
The Pick Series

A REFERENCE GUIDE

O'Reilly & Associates, Inc.

The Pick Series

Pick BASIC
A REFERENCE GUIDE

By Linda Mui

O'Reilly & Associates, Inc.

Copyright © 1990 O'Reilly & Associates, Inc.
All Rights Reserved

PICK and the PICK Operating System are registered trademarks of Pick Systems. Inc.

Prime INFORMA nON is a trademark of Prime Computer. Inc.
Mentor is a registered trademark of Applied Digital Data Systems, Inc.
uniVerse is a trademark of VMARK SOFTWARE. INC.

Ultimate is a registered trademark of The Ultimate Corporation.

While every precaution has been taken in the preparation of this book, we assume no
responsibility for errors or omissions. Neither is any liability assumed for damages
resulting from the use of the information contained herein.

First Edition. Mar. 1990

ISBN 0-937175-42-0

The Pick Series

COMPLETE, ACCESSIBLE GUIDES TO PICK

The Pick Series offers user-oriented documentation­
helping new users learn about Pick quickly and helping
experienced users find accurate information easily. The
Pick Series is a complete documentation set for all users.
It tackles the Pick system at a level of depth not found
elsewhere. Books in the series are based on a mature
implementation of the Pick operating system (R83)
with notes on SMA standards and specific differences
among major Pick implementations.

TECHNICAL EDITOR

W. Clifton Oliver, CCP

SERIES EDITOR

Dale Dougherty

The Pick Series

The goal of the Pick Series is to provide Pick documentation that
is user-oriented: to help new users learn about Pick quickly and to
help experienced users find accurate information easily. These
books are written in a conversational tone, with lots of examples,
as if an experienced user were by the reader's side. The Pick Series
offers complete documentation of the Pick operating system (R83)
with notes on SMA standards and specific differences among
major Pick implementations.

Books in the series include:

• Pick ACCESS: A Guide to the SMA/RETRIEVAL Language
(ISBN 0-937175-41-2, $29.95)

• A Guide to the Pick System
(ISBN 0-937175-43-9, $34.95)

• Pick BASIC: A Reference Guide
(ISBN 0-937175-42-0, $39.95)

• Master Dictionary Reference Guide: User Account Verbs
(Available 5/90, ISBN 0-937175-44-7, $39.95)

• System Administration: A Guide to Managing the
Pick/SMA Operating System
(Available 6/90, ISBN 0-937175-45-5, $34.95)

• SYSPROG Reference Guide: SYSPROG Account Verbs
(Available 8/90, ISBN 0-937175-46-3, $29.95)

• PROC: A Guide to the PROC Processor
(Available 9/90, ISBN 0-937175-47-1, $21.95)

O'Reilly & Associates, Inc.
632 Petaluma Avenue· Sebastopol, CA 95472 • 800-338-6887

in CA 800-533-6887· local/overseas + 1-707 -829-0515

CONTENTS

List of Chapters

Preface: About This Book ... xix

Chapter 1: Creating Pick BASIC Programs 1

Chapter 2: Format, Data, and Expressions 15

Chapter 3: Overview of Statements and Functions35

Chapter 4: Using the Pick BASIC Debugger 69

Chapter 5: Statement and Function Reference 93

Appendix A: Pick BASIC Program Examples 269

Appendix B: Error Messages 279

Appendix C: List of ASCII Codes 287

Appendix D: Pick BASIC Statements, Functions,
and Operators ... 291

Index .. 297

Contents v

CONTENTS

Preface: About This Book ... xix

The Development of Pick BASIC. ... xx

Pick BASIC Enhancements .. xx

Program Format .. xx

New Features ... xxi

SMA Standards .. xxii

Assumptions ... xxii

How to Use This Manual.. .. xxiii

Summary of Contents ... xxiv

Conventions .. xxiv

Acknowledgements ... xx vi

How to Contact Us .. xxvii

Chapter 1: Creating Pick BASIC Programs 1

A Sample Program ... 1

Creating the Program File .. 3

Editing and Listing the Source Code4
Compiling the Program ... 6

Options to the BASIC and COMPILE Commands 8

Options for Debugging a Program 8

Options for Cataloging .. 11

Listing the Source (the L Option) 11

Printing Compiler Output (the P Option) 12

Running the Program .. 12

Debugging Options (D. E. A. and S) 12

Printing Output (the P and N Options) 13

Inhibiting Initialization (the I Option) 13

Cataloging the Program ... 13

Contents vii

Chapter 2: Format, Data, and Expressions 15

Program Format. .. 15
Types of Statement.. .. 16

Statement Labels ... 17

Writing Readable Code ... 17

Using Remarks .. 18

Remarks in the Object Code 18

Constants, Variables, and Data Types 19

Assigning and Using Constants 19

Assigning and Using Variables 19

Data Typing in Pick BASIC .. 20

Building Expressions .. 21

Simple Assignment. .. 21

Using Operators and Functions 21

Numeric Expressions ... 22

Arithmetic Operators ... 23

Parentheses in Expressions 23

Character Strings in Arithmetic Expressions 24

Intrinsic Mathematical Functions 24

String Expressions .. 25

The CAT String Operator 26

Logical Data (Booleans) .. 26

Relational Operators ... 27

Logical Operators ... 28

The MATCH Operator .. 29

Logical Functions .. 29

Advanced Data Types .. 30

Array Variables ... 30

Dynamic Arrays ... 30

Dimensioned Arrays .. 31

File Variables ... 32

Select-List Variables .. 32

Chapter 3: Overview of Statements and Functions 35

Assignment Statements ... 36

Initializing Variables (CLEAR) 36

viii Pick BASIC: A Reference Guide

Assigning Constants (EQUATE) 36

Intrinsic Functions ... 37

Numeric Functions .. 37

Logical Functions (NOT, NUM, ALPHA) 38

Internal Program Control.. ... 39

The IF Conditional .. 39

The THEN and ELSE Clauses 40

NULL Statements .. 40

CASE Constructs .. 41

Loops (LOOP, FOR) ... 41

The LOOP Construct .. 42

FOR Loops ... 42

Stopping a Program (STOP, ABORT, END) 42

The END Statement.. .. 43

Internal Subroutines (GOSUB, RETURN) 43

The GOTO Statement ... 44

External Program Control .. 44

External Subroutines (CALL) .. 44

Passing Parameters (COMMON) 45

Executing a TCL Command (EXECUTE, DATA) 46

The DATA Statement ... 46

Using EXECUTE with Select-Lists47
Executing Another Pick BASIC Program (ENTER) .. 47

Sending Output to the Screen and Printer 47

Output Devices (PRINT, CRT, DISPLAy) 47

Sending Output to the Printer (PRINTER ONI
PRINTER OFF) .. 48

Print Units .. 48

Formatting and Positioning Output 49

Tabulation and Carriage Return Suppression 49

Formatted Screens (@) .. 49

Formatting Data ... 50

Headings and Footings ... 51

Terminal Input ... 52

The INPUT Statement .. 52

Variations on INPUT .. 52

Contents ix

Masked Input Statements (INPUT @) 53

INPUTTRAP, INPUTNULL and INPUTERR 53

INPUT and the Data Stack 54

Dynamic Array Processing ... 54

File Items and Dynamic Arrays 55

Dynamic Array Functions ... 55

The LOCATE Statement 56

Alternate Forms for Dynamic Array Processors 57

Counting Delimiters and Substrings 57

Generalized String Processing ... 57

Substring Extraction .. 58

Substring Assignment. .. 58

The FIELD Function .. 58

The COLI, COL2, and LEN Functions 59

The INDEX Function .. 59

Trimming Spaces ... 59

Dimensioned Arrays .. 60

Assigning Dimensioned Array Variables (DIM) 60

MA TREAD and MA TWRITE 61

The MAT Statement.. .. 61

Reading and Updating File Items ... 61

File Variables (OPEN) ... 61

Reading and Writing a File Item 62

Item Locks (READU, WRITEU, RELEASE, etc.) 62

The LOCKED Clause ... 63

Select-Lists (SELECT, READNEXT) 63

Deleting File Items (DELETE, CLEARFILE) 64

Reading and Writing Tapes ... 64

Execution Locks .. 65

The THEN and ELSE Clauses to LOCK 65

Compiler Directives .. 66

Comments in the Object Code 66

Reading In External Source Code 66

Miscellaneous Statements and Functions 67

Conversion Codes (ICONV, OCONV) 67

The SYSTEM Function ... 67

Entering the Debugger .. 68

x Pick BASIC: A Reference Guide

Chapter 4: Using the Pick BASIC Debugger 69

Debugger Commands: Quick Reference 69

Fixing a Bug ... 71

A Sample Program ... 71

Printing Source Code ... 72

Using Breakpoints and Trace Variables 74

Displaying and Changing a Variable 75

Using Execution Steps ... 76

Assigning New Values for Testing 77

Entering the Debugger ... 78

The Symbol Table ... 79

Exiting the Debugger .. 79

Displaying and Changing a Variable (/) 79

Displaying All Variables .. 80

Displaying and Changing Simple Variables 80

Displaying and Changing Dimensioned Arrays 81

String Windows ([]) ... 82

Accessing Source Code .. 83

Identifying Source Code (Z) ... 83

Displaying Source Code (L, $, ?) 84

Breakpoints and Tracing ... 84

Establishing a Breakpoint (B) .. 85

Deleting a Breakpoint (K) 86

Defining a Trace Variable (T) ... 86

Deleting a Trace Variable (U) 87

Displaying Breakpoints and Trace Variables (D) 87

Execution Control .. 87

Continue Execution (G) .. 88
Setting an Execution Step (E) .. 88

Ignoring Breakpoints (N) .. 89

Printing Output ... 89

Toggling Program Output (P) .. 89

Toggling Line Printing (LP) ... 89

Close the Printer (PC) .. 90

Return Stack ... 90

Displaying the Return Stack (S) 90

Popping the Return Stack (R) .. 91

Contents Xl

Chapter 5: Statement and Function Reference 93

! : Enter a remark in the source code 93

$* : Place a comment into the object code 95

$CHAIN: Transfer to another file item for source code 96

$INCLUDE: Read in source code from another file item 97

$INSERT: Read in source code from another file item 99

* : Enter a remark in the source code 1 00

= : Assign a value to a variable .. 101

@(): Screen Control Function ... 102

[]= : Assign a substring .. 105

ABORT: Abort a program and return to TCL.. I08

ABS(): Return the absolute value of an expression 109

ALPHA(): Test for an all-alphabetic string 110

ASCII(): Convert a string from EBCDIC to ASCII code 111

BREAK: Control access to the debugger 112

CALL: Call an external subroutine .. 114

Passing Arrays ... 115

CASE: Perform conditional execution 116

CHAIN: End program and execute a TCL command 117

CHAR(): Return the ASCII character of a decimal value 118

CLEAR: Initialize all variables to zero 119

CLEARFILE: Clear the data from a file 120

COLl (): Return preceding column position 121

COL2(): Return following column position 122

COMMON: Assign space allocation sequence for variables 123

CONVERT: Convert characters in a string 124

COS(): Return the cosine of the expression 125

COUNT(): Count the number of occurrences of a substring 126

CRT: Send data to the terminal display screen 127

Formatted Output ... 127

DATA: Store data in an input stack 128

DATE(): Return the date in internal format.. 129

DCOUNT(): Return the number of fields separated by
a delimiter ... 130

DEBUG: Enter the Pick BASIC debugger 132
DEL: Delete an element from a dynamic array 132

