PICK

for users

Martin Taylor

Biackwell Scientific Publications

i\
A
\

PICK™ for users

PICKTM for users

MARTIN TAYLOR

BLACKWELL SCIENTIFIC PUBLICATIONS
OXFORD LONDON EDINBURGH
BOSTON PALO ALTO MELBOURNE

© 1985 by

Blackwell Scientific Publications

Editorial offices:

Osney Mead, Oxford, OX2 0EL

8 John Street, London, WCIN 2ES

23 Ainslie Place, Edinburgh, EH3 6AJ

52 Beacon Street, Boston
Massachusetts 02108, USA

667 Lytton Avenue, Palo Alto
California 94301, USA

107 Barry Street, Carlton,
Victoria 3053, Australia

All rights reserved. No part of this
publication may be reproduced, stored in
aretrieval system, or transmitted, in any
form or by any means, electronic
mechanical, photocopying, recording or
otherwise, without the prior permission of
the copyright owner.

First published 1985
Reprinted with corrections 1986

Phototypeset by
Oxford Computer Typesetting

Printed and bound in
Great Britain at
The Hollen Street Press Ltd

British Library
Cataloguing in Publication Data

Taylor, M.
Pick for users.
1. Pick (Computer operating system)
I. Title
001.64'25 QA76.76.063
ISBN 0-632-01492-X

DISTRIBUTORS

USA and Canada
Blackwell Scientific Publications Inc.
P O Box 50009, Palo Alto
California 94303

Australia
Blackwell Scientific Publications
(Australia) Pty Ltd
107 Barry Street,
Carlton, Victoria 3053

For Jillian

Acknowledgement

The author would like to acknowledge the assistance given by Stuart
Rees of Manchester Polytechnic in the preparation of this book.

vi

Contents

Foreword, ix

Preface, xi

1 Introduction, 1

2 The ACCESS Enquiry Language, 5

3 Introduction to the Pick Database, 25
4 The System Editor, 31

5 Building Dictionaries, 43

6 The Spooler, 61

7 More about the Database, 77

8 Pick and Security, 91

9 Archiving the Database, 97
10 Pick BASIC, 103
11 The PROC Job Control Language, 135
12 Pick’s System Files, 147
13 Other Pick Commands, 155
14 The History and Future of Pick, 161

Appendices

1 Editor Command Summary, 165
2 BASIC Command Summary, 167
3 BASIC Function Summary, 169

4 Proc Command Summary, 171

5 The Pick Community, 172

6 Trademarks, 174

Glossary, 175

Index, 178
vii

Foreword by Pick Systems

Pick Systems has been labouring for many years to produce a computer
operating system which is accessible by users. An operating system
which enables users to utilise a computer without being buried in tech-
nical detail. Pick Systems believe that it has achieved this aim. It is a
source of great satisfaction and a vindication of all of our efforts that this
is being recognised. More computers are launched with the Pick operat-
ing system each year, the press follow our achievements and develop-
ments with increasing interest, conventions and exhibitions are con-
vened which are devoted to the Pick operating system.

Pick is particularly pleased to see the publication of this book which,
like the operating system, is aimed at the users of computers rather than
technicians. Pick thinks that no business considering the purchase of a
computer should fail to consider the Pick operating system and the
information contained within these pages explains why.

Frank Petyak
National Sales Manager
Pick Systems

X

Preface

This is a book about the facilities given to computers by the Pick™
Operating System'. Pick is a computer operating system which has been
under development for over 20 years and has been commercially avail-
able since 1973. With the advent of the implementation of Pick on small
multi-user microcomputers, Pick has seen an explosion of popularity.
There are over 3500 applications written under Pick in just about every
conceivable commercial requirement. There are 20 manufacturers
whose computers have Pick implemented, or whose computer runs a
variant of Pick, and there are more implementations being undertaken
all the time. All software written under Pick may be transported across
the whole of this range of equipment. If we include the Pick lookalikes
in the Pick ‘community’ there should be over 60,000 computers running
Pick and approaching 400,000 users of Pick throughout the world by the
end of 1985.

The aim of this book is to impart practical information, of benefit to
users and prospective users of Pick, rather than a comprehensive de-
scription of all Pick’s facilities. A comprehensive description would take
up much more space than one short book allows, and is in any case
already available in the form of the Pick Reference Manual. This book’s
objective is to take the user to a point where further knowledge can
easily be gleaned from the Reference Manual.

A particularly valuable feature of Pick is the ability to produce ad
hoc reports using the enquiry language, Access. Consequently Access is
described first, with examples from a simple personnel file. Access is
certainly a tool that most departmental managers would wish to use and
its use requires no previous technical knowledge.

In order to extend the reporting facilities for a Pick database and
produce more sophisticated reports the user needs to know a little about
the way that the database is structured and how the system editor works,
so these are described next. The system editor is a utility which allows
the modification of any item on the database. These sections will be of
particular interest to people who are experienced in using Access and

1. PICK is a trademark of Pick Systems.

xi

Xii Preface

who wish to understand more about the capabilities of their Pick com-
puter.

The next most important areas for users are the spooler (a utility
which deals with the production of printed output) and the security
system (which allows the computer manager to prevent access to sensi-
tive data). These are described in detail, but an understanding of the
security system can only follow a thorough understanding of the data-
base, so a more detailed description of the database is given. This
section of the book should provide enough detail for the computer
manager to be able to cope with most day to day requirements.

The ‘technical’ aspects of Pick are Pick BASIC and the job control
language, Proc, which links all the Pick features. The information given
here describes concepts, rather than technical details, to enable the user
to understand his application and, if necessary, to progress to a more
technical level. Most users need to use Proc more than BASIC and tend
to add to their Procs by changing menus and setting up permanent
reports. To facilitate this, Proc is described in a tutorial fashion with the
aim of showing the reader how Proc is used to set up menus and reports
and to make the information easy to assimilate.

Pick ‘lookalikes’ have already been mentioned. These are computers
with an operating system which looks like Pick, but which were not in
fact implemented by, or in the same way as, Pick Systems. These tend to
have some operational differences to the ‘true’ Pick standard, but since
they can be viewed as part of the Pick ‘community’, these differences
have been pointed out, where appropriate. The three main Pick looka-
likes are McDonnell Douglas Reality/Sequoia, Prime Information and
the personal computer database package, Revelation.

Finally, a word about the presentation of the book. It has been
thought very important to give a practical approach throughout and
many examples of actual operation have been given. To this end it has
been necessary to indicate commands and responses with different
typefaces. Commands typed into the computer are presented like this:

A COMMAND TYPED INTO THE COMPUTER BY THE USER

Where responses from the computer have been incorporated into
the main text, the responses are in this typeface:

A RESPONSE TO A COMMAND BY THE COMPUTER

Other computer output, which might have appeared on a VDU
screen or might have been hard copy on a printer, is presented in a
photo-reduced format, as in Fig. P.1.

PAGE 1

DEPARTMENT
PERSONNEL
PRODUCTION

TRANSPORT

6 ITEMS LISTED.

Fig. P.1.

RATE
4,00
13.38

8.50
25.88

Preface

xiii

15:50:53 04 DEC 1985

Chapter 1
Introduction

Computers are devices which are becoming very familiar in our daily
lives. Their uses are myriad and we can expect to encounter computers
in many situations. Computers can be found in the home, in classrooms,
in spacecraft and even in washing machines. Many computers are used
by businesses for administrative purposes.

HARDWARE AND SOFTWARE

When we talk about computers we usually envisage a box of electronic
tricks consisting of wires, ‘chips’ and perhaps flashing lights, tapes and
floppy disks. This is referred to as *hardware’.

Nowadays most people are aware of the idea of a ‘program’ — some
set of instructions that the computer can understand and interpret in a
specific manner to carry out a task. This is referred to as ‘software’.

When programming or simply using a computer, we sometimes take
for granted the things which seem obvious, that we can ‘talk’ to a
computer using a terminal or keyboard, and that our data will be stored
in the memory of the computer or on a magnetic disk. These tasks, and
many others, are carried out by special software called the ‘operating
system’.

This book is about one such operating system, called Pick. In fact the
Pick Operating System carries out many tasks not normally associated
with operating systems. Pick has its own ‘database’, which enables data
to be stored and enquired upon simply. The enquiry facilities are given
by means of a natural English (or French, Spanish or Japanese) lan-
guage feature. Just as words in the English language might be defined in
the Oxford English Dictionary, so words in the Pick enquiry language
are also defined in a dictionary. This makes the database familiar to the
user, apart from being open ended.

A special version of BASIC is used to update the information held in
the database, this BASIC is designed around the database and inter-
faces with it very easily. Again the emphasis is very much on the data,
rather than programming.

2 Chapter 1

Computers running Pick are normally ‘multi-user’ computers. That
is, more than one person may use the computer at one time. The various
users of the computer might be carrying out completely different tasks.
The fact that there are usually other users on the system is completely
transparent. Pick provides facilities to help the user administer the
problems caused by multi-user computers, such as providing queuing
facilities for shared devices, like printers, in the form of a spooler. Pick
also provides facilities to ensure that data can be kept secure, so that,
for example, while the Chairman of the company may examine any
data, the order entry clerk may be forbidden from looking at the
personnel records.

Typically a computer system running Pick will consist of a central
processing unit, where all the computing is actually carried out, and
several terminals, which may be visual display units (VDUs), or teletype
printers with a keyboard. It is through the terminals that we address the
computer and access our data. All the information presented in this
book relates to operations carried out at a terminal. From now on the
computer hardware and the electronic tricks are irrelevant. It has no
more importance than a filing cabinet in an office.

LOGGING ON

When a terminal connected to a Pick computer is switched on a message
appears on the screen:

LOGON PLEASE:

the computer is asking you to identify yourself and ‘log on’ to an
‘account’. All Pick computers have an account called SYSPROG which
is normally used only by the computer manager, but in principle the
account name may be anything that has already been defined by the
computer manager. Let us suppose that there is an account on our
computer called ADMIN. We can log on to that account by typing
ADMIN followed by the button marked RETURN or ENTER. Note
that if the account is called ADMIN the computer will not accept
‘admin’. Pick is ‘case sensitive’. If a word is defined in upper case it may
not also be used in lower case, unless of course it has also been defined
in lower case.

If the logon name is rejected, the computer responds by complaining
with the error message:

USER ID?

[ntroduction 3

and then returns to the logon prompt.
LOGON PLEASE:

This is very characteristic of Pick. If you ever enter a command
which Pick does not understand, there will be an error message. Usually
this error message will help you to decide what was wrong and enter the
correct command.

The next thing that might happen is that the computer will prompt
with the word:

PASSWORD:

If this happens the account is protected by a password and we must
know the password in order to proceed further. When the password is
typed, the letters making up the password do not appear on the screen,
this helps to preserve the security of sensitive data. If the password is
typed incorrectly the computer will respond:

PASSWORD?
LOGON PLEASE:

and we have to start again from the account name.

Once this barrier has been overcome the computer will allow us to
access the account. If we are accessing an account where a real applica-
tion has already been set up, such as a personnel system or a sales
ledger, it is more than likely that the master menu for the application
will appear automatically. If there is no menu the computer will issue a
‘prompt character’ which on most systems will be a chevron (>) or it
might be a colon (:). This is ‘terminal command level’ or TCL. The
computer is ready for our next command and is asking us what we want
to do next.

From TCL we may interrogate the database or execute a program or
initiate any of the utilities that make up the Pick Operating System. One
of the utilities available enables us to ‘log off’ the computer and return
to the LOGON PLEASE: prompt. To log off we type the word OFF
followed by the button marked RETURN or ENTER. This discipline of
logging off should be carried out whenever we have finished using the
computer.

Chapter 2
The ACCESS Enquiry Language

In normal circumstances the user of a computer will have an application
running on the computer, with data and specific procedures already in
place. His problem is then how to make the most effective use of his
data outside the normal procedures. In this chapter we shall assume that
there is an existing application with data stored on the Pick database.
We shall see how the enquiry language may be used to answer ad hoc
queries and how the data may be presented in new ways.

A database is a collection of data stored in an organised manner
which enables the data to be accessed easily. A telephone directory is an
example of a database which is not (yet!) found on a computer. The data
may be as simple as a list of names and addresses or as complex as a
sales ledger. In Pick, data is stored in ‘files’. A file contains a collection
of data which belongs in the same category. So, in business, one file
might contain all the names and addresses of our customers, another
might contain all the order details. Both files would be on the same
database, so we would not duplicate the names and addresses of the
customers in the orders on the order file.

The individual details of a single customer will be held together in a
‘record’. Each record on the file will thus hold the name and address of a
single customer. The name and the address are called ‘fields’. There will
be one special field of each record which distinguishes the records. This
is called the ‘key’ or record identifying field. This has to be something
unique amongst the records within the file. In the case of a customer list
it might be an account number.

A computerised database has to have some method of retrieving the
information held on the database. We may wish to view the data in
many ways and interrogate the database. The aim is to answer questions
like “how many customers have we in Kent?”, or “which products do we
sell the most of?”. Pick provides a language to do this. The various
distributors of Pick call this language by various names. ACCESS,
RECALL, INFORM, R/LIST, ENGLISH, FRANCAIS, ESPAGNOL

Clock card Name

number

Address Position

Department

Start
date

Rate of Telephone

pay

number

Sex

Age

A-100

HALL F

39 KING STREET SECRETARY
BRIGHTON
SUSSEX

PERSONNEL

1TAUGS3

4.00

790-2903

M

B1-20

JOHNSON D

3 CARRBANK AV MANAGER
HYDE
CHESHIRE

TRANSPORT

01APR&2

4.50

197-3582

26

A-400

THOMSON A J

8§ DUGDALE AV CUTTER
CROWTHORNE
BERKS

PRODUCTION

26JANS3

4.35

739-1095

31

WRIGHT I D

4 PENDLEWAY MACHINIST
CAMBRIDGE

PRODUCTION

19FEB85

3.80

497-3528

31

ELLIS K

91 HOLLAND ST CUTTER
ESHER
SURREY

PRODUCTION

05SMARS2

5.23

22

C-10

ROTHWELL T M

230 HAMILTON ST FITTER
COVENTRY
WARWICKS

TRANSPORT

10JULS84

4.00

891-6867

50

Fig. 2.1. The data comprising the sample Personnel database.

The ACCESS Enquiry Language 7

and NIPPON-GO are examples of proprietary names for what is essen-
tially the same language. The official Pick Systems trademark for the
language is ACCESS so we shall call the enquiry language ACCESS
throughout.

As the name ENGLISH implies, ACCESS is a language which is like
everyday English, it is recognisable as English and is natural in use. To
illustrate the examples in this section a small personnel file called
PERSONNEL has been used. PERSONNEL contains the information
shown in the table in Fig. 2.1 in six records. Note that in this example
the ‘special’ or key field is the clock card number.

An Access enquiry sentence is typed at the keyboard and then sent
to the computer by pressing the RETURN key. The command may be
given at any point where you see the Terminal Command Level (TCL)
prompt, which will be a chevron (>) or possibly a colon (:).

The first word of any Access sentence must be a verb. Examples of
verbs are LIST, SORT, SELECT, SSELECT (Sort and select),
COUNT and SUM. This tells the computer what to do.

The second word of an Access sentence is normally a file name. This
tells the computer which data the operation is to be carried out on. The
file name that will be used for all the examples in this chapter is called
PERSONNEL.

Other words may follow the file name. The various words are
separated by a space, just as in written English.

The simplest possible command is simply a verb and a file name,
such as:

LIST PERSONNEL

which will give a display of all the records in the file, giving a preselected
default report of certain fields from all the records. In our small sample
file, this results in the display shown in Fig. 2.2. Just for now, take it for
granted that a default report appears, the way that this is set up is
described in the chapter on dictionaries.

MODIFYING THE REPORT

The display above will appear on the terminal on which the command is
typed. The report will halt at the end of the last line of each page and
will only continue when the user presses the RETURN key. Instead of
pressing RETURN the user might type CONTROL-X', at which point

1. CONTROL and X are two separate keys which have to be pressed together to generate
the command, here called CONTROL-X. Do not try to press both keys simultaneously,
but hold the CONTROL key down and type X.

8 Chapter 2

PAGE 1 09:02:35 12 DEC 1985
PERSONNEL NAME POSITION RATE STARTED

A-100 HALL F SECRETARY 4.00 11 AUG 1983
B1-20 JOHNSON D MANAGER 4,50 01 APR 1982
A-400 THOMSON A J CUTTER 4.35 26 JAN 1983
Bl-1 ELLIS K CUTTER 5.23 05 MAR 1982
B-523 WRIGHT J D MACHINIST 3.80 19 FEB 1985
C-10 ROTHWELL T M FITTER 4,00 10 JUL 1984

6 ITEMS LISTED.

Fig. 2.2. The output produced by
LIST PERSONNEL

the report will be terminated and control returned to TCL. This form of
display can be changed by adding an ‘output modifier’ to the Access
sentence. For example, the word LPTR (short for lineprinter) will cause
the output to appear on a printer, rather than the user’s terminal. The
option (P) may be used instead; this has the same meaning as LPTR.
Options are single character codes surrounded by brackets. More than

MODIFIERS

LPTR Send output to the system printer.

NOPAGE Do not halt at the end of the last line of each page.

HDR-SUPP Do not display the page heading.

ID-SUPP Do not display the key field.

ONLY Only display the key field (i.e. instead of the default
report).

DBL-SPC Leave a blank line between each line output.

COL-HDR-SUPP Do not display the column headings.

HEADING Use a different heading.

FOOTING Use a footing.

TOTAL Total a numeric field.

DET-SUPP Display only TOTAL lines.

OPTIONS

Same as COL-HDR-SUPP
Same as DET-SUPP

Same as HDR-SUPP
Same as ID-SUPP

Same as NOPAGE

Same as LPTR

TZTIon

The ACCESS Enquiry Language 9

one option may be specified by separating the single character codes by
commas.

These options and modifiers may be included in the Access sent-
ences as required, e.g.

LIST PERSONNEL ID-SUPP DBL-SPC NOPAGE
LIST PERSONNEL DBL-SPC {I,N)

Either of these sentence will produce the report shown in Fig. 2.3.

PAGE 1 09:04:42 12 DEC 1985
NAME POSITION RATE STARTED
HALL F SECRETARY 4,00 11 AUG 1983
JOHNSON D MANAGER 4,50 01 APR 1982
THOMSON A J CUTTER 4,35 26 JAN 1983
ELLIS X CUTTER 5.23 05 MAR 1982

WRIGHT J D MACHINIST 3.80 19 FEB 1985

ROTHWELL T M FITTER 4,00 10 JUL 1984

6 ITEMS LISTED.

Fig. 2.3. The output produced by
LIST PERSONNEL DBL-SPC (I,N)

In Fig. 2.3 the clock card number has been omitted from the display
and each line of the report has been separated by a blank line. The
report is said to be ‘double spaced’.

Note that, except on McDonnell Douglas systems, options must be
placed at the end of the sentence otherwise they will be ignored.

SELECTING FIELDS TO BE DISPLAYED

The information which appears on this ‘default’ report is not the only
way of displaying information held on the file. If a list of field names is
added to the Access sentence, then the information stored in those
fields will be displayed instead of the default report. Any number of
fields may be requested in an Access sentence. The field names may
appear anywhere in the command after the file name and in any order.
The fields will be displayed as separate columns if the terminal is wide

10 Chapter 2

enough. otherwise each field will occupy a separate line. The column
displayed on the left will be the ‘special’ key field but this may be
suppressed with the ID-SUPP modifier. Subsequent columns will show
the information from each of the fields specified. These will appear in
the same order in which they were requested.

Figures 2.4, 2.5 and 2.6 show three examples of Access commands
and reports where the default report has been suppressed and replaced
by particular fields. In Fig. 2.4:

LIST PERSONNEL NAME ADDRESS

only the name and address of each employee are shown. Note how Pick
seems to know how the address should be formatted, with each line of
the address on a separate line on the report.

The next example, Fig. 2.5,

LIST PERSONNEL NAME RATE POSITION

shows the name, the rate of pay and the position of each of the em-
ployees. In this report note how Pick seems to know that textual data.
like the name and the position, are formatted one under another start-
ing from the left, but numerical data, like the rate of pay, are formatted
as we expect to see columns of numbers, formatted to the right.

The Access sentence:

LIST PERSONNEL SURNAME OCCUPATION NUMBER {l)

shown in Fig. 2.6 shows how we can define words which actually
manipulate the data stored on the file, as in SURNAME, and define
words which mean the same as other words, synonyms like OCCUPA-
TION and NUMBER. It also shows how we may combine the ideas of
Access together. Here we have asked that the key field should not be
displayed by adding the I option. The way in which these words are
defined is explained in the chapter on dictionaries.

USING ACCESS TO ASK QUESTIONS

More often than not we wish to ask questions of the database, rather
than simply specifying the information to be displayed. These questions
may take the form of: “Which of our secretaries speak French?”;
“Which customers with a credit limit over a thousand pounds pay late?”
and so on.

The ACCESS Enquiry Language 11
PAGE 1 09:09:08 12 DEC 1985
PERSONNEL NAME ADDRESS

A-100 HALL F 39 KING STREET
BRIGHTON
SUSSEX

B1-20 JOHNSON D 3 CARRBANK AV
HYDE
CHESHIRE

A-400 THOMSON A J 8 DUGDALE AV
CROWTHORNE
BERKS

Bl-1 ELLIS K 91 HOLLAND ST
ESHER
SURREY

B-523 WRIGHT J D 4 PENDLEWAY
CAMBRIDGE

C-10 ROTHWELL T M 230 HAMILTON ST
COVENTRY
WARWICKS

6 ITEMS LISTED.

Fig. 2.4. The output produced by
LIST PERSONNEL NAME ADDRESS

PAGE 1 09:10:30 12 DEC 1985
PERSONNEL NAME RATE POSITION

A-100 HALL F 4,00 SECRETARY

B1-20 JOHNSON D 4,50 MANAGER

A-400 THOMSON A J 4.35 CUTTER

Bl1-1 ELLIS K 5.23 CUTTER

B-523 WRIGHT J D 3.80 MACHINIST

C-10 ROTHWELL T M 4,00 FITTER

6 ITEMS LISTED.

Fig. 2.5. The output produced by
LIST PERSONNEL NAME RATE POSITION

12 Chapter 2
PAGE 1 09:11:49 12 DEC 1985

SURNAME ~ OCCUPATION NUMBER

HALL SECRETARY A-100
JOHNSON MANAGER B1-20
THOMSON CUTTER A-400
ELLIS CUTTER Bl-1
WRIGHT MACHINIST B-523
ROTHWELL FITTER C-10

6 ITEMS LISTED.

Fig. 2.6. The output produced by
LIST PERSONNEL SURNAME OCCUPATION NUMBER (I)

We do this by adding the word WITH (or IF which means the same
thing) followed by the name of the field and relational operator, fol-
lowed by the value to be compared enclosed in double quotes. Relation-
al operators are simply words or abbreviations or symbols which specify
the type of comparison to be carried out.

Relational operator Meaning

EQ or = or null Equal to

GT or AFTER or > Greater than

LT or BEFORE or < Less than

GE or >= Greater than or equal to
LE or <= Less than or equal to
NE or NOT or # Not equal to

NO Having no value.

Here are a few examples:

LIST PERSONNEL WITH POSITION “SECRETARY"

LIST PERSONNEL IF POSITION = “SECRETARY”

LIST PERSONNEL IF AGE GE “25"

LIST PERSONNEL WITH NAME < "M”

LIST PERSONNEL WITH STARTED AFTER 31 JUL 1983"

LIST PERSONNEL WITH DEPARTMENT NE “TRANSPORT”
LIST PERSONNEL WITH NO PHONE

LIST PERSONNEL NAME ADDRESS WITH NO PHONE (1)

Figure 2.7 shows those members of staff who joined the company
since 31 July 1983 and is the result of the Access sentence:

The ACCESS Enquiry Language 13
LIST PERSONNEL WITH STARTED AFTER “31 JUL 1983"

PAGE 1 09:17:27 12 DEC 1985
PERSONNEL NAME POSITION RATE STARTED

A-100 HALL F SECRETARY 4,00 11 AUG 1983
B-523 WRIGHT J D MACHINIST 3.80 19 FEB 1985
C-10 ROTHWELL T M FITTER 4,00 10 JUL 1984

3 ITEMS LISTED.

Fig. 2.7. The output produced by
LIST PERSONNEL
WITH STARTED AFTER “31 JUL 1983"

These criteria may be joined together to modify the restrictions by
the use of the connectives AND and OR.
For example, Fig. 2.8 shows the report produced by the sentence:

LIST PERSONNEL WITH POSITION "CUTTER” AND WITH RATE < "5"
and Fig. 2.9 shows the report produced when the command

LIST PERSONNEL WITH POSITION “CUTTER” OR WITH POSITION

“SECRETARY”
is given.
PAGE 1 09:25:19 12 DEC 1985
PERSONNEL NAME POSITION RATE STARTED
A-400 THOMSON A J CUTTER 4,35 26 JAN 1983
END OF LIST

Fig. 2.8. The output produced by
LIST PERSONNEL WITH POSITION "CUTTER™
AND WITH RATE < 5"

The up arrow character may be used as a ‘wild card’ character, i.e.
the sentence

LIST PERSONNEL WITH RATE "4."""

will display all those employees whose RATE field contains a four

14 Chapter 2

PAGE 1 09:29:20 12 DEC 1985
PERSONNEL NAME POSITION RATE STARTED

A-100 HALL F SECRETARY 4,00 11 AUG 1983
A-400 THOMSON A J CUTTER 4.35 26 JAN 1983
Bl-1 ELLIS K CUTTER 5.23 05 MAR 1982

3 ITEMS LISTED.

Fig. 2.9. The output produced by
LIST PERSONNEL WITH POSITION "CUTTER"™
OR WITH POSITION "SECRETARY"™

character field beginning with 4., so Fig. 2.10 shows everyone who earns
between 4.00 and 4.99 pounds an hour.

PAGE 1 09:34:05 12 DEC 1985
PERSONNEL NAME POSITION RATE STARTED
A-100 HALL F SECRETARY 4.00 11 AUG 1983
B1-20 JOHNSON D MANAGER 4.50 01 APR 1982
A-400 THOMSON A J CUTTER 4.35 26 JAN 1983
C-10 ROTHWELL T M FITTER 4,00 10 JUL 1984

4 ITEMS LISTED.

Fig. 2.10. The output produced by
LIST PERSONNEL WITH RATE "4.7""

Access can also search for patterns of characters by including square
brackets within the double quotes.
For example. the Access sentence:

LIST PERSONNEL WITH PHONE “730}"

will display all the staff whose telephone number begins with the code
790, as shown in Fig. 2.11. This also shows that the field which is the
subject of our enquiry need not necessarily be shown in our report.

PAGE 1 09:35:59 12 DEC 1985
PERSONNEL NAME POSITION RATE STARTED
A-100 HALL F SECRETARY 4.00 11 AUG 1983

END OF LIST

Fig. 2.11. The output produced by
LIST PERSONNEL WITH PHONE "790]"

The ACCESS Enquiry Language 15
In the same way:
LIST PERSONNEL WITH STARTED = "[1983"

will display only the PERSONNEL who joined the company in 1983.

We can specify that a field must contain a sequence of characters by
surrounding the text with square brackets. Figure 2.12 shows any PER-
SONNEL whose POSITION contains the characters IN and is the result
of the sentence:

LIST PERSONNEL WITH POSITION “[IN]”

PAGE 1 09:43:21 12 DEC 1985
PERSONNEL NAME POSITION RATE STARTED
B-523 WRIGHT J D MACHINIST 3.80 19 FEB 1985
END OF LIST

Fig. 2.12. The output produced by
LIST PERSONNEL WITH POSITION “[IN]"

Record keys may be included in an Access sentence to specify that
only those indicated should be displayed. Single quotes must surround
the keys. Figure 2.13 shows the report produced from the Access
sentence:

LIST PERSONNEL 'B-523" 'C-10°

This displays only those employees with the specified record keys.

PAGE 1 09:44:47 12 DEC 1985
PERSONNEL NAME POSITION RATE STARTED

B-523 WRIGHT J D MACHINIST 3.80 19 FEB 1985
C-10 ROTHWELL T M FITTER 4,00 10 JUL 1984

2 ITEMS LISTED.

Fig. 2.13. The output produced by
LIST PERSONNEL 'B-523" "C-1(°

SORTING

Usually we wish to SORT reports in some sequence so that the informa-
tion is readily accessible. It would be extremely difficult to find some-

16 Chapter 2

one’s telephone number if the telephone directory were not arranged
alphabetically. In fact Pick provides sorting facilities through the SORT
verb. The verb SORT gives the same output as LIST but sorted. The
sentence

SORT PERSONNEL

will give the same output as LIST PERSONNEL but the records will be
sorted in the ascending order of the key field, which in this case is the
clock card number, giving the report shown in Fig. 2.14.

PAGE 1 09:45:54 12 DEC 1985
PERSONNEL NAME POSITION RATE STARTED
A-100 HALL F SECRETARY 4,00 11 AUG 1983
A-400 THOMSON A J CUTTER 4,35 26 JAN 1983
B-523 WRIGHT J D MACHINIST 3.80 19 FEB 1985
Bl-1 ELLIS K CUTTER 5.23 05 MAR 1982
B1-20 JOHNSON D MANAGER 4,50 01 APR 1982
C-10 ROTHWELL T M FITTER 4,00 10 JUL 1984

6 ITEMS LISTED.
Fig. 2.14. The output produced by
SORT PERSONNEL

Any other field may be sorted by adding the word BY and the name
of the field to be sorted.

SORT PERSONNEL BY NAME

will give the same display as Fig. 2.14 sorted alphabetically by NAME,
this is the report shown in Fig. 2.15.

PAGE 1 09:47:58 12 DEC 1985
PERSONNEL NAME POSITION RATE STARTED

Bl-1 ELLIS K CUTTER 5.23 05 MAR 1982
A-100 HALL F SECRETARY 4,00 11 AUG 1983
B1-20 JOHNSON D MANAGER 4.50 01 APR 1982
C-10 ROTHWELL T M FITTER 4,00 10 JUL 1984
A-400 THOMSON A J CUTTER 4,35 26 JAN 1983
B-523 WRIGHT J D MACHINIST 3.80 19 FEB 1985

6 ITEMS LISTED.

Fig. 2.15. The output produced by
SORT PERSONNEL BY NAME

The ACCESS Enquiry Language 17

Note that if you are suppressing the default report, and wish the
sorted field to be displayed, the name of the sorted field must be
specified in the list of fields to be displayed. as well as in the sort criteria.
Figure 2.16 shows the report produced by:

SORT PERSONNEL BY NAME NAME STARTED AGE

(verb) (file) (sort by) (display fields)
PAGE 1 09:49:21 12 DEC 1985
PERSONNEL NAME STARTED AGE
Bl-1 ELLIS K 05 MAR 1982 22
A-100 HALL F 11 AUG 1983 23
B1-20 JOHNSON D 01 APR 1982 26
C-10 ROTHWELL T M 10 JUL 1984 50

A-400 THOMSON A J 26 JAN 1983 31
B-523 WRIGHT J D 19 FEB 1985 31

6 ITEMS LISTED.

Fig. 2.16. The output produced by
SORT PERSONNEL BY NAME
NAME STARTED AGE

The sorting sequence may be reversed by using the word BY-DSND
(by descending) instead of BY, as in Fig. 2.17.

SORT PERSONNEL BY-DSND NAME NAME STARTED AGE

PAGE 1 09:52:07 12 DEC 1985
PERSONNEL NAME . STARTED AGE

B-523 WRIGHT J D 19 FEB 1985 31
A-400 THOMSON A J 26 JAN 1983 31

C-10 ROTHWELL T M 10 JUL 1984 50
B1-20 JOHNSON D 01 APR 1982 26
A-100 HALL F 11 AUG 1983 23
Bl1-1 ELLIS K 05 MAR 1982 22

6 ITEMS LISTED.
Fig. 2.17. The output produced by
SORT PERSONNEL BY-DSND NAME
NAME STARTED AGE
The most significant sort key is specified first so that

SORT PERSONNEL BY DEPARTMENT BY AGE NAME DEPARTMENT AGE

18 Chapter 2
which is shown in Fig. 2.18. will give a different output to
SORT PERSONNEL BY AGE BY DEPARTMENT NAME DEPARTMENT AGE

which is shown in Fig. 2.19.

