yet available on all implementations but should be 
by 1986. 

ABORT 
BREAK OFF 
BREAK ON 
CALL * 
CASE * 
CHAIN * 
CLEAR 
CLEARFILE 
COMMON * 
CRT * t 
DATA * 
DELETE * 
DIM * 
ECHO OFF 
ECHO ON 
END * 
EQUATE * 
EXECUTE t/§ 

FOOTING * 
FOR,STEP ,NEXT * 
GOTO 
GOSUB * 
HEADING * 
IF,THEN,ELSE * 
INPUT * 
INPUTERR 
INPUTNULL 
IN PUTT RAP 
LOCATE * 
LOCK * 
LOOP,WHILE,REPEAT 
MAT * 
MATREAD * 
MATREADU * 
MATWRITE * 
MATWRITEU 

Abort execution and return to TCL. 
Turn the break key off. 
Turn the break key on. 
External subroutine call. 
Multiway IF structure. 
External chain to another process. 
Clear variable table to zeroes. 
Like verb CLEAR-FILE. 
COMMON variable list. 
Output to terminal. 
Stack data for use with CHAIN. 
Delete a record from a file. 
Real array dimension statement. 
Echo of input off. 
Echo of input on. 
END of structure or program. 
Equate variables or constants. 
Execute a TCL command and return to BASIC 
program. 
Report footing. 
FOR NEXT loop. 
Unconditional branch. 
Internal subroutine call. 
Report heading. 
Conditional structure. 
Take input from keyboard. 
Error message from INPUTTRAP. 
Null character for INPUTTRAP. 
Single character input and validate. 
Dynamic array locate element. 
Semaphore lock. 
Loop structure. 
Real array global assign. 
Read from file into real array. 
Read from file into real array with update lock. 
Write from real array to file. 
Write from real array to file but maintain update 
lock. 

BASIC Command Summary 

APPENDIX 2 - BASIC COMMAND SUMMARY 

167 

This is a brief explanation of all the commands available under Pick 
BASIC. Commands suffixed by * are explained more fully in the text. 
All the commands are described in full in the Pick Reference Manual, 
except those suffixed with t which are sometimes omitted. Commands 
suffixed by § are not yet available on all implementations but should be 
by 1986. 

ABORT 
BREAK OFF 
BREAK ON 
CALL * 
CASE * 
CHAIN * 
CLEAR 
CLEARFILE 
COMMON * 
CRT * t 
DATA * 
DELETE * 
DIM * 
ECHO OFF 
ECHO ON 
END * 
EQUATE * 
EXECUTE t/§ 

FOOTING * 
FOR,STEP,NEXT * 
GOTO 
GOSUB * 
HEADING * 
IF,THEN,ELSE * 
INPUT * 
INPUTERR 
INPUTNULL 
INPUTTRAP 
LOCATE * 
LOCK * 
LOOP,WHlLE,REPEAT 
MAT * 
MATREAD * 
MATREADU * 
MATWRITE* 
MATWRITEU 

Abort execution and return to TCL. 
Turn the break key off. 
Turn the break key on. 
External subroutine call. 
Multiway IF structure. 
External chain to another process. 
Clear variable table to zeroes. 
Like verb CLEAR-FILE. 
COMMON variable list. 
Output to terminal. 
Stack data for use with CHAIN. 
Delete a record from a file. 
Real array dimension statement. 
Echo of input off. 
Echo of input on. 
END of structure or program. 
Equate variables or constants. 
Execute a TCL command and return to BASIC 
program. 
Report footing. 
FOR NEXT loop. 
Unconditional branch. 
Internal subroutine call. 
Report heading. 
Conditional structure. 
Take input from keyboard. 
Error message from INPUTTRAP. 
Null character for INPUTTRAP. 
Single character input and validate. 
Dynamic array locate element. 
Semaphore lock. 
Loop structure. 
Real array global assign. 
Read from file into real array. 
Read from file into real array with update lock. 
Write from real array to file. 
Write from real array to file but maintain update 
lock. 



168 

NULL 
ON,GOTO 
ON,GOSUB 
OPEN * 

PAGE 
PRECISION 
PRINT * 
PRINTER ON * 
PRINTER OFF * 
PRINTER CLOSE * 
PROCREAD * t 
PROCWRITE * t 
PROGRAM t 
PROMPT 
READ * 
READNEXT * 

READT 
READU * 
READV * 

READVU * 

RELEASE * 

REM,! or * * 
RETURN * 
RETURN TO 
REWIND 
ROM 

SELECT 
STOP * 
SUBROUTINE * 

UNLOCK * 

WEOF 
WRITE * 
WRITET 
WRITEU 
WRITE V * 

WRITEVU 

Appendix 2 

No operation. 
Multiway branch. 
Multiway internal subroutine call. 
Open a file. 
Throw a page. 
Set precision of calculations. 
Output. 
Output to printer. 
Output to terminal. 
Close print file. 
Read Proc input buffer. 
Write to Proc input buffer. 
PROGRAM declaration (like SUBROUTINE). 
Change prompt character. 
Read from file into dynamic array. 
Read next field from a select list. 
Read from tape. 
Read with update lock. 
Read variable from field on file. 
Read variable from field on file with update lock. 
Release all update locks. 
Comment. 
Internal or external subroutine return point. 
Internal subroutine return with branch. 
Rewind tape unit. 
Release quantum (sleep for one second and give 
up times lice ). 
Select a whole file to a select variable. 
Halt execution. 
Subroutine declaration statement. 
Release semaphore lock. 
Write end of file mark to tape. 
Write dynamic array to file. 
Write block to tape. 
Write maintaining update lock. 
Write single file to file. 
Write single field to file with update lock main­
tained. 

168 

NULL 
ON,GOTO 
ON,GOSUB 
OPEN" 
PAGE 
PRECISION 
PRINT" 
PRINTER ON" 
PRINTER OFF" 
PRINTER CLOSE" 
PROCREAD" t 
PROCWRITE " t 
PROGRAM t 
PROMPT 
READ" 
READNEXT" 
READT 
READU" 
READV" 
READVU" 
RELEASE" 
REM,! or" " 
RETURN" 
RETURN TO 
REWIND 
ROM 

SELECT 
STOP" 
SUBROUTINE" 
UNLOCK * 
WEOF 
WRITE" 
WRITET 
WRITEU 
WRITEV" 
WRITEVU 

Appendix 2 

No operation. 
Multiway branch. 
Multiway internal subroutine call. 
Open a file. 
Throw a page. 
Set precision of calculations. 
Output. 
Output to printer. 
Output to terminal. 
Close print file. 
Read Proc input buffer. 
Write to Proc input buffer. 
PROGRAM declaration (like SUBROUTINE). 
Change prompt character. 
Read from file into dynamic array. 
Read next field from a select list. 
Read from tape. 
Read with update lock. 
Read variable from field on file. 
Read variable from field on file with update lock. 
Release all update locks. 
Comment. 
Internal or external subroutine return point. 
Internal subroutine return with branch. 
Rewind tape unit. 
Release quantum (sleep for one second and give 
up times lice ). 
Select a whole file to a select variable. 
Halt execution. 
Subroutine declaration statement. 
Release semaphore lock. 
Write end of file mark to tape. 
Write dynamic array to file. 
Write block to tape. 
Write maintaining update lock. 
Write single file to file. 
Write single field to file with update lock main­
tained. 



BASIC Function Summary 169 

APPE:\TDIX 3 - BASIC FUNCTION SUMMARY 

This is a brief explanation of all the functions available under Pick 
BASIC. Functions suffixed by * are explained more fully in the text. All 
the commands are described in full in the Pick Reference Manual, 
except those suffixed with t which are sometimes omitted. 