DELETE: Delete a file item from a file 133

xii Pick BASIC: A Reference Guide

DELETE(): Delete an element from a dynamic array 134

DIM: Declare array variables .. .135

DISPLAY: Send data to the terminal display screen 136

Formatted Output ... 137

EBCDIC(): Convert a string from ASCII to EBCDIC code 138

ECHO: Tum system echo on or off 138

ELSE: Initiator used with conditional statements 140

END: End compilation or a group of THEN I ELSE statements .. 141

ENTER: Transfer control to another program142

EQUATE: Assign values at compile time 143

EXECUTE: Execute a TCL command and return
to the program .. 144

EXECUTE with Select-Lists .. 145

Printing Output from EXECUTE 146

EXP(): Return e to the specified power 148

EXTRACT(): Return an attribute, value, or subvalue
from an array .. 148

FIELD(): Return a delimited substring of a string 149

FOOTING: Specify the footing for output pages 150

FOR: Repeat a procedure with an incrementing variable 152

Format Expressions: Specify a format for data 153

Formatting Numbers ... 154

Format Masks .. 156

Internal Date Conversion ... 156

GOSUB: Branch to an internal subroutine 159

GOTO: Transfer program control to a specified label.. 161

HEADING: Initialize parameters, specify heading
for output pages .. 162

ICONV(): Convert data from external to internal format.. 163

IF: Perform conditional execution .. 165
Statement Syntax ... 165

INCLUDE: Read in source code from another file item 167

INDEX(): Return the position of a substring within a string 169

INPUT: Request terminal input...170

INPUT @: Request terminal input at a specified location174

INPUTCLEAR: Clear the type-ahead buffer. ' 176

INPUTERR: Display an error message on last line of screen 177

Contents xiii

xiv

INPUTIF: Capture terminal input from the type-ahead buffer 178

INPUTNULL: Establish character as null in input. 180

INPUTIRAP: Transfer control of program according
to input data ... 181

INS: Insert an attribute, value, or subvalue into an array 182

INSERT(): Insert an attribute, value, or subvalue into an array .. 184

INT(): Return the integer portion of an expression185

LEN (): Return the length of an expression 186

LN(): Return the natural log of an expressionl87

LOCATE(): Find an attribute, value, or subvalue in a string 187

LOCK: Set an execution lock ... 190

LOOP: Structure for program 100ping 192

MAT: Assign values to elements of an array 193

MA TB UILD: Create a dynamic array from a dimensioned array ... 194

MA TP ARSE: Create a dimensioned array from a dynamic array .. 197

MATREAD: Read a file item as a dimensioned array 200

MA TREADU: Read a dimensioned array, setting an item lock 202

MA TWRITE: Write a dimensioned array into a file item 204

MATWRlTEU: Write an array into a file item, retaining
item locks ... 205

MOD(): Return remainder of one expression divided by another. 206

NEXT: Terminator used with FOR ... NEXT 100ps 207

NOT(): Return the logical inverse of an expression 207

NULL: Null statement. ... 208

NUM(): Determine if an expression is numeric 209

OCONV(): Convert data from internal to external format 210

Conversion Codes .. 21 0

ON: Conditionally branch to a subroutine 211

OPEN: Open a file ... 211

PAGE: Advance the page on the output device 213

PRECISION: Declare decimal precision 214

PRINT: Send data to the output device 215

Formatted Output ... 216

PRINTER: Specify the output device 217

PROCREAD: Read the primary input buffer of the calling proc .. 218

PROCWRITE: Write to the primary input buffer of the
calling proc .. 219

Pick BASIC: A Reference Guide

PROMPT: Assign the prompt character 220

PWR(): Returns an exponential value 221

READ: Read a file item as a dynamic array 222

READNEXT: Read the next value in a select-list. .:. 223

READT: Read next record from magnetic tape 225

READU: Read a file item as a dynamic array, locking the item ... 226

READV: Read a single attribute of a file item 228

READVU: Read an attribute of a file item, setting an item lock..229

RELEASE: Release item locks in a file 231

REM: Enter a remark in the source code 232

REM(): Return remainder of one expression divided by another .. 233

REPEAT: Terminator used with LOOP statements 234

REPLACE(): Replace an attribute, value, or subvalue in
an array ... 234

RETURN: Return control to the main program 236

REWIND: Rewind a magnetic tape to the beginning 237

RND(): Return a random number ... 238

RQM: Sleep for a specified number of seconds 239

SELECT: Create a select-list. ... 240

SEQ(): Return the decimal value of an ASCII character. 241

SIN(): Return the sine of the expression 242

SLEEP: Sleep for a specified number of seconds 242

SOUNDEX(): Convert a string into its phonetic equivalent. 243

SPACE(): Generate a specified number of spaces 245

SQRT(): Return the square root of an expression 245

STOP: Terminate execution of a program 246

STR(): Repeat a character string n times 247

SUBROUTINE: Identify a subroutine 248

SUM(): Add elements of a dynamic array 249
SYSTEM(): Return general status information about

the system ... 251
T AN(): Return the tangent of the expression 253

THEN: Initiator used with conditional statements 254

TIME(): Return the time of day in seconds 254

TIMEDATE(): Return the time and date in external format. ,255

TRIM(): Remove extraneous blanks from a string 256

TRIMB(): Remove trailing blanks from a string 256

Contents xv

TRIMF(): Remove leading blanks from a string 257
UNLOCK: Release execution locks 258
UNTIL: Initiator used with FOR and LOOP statements 259
WEOF: Write an End-of-File mark .. 259
WHILE: Initiator used with FOR and LOOP statements 259
WRITE: Write an item to a file ... 260
WRITET: Write a tape record onto a magnetic tape 261
WRITEU: Write an item to a file, retaining item locks 262
WRITEV: Write the value of one attribute to a file 263
WRITEVU: Write an item to a file, retaining item locks 264

Appendix A: Pick BASIC Program Examples 269

Programming Example 1: Triples .. 269
Programming Example 2: Guess ... 270
Programming Example 3: INV-INQ 271
Programming Example 4: Format ... 272

Programming Example 5: Lot-Update 274

Appendix B: Error Messages ... 279

Compiler Messages ... 279
Run-time Messages ... 282

Debugger Messages ... 285

Appendix C: List of ASCII Codes 287

Appendix D: Pick BASIC Statements, Functions,
and Operators .. 291

Index .. 297

xvi Pick BASIC: A Reference Guide

PRE F ACE

About This Book

Application programming on the Pick system uses the Pick BASIC*
programming language. Designed specifically for the Pick system, Pick
BASIC opens a world of possibilities for Pick. With Pick BASIC in your
grasp, you will come to understand why Pick is designed the way it is and
how you can adapt it for your own applications.

When confronted with Pick BASIC, most users' first reaction is dismay at
the prospect of programming in the BASIC language. The good news is
that although Pick BASIC is based on Dartmouth BASIC, its scope goes far
beyond BASIC as most people know it. Like Dartmouth BASIC, Pick
BASIC is easy to learn and simple to implement; however, it is far more
flexible and powerful than Dartmouth BASIC.

Pick BASIC: A Reference Guide is the third book in O'Reilly &
Associates's user-oriented series of complete, accessible guides to the Pick
system (the first two books in the series are Pick ACCESS: A Guide to the
SMA/RETRIEVAL Language, and A Guide to the Pick System). The Pick
Series offers a complete Pick documentation set for both new and
experienced users. It is based on a mature implementation of the Pick R83
operating system, follows the SMA standards, and notes specific differences
among major Pick implementations. Forthcoming books in the series will
include:

System Administration: A Guide to Managing the Pick/SMA
Operating System.

• Master Dictionary Reference Guide: User Account Verbs.

* Also known as DAT AIBASIC or INFOIBASIC.

Preface: About This Book xix

• SYSPROG Reference Guide: SYSPROG Account Verbs.

• PROC: A Guide to the PROC Processor.

The Development of Pick BASIC

The BASIC language was developed at Dartmouth College in 1963 as a
teaching aid for beginning programmers. The BASIC acronym itself stands
for Beginners All-purpose Symbolic Instruction Code. It was designed to
be easy to learn so that students could quickly master it, even students who
had previously been intimidated by computers. In many ways BASIC can
be thought of as a primer for programmers.

Consequently, practically every programmer today knows at least a little bit
of BASIC. This is one of the beauties of Pick BASIC: because of its
similarity to BASIC. it is instantly familiar to almost every programmer.
Users will soon discover, however, that where Dartmouth BASIC ends, Pick
BASIC is just beginning.

Pick BASIC Enhancements

Some of Pick BASIC's enhancements of Dartmouth BASIC are listed here,
to give the reader a taste of what Pick BASIC can accomplish.

Program Format

xx

• Statement Labels. In Dartmouth BASIC, numeric statement labels
are mandatory for each line of source code. In Pick BASIC,
statements are executed in the order in which they appear. Statement
labels are not mandatory for each line. Furthermore, on many Pick
systems statement labels need not be numeric: alphabetic and
alphanumeric labels are also supported, with the provision that the
label end with a colon (:). A particularly useful feature is that there
is no limit to the length of a statement label, as long as the file item
storing the source code does not exceed the maximum item size
supported by your implementation.

Pick BASIC: A Reference Guide

Multiple Statements. Pick BASIC allows several statements to be
written on the same line of source code, as long as they are separated
by a semicolon (;).

Variable Names. Variables can have any name of any length, as long
as the file item does not exceed the maximum item size supported by
your implementation.

Fixed-Point Arithmetic. Computations are done with fixed-point
arithmetic, with 19-digit precision and up to at least six decimal
digits.

New Features

Dynamic Arrays and String Handling. Since string manipulation is
what the Pick system is all about, string functions are key to the
structure of Pick BASIC.