PAGE 1 09:53:24 12 DEC 1985
PERSONNEL NAME DEPARTMENT AGE
A-100 HALL F PERSONNEL 23
Bl-1 ELLIS K PRODUCTION 22
A-400 THOMSON A J PRODUCTION 31
B-523 WRIGHT J D PRODUCTION 31
B1-20 JOHNSON D TRANSPORT 26
C-10 ROTHWELL T M TRANSPORT 50

6 ITEMS LISTED.

Fig. 2.18. The output produced by
SORT PERSONNEL BY DEPARTMENT BY AGE
NAME DEPARTMENT AGE

PAGE 1 09:55:00 12 DEC 1985
PERSONNEL NAME DEPARTMENT AGE
Bl-1 ELLIS K PRODUCTION 22
A-100 HALL F PERSONNEL 23
B1-20 JOHNSON D TRANSPORT 26
A-400 THOMSON A J PRODUCTION 31
B-523 WRIGHT J D PRODUCTION 31
C-10 ROTHWELL T M TRANSPORT 50

6 ITEMS LISTED.

Fig. 2.19. The output produced by
SORT PERSONNEL BY AGE BY DEPARTMENT
NAME DEPARTMENT AGE

HEADINGS AND FOOTINGS

The output modifiers HEADING and FOOTING are different from the
other modifiers in that they are not sufficient on their own to complete
the task in hand. A value, surrounded by double quotes, must im-
mediately follow HEADING or FOOTING. The text which is to appear
as the heading or footing is placed inside the double quotes. In addition
a number of output control options may appear within the double quote

The ACCESS Enquiry Language

surrounded by single quotes. These options are:

19

Insert the curent break value
(see BREAK-ON below)
Centre the current line

Insert the current date

Insert the current file name
Start a new line

Insert the current page number
Insert the current time and date

=i luliclvie) lee

Print a single quote in the HEADING

For example, Fig. 2.20 shows a report with a centred heading saying
‘Personnel information’ and the page number followed by two blank

lines, produced by the command:

LIST PERSONNEL HEADING “Personnel information ‘C’' Page ‘PLL"™

Personnel information

PERSONNEL NAME POSITION
A-100 HALL F SECRETARY
B1-20 JOHNSON D MANAGER
A-400 THOMSON A J CUTTER
Bl-1 ELLIS K CUTTER
B-523 WRIGHT J D MACHINIST
C-10 ROTHWELL T M FITTER

Fig. 2.20. The output produced by
LIST PERSONNEL

Page

RATE

4,00
4,50
4,35
5.23
3.80
4,00

STARTED

AUG
APR
JAN
MAR
FEB
JUL

HEADING “Personnel information ‘C’ Page ‘PLL’”

BREAKING UP THE DATA INTO SECTIONS

1983
1982
1983
1982
1985
1984

A listing can be sectioned by using the BREAK-ON modifier. The end
of a section in the report can be indicated by the value of one or more
fields of information changing their value. For example, if we wished to
separate the data relating to men from that relating to women, the point
at which the SEX field became M would indicate the end of the women’s
section. BREAK-ON in front of a field name will cause Access to detect
the changing field values and section the report. It is normally only
employed in conjunction with a SORT type verb. If BREAK-ON is
used with LIST a break would occur every time two records, physically

20 Chapter 2

next to each other in the file, had different values in the field being
broken on.

For example, to separate the employees into male and female. the
sentence:

SORT PERSONNEL BY SEX BY NAME NAME AGE BREAK-ON SEX

would be used; this is shown in Fig. 2.21.

PAGE 09:59:33 12 DEC 1985
PERSONNEL NAME AGE SEX
Bl-1 ELLIS K 22 F
C-10 ROTHWELL T M 50 F
A-400 THOMSON A J 31 F

Hkk
A-100 HALL F 23 M
B1-20 JOHNSON D 26 M
B-523 WRIGHT J D 31 M

Aok
L2 23

6 ITEMS LISTED.

Fig. 2.21. The output produced by
SORT PERSONNEL BY SEX BY NAME
NAME AGE BREAK-ON SEX

The three asterisks, ***, that are used to break up the report
indicate the column causing the break. *** is the default used by
BREAK-ON and may be changed, as you will see.

Any TOTAL fields will have the TOTAL for that section of the
report displayed on the BREAK-ON line. For example:

SORT PERSONNEL BY DEPARTMENT BREAK-ON DEPARTMENT NAME TOTAL
RATE

produces the output shown in Fig. 2.22.

SUMMARY REPORTS

By using SORT in conjunction with BREAK-ON, TOTAL and DET-
3UPP it is possible to produce summary reports which only display total
lines. This technique is very useful when answering questions like,
“What are the total sales from each salesman?”, where the detail of each

The ACCESS Enquiry Language 21

PAGE 1 10:01:26 12 DEC 1985
PERSONNEL DEPARTMENT NAME RATE
A-100 PERSONNEL HALL F 4,00
Aok 4.00
A-400 PRODUCTION THOMSON A J 4.35
B-523 PRODUCTION WRIGHT J D 3.80
BI-1 PRODUCTION ELLIS K 5.23
ol 13.38
B1-20 TRANSPORT JOHNSON D 4.50
C-10 TRANSPORT ROTHWELL T M 4.00
Ak 8.50
sk skok 25.88

6 ITEMS LISTED.

Fig. 2.22. The output produced by
SORT PERSONNEL BY DEPARTMENT
BREAK-ON DEPARTMENT NAME TOTAL RATE

sale made by the salesmen is not required. An example from the
PERSONNEL file will show the total rates of pay of the personnel
working in each department:

SORT PERSONNEL BY DEPARTMENT BREAK-ON DEPARTMENT TOTAL RATE
DET-SUPP ID-SUPP

This is shown in Fig. 2.23.

PAGE 1 10:03:09 12 DEC 1985
DEPARTMENT RATE
PERSONNEL 4,00
PRODUCTION 13.38
TRANSPORT 8.50
25.88

6 ITEMS LISTED.

Fig. 2.23. The output produced by
SORT PERSONNEL BY DEPARTMENT
BREAK-ON DEPARTMENT TOTAL RATE
DET-SUPP ID-SUPP

22 Chapter 2

In this case the *** from the total lines in the earlier report are
replaced by the department names because none of the details of the
report is being shown.

The BREAK-ON field name may be followed by text in double
quotes. The text will be printed on each break line instead of the ***
which is printed as a default. The following options may be included
within the text surrounded by single quotes in the same way as the
HEADING options discussed above.

B Specifies that this field is the field to be used in place of the HEADING B
option.

Do not display the BREAK if there has only been one item of data since
the last BREAK.

Stops a blank line being output before the BREAK.

Resets the page number to one after the BREAK.

Start a new page after the BREAK.

Underline any fields which are TOTAL fields.

Insert the value of the BREAK field at this point in the text.

v

<cmzr

Figure 2.24 shows how the report can be broken up with a descrip-
tive piece of text instead of the ***, and is the report produced by:

SORT PERSONNEL BY DEPARTMENT BREAK-ON DEPARTMENT “Total rates of
pay in V" NAME TOTAL RATE

OTHER ACCESS VERBS

Although SORT and LIST are probably the most commonly used
Access verbs, this section would not be complete without a brief over-
view of the capabilities of the other verbs.

SELECT and SSELECT do not produce any output, apart from the
number of records selected. SELECT is used to pass the output of an
Access sentence into another process. The second process could be a
BASIC program or another Access sentence, for instance. In its sim-
plest form SELECT will pass a list of record keys into the secondary
process. The secondary process can then read the records and process
them in whatever way is required. This is typical of the way that one
would produce reports on pre-printed stationery. SSELECT is the same
as SELECT except that the records will be sorted into some sequence.
This means that it should never be necessary to write a sort routine in
BASIC and that all sorts can be done at the operating system level.

The ACCESS Enquiry Language 23

PAGE 1 10:04:59 12 DEC 1985
PERSONNEL DEPARTMENT NAME RATE
A-100 PERSONNEL HALL F 4.00

Total rates of pay in PERSONNEL 4,00

A-400 PRODUCTION THOMSON A J 4.35
B-523 PRODUCTION WRIGHT J D 3.80
Bl1-1 PRODUCTION ELLIS K 5.23

Total rates of pay in PRODUCTION 13.38

B1-20 TRANSPORT JOHNSON D 4.50
C-10 TRANSPORT ROTHWELL T M 4.00

Total rates of pay in TRANSPORT 8.50
ok 25.88

6 ITEMS LISTED.

Fig. 2.24. The output produced by
SORT PERSONNEL BY DEPARTMENT
BREAK-ON DEPARTMENT “Total rates of pay in "V™”
NAME TOTAL RATE

By extending SELECT with a list of display fields, as in the com-
mand:

SELECT PERSONNEL WITH AGE >= "25" NAME STARTED

the list of record keys is replaced by the values of the display fields. In
this case, the name and the starting date would be selected instead of the
clock card number. This has two very useful effects. Firstly, this can be
used as mail merge data with RUNOFF. Secondly, this data can be
passed in the normal manner into a BASIC program. Thus it will not
be necessary for the BASIC program to access the file, retrieve the
records and sort out the data required. All the retrieval is carried out in
the SELECT pass through the file with a consequential increase in
efficiency.

COUNT returns the number of records in the file which match
whatever selection criteria are specified. Thus COUNT PERSONNEL
results in the output “6 ITEMS COUNTED”. SUM is used to total a
given field. SUM PERSONNEL RATE would return “TOTAL OF
RATE IS 25.88”.

T-DUMP and S-DUMP direct the output of the Access sentence to
the currently active tape or floppy disc backup device. If no display

24 Chapter 2

fields are specified, the whole record is dumped to the tape. If display
fields are specified then only those fields will be dumped.

T-LOAD has the reverse effect of T-DUMP, reading data from the
tape and storing it on the file indicated. If any selection criteria are
specified, only the records which obey the selection criteria will be
retrieved from the tape. Both T-DUMP and T-LOAD are discussed in
more detail in the chapter on archiving.

LIST-LABEL and SORT-LABEL output the results of the Access
sentence to the screen or printer, but instead of being in a columnar
format the data is rearranged so that it is suitable for printing on sticky
labels. When the LIST-LABEL command has been typed, the system
prompts for a second set of details which are used to determine how
many labels are to be printed across the page. the distance between
them, the height and width of the labels and the indentations. These
parameters enable the LIST-LABEL and SORT-LABEL verbs to be
totally general purpose and capable of printing any label format.

REFORMAT and SREFORMAT direct the output of an Access
sentence to another file. Each field specified as a display field will be
regarded as a sequential description of the record structure of the
destination file, the first field being used as a record key. When used to
their best effect these verbs are very useful for creating analysis files
with information derived from master files and transaction files.

Chapter 3
Introduction to the Pick Database

In the last chapter we assumed that our application and data already
existed and saw how we might formulate enquiries using data from a
specific file. In this chapter we will see how the database is arranged,
how accounts and files are created and how records are structured.

THE ARRANGEMENT OF THE DATABASE

The Pick database is arranged in a three level hierarchy.

At the highest level the SYSTEM consists of a number of
ACCOUNTS, or users. Each account may access any number of
FILES, or it may share data by accessing files in other accounts.

Files are split into two portions, a dictionary portion, and a data
portion. The dictionary contains records which define the structure of
the records in the data portion. We usually refer to these records as
ITEMS. Any file may contain any number of items. Pick will automati-
cally allocate the required disk space and the file will grow or shrink as
needed. The file size is limited only by the amount of disk space
available.

This hierarchy of files can be represented diagrammatically (Fig.
3.1).

Access to the records within any file may be made randomly.
Records consist of an item identifying field, the ITEM-ID, and then any
number of fields for the data. The item-id is used as a reference to the
record, as such every record in the file must have a unique item-id. The
item-id may be regarded as the ‘name’ of the record or its ‘label’. We
shall often refer to the item-id as the ‘key’ field. Usually we choose some
unique aspect of the data to be the item-id. For a customer file the
item-id might be the customer’s account number, for the personnel file
discussed in the last chapter we chose the clock card number, or we
might have chosen the national insurance number. If there is no unique
aspect to the data we might allocate a sequential number as the item-id
of each record.

25

26 Chapter 3

SYSTEM
Sitamos
\ Y
SYSPROG ADMIN SALES
FILES KV%%%SNT FILES WORDS FlLE?O s vroTnDs
M
PGeuis “SAVE BEPARTMENTS S8RT FROBOYFES 88
HO ELECT ,/—\
- »
Y \
PERSONNEL DEPARTMENTS
DICT DATA DICT DATA
NAMLEF A1 COPE T
A ss| B1.20 NAME | m
ﬁ%\ﬂi A-400 4
8

~ N

Fig. 3.1. The Pick File Hierarchy.

Any field may be broken up into two further sub-divisions so that,
for instance, an address would take up only one field with the different
lines of the address occupying subfields.

We call the fields ATTRIBUTES, the first sub-divisions VALUES,
and the second sub-divisions SUB-VALUES.

The amount of disk space used is minimised, each record occupying
exactly as much disk space as is required by the data. Files may contain
records with 1 field of data alongside records with 1000 fields of data.
Only as much disk space as is actually required will be taken up.
Records are of completely variable length up to a maximum item size of
32,767 characters (32 Kbytes).

Each record in the data portion of the customer file would be of this
structure. The dictionary of the customer file would contain records
called ACCOUNT.NUMBER, NAME, ADDRESS and so on. This
enables Access to format reports with the correct data. However,
Access cannot be used to create the database in the first place.

Introduction to the Pick Database 27

Typical record structure for a customer

Field number Description
Item-id Customer account number
1 Name
2 Address line 1, line 2, line 3 etc.
3 Telephone number
4 Credit limit
5 Contact name

etc.

Most businesses will purchase application programs, written in Pick
BASIC, to update the database. A single application may be spread
over several accounts. For a fully integrated accounting system, there
may be one account for the users dealing with order entry, another
account for the sales ledger, another for the purchase ledger and so on.
The datafiles being used by the various aspects of the application would
probably be shared.

When a user turns on a terminal attached to a Pick system, he will be
confronted by a LOGON prompt and he is invited to type in the name
of the account that he wishes to access. In effect he is entering the
system via the system file or system dictionary. This is the highest level
file on the system, and through typing an account name which tallies
with one of the entries on the system dictionary, he logs on to the
appropriate account and obtains the privileges associated with it. His
presence on the account is logged in the ACC file and may be monitored
by the computer manager using the LISTU utility.

Every Pick computer has an account called SYSPROG. This is
usually only used by the person responsible for the management of the
use of the computer. From now on we shall refer to this person as the
‘system administrator’. If we logon to SYSPROG, we are able to
execute many commands which are not available in any other account.
Notably we may initiate archiving routines.

CREATING ACCOUNTS

It is from SYSPROG that the creation of the database begins. In the last
chapter we saw reference made to a file called PERSONNEL. In the
introduction we assumed that an account called ADMIN was present on
the computer that we could log to. We say that the file PERSONNEL is
in the account ADMIN. '

28 Chapter 3

But accounts and files have to be created before they can be used.
Accounts are created by using a ‘verb’ or utility, available for use only in
the SYSPROG account, called CREATE-ACCOUNT. To create a new
account, the command CREATE-ACCOUNT is entered at TCL:

CREATE-ACCOUNT

This initiates a series of prompts that are used to set up the account.
The following example of replies to these prompts represents the sim-
plest set of responses. <CR> means press RETURN without typing in
anything else. This sets up the default values which are indicated.
Anything else which is typed in before the carriage return would over-
write the default values:

ACCOUNT NAME? ADMIN

L/RET CODES? <CR> (default — no codes)

L/UPD CODES? <CR> (default — no codes)
PRIVILEGES? <CR> (default — minimum privileges)
MOD,SEP? <CR> (default — 29,1)

[417] FILE "ADMIN’ CREATED: BASE = 29221, MODULO = 29, SEPAR = 1

273 ITEMS COPIED
‘ADMIN’ ADDED
'ADMIN’ UPDATED

PASSWORD? <CR> (default — no password required for this
account)

The prompts deal with the security and size of the account. These
subjects are dealt with in the chapter on security. The creation of the
account and the copying of records into it enable the account to be
logged to and give the basic vocabulary, in terms of commands, to the
account. As yet, there are no data files within the account, except one,
the “Master Dictionary” or MD, in which the basic vocabulary is now
defined.

CREATING FILES

We can now log to the new account by entering LOGTO ADMIN.
There is no password, so the computer will transfer us directly to

Introduction to the Pick Database 29

ADMIN. There is, as yet, no logon process for the account, so the
computer will prompt at TCL.

To create a file the command CREATE-FILE is used; this command
would create a file called PERSONNEL (provided the command is
given in an account with sufficient privileges):

CREATE-FILE PERSONNEL 3 23
[417] FILE 'PERSONNEL’" CREATED; BASE = 32089, MODULO = 3,

SEPAR =1
[417] FILE 'PERSONNEL’ CREATED: BASE = 32224, MODULO = 23,
SEPAR =1

The numbers in the command represent the initial size of the file.
The significance of the size of a file is discussed in Chapter 7. The
computer appears to have created two files. In fact it has created a
dictionary, to hold records with names such as ADDRESS, POSITION,
STARTED and so on, as well as a file which will actually hold the data
for the PERSONNEL file.

FILES AND RECORDS

Each data file that may be accessed has an associated data dictionary
which describes the data that is held within it. This data dictionary is
used by Access to extend the user’s vocabulary when referencing any
particular file. The dictionary may also contain descriptions of data
which is held physically on other files but referenced by some key
information held on the first file. This is often referred to as a JOIN.

At TCL the utilities LISTFILES, LISTPROCS, LISTVERBS and
LISTDICT may be used to determine what vocabulary is open to any
particular user.

Every file and dictionary on the system is of the same physical
format, right down from the system dictionary — there are no special
forms. However some files may be “single level” — that is, they are
dictionary and data combined. The system dictionary and account master
dictionaries are examples of these. Furthermore, each file or dictionary
consists of records. There is no limit to the number of records on any file.

From this it follows that since file definitions are merely records in
the master dictionary, there is no limit to the number of files that may be
accessed from any particular account. Records consist of a record key
followed by a number of fields, known as attributes.

30 Chapter 3

B-s23 .. Record key or item-id
001 WRIGHTJD ... Attribute 1

002 4 PENDLEWAY|CAMBRIDGE Attribute 2 (multi-values)
003 MACHINIST ... Attribute 3

004 6129 etc.

005 380

006 497-3528

007 M

008 31

The physical format of one of the PERSONNEL records.

Any record may be of any length up to 32 Kbytes. Within this it may
consist of any number of attributes. Unused attributes occupy 1 byte
unless they are at the end of the record in which case they occupy no
space. Attributes may be of any size, up to the record limit and the size
need not be predetermined in any file definition. Indeed corresponding
attributes in different records can be of completely different lengths
without taking up any more disk space than is actually necessary for the
data.

Records may just consist of attributes, but the Pick System allows
attributes to be subdivided into two further logical levels, termed multi-
values and sub-values. These would normally be used for repeating
groups of data, such as lines on a customer order. Some programmers
will find it convenient to use multi-values when writing an application,
because instead of having to have one record per line, the whole order
may be contained in one record, and yet there will be no loss in
flexibility as the number of multi-values is not predetermined. A very
strong argument can be made for using multi-values for data such as
addresses, where an address may be defined as one multi-valued field
and would thus have an indeterminate number of lines, whereas on
conventional database systems the number of lines on addresses has to
be predetermined, with consequent loss of flexibility.

Chapter 4
The System Editor

The system editor is a utility which permits on-line modification of any
item in the database. It may be used to create BASIC programs, Procs,
data records or dictionaries. It is a line editor — that is, at any one time
there is one line of data which may be viewed, entered or amended.

Although the system editor may allow any item in the database to be
created or amended, it is not suggested that this is the general method of
updating the database. Updating is usually done by BASIC programs of
one form or another. The system editor is a useful tool for system
administrators and programmers. It is certainly necessary to understand
the basic workings of the editor if dictionaries or programs are to be
created, but readers who are not going to be involved in the creation of
dictionaries or programs may prefer to pass over most of the detailed
information contained in this chapter.

You may have already understood that the database consists of files
such as CUSTOMERS which contain records. All the data files on the
system are of the same physical structure as are all the records within
data files.

A record within a file consists of a key field, called an item-identifier
or ITEM-ID and a number of fields or attributes. The key field must be
unique within the file and the record may be accessed directly using the
key field. The key field may consist of any characters, textual or numer-
ic. The maximum number of characters in a key field is 50.

There is no restriction on the size of attributes except that the total
record size is not allowed to exceed 32 Kbytes (32,767 characters).

ACCESSING RECORDS WITH THE EDITOR

To use the editor to access any record within a file the general format of
command, typed at TCL, is:

ED filename item-idlist

item-idlist will be the names of the key fields of the items required from
the file. * may be used to access all of the items in the file. If some items

31

32 Chapter 4

have been preselected from the file using SELECT or SSELECT then
item-idlist may be omitted and the records SELECTed will be used. To
edit the dictionary portion of a file the word DICT is used before the file
name.

Suppose that we wished to edit some of the records on the customers
file. Those with account numbers 310 and 392, for example. The
account numbers of the customers are used as the key or item-identify-
ing field. Once the editor is entered the following appears:

ED CUSTOMERS 310 392
310

NEW ITEM

TOP

Record 310 does not already exist so the word NEW ITEM are
printed and the bell is rung. The cursor prompts for an editor command
at the stop mark and the line pointer is set to 1. The first and subsequent
attributes may be entered at this point using the insert (I) command.
Each attribute can be viewed as a separate line.

Entering the command EX will exit this record without adding it to
the file, i.e. record 310 still does not exist on the database, and the next
record appears.

.EX

‘310" EXITED
392

TOP

Record 392 does exist and may be viewed. The command L10 will
list the first 10 lines or attributes of the record at which point line
(attribute) 10 is the line which may be amended.

L10

001 ACME COMPUTERS LTD

002 10 HIGH ST.]JDOVERIKENT

003 DOVER 7429

004 T

005 ABC123

006 6259

007 A310]A180]A199]A200]A210]A220]A249]A256]A264]A303
008 180

The System Editor 33

009 5000]4750]4625]4075]4900]3650]5675]6925
010 2971
EOI 010

The numbers 001 to 010 to the left of this display are only used to
reference the data using the editor and do not actually form part of the
record. 001 is to the left of attribute 1 of the record, 002 is to the left of
attribute 2 and so on.

If we had typed L22 we would have obtained the same response,
since there are only ten attributes on this record, as indicated by the
EOIL.010. If we type L10 again, while at the bottom of the record, the
editor will ring the bell as a warning that the listing is beginning again
from the top.

Attributes 2, 7 and 9 have sub-fields of data on them; these sub-
fields are called ‘values’. These are displayed by the editor with a close
square bracket (]) and actually form part of the data. They are field
delimiters. If you see a backslash, /. the / is representing a sub-value
delimiter. The] and / characters are actually ASCII characters 253 and
252 respectively. They are entered from the keyboard by holding the
CONTROL key down and typing] or /.

INSERTION

If we wish to append an attribute to the end of this record, we may do so
by inserting it. Insertion begins on a new line at the end of the line
currently being viewed. Simply type I for insert.

A
010+ This line has been inserted
010+

In this example a new line has been inserted by typing “This line has
been inserted”. The line is terminated by pressing carriage return and
the editor prompts with a further 010+ so that more lines may be-
entered. If no further lines are required, a further entry of carriage
return will terminate the insertion and the editor will respond with the
editor prompt character ready for the next command. The editor has
indicated that the insertion is taking place after line 010 by displaying
010+ instead of 011. Line 011, should it have existed, would have
become line 012 after this edit.

34
THE EDITOR BUFFERS

Chapter 4

The editor uses two buffers to create or update an item. As an editor
operation is carried out on a line, the new version of the item is copied
to the second buffer while updating continues on the item as it is in the
first buffer. Each further amendment is carried out in the second buffer.
If you wish to edit the amended item, you must first copy the contents of
the second buffer back to the first buffer. The second buffer can be
copied back over the first buffer by means of the F (file buffer) com-
mand. Then editing may continue on the updated version of the record.

Item-id 191

001 ACME COMPUTERS
002 10 HIGH ST

003 DOVER 7429

004 T

005 ABC123

006 6259

First buffer
(original)
Before an

001 ACME COMPUTERS
002 5 STATION RD

003 DOVER 5524

004 T

005 ABC123

006 6259

Second buffer
(changed)
F command

001 ACME COMPUTERS
002 5 STATION RD

003 DOVER 5524

004 T

005 ABC123

006 6259

First buffer

001 ACME COMPUTERS
002 5 STATION RD

003 DOVER 5524

004 T

005 ABC123

006 6259

Second buffer

After an F command

Fig. 4.1. The editor buffers.

As a consequence of this dual buffer system you may only edit
forwards through the item. For instance, having inserted a new line after
line 10 of record 392, it is not possible to make another amendment to
attributes 1 to 10 inclusive before restoring the buffers with an F com-
mand.

.F
TOP

After executing the F (file buffer) command the editor places the
record pointer back at the beginning (top) of the record and we may
commence a new set of listings and changes.

The System Editor 35
REPLACING

Suppose that you wished to change the ABC123 to ABD234 on attri-
bute 6. You may go straight to line 6 and replace it.

.G6

006 ABC123
R

006 ABD234
F

TOP

.G6

006 ABD234

We need not have replaced the whole line, however. We could have
typed:

.R/C123/D234
and the editor would have responded:

006 ABD234

Note that if C123 had not been unique within the line, only the first
occurrence of C123 would have been changed to D234. Also if either of
the strings C123 or D234 had contained a backslash then any delimiter
of our choosing may have been used instead. Further, all editor com-
mand letters may be typed in upper or lower case so r?C1237D234
means the same as R/C123/D234.

To append onto the end of an attribute, rather than inserting a new
line, we use the fact that the editor considers the end of the line to be an
infinite number of spaces, even though this is not really the case! So to
add XYZ to the end of attribute 6 we type:

.g6

006 ABD234

.R/ /XYZ
006 ABD234XYZ

F

TOP

36 Chapter 4
To insert at the beginning of an attribute we use the null string, viz:

.G6

006 ABD234XYZ
.R/IN23

006 123ABD234XYZ
F

TOP

and we utilise the null string to delete charactes from a line:

.G6

006 123ABD234XYZ
.R/123ABD//

006 234XYZ

F

TOP

To enter a null attribute we type an attribute mark. This is ASCII
character 254 and is the character which Pick uses to separate each
attribute of data on the record. The editor does not display the attribute
marks at the end of each line but it is possible to enter them by typing
CONTROL up arrow (7). If we include an attribute mark in our replace
command the effect is to truncate the rest of the attribute. On some
systems the data is split into two attributes (IBM and Ultimate) but, on
most, the rest of the data is thrown away. Note that in the following
example ~ represents an attribute mark.

.Gb

006 234XYZ
R/3/°

006 2

F

TOP

Entering an attribute mark during insertion gives empty fields:

.B (this command takes us to the bottom)
EOI 011

A

0m+""""

011+

F

TOP

The System Editor 37

G171

011 This line has been inserted
.L10

012

013

014

015

016

EOI 016

This is an extremely useful technique when using the editor to build
dictionaries where there are usually several null attributes.

Often we wish to replace a sequence of characters which is not
unique within the attribute, but nor is it the first occurrence of the
sequence. To do this we can specify the range of columns on which the
R command is to operate and the R command will work only on the first
unique specified sequence within that range of columns.

Suppose we have an attribute:

001 ABCDEFGHIJDEFGNOPQ

and we wish to change the second occurrence of DEFG to KLM. First
display the column mask by using the C command.

001 ABCDEFGHIJDEFGNOPQ
.C
1 2 3 4
12345678901234567890123456789012345678901234

From this we can see that the DEFG we want begins in column 11.
We might just glance at the string and think that the DEFG we want is
somewhere between columns 10 and 20. Hence we can enter:

.R/DEFG/KLM/10-20
001 ABCDEFGHIJKLMNOPQ

WILD CARD CHARACTER

The up arrow character may be used as a wild card character in any
editor command. This facility may be toggled by executing " as an editor
command.

38 Chapter 4

""" OFF
" ON

With the up arrow on, any up arrow characters that are entered will
be interpreted just as up arrows. When the up arrow is off, the wild card
is on and up arrows will be interpreted as ‘any character’. This is useful
where sequences of characters are nearly, but not quite, the same.
Suppose we had an attribute in a record which contained the data:

001 xax]xbx]xcx]xdx

If we wished to replace all of these values by null we could use four R
commands and achieve this, but it would be quicker and easier if we
could use the universal replace command and replace them all at once.
Universal replace (RU) is the same as R except that it replaces all the
occurrences instead of just the first. To replace the xs by ys in the above
example we could type:

.G1

001 xax]xbx]xex]xdx
.RU/x/y

001 yaylybylycylydy

To change all of these values to null, we might type:

RUX x//
001 11

SEARCHING

Sometimes we wish to find or edit a specific sequence of characters
within a record. This is done using the L (locate) command. Suppose we
suspect that the character sequence ‘xyz’ occurs somewhere in the
record being examined. We might type:

L"xyz
and if xyz first occurred on line 102 the system would respond:

102 abcdefghijklmnopqrstuvwxyz

The System Editor 39

with the editor ready to edit that line.
If we wished to locate all the occurrences of ‘xyz' in the record we
could prefix the delimiter ™ by the number of lines to be examined.

.L999"xyz
The system would respond:

102 abcdefghijkimnopgrstuvwxyz
276 xyz
365 This is the third occurrence of xyz

This time the editor is pointing at line 999, because 999 lines were
examined. To edit line 365 we must first ‘go” to line 365.

.G365
365 This is the third occurrence of xyz

The delimiter character, shown as ™ above, may in fact be any
character. A colon is a special delimiter, however. If the command
above had been issued as:

Lixyz

then the next line beginning with xyz would have been sought, the sytem
responding:

276 xyz

MERGING

Data may be merged from other records in the file, or from records in
other files. This is achieved using the ME (merge) command.

To merge ten lines of data from line 5 of the record FRED the
command is:

.ME10 “FRED"5

The system responding only with the prompt character:

The editor has executed the command. To view the results of the
merge, the buffer must first be filed (F), and then the record listed. If

40 Chapter 4

the system replies EOI 008 instead of just the prompt character. the end
of the record being merged was reached at line 8. so only 4 lines were
merged. 5. 6. 7 and 8.

If the “start at™ field is omitted the editor will default to the begin-
ning of the record, hence:

.ME10"FRED"

Will merge the first ten lines of the record FRED.
To merge data from another file we surround the file and record
names with round brackets. Hence:

.ME10 (PERSONNEL FRED)5

will merge 10 lines from the record FRED in the PERSONNEL file,
beginning at line 5 and:

.ME10 (DICT PERSONNEL FRED)5

will merge the data from the dictionary of the PERSONNEL file. If the
name of the record to be merged is omitted the editor uses the name of
the record being edited as the name of the record sought. This facility,
in its simplest form, can be used to duplicate data already in the record
being edited.

To duplicate ten lines of data from the record being edited. to the
point at which the edit is taking place, the following command is used:

.ME10""5

FILING

We file our record using one of the file commands. We may file the
record and continue editing the same record using the FS (file store)
command, or we may exit the record at the same time using the FI
command. Furthermore, we may change the name of the record or even
file it in a different file using a syntax similar to that discussed for the
merge command.

.FI FRED
would file this record under the key FRED.
.FI (PERSONNEL FRED

The System Editor 41

would file this record in the PERSONNEL file under the key FRED.
Note that it is not necessary to close the brackets.

If we specified a list of key names when we started our edit. we can
use the filing or exiting commands to escape from the list by appending a
K (kill) command to the file instruction. Thus FIK will file the record.
and kill the rest of the item-id list typed at TCL with the ED command.

The EX command is used to exit the record without filing. If the
record already existed on the file. it will be left exactly as it was before
the edit. Again EXK will escape any item list.

To delete the record we use the FD or FDK command. This is
somewhat final and it is unfortunate that on QWERTY keyboards the D
key is next to the F, making it easy to delete a record by accident.

If an FD type command is executed accidentally the record may
be recovered by immediately exiting to TCL and executing the
RECOVER-FD verb. This must be the next process executed becausé
the RECOVER-FD process relies on system buffers not being overwrit-
ten. In most instances the system buffers used will be overwritten by
other processes. Revelation and Prime versions of Pick are a little better
in this respect because they check by asking ARE YOU SURE (Y/N)?
before allowing the record to be deleted.

PRESTORED COMMANDS

Prestored commands may be created to be equivalent to any editor
command. A useful extension to the prestores is to store multiple
commands by delimiting the commands using a control left square
bracket (ASCII character 251) or an escape (ESC) character. This can
be regarded as a ‘macro’. The multiple command may then be invoked
by typing in the prestore command P followed by the command number.
“Editor charges™ may be created by setting up a loop, during which the
record being edited is filed. This is done by making the prestore com-
mand execute itself. The prestored command is then carried out on
every record being edited.

Suppose we wanted to display all the occurrences of string abc in a
particular file. The following sequence of instructions might be ex-
ecuted:

ED file *

XXX

top

.P1 19999"abc[EX[P1
.P1

42 Chapter 4

In this example P1 is set to look for the string abc, exit the record and
then execute P1. When P1 is re-executed the edit is taking place on the
second record and so the second record is searched. This process con-
tinues until the edit list is exhausted by there being no more records left
to edit and the process exits to TCL.

Prestore command zero (PO or simply P) is set to L22 automatically
when you enter the-editor. You may reset any P command at any stage.
The prestore commands will remain operative until you exit the editor.
That is. they remain in operation as set while you transfer from item to
item. Only by exiting (e.g. to TCL) do the prestore commands get reset.

The foregoing is not an exhaustive description of all editor com-
mands. A full description of each editor command can be found in the
Pick Editor Reference Manual. A summary is presented in Appendix 1
so that reference to the correct section may be made readily.

Chapter 5
Building Dictionaries

The Access enquiry language is dictionary driven. That is, every word
which can form part of an Access sentence will be found in a dictionary.
Thus words like LIST, SORT. BY and WITH will have definitions held
in an account’s “master dictionary”. These words have meaning when
used to enquire upon any data file accessed from the account. Words
such as NAME, ADDRESS and AGE. referred to in the chapter on the
use of Access, have definitions held in dictionaries associated with a
specific file. In the chapter on Access, the file was called PERSONNEL.

ADMIN
master dictionary
Contains records with One master dictionary per
item-ids such as:- account. The words are
LIST applicable to any file.
SORT pplica v
SELECT
WITH
BY
PERSONNEL (file defining)
- l T » other file
y dictionaries
PERSONNEL
DICT DATA

Contains record Contains record
item-ids such as:~ | item-ids such as:-|

NAME A-100
ADDRESS B1-20
AGE A-400
POSITION B-523
STARTED B1-1

c-10

BN

T\

Fig. 5.1. Records in the dictionary define the structure of records in the data portion.

43

44 Chapter 5

Every data file has a dictionary associated with it. The dictionary
contains items which are used by Access to display data. Thus any
dictionary will define the structure of the associated data file.

THE STRUCTURE OF DICTIONARY RECORDS
Dictionary items are created using the system editor with the command:
ED DICT filename dictname

and have a fixed format:

Attribute Function

Item-id Name (free format).

A (attribute defining) or S (synonym).

The number of the attribute being referenced.
The column heading.

Controlling and dependent value indicator.

Conversions to be carried out (for example dates).
Functions (for example arithmetic (CORRELATIVES)).
Justification (L (left) R (right) T (text) U
(unconditional)).