@(x,y) * 
@(-a) * 
ABS(a) 
ALPHA(a) 
ASCII(a) 
CHAR(a) 
COLlO 
COL20 
COS(a) 
COUNT (a,b) 
DATE 0 
DCOUNT(a,b) t 
DELETE(a,b,c,d) * 

EBCDIqa) 
EXP(a) 
EXTRACT (a,b,c,d) * 
FIELD(a,b,c) 

ICONV(a,b) * 

INDEX (a,b,c) 

INSERT (a,b,c,d) * 

INT(a) 
LEN (a) 
LN(A) 
MOD(a,b) t 
NOT(a) 
NUM(a) 
OCONV(a,b) * 
PWR(a,b) 
REM (a,b) 
REPLACE(a,b,c,d,e) * 

RND(a) 
SEQ(a) 
SIN (a) 
SPACE(a) 
SQRT(a) 
STR(a,b) 
SYSTEM(a) t 

TAN(a) 

Cursor control function. 
Screen control function. 
Absolute (positive) value of a. 
1 if a is alphabetic, otherwise O. 
Returns the ASCII value of EBCDIC string a. 
The ASCII character number a. 
Beginning column of last FIELD function. 
Ending column of last FIELD function. 
Cosine of a degrees. 
Number of occurrences of string b in string a. 
Machine date in internal format. 
As COUNT +1. 
Dynamic array delete function. 
The EBCDIC value of ASCII string a. 
e to the power a. 
Dynamic array extraction. 
Extract the cth field from string a delimited by 
character b. 
User exit b using data a (input conversion). 
Column position of cth occurrence of string b in 
string a. 
Dynamic array insert function. 
Whole number part (integer) of a. 
Length of string a. 
Natural logarithm of a. 
See REM. 
Logical negation of a. 
1 if a is numeric 0 otherwise. 
As ICONV but output conversion. 
a to the power b. 
Remainder of alb. 
Dynamic array replace function. 
Random integer in range O-a. 
ASCII value of character a. 
Sine of a degrees. 
a spaces. 
Square root of a. 
String a repeated b times. 
The value of system variable number a. 
(a in the range 1-10). 
Tangent of a degrees. 

BASIC Function Summary 

APPENDIX 3 - BASIC FUNCTION SUMMARY 

169 

This is a brief explanation of all the functions available under Pick 
BASIC. Functions suffixed by * are explained more fully in the text. All 
the commands are described in full in the Pick Reference Manual, 
except those suffixed with .;. which are sometimes omitted. 

@(x,y) * 
@(-a) * 

ABS(a) 
ALPHA(a) 
ASCII(a) 
CHAR(a) 
COLlO 
COL2() 
COS(a) 
COUNT (a,b) 
DATE 0 
DCOUNT(a,b) t 
DELETE(a,b,c,d) * 
EBCDIC(a) 
EXP(a) 
EXTRACT (a,b,c,d) * 

FIELD(a,b,c) 

ICONV(a,b) * 
INDEX (a,b,c) 

INSERT (a,b,c,d) * 
INT(a) 
LEN(a) 
LN(A) 
MOD(a,b) t 
NOT(a) 
NUM(a) 
OCONV(a,b) * 
PWR(a,b) 
REM (a,b) 
REPLACE(a,b,c,d,e) * 
RND(a) 
SEQ(a) 
SIN (a) 
SPACE(a) 
SQRT(a) 
STR(a,b) 
SYSTEM(a) t 

TAN(a) 

Cursor control function. 
Screen control function. 
Absolute (positive) value of a. 
1 if a is alphabetic, otherwise O. 
Returns the ASCII value of EBCDIC string a. 
The ASCII character number a. 
Beginning column of last FIELD function. 
Ending column of last FIELD function. 
Cosine of a degrees. 
Number of occurrences of string b in string a. 
Machine date in internal format. 
As COUNT +1. 
Dynamic array delete function. 
The EBCDIC value of ASCII string a. 
e to the power a. 
Dynamic array extraction. 
Extract the cth field from string a delimited by 
character b. 
User exit b using data a (input conversion). 
Column position of cth occurrence of string b in 
string a. 
Dynamic array insert function. 
Whole number part (integer) of a. 
Length of string a. 
Natural logarithm of a. 
See REM. 
Logical negation of a. 
1 if a is numeric 0 otherwise. 
As ICONV but output conversion. 
a to the power b. 
Remainder of a/b. 
Dynamic array replace function. 
Random integer in range O-a. 
ASCII value of character a. 
Sine of a degrees. 
a spaces. 
Square root of a. 
String a repeated b times. 
The value of system variable number a. 
(a in the range 1-10). 
Tangent of a degrees. 



170 

TIMEO 
TIMEDATEO 
TRIM(a) 
a[b,c] 

Appendix 3 

Current time in internal format. 
Current time and date in external format. 
Trim excess spaces from string a. 
c characters of string a beginning at the bth char­
acter. 

ARITHMETIC OPERATORS 

+ 

* 

BOOLEAN OPERATORS 

AND or & 
OR or % 
1 
o 

Add.' 
Subtract. 
Multiply. 
Divide. 
Raise to the power. 

·Concatenate. 

Logical AND. 
Logical OR. 
Logical TRUE. 
Logical FALSE. 

RELATIONAL OPERATO~S 

= or EQ 
> or GT 
>= or GE 
< orLT 
<= or LE 
# or <> or NE 

Equal to. 
Greater than. 
Greater than or equal to. 
Less than. 
Less than or equal to. 
Not equal to. 

170 

TIMEO 
TIMEDATEO 
TRIM(a) 
a[b,c] 

Appendix 3 

Current time in internal format. 
Current time and date in external format. 
Trim excess spaces from string a. 
c characters of string a beginning at the bth char­
acter. 

ARITHMETIC OPERATORS 

+ 

* 

BOOLEAN OPERATORS 

AND or & 
OR or % 
1 
o 

Add. 
Subtract. 
Multiply. 
Divide. 
Raise to the power. 

·Concatenate. 

Logical AND. 
Logical OR. 
Logical TRUE. 
Logical FALSE. 

RELATIONAL OPERATORS 

= or EO 
> or GT 
>= or GE 
< or LT 
<= or LE 
# or <> or NE 

Equal to. 
Greater than. 
Greater than or equal to. 
Less than. 
Less than or equal to. 
Not equal to. 



Proc Command Summary 171 

APPENDIX 4 - PROC COMMAND SUMMARY 

This is a summary of commands available with the Proc job control 
language. Commands suffixed by " have been discussed in the text. 

Command 

A* 

B 
BO 
C* 
D 

F 

FO 

G or GO 
H* 
IF * 
IH 
IP * 
IS 
IT 
0* 
P * 
PH 

PP 
PW 
PX 
RI 
RO 
S * 
SP 
SS 
STON * 
STOFF * 

T* 
U 
X* 
+n 
-n 
(file proc) * 
[] n * 
[file proc) * 

Description 

Move data from the currently active input buffer to the 
currently active output buffer. 
Back up the input buffer pointer by one parameter. 
Back up the output buffer pointer by one parameter. 
Comment. 
Display currently active input buffer values on the ter­
minal. 
Move currently active input buffer pointer forward one 
parameter. 
Move currently active output buffer pointer forward 
one parameter. 
Goto statement label. 
Move data into output buffer. 
Conditional execution of a Proc command. 
Move data into input buffer. 
Input to currently active input buffer. 
Input to secondary input buffer. 
Input from tape to primary input buffer. 
Output data to terminal. 
Execute command held in the output buffers. 
As P but suppress all output generated by the executing 
process. 
As P but display command to to be executed. 
As PP but wait for carriage return before executing. 
As P but return to TCL after execution. 
Reset input buffer. 
Reset output buffer. 
Position input buffer pointer. 
Select primary input buffer. 
Select secondary input buffer. 
Stack on, select secondary output buffer. 
Stack off, select primary output buffer. 
Terminal output. 
User exit. 
Return to calling Proc, or TCL if none. 
Add n to parameter in current input buffer. 
Subtract n from parameter in current input buffer. 
Chain to another Proc. 
Local subroutine at label n. 
External subroutine Proc call. 

Proc Command Summary 171 

APPENDIX 4 - PROC COMMAND SUMMARY 

This is a summary of commands available with the Proc job control 
language. Commands suffixed by " have been discussed in the text. 