File items are read as dynamic array strings in a Pick BASIC
program, with each "line" of text separated by an attribute mark.
String functions range from locating a substring or specifying a range
of characters, to the powerful dynamic array functions for extracting,
replacing, deleting, or inserting a specified field in the array.

Dimensioned Arrays. In Pick BASIC, dynamic arrays can be
converted into dimensioned arrays, and vice versa. Programmers
therefore have the freedom to choose the data form that is most
efficient for their applications.

Item and Execution Locking. Item locks and execution locks in Pick
BASIC can prevent multiple users from accessing the same data or
executing the same subroutine at the same time. *
External Subroutines. External subroutines can be executed in Pick
BASIC with the CALL statement. In addition, any TCL verb can be
executed with the EXECUTE statement, and its output and error
messages can be captured for use in the program.

* Some Pick implementations use the older group locks instead of item locks.
Since many Pick systems have already switched to item locks, and since it is likely
that more manufacturers will switch in the near future, we have treated item locks
in this book as the emerging standard.

Preface: About This Book XXI

• Screen Manipulation. The @ function in Pick BASIC provides a
wide range of terminal control sequences. Full formatted screen
programs can be produced with these sequences.

Tape I/O. Pick BASIC provides statements for directly reading and
writing magnetic tapes.

SMA Standards

All books in the Pick Series are fully compatible with the SMA standards.
Pick BASIC: A Reference Guide includes all statements and functions listed
in the SMA/BASIC Language Specification published in April. 1986. The
SMA specification includes all of the statements and functions commonly
available on all Pick systems; it does not. however. include many of the
additional statements and functions that are currently supported by many
Pick and Pick-related systems.

We have tried to be more inclusive. This book reflects the diversity of what
is currently available on different Pick systems; it covers many statements
and functions that are not included in the SMA standards but that are
supported by a number of major Pick manufacturers. We have not
documented every single statement and function available on every system.
however. UniVerse BASIC. for example, has many special functions for
working with dynamic arrays that are not found on other systems; since
these are not generally available, we have not covered them in this book.

All statements and functions not included in the SMA standards are noted, as
are many of the differences between the Pick and the Pick-related
implementations (such as Prime INFORMATION and uniVerse).

Assumptions

The aim of this book is to teach the Pick BASIC programming language to
a user unfamiliar with it. We assume that the user is familiar with some
programming concepts and techniques and with the structure of the Pick
system; however. an ambitious reader need not be an experienced
programmer in order to learn Pick BASIC from this book.

XXll Pick BASIC: A Reference Guide

How to Use This Manual

We recommend that you use the following order to read this book:

Chapter 1, "Creating Pick BASIC Programs," describes how
programs are created. It goes into more detail than the average
beginner requires, so you may want to skim it for the general
concepts at first and return to it for details as necessary.

Chapter 2, "Format, Data, and Expressions," describes program
format, data types, and the syntax for expressions. It should be read
carefully.

Chapter 3, "Introduction to Statements and Functions," provides a
tour of the Pick BASIC language. Statements and functions are
covered by topic. Read this chapter very carefully: it packs a lot of
information into a few pages, so each topic should be fully digested
before continuing with the next.

We recommend that readers stop periodically, perhaps after every
subsection of Chapter 3, to tryout what has just been covered.
Chapter 5 can be used for reference at this stage. By experimenting
as you go, you can feel confident that you have fully mastered a topic
before continuing with another.

After studying Chapters I through 3, you should be ready to start writing
programs, using Chapter 5 as a reference.

When you are ready to learn about better ways to debug your programs, refer
to Chapter 4, "Using the Pick BASIC Debugger." There are two parts to
Chapter 4, a tutorial and a reference. Since there are only a handful of
debugger commands, you can study and experiment with each one as you
proceed.

Appendix A may be useful if you want some inspiration for working out
your own applications. It contains several sample applications which you
can study or copy for your own use.

Refer to the other three appendixes as necessary. Appendix B contains error
messages which you may encounter while you are creating programs.
Appendix C lists the ASCII codes, which are often necessary for using the
CHAR or SEQ functions. Appendix D lists all statements, functions, and
operators that are available on selected Pick and Pick-related systems.

Preface: About This Book xxiii

Summary of Contents

Pick BASIC: A Reference Guide is divided into five chapters and three
appendixes.

Chapter 1, "Creating a Pick BASIC Program," describes the syntax and use
of the TCL commands necessary for creating Pick BASIC programs.

Chapter 2, "Format, Data, and Expressions," covers the format of Pick
BASIC programs, data types, operators, and the syntax for valid
expressions.

Chapter 3, "Overview of Statements and Functions," is a brief tour of the
Pick BASIC language. The statements and functions, organized by topic,
are each briefly described to familiarize the reader with the language and with
how the statements and functions are designed to interact.

Chapter 4, "Using the Pick BASIC Debugger," is a tutorial and reference
guide to the commands available to the Pick BASIC interactive debugger.
The chapter begins with a quick reference to all debugger commands.

Chapter 5, "Statement and Function Reference," is a complete reference
guide to every statement and function in Pick BASIC, arranged
alphabeticall y.

Appendix A, "Pick BASIC Program Examples," contains several sample
applications written in Pick BASIC.

Appendix B, "Error Messages," is a list of error messages generated by the
COMPILE and RUN verbs, and by the Pick BASIC debugger.

Appendix C, "List of ASCII Codes," is a list of ASCII character, decimal,
and hexadecimal codes.

Appendix D, "Pick BASIC Statements, Functions, and Operators," is a list
of all statements, functions, and operators that are available on selected Pick
and Pick-related systems.

Conventions

The following conventions are used for indicating the syntax of statements
and functions in Pick BASIC.

xxiv Pick BASIC: A Reference Guide

Convention

BOlD CAPS

italics

[]

{ }

<>

()

Usage

Anything shown in large bold characters must
be typed exactly as shown.

Anything shown in italics is variable
information for which the user provides a
specific value.

Anything shown enclosed in square brackets is
optional, unless stated otherwise. The square
brackets themselves are not typed unless they
are printed in bold.

One or more syntax elements may be enclosed
in curly braces. One of the elements within
the braces m us t be typed. The braces
themselves are not part of the syntax and are
not typed.

A vertical bar separating two or more elements
indicates that anyone of the elements can be
typed.

Bold angle brackets are part of the syntax, and
must be typed unless indicated otherwise.

Bold parentheses are part of the syntax. Both
parentheses must be typed unless indicated
otherwise.

In examples we use the following conventions:

Convention

BOLD

PLAIN

<RETURN>

<CTRL-char>

Usage

Anything the user types as input is shown in
bold characters

Any output displayed by the system (prompts,
responses to user input, etc.) is shown in plain
characters

Indicates that the RETURN key must be pressed

Indicates that a control character is to be
typed. To enter a control character,
simultaneously hold down the CONTROL (CTRL)

key and press the specified character.

All punctuation marks included in syntax lines (e.g., commas, parentheses,
angle brackets, underscores, hyphens) are required in the syntax unless
otherwise indicated.

Preface: About This Book xxv

In the following syntax example:

OPEN [diet,] filename TO filevar { THEN
statements

END [ELSE
statements

END II ELSE
statements

END}

the keywords OPEN and TO must be specified. Either the THEN or ELSE
clause must be specified, but both are not required. The user must supply
appropriate values for ftlename,ftlevar, and statements. The dict expression
is optional, but if it is included, it must be separated from filename by a
comma.

When variable syntax elements are two or more words long, we use hyphens
instead of blank spaces to separate the words in order to show that only one
element is required. For example, in the statement:

EXECUTE eommand-expr [CAPTURING evar]
[RETURNING rvar]

the word command-expr indicates a single element.

Please note that although the conventions for Pick BASIC syntax lines are
similar to the conventions used in other books in the Pick Series, they are
not absolutely identical to them.

W This symbol indicates an important note or caution.

Acknowledgements

We would like to thank everyone at Applied Digital Data Systems, Inc., for
reviewing this material in its earlier life, and for the use of the ADDS
Mentor 6000 system on which all of the examples in this book were
generated. Special thanks to Robin White, Dave Yulke, Mike Hannigan,
Joe Ferraro, Linda Krencik, Linda Lutz, and many technical support people,
all of whom contributed to the book in both large and small ways.

Thanks are also due to the members of the O'Reilly & Associates staff who
worked on this book: Walter Gallant who edited it, Michael Sierra who

xxvi Pick BASIC: A Reference Guide

typeset the book, and Sue Willing who steered it through the printing
process. Edie Freedman designed the covers.

We have m.ade every effort to verify all the information in this book. Any
errors that remain are our own.

How to Contact Us

To help us provide you with the best possible documentation, please write
and tell us about any mistakes you find in this book or about how you
think it might be improved.

Our U.S. mailing addresses are:

Ordering

O'Reilly & Associates, Inc.
632 Petaluma A venue
Sebastopol, CA 95472

(800) 338-6887
(800) 533-6887 (in CA)
(707) 829-0515 (locaVoverseas)

FAX: (707) 829-0104

Preface: About This Book

Editorial (Walter Gallant)

O'Reilly & Associates, Inc.
90 Sherman Street
Cambridge, MA 02140

(617) 354-5800

xxvii

CHAPTER 1

Creating Pick BASIC
Programs

Writing a Pick BASIC program is relatively simple. You edit the program
source code and then compile the program. If the program compiles
successfully, you can then execute it. If the program runs correctly, you can
then catalog it; otherwise you can debug it (optionally using the interactive
debugger) and repeat the sequence.

A Sample Program

As an example, let's create a simple program. Our program is called
ADDNUMS; it returns the sum of two numbers.

Before we can write the program, we need a program file. The source code
for a Pick BASIC program is entered as an item in the program file. By
convention, the program file for an account is often called BP (for Basic
Programs), but you are free to name the file whatever you like.

The file is first created with the CREATE-FILE command. Then the File
Definition item in the Master Dictionary is changed to make the file a
program file (we'll explain this in more detail later).

>CREATE-FILE BP 1 3

[4171 FILE 'BP' CREATED; BASE = 10999, MODULO = 1.

[4171 FILE 'BP' CREATED; BASE = 11000, MODULO = 3.

1: Creating Pick BASIC Programs

>ED MD BP
TOP
.<RETURN>
001 D
.R/D/DC
001 DC
.FI
'BP' FILED.

>

The CREATE-FILE command in the preceding example creates a file, with
a modulo of 1 for the file dictionary and a modulo of 3 for the data file.
Next, the D-pointer in the Master Dictionary is edited to change the file
from a D-type to a DC-type for storing programs. The new source code can
now be placed in item ADDNUMS in the program file BP.