Width of field when displayed.

OO ~JI NN R W=

—_
[en}

You must have a dictionary definition for each word that is subse-
quently employed in an Access sentence. Thus in the Access sentence:

LIST PERSONNEL NAME

the word NAME appears in the dictionary of the PERSONNEL file as a
key. The dictionary definition making up the NAME record then deter-
mines exactly what data is displayed by the command.

The simplest type of dictionary definition will define a field or
attribute of information of any record from the data section of the file.
Thus a dictionary definition called NAME may contain the information
shown in Fig. 5.2:

The first field, being A or S, is recognised by the operating system as
meaning that this record may be used as a dictionary definition. There is
no operational difference between A type and S type definitions.

Building Dictionaries 45

ED DICT PERSONNEL NAME
NAME

TOP

L22

001 A

002 1

003 Name of employee
004

005

006

007

008

009 L

010 20

ECI 010

Fig. 5.2. An ordinary dictionary definition as it appears using the editor.

The second field tells the system which field or attribute of informa-
tion is to be taken from each data record being displayed. In the
example above the first field of information will be displayed.

The third field is used as a column heading for Access output. This is
completely free format. On output the column heading will be filled out
to the maximum width of the display with dots (.). If the number of
characters in the column heading exceeds the width of the field, as
indicated by attribute ten of the dictionary definition, then the display
width will be redefined to the width of the column heading.

For example, if the width of the AGE field in the personnel file is
defined as 5, the column heading (Age) will be displayed as “Age..".
However, if the width of the AGE field is defined as 2, the actual
display width will be 3 because there are three letters in the word
“Age”.

Multiple line column headings may be specified by inserting value
marks. That is:

003 Name oflemployee
will appear as a column heading thus:

Name of....................
employee...................

The ninth field of a dictionary definition determines the kind of
justification to be applied to the data on output. The options are L for

46 Chapter 5

left, R for right and T for text. U results in an unconditionally left
justified field. This determines what kind of sort will be carried out on
the data in an Access sentence. Right justified data is sorted in numeric-
al sequence. Left and text justified data are sorted in alphabetical order.

Text justified data differs from left justified data in the way that line
wrapping is carried out. Left justified data will be line wrapped, should
the data be longer than the specified display width, by breaking the data
at the specified character. Text data will also be line wrapped, but the
break of the data takes place at the last space so that words are not
broken in two. Unconditionally justified data is left justified, but does
not obey any width restrictions, so there is no line wrap. In the following
example the data is justified in different ways, but in each case the field
width is defined as 15.

Left justified Text justified Unconditionally justified
This is justifi This is This is justified to the left
ed to the left justified to

the left

Note that text justification does not right justify as well as left justify
in the way that a word processor might.

The tenth field of a dictionary definition specifies the number of
characters to be used for the output width. As indicated earlier, this may
be overridden if the actual width of the column heading is wider than the
number specified here. Access calculates the total width of reports from
the widths of the various dictionary definitions, adding 1 for each field,
so that a single space will appear between each column. This is com-
pared with the width available on the terminal or printer. If the total
width is less than the width of the terminal, the report will be displayed
‘across the page’. In this case each line of the report will represent a
different record and each column will be the output from a single
dictionary definition. If the total width of the report would be wider
than the terminal, the report will be displayed ‘down the page’. Each
line then represents a dictionary definition with a blank line between
records.

Note that to obtain a neat “down the page” format, you must make
sure that each dictionary definition has the same width specified and
that the column headings are already filled out with dots. Otherwise the

Building Dictionaries 47

Across the page format

NAME ... POSITION TELEPHONE
FRED BLOGGS BLACKSMITH 123 4567
JOE BROWN JOINER 234 5678

Down the page format

NAME ... FRED BLOGGS
POSITION.....cooiviiiiiiii, BLACKSMITH
TELEPHONE................oooe 123 4567

NAME ..., JOE BROWN
POSITION......ccoiiviiiiiii JOINER
TELEPHONE.................... 234 5678

Fig. 5.3. Across the page and down the page formats of Access display.

width allowed for the column headings and fields is the same as for the
columnar format, and the data is not nicely justified, nor are the column
headings filled out with dots automatically.

DEFAULT REPORTS

During the chapter on Access a meaningful report was obtained by
simply typing LIST PERSONNEL. The fields to appear on such a
default report are specified by defining dictionary records with the keys
1,2, 3, 4.... etc.. The data defined by the dictionary record called 1 will
be displayed as the second column (after the key), the data defined by 2
will appear as the third column and so on. Apart from this fixed way of
naming these definitions, they are constructed in exactly the same way
as other dictionary records. The default report will contain all dictionary
definitions named in this way until there is a gap in the sequence. That
is, if you have dictionary definitions called 1, 2, 3 and 5, the default
report will consist of the key and the data defined by dictionary defini-
tions 1, 2 and 3, but not 5.

Default reports are obtained in a quite different way on Revelation.
Revelation dictionaries contain two records, @CRT and @LPTR.
These define the default reports. The list of fields to be displayed on a
default report is held on attribute 3 of these records and might read
NAME ADDRESS AGE POSITION etc. The default report defined
by @CRT is used when listings are being sent to the monitor and the
default report defined by @LPTR is used when listings are being sent to
the printer.

48 Chapter 5
CONVERSIONS AND CORRELATIVES

So far we have discussed the way in which data may be defined by a
dictionary definition, in order to display that data in its raw form on an
Access report. Dictionary definitions may be used to manipulate the
data and to combine this data with data from other fields. within the
same record or from other records. These manipulations are carried out
by using “conversions” and “correlatives”. The techniques presented
next may be used either in the conversion field or in the correlative
field, but first a word on the difference between conversions and cor-
relatives.

Conceptually a conversion is used for some change in the format of
data. For instance, a date may be stored in the file as the number of days
since the 31st December 1967, but we wish to display the date in one of
the everyday formats such as 24 OCT 85. This is a very common use of a
Pick data conversion.

Correlatives are for defining functions or translations of data from
one format, like a code, into another format. the second format being
defined by a record on another file. Students of relational database
theory call this a JOIN.

In actual fact the important difference between a conversion and a
correlative is not to do with the type of data manipulation being carried
out. The crucial difference is in how Access processes conversions and
correlatives.

When the Access processor interprets a dictionary definition, cor-
relatives are processed immediately. The resulting values are then used
in any sort criteria that have been specified. Conversions are processed
after the sort but just before the output. To illustrate the use of this,
consider the example of a date.

Since dates are held on the database as the number of days since the
31st December 1967, it is a good idea to use this format to sort the data,
that is, sort the data numerically. Just before output, but after the sort,
the data is converted into its external format. It follows from this that
dates held in this way should have corresponding dictionary definitions
that use the conversion field to tell Access how to convert the data, and
also be right justified so that the data is sorted in numerical rather than
alphabetical sequence.

In this way we can obtain a chronological sort. If we took a date in its
real format, such as 24 OCT 85, and tried to sort this either numerically
or alphabetically, we would not succeed. For example, in both cases

Building Dictionaries 49

1 NOV 85 would precede 24 OCT 85 '. This is what would happen is the
date conversion were to be specified in the correlative field.

CONVERSIONS

A typical dictionary definition of a date might look like Fig. 5.4.

DATE.OF.INVOICE

001 A

002 3 Attribute where the internal format date is held.
003 Invoice date Column heading.

004

005

006

007 D Specifying a date conversion.
008

009 R

010 11

Fig. 5.4. A dictionary definition with a date conversion.

The D in the conversion field will carry out a date conversion. The
result will be in the format 18 FEB 1985 with an abbreviated month and
a four-digit year. This format can be changed. By specifying a number
up to 4 after the D, e.g. D2, the number of digits in the year is altered,
so D2 would output 18 FEB 85. By specifying a delimiter after this, the
format is changed from an abbreviated month to a numerical month.
Therefore D2- gives 18-02-85. American formats of dates are usually
achieved by means of a switch in the operating system modes. Your
system supplier will be able to advise you on this.

There are some date conversions which give results other than a
whole date: DD will generate only the day number of the month; DM
the month number of the year; DQ the quarter number; DY the year
only; and D2Y will generate a two digit year. DJ will generate the day of
year, so an internal date format representing the 28th August 1985
would be displayed as 240. Another date conversion which is supported,
but not always documented in the manufacturer’s Pick Reference manu-
als is DW, which gives the day of the week, 1 being Monday, 2 Tuesday

1. Alphabetically 1 is before 2. Numerically 1 NOV 85 is before 24 OCT 85 because the
most significant character (a space which is equivalent to 0) is less than 2. 3 NOV 85 would
also precede 24 OCT 85 in a numerical sort but would follow 24 OCT 85 in an alphabetical
sort.

50 Chapter 5

and so on. DWA and DMA give the day and month in alphabetical
format.

The other commonly encountered conversion is a masked decimal
conversion. It is recommended that decimal numbers are held on the
database with implied decimal places. 25.14 would therefore be held as
2514, the number 1 being held on another record as 100. An advantage
often given by zealous salesmen for doing this is that it saves a byte of
disk space for each number held! The real reason is that the Access
processor only carries out calculations with integer values and truncates
the real numbers at the decimal point. Much inaccuracy will result on
reports with calculated data derived from real numbers held on the
database. This can be overcome by using a masked decimal conversion
in the conversion field.

Two synonymous conversions are supported to carry out this switch-
ing between decimal and non decimal format, MD and MR. When the
McDonnell Douglas computers were the only commercially available
Pick systems only MD was supported. Pick implementations support
MR, which means exactly the same MD, MD being retained to maintain
upwards compatibility. Pick also supports ML which acts like MR but
left justifies any output masks (see below). Thus a two decimal place
mask is expressed by MD2 or MR2, three decimal places by MD3 or
MR3.

In much the same way that the exact format of a date may be
controlled by the format of the date conversion, so the presentation of
numbers may be altered by extensions to the masked decimal conver-
sion. Some possibilities are shown in Fig. 5.5.

Conversion Description Stored Output
MR2, Commas between 000s 100000 1,000.00
MR24 4 decimal places stored
rounded to 2 d.p on output 67890 6.79
MRZ Print zero as a null. 0
MR2%8 Pad out characters with
eight zeroes and 2 implied 67890 00678.90
decimal places
MRE Enclose negatives in <>. —678 <678>
MR2CD Suffix negatives with CR
and positives with DB 678 6.78DB
with two implied d.p.
MR###—### Right justified format mask A789 A-789
ML###—### Left justified format mask 678A 678-A

Fig. 5.5. Some examples of column mask conversions.

Building Dictionaries 51

On Ultimate systems the format masks must be enclosed in brackets
(). Format masks are not supported by McDonnell Douglas systems. A
full list of the possibilities can be found in the Pick Reference manual.

Another ‘family’ of conversions that might be encountered are'the
mask character conversions (MC). Masked character conversions carry
out a variety of functions such as converting data from lower to upper
case, stripping out non-alpha characters or non-numeric characters and
converting between decimal and hexadecimal formats.

MT conversions deal with the presentation of time. As for dates
there is an internal representation of the time. the number of seconds
since midnight. One second after one o’clock in the afternoon may then
be stored as 46801. An MT conversion will display this as 13:00, i.e. to
the minute by the 24 hour clock with hours and minutes separated by a
colon. Other versions of MT allow display in the 12 hour format fol-
lowed by AM or PM (MTH), or additional display of seconds (MTS) or
both (MTHS).

The final type of conversion, mentioned here for completeness, is
the user exit (U) conversion. This is a U followed by a four-digit
hexadecimal number giving an absolute address in the operating system
for the execution of an assembler subprogram on the data. These should
only be used on the explicit instruction of a software or hardware
supplier. Irretrievable damage can be done by a random jump into the
operating system. User access to the Pick assembly language is not
supported by any manufacturer.

CORRELATIVES

Correlatives provide a powerful method of manipulating the data in
files. They are used to change the data, by carrying out a calculation or
extracting parts of the data or, perhaps most importantly, using the data
to translate to another part of the database. This is how the relational
JOIN is achieved.

Translations

Suppose we have a customer master file with details of the customer’s
address, his terms of trading, credit limit, contact name and so on. It is
clearly not sensible to have to duplicate this data whenever an order is
booked for the customer on the orders file. However, we still wish to be
able to display the customer’s details when carrying out an Access listing
on the Orders file. So there has to be some way of referencing the

52 Chapter 5

information held on the customer master file via dictionary definitions
in the dictionary of the orders file.

In fact, one piece of information will be held on the order file about
the customer. This will indicate which customer the order is for and will
probably be the customer’s account number. No matter what form this
is held in, it must be the same as the key field for the customer master
file. This is used to cross reference or ‘translate’ to all the other informa-
tion about the customer.

Suppose the customer account number is held in field six of the
orders file. The dictionary definition to display the account number is
therefore quite simple and might appear like the example set out in Fig.
5.6.

CUSTOMER

001 A

002 6

003 Account Number

88888
-~

010 14

Fig. 5.6. A dictionary definition for a customer account number.

Now suppose the name of the customer is held in field one of the
customers file. To display the name rather than the account number we
start by accessing the account number and translate this into the name
by using the account number to cross refer to the customers file. This is
represented diagrammatically by Fig. 5.7.

A translation is defined by adding a T correlative to field 8 of the
dictionary definition. What we do is place a T in field 8 followed by the
target file name followed by other information which tells the computer
what to do if the translation cannot be completed successfully, and
which field on the customers file to use if it can. The new dictionary
definition, called CUSTOMER.NAME, might look like the example
shown in Fig. 5.8.

The T correlative can be expressed symbolically like this:

Tfilename; fail parameter;input field; output field

Building Dictionaries 53

ORDERS CUSTOMERS
DICT DATA DICT DATA

[cusTomer I/
A123 [6789
CUSTOMER.NAME L___/

N BN
— —

Fig. 5.7. A translation.

\

[6789 | [FREDBLOGGS

CUSTOMER.NAME
001 S

002 6

003 Customer name
004

005

006

007

008 TCUSTOMERS;X;;1
009 L

010 25

Fig. 5.8. A dictionary definition which defines a translation (join).

‘fail parameter’ tells Access what to do if the record cannot be found in
the file being translated to. It can take the values B, C, V or X.

B and V failure conditions are used with Pick BASIC and their full
significance is outside the scope of this book. Details can be found in the
Pick Reference Manual.

54 Chapter 5

Value Meaning)
C Use the original value instead of a translated value.
X Use null instead of a translated value.
\" Record must exist for output, abort with error message.
B Record must exist for input.

The parameters which make up the translation are separated by
semi-colons. This shows that it is not possible to translate to a file with
semi-colons in the file name and so semi-colons should not be used in
file names.

The third parameter in the translation tells Access which field to
extract from the second file. This is called the output translation. The
second parameter is not used in Access listings but may contain the
same or a different field number. It is called the input translation.
Translated correlatives may be used in Pick BASIC and it is when using
them in this way that input translations become significant.

Suppose that we wished to display the customer’s address from the
orders file rather than the name. Let us suppose that the address is on
field 2 of the customers file and is multi-valued. The translation does not
preserve the multi-valued nature of the field. In fact the value marks,
which separate the various lines of the address, are changed into spaces.
Hence the address will not be displayed as multiple lines as is normal for
multi-valued fields but as a single text field.

If we wished to display a single line of the address, rather than the
whole of the address, we now have the problem of sorting out that line
as opposed to the rest of the address. This can be done by modifying the
translate correlative.

Suppose that the line to be extracted is contained in the third value.
If we enter C3 rather than C, only the third value will be extracted.

Field 6 of the order contains: EB9999

Field 2 of customer EB9999 is: JOE SMITH
12 TOWN SQUARE
DULWICH

Correlative on the dictionary
record called ADDRESS on the
ORDERS file is: TCUSTOMERS:;C3;;2

Building Dictionaries 55

The result of LIST ORDERS CUSTOMER ADDRESS (I) for this
record is:

EB9999 DULWICH

Arithmetic Correlatives

Dictionary correlatives can also be used to derive information not held
anywhere on the database. calculating results from raw data held on the
files being interrogated. This is done by using the A, or arithmetic,
correlative.

Suppose that on the orders file there is a field containing quantities
of product being ordered and another field containing the relevant unit
prices of these products. The total price of each product is therefore the
quantity multiplied by the unit price. There will, of course, be dictionary
definitions set up describing the quantity field and the unit price field.
The dictionary definition describing the total price looks like Fig. 5.9.

TOTAL.PRICE
001 S

002 50

003 Total]Price
004

005

006

007 MR2

008 AN(QUANTITY)*N(UNIT.PRICE)
009 R

010 8

Fig. 5.9. A dictionary definition with an arithmetic correlative.

The 50 in the second field simply describes a field which is not used
on the orders file and is arbitrary. It could actually be a field which is
used, but this may cause confusion. The data displayed is derived by
taking the result of the dictionary name QUANTITY and multiplying
this by the result of the dictionary name UNIT.PRICE. If the data in the
QUANTITY and the UNIT.PRICE fields is multi-valued then each pair
of multi-values will be multiplied together to give a multi-valued result.
Note that if any conversion is specified in the QUANTITY and
UNIT.PRICE dictionary definitions, such as MR2 suggesting that the

56 Chapter 5

data is to two decimal places, then this must be reflected in a corres-
ponding conversion in the TOTAL.PRICE definition.

LIST ORDERS QUANTITY UNIT.PRICE TOTAL.PRICE

might result in the following:

AA9993 20 1.50 30.00
10 2.00 20.00
12 3.02 36.24

Any of the arithmetic operations, +, —, *,/ may be included in an A

correlative as might a colon (:) meaning that the two values are to be
concatenated. Dictionary definitions which themselves translate to data
in other files or contain other correlatives may also be included. Con-
stants may be specified by enclosing the constant in double or single
quotes. The constant 5 is thus represented as "5". Field numbers may be
included instead of dictionary names and these are specified without
quotation marks. If the unit price of the products are held in attribute 22
of the orders file then

AN (QUANTITY)*22
evaluates to the same as

AN(QUANTITY)*N(UNIT.PRICE).

Sub-strings may be extracted using A correlatives with a syntax
similar to the equivalent BASIC function. AN(NAME)["2”,75”] re-
turns five characters starting at character two of whatever data is de-
scribed by the dictionary definition NAME.

Summations can be carried out on multi-valued data. The A correla-
tive AS(6) will return the sum of any multi-valued data held in field 6 of
the file. It is important to note that the diferent types of A correlative
function may be combined so that AS(6-”10”) will substract ten from
each value of field six and total the result. In calculations like this,
brackets may be used to indicate precedence. In the absence of any
brackets the normal arithmetic precedence (multiplication and division
before addition and subtraction) will be applied as in BASIC.

Details of the other A correlative functions and special operands can
be found in the Pick Reference Manual. The other functions deal with
the calculation of remainders and the use of logical operators. Special
operands allow the introduction of system variables into calculations,
such as the date or the number of items processed.

F correlatives carry out the same function as A correlatives but the

Building Dictionaries 57

calculations must be specified in Reverse Polish notation. Other diction-
ary names cannot be referenced from F correlatives and these must be
specified as absolute field numbers. Parameters to be pushed onto the
Reverse Polish stack are separated by semi-colons. Hence F;1;2;* multi-
plies data from field 1 by data from field 2.

In early versions of Pick only F correlatives were supported. From
the above you can see that it is not easy for people who do not have a
familiarity with Reverse Polish notation to use F correlatives. A correla-
tives were introduced because of this, but the F correlative is still
supported to maintain upwards compatibility of older applications.

The other possibilities for correlatives are used to alter or extract
data, sometimes dependent on the value of a data item.

Sub-Field Extraction

The group extraction correlative, G, extracts a part of the data sur-
rounded by some delimiting character. The delimiting character may be
any character, including a space, but not including the system delimi-
ters, attribute mark, value mark or sub-value mark.

Suppose that field 2 of a particular record in our file contained THE
QUICK BROWN FOX. We can use the G correlative to extract one or
more of these words by using the spaces as delimiters. We might wish to
extract the second and third words so that listing this record would
return QUICK BROWN. The correlative G1 2 would achieve this. The
1 following the G says ‘miss the first sub-field’. The space tells the
computer that space is being used as the sub-field delimiter. The 2
following this says ‘take the next two sub-fields’. This was the method
used to define the SURNAME field used in the example shown in Fig.
2.6 of the chapter on Access.

Length, Ranges and Patterns

The L correlative is used to test data to ensure that the data is of a
specific length. L3 will only return data which is three characters in
length. L3,5 will only return data which is between three and five
characters in length inclusive. A null, or no data, will be returned for
data outside these constraints.

In the same way the R correlative may be used to test data to ensure
that it lies in a specific range. R3,5 will only return data with values
between three and five inclusive. In addition, multiple ranges may be
specified with each range separated by a semi-colon. In this way,

58 Chapter 5

R1,3;5,10 will allow all values from 1 to 3 and also those values between
5 and 10. Data which does not conform to these limits will be returned
as null. Note that the R correlative may only be used with numeric data.

The P correlative tests for pattern matches. The test pattern here
must be enclosed in brackets so that P(3N) tests for data of exactly three
numeric charcters. 3A would test for three alpha characters, or 3X for
three alphanumeric characters. Specific characters may be tested for by
enclosing these in quote marks and the test may be extended. Hence
P(’A’6N) will return any data beginning with an A and followed by six
numbers.

Two rather more simple correlatives are the concatenate (C) correla-
tive, which concatenates data together, and the text extraction correla-
tive, T, which is used to extract a specific number of characters from
data. This is not to be confused with the translate correlative which,
although its code is also T, is always followed by a file name. Details can
be found in the Pick Reference Manual.

Advanced Correlatives

The S correlative tests for null or zero data and can be used to substitute
other data where a null or zero is found. Two substitution parameters
are required and as usual these are separated by semi-colons. The first
parameter contains the data to be substituted if the existing data is
non-null or non-zero. The second contains the data to be substituted if
the data is null or zero. If the first parameter is * then the original data
will be retained. Take the dictionary definition CREDIT.LIMIT shown
in Fig. 5.10:

CREDIT.LIMIT
001 S

002 3

003 Credit]Limit
004

005

006

007

008 S;*;'Not set’
009 R

010 8

Fig. 5.10. A dictionary definition with a substitution correlative.

Building Dictionaries 59

If there is a credit limit in field three of records on the file it will be
shown unchanged. Otherwise the words ‘Not set’ will appear instead of
a null value. If we had placed a 4 in place of ‘Not set’ then field 4 of the
record would be substituted for null or zero values.

It is possible to have multiple correlatives on a single dictionary
definition. A result may be pulled forwards for a subsequent operation.
Each operation, a separate correlative in its own right, would be sepa-
rated by a value mark in the dictionary definition. Consider the follow-
ing correlative:

AN(DEPARTMENT): "*":N(MONTH)ITSALES. ANALYSIS; X; 1

In this example the sales analysis file is accessed by a key generated
from the sales department name concatenated to an asterisk and the
month number viz EXPORT*12. The key is generated by the A correla-
tive. This is then used by the T correlative to access data from the
SALES.ANALYSIS file. In the same way multiple T correlatives may
be used to do multiple translations. Consider accessing a salesman’s
name, whose initals are held on the customer master file attribute 12,
from the orders file on which we only hold the customer account
number. The dictionary definition might be as shown in Fig. 5.11.

SALESMAN
001 S

002 6

003 Salesman
004

005

006

007

008 TCUSTOMERS;X;;12]TREP.DATA;X;:1
009 L

010 20

Fig. 5.11. A dictionary definition carrying out a series of translations.

S correlatives are very powerful when combined in this way with A
correlatives and logical operators which can be used to test that two
fields are equal or not. Consider the following correlative:

AN(DELIVERED)=N(ORDERED]] (S;3;4)

The = tests these for equality and will return a zero if the fields are
unequal and a 1 if they are equal. The substitution following this results

60 Chapter 5

in field 3 being displayed if the quantity delivered equals the quantity
ordered, and field 4 being displayed if the two quantities are not equal.

Chapter 6
The Spooler

Pick has a facility for handling all output which is not to be printed on
the terminal executing the job. That is, it handles output directed to a
system printer or possibly the tape unit. This facility is called the
spooler.

When a job is executed which directs output to a printer, such as the
Access sentence LIST PERSONNEL LPTR, the process of forming the
report is carried to its conclusion before any printing begins. In fact the
output is directed to a temporary hold file, which cannot be edited.
When this process is complete the spooler takes over and the executing
line is freed to take on another job. If you observe this process the
printer will appear to begin its operation at the moment that the job is
complete and the executing line returns to TCL.

THE NEED FOR A SPOOLER

There are a number of advantages to this approach. Firstly, if we
consider the multi-user situation, there may be several users wishing to
send output to the printer at the same time. However, there may only be
one printer available on the system. All the users compete for the use of
the printer. If there were no administrative system to oversee and queue
the output there would be severe problems. The spooler provides this
administrative system.

Secondly, because the output is being directed to a temporary hold
file on disk, or in memory, the printing process may take place as
quickly as any other process on the computer. Printers, especially serial
printers, generally work at a much slower pace than a computer. With a
spooler handling the slower process of actually printing documents and
reports and the user free to continue work, a much faster and therefore
better service can be given to the user.

Thirdly, as the spooler can be instructed to create a permanent hold
file, rather than a temporary hold file as indicated above, and suppress
the actual printing process, the printing process can be controlled by the

61

62 Chapter 6

system administrator. The system administrator can ensure that the
correct paper is loaded into the printer or reprint the report should
anything unforeseen happen, such as a printer jam.

There are a whole set of commands within Pick which control the
spooler. These deal with starting and stopping printers, directing out-
put, and editing hold files.

The spooler is started automatically when the computer is first
switched on and Pick is booted. If you examine the display given by the
WHERE verb on a five user system with one user logged on to line zero,
you might see the following display:

WHERE

*00 0200 FB20 121.000 121.1A2
05 020A BFO0O 170.055 170.098
06 02C0 BF0O0O 170.055 170.13D

The full significance of this display is explained in the Pick Reference
Manual. We are only interested in the fact that there appear to be seven
available lines on our computer, rather than five.

The sixth port, designated as a printer only port, has had a printer
started and is waiting to receive output. The seventh, line 06, is the
spooler, and is not in fact associated with a physical port at all. The
spooler is usually designated to run on the port number one above the
maximum allowable port configuration on the computer.

STARTING AND STOPPING PRINTERS

To designate a particular line to have a system printer attached we use
the STARTPTR verb. This verb is followed by a parameter list which
tells the operating system how the printer is to be regarded.

The first parameter is -the printer number. This is an arbitrary
number between 0 and 19 and may be regarded as the ‘name’ by which
the printer is known. Thus you can see that we can have up to 20
different printers available on the system. On computers which support
them, up to 4 of these may be parallel printers.

The second parameter tells the system which jobs are to be run by
the printer. In the same way that printers are named by giving them an
arbitrary number, and we may have several printers on a system, we can
have several jobs known as spool queues, and these are given ‘names’ as
arbitrary numbers in the range 0 to 125. This can be envisaged like a
bank. When you walk into a bank there might be several queues for the
cashiers and you choose one of them. If each cashier could handle three

The Spooler 63

queues at once the analogy would be a little more vivid, for this is the
capability of each designated printer line.

The third parameter tells the operating system how many pages to
eject between the completion of each job. This may be any number
between 0 and 9 and is very useful where reports are being spooled
without producing permanent hold files since we do not usually wish our
reports to run end to end without a gap.

The fourth parameter tells the operating system what type of printer
is being used (serial or parallel) and where it is — that is, which line
number for a serial printer or which parallel port number for parallel
printers.

The fifth parameter is optional and not usually used. If present, as an
A, it will initiate an alignment process sending a few lines at a time until
the top of page is reached. Most modern printers have an on board
procedure for setting the top of form.

The simplest STARTPTR command would be of the form:

STARTPTR 0, (0),1,S5
at which point the operating system will reply, somewhat off handedly,

THE PRINTER CONTROL BLOCK HAS BEEN INITIALIZED
HOPEFULLY, THE CORRECT PAPER IS IN THE PRINTER,
AND THE CORRECT LPI IS SET.

This command would be typical of a system with a single serial
printer, running on line 5 with a single form feed being output at the
beginning of each job.

A more complex example might be:

STARTPTR 3, (9,20,25),1,524

Which would represent printer number 3, which is on serial port 24
and handles spool queues 9, 20 and 25. Note that the spool queue names
must be enclosed in brackets so that they may be distinguished between
the rest of the parameter list.

To stop a printer we refer to it by its ‘name’ and use the STOPPTR
verb.

STOPPTR 3

would stop printer number 3. STOPPTR 0-3 would stop all the printers
0, 1,2 and 3. STOPPTR B is global, and will stop all the printers on the
system. If the printer number is suffixed by W, the printer port will
return to TCL only when the printer becomes finally inactive. If

64 Chapter 6

STOPPTR is executed when a print file is being output the printer will
only stop when the print file is completed.

DIRECTING OUTPUT

Output is directed at a device by means of the SP-ASSIGN verb. This
must be executed before the printing process begins, so you will very
often find a SP-ASSIGN executed in a Proc immediately prior to an
Access statement or a report printing program. If no SP-ASSIGN has
been specified, output will be directed at the system printer dealing with
spool queue zero. The report will be printed as soon as the report has
been formed and no hold file will be kept. The spool file will therefore
disappear when the report has been printed. This default situation will
be resurrected if the SP-ASSIGN verb is executed alone, with no
options.

To change this the SP-ASSIGN verb is executed along with one or
more options. These options direct the output to a particular device
and/or spool queue, determine the timing of printing and the number of
copies and report the status of the current spooler assignment. With one
or two exceptions these options may be added in any combination or
order.

Options which direct output to specific devices are H, S and T. The
H option will create a hold file on disk, S will stop the output being
directed to the printer and T will direct the output to the tape unit. A
common SP-ASSIGN command is:

SP-ASSIGN HS

This will both create a hold file on disk and suppress output from
being printed. If this is used the actual printing process will be totally in
the control of the system administrator.

The spool queue is specified by the F option. This is immediately
followed by the spool queue number. Note that no spaces are allowed
between the F and the spool queue number. If you wish to direct output
through spool queue 3 the correct option is F3. F 3 is wrong and will
result in three copies being sent through spool queue zero. So to
enqueue the printout through spool queue number three and create a
hold file, the command would be:

SP-ASSIGN HF3

The Spooler 65

From this it follows that the number of copies is simply a number. It
is best to surround the number with spaces so that it is clear that this is
not a spool queue assignment. To instruct the last example to create two
copies the command would be:

SP-ASSIGN HF3 2

The C, I and 0 options change the timing of events associated with
the spooler. As indicated above, the spooler normally begins output at
the end of the report formation process. If the I option is used, this is
changed and the output is sent on a line-by-line basis as soon as it is
printed. This does not slow the executing process down though, it
simply means that the printer will begin printing before the executing
process has completed the formation of the report. This only works
where the output is being printed immediately. If the S option is being
used to suppress the printing operation, this causes the I option to be
overridden and hence have no meaning.

The C option may be used in conjunction with the I option to choke
the executing process so that it does not get too far ahead of the printing
process. SP-ASSIGN CI would be used in a situation where a very large
report was being produced and there was a risk of running out of disk
space. The C option limits the amount of disk or memory space being
used to 20 frames, or 10KB. It has no meaning unless there is also an I
option in effect.

The O option keeps the spool queue open at the end of the forma-
tion of the report. This is useful where a number of associated reports
are to be produced one after another and keeps them together. If
SP-ASSIGN HSO is executed all the reports will appear under one hold
entry.

The R option is used in conjunction with BASIC programs produc-
ing reports. If a BASIC program is producing several reports simul-
taneously by means of the PRINT ON syntax, the R option can direct
the output of each of the reports to separate spool queues. R4 would
therefore affect the report being produced by PRINT ON 4, R0 would
direct the output of a simple PRINT. This would normally be utilised
with multiple spool queues and printers. SP-ASSIGN R4 F1 would
therefore direct the PRINT ON 4 report through spool queue 1,
SP-ASSIGN RO F20 would direct the PRINT report through spool
queue 20. These commands might be executed one after the other and
both would be obeyed.

66 Chapter 6
MANIPULATING HOLD FILES

If the SP-ASSIGN option included H when a report was produced, a
hold file will be created. To produce output from a hold file we use the
SP-EDIT verb.

The simplest SP-EDIT verb will take the user through any hold files
that have been produced on that account and allow the reports to be
viewed and/or printed. Any reports which are currently being output
will be excluded from this. To view all the hold files, from whichever
account they were produced, the format SP-EDIT U is used. To view a
particular hold file you may enter SP-EDIT followed by the hold file
number required. SP-EDIT 4 will therefore bring up hold file number 4,
if it was generated on this account.

When the SP-EDIT verb has been executed a number of prompts
appear:

SP-EDIT
ENTRY # 1
DISPLAY (Y/N/S/D/X/(CR))?-

The first prompt is display. Entering Y here will display the first part
of the spool file on the terminal. N will take us on to the next prompt
without displaying the entry. S will take us to the spool prompt, D will
take us to the delete prompt, X will exit this process and return to TCL
and pressing carriage return will exit this spooler entry and go on to the
next one.

STRING:-

If we enter Y or N at display the next prompt will be string. This can
be used to start the report at any point. It is at its most useful where a
very long report is being printed and the printer jams, say, on page 89.
We do not really want to have to reprint the first 88 pages so the string
prompt can be used to start the printing process off from page 88. What
we do is enter a string of characters that first occur on page 88. The
spooler then hunts for these characters, if it finds them it goes on to the
spool prompt. If it doesn’t it replies STRING NOT FOUND and goes
back to the string prompt for another try. If we just press carriage return
here we can go directly on to the spool prompt.

You might think that this is a very nice idea, but that the difficulty
would be thinking of a character string which would not have occurred
until page 88. For this reason it is highly recommended that you always

The Spooler 67

put page numbers on reports. The unique characters can then be
PAGE 88!