Command 

A* 

B 
BO 
C * 
D 

F 

FO 

G or GO 
H* 
IF * 
IH 
IP * 
IS 
IT 
0* 
P * 
PH 

PP 
PW 
PX 
RI 
RO 
S * 
SP 
SS 
STON * 
STOFF * 
T * 
U 
X* 
+n 
-n 
(file proc) * 
[] n * 
[file proc] * 

Description 

Move data from the currently active input buffer to the 
currently active output buffer. 
Back up the input buffer pointer by one parameter. 
Back up the output buffer pointer by one parameter. 
Comment. 
Display currently active input buffer values on the ter­
minal. 
Move currently active input buffer pointer forward one 
parameter. 
Move currently active output buffer pointer forward 
one parameter. 
Goto statement label. 
Move data into output buffer. 
Conditional execution of a Proc command. 
Move data into input buffer. 
Input to currently active input buffer. 
Input to secondary input buffer. 
Input from tape to primary input buffer. 
Output data to terminal. 
Execute command held in the output buffers. 
As P but suppress all output generated by the executing 
process. 
As P but display command to to be executed. 
As PP but wait for carriage return before executing. 
As P but return to TCL after execution. 
Reset input buffer. 
Reset output buffer. 
Position input buffer pointer. 
Select primary input buffer. 
Select secondary input buffer. 
Stack on, select secondary output buffer. 
Stack off, select primary output buffer. 
Terminal output. 
User exit. 
Return to calling Proc, or TCL if none. 
Add n to parameter in current input buffer. 
Subtract n from parameter in current input buffer. 
Chain to another Proc. 
Local subroutine at label n. 
External subroutine Proc call. 



172 Appendix 5 

APPENDIX 5 - THE PICK COMMUNITY 

The following is a list of the main hardware suppliers who together form 
the Pick community. 

Company 

Altos Computer Systems 
Applied Digital 
Data Systems (ADDS) 
Archford Computers 
Aston Technology 
C.Itoh Electronics 
Cosmos 

Datamedia Corporation 

Electronique Serpe 
Dassault 
Fujitsu Espagne 
Fujitsu Micro­
electronics Inc. 
General Automation Inc. 
IBC Technologies Inc. 
Icon Systems & 
Software Inc. 
Information Systems 
(CDI) 
Intertechnique 

McDonnell Douglas 
Information Systems 

Nixdorf Computer 
Pertec Computer 
Corporation 
Pick Systems 

Prime Computer 

Standard Telephones 
and Cables (STC) Pty 

Machine Status 

Altos 586-986 3068 Pick licensee. 
ADDS Mentor series Pick licensee. 

Pinnacle/Excalibur Pick licensee. 
Crystal Excel Pick licensee. 
CIE 680 series. Pick licensee. 
IBM PC and lookalikes "Revelation" 
Some MS-DOS generics Pick lookalike. 

(software only) 
Datamedia 932 Pick licensee. 
ICL Clan 
M-68000 Pick licensee. 

80186 Pick licensee. 
Fujitsu System 2000 Pick licensee. 

GA Zebra Pick licensee. 
M-68010 Pick licensee. 
Sanyo MPS 0202 Pick licensee. 

IBM Series 1 Pick licensee. 
IBM PC 5051 
IN-500 Pick licensee. 
IN-5000 
Reality Reality OIS 
SequoialSequel (originally written 
Spirit by Dick Pick.) 
Nixdorf 8890 VM Pick licensee. 
Pertec 4200 Pick licensee. 
Crystal 
IBM PC-XT Pick on the PC 
IBM PC-AT (software only) 
PC-386 
Many PC lookalikes. 
Prime 50 series "Information" 

Pick lookalike. 
M-68000 Pick licensee. 
CCI mainframe 

172 Appendix 5 

APPENDIX 5 - THE PICK COMMUNITY 

The following is a list of the main hardware suppliers who together form 
the Pick community. 

Company 

Altos Computer Systems 
Applied Digital 
Data Systems (ADDS) 
Archford Computers 
Aston Technology 
C. Itoh Electronics 
Cosmos 

Datamedia Corporation 

Electronique Serpe 
Dassault 

Fujitsu Espagne 
Fujitsu Micro­
electronics Inc. 
General Automation Inc. 
IBC Technologies Inc. 
Icon Systems & 
Software Inc. 
Information Systems 
(CDI) 
Intertechnique 

McDonnell Douglas 
Information Systems 

Nixdorf Computer 
Pertec Computer 
Corporation 
Pick Systems 

Prime Computer 

Standard Telephones 
and Cables (STC) Pty 

Machine Status 

Altos 586-986 3068 Pick licensee. 
ADDS Mentor series Pick licensee. 

Pinnacle/Excalibur Pick licensee. 
Crystal Excel Pick licensee. 
CIE 680 series. Pick licensee. 
IBM PC and lookalikes "Revelation" 
Some MS-DOS generics Pick lookalike. 

(software only) 
Datamedia 932 Pick licensee. 
ICL Clan 
M-68000 Pick licensee. 

80186 Pick licensee. 
Fujitsu System 2000 Pick licensee. 

GA Zebra Pick licensee. 
M-680l0 Pick licensee. 
Sanyo MPS 0202 Pick licensee. 

IBM Series 1 Pick licensee. 
IBM PC 5051 
IN-500 Pick licensee. 
IN-5000 

Reality Reality OIS 
SequoialSequel (originally written 
Spirit by Dick Pick.) 
Nixdorf 8890 YM Pick licensee. 
Pertec 4200 Pick licensee. 
Crystal 
IBM PC-XT Pick on the PC 
IBM PC-AT (software only) 
PC-386 
Many PC lookalikes. 
Prime 50 series "Information" 

Pick lookalike. 
M-68000 Pick licensee. 
CCI mainframe 



The Pick Community 173 

Systems Management Inc. IBM 30xx Pick licensee. 
IBM CS 9000 
Some compatible VM 
mainframes. 

Tau Engineering TAU M-68000 Pick licensee. 
The Ultimate Corp. Honeywell Level 6 Pick licensee. 

DEC LSI-ll 
DEC-VAX 
IBM 43xx 

V Mark AT&T Unix generics "UniVerse" 
Pick lookalike. 

Wicat Computer Pty. Wicat M-68000 Pick licensee. 
X Mark Turbo Tower Pick licensee. 

The Pick Community 173 

Systems Management Inc. IBM 30xx Pick licensee. 
IBM CS 9000 
Some compatible VM 
mainframes. 

Tau Engineering TAU M-68000 Pick licensee. 
The Ultimate Corp. Honeywell Level 6 Pick licensee. 

DEC LSI-ll 
DEC-VAX 
IBM 43xx 

V Mark AT&T Unix generics "UniVerse" 
Pick lookalike. 

Wi cat Computer Pty. Wicat M-68000 Pick licensee. 
X Mark Turbo Tower Pick licensee. 



174 Appendix 6 

APPENDIX 6 - TRADEMARKS 

Within this book many references are made to words which are 
trademarks. These are listed below. This list is believed to be accurate. 
Should it be necessary, any appropriate corrections or omissions will be 
included in future editions. 

Access 
Altos 
DEC 
IBM 
IBM PC 
Inform 
Intel 
Mentor 
Pick 
Pick Basic 
Prime 
Prime Information 
Reality 
Sequoia 
Sequel 
Revelation 
TRW 
Ultimate 
Unix 
Vulture 
Xenix 
Zebra 

Pick Systems. 
Altos Computer Systems. 
Digital Equipment Company 
International Business Machines Corporation. 
International Business Machines Corporation. 
Prime Computer Inc. 
Intel Corporation. 
Applied Digital Data Systems Inc. 
Pick Systems. 
Pick Systems 
Prime Computer Inc. 
Prime Computer Inc. 
McDonnell Douglas Computer Systems Inc. 
McDonnell Douglas Computer Systems Inc. 
McDonnell Douglas Computer Systems Inc. 
Cosmos Inc. 
TRW Corporation. 
The Ultimate Corporation. 
Bell Laboratories. 
Pick Systems. 
Microsoft Corporation. 
General Automation Inc. 

174 Appendix 6 

APPENDIX 6 - TRADEMARKS 

Within this book many references are made to words which are 
trademarks. These are listed below. This list is believed to be accurate. 
Should it be necessary, any appropriate corrections or omissions will be 
included in future editions. 