For writing the program, we use the Editor:

>ED BP ADDNUMS
NEW ITEM
TOP
.1
001 +PRINT "ENTER ONE NUMBER":
002+INPUT NUM1
003+PRINT "ENTER ANOTHER NUMBER":
004+INPUT NUM2
005+SUM = NUM1 + NUM2
006+PRINT "THE SUM OF ":NUM1 : " AND ":NUM2:

007+STOP
008+END
009+ <RETURN>
TOP
.FI
'ADDNUMS' FILED.

>

"IS ":SUM

We then compile the program with the COMPILE command. By
compiling the program, we translate the program's source code into object
code.

>COMPILE BP ADDNUMS

SUCCESSFUL COMPILE! 1 FRAMES USED.

>

The program compiles without error. Once the program is compiled,
execute it with the RUN command.

2 Pick BASIC: A Reference Guide

>RUN BP ADDNUMS
ENTijR ONE NUMBER?4
ENTijR ANOTHER NUMBER?9
THE SUM OF 4 AND 9 IS 13

>

The program seems to run successfully on the first attempt. We can now
catalog it so that we can use it as if it were a TCL command:

>CATALOG BP ADDNUMS
[244] 'ADDNUMS' CATALOGED!

>ADDNUMS
ENTER ONE NUMBER?5
ENTER ANOTHER NUMBER?3
THE SUM OF 5 AND 31S 8

>

And that's all there is to creating a Pick BASIC program. More complex
programs seldom compile the first time, and once they compile they don't
always run without error. The process, however, remains unchanged: edit,
compile, and run the program until you get it right.

Creating the Program File

Pick BASIC programs need to be stored in a special file, called a
pointer-file. Pointer-files that contain programs always have two
components, a file dictionary and a data file (like other files on the Pick
system). The difference is that, instead of normal dictionary items, the
dictionary of a pointer-file contains items that point to compiled object
code. In addition, the File Definition item in the Master Dictionary must
contain a Definition Code of "DC" in line 1, rather than the usual "D"
code. *
On Prime INFORMATION and uniVerse systems, programs are stored in
nonhashed files (Type 1 files). INFORMATION stores the object code as
an item in the program file along with the source code. Object code items
have the same name as the corresponding source code items but with the
addition ofthe suffix .IRUN. UniVerse, on the other hand, stores object
code items in a separate file. The file containing object code items has the

* This is no longer true for all systems. For example, on Ultimate systems the
Master Dictionary pointer to a program file need not be a DC-type.

1: Creating Pick BASIC Programs 3

same name as the source code file but with the addition of the suffix .0 .
For example, ifthe program file containing source code is called BP, the file
containing object code will be called BP.O.

Like any other file, the program file is created with the CREATE-FILE
command. But once you've created the file, you must change the "0" code
in line 1 of the data file D-pointer to "DC." You can do this with the
Editor.

For example, to create a program file called BP with a modulo of 3 for the
file dictionary and a modulo of 5 for the data file, first enter:

>CREATE-FILE BP 3 5

Then use the Editor to change line 1 of the D-pointer from "0" to "DC":

>ED MD BP
TOP
.<RETURN>
001 D
.R/D/DC
001 DC
.FI
'BP' FILED.

>

CREATE-FILE creates a file to be used for Pick BASIC programs by
creating a File Definition item in the Master Dictionary. The File
Definition item is initially created with a definition code of "D" in
Attribute 1. Next, the Editor is used to replace the "D" on line 1 with
"DC". Without the DC definition code, programs in the BP file will not
compile.*

Editing and Listing the Source Code

The source code of the program is what the programmer writes and edits.
As shown in the example discussed earlier, the source code is stored as an
item in the program file.

The only restriction to the name of the program is that it not be the same as
the name of the program file itself (e.g., item BP in file BP). Such a

* Some Pick systems have a special verb that allows you to create DC-type files
automatically. For example, you can create pointer-files on the ADDS Mentor
system with the CREATE-BFILE command. On these systems it is not necessary
to edit the data file D-pointer.

4 Pick BASIC: A Reference Guide

program will not compile: if it did, the D-pointer in the file dictionary that
points to ~he data file (i.e., the file containing source code) would be
overwritteh when the program was compiled, and the source code of all
programs in the file would be lost.

Source code can be created and edited with the Pick Editor or with any full
screen editor supported by your system. See Chapter 7 of A Guide to the
Pick System for information about the Pick Editor.

Many systems have special verbs that allow you to list program source code
in an easy-to-read format. ADDS Mentor's BLIST command and Prime
INFORMATION's and uniVerse's FORMAT and FANCY.FORMAT
commands are examples. These commands typically print the source code
with indentations for THEN and ELSE clauses, for their corresponding END
statements, and for the text between program loops. For example, when the
following program is listed with BLIST:

001 LOOP
002 PRINT"O FOR OUIT, C FOR CREATE A NEW ENTRY, ..
003 PRINT"E FOR EDIT AN ENTRY, D FOR DELETE AN ENTRY"
004 PRINT
005 PRINT "ENTER A CHARACTER (O,C,E OR D)":
006 INPUT ANSWER, 1
007 ON INDEX("OCED",ANSWER,1) GOSUB 100,200,300,400
008 REPEAT
009 STOP
010 SUBROUTINES
011 100 *** SUBROUTINE FOR CREATING A NEW ENTRY ***
012 PRINT "--EOJ"
013 STOP
014 RETURN
015200 *** SUBROUTINE FOR CREATING A NEW ENTRY ***
016 PRINT "CREATING A NEW ENTRy
017 RETURN
018300 *** SUBROUTINE FOR EDITING AN ENTRY ***
019 PRINT "EDITING AN ENTRy
020 RETURN

1.' Creating Pick BASIC Programs 5

it is displayed like this on the screen:

01 MAR 1990 BASIC PROGRAM NAME: MENU PAGE

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011 100
0012
0013
0014
0015 200
0016
0017
0018 300
0019
0020

LOOP
PRINT "Q FOR QUIT, C FOR CREATE A NEW ENTRY, "
PRINT "E FOR EDIT An ENTRY, D FOR DELETE AN ENTRY"
PRINT
PRINT "ENTER A CHARACTER (Q,C,E OR D)":
INPUT ANSWER,l
ON INDEX("QCED",ANSWER,l) GOSUB 100,200,300,400

REPEAT
STOP
SUBROUTINES:
*** SUBROUTINE FOR QUITTING ***
PRINT "--EOJ"
STOP
RETURN
*** SUBROUTINE FOR CREATING A NEW ENTRY ***
PRINT "CREATING A NEW ENTRy
RETURN
*** SUBROUTINE FOR EDITING AN ENTRY ***
PRINT "EDITING AN ENTRy
RETURN

Compiling the Program

1

Source code must be compiled before the program can be executed. The
source code can be written and edited by the programmer, but it cannot be
directly interpreted by the Pick system until it is translated into object code.

On most Pick systems, the compiler translates source code into object code
and places a pointer to the object code in the file dictionary. The compiler
can therefore be thought of as a translator from your language (or more
accurately, the language of Pick BASIC) into the machine's language.

Table 1-1 lists the structure and contents of items that point to BASIC
object code.

As we mentioned earlier, Prime INFORMATION and uniVerse handle
object code differently. Instead of creating object code pointers, the object
code is stored as an item in a file. INFORMATION object code is stored in
the same file as the source code, and uses two general conventions for
naming the item containing the object code. Both conventions use the same

6 Pick BASIC: A Reference Guide

Table 1·1. Format of Object Code Pointers.

Attribute Example Description

o

2

3

4

5

MENU

cc

8504

Item ID: Same as the
item ID of the source code.

Definition Code: "CC"
indicates an object code
pointer.

Base Frame ID: Indicates
the starting location of the
object code.

Number of Frames:
Indicates the number of
frames occupied by the
object code.

Not used.

15:28:10 06 FEB 1990 Time and Date Stamp:
Indicates when the program
was compiled.

name as the source code item, but with the addition of either a suffix
(.IRUN) or a prefix ($).

UniVerse object code, on the other hand, is stored in a different file from the
source code. The file containing the object code uses the same name as the
source code file but with .0 added to the filename as a suffix. The object
code item ID is identical to the source code item ID.

Two commands can be used to compile a program, BASIC and COMPILE. *
These two commands are synonymous.

BASIC filename program-list [(options) 1
COMPILE filename program-list [(options)]

filename is the name of the Pick BASIC program file, and program-list
contains the item IDs of the programs to be compiled. An asterisk (*)
specifies all programs in the file.

* The COMPILE command may not be available on all systems. On Prime
INFORMATION systems there is a COMPILE.DICT verb that should not be
confused with the COMPILE synonym for BASIC. COMPILE.DICT is used to
compile I-descriptor code in Prime INFORMATION dictionary items.

1: Creating Pick BASIC Programs 7

For example, to compile the program ADDNUMS in the file BP, enter:

>BASIC BP ADDNUMS

or:

>COMPILE BP ADDNUMS

If the compile is successful, the user sees something similar to:

>BASIC BP ADDNUMS

SUCCESSFUL COMPILE! 1 FRAMES USED.

>

The asterisks each represent a source line successfully compiled into object
code. * If an error occurs in compilation, the error code is printed with a
message. See Appendix B for a list of error messages generated by the
COMPILE command.

W If the File Definition item in the Master Dictionary
does not have DC in line 1, the program will not
compile, and the following message is displayed:

FORMAT ERROR IN SOURCE FILE DEFINITION

Use the Editor to change the Definition Code in line 1
to DC.

Options to the BASIC and COMPILE Commands

There are a number of options to the BASIC and COMPILE commands that
enhance their functioning. There are options for program debugging, for
compacting object code once the program has been fully debugged, for
listing source code as it is compiled, and for sending the compiled output to
the printer.

Options for Debugging a Program

The A, M, and X options each supply information that the programmer may
find helpful in debugging a program.

* On uniVerse and Prime INFORMATION systems, each * equals ten lines of
source code successfully compiled.

8 Pick BASIC: A Reference Guide

Listing tbe Opcodes (the A Option). The A option lists the
pseudo-assembler code after the program has compiled. After compilation,
press the RETURN key to see the first page of opcodes. As an example,
compile the example program ADDNUMS with the A option:

>COMPILE BP ADDNUMS (A)

and press the RETURN key after compilation is complete.

ADDNUMS

001
001
001
002
0(}2
(}02
002
0.03
003
003
004
004
004
004
005
005
005

09 LOADS
SA PRINT CAT
01. EOL
:a9
03 LOADA
:sA INPUT
01 EOL
09 LOADS
SA PRINTCAT
01 EOL
B9 GET •.• ELSE
03 LOAOA NUM2
BA INPUT
01 EOL
16 LOAD NUM1
16 LOAD NUM2
28 ADD

STOREA
EOL
LOAD
LOADS

Press the RETURN key again to read a second screenful.