SPOOL (Y/N=CR/T/TN/F)?-

An entry of Y at the spool prompt will initiate the printing process
according to the current spooler assignment. N, or carriage return will
pass on to the delete prompt. T will spool the report to the terminal,
stopping at the end of each page. This can be aborted at the end of any
page by typing control-X. TN will spool the report to the terminal but
will not wait at the end of each page. returning directly to the spool
prompt. F allows the report to be placed on a file in RUNOFF format.

An entry of F will result in two extra prompts:

FILE NAME?-

This is simply the name of the file where you wish the report to be
placed. If the file does not exist, the system error message:

[201] xxxx IS NOT A FILE NAME

will be brought up and the whole editing process will be aborted, exiting
to TCL. The second prompt is:

INITIAL ITEM NAME?-

A record id is required here. The report will be placed in this record
in RUNOFF format. Subsequent records will be created if a page break
is encountered. Suppose FRED was entered as the initial item name and
the report is spooled into this item. Page 2 of the report will be filed as
FREDO001, page 3 will be filed as FREDO0002 and so on. The process
automatically puts the RUNOFF command for chaining these items at
the end of the preceding item so that the report may be recreated by the
command:

RUNOFF file FRED

Note that any items which already exist with the id of FRED will be
overwritten when the spooler creates the record. If there are no page
break (top of form) characters in the text, such as might be produced by
a BASIC program blindly printing information, a record break will be
forced after 12288 characters (12 Kbytes) have been placed into a
record. Any trailing spaces at the end of a page will be truncated.

If you have not asked for the hold file to be output to the printer you

68 Chapter 6

are next given the opportunity to delete the hold file. If the hold file is
being output the process continues with the next hold file.

DELETE (Y/N=CR)?-

An entry of Y will delete the hold file. N or carriage return will leave
it as is.

SP-EDIT OPTIONS

The SP-EDIT verb may be modified with many options — this is a brief
summary of some of them. A full description may be found in the
peripheral devices section of the Pick Reference Manual.

Option Meaning

n Edit spool file n.

n-m Edit files n to m.

Fn Edit spool files for form queue n.

U Edit all spool files.

accname Edit spool files created on account accname.
P Force output to the printer, despite the current SP-ASSIGN setting.
T Force output to the tape, despite the current SP-ASSIGN setting.
R Force output according to the current SP-ASSIGN setting,
including form queue assignments.
MS Spool all hold files, without prompting.
MD Delete all hold files, without prompting. (Use carefully!)

ADMINISTERING THE SPOOLER

The above describes the way in which the spooler may be used. There
are a number of verbs by means of which the system administrator may
see what is happening and where, and to some extent change the activity
being carried out by the spooler.

The LISTPEQS verb displays a table showing the status of all the
print files on the system, as in Fig. 6.1.

The first column shows the job number as you might refer to it via
the SP-EDIT verb. The second shows a rather esoteric status which is of
no practical benefit. The third shows the line number which generated

The Spooler 69

the report. The CP column shows the number of copies that have been
requested. The FO column shows the spool queue number that the

PRINTER LIST ELEMENTS 21 DEC 1985 12:52:30

£ STAT LK LN STATUSES CP FO FRMS DATE TIME ACCT

1 8080 OHC 2 2 1 20/12/84 14:12:01 SEMINAR
2 8080 OHC 1 3 1 20/12/84 14:12:22 SEMINAR
3 8080 OHC 1 0 2 20/12/84 14:25:09 SEMINAR
4 8080 OHC 1 0 2 20/12/84 14:25:29 SEMINAR
5 48A5 OPCSOL 1 0 2 21/12/84 12:51:28 SEMINAR
6 88Cl OH L 1 O OPEN 21/12/84 12:52:29 SEMINAR
6 QUEUE ELEMENTS. 8 FRAMES IN USE.

Fig. 6.1. The output produced by LISTPEQS.

report is queueing up on. The column headed FRMS shows the number
of disk frames that are being utilised and is an indication of the size of
the report. An entry here showing OPEN indicates that this file is being
created. DATE and TIME are the date and time at which the report was
produced. ACCT is the name of the account from which the reports
were generated.

The STATUSES column shows exactly what is happening to this
report at the moment. Here is the meaning of the codes used in the
report shown in Fig. 6.1. A full list of possible codes can be found in the
Pick Reference Manual.

Code Meaning

A hold file has been created.
Sent to the printer.

Spooled,

Locked (cannot SP-EDIT).
Closed (i.e. report completed).
Open (i.e. report being output).
(neither C nor 0) Report not completed.

[oXeolul”Ra-Res!

LISTPEQS may be modified with a number of options, these are
summarised as follows:

70 Chapter 6

Option Meaning

n display for print file n.
n-m display for print files n to m.
acctname display jobs created by the account acctname.

A display jobs for this account only.
C summary.
F display print files queued for output only.
L includes any deleted hold files.
P output LISTPEQS to the printer.

What LISTPEQS does for hold files. LISTPTR does for printers.
The verb LISTPTR gives a table. as in Fig. 6.2, showing the status of all
the available printers on the system.

PRINTER ASSIGNMENTS 13:46:43
PRINTER OUTPUT QUEUES PAGE DEV OR STATUS
TYPE NUMBER SKIP LINE £

SERIAL 0] 0 0 5 ACTIVE
SERIAL 2 1 2 1 3 INACTIVE

Fig. 6.2. The output produced by LISTPTR.

The first column here is the printer type, and may be SERIAL or
PARALLEL. The second column is the printer number as allocated by
the STARTPTR verb. The columns headed OUTPUT QUEUES con-
tain the spooler queue output numbers that this printer is currently
handling. The PAGE SKIP column gives the number of inter-job pages
that are to be ejected at the end of each printout, again as per the
STARTPTR specification. DEV will be the printer ordinal for a parallel
printer or the serial line number for a serial printer. STATUS may be
ACTIVE, if the printer is currently printing, INACTIVE if it is not,
STOPPED if the printer has been stopped or UNALLOCATED if it
has not been started, or stopped in an unusual manner. The presence of
UNALLOCATED in this display could mean that there are problems to
be sorted out.

Again LISTPTR may be followed by one or more of a number of
options which change its operation.

SP-STATUS gives a wordier version of LISTPTR. Additionally, it
indicates which job is currently being dealt with and a judgement as to
whether the printer is on-line or off-line. It also indicates whether the

The Spooler 71

Option Meaning

n Details of printer n only.
n-m Details of printers n to m only.
B Details of all possible printers whether or not they have been started.

P Output LISTPTR to the printer.

spooler is in an "ambiguous’ state. If it is, you should stop the printer
causing the problem. SP-STATUS also serves another purpose. Occa-
sionally the spooler can appear to be *hung’: that is. jobs are queued for
output but the spooler appears to be doing nothing with them. The
spooler is “asleep” and executing SP-STATUS has the effect of waking
the spooler up. The same options may be used with SP-STATUS as with_
LISTPTR.

LISTABS may be used to show the SP-ASSIGNment of each line on
the computer (see Fig. 6.3).

LINE STATUS COP FORM

£ IES £
0 1 2 0
1 0 0
2 0 0
3 0 0
4 1 2
5 0 0

Fig. 6.3. The output produced by LISTABS.

In this case the first column is the line number, the second shows the
spooler assignment, the third the number of copies being generated and
the fourth shows the queue number to which output would be directed.

IF THINGS GO WRONG

Spooler problems may arise for many reasons; the problem may be as
simple as having requested the wrong report to be output via SP-EDIT,
or may be potentialy disastrous resulting from some hardware problem.
The LISTPEQS, LISTPTR, SP-STATUS and LISTABS verbs will
probably be of some help in determining the nature of the problem.
SP-KILL and :STARTSPOOLER are the means of fixing the problems.

72 Chapter 6

SP-KILL can abort the current printing process. or remove jobs
enqueued for output and can even be used to delete printers from the
system entirely. The simplest form of the SP-KILL verb will abort the
current report being printed on printer zero. The report will continue
for up to 512 bytes and then terminate with the message ABORT!. This
is useful where a long report has been initiated by mistake and allowing
this to come to a conclusion will result in a waste of both paper and time.

SP-KILL may be followed by a number of options which change its
operation.

Option Effect

n Kill the current output of printer n.
n-m Kill the output of printers n to m.
B Kill the output of all printers.
Fn Stop spool file n from being output, even if it is not
currently being output but is only queued for output.
Fn-m Stop spool files n to m from being output.
FB Stop all queued output.

These options may be followed by one or more of the following.

Option Effect

A Limit the effects to spool files created on this account.
N Suppress the ABORT! message.
O Stop a report currently being output.

The F option is interesting because it gives the ability to move print
files from one spool queue to another. Imagine a situation where there
are two printers on the system servicing different spool queues. Using
LISTPEQS you can determine that the first printer has say 20 print files
to process whereas the second is inactive. Moving parts of the queue to
the second printer enables you to speed up the printing process. Care
has to be exercised though because KILL means exactly that. If no hold
file has been created the report will be lost.

Suppose that a particilar report that you wanted immediately was
queuing in spool queue 6 behind another very large report which was
likely to take an hour to print. When the report that you want was
produced, the application reported that the printout was being gener-
ated into hold entry number 10. LISTPEQS confirms that the report is
queued for output. To dequeue the report execute the command:

The Spooler 73

SP-KILL F10
PRINT FILE # 10 WAS UNLINKED AND IS AVAILABLE AS A HOLD FILE.

You might know that the printer which is set up to handle spool
queue number 1 is free at the moment. The next thing to do is set your
own SP-ASSIGN status to output to spool queue number 1 and force
whatever output you produce to adhere to your SP-ASSIGN status by
executing the command:

SP-ASSIGN F1R
The next thing to do is to edit the hold file and spool the report:

SP-EDIT 10

ENTRY # 10

DISPLAY (Y/N/S/D/X/(CR))?-S
SPOOL (Y/N=CR/T/TN/F)?-Y

and the report will begin printing immediately on the free printer.

There is another option for SP-KILL which must be used with
caution. This is the D option and deletes a printer from the system.
SP-KILL D will delete printer zero, SP-KILL D1 will delete printer 1
and so on. SP-KILL DB will delete all the printers. There may be
unpleasant side effects to doing this if the printer being deleted was
busy. You may find that you cannot restart the printer using
STARTPTR and that the whole spooler has to be restarted. In general it
is better to execute a STOPPTR first. SP-KILL D should only be used
when you know that the printer(s) in question are inactive.

If all else fails and the spooler refuses to behave after treatment with
SP-STATUS, STOPPTR, STARTPTR and SP-KILL the guaranteed
cure all is to restart the spooler using the :STARTSPOOLER verb. This
is equivalent to the process which takes place when the computer is first
booted, the coldstart process. It has a number of unfortunate side
effects. Under certain circumstances it can be harmless, in others the
entire spool queue may be lost and all the printers deleted. It might be
necessary because the spooler has dropped into the system debugger, or
is trying to output to a non-existent line. Hardware faults can easily
affect the spooler, particularly a disk fault resulting in the spooler
logging lots (many thousands) of disk errors. In this last case it is
unlikely to be affecting only the spooler and a controlled shut down and
a call to the maintenance engineers may be necessary anyway.

The case where the spooler drops into the debugger can be con-
firmed by looking at the WHERE display.

74 Chapter 6
WHERE

*00 0200 FB20 121.000 121.1A2
05 02A0 F300 184.1DE 170.0CF
06 02CO BFOO 170.055 170.13D

Each line of this display represents a line on the system, as was
explained earlier. The first column is the line number. The asterisk
means that this was the line which executed the WHERE verb. The
second column is the disk frame number for the beginning of the area
which the operating system uses as workspace for that line. The third
column is the status of the line and the subsequent columns represent
the operating system address at which the line is executing and their
respective return stack addresses.

The status column is broken into two parts — the first two characters
tell us the type of process being carried out; this tends to be different on
different releases and different computers. If the last two characters are
40, that process is in the debugger. If the spooler’s status is 40, (line 6
above), this means that the spooler itself has dropped into the debugger
and you will definitely have to restart the spooler. Normally it is 00.

If this happens, execute the :STARTSPOOLER verb, normally any
print files being output which are not hold files will be lost. There are
options to :STARTSPOOLER with successively more side effects,
these are discussed in the manual. Generally if this does not get the
spooler started again successfully it is time to call the engineers.

OTHER PICK SPOOLERS

The discussion above has centred on the standard Pick spooler. The
McDonnell Douglas version, while it has its roots in the same ideas, is
now quite different. The Ultimate version is slightly different and differs
mainly in having different verb names. These are set out in Fig. 6.4.

On McDonnell Douglas systems the SP-ASSIGN verb is very similar
to the above, although a few options differ. Option I on Pick becomes
option N on McDonnell Douglas. STARTPTR, STOPPTR,
SP-KILL F, SP-EDIT, LISTPEQS and SP-STATUS are carried out by
a menu system instigated by the verb SP-JOBS. There is no equivalent
to LISTABS. Spool queues may have real names rather than numbers,
spool queue 1 could be INVOICES, spool queue 2 could be ONE-
PART, spool queue 3 could be TWOPART and so on. The SP-EDIT

The Spooler 75

Pick verb Ultimate verb
STARTPTR SP-STARTLPTR
STOPPTR SP-STOPLPTR
SP-EDIT SP-EDIT
SP-ASSIGN SP-ASSIGN
SP-ASSIGN O SP-OPEN
SP-ASSIGN C SP-CLOSE
SP-EDIT SP-EDIT
SP-KILL SP-KILL
SP-KILL Fn SP-DEQ
SP-KILL D SP-DELETELPTR
LISTPEQS SP-LISTQ
LISTPTR SP-LISTLPTR
LISTABS SP-LISTASSIGN
SP-STATUS SP-STATUS

Fig. 6.4. Ultimate spooler verbs.

part of this operates like a scaled down system editor. Instead of the
prompt sequence the spooler replies:

TOP

and you are looking at the top of the print file. The print file cannot be
amended. only viewed. The command Ln lists out the next n lines on the
terminal, so the whole of the hold file may be inspected. P sends the
report to the printer from the point being inspected. This can cause
embarrassment if you are not positioned at the top of the report so
remember to execute a T (top) first. EX exits the hold file and returns to

the SP-JOBS menu.

Chapter 7
More about the Pick Database

In theoretical terms the Pick Database is of the Relational type, that is,
the System’s Database Management Subsystem can perform certain
tasks and the Database files may be of such format that they closely
match the academic definitions of the Relational Database Model.

These tasks are termed JOIN, PROJECT and SELECT. The file
formats are called first, second and third normal form. A detailed
discussion of what these consist of can be found in most texts on
databases'. It suffices here to say that JOIN, PROJECT and SELECT
can be obtained by single commands using Access; first normal form is
achieved easily and second and third normal forms can be generated by
using additional files. JOINs and SELECTSs have already been indicated
in the chapter on Access. In that chapter, Fig. 2.23 is a PROJECTion.
However, Pick allows the system designer to move away from the
normal forms. This might be considered bad practice but the advantages
that might be gained are probably worth it.

As described in Chapter 3, the Pick database is implemented on a
hierarchy of accounts, files and records. This can be represented di-
agrammatically as in Fig. 7.1.

CREATING FILES

Files are created by means of the CREATE-FILE utility. The syntax is:
CREATE-FILE filename modulo, separation modulo, separation

or
CREATE-FILE DICT filename modulo, separation

or
CREATE-FILE DATA filename modulo, separation

DICT or DATA are used when it is only required to create a single level

L. Particularly Database for the Small Computer User by Tony Elbra, published by the.
National Computing Centre.

77

78 Chapter 7

SYSTEM
DICTIONARY
(names of accounts)

ACCOUNT MASTER DICTIONARIES |
Saccount voc?bulary) !
J |

Y 4
OICT | DATA DICT[DATA 0ICY |DAT. DICTIDATA

A

Y

F| I L J]E S

~ N ~

Fig. 7.1. The Pick File Hierarchy.

file (DICT) or to create a separate DATA portion for a already existing
dictionary (DATA).

filename is the name of the file to be created. If the DICT/DATA
option is omitted then a dictionary and an associated data portion are
created. A file-defining item will appear in the master dictionary, which
defines the dictionary portion of the file, and another will appear in the
dictionary to define the data portion. These file-defining items are
ordinary records but the system recognises them as pointers to file
areas.

Figure 7.2 shows the structure of a file defining item, as it might
appear when edited.

001 D Attribute 1 is a D

002 14325 File begins at disk frame 14325
003 3 Modulo is 3

004 1 Separation is 1

005 No retrieval lock code

0G6 No update lock code

007 Record id conversions

008 Record id correlatives

009 L Record id field is left justified
010 10 Record id field is width 10
o1

012

013 (7.1) File will be resized to 7,1

Fig. 7.2. The structure of a file defining item.

More about the Database 79

Attributes 5 and 6 of file-defining items are used for update and
retrieval locks: these are discussed at more length in the section on data
security.

Attribute 13 of the a file-defining item may be used to resize a file
when it is restored. The format is (modulo, separation).

Attributes 2., 3 and 4 must not be changed under any circumstances.
This information is used by the operating system to calculate the posi-
tion of each record in the file.

The modulo of the file tells the system how many groups of “frames’
to reserve for the file. A *frame’ is an area of disk 512 bytes long. The
whole of the disk on the Pick computer is divided up into these frames,
which are numbered sequentially. When the file is created the system
reserves disk frames specifically for this file from its table of available
contiguous frames.

The separation of the file tells the system how many contiguous
frames to reserve for each group to begin with. Thus by multiplying
together the modulo and the separation. this will tell you how many
frames the file takes up when it is created. If the separation parameter is
omitted from the CREATE-FILE command then a separation of one is
assumed.

The first modulo and separation parameters in the CREATE-FILE
processor define the dictionary size: the second set defines the data
portion. For a single level file the second parameters are omitted.

separation is 2
e —

disk
frame no.
15103 15104

15105 15106

modulo is 5
15107 15108

15109 15110

| 151 15112

Fig. 7.3. Contiguous disk frames for the primary file space of a file modulo 5, separation
2.

80 Chapter 7

Some attempt should be made to estimate the size of file required
before it is created in terms of the number of records that are expected
to be in the file and the average number of characters that are expected
to be in each record. Calculate the total number of characters that are
expected to be in the file, adding one for each field or subfield of
information and four for each record to allow for the item length.
Divide by 500 to get the number of frames required (the first twelve
bytes of each frame are used by the system). Now you are in a position
to estimate the best modulo and separation for the file.

The idea is to optimise the retrieval time for any particular record
from the file. To do this we wish to create a situation where the data is
spread evenly through the file and where overflow space is kept to a
minimum, yet disk space is not used up unnecessarily. Experience seems
to suggest that 125% full is about optimum. This would suggest that four
out of five records will be in the primary file space, the primary file
space will, theoretically, be full, and that at most only one frame fault
will be required to retrieve a record. The utilisation of any file can be
monitored by examining the file statistics report which is produced
whenever a FILE-SAVE or ACCOUNT-SAVE is carried out.

When the system tries to retrieve a record it carries out a hashing
algorithm on the record id to determine which group the record will be
found in. It then begins a sequential search along the records in the
group until it finds the record it wants. If it comes to the end of the
frame in the primary file space it will have to frame fault — that is, jump
to the overflow space indicated by this group. This is very unlikely to be
contiguous to the area that is being examined currently, so a slight delay
is experienced while the disk heads reposition themselves.

To ensure that this access routine behaves just as we would like it,
we must ensure that the file fills up evenly. Otherwise, we could have a
situation where one group is empty, and the next group is 300 or 400 per
cent full. To do this we should choose a prime number for the modulo.
Numbers that divide by 2, 3 and 5 provide particularly poor distributions
when used as modulos.

To choose the separation, look at the expected size of any record.
Obviously if a single record is more than 500 characters then there will
always be a frame fault unless some action is taken to ensure that the
end of the record stays in contiguous space. This is why we can set the
separation. To minimise the disk space wasted, do not calculate separa-
tions as the number of frames required for one record. For instance, to
allow a separation of 2 for records that are on average expected to be
600 characters in length, will result in 400 bytes of primary file space

More about the Database 81

being wasted on every group in the file. In general. it is not worth
increasing the separation to 2 unless you expect records to be at least
900 characters long. Similarly. increase the separation to 3 if you expect
the records to be at least 1400 characters long.

Calculation of required file size can be summarised like this:

1. Calculate the average record size expected.

. Calculate the average number of records expected.

. Separation is ((record size—400)/500)+1.

. Frames required is record size * records/500.

. Primary space required is frames * 100/125.

. Modulo is primary space/separation.

. Adjust the modulo to the next highest prime number.

~N O AN

As indicated earlier, this does not limit the size of the file in absolute
terms because additional frames will be linked to the file as and when
required. This procedure should optimise the performance of the
system.

On a heavily-used system, overflow frames will be allocated in the
usual manner from the lowest available frame in the overflow space
table. The overflow space table can be displayed by the POVF utility.

POVF

FRAME 1D FRAME 1D

9046 1 9100-9111 12
11327-51623 40297

TOTAL NUMBER OF FRAMES AVAILABLE 40310

In the example above, the first 13 frames required will come from
relatively low disk space. Thereafter, frames will be taken from the area
beginning at 11327. Consequently, disk head movement is greater and
the system response times suffer accordingly. The situation can be
improved somewhat if the system is restored. On a restore items will be
taken from the tape drive and be placed in the appropriate group. When
any particular group is full a frame will be taken from the lowest
available space in the overflow table, but the overflow table will begin at
the end of the primary file space so the disk head movement is mini-
mised when retrieving an item which is in the overflow area. Any
reallocation of file size takes place when the system is restored and this
will also help. On a heavily used system a routine of regular restores
(say once every three months) is desirable.

Dictionaries may have more than one data portion associated with

82 Chapter 7

them. When this happens we say that the dictionary is shared between
the two data files. Obviously the data files should have the same logical
structure when this is required. Similarly data portions may be associ-
ated with more than one dictionary. This might be used to restrict access
of parts of files to particular users who have their own privileged
dictionary. When Access accesses data in files with different names than
the associated dictionary it is necessary to modify the file name. separat-
ing the name of the dictionary and the data file with a comma, as in the
command:

LIST PERSONNEL,PERSONNEL.MANAGER

Here the dictionary is called PERSONNEL and the data is called
PERSONNEL.MANAGER. PERSONNEL.MANAGER is a data file
defined in the dictionary PERSONNEL, quite separate from the PER-
SONNEL data file.

Similarly. when BASIC is required to OPEN one of these files the
format would be:

OPEN " 'PERSONNEL,PERSONNEL.MANAGER’ TO PERSONNEL.FILE ELSE

This shows that files must not contain commas in the file name.

To create multiple data files of this nature a modified form of the
CREATE-FILE utility is used. To create a file with two data portions
and a shared dictionary a sequence of events may take place as follows:

CREATE-FILE PERSONNEL 1,1 23,1
CREATE-FILE DATA PERSONNEL, PERSONNEL.MANAGER 37,1

The first command creates a dictionary and data file called PER-
SONNEL. The second creates a single level data file called PERSON-
NEL.MANAGER that will be referenced by the same file dictionary.

To allow data files to be accessible by more than one dictionary is
easier. The USING connective is employed, i.e.

LIST PERSONNEL USING DICT PERSONNEL.MANAGER

Here the data is contained in an ordinary file called PERSONNEL.
The dictionary is a quite separate file, which may well have its own
associated data. Both files could have been created with the simple form
of the CREATE-FILE processor. In this way the personnel manager
may uncover information held in the PERSONNEL file which is res-
tricted to senior users of the file.

More about the Database 83
Q POINTERS

The discussion so far assumes that all the data files to be created in a
particular account will only be accessed from that account. This need
not be the case.

As discussed above. files are defined by the system recognising D
pointers in the master dictionary and in the dictionaries. Q pointers
redirect the system to look for the file-defining item in another place.
This can be used to tell the system that the file is really known by
another name, or that the file is really in another account, or that the file
is really associated with another dictionary.

001 Q The first attribute must be Q

002 SMITH The file is in the account SMITH
003 PERSONNEL The file is called PERSONNEL
004

005 Attributes 2 to 10 may be omitted
006

007

008

009 L

010 10

Fig. 7.4. The structure of a Q pointer.

If attribute 2 is omitted, then the pointer defaults to the account to
which the user is logged on. If attribute 3 is omitted, then the pointer
defaults to the master dictionary. Attributes 4 to 10 have the same
meaning as for D pointers.

The system utility SET-FILE creates a Q pointer to any given
account called QFILE; this is used as follows:

SET-FILE SYSPROG NEWAC

This indicates that the system file NEWAC will be available from the
particular account in which the SET-FILE command was executed.
Subsequent commands such as:

LIST QFILE

will operate on the NEWAC file until the QFILE is reset by another
SET-FILE command.

84 Chapter 7
POINTER FILES

In Chapter 3. we saw that all data on the system was held in the same
way. But there is one exception. This concerns files which are to hold
programs. These are ordinary files. created in the ordinary way. except
that the file-defining item in the master dictionary must have a DC in
attribute 1. not a D. This designates the dictionary of the file to be a
“pointer file™ capable of holding BASIC object code. The dictionary
and data sections may be used in the ordinary way, but the Pick BASIC
compiler will add program pointers to the dictionary as programs
are compiled. Some manufacturers provide a system utility
CREATE-PFILE to put in the DC automatically on creation, some do
not and the DC must be edited in after creation.

Pointer files consist of pointers to the beginnings of either BASIC
object code or saved lists. The actual object code. and the saved lists are
not subject to the normal 32K limit on item size because they are merely
pointed to: no item length is required since no other item may reside in
the same group of frames. The system file POINTER-FILE is used in
this way to collect saved lists and operate upon them.

This POINTER-FILE system does give the programmer a way to get
over the 32 Kbytes item size limitation on program length. What has to
be done is to change the BASIC program from an ordinary program into
a saved list, but in the data portion of a pointer file. This means that
both dictionary and data sections must be pointer files. The following
sequence of events will achieve the desired effect.

1. Create a double pointer file by ensuring that both the dictionary and
the data sections of the file are defined as type DC.

2. EDIT the large program.

3. File the program with the FIL command instead if FI. This saves the
program as a list, consequently the maximum size will be 64K.

Subsequent operations such as EDIT, BASIC and so on will go
through the pointer, the object code will be pointed to by the dictionary
section as usual.

OTHER FILE TYPES, DX AND DY

All that remains is to give an indication of the manipulation that may be
achieved by changing the file type of the file-defining items.
Placing an X after the D or DC in a file-defining item will ensure that

More about the Database 85

the file is never saved on a backup operation. This means that if the
system is subsequently restored the file will no longer exist.

Placing a Y after the D or DC in a file-defining item will ensure that
the data in the file is not saved on a backup operation. On a subsequent
restore the file will exist, but it will be empty.

THE PHYSICAL LAYOUT OF THE DATABASE

The physical representation of the database is quite different to the
logical representation. All of the available disk is divided up into 512-
byte sections called frames. The frames each have a unique number
starting at | and incrementing sequentially from there on.

Frames may be linked together. When this happens a record of the
forward link is maintained in the first linked frame and a record of the
backward link is maintained in the second linked frame. In this way any
number of frames may be linked together and so data structures which
cannot fit into a single frame can be accommodated.

disk frame
16339 v

16340 23974

16341

+ 39628

16342

18595

16343

primary space

Fig. 7.5. A file which has one group with two overflow frames and another with one
overflow frame.

86 Chapter 7

The first twelve bytes of any frame contain information about the
frame. Thus bytes 12-511 are available for data. More specifically:

Byte 0 — Unused.

Byte | — Number of forward linked contiguous frames
Bytes 2-5 — Next linked frame ID

Bytes 6-9 — Previous linked frame ID

Byte 10 — Number of backward linked contiguous frames
Byte 11 — Unused

Bytes 12-511 — Data

A data record can only appear within the data portion of a frame.
Physically. records are arranged with a record length, followed by the
item ID followed by the record attributes. The last attribute is termin-
ated by an attribute mark, and the end of the item is designated by a
segment mark (ASCII character 255), like this:

0029ITEM-ID"ATTRIBUTE,ONE"ATTRIBUTE,TWO" __

If the record is the last in the group. two segment marks mark the end
and the item length ficld will point to the second segment mark. The
record length is 4 bytes long and represents the number of characters
from the beginning of the record length to the end of the last attribute
on the record inclusive. Thus the maximum size of a record is 32Kbytes.
This restriction is to be lifted in the next major enhancement of Pick,
Open Architecture.

The physical format of the data can be displayed by the DUMP verb.
The syntax is

DUMP frameid1-frameidZ options

Frameid can be in decimal or, if preceded by a full stop, in hexade-
cimal. Options available include:

Option Meaning

G The dump is to be a dump of the whole group beginning at
frameidl. The display continues by dumping further frames
following the forward links.

L Display the links only.

N Do not wait for carriage return to be pressed at the end of a
page of output.

P The DUMP display is to be sent to the printer.

X Data is displayed with the hexadecimal ASCII codes as well

as in character format.

More about the Database 87

Figure 7.6 shows the output produced by a DUMP command with
the hexadecimal option.

DUMP 24356 X

FID: 24356 : 8] 0 0 0 (SF24: 0 0 0 0)
0001 30303539 48413132 3334FFE41 6C706861 1 :0059HA1234"Alpha:
0011 20496E64 75737472 69657320 4CTL6LFF, 17 : Tndustries Ltd":
0021 32353820 48616C73 74656164 20436C6F 33 :258 Halstead Clo:
0031 7365FD52 616D7362 6F74746F 6DFD4C6H1 49 :se|Ramsbotton]La:
0041 6E636173 68697265 FE4D7220 536D6974 65 :ncashire™Mr Smit:
0051 682FFE35 303030FE FF303033 44485337 81 :h."5000"_003DHS7:
0061 363534FE 5369676D 61204C74 64FE3120 97 :654"Sigma Ltd"1

0071 546F776E 20537175 617265FD 4C656963 113 :Town Square]leic:
0081 65737465 72FE4D72 2042726F 776EFE31 129 :ester"Mr Brown"1l:
0091 30303030 FEFF3030 35414542 39393939 145 :0000"_005AEB9999:
O0Al FE426574 6120436F 72700F72 6174696F 161 :"Beta Corporatio:
00B1 6E20496E 63FE3930 36353020 53746169 177 :n Inc"90650 Stai:
00Cl 6E746F6E 20426F75 6C657661 7264FD53 193 :nton Boulevard]S:
00Dl 616E2044 6965070F FD4361FD 555341FE 209 :an Diego]Ca]USA™:
O00E1 42204C69 73746572 FE313030 3030FEFF 225 :B Lister*10000"_
00F1 FFFEFFFF 31303030 30FEFFFF FE353030 241 :_"_10000"__"500:

0101 30FEFFFF FE3035FB 45454545 45454545 257 :0"__ OS[EEEFEEEF:

Fig. 7.6. The type of output produced by DUMP with an X option.

GROUP FORMAT ERRORS

Any computer system can be subject to unforeseen events, such as a
sudden power failure or a hardware failure. The Pick Operating System,
in common with many others, does not take kindly to an uncontrolled
shutdown. If such an event takes place and the computer is in the
process of updating a record, the record might not be written away in
exactly the correct format. Consequently the data cannot be read prop-
erly and appears to be corrupted. We call this problem a ‘group format
error’.

This is not to say that group format errors cannot be coped with.
Indeed it is the mark of a good operating system that such serious
problems are rare, but can be fixed.

A group format error (GFE) occurs when an item length appears to
be incorrect, or forward/backward links are incorrect. It can also occur
in process workspace, as a ‘phantom’ GFE. A group format error is
probably the nastiest problem that can be encountered on a Pick system.
Fortunately, it is probably one of the rarest.

88 Chapter 7

What is of concern is that encountering a group format error can lose
user data and can require a great deal of technical expertise to sort out.
It almost certainly means that something is wrong with the computer
hardware or that a system mode has been corrupted.

Systems where assembler language programming is going on are big
trouble where GFEs are concerned. Assembler language programming
should never be carried out on live and working systems. Ideally, if
assembler language programming must be done the programmer should
have his own system and he can live with his own problems. This is the
main reason why manufacturers are so reluctant to release the assemb-
ler and will cancel maintenance contracts where assembler language
programming is carried out. Only very experienced and competent
personnel should carry out assembler programming and a very good
reason should be required before any assembler programming is under-
taken. The system provides enough utilities to be able to solve any
normal data processing requirement without recourse to the assembler.

A group format error is reported by the system. Without warning:

GROUP FORMAT ERROR nnnnn

will appear. nnnnn will be the frame id of the frame where the problem
has occurred. At the moment that the GFE is reported. the system
administrator should endeavour to stop any further processing on the
system. Users should not log off at this point but simply stop. Make a
note of nnnnn and DUMP the frame to try to establish what file is
affected. The GFE handler will have been invoked on the process which
detected the GFE and will be prompting for action. Valid actions are:

D - enter the system debugger
E - end the process and exit to TCL

F - allow the GFE handler to try to fix the GFE and the process will
continue. This is not recommended! The GFE handler will simply
put an end of group mark at the end of the last piece of good data.
Any records which are in the same group but begin after this point
will effectively be lost. To recover the lost records the GFE still has
to be fixed, or the records restored from the last back up. If the data
has changed it will have to be reentered.

It is best to do nothing on the terminal where the GFE has
occurred but go to another terminal and DUMP the frame where
the GFE has been reported.

If the file can be positively identified the question is how does
the GFE manifest itself?

More about the Database 89

It is likely to be of one or more of the following classes:
(1) The item length is incorrect.
(2) The item length is not a hexadecimal number.

(3) The item does not terminate with an attribute mark — segment mark
sequence.

(4) The item-id hashes into the wrong group.

(5) The frame linkages are incorrect, in this case the forward link
probably points to another file, or a spooler entry. The backward
link of the forward link frame may not point back to the forward
linking frame.

(6) No data is identifiable as records. This is probably a phantom GFE,
that is. it is in the user’s workspace. Logoff the offending process
and the GFE should go away.