Access 
Altos 
DEC 
IBM 
IBM PC 
Inform 
Intel 
Mentor 
Pick 
Pick Basic 
Prime 
Prime Information 
Reality 
Sequoia 
Sequel 
Revelation 
TRW 
Ultimate 
Unix 
Vulture 
Xenix 
Zebra 

Pick Systems. 
Altos Computer Systems. 
Digital Equipment Company 
International Business Machines Corporation. 
International Business Machines Corporation. 
Prime Computer Inc. 
Intel Corporation. 
Applied Digital Data Systems Inc. 
Pick Systems. 
Pick Systems 
Prime Computer Inc. 
Prime Computer Inc. 
McDonnell Douglas Computer Systems Inc. 
McDonnell Douglas Computer Systems Inc. 
McDonnell Douglas Computer Systems Inc. 
Cosmos Inc. 
TRW Corporation. 
The Ultimate Corporation. 
Bell Laboratories. 
Pick Systems. 
Microsoft Corporation. 
General Automation Inc. 



GLOSSARY 

account 

algorithm 
array 
ASCII 

attribute 

attribute mark 

BASIC 

bootstrap 
byte 
checksum 

coldstart 

concatenate 
contiguous 

D pointer 

data 
database 

default 
dictionary 

Glossary 175 

1. A user name. 2. A collection of logically associated 
files. 
A set of rules for solving a problem. 
A set of data identified by a single name. 
An acronym for American Standard Code for Informa­
tion Interchange, a computer code for representing 
alphanumeric characters. 
A field of data within a Pick record that may be further 
subdivided into values and sub-values. 
The character which Pick uses to separate attributes, 
ASCII character 254. 
An abbreviation for '"Beginners All Purpose Symbolic 
Instruction Code" - A high level programming lan­
guage now very popular on micros. Pick BASIC 'has 
many special facilities in relation to the Pick database 
which make it much more powerful than ordinary 
BASICs. 
The process of starting a computer. 
A character of data. 
A method of data verification where a calculation is 
carried out on the data and the result is compared with 
the result, or checksum, that is already stored on the 
computer. 
The process which takes place immediately after a Pick 
computer has been bootstrapped. Usually this checks 
the integrity of the operating system, starts the system 
printers and sets the terminal drivers. 
Join together. 
Physically adjoining. Contiguous frames are disk 
frames which are physically next to each other on the 
disk. 
A record found in a dictionary which defines a file by 
pointing at the absolute frame address at which the file 
begins. 
Information of any type. 
A collection of data stored in an organised manner so 
that the data may be stored and retrieved easily. 
The action taken in lieu of any other instruction. 
A file which holds records that define the structure of 
data held on a data file. 

GLOSSARY 

account 

algorithm 
array 
ASCII 

attribute 

attribute mark 

BASIC 

bootstrap 
byte 
checksum 

coldstart 

concatenate 
contiguous 

D pointer 

data 
database 

default 
dictionary 

Glossary 175 

l. A user name. 2. A collection of logically associated 
files. 
A set of rules for solving a problem. 
A set of data identified by a single name. 
An acronym for American Standard Code for Informa­
tion Interchange, a computer code for representing 
alphanumeric characters. 
A field of data within a Pick record that may be further 
subdivided into values and sub-values. 
The character which Pick uses to separate attributes, 
ASCII character 254. 
An abbreviation for "Beginners All Purpose Symbolic 
Instruction Code" - A high level programming lan­
guage now very popular on micros. Pick BASIC has 
many special facilities in relation to the Pick database 
which make it much more powerful than ordinary 
BASICs. 
The process of starting a computer. 
A character of data. 
A method of data verification where a calculation is 
carried out on the data and the result is compared with 
the result, or checksum, that is already stored on the 
computer. 
The process which takes place immediately after a Pick 
computer has been bootstrapped. Usually this checks 
the integrity of the operating system, starts the system 
printers and sets the terminal drivers. 
Join together. 
Physically adjoining. Contiguous frames are disk 
frames which are physically next to each other on the 
disk. 
A record found in a dictionary which defines a file by 
pointing at the absolute frame address at which the file 
begins. 
Information of any type. 
A collection of data stored in an organised manner so 
that the data may be stored and retrieved easily. 
The action taken in lieu of any other instruction. 
A file which holds records that define the structure of 
data held on a data file. 



176 

dynamic array 

EBCDIC 

field 
file 
hardware 

hexadecimal 

hold file 
item 
item-id 

justification 

Kbyte 

key 
logon 

logoff 

master dictionary 

modifier 

modulo 

operating system 

option 

password 

port 

program 

Glossary 

A data structure available in Pick BASIC which exactly 
reflects the structure of records on the database. 
An acronym for Extended Binary-Coded Decimal-In­
terchange Code. A computer code for representing 
alphanumeric characters. 
A single piece of data, e.g. the name of a customer. 

A collection of logically associated records. 
The computer and any associated peripheral equip­
ment. 
A system of counting in sixteens very often used by 
computer people because each digit in hexadecimal 
notation (0-9 and then A-F) can represent four binary 
digits (binary being a system of counting in twos which 
is used by computers). 
A spooler file stored on the disk. 
A data record. 

(Item identifier). The unique piece of data which dis­
tinguishes a record in a file from all other records in the 
same file. Often called a record key. 
The method used to format data on output by lining up 
to the right or left. 
1024 characters. 

1. An item identifier. 2. (Sort key) Data to be sorted. 
The process by which a user enters a multi-user compu­
ter system. 
The process by which a user leaves a multi-user compu­
ter system. 
A file which holds records that: 1. Define all the files 
accessible from a particular account. 2. Define the 
vocabulary open to the users of a particular account. 
In Access, a word which modifies the meaning of an 
Access sentence. 
1. The number of groups in a Pick file. 2. The number 
used as a divisor in the hashing algorithm which is used 
to retrieve a record from a Pick file. 
Software which controls the use of the central proces­
sing unit and any peripheral devices. 
In Access, a single character code surrounded by brack­
ets which may be used instead of a modifier. 
A word which allows access to an account or allows a 
protected process to begin. 
The socket on the computer into which the wire from a 
user's terminal is plugged. 
A sequence of precise instructions which specify an 
algorithm. 

176 

dynamic array 

EBCDIC 

field 

file 
hardware 

hexadecimal 

hold file 

item 
item-id 

justification 

Kbyte 

key 

logon 

logoff 

master dictionary 

modifier 

modulo 

operating system 

option 

password 

port 

program 

Glossary 

A data structure available in Pick BASIC which exactly 
reflects the structure of records on the database. 

An acronym for Extended Binary-Coded Decimal-In­
terchange Code. A computer code for representing 
alphanumeric characters. 

A single piece of data, e.g. the name of a customer. 

A collection of logically associated records. 

The computer and any associated peripheral equip­
ment. 

A system of counting in sixteens very often used by 
computer people because each digit in hexadecimal 
notation (0-9 and then A-F) can represent four binary 
digits (binary being a system of counting in twos which 
is used by computers). 

A spooler file stored on the disk. 

A data record. 

(Item identifier). The unique piece of data which dis­
tinguishes a record in a file from all other records in the 
same file. Often called a record key. 

The method used to format data on output by lining up 
to the right or left. 

1024 characters. 

I. An item identifier. 2. (Sort key) Data to be sorted. 

The process by which a user enters a multi-user compu­
ter system. 

The process by which a user leaves a multi-user compu­
ter system. 

A file which holds records that: \. Define all the files 
accessible from a particular account. 2. Define the 
vocabulary open to the users of a particular account. 

In Access, a word which modifies the meaning of an 
Access sentence. 
\. The number of groups in a Pick file. 2. The number 
used as a divisor in the hashing algorithm which is used 
to retrieve a record from a Pick file. 

Software which controls the use of the central proces­
sing unit and any peripheral devices. 

In Access, a single character code surrounded by brack­
ets which may be used instead of a modifier. 
A word which allows access to an account or allows a 
protected process to begin. 
The socket on the computer into which the wire from a 
user's terminal is plugged. 
A sequence of precise instructions which specify an 
algorithm. 



Q pointer 

record 

record key 

relational database 

separation 

software 

spool 

sub-value 

sub-value mark 

TCL 

terminal 

value 

value mark 

Glossary 177 

A record held in a master dicitionary which allows a file 
to be accessed from one account while being physically 
stored in another. 

A logical entity in a file. e.g. The data belonging to 
a single customer in a file of customers data. 

Item identifier. 

A database organised in a manner which allows access 
to any piece of data via a unique key and which can 
carry out certain tasks (Join. Project and Select). 