The source code line numbers are listed in the leftmost column, followed by
hexadecimal numbers representing the Pick BASIC opcodes. The
hexadecimal numbers are followed by the associated opcode. Although no
statement labels appear in this particular example, they are also displayed as
they appear.

You can use the listing generated by the A option to determine what
opcodes have been generated by the program. Knowing how to interpret
them is andther matter and is beyond the scope of this book.

1: Creating Pick BASIC Programs 9

Creating the Cross-Reference (the X Option). The X option to
COMPILE creates a cross-reference of all variables and labels used in the
program and places it in the BSYM file in the current account. For
example:

>COMPILE BP ADDNUMS (X)

SUCCESSFUL COMPILE! 1 FRAMES USED.

>

The BSYM file now has three items with item IDs SUM, NUM I, and
NUM2. Each item has a single attribute, with value marks separating the
line numbers at which the variable was accessed. For example. item SUM
contains in Attribute I:

005*]006

From this we can tell that the SUM variable is accessed in lines 5 and 6 of
the program. The asterisk after "005" signifies that the variable is assigned
a value on line 5 of the program. Similarly, item NUMI of the file BSYM
contains:

002*]005]006

The data section of the BSYM file is initialized each time the X option to
COMPILE is used, regardless of whether the same program is compiled or
what program file the program resides in.

If the BSYM file does not already exist, an error message results and the
cross-reference is not created.

Listing the Variable Map (the M Option). The M option to
COMPILE lists a map of variables and statement labels after the program
has compiled. For example:

>COMPILE BP ADDNUMS (M)

050 SUM 030 NUM1 040 NUM2
FRAMES LINES
01 001-008

SUCCESSFUL COMPILE! 1 FRAMES USED.

>

Variable names are preceded by their location in the user's workspace. In
the example above, the variables NUMI, NUM2, and SUM have locations
of 30,40, and 50 respectively. In addition, the range of lines in each frame
of source code is printed. In the example, only one frame is used, and
lines I to line 8 of the source code are contained in frame 1.

to Pick BASIC: A Reference Guide

Options for Cataloging

When a programmer has determined that no more changes will be made to
the program, the C or S options can be used to compact the object code or
suppress the symbol table.

Suppressing the EOLs (the C Option). As seen in the example of
output from COMPILE with the A option, the last opcode on each line is
EOL, for End-Of-Line. When a program is fully debugged, a programmer
might choose to compile it with the C option to suppress the EOL opcodes,
since they are necessary only for debugging purposes. Thus the programmer
can reduce the size of the object code by one byte for each line of source
code. In the eight-line program ADDNUMS, only eight bytes would be
saved, but the C option could make a significant difference for a larger
program.

The EOL opcodes, however, are used to count lines for error messages and
for the interactive debugger. By using the C option, further debugging of
the program becomes exceedingly difficult. If errors do occur in a program
compiled with the C option, all errors will report on line 1, and the
interactive debugger will be largely useless.

Suppressing Messages and the Symbol Table (the S Option).
The compiler creates a symbol table along with the object code. The
symbol table, along with any messages generated by the compiler, can be
suppressed with the S option to COMPILE.

The symbol table is necessary for the Pick BASIC interactive debugger.
Without the symbol table, the debugger is largely inoperational. A
programmer might choose to suppress the symbol table, however, when the
program is fully debugged and ready for use.

See Chapter 4 for more information about the Pick BASIC debugger.

Listing the Source (the L Option)

The L option allows the programmer to scan the source code as each line is
compiled. This option might be used with the P option to obtain a printed
listing of the source code. Error messages are printed with the source line at
which they are detected, so the programmer can study the program source
code adjacent to the errors that it produces.

As an alternative, the E option prints only the lines with errors.

I: Creating Pick BASIC Programs 11

Printing Compiler Output (the P Option)

The P option sends all compiler output to the printer. This option is
particularly useful with the A, M, and L options.

Running the Program

The RUN command executes a compiled Pick BASIC program. Its syntax
is:

RUN filename program [(options) 1

where filename is the name of the Pick BASIC program file, and program is
the item ID of the program that you want to run. (Multiple programs
cannot be listed on the syntax line for RUN.)

For example, to execute the compiled program MENU in file BP, enter:

>RUN BP MENU

On uniVerse and Prime INFORMATION systems, the RUN command uses
BP as the default filename if no filename is specified on the command line.
If MENU were stored in the BP file on these systems, you would be able to
execute it by entering the following command:

>RUN MENU

Debugging Options (D, E, A, and S)

The Pick BASIC interactive debugger can be entered during execution by
pressing the BREAK key. Alternatively, the program can be run with the D
option. The D option forces the program to enter the debugger before
executing line 1.

The debugger is also entered when a fatal run-time error is encountered. If
RUN is used with the E option, nonfatal errors will invoke the debugger as
well. See Appendix B for a list of error messages generated by the RUN
command.

The A option to RUN prevents a fatal error from invoking the debugger by
forcing an abort of the program instead. However, the BREAK key can still
be used if the A option is specified.

12 Pick BASIC: A Reference Guide

With the S option, error messages generated by the RUN command are
suppressed ..

See Chapter 4 for a more detailed description of the Pick BASIC debugger.

Printing Output (the P and N Options)

The P option can be used to send output generated by PRINT, HEADING,
and FOOTING statements to the printer instead of the screen. The P option
is equivalent to placing a PRINTER ON statement at the beginning of the
program.

If a HEADING statement has been specified in a program, the program
waits for a carriage return by the user after each page of output to the
terminal. The RUN command's N option suppresses this feature. This is
equivalent to using the N option in the HEADING statement in the source
code.

Inhibiting Initialization (the I Option)

The I option inhibits the initialization of the data area when a new program
is called with the CHAIN statement. When the EXECUTE statement was
incorporated into Pick BASIC, however, the CHAIN statement became
largely obsolete. The I option is included for compatibility with older code,
but its use is not recommended, since problems will arise if the workspace
area is at all corrupted.

Cataloging the Program

The CATALOG command creates a Verb Definition item in the Master
Dictionary of the user's account by creating a direct pointer to the object
code. After cataloging, a program can be executed directly from TCL,
without using the RUN command. Once cataloged, the program can be
recompiled 'without having to be recataloged.

The syntax of CATALOG is:

CATALOG filename program-list

l: Creating Pick BASlC Programs 13

where filename is the name of the Pick BASIC program file. and
program-list is a list of the item IDs of the programs to be cataloged. An
asterisk can be used to specify all programs in the file.

Programs do not have to be cataloged. but subroutines must be cataloged
before they can be accessed by a program.

For example. to catalog the program ADDNUMS in the file BP, enter:

>CATAlOG BP ADDNUMS
[244] 'ADDNUMS' CATALOGED!

>

The program can then be accessed as if it were a command:

>ADDNUMS
ENTER ONE NUMBER?3
ENTER ANOTHER NUMBER?4
THE SUM OF 3 AND 4 IS 7

>

If the program fails to be cataloged. it is because the object code cannot be
found, or because there already exists an item in the Master Dictionary with
the same name as the program.

The DECATALOG command deletes the Verb Definition item from the
user's account.*

DECATAlOG filename program-list

filename is the name of the Pick BASIC program file. and program-list is a
list of the item IDs of the programs to be decataloged. An asterisk can be
used to specify all programs in the file.

For example:

>DECATAlOG BP ADDNUMS
[242] 'ADDNUMS' DECATALOGED.

>

The DECATALOG command not only deletes the Verb Definition item, it
also deletes the pointer to the object code in the file dictionary. The
program must be recompiled after it has been decataloged before it can be
executed again with RUN.

* Prime INFORMA nON uses another verb, DELETE.CA T ALOG, to remove
BASIC programs from the catalog space. UniVerse supports both DECATALOG
and DELETE.CATALOG.

14 Pick BASIC: A Reference Guide

CHAPTER 2

Format, Data, and
Expressions

This chapter provides an overview of the essential components of the Pick
BASIC language. It describes program format, types of data, and how to
store and access data within a Pick BASIC program.

Program Format

A Pick BASIC program is a sequence of statements directing the computer
to perform a series of tasks in a specified order. A statement consists of
keywords, constants, variables, and expressions.

Keywords are special words recognized by the Pick BASIC compiler.
Constants are values that do not change during the execution of a program,
and variables are values that can change. Expressions can be any constant,
variable, or combination of constants and variables with logical, arithmetic,
or other operators that produce a resulting value.

A line of Pick BASIC source code corresponds to a single attribute in the
source code item. The line can begin with a statement label, but statement
labels are not mandatory for all lines in Pick BASIC. More than one Pick
BASIC statement can be placed on the same line, as long as each statement
is separated from the next by a semicolon (;).

The format for a Pick BASIC source line is therefore:

[label] statement [; statement [; statement ...]]

2: Format, Data, and Expressions 15

For example:

100 PRINT "HELLO, WORLD" ; PRINT "GOODBYE, WORLD"

In the example, the statement label is "100". It is followed by two PRINT
statements separated by a semicolon. In each statement, the word PRINT is
a keyword and is followed by a constant string value ("HELLO WORLD" or
"GOODBYE WORLD"), delimited by quotation marks.

On most Pick systems, a statement cannot be broken onto more than one
line unless it contains a comma in its syntax (for example, in the
EQUATE, COMMON, or DIM statements), in which case it can be broken
into multiple lines after each comma. On Prime INFORMATION and
uniVerse systems, on the other hand, it is possible to break statements over
more than one physical line.

Types of Statement

Pick BASIC statements can be broken into the following general categories:

16

Input/Output control:

Input statements control where the computer can expect data, and
output statements control where the data is displayed or stored. The
input or output device can be a terminal, a printer, a tape, or a file
item. Input statements include INPUT, READ, and READT.
Output statements include PRINT, WRITE, and WRITET.

Program control (sequence of execution):

In general, Pick BASIC statements are executed in the order in which
they appear, and program control statements are used to alter that
sequence. Program control statements include IF, CASE, LOOP,
FOR, GOTO, GOSUB, CALL, and EXECUTE.

Assignment of variables and constants:

Assignment statements assign values to variables and give names to
constant values. Values can be directly assigned to variables with the
assignment statement (=), and constants can be assigned with the
EQUATE statement.

Pick BASIC: A Reference Guide

Statement Labels

A statement label is a unique identifier that identifies a particular program
line. It consists of a string of numeric or alphanumeric characters at the
beginning of a source line. * Source lines do not require statement labels. If
the program is directed to a statement label with the OOTO, OOSUB, or
INPUTTRAP statements, however, the label must exist somewhere in the
program; if it doesn't, the program will not compile.