If technical help is not immediately available and the GFE is in a file
where critical data appears, the following procedure might help:

First stop all users from carrying on work. They should not log off,
just stop using the computer. If the frame where the GFE is has got
mixed up with the free disk space table, it could get re-used by another
user and the problem will be made worse.

Then T-DUMP the file using the syntax T-DUMP ONLY filename if
there are default dictionary items. This will dump most of the good
items to the tape with the GFE being reported in the bad group.

Next use the editor to delete the D pointer which defines the data
portion of the file (ED DICT filename filename then FD). This will
mean that the frames currently being used by the file will be ‘black
holed" and cannot be used by any process. Furthermore, if there is any
conflict over linkages (forward linking into a print file for instance), the
conflict is removed. Do not try to DELETE-FILE the file because the
frames used will be returned to the overflow table for reuse. If some of
the frames are already being used by a print file the GFE could come
back again.

Now recreate the data section of the file via

CREATE-FILE (DATA filename mod, sep

where mod and sep are the original modulo and separation of the data
file. This will allocate a new set of frames to the file.

The next thing that has to be done is to fill up the data file. To do this
SEL-RESTORE the file from the last back up.

To bring the file up to date as much as possible T-LOAD the file

90 Chapter 7

from the T-DUMP tape that was used earlier. Use the (0) overlay
option so that records that have changed will be restored correctly.

Now delete any items that were deleted from the file since the last
file save. The SEL-RESTORE brought these back. Additionally, if any
records that were in the group with the GFE had been changed since the
file save, the changes have to be done again since these will not have
been present on the T-DUMP. The only data missing now is any data
which has been created since the last file save and which happened to
hash into the bad group. Adequate manual procedures should exist so
that this can be done.

Chapter 8
Pick and Security

Pick provides many facilities to ensure that the computer is secure. This
is because the subject of security is approached from many different
angles. The system administrator will want to ensure that his system
cannot be accessed by unauthorised users, and also that authorised users
may only access data to which they are entitled. Technical considera-
tions, such as record locking, are dealt with in the chapter on BASIC.

Most of this chapter deals with the SYSTEM dictionary. The
SYSTEM dictionary is the highest level file in the database hierarchy
(see Chapter 3). It contains records whose item-ids are the same as the
account names which are available on the computer.

The SYSTEM dictionary can be accessed as an ordinary file by
logging to the SYSPROG account. Thus the following procedure may
be used to edit the SYSTEM entry for the ADMIN account:

LOGTO SYSPROG
PASSWORD:

then at TCL enter
ED SYSTEM ADMIN

PASSWORDS

The first level of security for the system is password protection, which
may be applied to any account, and ought to be applied to all accounts.
When a user enters a valid account name at the LOGON prompt, or
tries to LOGTO another account from TCL, he will be confronted with
a PASSWORD prompt. Before he will be allowed to log on to the
account he must type the correct password. If he gets the password
wrong he will be returned to the LOGON prompt. An unauthorised
attempt to LOGTO the account from another will result in the user
being returned to TCL in his original account.

A utility is provided within SYSPROG for setting or changing
the passwords of accounts. This utility is invoked by typing the word
PASSWORD at TCL. The program prompts for the account name and

91

92 Chapter 8

the new password and then stores a code representing the new password
in the SYSTEM dictionary.

Many systems have this kind of password protection. but it can be
overridden because some facility is provided by which the user may look
up the password. The Pick password system works by storing a password
checksum on attribute 7 of the SYSTEM dictionary'. This may be
edited but will give no clue as to the actual password. When the user
types a password at LOGON the system takes whatever he has entered
as a password and calculates a checksum. This calculated checksum is
compared with the checksum stored on the SYSTEM dictionary. If they
match the user is logged on, if not, he is not allowed to log on.

However, this checksum may be edited out of the SYSTEM diction-
ary. If this happens, the password protection is removed and no pass-
word check is carried out. Password protection will also be removed if
the checksum is changed to non hexadecimal data. The unscrupulous
user may then LOGTO the protected account without being hindered
by a password. Nevertheless, unless he replaces the checksum when he
has finished, the unauthorised access will be detected because the sys-
tem administrator will notice that the password protection has dis-
appeared from the account.

This unauthorised access will only have been possible if the user
were able to gain access to the SYSTEM dictionary. Clearly the
SYSTEM dictionary should be protected if any data is to be secure.
SYSTEM should only be accessible from SYSPROG. If SYSPROG is
properly password protected, naive users will not be able to remove
password protection from accounts. This is because they will need to
access SYSTEM to access the password protection. To access SYSTEM
they first must LOGTO SYSPROG. If SYSPROG is password pro-
tected they cannot, without first removing password protection from
SYSPROG. To do that they need to access SYSTEM — back to square
one!

UPDATE AND RETRIEVAL LOCKS

If the unauthorised user has technical knowledge, he can break out of
this circle by creating a Q pointer in the master dictionary of his
(authorised) account. If he can get to TCL and knows how to use the
editor and the format of a Q pointer to SYSTEM, then he has enough

i. McDonnell Douglas, Revelation and Information hold the password on attribute 7 as a
password, not a checksum. On these systems the password may be viewed and changed
with the editor.

Pick and Security 93

knowledge to do this. System administrators who think that their users
will not have access to this information should consider that anyone who
reads this book will be armed with enough knowledge to do this. Clearly
some other mechanism is required to protect SYSTEM and this is
available in the form of update and retrieval locks.

Update locks prevent unauthorised processes from updating pro-
tected information. Retrieval locks prevent unauthorised processes
from even reading the data that they protect. Retrieval locks are set by
placing codes in attribute 5 of a file-defining item. Update locks are set
by placing codes in attribute 6 of a file-defining item. The keys to the
locks are distributed automatically at LOGON time. The retrieval keys
that an authorised user gains are held in attribute 5 of his SYSTEM
entry. The update keys are in attribute 6. He may update any file which
has locks which match his update keys. plus any file which has a subset
of his update keys. Similarly for retrieval. Both the locks and the keys
may be multi-character and multi-valued but there is a significant differ-
ence between multi-character codes and multi-valued codes.

If a user obtains a retrieval key of ABC he may access any file which
has a lock of A, AB or ABC:; if, however, his key is A(value mark)B(va-
lue mark)C the files that he may access will have keys of A, B or C. Files
locked by AB. without a value mark. will be forbidden. Each of the
values of the retrieval keys is regarded as a separate key and so any
subset of any of the keys will be allowed.

The system of update and retrieval locks and codes enables the
system administrator to protect the SYSTEM file. If the SYSTEM file is
retrieval protected, then only users whose privileges allow them will
be able to edit, and therefore remove, password protection. The
SYSPROG account should be the only account whose retrieval key
matches the SYSTEM retrieval lock. Thus only an authorised LOGTO
SYSPROG will allow the SYSTEM file to be viewed. Because the
password protection cannot be removed from SYSPROG, unauthorised
accesses are prevented and the SYSTEM file is safe. The potential user
may now create Q pointers to SYSTEM from his own account but he
will still not be able to access it. He will be rewarded by the system
responding with

[210] FILE 'SYSTEM' IS ACCESS PROTECTED.

and returning him to TCL.

Any file may be similarly protected but good security starts with the
SYSTEM file. Any computer which has the SYSTEM file unprotected
can be broken into because it is this file which contains the keys to the

94 Chapter 8

other accounts and the password checksums. If SYSTEM is protected,
the only way to break into the system is via the symbolic debugger. Only
an assembler programmer would be competent to do this.

PREVENTING ACCESS TO TCL

In some situations it may not be desirable to allow users to reach TCL.
The system administrator may not want the people who are entering
data to have the opportunity of using Access.

For the system administrator who wishes to stop his users getting to
TCL, the system debugger poses a problem. Clearly, his menus and
programs may not in themselves allow the user to reach TCL, but if the
user hits the break key and types END the system will very kindly
deposit him at TCL. The menus and programs may have inhibited the
use of the break key. This is acceptable with mature software, where the
system manager knows there are no bugs and so no situations where
infinite loops or even less serious program errors may occur. The
problem is that even in the best written software the occasion will arise
where pressing the break key is the best way out, for instance a situation
where a terminal has accidentally been switched off. For this reason the
break key should only be inhibited for short periods of time.

Pick does provide an answer to this problem of the system debugger.
When accounts are created, a file defining item is placed in the
SYSTEM dictionary. The justification field (attribute 9) is set at L. If the
system manager changes this to R, the effect is to prevent escapes to
TCL from the system debugger. When the user types END in the system
debugger in an account with R justification the system executes the
LOGON proc for that account and does not trap to TCL. In addition,
the user can be prevented from typing anything but END, OFF, G or P
while in the system debugger by his being assigned lower privileges.
When the account is created via the CREATE-ACCOUNT facility in
SYSPROG, the system prompts for the privileges to be assigned to any
user logging on to the account. Basically the choices are SYS2, SYS1
and SYSO. A user obtaining SYS2 privileges cannot be prevented from
using the system debugger or any other operation once at the TCL level.
A user with SYS1 privileges will not be able to use the system debugger.
In addition, he will not be able to use the frame DUMP utility at TCL,
initiate file saves or use the assembler and mode load (MLOAD)
facilities. A user with SYSO privileges cannot do any of these either. In
addition, he will be precluded from updating his master dictionary,

Pick and Security 95

creating files or using the tape facilities in any way. A system manager
employing these techniques may feel that his data is safe and unautho-
rised update or disclosure may be prevented.

User privileges may be changed by editing the SYSTEM entry for
the relevant account. They will be found on attribute 8.

UPDATING THE ACC HISTORY FILE

One more detail of the account defining item in SYSTEM that the
system manager might find useful is the ability to update the accounting
(ACC) file with LOGON and LOGOFF details. This would result in an
audit trail of each access of the various accounts. The ACC file will hold
details of: the line which accessed the account; the time and date at
which the access occurred; how long the user was logged on; the number
of CPU units used; and the number of printer pages that were created.
This information may be listed at any time by the system manager typing
LIST ACC in SYSPROG at TCL, or LIST ACC 'SMITH#1" will give
the access details for the account SMITH on line 1.

This process is initiated by having a U in the justification field of the
account’s SYSTEM entry. If the restart option for inhibiting access to
TCL from the system debugger as discussed above is also required, then
the justification field may be RU.

If the update facility is being used, the system manager should note
that the system will not automatically carry out any housekeeping. The
ACC file will continue to grow, adding details of each access until it is
manually cleared. Failure to regularly clear the ACC file will both
increase the time required for LOGON and use unnecessary disk space.
If the ACC file is to be cleared by means of the CLEAR-FILE verb,
then it should only be done when there are no other users on the system
and should be immediately followed by logging off. This is because the
ACC file also holds details of the current users on the system. If the
ACC file is cleared and any routine is executed which accesses informa-
tion about the current users, for instance the user exit USOBB, then all
the users will appear to be logged onto an account called UNKNOWN.
LISTU will return [401] NO ITEMS PRESENT because this is simply
an Access listing of the ACC file.

Chapter 9
Archiving the Database

The subject of computer security would not be complete without some
discussion on the topic of recovery procedures, i.e. what do you do
when the computer breaks down and the data on the system is lost?

On a typical computer which is used in a business environment, it is
essential to be able to recover from a disaster. The prospect of losing the
company’s data is simply unthinkable. Yet it can happen. During the life
of any computer running any operating system it probably will happen.
All we can do is minimise the effects of a system crash by having sensible
back up procedures.

Pick provides three methods of backing up the database onto magne-
tic media, usually a tape device. These methods are to save the whole
database, a single account, or a single file.

SAVING THE WHOLE DATABASE

On the system administrator’s account, SYSPROG, there is a verb to
make a logical save of the whole database. This verb is FILE-SAVE.
When this command is given, every account is saved on the tape
together with all the files within those accounts. Any data in overflow
space on the disk is saved with the data from the primary space. On
most Pick computers a file-save tape begins with a dump of a boot
program and the assembler programs making up the operating system.
This is referred to as the ABS (assembler and boot strap) section. The
ABS section is followed by the data from the database, account by
account.

This procedure can be modifted to save a selection of accounts by
editing a DX into attribute 1 of the account defining items in the
SYSTEM dictionary. Any account which has a DX instead of a D will be
omitted from the FILE-SAVE. When using this method, be sure to
return the DXs to Ds when. the save has been completed, otherwise the
accounts will not be saved on subsequent archives.

97

98 Chapter 9
RESTORING THE WHOLE DATABASE

In the event of disaster, the whole database can be restored from the
initial power up of the computer. The precise details vary from compu-
ter to computer but eventually the terminal connected to line 0 will
display a prompt saying OPTION followed by a list of possible options,
amongst which will be F. The F option carries out a reload of the
operating system and the entire database contained on a tape generated
using FILE-SAVE. The disk is, in effect, reinitialised and each account
and file is restored in the most economical way possible. Any data in
overflow will probably still be in overflow but the overflow space will be
allocated next to the primary space, so you might see an improvement in
response times where files have become fragmented across the disk.
Any files which have been allocated resize parameters on attribute 13 of
the file definition items will be resized at this point. At the end of the
restoration process all the lines will be sent to the LOGON prompt and
the system will be ready for use.

These two ‘side effects’ of restoring mean that it is a good idea to
restore the database periodically even though the data has not been lost.

SAVING A SINGLE ACCOUNT

The ACCOUNT-SAVE verb available in SYSPROG provides a means
of saving the data files associated with a single account. A tape label will
be placed at the beginning of the save with the account name, the system
date and your own comments, which are prompted for. The command
is:

ACCOUNT-SAVE

the system prompts are:
TAPE LABEL IF REQUIRED:-
ACCOUNT NAME:-

Any data files which are accessible from the account but actually
belong in another account and are only pointed to by Q pointers, will
not be included in the save. The Q pointer itself will be saved, as a part
of the master dictionary.

Archiving the Database 99

RESTORING A SINGLE ACCOUNT

The ACCOUNT-RESTORE verb is used to restore a single account
and its data files from an ACCOUNT-SAVE tape or a FILE-SAVE
tape. The format of the verb is:

ACCOUNT-RESTORE accountname
the system will prompt with:
ACCOUNT NAME ON TAPE:-

The account is restored as accountname. Note that the account may be
named differently on the tape.

Both the FILE-SAVE and ACCOUNT-SAVE processes generate
file statistics in the file STAT-FILE in SYSPROG. These may be listed
using Access and show the size of each file and how full the files are.
This information can be used to periodically resize files which get
heavily into overflow and so ‘tune’ system performance. The STAT-
FILE also records the instances of any group format efrors, or bad data,
that have been encountered. It is a good idea to execute the Access
statement

LIST STAT-FILE WITH GFE > "0"

after every FILE-SAVE. If this does not print out the message NO
ITEMS PRESENT, there are problems on the database and these
should be identified and fixed before any further processing is allowed.

SAVING A SINGLE FILE

There is a whole range of verbs for tape handling at the lowest level.
T-DUMP is an Access verb used for dumping records from any file to
tape. T-LOAD will load those same records from a tape onto a data file
and is also an Access verb. Usually only the simplest forms of T-DUMP
and T-LOAD are used:

T-DUMP filename

or

T-LOAD filename

100 Chapter 9

but because these verbs are Access verbs the whole power of Access can
be brought into play to dump a selection of the records, for example:

T-DUMP PERSONNEL WITH AGE > “65”
or
T-LOAD PERSONNEL WITH DEPARTMENT “PRODUCTION"

S-DUMP can be used to dump the records to tape sorted in a
particular order, which is useful where the tape is to be read on to a
computer utilising sequential file structures.

S-DUMP PERSONNEL BY NAME

The other tape handling verbs deal with the control of the tape.

T-ATT Attach the tape unit.

T-BCK Move the tape back one tape file.

T-CHK Check a tape file for parity errors.

T-DET Detach the tape unit.

T-EOD Move the tape to the end of the data currently held on the tape.
T-FWD Move the tape forward one tape file.

T-RDLBL Read a tape label.

T-READ Read the tape and dump to the terminal.

T-REW Rewind the tape to the beginning.

T-SPACE Move the tape forwards over multiple files.

T-UNLOAD Rewind the tape and detension tape arms (Not all systems)
T-WEOF Write an end of file marker.

T-WTLBL Write a tape label.

CHECKING TAPES

Using the T-CHK verb we can check a tape for parity errors, but this
does not guarantee that the data on the tape can actually be read, or that
the data is sensible. There is a method to check tapes which requires the
computer to read every scrap of information on the tape and this
involves the use of the SEL-RESTORE verb.

SEL-RESTORE is ordinarily used to restore a single record or
whole file from a FILE-SAVE or ACCOUNT-SAVE tape. The format
is:

SEL-RESTORE filename itemlist

with the computer prompting;:

Archiving the Database 101
ACCOUNT NAME ON TAPE:
FILE NAME ON TAPE:

When these have been entered the tape is searched for the account and
file specified. The name of every file that is encountered during this
search is printed out. When the desired file is found the items from that
tape file are restored into the destination file on the database and the
restore halts with a message saying how many records were restored.

If a fictitious account name and file name on tape are specified, the
SEL-RESTORE process will go through the whole process as described
above, but of course it will not succeed in finding the specified account
or file so the whole tape will be read. It is this process which gives the
surety that the tape is good and that it may be reread.

SEL-RESTORE has a number of options which change its effect
slightly. These enable tape files to be referenced via a sequential num-
ber or enable restores to be commenced in the middle of a tape rather
than at the beginning. These are all described in the Pick Reference
Manual.

TAPE DEVICES

So far reference has been made to a ‘tape’ attached to the computer.
Some systems may have more than one device which may be regarded as
a tape. Notably, on small systems, there may be a floppy disk unit. This
will only be regarded as a tape device, i.e. used for sequential storage of
files rather than a device to hold part of the database. Consequently,
‘rewind’ in this context means position the disk head at the ‘beginning’
of the disk, or sequence of files, and ‘forward’ and ‘backward’ refer to
moving along the file sequence.

Where there is more than one tape device available, say a floppy
disk and also a four-track "s-inch tape unit or a nine-track '2-inch tape
unit, only one of these may be logically ‘attached’ at once. Systems
capable of these configurations are supplied with verbs to attach the
correct device, usually SET-FLOP, SET-CTAPE and SET-9. Any sub-
sequent tape operation will be directed at that device until a different
tape device is attached.

Chapter 10
Pick BASIC

INTRODUCTION

The main high-level programming language available with Pick is a
much enhanced form of BASIC called Pick BASIC'. In this discussion a
knowledge of Dartmouth BASIC will be assumed and we will confine
ourselves to the features of the language and techniques that might be
applied rather than a blow-by-blow description of each of the commands
and functions available. A full description of the commands and func-
tions can, in any case, be found in the Pick BASIC manual. A summary
can be found in appendices 2 and 3.

BASIC programs are written as records in data files using the system
editor. The name of the record is therefore the name of the program. It
is a compiled language, object code being generated which is stored
somewhere on the disk. However this is not a ‘true’ compiler as the
object code is not the same as the native machine code. The object code
is more like Pascal P code and is itself interpreted at run time. A pointer
to the exact place where the object code is stored is maintained in the
dictionary of the program file. For this reason program files are slightly
different from ordinary files. Since the dictionaries contain pointers, we
call them pointer files. The system knows that a file is a pointer file by
the file-defining item in the master dictionary containing a DC instead
of a D.

McDonnell Douglas systems and Revelation are different in not
requiring the dictionary of the file to be a pointer file. Object code is
stored as a separate record in the data portion of the file with a record id
which is the program name prefixed by a dollar or pound sign. So for a
program called TEST, the object code will be stored in a record called
$TEST.

To compile a BASIC program we use the verb BASIC or its
synonym COMPILE:

1. Known as Data BASIC on McDonnell Douglas Systems, Info BASIC on Information
and R/BASIC on Revelation.

103

104 Chapter 10
BASIC filename programlist

where programlist may be a single program name or a list of programs to
be compiled. If programlist is an asterisk (*) then all the programs in the
file will be compiled. The compile command may be followed by options
surrounded by brackets. These are described in the BASIC reference
manual and cover the production of a map of the variables, a listing to
the printer, suppressing of end of line markers and so on.

Successtul compilation will result in the production of the object
code. The program may then be executed using the RUN verb:

RUN filename programname

The object code is then interpreted by the BASIC run-time part of
Pick. The compilation stage does not take the source code down to
machine code level, but only to intermediate object code which is
interpreted by the run-time package. The object code is, however,
reentrant. This means that should more than one user be running the
program at once, only one copy of the object code will be held in
memory, with all of the users sharing it.

If there were compilation errors no object code would be produced.
The compiler would make some attempt to indicate what was wrong and
the programmer must fix this before object code can be produced. If the
compilation error has been the result of a change to an existing (work-
ing) program the original object code will remain, unaltered.

Here is a rather contrived example of a sequence of error messages
from the compiler:

[B113] LINE 1 TERMINATOR MISSING
001 PRINT THIS IS “AN ERROR

[B110] LINE 1 'END’ STATEMENT MISSING
[B100] LINE 1 COMPILATION ABORTED; NO OBJECT CODE PRODUCED

The terminator missing was indicated by the printing of the offend-
ing line and the up arrow. As there was an error, compilation then
ceased. The compiler does not continue to find all the errors, but it does
resolve any backward references, so it might report END statement
missing or a missing NEXT statement and so on. Hence you should only
take notice of the first error message, the rest might be spurious.

Should we wish it, programs may be subsequently catalogued:

CATALQG filename programlist

Pick BASIC 105

Cataloguing places a verb definition into the master dictionary of the
account in which the program was catalogued so that the program may
be executed via a single word command:

programname

Programs written as subroutines must be catalogued. Once cata-
logued any subsequent recompilations will be automatically reflected in
the catalogued programs except on McDonnell Douglas systems where
catalogued programs must always be recatalogued. This is because, on
McDonnell Douglas systems, the process of cataloguing takes a copy of
the object code and places it into a global pointer file. Subsequent
compilation only updates the dollar object code version. It is of interest
to note that this method of cataloguing programs results in a perform-
ance improvement on McDonnell Douglas systems because the object
code can be retrieved faster.

VARIABLE STRUCTURES

One of the main strengths of Pick BASIC is in the variable structures
that are available to the programmer. There is no such thing as real,
integer or string variables. All variables are treated as strings. In arith-
metic operations the string values are converted to numbers before the
arithmetic operation is carried out. This process is transparent to both
programmer and user unless an attempt is made to carry out an arithme-
tic operation on non numeric data. If this happens the run-time error
message:

LINE nnn NON NUMERIC DATA USED WHERE NUMERIC REQUIRED,
ZERO USED

is output and processing continues.
Consequently there is no need to suffix string variables with a §. The
statement:

PRINT X

would print the value of X whether X was a string or a number. X may
also be used interchangeably as a string and a number within the same
program.

Since the BASIC is compiled, rather than interpreted, the variables
are given addresses at compile time and this means that we are able to

106 Chapter 10

give names of any length to variables. Hence variable names will,
hopefully, be meaningful.

The rules as to the exact nature of variable naming are much the
same as for any other BASIC. Variable names may not begin with a
number, nor may they contain an arithmetic operator (+/—*"%&).
BASIC command words such as PRINT are forbidden, although
BASIC function names, such as COUNT, are allowed. The reader can
decide upon the advisability of this!

Variables are not, as a matter of course, assigned a default value of
zero, or null, as with many BASICs. If a variable is used in a function or
computation before it has been assigned a value the error message:

LINE nnn VARIABLE HAS NOT BEEN ASSIGNED A VALUE, ZERO USED!

is output and processing will continue.

Constants are assigned in the usual fashion. Strings may be enclosed
in single or double quotes or backslashes. The availability of three string
delimiters enables the other delimiters to be assigned to variables.
Numeric constants do not have to be surrounded with string delimiters.
All the following are valid:

X = "ABC”

Y = "Steven’s”

Z = he said "hello™

XX = /backslash enclosed/
YY =2

77 =727

Real arrays with up to two dimensions are supported. These must be
dimensioned before any element is referenced via the DIM statement.
Once dimensioned, the number of elements may not be changed.

Dynamic Arrays

There is a type of array structure available within Pick BASIC which is
often much more useful than a real array. This type of array is called a
dynamic array. The dynamic array’s usefulness stems from the fact that
its structure exactly reflects the structure of records on the database. It
is completely floating length. It has, potentially, three dimensions. The
first dimension represents attributes, the second dimension represents
values and the third dimension represents sub-values.

Pick BASIC 107

Any BASIC variable. including elements of real arrays, is potential-
ly a dynamic array. As an example consider the following data held as a
record on the database:

001 Fred Smith

002 Unit 57A]Town Square Industrial Park]|Sheffield]S Yorkshire
003 B12455]B12677|B12790]1B12826]B 13004

004 6753/125000]6802/89695]6825/6622916867/122000/50465

005 SYK

006 MT

Now suppose that this data has been read into a dynamic array,
called FRED.

FRED<24,1>

represents attribute 2. value 4, sub-value 1 of the variable FRED, or in
this case ‘S Yorkshire'.
Subsets of these are supported. Hence:

FRED<2,1>

represents attribute 2, value 1 of the variable FRED, ‘Unit 57A". Any
sub-values within value 1 are also included.

FRED<2>

represents the whole of attribute 2 of the variable FRED including any
values and sub-values. In the example this would be ‘Unit 57A]Town
Square Industrial Park|Sheffield]S Yorkshire’.

If FRED were a real array then:

FRED(2) <1.1I>

would represent the IIth value of the first attribute of the second
element of the array FRED.
We use dynamic arrays in the same way as any other variable. Thus:

FRED<1,II> = "ABC

would assign the value ABC to the IIth value of attribute 1 of FRED.
Further:

NEXT.ORDER.NO = FRED<3.II>

would assign whatever value FRED<3.,II> had to the variable

108 Chapter 10

NEXT.ORDER.NO. If II had the value 3 in the example above, this
would result in NEXT.ORDER.NO being assigned the value B12790).

There are also functions for manipulating dynamic arrays. The func-
tion DELETE will delete dynamic array elements. For example:

FRED = DELETE(FRED.2.11.0)

would delete the I1th value of attribute 2 of FRED. assigning the result
back to FRED. If II had the value 3 this would have the effect of
deleting the third value of the address in the above example. The data
which was in value 4 would become value 3. value 5 would become value
4, and so on. The rest of the data would be left unchanged. An abbrevi-
ated form of DELETE is also supported. This consists of leaving off any
trailing zeroes meaning ‘the whole of’. Hence:

FRED = DELETE(FRED.2,11,0)
is the same as:
FRED = DELETE(FRED 2.II)
Insertions are achieved via the INSERT function:
FRED = INSERT(FRED,2,1.0.,"ABC™)

which will insert the value ABC at the first value of attribute 2 of
FRED. All following values are pushed out by 1, thus value 1 will
become value 2 and so on. Note that there is no abbreviated form of the
INSERT function. If this were carried out on the data example above
the address would become:

ABC]Unit 57A]Town Square Industrial Park|Sheffield]S Yorkshire

The rest of the data would be unchanged.

If the value —1 is used for any of the parameters in DELETE,
INSERT or the assignment functions then the argument —1 is taken to
mean the last attribute. value or sub-value. Thus:

FRED<I,—1> = "ABC”

will add a new value (ABC) to the end of attribute 1 of FRED, no
matter how many values are already on the attribute. In the example
this would make the first attribute multivalued, resulting in:

Fred Smith|ABC

with all the other data unchanged.

Pick BASIC 109
EXTRACT and REPLACE

The assignment functions can also be achieved by dynamic array func-
tions. Thus:

FRED<I1.-1> = "ABC”
is exactly the same as

FRED = REPLACE(FRED.1.—-1.0,”"ABC™)
Also

BIT.OF. FRED = FRED<I, 1>
is exactly the same as

BIT.OF.FRED = EXTRACT(FRED,1.1.0)

The EXTRACT and REPLACE functions existed long before the
simple assignment functions. They are retained in the language so that
older applications may still be used. This is a good example of Pick’s
commitment to transportability.

One extremely useful dynamic array function is the LOCATE func-
tion. This is used to locate specific data within a given dynamic array.

Suppose we had a dynamic array FRED. which contained the fol-
lowing data:

ABC|EFG|GHIJIKL]MNOP

As usual the] character has been used to denote a value mark so
attribute 1 value 2 of FRED (FRED<1.2>) is EFG. If we wanted to
locate where EFG was within the dynamic array, we may use the
LOCATE function. We would write:

LOCATE("EFG™”,FRED.1:FOUND) ELSE FOUND = 0

The first parameter is the data to be located. The second is the name
of the dynamic array to be searched. The third is the attribute number to
be searched.

The program will search across the values of FRED, looking for
EFG. If the third parameter had been omitted the system would have
searched down the attributes. matching first attribute 1, then attribute 2
and so on. If we had followed this by another comma and then another
number, we could have searched along the sub-values of a particular
value.

At this stage we have determined the piece of data which is to be

110 Chapter 10

searched. We follow this by a semi-colon and the name of another
variable. If the value EFG is found in the dynamic array, the variable
FOUND will be set to the position number in which it was found. Thus,
in the example above FOUND will be set to 2 when the statement has
been executed. If EFG had not been found in FRED< 1>, the ELSE
clause would have been executed and FOUND would have been set to
zero.

An ELSE clause is mandatory in a LOCATE statement but this
could be NULL (i.e. do nothing). In this case the value of the ‘set’
variable (FOUND) would be set to one past the last position examined.
In the above example, if EFG had not been present, FOUND would
have been set to 6, since 5 values would have been examined.

This is useful where the data is in no particular sequence. But
sometimes the data is in sequence and we wish to preserve that sequ-
ence. It would be very useful if LOCATE could respect the sequence of
data and tell us where to insert data that does not already exist, and in
fact it can. This is done by adding another parameter onto the LOCATE
function: a ‘by’ parameter.

Suppose the data we were trying to locate was FGH instead of EFG.
We wish to maintain the list of data in alphabetical order and we want to
end up with FGH inserted into the third value:

LOCATE("FGH".FRED.1:FOUND:"AL") ELSE NULL

will set FOUND to 3. The "AL" is the sort sequence, it stands for
Ascending Left justified. The LOCATE will give up as soon as it finds a
value greater than the data being considered, in this case after the
second value. So the variable FOUND will be set to 3. We can now use
this value to INSERT into FRED:

FRED = INSERT(FRED,1,FOUND,0."FGH"™)

Other sort sequences that may be used are DL (Descending Left
justified) and AR and DR (Ascending and Descending Right justified)
for numeric data.

Implementation Differences

McDonnell Douglas have implemented a different syntax for insert,
delete and locate dynamic array functions. While they maintain the
same syntax for insert and delete as well as their new commands, INS
and DEL, they do not support the Pick LOCATE syntax. Locate on a
McDonnell Douglas computer has the following syntax:

Pick BASIC 111

LOCATE string IN var BY sort.seq SETTING found ELSE

INPUT AND OUTPUT

Pick BASIC provides a number of functions and commands to facilitate
the elementary tasks of input and output. Input may be taken by
utilising one or other of the forms of the INPUT statement. Output is
usually produced by a form of the PRINT statement.

INPUT

INPUT, in its rawest form, is as simple as requesting that input be taken
from the keyboard and stored in a BASIC variable, for example:

INPUT XX

We may modify this to input n characters by adding an input width
parameter:

INPUT XX.,2

This may be used to take one character from the keyboard, followed
by a carriage return or two characters without a carriage return. With
the simpler form of the INPUT statement, any number of characters up
to 140 may be entered. After the 140th character the system will add a
carriage return. This is because the size of the input buffer is limited to
140 characters. Each character typed will be echoed back to the termin-
al, including the carriage return. Hence we must beware of using this
form of INPUT on the bottom line of the VDU since using a simple
INPUT there will result in the VDU scrolling up a line. We can suppress
the echoing of the carriage return by adding a colon to the end of the
INPUT statement like this:

INPUT XX: or INPUT XX,2:

On McDonnell Douglas systems only, we can also force a carriage
return to be entered and suppress the automatic carriage return on the
limited length input by appending an underline character:

INPUT XX,2- or INPUT XX,2:—

There is a more complex form of the INPUT statement available
which can cope with cursor positioning and predisplay the value of the
input variable. When used with the INPUTERR and INPUTTRAP
statements it can also carry out simple validation and error handling.

112 Chapter 10
The format is:
INPUT (@ (30.5): XX

In this example the value of XX would be displayed at column 30
row 5 of the screen. The cursor would then be repositioned at column 30
row 5 and the variable may be amended. If the user just presses return,
the variable will be unchanged. Full details of the use of this family of
instructions can be found in the Pick BASIC Reference Manual.

PRINT

In common with all BASICs. the PRINT statement provides the ability
to produce output.

PRINT XX
will output the current value of the variable XX followed by a carriage
return.

PRINT XX:
will suppress the output of the final carriage return. When the output is

to appear on a terminal, this has the effect of leaving the cursor at the
end of the output.

PRINT XX:° “YY
will output the current value of XX, followed by three spaces and the
current value of YY and a carriage return.

PRINT XX.YY

will output the values of XX and YY in a simple columnar format.
Mixtures of concatenated and columnar format are also allowed, for
example:

PRINT XX.YY:’ “Z7Z

Functions and calculations may also be included in the expression:

PRINT XX.YY+1,INT (XX):".00"

Formatting

The simple PRINT statement is not really enough to enable the compre-
hensive handling of screen layouts and report formatting, although with
many BASICs this is all that is provided. Two facilities are provided
with Pick BASIC which make the programmer’s life a lot easier. These
are cursor control functions and output formatting capabilities.

Pick BASIC 113
The @ Function

The @ tunction provides the capability to place the cursor at predeter-
mined cursor positions. The format is:

(@ (X.Y)

X being the horizontal column position across the VDU and Y being the
vertical row position down the VDU. The origin (0,0) is at the top left
hand corner of the VDU. In practice this is used with the PRINT
statement:

PRINT (@ (20.10):"The value of X is ":X

The (@ function will operate with any terminal for which the drivers
are present within the operating system. The driver being used is con-
trolled by the TERM setting described in Chapter 13. Many different
terminal drivers may be supported including VT100. ADDS and TELE-
VIDEO. The actual drivers provided to the end user vary from manu-
facturer to manufacturer so it is best to liaise with your supplier vis-a-vis
supported terminals. Some licensees have a table driven system so that
almost any terminal may be attached and will work with no coding
changes.