The number of frames of disk space allocated to a 
single group in a file. 

The programs and routines which control the operation 
of a computer. 

An abbreviation for "Simultaneous Production of Out­
put Off Line" - To store and queue output before it is 
sent to a printer or tape. 

The second sub-division of a Pick data record. 

The character that Pick uses to separate sub-values. 
ASCII character 252. 

Terminal Command Level or Terminal Command Lan­
guage. 
Any input/output device used to communicate with a 
computer. 
The first subdivision of a Pick data record. Multiple 
values might be used to hold the individual lines of the 
address of a customer. 

The character that Pick uses to separate values. ASCII 
character 253. 

o pointer 

record 

record key 

relational database 

separation 

software 

spool 

sub-value 

sub-value mark 

TCL 

terminal 

value 

value mark 

Glossary 177 

A record held in a master dicitionary which allows a file 
to be accessed from one account while heing physically 
stored in another. 

A logical entity in a file. e.g. The data helonging to 
a single customer in a file of customers data. 

Item identifier. 

A database organised in a manner which allows access 
to any piece of data via a unique key and which can 
carry out certain tasks (Join, Project and Select). 

The number of frames of disk space allocated to a 
single group in a file. 

The programs and routines which control the operation 
of a computer. 

An ahbreviation for "Simultaneous Production of Out­
put Off Line" - To store and queue output hefore it is 
sent to a printer or tape. 

The second sub-division of a Pick data record. 

The character that Pick uses to separate sub-values, 
ASCII character 252. 

Terminal Command Level or Terminal Command Lan­
guage. 

Any input/output device used to communicate with a 
computer. 

The first subdivision of a Pick data record. Multiple 
values might he used to hold the individual lines of the 
address of a customer. 

The character that Pick uses to separate values, ASCII 
character 253. 



Index 

# 12 
'I" inch tape 10 I 
'I. inch tape 10 I 
:STARTSPOOLER 73 
< 12 
< in Proc 137 
<= 12 

12 
> 12 
>= 12 
(II function 1l3, 117 

A correlative 55, 59 
A Proc command 13X 
ABS section ')7 
ACC ,)),150 
Access 5,7 
access protection 93 
account 2,27,98 
account justification 147 
ACCOUNT-RESTORE 99 
ACCOUNT-SAVE 80,9X,152 
across the page format 47 
addresses 30 
AFTER 12 
alignment process 63 
alphabetical sort 46 
ambiguous 71 
American date format 49 
AND 13 
application generator 153 
archiving ')7 
arithmetic correlatives 55 
arithmetic precedence 56 
array 016 
assembler language 88 
associated reports 65 
attaching tapes 101 
attribute 26,30,44 
attribute mark 36,86 

backward link X6, X7 
BASIC 103 
batch process 142 
baud rate 157 
BEFORE 12 
BLOCK-CONVERT 14') 
BLOCK-PRINT 149 

178 

brackets 56 
break key 127 
BREAK-ON 19,20 
BY 16 
BY-DSND 17 

C command (editor) 37 
C compiler 164 
C correlative )X 

Coption H 
C Proc command 136 
C.Itoh 163 
calculating 55 
CALL 131 
cartridge tape 101 
CASE 119 
case sensitive 2 
CATALOG 104 
centring headings 19 
CHAIN 132 
character conversions 51 
CHARGES 151 
checksum 92 
chronological sort 48 
CLEAR-BASIC-LOCKS 127 
CLEAR-FILE 95,151,155 
COL-HDR-SUPP 8 
coldstart 147,158 
column heading 45 
column width 45,46 
columnar format 112 
commas between OOOs 50 
comments 136 
COMMON 124,131,132,134 
compilation error 104 
COMPILE 103 
compiling programs 103 
computed GOTO 120 
Computer Machinery Company 161 
concatenate 58 
concatenation 142 
condition 118 
conditional construct 117 
connectives 13 
constants 106 
control option 117 
control-X 7 
conversions 4,49 

Index 

# 12 
1/2 inch tape 101 
1!. inch tape 101 
:ST ARTSPOOLER 73 
< 12 
< in Proc 137 
<= 12 

12 
> 12 
>= 12 
(0 function 113. 117 

A correlative 55.59 
A Proc command 13H 
ABS section 97 
ACC 95. ISO 
Access 5.7 
access protection 93 
account 2.27. 9H 
account justification 147 
ACCOUNT-RESTORE 99 
ACCOUNT-SAVE 80.98.152 
across the page format 47 
addresses 30 
AFTER 12 
alignment process 63 
alphabetical sort 46 
ambiguous 71 
American date format 49 
AND 13 
application generator 153 
archiving 97 
arithmetic correlatives 55 
arithmetic precedence 56 
array 016 
assembler language 88 
associated reports 65 
attaching tapes 10 I 
attribute 26.30.44 
attribute mark 36.86 

backward link H6. H7 
BASIC 103 
batch process 142 
baud rate 157 
BEFORE 12 
BLOCK-CONVERT 149 
BLOCK-PRINT 149 

178 

brackets 56 
break key 127 
BREAK-ON 19.20 
BY 16 
BY-DSND 17 

C command (editor) 37 
C compiler 164 
C correlative 58 
C option 8 
C Proc command 136 
C.Itoh 163 
calculating 55 
CALL 131 
cartridge tape 101 
CASE 119 
case sensitive 2 
CATALOG 104 
centring headings 19 
CHAIN 132 
character conversions 51 
CHARGES 151 
checksum 92 
chronological sort 48 
CLEAR-BASIC-LOCKS 127 
CLEAR-FILE 95,151,155 
COL-HDR-SUPP 8 
coldstart 147,158 
column heading 45 
column width 45,46 
columnar format 112 
commas between OOOs 50 
comments 136 
COMMON 124, 131. 132, 134 
compilation error 104 
COMPILE 103 
compiling programs 103 
computed GOTO 120 
Computer Machinery Company 161 
concatenate 58 
concatenation 142 
condition 118 
conditional construct 117 
connectives 13 
constants 106 
control option 117 
control-X 7 
conversions 4,49 



COPY 155 
correlatives 48,51 
Cosmos 102 
COUNT 7,2:1 
CREATE-ACCOuNT 21-:,1)2 
CREATE-FILE 2l), n 82 
CREATE-PFILE 84 
creating accounts 27 
creating dictionaries 44 
creating files 28,77 
creating programs 103 
crossing frame limits 159 
CRT 116 
CURSOR 152 
cursor control (Proc) 142 
cursor positioning 113 

D option 8 
DATA 133 
database ) 
database hierarchy 20 
database structure 25 
database updating 31 
date 48,49 
dates in headings 1l) 
day number 49 
DBL-SPC 8 
deadly embrace 129 
DEC 162 
decimal places 50 
default report 7,47 
DELETE 127 
DELETE function 108 
DELETE-ACCOUNT 155 
DELETE-FILE 155 
deleting records 127 
deleting spooler 08 
descending sort 17 
DET-SUPP 8,20 
Devcom 162 
dictionary 26,29,43, 124 
dictionary structure 44 
DIM 106 
directing output 64, 115 
disk frame 69,79 
disk space 26,65,81 
DO loops 122 
double spaced 9 
down the page format 47 
DUMP 86 
DX account 97 
DX files 84 
DY files 84 
dynamic array 106, 125, 133 

ED 31 
editing spool files 66 

Index 

editor 31, 12K 
editor butlers :14 
efficiency 1:13 
eject pages 63 
English 5 
enquiry language 7 
ENTER U2 
EQ 12 
EQUATE 133 
ERRMSG 148 
error conditions 140 
error message 2, 104, 148 
Espagnol 5 
Evolution 162 
EX 32 
EXECUTE 145 
executing programs 104 
exit statement 142 
exiting the editor 32 
EXTRACT function lOll 

F command (editor) 34 
F correlative 50 
F option 9S 
F-OPEN 144 
F-READ 144 
F-WRITE 144 
FI command (editor) 40 
field 5,20,44 
FIL cditor command 84 
file 5,7,31 
file buffer 144 
file defining item 7K 
file handling 155 
file I/O 123 
file size 29, 79 
file size reallocation 81 
file statistics SlL l)l) 
FILE-SA VE SO,97 
filing 40 
first normal form 77 
floppy disk 10 1 
FOOTING 8, 18, 116 
FOR/NEXT 121 
format mask 50, 114 
formats 47 
formatting 112 
forward link 86,87 
forward link zero 159 
frame 79,85 
Fran"ais 5 
Fujitsu 163 