A numeric statement label can be any constant number (decimals are
allowed). On systems that support alphanumeric labels, a numeric
statement labels can end with a colon (:), but the colon is not mandatory.
An alphanumeric statement label must begin with a letter and be followed
by any combination of letters, numbers, periods, or dollar signs. . An
alphanumeric statement label must be followed by a colon, or it is not
recognized as a label.

Writing Readable Code

A Pick BASIC program should be relatively easy to read both for the
programmer and for those who maintain the program. The readability of a
program can be greatly enhanced by:

Spaces to indent sections of code.

Blank comment lines to group sections of code together.

Meaningful variable and subroutine names.

Comments or remarks to document the program.

When spaces or blank lines appear in a program, they are generally ignored.
Therefore, you can use spaces and blank lines freely in order to improve the
appearance and readability of a program. You can use spaces to indent
sections of code and make the program structure more apparent. Blank
comment lines can also be used to set apart a subroutine or any other
significant part of the program.

You should make a habit of assigning meaningful names to variables and
constants. It is much easier to keep track of what the variable signifies if
variable names are intelligible-for example, an array containing customer

* A few systems support only numeric statement labels. The SMA standards do
not yet inclUde nonnumeric characters in labels.

2: Format, Data, and Expressions 17

names and addresses is easier to identify if it is called "CUSTOMERS"
rather than "X".

Using Remarks

Program documentation is accomplished by including comments in the Pick
BASIC program that explain or identify various parts of the program.
Comments are part of the source code only (the original program), and as
such they are not executable. They do not substantially affect the size of the
object code.

Comments must begin with one of the following symbols:

* REM

To place a comment on the same physical line as another statement, the
first statement must first be ended with a semicolon (;), as in the
following example:

IF SUM < 0 THEN
LOSS = SUM ; * CORRECTLY FORMATTED COMMENT

END ELSE PROFIT = SUM

Comments cannot be placed between multiple statements on one physical
line. In the second line of the following example:

IF SUM < 0 THEN
LOSS = SUM ; * THE REST OF THIS LINE IS IGNORED; END ELSE

all the text following the * symbol, including "END ELSE", is treated as
part of the comment and is not executed.

Comments can, however, be placed in the middle of a statement that
occupies more than one physical line, as in the following example:

IF SUM < 0 THEN
LOSS=SUM
* THIS COMMENT IS ON A LINE OF ITS OWN

END ELSE PROFIT = SUM

Remarks in the Object Code

A special form of comment, not available on all systems, can be used to
embed a comment directly into the object code. A statement beginning with
"$*" places the following text into the object code created when the program
is compiled. For example:

$* "OPERATING SYSTEM VERSION 2.5"

18 Pick BASIC: A Reference Guide

Comments in the object code are particularly useful for including the
version nU1'llber of the program, or for entering copyright information.

Constants, Variables, and Data Types

Assigning and Using Constants

Constants are values that remain unchanged throughout program execution.
Constants can be used directly, or they can be assigned to a name with the
assignment (=) or EQUATE statement.

For assigning a constant, the EQUATE statement is preferable since there is
nothing to stop a constant assigned with "=" from being changed later in the
program's execution. A constant assigned with EQUATE, on the other
hand, can never be changed: if EQUATE is used, you can be sure that a
constant will remain a constant.

The EQUATE statement is also more efficient, since the value of a constant
assigned with EQUATE does not need to be fetched from the variable each
time it is used at run time. A constant assigned with "=", on the other
hand, needs to be reassigned each time the program is executed.

For example, in the following statement:

PRINT "HELLO, WORLD"

the string "HELLO, WORLD" is a constant string value used directly in the
PRINT statement. Alternatively, the program might have read:

EQUATE GREETING TO "HELLO, WORLD"
PRINT GREETING

By assigning the constant string "HELLO WORLD" to the name
GREETING, it can be accessed by that name any time later in the program.

Assigning and Using Variables

variables~are symbolic names that represent stored data values and can
change in value during program execution. The value can be explicitly
assigned y the programmer, can be read as input, or can be the result of
operations performed by the program during execution.

2: Format, Data, and Expressions 19

At the start of program execution, all variables are set to an unassigned
state. Any attempt to use a variable in the unassigned state produces an
error message, and a value of 0 is assumed.

Names for both variables and constants must begin with an initial
alphabetic character. They can also include one or more digits, letters,
periods, or dollar signs. (Note that hyphens and underscores are not valid in
a variable name.) Uppercase and lowercase are interpreted differently. A
variable name can be any length.

Data Typing in Pick BASIC

In many other programming languages, such as Pascal and PL/I, a
distinction is made among types of data. In these languages, all constants,
variables, and their data types (integer, real, string, character, etc.) have to be
declared at the beginning of the program so that the compiler will know
how to store the data. Furthermore, the size of the variable often has to be
declared so that the compiler will know how much space to set aside.

In Pick BASIC, on the other hand, no data typing is made by the compiler:
all data typing is made at run time, by context. A variable can therefore
alternate between numeric and string values within the program. The only
thing to be careful of is that when string values are assigned in the program
text, they must be delimited by single quotes (,), double quotes ("), or
backslashes (\). Otherwise, they are assumed to be variable names.

There is, of course, a difference between the way a numeric value and a
string value can be treated: it is unreasonable to expect a program to take
the square root of the string "CARL". In such a situation, however, a fatal
error will not occur-when a string value is applied to a numeric function, a
value of 0 is assumed, a warning message is printed, and the program
continues from there. String operations, on the other hand, can be executed
on numeric values without conflict.

The advantage of not having to declare the type of data is obvious: less
work for the programmer and more flexibility for the program. The
disadvantage is that errors which one might expect the compiler to detect are
not caught. For example, if a variable name is misspelled, the compiler
will simply assume that it is a new variable, and the program will
successfully compile without an error or warning. Similarly, if a string
variable containing "CARL" were accidentally used in the SQRT function,
the programmer would not find out until the program was executed.

20 Pick BASIC: A Reference Guide

BUildi+g Expressions

Simple Assignment

The assignment statement is used in Pick BASIC to assign values to
variables. There are several forms of the assignment statement, but its most
commonly used form is:

variable = expr

where variable is the name of the variable and expr is a valid expression. *
An expression is a value that is evaluated at the time of execution and can
be anything from a simple constant to a complex sequence of variables,
operators, and functions. For a simple example, to assign the constant
number 4 to the variable NUMBER, enter:

NUMlBER=4

Similarly, to assign the constant string "FRED" to the variable NAME,
enter:

NAME = "FRED"

U sing Operators and Functions

In the preceding examples, simple constants are assigned. However, any
valid expression can be used instead. A simple expression might be a
variable name combined with an operator and a constant.

Operators perform mathematical, string, and logical operations on two
values. Operands are the values on which specified operations are
performed. For example, to assign NUMBER plus I to the variable
NUMBER2 , enter:

NUMBER2 = NUMBER + 1

In this example, "+"is the operator, and "NUMBER" and" I" are the
operands. NUMBER is interpreted as a variable name, and I is interpreted
as a numefric constant. If NUMBER contains 4, then after the above
statement, ~UMBER2 will contain 5.

* This syntax also penn its the use of the optional keyword LET, i.e., LET variable
= expr.

2 : Format) Data, and Expressions 21

Another simple expression might involve an intrinsic function. Functions
perform mathematical, string, and logical operations on a value passed
within parentheses. For example, to assign the square root of NUMBER to
the variable ROOT, enter:

ROOT = SORT{ NUMBER)

In this example, "SQRT" is the function and "NUMBER" is the value
passed to it. If NUMBER contains 4, then after the above statement,
ROOT will contain 2.

Multiple operators and functions can be combined in an expression to
evaluate to a single value. For example, to assign NUMBER3 to be I plus
the square root of NUMBER, enter:

NUMBER3 = SORT{ NUMBER) + 1

After the above statement, NUMBER3 will contain 3. Note that this is
different from:

NUMBER3 = SORT{ NUMBER + 1)

which will return into NUMBER3 the square root of 5, or 2.236.

Valid expressions can therefore be as simple as a constant or a single
variable name, or they can consist of multiple operations to be evaluated at
run time.

Numeric Expressions

Numeric data is represented as a sequence of digits (0 through 9) with an
optional decimal point. A leading plus (+) or minus (-) sign might be
used, but commas are not allowed. Any data containing any characters other
than numbers and a single decimal point is interpreted as a string. Some
examples of numeric values are:

-34
42368.99
+3.1416

Prime INFORMATION and uniVerse systems also support floating point
numbers. The format is similar to the fixed point form shown above, but
with the addition of an "E" followed by the power of ten exponent, which
can be positive or negative. Some examples of floating point values are:

22

2.3E3
-6.4E38
-1858E-4

Pick BASIC: A Reference Guide

Numeric d~ta can contain up to 19 digits, including a maximum of at least 6
decimal P9sitions. See the PRECISION statement for information on how
to set the rvaximum number of fractional digits.

Arithmetic Operators

Arithmetic operations range from the simplest calculations (such as COST
= COST + 5) to complex expressions combining trigonometric and
logarithmic functions. In general, when several arithmetic operations are
used in one expression, they follow accepted mathematical guidelines to
precedence. The arithmetic operators available to Pick BASIC, in order of
precedence, are shown in Table 2-1.

Table 2-1. Arithmetic Operators.

Operator Operation Sample Expression Precedence

II Exponential COSTA2

+ Unary plus +COST

Unary minus -COST 1

* Multiplication COST * EXPENSES 2

/ Division COST / EXPENSES 2

+ Addition COST + EXPENSES 3

Subtraction COST - EXPENSES 3

In cases where operators are used which are equivalent in precedence (such as
* and /), the order of evaluation foHows left to right.

Parentheses in Expressions

The order of evaluation can be changed by using parentheses. Operations on
expressions enclosed in parentheses are performed before the others. In the
following example:

(14P"8)+12/2+2

the expre~sion is evaluated as I 12+6+2 or 120. On the other hand, the
following trithmetic expression:

14 (8 + 12) / (2 + 2)

is evaluattd as 14*20/4 or 70. In arithmetic expressions parentheses must
be placed I orrectly in order to obtain the desired result.

2: Formaf' Data, and Expressions 23

Character Strings in Arithmetic Expressions

If a character string variable that evaluates to a number is used within an
arithmetic expression, the character string is treated.as a numeric variable.
That is, the numeric character string is converted to its equivalent internal
number and then evaluated numerically within the arithmetic expression.
For example:

55 + "22"

is evaluated as 77.

If a character string variable that does not evaluate to a number is used
within an arithmetic expression, a warning message is displayed and the
string is treated as zero. For example, the following expression:

55 + "'TWENTY 'TWO"

is evaluated as 55, and a message such as the following is displayed,
warning that the data is nonnumeric:

[816] LINE 16 NON-NUMERIC DATA WHEN NUMERIC REQUIRED;
ZERO USED!