The (@ function also supports a single parameter tormat (@ (X). i.e.
column X on the current row. but many terminals will not support the
resulting escape sequence so it is better to stick to the row, col syntax for
transportability purposes. In addition the ‘true’ Pick systems support a
number of terminal control functions using the (¢ function with a
negative parameter:

@(-1) Clears the screen and places the cursor at the home position
(0,0).

@(—2) Places the cursor at the home position.

@(—3) Clears the screen from the current cursor position to the end of
the screen.

@(—4) Clears the screen from the current cursor position to the end of
the current line.

@(-5) Starts blinking on subsequently printed data.

@(-6) Turns blinking off.

@(-7) Initiates a protected field (data within a protected field cannot
be subsequently overwritten).

@(-8) Ends a protected field.

@(-9) Backspaces the cursor one character position.

@(—10) Moves the cursor position up one line.

114 Chapter 10

The IBM PC implementation supports many more negative para-
meter @ functions than this. These cover underlining and the use of
colour. As the operating system is enhanced further, many more screen
control functions will be incorporated into the @ function.

These functions may only be used on terminals that have equivalent
escape sequences to support the particular features. In general it may be
assumed that all terminals will support @(—1) and @(—2), few will
support @(—7) and (@(—8) and most will support the rest.

Formatting Output

Pick BASIC supports format masks. Format masks are used to output
data over a mask and handle justification. They are handled within a
PRINT statement by following the variable to be printed by a mask. For
instance:

PRINT XX "L#20

will print the value of the variable XX left justified and fill out the value
with spaces to make a field 20 wide. If XX is longer than 20 characters it
will be truncated on output to 20, although the value of XX will be left
unchanged. In this instance # is special character meaning to fill with
spaces. Correspondingly we may right justify the data:

PRINT XX 'R#20’

This is useful where columns of numbers are to be output.

Format masks are potentially very powerful. We may change the fill
character by specifying the character to be used instead of the # sign. If
XX had the value 100.00 and we wrote:

PRINT XX 'R=10
the system would output:
====100.00

We often hold a scaled value because data is not normally held with
decimal places on the database. For instance, 100.00 might be held as
10000. To cater for this, a number of decimal places may be indicated by
the format mask, by prefixing the format character with the number of
decimal places to be used. If XX has the value 10000:

PRINT XX 'R2=10’

Pick BASIC 115

will result in
====100.00

We may also extend the mask by specifying alternative spacing
characters. Suppose we had an American telephone number of the
form, area code (3 numeric) local code (3 numeric) local number (4
numeric). We might store this as a 10-digit number but output it in a
format mask breaking up the sections with a dash (-) thus:

PRINT 71234567890 "L#3-#3-#4"
and this would produce
123-456-7890

with any extra characters truncated after the zero if left justified and
before the 1 if right justified.

A variety of facilities are provided by format masks: for determining
the type of negative indicator, i.e. —1 could be output as —1 or (1) or
1 DR; to output commas between thousands; to utilise a descaling factor
with rounding; to suppress leading zeroes; or to output a currency
symbol before the value. The use of these is fully described in the Pick
BASIC Programmers Reference Manual.

On Ultimate systems the format mask is treated slightly differently
in that the format mask after the justification must be enclosed in
parentheses, for example:

PRINT XX "L#3” Pick standard
PRINT XX "L(#3)" Ultimate

On Prime Information a format function, FMT, is used:

PRINT FMT(XX., L#3")

Directing Output

It is, of course, not enough to be able to direct output to the user’s
terminal. In any application hard copy is required. Pick BASIC allows
for this by offering a facility to choose the output device. PRINTER ON
will direct any subsequent output via PRINT statements to the spooler.
The spooler will then direct the output to whatever device is currently
assigned to the spooler. PRINTER OFF reverses this.

We can actually output to several separate reports at once by mod-

116 Chapter 10

itying the PRINT statements. A normal PRINT statement can be re-
garded as output to report number zero. If we modified:

PRINT X
to
PRINT ON 2 X

the output would be directed to report number 2. Up to 255 separate
reports can be produced simultaneously using this method.

When the spooler receives the output it waits until all the output has
been received, before sending it to the system printer. Actually the
spooler waits for the spool file to be ‘closed’. The spool file is automati-
cally closed when the program completes its execution. but we can
artificially close the spool file and obtain the report so produced. This is
necessary where reports are being produced interactively and the user
does not exit from the program between report production. The com-
mand which closes the spool file is PRINTER CLOSE.

Apart from on McDonnell Douglas systems, there is a command to
direct output to the VDU regardless of the current printer assignment.
The syntax is exactly the same as for PRINT, the only difference being
that the command is CRT, not PRINT, for example:

CRT "This output is always sent to your terminal”

The CRT statement is undocumented in most manufacturers BASIC
manuals.

Headings and Footings

The other BASIC input and output functions are designed to make life
easier, particularly when producing multiple page reports. The main
problem when producing multiple page reports is usually that the prog-
ram has the rather tedious task of keeping track of exactly how many
print lines have been output, and controlling headings and footings in
the correct format. Pick BASIC can (optionally) take care of all of this.
The HEADING and FOOTING statements may be used to specify
headings and footings respectively. The number of lines on the report is
then controlled by the setting of the TERM command, the number of
lines in the HEADING and FOOTING statements and the appearance
of PAGE commands, which would override the automatic page throw
produced when the page is full.

Pick BASIC 117

There are a few problems with adopting this approach to hard copy
output. Firstly the number ot lines output is controlled by the number of
carriage returns that have been sent to the device. This means that we
cannot utilise the (@ function when sending the output to a terminal.
Secondly the HEADING and FOOTING will only appear on print file
0. There is no equivalent syntax for the PRINT ON commands. Hence
HEADING and FOOTING only have a limited application.

Despite these drawbacks. HEADING and FOOTING are potential-
ly quite powerful. The syntax for FOOTING is the same as for HEAD-
ING. Here is an example of the use of the HEADING statement:

HEADING “This is the heading for my report™

and this is the simplest case. Rather like the Access HEADING modi-
fier. control options can be included within the HEADING statement:

HEADING “This is the heading tor my report produced on "D

The heading will be output as specified. but the D in single quotes is
regarded as an option. D is replaced by the system date in the format
DD MMM YY. The single quotes are thrown away and do not appear in
the heading. To get a single quote into the heading you must enter two
single quotation marks together. The various options available are the
same as for the Access HEADING modifier discussed earlier and
include printing the date. giving extra lines. printing the page number
and centring text.

PROGRAMMING STRUCTURES

Pick BASIC is a structured programming language, that is, facilities
exist within the language so that it may be used in a structured way.
These facilities include structures tfor controlling conditions and for
looping. There are also a number of *failure” constructs. For instance,
the command which reads data from the database will fail if the data
which it is expecting to find is not there. Therefore READ commands
have a structure which allows the programmer to specify the action
taken if the READ fails.

Conditional Constructs

There are numerous syntaxes available for the IF statement. The
elementary form of the IF statement is:

118 Chapter 10
IF condition THEN command

where condition is some boolean expression that the computer will
evaluate as 1 or 0, i.e. TRUE or FALSE. If the condition is true, the
command after the THEN will be executed, if false it will not be. Here
are some examples of valid conditions:

X =1

X # 1

X >1

X <1

X >=1

X GT 1

X GE 1

X

X>AND Y <0

X#"ORY ="
X="0OR(X="A"AND Y =")
NOT(X)

X MATCHES '1A4N’

NOT(X MATCHES ""ABC"3N")
NUM(X)

ALPHA(X)

A more ‘structured’ form of the IF statement is the multi-line IF:

IF condition THEN

..... sequence of instructions

In this example the sequence of instructions is executed if the condi-
tion is true. This is easier to read and maintain than either multiple
statements on one line, or a GOSUB, or a convoluted set of GOTOs.

Extending this, we may add an ELSE clause. In the elementary case:

IF condition THEN command ELSE command

and in the structured method:

Pick BASIC 119
IF condition THEN

sequence of instructions
END ELSE
sequence of instructions

END
In a less elegant form., we may write:
IF condition ELSE
omitting the THEN clause altogether. although I would maintain that:
IF NOT (condition) THEN

was much better.

Where there are more than two conditions that may result, nested IF
statements become laborious to program and difficult to maintain. For
this reason a multiple IF is supported, called CASE. The syntax is:

BEGIN CASE
CASE condition

sequence of instructions
CAéE condition.2

sequence of instructions
CASE condition.3

etc.
END CASE

If CASE 1 (or even CASE 1=1 if this is clearer), which would always

120 Chapter 10

evaluate as ‘true’. were the last condition. it would represent a “catch
all’. i.e. otherwise do this. Here is an example of the use of CASE:

BEGIN CASE
CASE AGE < 6
PRINT “Infant™
CASE AGE < 11
PRINT “Junior™
CASE AGE < 16
PRINT “Senior™
CASE 1
PRINT “Adult™
END CASE

From an efficiency point of view. CASEs should be structured so
that the most commonly encountered condition to be expected should
come first. This is because the system tries each case in turn until it finds
one that is true. The rest are ignored and execution continues after the
END CASE statement.

There is a third type of conditional statement, the computed GOTO
or GOSUB. This is not as acceptable from the structured programming
point of view.

If a variable. II. could have any value from 1 to 10, the programmer
might find it convenient to write:

ON I1 GOSUB 0100,0200,0300.0400.0500. etc.

If 11 is 1, the subroutine beginning at the statement label 0100 is
executed, if 2, the subroutine at 0200, if 3, the subroutine at 0300, and
so on. This is not quite as bad as its close cousin:

ON II GOTO 0100,0200,0300,0400,0500, etc.

In this case each of the program sections beginning at 0100, 0200,
etc. respectively would probably terminate with another GOTO making
the code rather tortuous and hence difficult to maintain.

Failure Conditions

There are a number of statements within Pick BASIC which must have
an ELSE clause to tell the system what should happen if the command
fails. These are:

OPEN

Pick BASIC 121

READ, MATREAD AND READV
LOCATE

READNEXT

READT AND WEOF

All of these support the multi-line construct, which must be termin-
ated by an END. In addition they may have an optional THEN clause,
for example:

OPEN "'PERSONNEL" TO PERSONNEL.FILE THEN
PRINT 'PERSONNEL file opened OK®

END ELSE
PRINT "It is impossible to open the PERSONNEL file’
PRINT "Process aborted
STOP

END

LOOPING

There are two forms of loop construct supported in Pick BASIC. One of
them, FOR/NEXT, is probably available in every BASIC on the market
today. The syntax is:

FOR var = startval TO stopval
sequence of instructions

NEXT var

where var is a variable name which is given the starting value indicated
by startval. It is incremented by one each time around the loop. The loop
is exited when var exceeds the value indicated by stopval.

FOR/NEXT is used when some operation is required to be carried
out a fixed number of times. The variable var will probably be used at
some time during the operation as a pointer to some data or as a
counter. The generalised syntax of FOR/NEXT is:

FOR var = startval TO stopval STEP stepval
sequence of instructions

NEXT var

Here stepval is the increment. Stepval may be a positive or negative

122 Chapter 10

integer or a non-integer number. If stepval is negative. the loop will be
executed while var exceeds or equals stopval.

Pick BASIC also supports two interesting extensions to FOR/
NEXT. These give the ability to execute a set of instructions a fixed
number of times but only WHILE some condition exists or UNTIL
some condition arises.

The syntax is:

FOR var = startval TO stopval UNTIL condition
or
FOR var = startval TO stopval WHILE condition

sequence of instructions
NEXT var
Or generalised:

FOR var = startval TO stopval STEP stepval UNTIL condition

or

FOR var = startval TO stopval STEP stepval WHILE condition
sequence of instructions

NEXT var

The loop is exited at the point at which var exceeds stopval or at the
point at which the condition becomes true (false in the case of WHILE)
whichever occurs first. If the loop is exited by virtue of the condition var
will be set to its last value with which the loop was executed plus one
step value (usually one). This is not true if the condition causes an exit
before the loop has been executed once when var will equal startval.

DO Loops

DO loops allow an exit upon a condition at some point during the loop
rather than looping a predetermined number of times. The syntax is:

LOOP

Pick BASIC 123

pre condition processing
UNTIL condition DO
post condition processing
REPEAT

Like the conditional FOR/NEXT, the UNTIL clause may be re-
placed by a WHILE clause. DO loops are excellent devices for proces-
sing dynamic arrays. Take the example of a customer order with a
number of product lines stored as a multi-valued attribute. We wish to
carry out some processing on each of the lines. One approach might be

to count the number of multi-values and then handle this with a FOR/
NEXT loop. Alternatively the following code may be more appropriate:

=0
LOOP
m=1I+1
* Take each product code in turn.
* If none remain,
* product code will be null.
PRODUCT.CODE = ORDER<PRODUCT.LINE,II>
UNTIL PRODUCT.CODE ="’ DO

post condition processing
REPEAT

The loop exits when the product code attribute has been exhausted
and this is again readily understaridable and easily maintainable.

FILE I/O AND RECORD LOCKING
Updating Files with Pick BASIC

Because Pick BASIC supports a variable structure which exactly mirrors
the physical structure of the database, reading and writing data to and
from files is a very simple matter.

124 Chapter 10

Essentially there are four operations that may be carried out in
relation to files. Files may be opened, and data may be read, written or
deleted.

Opening Files

In common with most languages files must be opened before a file
transaction may be carried out. This is achieved via the OPEN state-
ment. We may have as many files as we like open at once with Pick
BASIC and there is no need to subsequently close files once they have
been finished with. There is no advantage to be gained from closing files
and in fact there is no facility provided to do so.

The normal syntax of the OPEN statement is as follows:

OPEN ' °, “filename’ TO variable.name ELSE command

and from here on the file is referred to by its BASIC variable name
rather than its actual name. Since the first parameter is null, the system
understands us to mean the data portion of the file. To open the
dictionary portion we specify the first parameter as DICT. An ELSE
clause is mandatory and tells the system what to do if the file is not
accessible from the account in which the program is executed. On most
Pick systems, opening files is a task which takes up a considerable
amount of processing power so files should only be opened once where
this is possible. If file references are to be made in subroutines, as well
as in main line programs, it is as well to open the file in the main line
program and pass the file variable to the subroutine as a parameter, or
in COMMON. Then the file need not be reopened in the subroutine.
The above syntax is not the only supported syntax but it is the one
which is supported universally both by ‘true’ Pick systems, and by
McDonnell Douglas and the look-alikes. It is also the best syntax from
the point of view of readability and maintainability of the program.
On ‘true’ Pick systems only, the following syntax may be used:

OPEN ’filename’ TO variable.name ELSE command

Here filename may be a filename alone, implying the data section,
or DICT filename for the dictionary. It may also be DATA filename
and again the data section would be opened.

Most systems support the syntax:

OPEN ’ ’filename’ ELSE command

Pick BASIC 125

without the TO statement. Subsequent reads and writes on the file are
then achieved by specifying the READ or WRITE without the file
parameter. Note that only one file may be opened at once in this
manner. The file being referenced is the one that was last opened in this
manner. There is of course nothing to stop us opening other files with
the ‘normal’ syntax and referencing them in the ‘normal’ way, as well as
having the simplified method. but I would definitely recommend that
for program clarity this method if not used. In the Pick reference
manual it is called the null file variable.

Reading Data from the Database

There are three methods of reading data from the database once a file
has been opened. We may read data into a dynamic array, a real array
or a single attribute variable. In all cases we must specify the file being
read, via the name allocated in the OPEN statement and the key to
reference the actual record required. We must also specify what should
happen if the record does not exist by supplying an ELSE clause.

The syntax used for reading a dynamic array is:

READ var FROM filevar,.keyname ELSE command

Here var is a Pick BASIC variable name representing a dynamic
array. The whole of the record keyname is read from the file repre-
sented by filevar. Attribute 1 of the record is placed into var<1>,
attribute 2 into var<2>, attribute 3 into var<3>, and so on up to the end
of the record. If the null file variable is being used the filevar parameter
is omitted.

For a real array we write:

MATREAD var FROM filevar,keyname ELSE command

Here var is the name of a real array which has previously been
dimensioned. Again the whole of the record is read but this time
attribute 1 is placed into var(1), attribute 2 into var(2) etc. Any elements
left over after the end of the record are set to null. If the record contains
more attributes than there are elements in the array the treatment
differs on different implementations. On some machines the extra attri-
butes are placed as a dynamic array on the end of the last element, on
others the program will abort into the symbolic debugger with the
message:

126 Chapter 10
LINE nnn ; MATREAD NUMBER OF ELEMENTS EXCEEDS VECTOR SIZE

If we wish to read a single attribute from a record we must specify
which attribute using READV:

READYV var FROM filevar,keyname,attno ELSE command

Here var becomes a single attribute variable with the contents of
attribute attno from the record. If the attribute contains values or
subvalues, these will be included, hence var could still be a dynamic
array. READYV is a little quicker than a READ simply because there is
less data transfer from disk to central memory. It is useful where a single
piece of data is required from a record. However one READ is quicker
than two READVs so if more than one piece of data is required READ
the data rather than READVing it.

Locking

Multi-user systems usually require a system of record locking so that the
integrity of the data may be ensured. Consider the example of a stock
file where one record is held per product. One of the attributes on the
record represents the current stock quantity which is updated by some
despatch procedure and also by a production process. User 1 despatches
some of the product and the program reads the stock record in order to
update it. At almost the same time user 2 is producing the product and
his program reads the same record in order to update it. User 1 subtracts
the delivered quantity from the stock and writes the record back to the
stock file. Then user 2 adds the produced quantity to the original stock
figure and writes that back to the stock file. The stock file will be
incorrect because the effect of the delivery was not known when user 2
read the stock record. The stock file will hold the last written figure. In
this case the stock file will lpok as if the delivery were never made.

We stop this happening by letting user 1 lock the record when he
reads it. User 2 then has to wait until user | has written the record back
to the file before he may read it. The programmer specifies that this
happens by appending a U, for Update lock, to the READ, MAT-
READ or READV command. The commands then become READU,
MATREADU and READVU respectively. The lock is automatically
reset when the corresponding record is written back to the file. If we
wish to reset the locks set in the program without writing the record we
may do this via the RELEASE command. In fact if we decide not to
write the record back, we must execute the RELEASE command,
otherwise the record will remain locked.

Pick BASIC 127

If it happens that something untoward happens while the lock is set,
for instance the user pushes the BREAK key and exits to TCL, the lock
will still be set. To enable recovery from this situation, there is a verb on
the SYSPROG account, CLEAR-BASIC-LOCKS, which will clear the
locks set by any port.

Writing to Files

As you might expect, there is a corresponding WRITE statement for
each of the forms of the READ statement. Thus for dynamic arrays we
write:

WRITE var ON filevar,keyname
and for real arrays:

MATWRITE var ON filevar,keyname

Each of these will create a new record on the file, called keyname. If
a record called keyname already exists, it will be overwritten. The single
attribute version of WRITE behaves a little differently, in that it will
still create a new record if one does not already exist, but if the record
does exist, only the attribute indicated will be overwritten. The rest of
the record will be left alone. The syntax of WRITEV is:

WRITEV var ON filevar,keyname,attno

Again, if the null file variable is being used, the filevar parameter is
omitted and if attno is —1 then var is appended onto a new attribute at
the end of the record.

Deleting Records

The DELETE statement (as opposed to the DELETE function) is used
to delete whole records from files. The syntax is:

DELETE filevar,keyname

THE TECHNICAL ASPECTS OF SECURITY

Most of the programmer’s worries about security centre around pre-
venting conflicts when updating or retrieving information from the
database. The solutions will centre upon the judicious use of facilities
provided by the BASIC language.

128 Chapter 10
The Need for Record Locking

Suppose we have a situation where a change is to be made to some
existing information on a customer file. The computer software is highly
integrated and the customer file may be being accessed from several
terminals at the same time. Orders are being entered; the sales ledger is
being operated; despatches are being made and so on. Each of these
functions utilises the customer master file and the credit controller
wants to start changing credit limits. How does the programmer ensure
that changes to the customer file do not affect the other business
operations? Further, how does he ensure that two users do not attempt
to make different changes to a customer’s credit limit?

Group Locking

The READU, MATREADU and READVU statements have already
been discussed in the section on BASIC file updating. Briefly, these
statements lock a part of a file from further retrieval by other users
while the user who has read from the file manipulates the information.
The lock is released when the file is updated or this user executes a
RELEASE statement. Other users wishing to access records within the
same group have to wait and a periodic bell is sent to their terminal to
indicate that the data is being manipulated. This is a powerful system of
locking but the programmer must be aware of its limitations.

Firstly, a whole group of the file is locked. In a file of modulo 100
this would result in 1% of the file being locked. Larger files have a
smaller percentage locked, but smaller files have a larger percentage
locked. In the worst case, a file with a modulo of 1 will have the whole of
the file locked against other users.

Following on from this, it is not a good idea to READU a record and
then carry out a lot of processing on the record and file the record. The
operator might go to lunch in between, leaving part of the file locked! It
is recommended that an ordinary READ is carried out at the beginning
of the process, then the processing should be carried out. Finally the
record is reread with an update lock, amended and immediately written
back.

Regrettably, this still leaves a problem to be solved. If user 1
READUs record A from a file to carry out changes and then user 2 is
unlucky enough to edit the same record the editor will retrieve the
record! The editor only checks record locks at file time. So if the record
is filed from the editor the bell will begin to sound. It will sound until

Pick BASIC 129

user 1 has filed his changes. then will go right ahead and file the edited
changes on top of it, so losing the changes of user 1. He who files last,
files loudest! The moral of this story is that the editor should never be
used on live. sensitive data unless it is strictly controlled.

The ‘Deadly Embrace’

It is not good practice to lock records from several files at once.
Consider user 1 locking a record in file 1 and then another record in file
2. User 2 locks records in the same groups of the same files from another
program but does it by locking file 2 and then file 1. User 1 locks file 1
and then has to stop because user 2 has locked file 2. User 2 stops
because user 1 has locked file 1. This is the classical ‘deadly embrace’.
The only way out of this is is for the system administrator to execute the
SYSPROG verb CLEAR-BASIC-LOCKS and then sort out the con-
sequences manually. Where this situation can arise it should be tackled
in one of two ways. Either the system administrator imposes the disci-
pline of always reading files in the same order. or the semaphore locking
system can be employed.

This is a system where each interactive process is given a number in
the range 1 to 64. At update time the processes execute the appropriate
LOCK and a semaphore will be set. This can be envisaged as a door
with only one key. Only one person can have the key at any one time.
Anyone else who wants the key has to wait until the first person has
finished with it. In a similar way, a second process wishing to update the
same file set will be stopped at the LOCK. LOCK has the advantage of
having an ELSE clause so the programmer can decide what to do if the
lock is set, but still suffers from the disadvantage that other processes
(such as the editor) will not respect the semaphore locks. The general
format of the LOCK command is:

LOCK lock.no ELSE command

Remember that semaphores have to be unset as well as set and that
they should not be left set for too long. To unset a semaphore lock
execute the command UNLOCK lock.no.

Basic Coding Techniques for Record Locking

True record locking can be implemented from BASIC by using an extra
file for storing locks. Suppose we wished to lock a particular record on a

130 Chapter 10

file. Coding like the following will achieve this quite well, while still not
protecting against the editor:

*

* The first section ensures that only one user may set a lock
* at a time
LOOP
SET =1
LOCK I ELSE
ROM . * This statement will sleep for 1 sec
SET =0 ; * Try again someone else was setting a lock
END
UNTIL SET DO
REPEAT

*

* Now check that the required record is not already locked
SET =0
LOOP
READ LOCK.ITEM FROM LOCK.FILE.FILE.NAME:"*":ID THEN

*
* Record is locked because the record is present
*

PRINT "Locked™
END ELSE

Record is not locked so lock it

WRITE USER ON LOCK.FILE,NAME:"*":ID

SET =1
END
UNTIL SET DO
REPEAT

*

* Finally release the semaphore lock to allow other users to

* check and set locks
«

UNLOCK 1

and then to unset the lock we simply delete the lock record:

DELETE LOCK.FILE ,FILE.NAME:”*":ID

Pick BASIC 131
EXTERNAL SUBROUTINE FACILITIES

Pick BASIC provides three means of transferring processing from the
BASIC program to the rest of the system. other than stopping the
program. We may CALL another program, we may ENTER another
program or we may CHAIN to another process.

External Subroutines, CALL

CALL allows the calling of a subroutine by another program. When the
called subroutine has completed its processing, control is passed back to
the calling program and processing continues at the statement after the
CALL. The general syntax is:

CALL subname(parameterl, parameter2,, parameterN)

Subname is the name of the subroutine to be called. Both the sub-
routine and the calling program must be catalogued in order to do this.
The subroutine must begin with a SUBROUTINE statement which
matches the CALL:

SUBROUTINE subname(parameter!, parameter2,, parameterN)

although the variable names given to the parameters in the subroutine
need not be the same as those passed. The subroutine is terminated and
control passed back to the calling program by a RETURN statement.

Parameters may also be passed from program to subroutine and vice
versa by a COMMON statement:

COMMON parameterl, parameter2, parameter3, , parameterN

There is no limit to the length of either the COMMON statement or
the passed parameter list although it is generally better to keep para-
meter lists short and pass data in COMMON because the COMMON
statement utilises a common data area whereas a copy of the parameters
is taken for the subroutine.

Programs with COMMON statements may call subroutines with no
COMMON statement although the subroutine will not then be able to
access any of the data in the COMMON area. The reverse is not true
however, programs with no COMMON may not call subroutines with a
COMMON statement as the variable map would then be corrupted. In
general it is permissible to call subroutines whose COMMON statement
is equal to or shorter than the calling program, but not those whose
COMMON is longer than the calling program.

132 Chapter 10

An interesting facility with CALL is the ability to call indirectly.
CALL (@subname(parameters)

would call a subroutine whose name was held in the BASIC variable
subname. This is useful where the subroutine to be called depended upon
some input value. for instance. Rather than have a multiple CASE and
several CALLs, the problem can be handled in a single statement. The
assumption being made is that the same parameter list will be used for
all the possible called subroutines.

Transferring Control, ENTER

The ENTER statement allows control to be passed to another program.
No parameter list may be passed and any data which is required to be
communicated to the entered program must be placed in COMMON.
Control is not passed back to the calling program when the entered
program has completed processing. For this reason you must not
ENTER a program from a subroutine or else the return stack main-
tained by the operating system will be corrupted. As for called sub-
routines the entered program must be catalogued and the indirect form
is supported. The syntax is:

ENTER progname
or

ENTER @progname

Transferring to Other Processes, CHAIN

CHAIN allows escape from the BASIC program to any valid TCL
command. This could be an Access listing, a Proc. a system command
such as WHO or another program either executed or via the RUN verb.
Control is not passed back to the calling program after use. The com-
mand must be passed as a string, either directly, enclosed in quotes, or
indirectly by assembling the command string beforehand into a BASIC
variable and passing that.

COMMAND = "LISTU”
CHAIN COMMAND

or
CHAIN "LISTU”

Pick BASIC 133

If you are to chain to a BASIC program you have the option of
reinitialising the variable map or, by adding an I option, to pass all the
data on a one for one mapping. This is difficult to use because the first
named variable in the calling program becomes the first named variable
in the chained program, the second the second and so on.

Input may be stacked for any process using the DATA statement.
There may be any number of DATA statements placed before the
CHAIN statement which will pass data via INPUT statements in a
BASIC program or TCL prompts or Proc prompts on a first in first out
basis.

In this example the program chains to a copy process where the
stacked input in the DATA statement contains the destination of the
copy. (The COPY command is described in Chapter 13.)

DATA "(YESTERDAYS-INVOICES)™
CHAIN "COPY TODAYS-INVOICES *”

PROGRAMMING FOR EFFICIENCY

The following are hints and explanations that will help to optimise the
performance of a given application:

1. Avoid the use of large dynamic arrays.

Dynamic arrays are very convenient and their use is to be applauded
because of their contribution to easy maintainability. However, to ac-
cess the 100th attribute of a dynamic array, the system starts at the
beginning and examines each character, counting the attribute marks as
it goes. Having passed the 99th attribute mark. the extraction of the
100th can begin. It can be seen that this is an inefficient process.

2. Equate real array elements.

A similar process to retrieving dynamic array elements is applied to real
arrays, but this can be circumnavigated by EQUATEIing the array
elements to other variable names, e.g.:

EQUATE TRADE.TERMS TO ARRAY(10)

In this case, the address of the array element, rather than the
beginning of the array, will be recorded as being the address of the
variable. It also has the laudable effect of making the program more
readable if meaningful variable names are used.

134 Chapter 10

3. Use COMMON variables, rather than parameter lists when passing
data to and from subroutines.

COMMON lists are more efficient than parameter lists because they are
not copied into a new area of workspace when the subroutine is called.
Files, in particular, should be opened to COMMON variables so that
they do not have to be re-opened in subroutines. The opening of files is
a relatively time-consuming process. Remember that although it is
permissible to call subroutines with no or smaller COMMON blocks
than the calling process, it is not permissible to call a subroutine with a
bigger COMMON block. This will corrupt the local variable area on
return from the subroutine, causing unpredictable results!

Chapter 11
The PROC Job Control Language

This chapter shows how the various facilities provided by the Pick
Operating System can be linked together using the job control language,
PROC.

Procs provide a method of storing one or more commands which
may have been entered at TCL so that those commands may be invoked
with a single word command. Proc has a number of features that take it
beyond the realms of a simple job controller in that there are facilities
for screen formatting, taking in input and testing the validity of that
input. and branching and subroutine facilities.

Procs are interpreted at run time. No compilation phase is necessary.
Like BASIC programs, Procs exist as records on files and so the method
of entry is via the system editor. The first attribute of any Proc must be
PQ. Pick uses this to identify the record as an executable Proc. If the
Proc is placed into the master dictionary of any account the Proc can
then be executed by typing in the name of the Proc at TCL. The system
utility LISTU is an example of a Proc which executes an Access listing.

Although Procs can pass control to any system utility, Access com-
mand or BASIC program. control will always pass back to the calling
Proc when the process is terminated. Only when the Proc is exhausted,
or specifically exited, is control passed back to TCL.

Procs operate by manipulating an input buffer and an output buffer.
Both input and output buffers are further divided into primary and
secondary buffers. There are therefore four buffers that will be operated
upon.

Data that is typed in at TCL passes into the primary input buffer.
Data which is used to process a particular activity is placed into the
primary output buffer. A simple example will clarify this. Suppose we
wished to execute the Access statement

SORT PERSONNEL BY NAME WITH AGE > 25" NAME AGE DEPARTMENT

from a Proc.

135

136 Chapter 11

PRIMARY INPUT PRIMARY OUTPUT
Anything we type The command
goes in here to be processed

SECONDARY INPUT SECONDARY OUTPUT

Errors from the Data for the
command just command being
processed processed

Fig. 11.1. The PROC buffers.

Since we wish to execute this as a single word command, the Proc
must be placed in the master dictionary. We shall give the name
REPORT to the record placed into the master dictionary which forms
the Proc. The command to create this record is:

ED MD REPORT
New Item
Top

To indicate that this is a Proc the first line must be PQ, so we insert
this:

J
001 PQ
002

The command to be executed must now be placed into the primary
output buffer. We tell the Proc that the following data is destined for the
primary output buffer (POB) by prefixing the data with the letter H. It
might be a good idea to annotate the Proc to ease maintenance and we
can do this by prefixing comments with the letter C:

002 C

003 C The Access report comes next

004 C

005 HSORT PERSONNEL BY NAME WITH AGE > "25" NAME AGE DEPART-
MENT

The PROC Job Control Language 137

Having filled the output buffer, we tell the Proc to process the
contents of the output buffer by typing the letter P:

006 P

007

Fl

‘REPORT filed

We then file the Proc and we can now execute it by typing
REPORT. We could have written line 5 in several stages as follows:

005 HSORT PERSONNEL

006 H BY NAME

007 H WITH AGE > "25"

008 H NAME AGE DEPARTMENT

Each successive H command adds to the end of the POB. Note that
each line except the first has a space at the beginning. If we had not had
a space, the contents of the POB at process time would have been:

SORT PERSONNELBY NAMEWITH AGE > "25"NAME AGE DE-
PARTMENT

and the Access processor would have aborted with the error message
PERSONNELBY IS NOT A FILENAME.

Suppose now that the process we wish to execute is an Access
SELECT, the results of which are to be pipelined into a BASIC prog-
ram, and the BASIC program will prompt for the file name on which we
are working.

Clearly we can put the select into the POB and execute that, but how
do we prevent the BASIC program name from just being added onto
the end of the POB? The answer is that we place the subsequent
instructions into the secondary output buffer (SOB). Data is placed into
the SOB via the H command as for the POB, but first we must tell the
Proc that following statements are destined for the secondary, and not
the primary output buffer, by turning on the ‘stack’. The SOB repre-
sents stacked input for the process which is to be executed, so the file
name can be placed here too. A carriage return is indicated by suffixing
a left chevron (<) to the H command. Thus this Proc is as follows:

001.PQ

002 C

003 C An example of the use of the secondary output buffer
004 C

138 Chapter 11

005 HSSELECT PERSONNEL

006 H BY NAME

007 H WITH AGE > "25"

008 C

009 C Now turn on the stack with the STON command
010 C

011 STON

012 HRUN PROGFILE PROGNAME<

013 HPERSONNEL<

014 P

Now let us change the first problem so that the exact data being
displayed is not specified. We are going to tell the Proc at run-time
which field is to be displayed by using the syntax REPORT NAME.
Thus the field to be displayed comes into the Proc in the primary input
buffer (PIB) and needs to be moved to the correct place in the POB
before the report is executed. We need to be able to point at the right
place in the PIB and move only the second word of the command.