G command (editor) 35 
G correlative 57 
G Proc command 139 
GE 12 

17lJ 

COPY ISS 
correlatives 4·X. S I 
Cosmos 162 
COUNT 7.23 
CREATE-ACCOUNT 28.IS2 
CREA TE-FILE 2,). 77. 82 
CREATE-PFILE X4 
creating accounts 27 
creating dictionaries 44 
creating files 28.77 
creating programs 103 
crossing frame limits 15') 
CRT 116 
CURSOR IS2 
cursor control (Proc) 142 
cursor positioning 113 

D option X 
DATA 133 
database S 
database hierarchy 26 
database structure 25 
database updating 31 
date 48.4') 
dates in headings I') 
day number 4') 

DBL-SPC X 
deadly embrace 12') 
DEC 162 
decimal places 50 
default report 7.47 
DELETE 127 
DELETE function lOX 
DELETE-ACCOUNT ISS 
DELETE-FILE 155 
deleting records 127 
deleting spooler 6X 
descending sort 17 
DET-SUPP 8.20 
Devcom 162 
dictionary 26,29,43, 124 
dictionary structure 44 
DIM \06 
directing output 64, 115 
disk frame 69,79 
disk space 26,65,81 
DO loops 122 
double spaced 9 
down the page format 47 
DUMP 86 
DX account 97 
DX files 84 
DY files 84 
dynamic array \06, 125, 133 

ED 31 
editing spool files 66 

Index 

editor 31. 12~ 
editor buffers 34 
efficiency 133 
eject pages 63 
English :; 
enq ui ry language 7 
ENTER 132 
EQ 12 
EQUATE LB 
ERRMSG 148 
error conditions 140 
error message 2. 104. 14~ 
Espagnol :; 
Evolution 162 
EX 32 
EXECUTE 145 
executing programs 104 
exit statement 142 
exiting the editor 32 
EXTRACT function 109 

Fcommand (editor) 34 
F correlative S6 
F option ')~ 

F-OPEN 144 
F-READ 144 
F-WRITE 144 
FI command (editor) 40 
field S. 26.44 
FIL editor command 84 
file S.7.31 
file buffer 144 
file defining item 7~ 
file handling 155 
file 110 123 
file size 2,). 7') 
file size reallocation 81 
file statistics ~O. ')') 
FILE-SA VE 80. ')7 
filing 40 
first normal form 77 
floppy disk 10 I 
FOOTING 8, 18, 116 
FOR/NEXT 121 
format mask 50, 114 
formats 47 
formatting 112 
forward link 86. 87 
forward link zero 159 
frame 79,85 
Fran~ais 5 
Fujitsu 163 

G command (editor) 35 
G correlative 57 
G Proc command 139 
GE 12 

179 



180 

GFE 87,99 
GIRLS 161 
GOSUB 120 
GOTO 120 
goto (editor) 35 
graphics 152 
group extraction 57 
group format error 87,88 
group locking 128 
group locking installations 128 
GT 12 

H option 8 
H Proc command 136 
hardware 1 
Harris Trust 163 
hashing algorithm HO 
HDR-SUPP 8 
HEADING H, 18, 116 
hold file 61,64 
Honeywell 162 
housekeeping 95 

I command (editor) 33 
Ioption 1\ 
IBM 4300 163 
IBM PC 114,162 
JD-SUPP 8, 10 
IF 12,117 
IF Proc command 139 
implied decimal places 50 
indirect call I:l2 
Inform 5 
Information 162 
INPUT III 
input 139 
INPUTERR III 
INPUTTRAP 111 
INSERT function IOH 
inserting (editor) 33 
inter-job pages 70 
internal subroutine (Proc) 142 
Intertechni,-!ue 161 
IP Proc command 139 
item identifier 31 
item-id 5,25,31,67 

JET-MODES 152 
job control language 135 
join 29,48,51. 77 
justification 45, 114 

key 5,10,15,25,31,52 
kcy (sort) 16 

L command (editor) 32 
L correlative 57 

Index 

labeh 24 
LE 12 
left chevron I:l7 
left justification 10,46,50 
length 57 
line editor 31 
line wrapping 46 
linked frame 86 
LIST 7 
LIST-LABEL 24 
LISTABS 71 
LISTDICT 2<) 
LISTFILES 2<) 
listing (editor) 32 
LISTPEQS 68 
LISTPROCS 29 
LISTPTR 70 
LISTU 95, 150, 152 
LISTVERBS 29 
LOCATE function 109,.121 
locating data 38 
LOCK 129 
locking 126,128 
logging off 3, 149, 157 
logging on 2,27,149, 157 
LOGOFF 157 
LOGON 2, 147, 157 
looka1ike 162 
LOOP 122 
looping 121 
LPTR 8 
LT 12 

mail merge 23 
masked decimal 50 
master dictionary 21-:,43, 141, 141\, 152 
MATREAD 12().125 
MATREADU 126 
MATWRITE 127 
maximum record size 26 
Me conversion 51 
MD 28,14H 
MD conversion 50 
ME command (editor) 39 
merging data 39 
messages 157 
Microdata 161 
ML conversion 50 
modifier 1-: 
modulo 77 
moving print files 72 
MR conversion 50 
MSG 157 
MT conversion 51 
multi line IF 118 
multi-user 2 
multi-value 30,33,54,56 

180 

GFE 87,99 
GIRLS 161 
GOSUB 120 
GOTO 120 
goto (editor) 35 
graphics 152 
group extraction 57 
group format error 87, 88 
group locking 128 
group locking installations 128 
GT 12 

H option 8 
H Proc command 136 
hardware 1 
Harris Trust 163 
hashing algorithm 80 
HDR-SUPP 8 
HEADING 8, 18, 116 
hold file 61,64 
Honeywell 162 
housekeeping 95 

I command (editor) 33 
loption 8 
IBM 4300 163 
IBM PC 114, 162 
JD-SUPP 8, 10 
IF 12, 117 
IF Proc command 139 
implied decimal places 50 
indirect call 132 
Inform 5 
Information 162 
INPUT 111 
input 139 
INPUTERR 111 
INPUTTRAP 111 
INSERT function 108 
inserting (editor) 33 
inter-job pages 70 
internal subroutine (Proc) 142 
Intertechnique 161 
IP Proc command 139 
item identifier 31 
item-id 5,25,31,67 

JET-MODES 152 
job control language 135 
join 29,48,51,77 
justification 45, 114 

key 5,10,15,25,31,52 
key (sort) 16 

L command (editor) 32 
L correlative 57 

Index 

labels 24 
LE 12 
left chevron 137 
left justification 10,46,50 
length 57 
line editor 31 
line wrapping 46 
linked frame 86 
LIST 7 
LIST-LABEL 24 
LISTABS 71 
LISTDICT 29 
LISTFILES 29 
listing (editor) 32 
LISTPEQS 68 
LISTPROCS 29 
LISTPTR 70 
LISTU 95,150, 152 
LISTVERBS 29 
LOCATE function 109,.121 
locating data 38 
LOCK 129 
locking 126, 128 
logging off 3, 149, 157 
logging on 2.27,149, 157 
LOGOFF 157 
LOGON 2,147,157 
lookalike 162 
LOOP 122 
looping 121 
LPTR 8 
LT 12 

mail merge 23 
masked decimal 50 
master dictionary 28,43, 141, 148, 152 
MATREAD 120,125 
MATREADU 126 
MATWRITE 127 
maximum record size 26 
MC conversion 51 
MD 28,148 
MD conversion 50 
ME command (editor) 39 
merging data 39 
messages 157 
Microdata 161 
ML conversion 50 
modifier 8 
modulo 77 
moving print files 72 
MR conversion 50 
MSG 157 
MT conversion 51 
multi line IF 118 
multi-user 2 
multi-value 30,33,54,56 



multi-valued data 10 
multiple correlatives 'ilJ 
multiple IF 119 
multiple line headings 19 

r-..; option X 
NE 12 
negative 50 
NEW ITEM 32 
New Proc 143 
NEWAC 152 
nine track tape I (II 
Nippon-go h 
Nixdorl 163 
NO 12 
NOPAGE X 
normallorm 77 
NOT 12 
null 12 
null data 5X 
null file variahle 125 
null string 35 
numerical sort 46 

o Proc command I YJ 
ohjeet code 103 
OFF 3 
ONLY 1\ 
OPEN 120, 124 
Open A rchitecture 163 
opening files 124 
operating system I, 153 
options X, 64, lJX, 15R 
OR 13 
other Pick spoolers 74 
output 61, 1.19 
output huffer 1.\7 
output modifier K 
output queue 70 
overtlow space R 1 