Intrinsic Mathematical Functions

An intrinsic function is a built-in Pick BASIC function to be used on
numeric operands. Table 2-2 lists the mathematical functions available in
Pick BASIC.

Table 2-2. Intrinsic Mathematical Functions.

Function Description

ABS() Returns the absolute value of a given arithmetic
expression.

COS() Returns the cosine value of the angle given in the
expression.

EXP() Returns an exponential value that raises the base number
e (2.7183) to the value of the expression.

INT() Truncates the decimal portion of a given arithmetic
expression and returns the integer value.

LN() Generates the natural logarithm (log base e) of the given
expression.

MOD() Divides an expression by another, and returns the
remainder value only.

PWR() Raises the value of an expression to the power denoted
by a second expression.

24 Pick BASIC: A Reference Guide

Function Description

REM() Divides an expression by another, and returns the
remainder value only.

RND() Generates a random number within the range of 0 and
the value of the expression minus 1.

SIN() Returns the sine value of the angle given in the
expression.

SQRT() Computes the square root of any positive numeric
expression.

TAN() Returns the tangent value of the angle given in the
expression.

See Chapter 5 for full information on the syntax and behavior of these
functions.

String Expressions

String data consists of a sequence of ASCII characters. They can represent
either numeric or nonnumeric information, and are limited in length to the
maximum item size supported by your system.

Character string constants consist of a sequence of ASCII characters enclosed
in single quotes (,), double quotes ("), or backslashes (\). Some
examples of character string constants are:

"EMilY DANIELS"
'$42,368.99'
'NUMBER OF EMPLOYEES'
"34 CAIRO LANE"
\"FRED'S PLACE" ISN'T OPEN\

The beginning and terminating delimiters must match. In other words, if
you begin a string with a single quotation mark, you must use a single
quotation mark to terminate the string. If one of the delimiters is used
within the character string, a different delimiter must be used to begin and
terminate the string. For example, using single quotes to enclose the
following string is incorrect:

'IT'S A lOVELY DAY.'

Instead, t* string should be delimited with double quotes (or backslashes),
as follows'

"IT:t A lOVELY DAY."

Two adjagent identical delimiters specify a null, or empty, string.

2: Format, Data, and Expressions 25

Any ASCII character can be used in character string data except the ASCII
character 10 (carriage return), which is used to separate the physical lines of
a program.

The CAT String Operator

String expressions can be concatenated, or linked, by using the
concatenation operator (: or CAT) as follows:

NAME = FIRST: LAST

or

NAME = LAST CAT ", "CAT FIRST

If, for instance, the current value of FIRST is "JANE" and the current value
of LAST is "GREY", the preceding string expressions have the values:

"JANE GREY"
"GREY, JANE"

Multiple concatenation operations are performed from left to right.
Expressions in parentheses are evaluated before other operations are
performed.

All operands in concatenated expressions are considered to be string values
regardless of whether they are string or numeric expressions. However, the
priority of arithmetic operators is higher than the concatenation operator. If
both types of operator appear in the same expression, arithmetic operations
are performed first. For example:

"JANE IS" : "2" + "2" : "3": "YEARS OLD."

has the value:

"JANE IS 43 YEARS OLD."

Logical Data (Booleans)

All data has a logical (or Boolean) value, which is to say that it can be
evaluated as true or false. If the data contains only numeric values and the
numeric value is zero (0), it is false; any other numeric value is true. If the
data contains character string values other than the null string (""), it is true;
the null string is false. *

* This holds true for most Pick systems. On some Pick systems, however, negative
numbers also evaluate to false.

26 Pick BASIC: A Reference Guide

I

Logical val~es are used for testing conditionals.

IF FIDUND THEN ...

If a statement reads:

the variable FOUND is tested to see if it is null or zero. If it is neither,
then the condition is detennined to be true, and the statements following the
THEN clause are executed.

Relational Operators

Relational operators are used to compare both numeric and character string
data. The result of the comparison, either true (1) or false (0), can be used
for conditional statements. The relational operators are listed in Table 2-3.

Table 2-3. Relational Operators.

Operator Relation Example

EQ or= Equality X=Y

NEor# Inequality X#Y

> < or < > Inequality* X<>Y

LTor< Less than X<Y

GTor> Greater than X>Y

LE or <= Less than or equal to x<=y

GE or >= Greater than or equal to X>=y

When arithmetic and relational operators are both used in a single
expression, the arithmetic operation is always perfonned first.

The same relational operators can be applied to both numeric and string data,
but the operations will be calculated differently according to the type of data
in the operands. Relational numeric comparisons are calculated as expected,
by comparing the literal value of the operands. String comparisons,
however, are made by comparing the ASCII values of single characters from
each string.

In string cpmparisons, characters are compared from left to right, and the
first stringto yield a higher numeric ASCII code equivalent is considered to
be greater. If all of the ASCII codes are the same, the strings are considered
equal. If he two strings have different lengths but the shorter string is
otherwise dentical to the beginning of the longer string, the longer string is
considered greater than the shorter string. Note that leading and trailing

* The oper tors> < and < > are not included in the SMA standard.

2: Format, Data, and Expressions 27

blank spaces are significant, since the space character has an ASCII value
of 032.

If both string values can be converted to numeric, then the comparison is
always made numerically. If only one operand is numeric, the comparison
is made as if both were string values.

The following string comparisons aI)! true and return a value of I:

"AA"<"AB"
"FILENAME" = "FILENAME"
"FILENAME" < "NAMEFILE"
"CL ">"CL"
"kg" > "KG"
B$ < "9/12/78" where B$ = "8/12/78"

Logical Operators

Logical operators perform Boolean operation tests on logical expressions.
They have the lowest precedence among all operators: they are evaluated
after all other operators have been evaluated. Table 2-4 lists the two forms
of logical operation in Pick BASIC.

Table 2-4. Logical Operators.

Operator Syntax Definition

AND xANDy True (evaluates to 1) if both x
and yare true.

& x&y True (evaluates to 1) if both x
and yare true.

OR xORy True (evaluates to 1) if either x
or y is true.

x!y True (evaluates to 1) if either x
or y is true.

The NOT function can be used to invert a logical value.

For example, in the following statement:

IF FOUND AND QUIT = "Y" THEN ...

the variable FOUND is tested to see if it is null or zero, and is evaluated as
true if it is neither. Then the relational expression QUIT = "Y" is evaluated.
If both FOUND and QUIT = "Y" are evaluated as true, then the condition as
a whole is evaluated as true and the statements following the THEN clause
are executed.

28 Pick BASIC: A Reference Guide

The MATCH Operator

The patte~ matching operator, MATCH or MATCHES, can be used to
compare a string expression to a pattern specification and return a value of 1
if they match. The syntax for a MATCH operation is:

expr MATCH[ES] pattern-expr

The pattern is a general description of the format of the string and can be
specified as a constant or as an expression. The pattern specification codes
and their definitions are listed in Table 2-5.

Table 2-5. Pattern Matching Codes.

Pattern Definition

nN n numeric characters.

nA n alphabetic characters.

nX n characters of numeric or alphabetic type.

string any literal string.

n must be a whole number. If n is 0, the relation is true only if all the
characters match the specified type. (Note that the null string C'n) matches
ON, OA, and OX.) For example,

ZIP.CODE MATCH "ON"

will be true only if all the characters in the string ZIP. CODE are digits.

Patterns can be combined in any sequence. For example,

IF LICENSE MATCHES "3N"-"3A" THEN ...

confirms that a license number entered consists of 3 digits, a dash, and 3
alphabetic letters.

Logical Functions

Logical fu~ctions are functions that return a value of 0 or 1. Table 2-6 lists
the logical!functions available in Pick BASIC.

2: Format, Data, and Expressions 29

Table 2-6. Logical Functions.

Function Description

ALPHA() Tests the given expression for an alphabetical value.

NOT() Returns the logical inverse of a given expression.

NUM() Tests the given expression for a numeric value.

See Chapter 5 for a full description of the syntax and behavior of these
functions.

Advanced Data Types

Thus far we have discussed simple numeric and string data only. There are
other types of data in Pick BASIC, however, which are assigned with
special syntax.

Array Variables

An array variable is a variable that represents more than one data value.
There are two types of array: dynamic and dimensioned.

Dynamic Arrays

A dynamic array is a mapping of the structure of file items to string data.
Any string, however, can be considered a dynamic array.

A dynamic array is a string containing substrings that are separated by
special delimiter characters. At the highest level, these elements are called
attributes, and are separated by attribute marks (CTRL-A). Each attribute can
contain values separated by value marks (CTRL-D. Each value can contain
subvalues separated by subvalue marks (CTRL-\). Thus, an example of a
dynamic array is as follows:

PETER THOMPSONj333-8989\232-8665I\JOE FRIDA Y]872-
1789\865-0096

In this dynamic array string, there are two attributes:

30

PETER THOMPSONj333-8989\232-8665
JOE FRIDA Yj872-1789\865-0096

Pick BASIC: A Reference Guide

there are forr values:

PETER THOMPSON
333-8989\232-8665
JOE FRIDAY
872-1789\865-0096

and there are four subvalues:

333-8989
232-8665
872-1789
865-0096

The primary use of dynamic arrays is to store data that is either read from or
written to a file item. Each line in a file item corresponds to a separate
attribute. However, Pick BASIC includes facilities for manipulating
dynamic array elements that make dynamic arrays a powerful data type for
processing information independently of file items.

Dynamic arrays are called "arrays" because they can be referenced by array
functions using three subscripts, and they are called "dynamic" because
elements can be added or deleted without having to recompile the program.
The maximum size of a dynamic array is as large as the maximum item size
permitted on your system. Null attributes, values, and subvalues are
represented by two consecutive attribute marks, value marks, or subvalue
marks, respectively.

See Chapter 3 for more information on processing dynamic arrays.

Dimensioned Arrays

Dimensioned arrays (also called standard arrays) are one- or two- dimensioned
structures. Each value in a standard array is called an element of the array.

A one-dimensioned array (also called a vector) has its elements arranged in
sequence. An element of a vector is specified by the variable name,
followed by the index of the element enclosed in parentheses. The index of
the first element is (I).

A two-dimensioned array (also called a matrix) has the elements of the first
row arranged sequentially in memory, followed by the elements of the
second ro~, and so on. An element of a matrix is specified by the variable
name, foll~ed by two indexes enclosed in parentheses, representing the row
and column position of the element. The indexes of the first element are
(1,1).