Proc maintains pointers to enable us to do this and spaces are used to
break up the buffers so that they are in elements. With our TCL
command REPORT NAME. the word REPORT is in element 1 of the
PIB and the word NAME is in element 2. When we move data from one
buffer to another, we move only one element. However. it is important
to realise that the data moved is relative to the pointer. so we have to
control the positioning of the pointer. The S command will position the
pointer and the A command will move data from the PIB to the POB.

The first Proc can now be rewritten to read:

001 PQ

002 C

003 C A general purpose PERSONNEL report invoked by REPORT fieldname
004 C

005 C The next command positions the input buffer pointer

006 C at the beginning of the PIB

007 S1

008 C

009 C Now the main body of the report

010 HSORT PERSONNEL

011 H BY NAME

012 H WITH AGE > "25"

013 C

014 C The next command moves the second element relative to the

The PROC Job Control Language 139

015 C input buffer pointer to the POB
016 C

017 A2

018 P

Note that there was no need to put an extra space between “25” and
A2 because the command A2 will automatically place a space there.

After the data has been transferred, the input buffer pointer points
to the character after the data transferred. This means that if you
execute another A2 command, the fourth element relative to the begin-
ning of the PIB, and not the second, will be transferred.

The next problem is to check that a parameter has indeed been
entered in the TCL command, but if it has not been, to prompt for the
field name and use that. To do this we need to be able to test the PIB
and branch if something has been entered. If it has not, we need to
output a prompt and input the field name.

The test will be carried out using the IF command. The branch is
specified by a G command, with a branch to a statement label. The
output is specified with the O command and the input will be taken with
the IP command. The Proc logic before the report is amended is as
follows:

001 PQ

002 C

003 C If the data has already been entered then 0K
004 C Otherwise we will get it

005 C

006 C Here Is the test

007 C

008 S1

009 IF A2 G 10

010 C

011 C Here s the prompt

012 C

013 S2

014 OPlease enter a field name

015 C

016 C Here s the input

017 C

018 IP

019 C

020 C And here 1s the branch destination, statement labelled 10

140 Chapter 11

021 C
022 10 HSORT PERSONNEL

The next extension to the problem is that we wish to validate the
input. We will prompt for the age to be used in the selection criteria of
the Access sentence. This is achieved by comparing the input against a
pattern match. After the IP command we would write:

019 S1
020 IF A2 # (2N) G 1

that is, if the second element of the PIB does not match two numbers.
then branch to statement label 1. This would be at the Proc line which
outputs the prompt. IF can test for allowed values, for instance IF A2 =
FRED G 1. or forbidden values, IF A2 # FRED G 1, or ranges, I[F A2
> 100 G 1. Note that when testing for specific string values, there is no
need to wrap the string in quotes as with BASIC. The second statement
can be any Proc command. even another IF. so we might construct a test
such as this:

IF A2 > 100 IF A2 < 1000 OlIn range

[is used to represent less than or equal to and | is used for greater
than or equal to.

A powerful extension to the IF command is the ability to test for
error conditions. Suppose we have a program which inputs a file name
and then tries to open the file. If the file cannot be opened. the program
might execute a STOP 201 and use the system error message to report
that the file cannot be opened. When control is passed back to the Proc,
further processing may depend on the success of the previous process.
The ability to trap for the error condition is thus very useful and is
carried out like this:

IFE=201G5

A variation of this is a test for a select list operation. If the result of a
GET-LIST or SELECT resulted in an error condition, such as the list
not exiting on file or NO ITEMS PRESENT, there will be no select to
drive the next process. Normally the next process is in stacked input and
the Proc does not regain control after the execution of the SELECT to
test for the error. However we may stack a null to force the Proc to
regain control and then test for a successful SELECT. Consider the
following Proc:

The PROC Job Control Language 141

001 PQ

002 HGET-LIST FRED

003 STON

004 C

005 C Stack a null

006 H<

007 P

008 C

009 C Now test that GET-LIST was okay
010 IF # SG 10

011 C

012 C If you got to here 1t was okay
013 HRUN PROGFILE PROGNAME
014 P

015 10 Continue

These examples of Procs are getting a little too long to keep them in
the master dictionary. Long items should not be maintained in the
master dictionary because this increases the chance of overflow in the
master dictionary. If the master dictionary is in overflow, it will take
longer to open any file whose definition item is in the overflow area, or
execute any process whose verb definition is in the overflow area.
Master dictionaries in overflow have quite serious implications for
general system response times.

To keep the Procs short, and yet retain the functionality, we put
them outside the master dictionary. Master dictionary Procs should
contain only two lines, PQ and then an instruction to transfer to the real
procfile.

001 PQ
002 (EG-PROCLIB EXAMPLE)

This Proc simply transfers control to the Proc EXAMPLE in the file
EG-PROCLIB. If the Proc is called EXAMPLE in the master diction-
ary, it is only necessary to place the file name in parenthesis. The Proc
processor will default to the Proc with the same name as this one. No
parameter passing facilities are required because the Proc buffers are
global and remain unchanged on passing from Proc to Proc. We could
also call the second Proc as a subroutine by putting the file and Proc
name in square brackets: -

001 PQ
002 [EG-PROCLIB]

142 Chapter 11

Again the Proc processor will default the transfer to the Proc in
EG-PROCLIB with the same name as the calling Proc. Subroutine
facilities are useful where a long batch process is being put together. A
set of explicitly named subroutine calls is much more readable. and
hence maintainable, than a single level main line Proc which executes
reports, archives, analysis programs and so on. Note that any subroutine
from which you intend to return must have an exit statement X (RTN on
McDonnell Douglas systems. where the command X will exit to TCL).

The syntax for an internal subroutine call is opened and closed
square brackets followed by a statement label. Processing continues
from that label onwards until an exit command is encountered. when
control passes back to the calling point. For example:

010 Call subroutine at statement 100
011 cC
012 (] 100

This idea may be extended to external subroutines, so [EG-PROC-
LIB EXAMPLE] 100 would transfer control to statement 100 of the
Proc EXAMPLE in the file EG-PROCLIB. However this style of Proc
is not clear and is very difficult to maintain.

You will very often find that Procs are usetul for menus because of
their ability to chain around and regain control when a process is
complete. Menus are often put together with the T (terminal output)
command rather than the simple 0 command. The main reason for this is
that there are cursor control functions within the T command which do
not exist for (. Here is an example of a menu Proc:

001 PQ

002 C

003 C General purpose sales administration menu
004 C

005 Clear the screen and output heading

006 1 T (—1), "Alpha corporation”, (60,0), “Order entry”
007 T (10,2),"1 Update the order hook”

008 T (10,3),"2. Enter goods despatched”
009 T (10.4),"3. Enter returns”

010 T (10,5),"4. Log off”

011 2 T (10,10),"Please enter an option "

012 C

013 C Now take the input and branch on reply
014 C

015 1

The PROC Job Control Language 143

016 IP

017IFA=1G10
018IFA=2G20
019IFA=3G30

020 IFA=4G40

021G 2

022 C

023 C Update the order book
024 C

025 10 [OR-PROCLIB UPDATE-ORDERS]
026 G 1

027 C

028 Continued............

The T command can therefore be used to output cursor control and
cursor positioning like the BASIC (@ function. or to output data,
enclosed in double quotation marks. like the PRINT statement. Con-
catenation is specified by the commas, but the T command never auto-
matically appends a carriage return to the end of the output. If this is
required. each T command must be followed by an (. There are also
four output commands which may be specified with T. B. or any word
beginning with B. such as Bell. will ring the terminal bell, C or Clear will
clear the screen. [followed by a number will output the ASCII character
represented by the number, and X followed by a two-digit hexadecimal
number will output the relevant ASCII character calculated in hex.

OTHER PROC COMMANDS

There are a number of other Proc commands for manipulating
buffers and moving pointers. These are summarised in appendix 4 and
are described in full in the Pick Reference Manual. The commands not
described above should be used only rarely. It is possible to develop
whole systems using Proc, but this is not recommended. A golden rule
with Procs is ‘keep it simple’. Complex Procs are easy to write and a
nightmare to maintain.

“Pick like” computer systems invariably have major differences
when it comes to Proc. The Pick Proc language corresponds to McDon-
nell Douglas’s “Old Proc™. These are still supported, even on the newest
versions of McDonnell Douglas equipment. Users wishing to maintain
compatability with Pick should therefore only use Old Proc on McDon-
nell Douglas. The McDonnell Douglas New Proc has a number of
enhancements over Old Proc.

144 Chapter 11

New Procs are distinguished from OId Procs in that the first line of
the Proc is PON, not PQ. Almost all the Old Proc commands are
supported, but it is not possible to call a PQ type Proc from a PON type
Proc or vice versa.

Some commands are prefixed by N — IP becomes NIP, and H
becomes NH, for instance. Some commands have changed their mean-
ing — F and B do not affect the positioning of the stack pointer, as in
Pick. Instead. they are GO-type commands, respectively saying go
forwards. or backwards to the next Proc marker, indicated by an M. The
whole area of moving data from one butfer to another has been en-
hanced by the addition of a MV command. Within this the input and
output buffer elements may be directly referenced as ‘variables’. %1
represents the first element of the currently active input buffer. %2 the
second, and so on. #1 represents the first element of the currently active
output buffer. Thus the command:

MV #1 91

will move the first element of the input buffer to the first element of the
output buffer. The output buffer is processed in the normal way by the
execution of a P command.

Perhaps the biggest area of enhancement is the addition of file I/O
facilities, the file buffer and the select buffer.

In the same way that the input buffer elements can be represented by
%n, there is a method of accessing the file buffer. &1.1 represents
attribute 1 of a record in file buffer area 1. &1.2 represents attribute 2
and so on. The select buffer is referenced as !l or !12. So MV &1.1 #1
will move the first element of the output buffer to attribute 1 of the
record in the first area of the file buffer.

This allows us to retrieve and update information on the database. A
class of commands is provided specifically for file handling. The com-
mands are F-OPEN, F-READ and F-WRITE, they correspond rough-
ly to the OPEN, READ and WRITE commands in BASIC. F-OPEN
and F-READ must be followed by a statement which tells the Proc what
to do if the file (or record) cannot be opened (or read). F-OPEN 1
SALES would open the SALES file to file buffer area 1. Any subse-
quent read into this area or write from this area will operate on the
SALES file.

F-READ 1| %1 would read the record with a key described by the
first element of the PIB into file buffer area 1. To write this back to the
file you simply write F-WRITE 1.

The PROC Job Control Language 145

There are ten file buffer areas. so up to ten files may be opened at
once. If more than one record from the same file is to be manipulated at
once. separate buffer areas must be opened for each record. Note that
there is no record locking facility.

The new Proc file 1/O facilities are useful for quick checks on the
status of system or global application data. It is not recommended that
extensive file update routines are written in Proc. The cryptic nature of
the Proc language makes maintenance difficult. All Procs. whether they
be to Pick standard or McDonnell Douglas New Proc standard, should
be kept as short as possible for this reason. Procs should be written in
manageable modules. A module should either carry out a single task,
such as an Access select followed by a BASIC program. or should be a
list of other modules or tasks. like a menu or a batch processing
sequence.

Prime Information and Revelation do not have any Proc language.
Both have the concept of a “paragraph’ which is simply a list of state-
ments that could have ben entered at TCL. contained in a record. Both
also have an extra statement in the BASIC language which lends in-
teresting possibilities to these systems. The EXECUTE and PER-
FORM statements can be made to execute any statement from BASIC
that could have otherwise only been executed from TCL. These are very
like the CHAIN statement that was discussed in the chapter on BASIC,
with one important difference. When the initiated process has been
completed control passes back to the BASIC program at the statement
after the EXECUTE. This means that any system function may be
called as a subroutine directly from BASIC.

Chapter 12
Pick’s System Files

When a computer is delivered with the Pick operating system the
supplier will also deliver a “basic™ system. This basic system consists of
the operating system itself and at least one account.

This account is called SYSPROG and is the account where system
administration functions are carried out such as creating other accounts,
archiving, restarting the spooler and so on.

SYSPROG contains a number of files which contain information
used by various of the Pick utilities. In general, it is not a good idea to
create new files in the SYSPROG account since these will be lost in
subsequent upgrades to the operating system which will be delivered
with a new SYSPROG.

SYSTEM

One of the files to be found in SYSPROG is called SYSTEM. This is the
system dictionary and is the only file on the computer which is in a fixed
place on the disk. As discussed in the chapter on the Pick database,
SYSTEM contains the names of the various accounts available on the
computer, including SYSPROG itself. By editing this the system admi-
nistrator may change update and retrieval keys, privilege levels and
account justification. The other fields in these records must not be
amended.

To get a list of all the accounts making up the database, we can use
the Access command:

SORT ONLY SYSTEM

One of the records held on SYSTEM is called LOGON. This does
not define an account name, but contains the logon message in
ERRMSG format (see below). Other records do not define accounts
but contain Q pointers. These are synonym, or alternative, logon names
for existing accounts. An example of this type, delivered with the basic
system, is the Q pointer COLDSTART which is an alternative logon

147

148 Chapter 12

name for SYSPROG. An examination of the MD entry COLDSTART
will reveal the Proc executed when the system is booted. Obviously. it is
possible to enter the SYSPROG account by typing LOGTO COL-
DSTART but only at the expense of executing the final part of the boot
procedure.

ERRMSG

ERRMSG contains all the system error messages. If garbage is entered
at TCL the system responds with the error message:

[3] VERB?

This is held as a record on the ERRMSG file with an item—-id of 3.
Since the error messages are ordinary records on an ordinary file they
may be amended with the editor to suit individual tastes.

In fact, the ERRMSG records act like a very simple command
language. Each attribute of an ERRMSG record begins with a com-
mand letter which is used by the error message handler to manipulate
the rest of that attribute. ERRMSG 3 has a single attribute like this:

E VERB?

The E is recognised by the error message handler and means ‘output
the error message number in square brackets followed by whatever text
follows’.

An A as the first character inserts a parameter into the error mes-
sage. This can be used to illustrate how the ERRMSG file can be used in
conjunction with BASIC. ERRMSG 201 looks like this:

201

001 E’

002 A

003 H ' IS NOT A FILENAME

If the BASIC statement STOP 201."INVOICES™ is executed, error
message 201 will be output as the program halts and the word IN-
VOICES will be used as a parameter resulting in the error message:

[201] ‘INVOICES’ IS NOT A FILENAME.

Several parameters may be passed in this way, separated by com-
mas, each A in the ERRMSG record taking the next parameter from
the list. If the command character is X, then a parameter will be skipped
without being output.

Pick’s Systems Files 149

If the A is followed by a number in brackets. these parameters will
be formatted left justified. A(10) would therefore take a parameter and
left justify in a field of ten spaces. Right justification can be specified by
a command of R, rather than A.

If the command character is H. whatever text follows the H will be
output. The error message number will not prefix this message. nor will
a carriage return be output at the end. To get a carriage return the
command character L is used.

An individual D will output the current date. T will output the
current time and S(20) will output 20 spaces.

The verb PRINT-ERR can be used to display the ERRMSG records
as they will be output. so if you wish to add messages into the ERRMSG
file for use with BASIC these can be tested with the PRINT-ERR verb.

PRINT-ERR ERRMSG 201
results in:
[201] ‘A’ IS NOT A FILENAME.

Error message 335 contains the message displayed when the user
logs on to an account. A nice touch is to edit your company’s name in
here. Error message 336 is the log off message.

BLOCK-CONVERT

The BLOCK-CONVERT file contains the character definitions for use
with the BLOCK-PRINT verb.

The key for the records in BLOCK-CONVERT is the character
being defined. The first field is a number which defines the width of the
block character.

Subsequent fields either begin with a B (output spaces or blanks), or
C (output the character). Switches between blanks and characters are
specified by commas (value mark on McDonnell Douglas). B1,5,1
therefore outputs a space followed by five of the character followed by a
final space.

The BLOCK-PRINT verb is used to print enlarged messages on a
terminal or printer. The format used is:

BLOCK-PRINT message

BLOCK-PRINT HELLO will result in the output shown in Fig. 12.1.
If the BLOCK-PRINT command is followed by a P option, (P), the
output will be directed to the sytem printer. BLOCK-PRINT is useful

150 Chapter 12

HH [EEEEEE LL LL 000000

Hir HII EE LL LL 00 00
HH HH EE LL LL 00 00
HHHEHHH EEEEE LL LL 00 00
I HH EE LL LL 00 00
Hi HH FEB LL LL 00 00
HH I EEEEEE LLLLLL LLLLLL. 000000

Fig. 12.1. The output produced by BLOCK-PRINT HELLO.

on systems where a lot of reports are produced on a single printer. The
BLOCK-PRINT output makes the division between reports obvious,
which enables the reports to be separated easily.

ACC

The ACC file contains details of the lines that are currently in use. It is
also the file which stores the logon details for accounts which update the
accounting file. (See creating accounts.)

The LISTU verb uses the information stored in the ACC file to give
a report showing the logon details for each user. The instruction:

LISTU

will result in a report similar to the one shown in Fig. 12.2.

CH# PCBF NAME...... TIME.. DATE...... LOCATION. v vvnenivnenns
*00 0200 SEMINAR 19:54 07 MAR 85 Demonstration area

01 0220 SYSPROG 15:34 07 MAR 85 Development office

03 0260 ADMIN 10:09 07 MAR 85 Employment office

04 0280 SALES 09:25 07 MAR 85 Order clerk

Fig. 12.2. The output produced by LISTU.

In this report CH# is the line number that the user’s terminal is
attached to. PCBF indicates the disk frame address where the user’s
workspace begins. NAME is the account that the user is logged on to.
TIME and DATE are the time and date at which the logon occurred.
LOCATION represents the physical location of the terminal. This is
held in the dictionary of the ACC file and can be maintained by the
system administrator. The location is changed using the system editor.

Pick’s Systems Files 151

In the above example attribute 1 of the record 01 in DICT ACC says
“Development office”, so if the terminal is ever physically moved, this
record should be amended.

The historical information generated by the logon process can be
displayed by typing the Access command:

LIST ACC WITH DATE

This might result in a report such as Fig. 12.3.
In this report, the column headed ACC shows the account which was

PAGE 1
ACC..ovunee. DATFE. TIME... CONN... UNITS PAGLS
PERSONNEL#4 08/02 14:09 00:00 2
10/02 15:33 0l:42 164654 101]
11/02 09:52 00:26 166650 4

10:26 02:51 165131 |
14:32 01:05 166447

15/02 08:44 00:02 167734

16/02 13:22 00:01 167669

END OF LIST

Fig. 12.3. The output produced by LIST ACC WITH DATE.

logged onto and the line number where the logon took place. DATE
and TIME are the date and time when the logon occurred. CONN is the
elapsed time in hours and minutes that the user spent in the account.
UNITS are the number of CPU milliseconds that were used. This is
useful where a user is to be charged for the use of the computer. The
TCL command CHARGES may be used at any time to show the CPU
millisecond usage at any time. The column headed PAGES shows the
number of pages of output that were processed through the spooler.

Where accounts are set up to record this historical information, a
record will be created for each line logging on to those accounts.
However, there is no automatic mechanism for clearing out this in-
formation when it has been finished with. What happens is that the
ACC file just grows and grows, so it should be a matter of routine that
the ACC file is periodically cleared, using the CLEAR-FILE com-
mand.

152 Chapter 12
SYSPROG-PL AND PROCLIB

SYSPROG-PL and PROCLIB contain a number of programs and Procs
which have been supplied by Pick Systems and/or the manufacturer.
The PASSWORD utility for changing the account passwords, the LIS-
TU Proc and the ACCOUNT-SAVE Proc are examples of these.
Usually PROCLIB is supplied as a system level file, so it looks as if it is
an account. However it does not have any of the usual master dictionary
definitions, so if you try to logto PROCLIB you will probably see the
following error message:

ERRMSG [ERRMSG] 340 0 12765 0

The only thing that you can do at this point is hit the BREAK key
and type OFF. In general do not attempt to log to PROCLIB,
ERRMSG, SYSTEM, ACC or BLOCK-TERM as these are all system
level files. These should be password protected and the password should
be forgotten.

NEWAC

NEWAC contains all the verbs, program., Proc and file definitions
which are used to set up new accounts. The CREATE-ACCOUNT
utility copies all the records from NEWAC into a new master dictionary
when an account is created. If you wish to prevent certain verbs from
being in all accounts, deleting the definition from NEWAC will ensure
that the verbs are never set up in the first place. On the other hand, if
you have developed an application general to all accounts, new accounts
can be automatically set up to have access to the application by copying
the relevant program, Proc and file definitions into NEWAC.

OTHER FILES

There may be other files delivered within SYSPROG. There may be a
file called SYSTEM-OBIJECT which contains the object code for the
operating system and a file called JET-MODES which contains the
object code for the JET word processor. These should never be
amended. If they are amended, and the object code is reloaded, the
system will probably crash.

Some manufacturers supply a table of terminal drivers, called CUR-
SOR. Many manufacturers supply free utilities for graphics, spread-

Pick's Systems Files 153

sheets and/or application generation, which may be delivered as sepa-
rate accounts or other files within SYSPROG.

In general. if you do wish to amend or add to any of the system files.
such as BLOCK-CONVERT or ERRMSG. you have to be prepared to
lose the changes if the operating system gets upgraded. Otherwise, you
must make provision for your changes to be saved. For this reason it is

not a good idea to create your own files or develop your own programs
in SYSPROG.

Chapter 13
Other Pick Commands

This chapter provides a description of the use of some important Pick
commands which do not fit easily into the other sections of this book.

FILE HANDLING

Although CREATE-ACCOUNT and CREATE-FILE have been de-
scribed at length, there are other verbs which deal with the clearing and
deletion of data.

DELETE-ACCOUNT will delete a whole account, complete with
its data files. It is a verb which is only available in SYSPROG. A listing
of all the files which will be deleted is given, and the system administra-
tor must confirm that the account is to be deleted before the process is
carried out. All the disk space that was occupied by the data in the
account is returned to the overflow table. It is not permissible to delete
an account while a FILE-SAVE is being carried out. It is advisable that
all users should be logged off when this takes place.

DELETE-FILE will delete a single data file and its associated
dictionary. The format is:

DELETE-FILE filename .

CLEAR-FILE will clear either the dictionary or data portion of a
file. The file still exists and may be accessed, but no records will remain.
The file is ‘empty’. DICT or DATA must be specified in the command:

CLEAR-FILE DATA filename

The COPY command allows data to be copied, within the same file
or across files. The format is:

COPY filename itemlist
and the system responds:

TO:

155

156 Chapter 13

where a new item list or file name may be specified. If the copyingis to a
different file, the file name must be prefixed by a bracket, for instance:

To:(newfilename

COPY can be followed by a number of options which: (a) allow for
the records to be deleted as they are copied; (b) allow any existing
records to be overwritten; or (c) allow records to be copied to the
terminal, printer or tape, rather than another file.

COPY may be driven by an Access SELECT, rather than a specific
item list. It is extremely useful for updating ‘grandfather, father, son’
file systems.

TERMINAL CHARACTERISTICS

Pick has two commands which allow terminal characteristics to be set.
These deal with the width and depth of the terminal and system printers,
the type of terminal and specific functions, such as line feed delay and
the back space character. SET-TERM, a SYSPROG only verb, sets the
terminal characteristics for all users. TERM sets the terminal character-
istics for a specific user. TERM is overridden by SET-TERM when the
user logs across accounts. If

TERM

is entered the current settings are displayed, as shown in Fig. 13.1:

TERMINAL PRINTER
PAGE WIDTH: 1] 80
PAGE DEPTH: 60
LINE SKIP:
LF DELAY:
FF DELAY:
BACKSPACE:
TERM TYPE:

Fig. 13.1. The output produced by TERM.

meonNv ol

To change any of these we type TERM followed by the parameters
separated by commas. For example, to change the printer width to 132,
leave everything else unchanged:

TERM ,,...,132

Other Pick Commands 157

The terminal type parameter allows different terminals to be used on
the same system. If the terminal driver is present (your system supplier
will advise on this), all of the cursor control and report formatting
functions will work correctly after an alteration to the TERM setting.

Baud rates of terminals are changed using the SET-BAUD com-
mand. SET-BAUD 9600 will set the baud rate to 9600 at the computer
end for this line. Hopefully, you can then manually change the terminal
to match!

‘CROSS TERMINAL’ FUNCTIONS

Pick provides facilities for sending messages to other terminals on the
same computer, and logging on and logging off other terminals.

MSG * All users please log off.
would send the message “All users please log off.” to all users.
MSG ADMIN Please telephone computer manager.

would send the message “Please telephone computer manager.” to any
line logged on to the ADMIN account. The message is immediately
relayed onto the user’s screen. ringing the terminal bell in the process so
as to get attention.

15:06:28 08 MAR 1985 FROM SYSPROG:
Please telephone computer manager.

The disadvantage of this is that any formatted screen being used at that
moment will be spoilt.

LOGON will log another terminal on to a specific account. It is a
SYSPROG only verb and will only operate if the line is currently logged
off. This is useful where you wish to start a ‘phantom’ job. An account
can be set up with a logon Proc which carries out the required task.
Logging on a spare line, or an unused terminal to this account will
initiate the process. This only works on computers which do not require
data terminal ready (DTR) on the serial interface.

If you are logging lines on, without having a physical device
attached, then there is a need for a way to log these off. The verb
LOGOFF does this. Note that if you ever execute LOGOFF accidental-
ly, when meaning OFF for instance, and just press return when promp-
ted for the line number, terminal zero will be logged off. The best way
out of this is to press the BREAK key and type END or OFF.

158 Chapter 13
RUNOFF

Runoff is a straightforward text processing system. Many applications
have documentation supplied in Runoff format but today most users
prefer to produce documents with one or other of the proprietary word
processing systems and so Runoff has less importance than it used to.
The Pick Reference Manual has the full details of how to set up docu-
ments using Runoff. When set up, documents may be output using the
RUNOFF verb. The verb format is:

RUNOFF filename itemlist

the option P may be used to output the document to the system printer.
If you have a printer which only has upper case letters, such as a barrel
line printer, the option U may be used to output the document wholly in
upper case.

STARTING THE PICK SYSTEM

Whenever a computer running the Pick operating system is switched on,
the terminal attached to port'0 is assumed to be a system console. Thus,
that terminal must also be switched on.

The power up procedure is different depending on the manufacturer
and so will not be covered here. Somehow the system has to be ‘boot-
strapped’. On the small multi-user microcomputers this is achieved
simply by switching on. On larger systems a procedure of manipulating
front panel switches has to be carried out.

When the system has been bootstrapped, the option message will be
sent to the system console.

OPTIONS (X,F)=

and the system will be prompting for X or-F.

A reply of X will coldstart the system, i.e. the system will be made
ready for use and will utilise the data already stored on the hard disk.
The spooler will be started and workspace will be assigned to each port.

A reply of F will restore data from the tape device. The spooler will
be started and workspace will be assigned to each port as for the
coldstart but a complete file restore will take place. Meanwhile any file
reorganisation will take place. All the data currently on the hard disk
will be overwritten or lost. This procedure will normally be carried out
whenever upgrades or some type of maintenance are carried out, or as a
file reorganisation exercise.

Other Pick Commands 159

When either of these procedures is complete the system will auto-
matically log on to the COLDSTART account. This is a synonym
account to SYSPROG but the logon Proc COLDSTART will be ex-
ecuted. This will probably set the time and date on systems which do not
have a battery backed clock, and then verify the system modes. The
verification stage calculates check sums on all the assembler modes
which make up the Pick operating system and compares the result with a
prestored list of check sum results. Any mismatches are reported and
generally indicate that there is corruption in the ABS section of the disk.
If this happens, the system should be bootstrapped from a backup
device.

The printer will then be started on the appropriate line(s) and the
default terminal characteristics for your system will be set.

The coldstart procedure will terminate by logging off the system
console and sending the LOGON message to every line on the system.
The system console now has no further significance and is free for use as
a normal terminal.

Any user now switching on his terminal will receive the logon mes-
sage:

LOGON PLEASE:

and is invited to type in the name of his account.

The process of verifying that the operating system is working cor-
rectly may be carried out from TCL in SYSPROG. It is possible that
hardware errors could cause the ABS area to become corrupt. The
VERIFY-SYSTEM verb verifies that it is not. Suppliers will often ask
that a VERIFY-SYSTEM is carried out if you are experiencing recur-
ring problems, such as operating system errors like CROSSING
FRAME LIMITS or FORWARD LINK ZERO.

Chapter 14
The History and Future of Pick

Pick has been around for a long time, a very long time in terms of
computer industry development. Twenty years ago two gentlemen, Don
Nelson and Dick Pick, designed a “General Information Retrieval Lan-
guage System” (GIRLS) for the company TRW on a US army project
— a data storage and retrieval system to be used in conjunction with the
Cheyenne helicopter.

This software, re-named General Information Management, or
GIM, was delivered to the army in 1969 and was implemented on an
IBM mainframe. GIM incorporated some of the basic features of what
we now know as Pick. It had database features and an English language
enquiry language. An updated version was still being operated by the
Central Intelligence Agency in 1981 and may well be in use even today.

No real commercial use was made of GIM, so when the project was
completed, Dick Pick was able to research his own work, which was
deemed to be public domain because it had been developed under the
auspices of the US Department of Defense.

The first commercial implementation of the operating system was on
the Microdata' 1600 8-bit CPU. Pick, although still not known as such,
had its own theoretical instruction set. However to implement it re-
quired something a little more sophisticated than the Microdata chip
could supply, and a French company, Intertechnique, was engaged to
manufacture and supply a firmware board which could interpret the
instruction set, now called REAL.

Thus in 1973 the Reality operating system was born. Microdata
began to market their new product by appointing dealers throughout the
world. Intertechnique marketed it as Realitie on mainland Europe and a
company called Computer Machinery Company (CMC) were the Brit-
ish dealers.

The system had obtained a medium amount of success in the years
1973 to 1976 and about a thousand end user implementations were

1. The name Microdata was changed to McDonnell Douglas Computer Systems in late
1984.

161

162 Chapter 14

obtained. CMC were taken over by Microdata and Microdata in their
turn were taken over by McDonnell Douglas. CMC were very successful
in selling to large corporations in the UK who were quick to realise the
value of such a flexible computer system. Dick Pick, however, became
disenchanted with his continued involvement with Microdata and he left
to found his own company, Pick and Associates.

Pick and Associates began to import computers from Intertechni-
que, implemented the operating system and sold it as Evolution. They
also implemented Pick on the Honeywell Level 6 minicomputers for a
company called the Ultimate Corporation. A royalties lawsuit with
Microdata began which went on for several years. It ended with both
parties retaining rights to the operating system. Microdata and Dick
Pick were reconciled early in 1984. Ultimate subsequently purchasea
their rights to the Pick operating system outright and implemented Pick
on the DEC LSI 11 to fill out the bottom end of their range. Dick Pick
sold out his holding in Pick and Associates to Evolution Computer
Systems who were subsequently taken over by Applied Technology
Ventures Inc.

Around 1980 Pick developed a technique which would transfer prog-
rams written in the REAL assembler language into any given chip
instruction set. This made “software” implementations possible like
those implemented using 68000 and 8086 technology. This meant that
special boards were no longer necessary and speeded up new imple-
mentations.

THE “LOOKALIKES”

Around 1979 Pick “lookalikes” began to emerge. Devcom produced the
Information System running on the Prime 50 series of computers. This
appeared to be a powerful option. Its disadvantage, however, was that it
was implemented on top of the Primos operating system and required a
large amount of central memory to run effectively. In its favour it did
have excellent communications facilities, which the others did not have.
More recently, Cosmos implemented the Revelation system with PC/
DOS on the IBM PC which has been described as “the best (database
management system) available”.

Subsequently Dick Pick, in his new company, Pick Systems, man-
aged to surround himself with excellent marketing staff. They obtained
commissions from many manufacturers to implement the Pick Operat-
ing System on their equipment to enable them to offer it as an option.

Pick Systems always control the implementation of Pick on a new

The History and Future of Pick 163

device. This contrasts with the implementation policy for Unix systems
which have been carried out by many institutions resulting in many
flavours of Unix, e.g. Unix System V, Berkeley Unix, Xenix etc.,
whereas there is only one Pick. This has not stopped licensees who own
their implementations, i.e. Microdata and Ultimate, from developing
their systems away from the mainstream Pick, albeit only slightly.

There are an increasing number of manufacturers and distributors
who are more than pleased to say that their computer runs the Pick
operating system. These range from the Reality through 16-bit micro-
computers such as the Fujitsu 2000 to 32-bit systems such as the C.Itoh
680 range to large minicomputers like the Microdata Sequoia. Another
way of looking at this is by number of users. There are single-user
systems, multi-user microcomputer systems and small and large mini-
computers. The IBM 4300 implementation is already able to handle
about 100 users. Pick Systems estimate that the installed user base of
authorised Pick computers is over 30,000. This does not include the
look-alikes such as Revelation which is reported to have shipped 20,000
by the beginning of 1985 and is delivering hundreds of copies every
month. Pick Systems intend to double the number of Pick computers
installed during 1985. If we remember that Pick is inherently a multi-
user system, there are probably in excess of 300,000 terminals with
access to a computer running the Pick operating system.

THE FUTURE

Pick Systems have already announced that the real Pick operating
system (as opposed to Revelation) is available for the IBM PC-XT. This
represents another direction in marketing for them. For the first time
Pick Systems themselves, rather than a manufacturer or distributor, are
to be the direct vendors. In the United States, Pick on the XT will sell
for around half of the expected Unix price. Buyers will be able to
purchase the software separate from the hardware. These factors may
well combine to give Pick a long awaited boost both in number of users
and in the general awareness of the computer industry.

Amongst the newer licensees for the Pick operating system are
WICAT of Australia, Nixdorf, Tao Engineering and the Harris Trust of
Switzerland with an implementation on the Pinnacle.