P command (editor) 41 
P correlative 58 
P option K 
P Proc command 137 
PAGE 116 
page numher in headings 
paragraph 145 
parallel printer 63 
parameters 131 
parity errors 100 
password 3,91, 152 
pattern match I~·() 

patterns 57 
patterns of characters 14 
PC/DOS 162 
PERFORM 145 

19 

Index 

phantom GFE K7 
Pick BASIC 103 
Pick Systems 162 
Pinnacle 163 
pointer file K4, 103 
positioning input huffer 13K 
positive 50 
POYF K1 
power up 15K 
PO command I Yi 
PON 143 
precedence 56 
presckctcd default report 
presto red commands 41 
prc\Tllting access 93 
primarY input huffer 1.\5, 13H 
primary output huffer 136 
PRINT II L 112 
print file status 6K 
PRINT-ERR 14lJ 
printer 1\,61, ISh 
printer (deleting) n 
printer ahor! 72 
PRINTER CLOSE 116 
printer numhcr 
PRINTER OFF 
PRINTER ON 

h2,70 
II." 

lIS 
printer status 70 
printer tvpc h3,70 
printmg h7 
printing laheis 24 
printing process 72 
privilege level 147 
privileges 94 
Proc 135 
Proc hranch 139 
Proc suhroutine 141 
process Proc command 
PROCLIB 152 
programming structure 
project 77 
prompt character 3 

o pointers H3, 92, 147 
OFILE 1'(\ 
quarter number 49 
questions 10 
quotes in headings 19 

R command (editor) 35 
R correlative 57 
R/List 5 
RR4 163 
ranges 57 
READ 117, 120, 125 
reading data 125 
READNEXT 121 

137 

117 

181 

multi-valued data 10 
multiplt: correlatives 59 
multiple IF 119 
multiple line headings 19 

N option ~ 

NE 12 
negative 50 
NEW ITEM 32 
New Proc I·B 
NEWAC 152 
nine track tape 10 I 
Nippon-go 0 
Nixdorf 103 
NO 12 
NOPAGE ~ 

normal form 77 
NOT 12 
null 12 
null data 5~ 
null file variahle 125 
null string 35 
numerical sort '+0 

o Proc command 139 
ohject code 103 
OFF 3 
ONLY ~ 

OPEN 120. 12.+ 
Open Architecture 103 
opening files 124 
operating system I. 153 
options H. M. 9H. 15H 
OR 13 
other Pick spoolers 74 
output 0 I. 139 
output buffer 137 
output modifier 8 
output queue 70 
overflow space 81 

P command (editor) 41 
P correlative 58 
P option 8 
P Proc command 137 
PAGE 116 
page numher in headings 
paragraph 145 
parallel printer 03 
parameters 131 
parity errors 100 
password 3.91. 152 
pattern match 140 
patterns 57 
patterns of characters 14 
PC/DOS 102 
PERFORM 145 

19 

Index 

phantom GFE K7 
Pick BASIC 103 
Pick Systems 102 
Pinnacle 103 
pointer file ~.+. 103 
positioning input huffer 1311 
positive 50 
POYF ~1 
power up 15K 
PO command 135 
PON 1.+3 
precedence 50 
preselected default report 7 
prestored commands .+ I 
preventing access 93 
primary input huffer 135. 13K 
primary output huffer 136 
PRINT 111. 112 
print filt: status oK 
PRINT-ERR 1.+9 
printer ~. 61. 150 
printer (deleting) TJ 
printer ahort 72 
PRINTER CLOSE 110 
printer numher 
PRINTER OFF 
PRINTER ON 

02. 70 
115 

115 
printer status 70 
printer type 03.70 
printing 67 
printing lahels 2.+ 
printing process 72 
privilt:ge level 1.+7 
privileges 9.+ 
Proc 135 
Proc hranch 139 
Proc subroutine 141 
process Proc command 
PROCLIB 152 
programming structure 
project 77 
prompt character 3 

Q pointers H3. 92. 147 
QFILE 113 
quarter number 49 
questions I () 
quotes in headings 19 

R command (editor) 35 
R correlative 57 
R/List 5 
R84 163 
ranges 57 
READ 117.120.125 
reading data 125 
READNEXT 121 

137 

117 

IHI 



182 

READT 121 
READU 126, 128 
READV 120, 126 
READVU 126 
real array \06, 125 
reallocation of file size 81 
Recall 5 
record 5,30,31 
record identifying field 5 
record length 86 
record locking 126, 128 
record size 26, 80 
recovery procedures 97 
REFORMAT 24 
relational operator 12 
RELEASE 126 
remove spool queue 72 
REPEAT 123 
REPLACE function 109 
replacing data (editor) 35 
report formatting 112 
response times 81 
restart option 94,95 
restore 8L 98, 99 
retrieval key 147 
retrieval lock 92,93 
retrieval time optimisation 80 
Revelation 162 
Reverse Polish 57 
right justification 10,46 
RTN Proc command 142 
RU command (editor) 38 
RUN 104 
running programs \04 
RUNOFF 23,67,158 

S correlative 58,59 
S Proccommand 138 
S-DUMP 23, 100 
saving a file 99 
scaled value 114 
second normal form 77 
secondary output buffer 137 
sectioned reports 19 
security 28,91, 127 
segement mark 86 
SEL-RESTORE 100 
SELECT 7,22,32,77 
select buffer 144 
selecting fields 9 
semaphore lock 129 
separation 77, 80 
serial printer 63 
SET-9 101 
SET-BAUD 157 
SET-CTAPE 101 
SET-FILE 83 

Index 

SET-FLOP 101 
SET-TERM 156 
sharing data files 82 
sharing dictionaries 82 
single level file 29,77 
SNA 164 
software 1 
SORT 7, 15,48 
sort key 16 
SORT-LABEL 24 
sorting 15 
SP-ASSIGN 64 
SP-CLOSE 75 
SP-DELETEPTR 75 
SP-DEQ 75 
SP-EDIT 66 
SP-JOBS 74 
SP-KILL 72 
SP-LIST ASSIGN 75 
SP-LlSTLPTR 75 
SP-LlSTQ 75 
SP-OPEN 75 
SP-ST ARTLPTR 75 
SP-ST A TUS 70 
SP-STOPLPTR 75 
SPOOL 67 
spool queue number 70 
spool queues 62,64,69 
spooler 61, 115 
spooler abort 72 
spooler administration 68 
spooler hang 71 
spooler options 64 
spooler problems 71 
spooler start up 73 
spreadsheets 152 
square brackets 14 
SREFORMAT 24 
SSELECT 7,22,32 
stacked input 133, 137 
starting printers 62 
STARTPTR 62 
STAT-FILE 99 
stopping printers 62,63 
STOPPTR 63 
sub-field extraction 57 
sub-value 26, 30 
SUBROUTINE 131 
subroutine parameters 131 
subroutines 105, 124, 131 
substitution 58 
SUM 7 
summary reports 20 
summations 56 
switching on 158 
synonym logon names 147 
synonyms 10 

182 

READT 121 
READU 126. 128 
READV 120. 126 
READVU 126 
real array 106. 125 
reallocation of file size 81 
Recall 5 
record 5.30.31 
record identifying field 5 
record length 86 
record locking 126. 128 
record size 26. 80 
recovery procedures 97 
REFORMAT 24 
relational operator 12 
RELEASE 126 
remove spool queue 72 
REPEAT 123 
REPLACE function 109 
replacing data (editor) 35 
report formatting 112 
response times 81 
restart option 94.95 
restore 81. 98. 99 
retrieval key 147 
retrieval lock 92.93 
retrieval time optimisation 80 
Revelation 162 
Reverse Polish 57 
right justification 10. 46 
RTN Proc command 142 
RU command (editor) 38 
RUN 104 
running programs 104 
RUNOFF 23.67.158 

S correlative 58.59 
S Proc command 138 
S-DUMP 23. 100 
saving a file 99 
scaled value 114 
second normal form 77 
secondary output buffer 137 
sectioned reports 19 
security 28.91. 127 
segement mark 86 
SEL-RESTORE 100 
SELECT 7.22.32.77 
select buffer 144 
selecting fields 9 
semaphore lock 129 
separation 77. 80 
serial printer 63 
SET-9 101 
SET-BAUD 157 
SET-CTAPE 101 
SET-FILE 83 

Index 

SET-FLOP 101 
SET-TERM 156 
sharing data files 82 
sharing dictionaries 82 
single level file 29.77 
SNA 164 
software 1 
SORT 7.15.48 
sort key 16 
SORT-LABEL 24 
sorting 15 
SP-ASSIGN 64 
SP-CLOSE 75 
SP-DELETEPTR 75 
SP-DEQ 75 
SP-EDIT 66 
SP-JOBS 74 
SP-KILL 72 
SP-LISTASSIGN 75 
SP-LISTLPTR 75 
SP-LISTQ 75 
SP-OPEN 75 
SP-ST ARTLPTR 75 
SP-ST A TUS 70 
SP-STOPLPTR 75 
SPOOL 67 
spool queue number 70 
spool queues 62.64.69 
spooler 61. 115 
spooler abort 72 
spooler administration 68 
spooler hang 71 
spooler options 64 
spooler problems 71 
spooler start up 73 
spreadsheets 152 
square brackets 14 
SREFORMAT 24 
SSELECT 7.22.32 
stacked input 133. 137 
starting printers 62 
STARTPTR 62 
STAT-FILE 99 
stopping printers 62. 63 
STOPPTR 63 
sub-field extraction 57 
sub-value 26.30 
SUBROUTINE 131 
subroutine parameters 131 
subroutines 105. 124. 131 
substitution 58 
SUM 7 
summary reports 20 
summations 56 
switching on 158 
synonym logon names 147 
synonyms 10 



SYSPROG 2.91, 97. 147 
SYSPROG-PL 152 
system console 158 
system debugger 94 
SYSTEM dictionary 92 
system level file 152 
SYSTEM-OBJECT 152 

T correlative 52. 5t\ 
T Proc command 142 
T-ATT 100 
T-BCK IOU 
T-CHK 100 
'I-DET 100 
T-DUMP 23.91) 
T-EDD IOU 
T-FWD toO 
T-LOAD 99 
T-RDLBL toO 
T-READ IOO 
T-REW 100 
T-SPACE 100 
T -UNLOAD toO 
T-WEOF 100 
T-WTLBL 100 
Tao Engineering 163 
tape checking toO 
tape devices 1 () 1 
tape handling 91) 
tape unit 61.64 
TeL 3.1)4 
TERM 113, 116, 156 
terminal 156 
terminal characteristics 156 
terminal command level 3 
terminal control functions 113 
terminal driver 152 
terminal output 142 
text extraction 58 
text justification 46 
text within a sectioned report 22 
third normal form 77 
time 51 
time in headings 19 
top of form 63 
TOTAL 8.20 
totalling fields 20 
transferring Proc control 141 

Index 

translate 51,52 
translation 48 

U conversion 51 
U50BB 95 
Ultimate 162 
underlining totals " 
UNLOCK 129 
unlocking records 126 
UNTIL 122 
up arrow 13 
update facility 95 
update key 147 
update lock 92.93 
updating files 123. 127 
upgrade operating system 153 
user exit 51 
USING x2 

validation 140 
value 26.33 
variables lOS 
verb 7 
verification 15'} 
VERIFY-SYSTEM 159 
vocabulary 28.29 
Vulture 164 

WEOF 121 
WHERE 62.74 
WHILE 123 
Wicat 163 
Wildcard 13.37 
WITH 12 
word processor 152 
WRITE 127 
WRITEV 127 
writing to files 127 

X Proc command 142 
X2S 164 

year 4,} 

zero as null 50 
zero data 58 

13 

183 

SYSPROG 2,91. 97, 147 
SYSPROG-PL 152 
system console 15R 
system debugger 94 
SYSTEM dictionary 92 
system level file 152 
SYSTEM-OBJECT 152 

T correlative 52,5H 
T Proc command 142 
T-ATT 100 
T-BCK 100 
T-CHK 100 
T-DET 100 
T-DUMP 23,99 
T-EDD 100 
T-FWD 100 
T-LOAD 99 
T-RDLBL 100 
T-READ 100 
T-REW 100 
T-SPACE 100 
T-UNLOAD 100 
T-WEOF 100 
T-WTLBL 100 
Tao Engineering 163 
tape checking 100 
tape devices 10 1 
tape handling 99 
tape unit 61,64 
TCL 3,94 
TERM 113, 116, 156 
terminal 156 
terminal characteristics 156 
terminal command level 3 
terminal control functions 113 
terminal driver 152 
terminal output 142 
text extraction 5R 
text justification 46 
text within a sectioned report 22 
third normal form 77 
time 51 
time in headings 19 
top of form 63 
TOTAL 8,20 
totalling fields 20 
transferring Proc control 141 

Index 

translate 51, 52 
translation 4R 

U conversion 51 
U50BB 95 
Ultimate 162 
underlining totals 22 
UNLOCK 129 
unlocking records 126 
UNTIL 122 
up arrow 13 
update facility 95 
update key 147 
update lock 92,93 
updating files 123, 127 
upgrade operating system 153 
user exit 51 
USING H2 

validation 140 
value 26,33 
variables 105 
verb 7 
verification 159 
VERIFY-SYSTEM 159 
vocabulary 2H,29 
Vulture 164 

WEOF 121 
WHERE 62,74 
WHILE 123 
Wicat 163 
Wild card 13,37 
WITH 12 
word processor 152 
WRITE 127 
WRITEV 127 
writing to files 127 

X Proc command 142 
X25 164 

year 49 

zero as null 50 
zero data 58 

13 

183 



• I
1PICK@>forusers

PICK@>{or users is intended as a guide for users and prospective users of the Pick
operating system. It is designed to enable those without specialist knowledge
to interrogate a Pick database and manage a computer running Pick. PICK9{or
users covers the topics of access, the Pick database, the system editor,
dictionaries, the spooler, security, archiving, Pick/Basic and Proc. The text is
illustrated throughout with examples that will be familiar to the businessman,
whether or not he is an existing user.

1
- ~

About the author
Martin Taylor has been a user ofthe Pick operating system since 1979. Following
work with a major Pick hardware distributor he is now the managing director of
his own computer services company. He is the author ofmany business software
packages, provides consultancy services for several large Pick users and gives
training courses on various aspects of the operating system. He is the holder of a
first class honours degree from Leeds University and national and international
periodicals have published his articles and opinions on the Pick operating system
and related fields.

BLACKWELL SCIENTIFIC PUBLICATIO .s LTD
Osney Mead, Oxford OX2 OEL <

8 John Street, London WC1N 2ES
23 Ainslie Place, Edinburgh EH3 6AJ
52 Beacon Street, Boston, Massachusetts 02i'O , . S
667 Lytton Avenue, Palo Alto, California g:4301;'PS"?'~~~~~~<
107 Bar~ ~treet, Carlton, Victoria 3053,Australia

Titles of related interest
Practical Data Communications:
Modems, Networks and Protocols
F. Jennings
1985. 250 pages, 62 illustrations

Essential reading for all interested in data
communications systems, this handbook
describes how communications interfaces,
modems, networks and data link protocols
are used to interconnect computer arid
terminal equipment. It covers in one
volume all the different types of data
communications networks currently used
in t~· - -

Pragmatic Data Analysis
R. Veryard
1984. 96 pages, 28 illustrations

This book introduces the idea of a data
model as a clear way of depicting logical
data structures. Techniques are described
for building a data model by interviewing
the future users M a planned information
system. As a commonsense introduction to
the concepts and techniques of data
analysis, the book will be useful both to
experienced data analysts and to students
as a supplement to,their training in a
.fQI"walmethodology.