Apart from spreading across hardware, Pick Systems are still de-
veloping the operating system. The next official major upgrade, initially
entitled R84 but now renamed Open Architecture, will see the removal
of the 32K maximum record size restriction, introduce enhanced com-

164 Chapter 14

munications facilities such as X25 and SNA, provide transaction logging
features, support phantom processes and introduce a C compiler,
amongst other things. Many of these features have already been im-
plemented at Pick Systems and the next stage is for the licensees to
implement the enhancements on their equipment. It goes without saying
that all existing software written under Pick will be upwards compatible.

Pick Systems are also working on a co-processor, code named Vul-
ture — a 32-bit processor which will plug into a host machine running
Pick and carry out most of the processing requirements, leaving the host
machine to handle input and output. This will not only increase through-
put but also extend the number of terminals that may be supported by a
single CPU.

THE STANDARD OPERATING SYSTEM

Having described the various facilities that make up the Pick Operating
System, the enormous potential of Pick should now be clear. Although
Pick is not the right answer for all applications, it is ideal for the
commercial environment. Pick’s database approach gives flexibility, in
that ad hoc requirements can be responded to, independence, in that
users are not totally reliant on the availability of technical experts, and
efficiency, in that new applications may use the data associated with
existing applications.

It is not expected that any operating system will become the ‘stan-
dard’ for all applications. Each operating system will have its speciality.
Pick’s speciality is business and administration. It is in the areas of
business and administration that Pick will be the standard that others try
to match.

Appendices

APPENDIX 1| — EDITOR COMMANDS

This is a brief explanation of all of the commands available in the system
editor. Commands suffixed by * have been explained more fully in the
text. All of the commands are explained in full in the Pick Reference

Manual.

I* Insert data on a new line after the current line.

R* Replace the whole of the current line.

Rn Replace the whole of the next n lines.

R/a/b * Replace the first occurrence of string a by b.

R//b * Place string b at the beginning of the current line.

R/a/b/n * Replace string a occurring in column n by string b.

R/a/b/n-m * Replace string a occurring in columns n to m by string b.

RU/a/b * Replace unconditionally all occurrences of string a by string b
in the current line.

Rn/a/b Replace the first occurrence of string a by string b in the next
n lines.

RUn/a/b Replace unconditional a by b in the next n lines.

Ln* List the next n lines.

L7a* Locate the next occurrence of string a.

Ln”a * Locate the first occurrence in the next n lines of string a.

L”a”n-m Locate the next occurrence of string a occurring between
columns n to m.

L:a* Locate the next line beginning with string a.

A Again, repeat the last locate command.

Gn * Go to line n.

n* Go to line n.

DE * Delete the current line.

DEn Delete the next n lines.

F* File current buffer.

FI* File and exit record.

FI item * File, renaming the record item and exit record.

FI(fi* File in file f as record i and exit the record.

FIO(f i File in file f as record i overwriting any existing record and
exit the record.

FIL File the record as a list.

FIK * File the record, exit and exit any itemlist, i.e. return to TCL.

FILK File the record as a list and exit any itemlist.

165

166

FIC
FD *
FDK
FS *
FS item
FS (fi
FSO(f i

EX *

EXK *
EXT
MEn”id” *
MEn"id”m *
MEn(f i *

X

XF

T

B
Un
Nn
Wn

A %
TB n,n..
C *

?

S?
Zn-m
P *

Pn
Pnc

Appendix 1

File the record and compile (Revelation only).

File delete, delete this record from filename and exit record.
File delete, exit record and any item-idlist, i.e. return to TCL.
File the record on the database but continue editing.

File the record naming it as item.

File the record on file f record i.

File the record on file f record i overwriting any existing
record.

Exit from this record leaving the record unchanged on the
database.

Exit from this record and kill item-idlist return to TCL.
Revelation version of EXK.

Merge n attributes from record id in this file.

Merge n attributes from id beginning at attribute m.

Merge n attributes from file f record i.

Reverse the effect of the last I, R or DE command.
Reverse the effect of all the changes since the last F com-
mand.

Go to the top of the record.

Go to the bottom of the record.

Go up n lines.

Go to the next nth line.

List 22 lines up to line n. (McDonnell Douglas only).
Toggle “. " is a wild card character for any string.

Set tabs to be n,n,... etc.

Display column number mask.

Display current line and item id.

Display the current size of the record.

Display only columns n to m.

Execute prestore command 0 (set to L22 on entry to the
editor).

Execute prestore command n.

Set prestore command n to c.

BASIC Command Summary 167

APPENDIX 2 — BASIC COMMAND SUMMARY

This is a brief explanation of all the commands available under Pick
BASIC. Commands suffixed by * are explained more fully in the text.
All the commands are described in full in the Pick Reference Manual,
except those suffixed with t which are sometimes omitted. Commands
suffixed by § are not yet available on all implementations but should be

by 1986.

ABORT Abort execution and return to TCL.
BREAK OFF Turn the break key off.

BREAK ON Turn the break key on.

CALL * External subroutine call.

CASE * Multiway IF structure.

CHAIN * External chain to another process.
CLEAR Clear variable table to zeroes.
CLEARFILE Like verb CLEAR-FILE.
COMMON * COMMON variable list.

CRT * Output to terminal.

DATA * Stack data for use with CHAIN.
DELETE * Delete a record from a file.

DIM * Real array dimension statement.
ECHO OFF Echo of input off.

ECHO ON Echo of input on.

END * END of structure or program.
EQUATE * Equate variables or constants.

EXECUTE t/§

FOOTING *
FOR,STEP,NEXT *
GOTO

GOSUB *
HEADING *
IF,THEN,ELSE *
INPUT *
INPUTERR
INPUTNULL
INPUTTRAP
LOCATE *

LOCK *
LOOP,WHILE,REPEAT
MAT *
MATREAD *
MATREADU *
MATWRITE *
MATWRITEU

Execute a TCL command and return to BASIC
program.

Report footing.

FOR NEXT loop.

Unconditional branch.

Internal subroutine call.

Report heading.

Conditional structure.

Take input from keyboard.

Error message from INPUTTRAP.

Null character for INPUTTRAP.

Single character input and validate.

Dynamic array locate element.

Semaphore lock.

Loop structure.

Real array global assign.

Read from file into real array.

Read from file into real array with update lock.
Write from real array to file.

‘Write from real array to file but maintain update
lock.

168

NULL
ON,GOTO
ON,GOSUB
OPEN *

PAGE
PRECISION
PRINT *
PRINTER ON *
PRINTER OFF *

PRINTER CLOSE *

PROCREAD * t
PROCWRITE * ¥
PROGRAM +
PROMPT
READ *
READNEXT *
READT
READU *
READV *
READVU *
RELEASE *
REM,! or * *
RETURN *
RETURN TO
REWIND

ROM

SELECT

STOP *
SUBROUTINE *
UNLOCK *
WEOF

WRITE *
WRITET
WRITEU
WRITEV *
WRITEVU

Appendix 2

No operation.

Multiway branch.

Multiway internal subroutine call.

Open a file.

Throw a page.

Set precision of calculations.

Output.

Output to printer.

Output to terminal.

Close print file.

Read Proc input buffer.

Write to Proc input buffer.

PROGRAM declaration (like SUBROUTINE).
Change prompt character.

Read from file into dynamic array.

Read next field from a select list.

Read from tape.

Read with update lock.

Read variable from field on file.

Read variable from field on file with update lock.
Release all update locks.

Comment.

Internal or external subroutine return point.
Internal subroutine return with branch.

Rewind tape unit.

Release quantum (sleep for one second and give
up timeslice).

Select a whole file to a select variable.

Halt execution.

Subroutine declaration statement.

Release semaphore lock.

Write end of file mark to tape.

Write dynamic array to file.

Write block to tape.

Write maintaining update lock.

Write single file to file.

Write single field to file with update lock main-
tained.

BASIC Function Summary 169

APPENDIX 3 — BASIC FUNCTION SUMMARY

This is a brief explanation of all the functions available under Pick
BASIC. Functions suffixed by * are explained more fully in the text. All
the commands are described in full in the Pick Reference Manual,
except those suffixed with + which are sometimes omitted.

@(x.y) *

@(—a) *

ABS(a)

ALPHA(a)
ASCII(a)

CHAR(a)

COL1()

COL2()

COS(a)

COUNT (a.b)
DATE ()
DCOUNT(a,b) *
DELETE(a,b.c.d) *
EBCDIC(a)
EXP(a)

EXTRACT (a.,b.c.d) *
FIELD(a,b.c)

ICONV(a,b) *
INDEX (a,b,c)

INSERT (a,b,c,d) *
INT(a)

LEN(a)

LN(A)

MOD(a,b)
NOT(a)

NUM(a)
OCONV(a,b) *
PWR(a,b)

REM (a,b)
REPLACE(a,b,c,de) *
RND(a)

SEQ(a)

SIN(a)

SPACE(a)
SQRT(a)

STR(a,b)
SYSTEM(a) t

TAN(a)

Cursor control function.

Screen control function.

Absolute (positive) value of a.

1 if a is alphabetic, otherwise 0.

Returns the ASCII value of EBCDIC string a.
The ASCII character number a.

Beginning column of last FIELD function.
Ending column of last FIELD function.
Cosine of a degrees.

Number of occurrences of string b in string a.
Machine date in internal format.

As COUNT +1.

Dynamic array delete function.

The EBCDIC value of ASCII string a.

e to the power a.

Dynamic array extraction.

Extract the cth field from string a delimited by
character b.

User exit b using data a (input conversion).
Column position of cth occurrence of string b in
string a.

Dynamic array insert function.

Whole number part (integer) of a.

Length of string a.

Natural logarithm of a.

See REM.

Logical negation of a.

1 if a is numeric O otherwise.

As ICONV but output conversion.

a to the power b.

Remainder of a/b.

Dynamic array replace function.

Random integer in range 0-a.

ASCII value of character a.

Sine of a degrees.

a spaces.

Square root of a.

String a repeated b times.

The value of system variable number a.

(a in the range 1-10).

Tangent of a degrees.

170

TIME()
TIMEDATE()
TRIM(a)
a[b,c]

Appendix 3

Current time in internal format.

Current time and date in external format.

Trim excess spaces from string a.

c characters of string a beginning at the bth char-
acter.

ARITHMETIC OPERATORS

> x| 4

Add.

Subtract.

Multiply.

Divide.

Raise to the power.
‘Concatenate.

BOOLEAN OPERATORS

AND or & Logical AND.

OR or % Logical OR.

1 Logical TRUE.

0 Logical FALSE.
RELATIONAL OPERATORS

= or EQ Equal to.

> or GT Greater than.

>= or GE Greater than or equal to.
<or LT Less than.

<=or LE Less than or equal to.

or <> or NE

Not equal to.

Proc Command Summary 171
APPENDIX 4 — PROC COMMAND SUMMARY

This is a summary of commands available with the Proc job control
language. Commands suffixed by * have been discussed in the text.

Command Description

A* Move data from the currently active input buffer to the
currently active output buffer.

B Back up the input buffer pointer by one parameter.

BO Back up the output buffer pointer by one parameter.

cC* Comment.
Display currently active input buffer values on the ter-
minal.

F Move currently active input buffer pointer forward one
parameter.

FO Move currently active output buffer pointer forward
one parameter.

G or GO Goto statement label.

H* Move data into output buffer.

IF * Conditional execution of a Proc command.

IH Move data into input buffer.

IP * Input to currently active input buffer.

IS Input to secondary input buffer.

IT Input from tape to primary input buffer.

(O3 Output data to terminal.

p* Execute command held in the output buffers.

PH As P but suppress all output generated by the executing
process.

PP As P but display command to to be executed.

PW As PP but wait for carriage return before executing.

PX As P but return to TCL after execution.

RI Reset input buffer.

RO Reset output buffer.

S* Position input buffer pointer.

SP Select primary input buffer.

SS Select secondary input buffer.

STON * Stack on, select secondary output buffer.

STOFF * Stack off, select primary output buffer.

T* Terminal output.

U User exit.

X * Return to calling Proc, or TCL if none.

+n Add n to parameter in current input buffer.

-n Subtract n from parameter in current input buffer.

(file proc) * Chain to another Proc.

[In* Local subroutine at label n.

[file proc] * External subroutine Proc call.

172

Appendix 5

APPENDIX 5 — THE PICK COMMUNITY

The following is a list of the main hardware suppliers who together form

the Pick community.

Company

Machine

Status

Altos Computer Systems
Applied Digital

Data Systems (ADDS)
Archford Computers
Aston Technology
C.Itoh Electronics
Cosmos

Datamedia Corporation

Electronique Serpe
Dassault

Fujitsu Espagne
Fujitsu Micro-
electronics Inc.

General Automation Inc.

IBC Technologies Inc.

Icon Systems &
Software Inc.

Information Systems
(CDI)
Intertechnique

McDonnell Douglas
Information Systems

Nixdorf Computer

Pertec Computer
Corporation

Pick Systems

Prime Computer

Standard Telephones
and Cables (STC) Pty

Altos 586-986 3068
ADDS Mentor series

Pinnacle/Excalibur
Crystal Excel
CIE 680 series.

IBM PC and lookalikes
Some MS-DOS generics

Datamedia 932
ICL Clan

M-68000

80186
Fujitsu System 2000

GA Zebra
M-68010
Sanyo MPS 0202

IBM Series 1
IBM PC 5051
IN-500

IN-5000

Reality
Sequoia/Sequel
Spirit

Nixdorf 8890 VM
Pertec 4200
Crystal

IBM PC-XT
IBM PC-AT
PC-386

Many PC lookalikes.
Prime 50 series

M-68000
CCI mainframe

Pick licensee.
Pick licensee.

Pick licensee.
Pick licensee.
Pick licensee.

“Revelation”
Pick lookalike.
(software only)

Pick licensee.
Pick licensee.

Pick licensee.
Pick licensee.

Pick licensee.
Pick licensee.
Pick licensee.

Pick licensee.
Pick licensee.

Reality O/S
(originally written
by Dick Pick.)
Pick licensee.
Pick licensee.

Pick on the PC
(software only)

“Information”
Pick lookalike.

Pick licensee.

Systems Management Inc.

Tau Engineering
The Ultimate Corp.

V Mark

Wicat Computer Pty.

X Mark

The Pick Community

IBM 30xx

IBM CS 9000

Some compatible VM
mainframes.

TAU M-68000
Honeywell Level 6
DEC LSI-11
DEC-VAX

IBM 43xx

AT&T Unix generics

Wicat M-68000
Turbo Tower

Pick licensee.

Pick licensee.
Pick licensee.

“UniVerse”

Pick lookalike.

Pick licensee.
Pick licensee.

173

174 Appendix 6
APPENDIX 6 — TRADEMARKS

Within this book many references are made to words which are
trademarks. These are listed below. This list is believed to be accurate.
Should it be necessary, any appropriate corrections or omissions will be

included in future editions.

Access Pick Systems.

Altos Altos Computer Systems.

DEC Digital Equipment Company

IBM International Business Machines Corporation.
IBM PC International Business Machines Corporation.
Inform Prime Computer Inc.

Intel Intel Corporation.

Mentor Applied Digital Data Systems Inc.

Pick Pick Systems.

Pick Basic Pick Systems

Prime Prime Computer Inc.

Prime Information Prime Computer Inc.

Reality McDonnell Douglas Computer Systems Inc.
Sequoia McDonnell Douglas Computer Systems Inc.
Sequel McDonnell Douglas Computer Systems Inc.
Revelation Cosmos Inc.

TRW TRW Corporation.

Ultimate The Ultimate Corporation.

Unix Bell Laboratories.

Vulture Pick Systems.

Xenix Microsoft Corporation.

Zebra

General Automation Inc.

GLOSSARY

account

algorithm
array
ASCII
attribute

attribute mark

BASIC

bootstrap
byte
checksum

coldstart

concatenate
contiguous

D pointer

data
database

default
dictionary

Glossary 175

1. A user name. 2. A collection of logically associated
files.

A set of rules for solving a problem.

A set of data identified by a single name.

An acronym for American Standard Code for Informa-
tion Interchange, a computer code for representing
alphanumeric characters.

A field of data within a Pick record that may be further
subdivided into values and sub-values.

The character which Pick uses to separate attributes,
ASCII character 254.

An abbreviation for “Beginners All Purpose Symbolic
Instruction Code” — A high level programming lan-
guage now very popular on micros. Pick BASIC has
many special facilities in relation to the Pick database
which make it much more powerful than ordinary
BASICs.

The process of starting a computer.

A character of data.

A method of data verification where a calculation is
carried out on the data and the result is compared with
the result, or checksum, that is already stored on the
computer.

The process which takes place immediately after a Pick
computer has been bootstrapped. Usually this checks
the integrity of the operating system, starts the system
printers and sets the terminal drivers.

Join together.

Physically adjoining. Contiguous frames are disk
frames which are physically next to each other on the
disk.

A record found in a dictionary which defines a file by
pointing at the absolute frame address at which the file
begins.

Information of any type.

A collection of data stored in an organised manner so
that the data may be stored and retrieved easily.

The action taken in lieu of any other instruction.

A file which holds records that define the structure of
data held on a data file.

176

dynamic array
EBCDIC

field

file

hardware

hexadecimal

hold file
item
item-id
justification

Kbyte
key
logon

logoff

master dictionary

modifier

modulo

operating system
option

password

port

program

Glossary

A data structure available in Pick BASIC which exactly
reflects the structure of records on the database.

An acronym for Extended Binary-Coded Decimal-In-
terchange Code. A computer code for representing
alphanumeric characters.

A single piece of data, e.g. the name of a customer.
A collection of logically associated records.

The computer and any associated peripheral equip-
ment.

A system of counting in sixteens very often used by
computer people because each digit in hexadecimal
notation (0-9 and then A-F) can represent four binary
digits (binary being a system of counting in twos which
is used by computers).

A spooler file stored on the disk.

A data record.

(Item identifier). The unique piece of data which dis-
tinguishes a record in a file from all other records in the
same file. Often called a record key.

The method used to format data on output by lining up
to the right or left.

1024 characters.

1. An item identifier. 2. (Sort key) Data to be sorted.
The process by which a user enters a multi-user compu-
ter system.

The process by which a user leaves a multi-user compu-
ter system.

A file which holds records that: 1. Define all the files
accessible from a particular account. 2. Define the
vocabulary open to the users of a particular account.
In Access, a word which modifies the meaning of an
Access sentence.

1. The number of groups in a Pick file. 2. The number
used as a divisor in the hashing algorithm which is used
to retrieve a record from a Pick file.

Software which controls the use of the central proces-
sing unit and any peripheral devices.

In Access, a single character code surrounded by brack-
ets which may be used instead of a modifier.

A word which allows access to an account or allows a
protected process to begin.

The socket on the computer into which the wire from a
user’s terminal is plugged.

A sequence of precise instructions which specify an
algorithm.

Q pointer

record

record key
relational database
separation
software

spool

sub-value
sub-value mark
TCL

terminal

value

value mark

Glossary 177

A record held in a master dicitionary which allows a file
to be accessed from one account while being physically
stored in another.

A logical entity in a file. e.g. The data belonging to
a single customer in a file of customers data.

[tem identifier.

A database organised in a manner which allows access
to any piece of data via a unique key and which can
carry out certain tasks (Join, Project and Select).

The number of frames of disk space allocated to a
single group in a file.

The programs and routines which control the operation
of a computer.

An abbreviation for “Simultaneous Production of Out-
put Off Line™ — To store and queue output before it is
sent to a printer or tape.

The second sub-division of a Pick data record.

The character that Pick uses to separate sub-values,
ASCII character 252.

Terminal Command Level or Terminal Command Lan-
guage.

Any input/output device used to communicate with a
computer.

The first subdivision of a Pick data record. Multiple
values might be used to hold the individual lines of the
address of a customer.

The character that Pick uses to separate values, ASCII
character 253.

Index

12

2 inch tape 101
Yainch tape 101
:STARTSPOOLER 73

< 12
<inProc 137
<= 12

= 12

> 12

>= |2

(@ function 113,117

A correlative 55,59

A Proccommand 138
ABS section 97

ACC 95,150

Access 5.7

access protection 93
account 2.27,98
account justification 147
ACCOUNT-RESTORE 99
ACCOUNT-SAVE 80,98, 152
across the page format 47
addresses 30

AFTER 12

alignment process 63
alphabetical sort 46
ambiguous 71
American date format 49
AND 13

application generator 153
archiving 97

arithmetic correlatives 55
arithmetic precedence 56
array 016

assembler language 88
associated reports 65
attaching tapes 101
attribute 26, 30, 44
attribute mark 36. 86

backward link 86, 87
BASIC 103

batch process 142

baud rate 157
BEFORE 12
BLOCK-CONVERT 149
BLOCK-PRINT 149

178

brackets 56

break key 127
BREAK-ON 19,20
BY 16
BY-DSND 17

C command (editor) 37

C compiler 164

C correlative 58

Coption 8

C Proc command 136
C.Itoh 163

calculating 55

CALL 131

cartridge tape 101

CASE 119

case sensitive 2
CATALOG 104

centring headings 19
CHAIN 132

character conversions 51
CHARGES 151
checksum 92
chronological sort 48
CLEAR-BASIC-LOCKS 127
CLEAR-FILE 95,151,155
COL-HDR-SUPP 8
coldstart 147, 158
column heading 45
column width 45, 46
columnar format 112
commas between OOOs 50
comments 136
COMMON 124,131,132, 134
compilation error 104
COMPILE 103
compiling programs 103
computed GOTO 120
Computer Machinery Company
concatenate 58
concatenation 142
condition 118
conditional construct 117
connectives 13

constants 106

control option 117
control-X 7

conversions 4,49

161

COPY 155
correlatives 48,51
Cosmos 162
COUNT 7.23

CREATE-ACCOUNT 28,152

CREATE-FILE 29.77.82
CREATE-PFILE 84
creating accounts 27
creating dictionaries 44
creating files 28.77
creating programs 103
crossing frame limits 159
CRT 116

CURSOR 152

cursor control (Proc) 142
cursor positioning 113

D option &

DATA 133

database 5

database hierarchy 26
database structure 25
database updating 31
date 48.49
dates in headings 19
day number 49
DBL-SPC &

deadly embrace 129
DEC 162

decimal places 50
default report 7. 47
DELETE 127
DELETE function 108
DELETE-ACCOUNT 155
DELETE-FILE 155
deleting records 127
deleting spooler 68
descending sort 17
DET-SUPP 8,20
Devcom 162
dictionary 26,29, 43,124
dictionary structure 44
DIM 106

directing output 64, 115
disk frame 69, 79

disk space 26, 65, 81
DO loops 122

double spaced 9

down the page format 47
DUMP 86

DX account 97

DX files 84

DY files 84

dynamic array 106, 125, 133

ED 31
editing spool files 66

Index

editor 31,128

editor buffers 34
efficiency 133

cject pages 63

English 5

enquiry language 7
ENTER 132

EQ 12

EQUATE 133
ERRMSG 148

error conditions 140
error message 2. 104, 148
Espagnol 5

Evolution 162

EX 32

EXECUTE 145
executing programs 104
exit statement 142
exiting the editor 32
EXTRACT function 109

F command (editor) 34
F correlative 56

F option 98
F-OPEN 144
F-READ 144
F-WRITE 144

FI command (editor) 40
field 5.26.44

FIL editor command 84
file 5.7.31

file buffer 144

file defining item 78
file handling 155
file /O 123

file size 29,79

file size reallocation 81
file statistics 80.99
FILE-SAVE 80,97
filing 40

first normal form 77
floppy disk 101
FOOTING 8,18,116
FOR/NEXT 121
format mask 50, 114
formats 47
formatting 112
forward link 86, 87
forward link zero 159
frame 79,85
Frangais 5

Fujitsu 163

G command (editor) 35
G correlative 57

G Proc command 139
GE 12

179

180

GFE 87,99

GIRLS 161

GOSUB 120

GOTO 120

goto (editor) 35
graphics 152

group extraction 57
group format error 87, 88
group locking 128
group locking installations 128
GT 12

H option 8

H Proc command 136
hardware 1

Harris Trust 163
hashing algorithm 80
HDR-SUPP 8§
HEADING 8,18,116
hold file 61, 64
Honeywell 162
housekeeping 95

I command (editor) 33
loption 8

IBM 4300 163
IBMPC 114,162
ID-SUPP 8,10

IF 12,117

IF Proc command 139
implied decimal places 50
indirect call 132
Inform 5
Information 162
INPUT 111

input 139
INPUTERR 111
INPUTTRAP 111
INSERT function 108
inserting (editor) 33
inter-job pages 70
internal subroutine (Proc) 142
Intertechnique 161
IP Proc command 139
item identifier 31
item-id 5, 25,31,67

JET-MODES 152

job control language 135
join 29.48,51,77
justification 45,114

key 5.10,15,25,31,52
key (sort) 16

L command (editor) 32
L correlative 57

Index

labels 24

LE 12

left chevron 137

left justification 10, 46, 50
length 57

line editor 31

line wrapping 46
linked frame 86
LIST 7
LIST-LABEL 24
LISTABS 71
LISTDICT 29
LISTFILES 29
listing (editor) 32
LISTPEQS 68
LISTPROCS 29
LISTPTR 70
LISTU 95,150,152
LISTVERBS 29
LOCATE function 109,. 121
locating data 38
LOCK 129

locking 126, 128
logging off 3,149, 157
loggingon 2.27, 149, 157
LOGOFF 157
LOGON 2,147,157
lookalike 162
LOOP 122

looping 121

LPTR 8§

LT 12

mail merge 23
masked decimal 50

master dictionary 28,43, 141, 148, 152

MATREAD 120, 125
MATREADU 126
MATWRITE 127
maximum record size 26
MC conversion 51
MD 28, 148

MD conversion 50

ME command (editor) 39
merging data 39
messages 157
Microdata 161

ML conversion 50
modifier 8

modulo 77

moving print files 72
MR conversion 50
MSG 157

MT conversion 51
multi line I[F 118
multi-user 2
multi-value 30, 33, 54, 56

multi-valued data 10
multiple correlatives 59
multiple IF 119

multiple line headings 19

N option 8

NE 12

negative 50
NEWITEM 32
New Proc 143
NEWAC 152
nine track tape 101
Nippon-go 6
Nixdort 163

NO 12
NOPAGE &
normal form 77
NOT 12

null 12

null data 58

null file variable 125
null string 35
numerical sort 46

O Proc command 139
object code 103
OFF 3

ONLY 8

OPEN 120,124
Open Architecture 163
opening files 124
operating system 1, 153
options 8,64, 98. 158
OR 13
other Pick spoolers 74
output 61,139
output buffer 137
output modifier §
output qucue 70
overflow space 8l

P command (editor) 41
P correlative 58
Poption 8§

P Proc command 137
PAGE 116

page number in headings 19
paragraph 145
parallel printer 63
parameters 131

parity errors 100
password 3.91, 152
pattern match 140
patterns 57

patterns of characters 14
PC/DOS 162
PERFORM 145

Index 181

phantom GFE &7

Pick BASIC 103

Pick Systems 162
Pinnacle 163

pointer file 84, 103
positioning input buffer 13§
positive 50

POVF 8l

powerup 158

PO command 135

PON 143

precedence 56
preselected default report 7
prestored commands 41
preventing access 93
primary input buffer 135, 138
primary output buffer 136
PRINT 111.112
print file status 68
PRINT-ERR 149
printer &.61.156

printer (deleting) 73
printer abort 72
PRINTER CLOSE 116
printer number 62,70
PRINTER OFF 115
PRINTERON 115
printer status 70

printer type 63,70
printing 67

printing labels 24
printing process 72
privilege level 147
privileges 94

Proc 135

Proc branch 139

Proc subroutine 141
process Proc command 137
PROCLIB 152
programming structure 117
project 77

prompt character 3

Q pointers 83,92, 147
QFILE &3

quarter number 49
questions 10

quotes in headings 19

R command (editor) 35
R correlative 57

R/List 5
R84 163
ranges 57

READ 117,120,125
reading data 125
READNEXT 121

182

READT 121

READU 126,128
READV 120,126
READVU 126

real array 106, 125
reallocation of file size 81
Recall 5

record 5.30.31

record identifying field S
record length 86
record locking 126, 128
record size 26, 80
recovery procedures 97
REFORMAT 24
relational operator 12
RELEASE 126
remove spool queue 72
REPEAT 123
REPLACE function 109
replacing data (editor) 35
report formatting 112
response times 81
restart option 94, 95
restore 81,98,99
retrieval key 147
retrieval lock 92,93

retrieval time optimisation 80

Revelation 162
Reverse Polish 57

right justification 10, 46
RTN Proc command 142
RU command (editor) 38
RUN 104

running programs 104
RUNOFF 23,67, 158

S correlative 58.59
S Proc command 138
S-DUMP 23,100
saving a file 99
scaled value 114
second normal form 77
secondary output buffer 137
sectioned reports 19
security 28,91, 127
segement mark 86
SEL-RESTORE 100
SELECT 7,22,32,77
select buffer 144
selecting fields 9
semaphore lock 129
separation 77, 80
serial printer 63
SET-9 101
SET-BAUD 157
SET-CTAPE 101
SET-FILE 83

Index

SET-FLOP 101
SET-TERM 156
sharing data files 82
sharing dictionaries 82
single level file 29,77
SNA 164

software |

SORT 7.15.48
sortkey 16
SORT-LABEL 24
sorting 15
SP-ASSIGN 64
SP-CLOSE 75
SP-DELETEPTR 75
SP-DEQ 75
SP-EDIT 66
SP-JOBS 74
SP-KILL 72
SP-LISTASSIGN 75
SP-LISTLPTR 75
SP-LISTQ 75
SP-OPEN 75
SP-STARTLPTR 75
SP-STATUS 70
SP-STOPLPTR 75
SPOOL 67

spool queue number 70
spool queues 62, 64, 69
spooler 61,115
spooler abort 72
spooler administration 68
spooler hang 71
spooler options 64
spooler problems 71
spooler startup 73
spreadsheets 152
square brackets 14
SREFORMAT 24
SSELECT 7.22,32
stacked input 133, 137
starting printers 62
STARTPTR 62
STAT-FILE 99
stopping printers 62, 63
STOPPTR 63
sub-field extraction 57
sub-value 26, 30
SUBROUTINE 131
subroutine parameters 131
subroutines 105, 124, 131
substitution 58

SUM 7

summary reports 20
summations 56
switchingon 158
synonym logon names 147
synonyms 10

SYSPROG 2,91,97. 147
SYSPROG-PL 152
system console 158
system debugger 94
SYSTEM dictionary 92
system level file 152
SYSTEM-OBIJECT 152

T correlative 52,58
T Proc command 142

T-ATT 100
T-BCK 100
T-CHK 100
T-DET 100
T-DUMP 23,99
T-EDD 100
T-FWD 100
T-LOAD 99

T-RDLBL 100

T-READ 100

T-REW 100

T-SPACE 100
T-UNLOAD 100
T-WEOF 100

T-WTLBL 100

Tao Engineering 163

tape checking 100

tape devices 101

tape handling 99

tape unit 61, 64

TCL 3,94

TERM 113,116, 156
terminal 156

terminal characteristics 156
terminal command level 3
terminal control functions 113
terminal driver 152
terminal output 142

text extraction 58

text justification 46

text within a sectioned report 22
third normal form 77

time 51

time in headings 19

topof form 63

TOTAL 8,20

totalling fields 20
transferring Proc control 141

Index

translate 51,52
translation 48

U conversion 51
USOBB 95
Ultimate 162

underlining totals 22

UNLOCK 129
unlocking records
UNTIL 122

up arrow 13
update facility 95
update key 147
update lock 92,93
updating files 123,

126

127

upgrade operating system

user exit Sl
USING &2

validation 140
value 26,33
variables 105
verb 7
verification 159

VERIFY-SYSTEM 159

vocabulary 28,29
Vulture 164

WEOF 121
WHERE 62,74
WHILE 123
Wicat 163

Wild card 13,37
WITH 12

word processor 152

WRITE 127
WRITEV 127
writing to files 127

X Proc command
X25 164

year 49
zero as null 50

zerodata 58
13

142

153

183

‘—(? _ n N —— T T - =—ee———

‘-. PICK® for users

PICK®™ for users is intended as a guide for users and prospective users of the Pick
operating system. It is designed to enable those without specialist knowledge

to interrogate a Pick database and manage a computer running Pick. PICK ™) for
users covers the topics of access, the Pick database, the system editor,
dictionaries, the spooler, security, archiving, Pick/Basic and Proc. The text is
illustrated throughout with examples that will be familiar to the businessman,
whether or not he is an existing user.

About the author

Martin Taylor has been a user of the Pick operating system since 1979. Following
work with a major Pick hardware distributor he is now the managing director of
his own computer services company. He is the author of many business software
packages, provides consultancy services for several large Pick users and gives
training courses on various aspects of the operating system. He is the holder of a
first class honours degree from Leeds University and national and international

periodicals have published his articles and opinions on the Pick operating system

and related fields. : :

Titles of related interest

Practical Data Communications:
Modems, Networks and Protocols

F. Jennings

1985. 250 pages, 62 illustrations
Essential reading for all interested in data
communications systems, this handbook
describes how communications interfaces,
modems, networks and data link protocols
are used to interconnect computer and
terminal equipment. It covers in one
volume all the different types of data

communications networks currently used

in the UK.

Pragmatic Data Analysis

R. Veryard

1984. 96 pages, 28 illustrations
This book introduces the idea of a data
model as a clear way of depicting logical
data structures. Techniques are described
for building a data model by interviewing
the future users of a planned information
system. As a commonsense introduction to
the concepts and techniques of data
analysis, the book will be useful both to
experienced data analysts and to students
as a supplement to their training in a

formal methodology.

BLACKWELL SCIENTIFIC PUBLICATIONS LTD

Osney Mead, Oxford OX2 OEL
8 John Street, London WC1N 2ES
23 Ainslie Place, Edinburgh EH3 6AJ

52 Beacon Street, Boston, Massachusetts 02108, USA
667 Lytton Avenue, Palo Alto, California 94301, USA
107 Barry Street, Carlton, Victoria 3053, Australia