2: Format, Data, and Expressions 31

The indexes used to specify the elements of a matrix that has four columns
and three rows are illustrated by the following:

COST:

Column 1 Column 2 Column 3 Column 4

Row 1 COST (1,1) COST (1,2) COST (1,3) COST (1,4)

Row 2 COST (2,1) COST (2,2) COST (2,3) COST (2,4)

Row 3 COST (3,1) COST (3,2) COST (3,3) COST (3,4)

Note that vectors, or one-dimensioned arrays, are treated as matrixes with a
second dimension of 1. COST(3) and COST(3,1) are equivalent
specifications and can be used interchangeably.

Indexes can be written as constants or as expressions.

Before a dimensioned array can be used in a Pick BASIC program, a DIM or
COMMON statement must be used to declare the maximum number of
elements it will store throughout the program. See the DIM and
COMMON reference pages in Chapter 5 for more information.

File Variables

A file variable is created by a form of the OPEN statement. Once opened, a
file variable is used in I/O statements to access the file. See Chapter 3 for
more information on assigning and using file variables.

Select-List Variables

A select-list is a set of item IDs or attributes created by the SELECT
statement or by TCL select-list generators, to be used in a READNEXT
statement. There are three ways to generate a select-list:

• TCL list generators such as SELECT, SSELECT, and
FORM-LIST,* can be used outside the Pick BASIC program or
called with the EXECUTE statement.

• The Pick BASIC SELECT statement can be used on a file variable.

* Or, on some systems, QSELECT.

32 Pick BASIC: A Reference Guide

The Pick BASIC SELECT statement can be used on a string variable
which is stored as a dynamic array.

See Chapter 3 for more information on select-list variables.

2: Format. inata. and Expressions 33

RAPTER 3

Overview
and

of Statements
Functions

This chapter is designed to give a brief topical overview of the statements
and functions in Pick BASIC. For full descriptions of the statements and
functions covered in this chapter, see Chapter 5, "Statement and Function
Reference." The reader should refer to the reference chapter whenever further
information or elaboration is needed on a topic. The topics of this chapter
are covered in the following order:

Assignment statements.

Intrinsic functions.

Internal and external program control.

Sending output to the screen and printer.

• Terminal input.

• Dynamic array processing.

Generalized string processing.

Di~nsioned arrays.

• Rea~ing and updating file items.

• Rea~ing and writing tapes.

• Execution locks.

Compiler directives.

Mistellaneous statements and functions.

3: Overview of Statements and Functions 35

Assignment Statements

The simplest assignment statement in Pick BASIC is of the fonn var = expr
(or LET var = expr). A full list of operators is given in Chapter 2. For
example, the variable NUMBER can be assigned the value 7 with:

NUMBER=7

Any valid expression can be used in an assignment statement. For example,
NUMBER2 can be assigned the value of NUMBER plus 2 with:

NUMBER2 = NUMBER + 2

Some versions of Pick BASIC also support a special fonn of assignment
called operator assignment. For example, 2 can be added to the value of
NUMBER with:

NUMBER+=2

as a shorthand for:

NUMBER = NUMBER + 2

Accepted operators* for operator assignment are:

+ addition

subtraction

concatenation

Initializing Variables (CLEAR)

The CLEAR statement acts to initialize all variables to the value O. It
cannot be used to initialize a single variable, however, and initializing all
variables to 0 may result in errors due to unassigned variables remaining
undiscovered.

Assigning Constants (EQUATE)

The EQUATE statement is used to make a variable functionally equivalent
to another or to assign a constant. It cannot be used to assign a variable,
since values assigned with an EQUATE statement cannot be reassigned
during the program.

* ADDS Mentor additionally supports * (multiplication) and / (division).

36 Pick BASIC: A Reference Guide

The EQUtTE statement assigns values at compile time. No operators or
functions can be incorporated into an EQUATE statement, with the
exception of the CHAR function. Thus, the EQUATE statement can be
used to supply a meaningful name for a special character in a program or for
an element of a dimensioned array: for example, to equate AM to an
attribute mark:

EQUATE AM TO CHAR(254)

or to equate QTY to element 4 of the dimensioned array INVENTORY:

EQUATE QTY TO INVENTORY(4)

Intrinsic Functions

Numeric Functions

In addition to the standard arithmetic operators (+, -, *, /), Pick BASIC
provides several functions for evaluating numeric calculations.

ABS(expr) returns the absolute value of a given
expression. The absolute value of a number is
its positive value, or the difference between
itself and zero.

INT(expr) gives the integer value of an expression. It
truncates the decimal portion of a number and
returns the result.

MOD(expr 1 ,expr2) returns the remainder value when the first
expression is divided by the second.

REM(exprl,expr2) returns the remainder value when the first
expression is divided by the second.

SQ*T(expr)

RNb(expr)

returns the square root of a positive expression.

returns a random number between 0 and the
given expression minus 1.

PWR(exprl,expr2) returns the first value to the power of the
second.

3: Overvi4w o!Statements and Functions 37

I

In addition, the following trigonometric functions are available in Pick
BASIC:

SIN(expr) returns the sine of the angle.

COS(expr) returns the cosine of the angle.

T AN(expr) returns the tangent of the angle (SIN/COS).

LN(expr) returns the natural logarithm (log base e) of the
expression.

EXP(expr) returns e to the power of the expression (the inverse
of LN).

The accuracy of each numeric function is dependent on the decimal precision
used by the program, i.e., the number of decimal places to which numeric
values are calculated. On most Pick systems, all numeric values are
calculated to four decimal places by default. * To reassign this value, use the
PRECISION statement.

Logical Functions (NOT, NUM, ALPHA)

A logical function, or Boolean function, is one which returns either 0 or 1.
A return value of 0 is taken to mean "false," and a return value of 1 is taken
to mean "true." On most Pick systems, all positive and negative integers
evaluate to "true," and zero or null evaluate to "false."t Logical functions
are most useful in conditional statements (IF, CASE), or in the exit for
loops.

In addition to the relational operators (=, #, >, >=, <, <=, MATCH), the
following intrinsic logical functions are supported in Pick BASIC:

The NOT function returns the logical inverse of a given expression.
That is, if the expression evaluates to 0 or the null string COO), the
NOT function returns 1; if the expression evaluates to anything
other than 0 or the null string, the NOT function returns O.

The NUM function returns 1 if the given expression is numeric, or 0
if it is nonnumeric. (Note that the NUM function might return 0 for

* The SMA standard supports a maximum precision of 6; Ultimate and ADDS
Mentor support 9.

t On some systems, negative integers evaluate to "false."

38 Pick BASIC: A Reference Guide

a clearly numeric value if it contains more decimal places than the
CUIT¢nt precision.)

• The ALPHA function* returns I if the given expression is
alphabetic, or 0 if it is nonalphabetic.

For example, suppose a program expects a positive number in Attribute 3
of a file item. The source code might read:

PRICE = RECORD<3>
IF NOT{NUM{PRICE)) THEN

PRINT "ERROR - NON-NUMERIC DATA IN ATIRIBUTE 3."
STOP

END ELSE
IF PRICE < 0 THEN

PRINT "ERROR - NEGATIVE DATA IN ATIRIBUTE 3."
STOP

END
END

Using the Boolean operators (AND, OR), the same code might read:

PRICE = RECORD<3>
IF NOT{NUM{PRICE)) OR PRICE < 0 THEN

PRINT "ERROR IN ATIRIBUTE 3 - ":
PRINT "POSITIVE NUMBER EXPECTED."
STOP

END

Internal Program Control

Statements in a Pick BASIC program are executed in the order in which
they appear in the source code. Program control statements are used to alter
that sequence. This section discusses the internal program control
constructs that do not involve other programs, external subroutines, or TCL
verbs. More advanced program control statements are discussed later in this
chapter.

The IF Conditional

The IF construct is used to execute a statement (or series of statements) if a
condition has a logical value of true, and (optionally) a different set of
statements if the condition has a logical value of false.

* Not included in the SMA standards.

3,' Overview of Statements and Functions 39

The THEN and ELSE Clauses

Either a THEN or ELSE clause, or both, must be supplied with IF. The
syntax of THEN and ELSE clauses is important to understand, because they
are used not only in IF statements but also in numerous file I/O and tape
I/O statements.

THEN and ELSE clauses can be written on the same statement line like
this:

IF NET >= 0 THEN PRINT "PROFIT IS ": ELSE PRINT "LOSS IS ":
PRINT ABS(NET)

(In the preceding and following examples we have not been able to fit the
statement lines on one printed line due to their length.) If there are multiple
result statements for either the THEN or the ELSE clause, they can be
separated by semicolons (;). For example:

IF NET >= 0 THEN FLAG = 1; PRINT "PROFIT IS ": ELSE FLAG = 0;
PRINT "LOSS IS ": PRINT ABS(NET)

The IF statement becomes difficult to read, however, if the THEN and ELSE
clauses are written on a single line. It is preferable to write it on several
lines, even if the conditional statement is very short.

When splitting an IF statement onto several lines, the THEN or ELSE
keyword must end a program line, with the result statements beginning on
the next. At the end of the result statements, an END statement must be
used to group them together. Thus, if the condition tested by IF is true, all
statements between the THEN clause and the corresponding END statement
are executed; otherwise, all statements between the ELSE clause and the
corresponding END statement are executed.

So the lines of the program shown earlier that prints out profit or loss on a
transaction might read:

IF NET >= 0 THEN
FLAG = 1
PRINT "PROFIT IS .. :

END ELSE
FLAG =0
PRINT "LOSS IS " :

END
PRINT ABS(NET)

NULL Statements

NULL statements are often included in THEN or ELSE clauses as
placeholders. A NULL statement performs no action; however, you can

40 Pick BASIC: A Reference Guide

use NULL~atements to make the logic of a conditional somewhat clearer:
for exampl , to test if a value is numeric, you might write:

IF N M(PRICE) THEN
N LL

END ELSE
PRINT "ERROR: NON-NUMERIC PRICE. STOP"
STOP

END

There are certainly ways of doing this without using a NULL statement (by
using the NOT function in the condition, or by omitting the THEN clause
entirely). However, you may prefer to use NULL statements to make
conditionals easier to read.

CASE Constructs

The CASE construct acts to perform multiple IF conditionals. It tests
several conditions until one returns a value of true. It then executes the
associated set of statements.

A CASE construct must begin with a BEGIN CASE statement and end with
an END CASE statement. In between, each CASE statement tests a single
condition, and, if true, the statements between the current CASE and the
next CASE are executed. The program then jumps to the statement after the
END CASE statement, ignoring all remaining CASE statements in that
group. For example, the above profit-or-Ioss example might read:

BEGIN CASE
CASENET>O

PRINT "PROFIT IS " : NET
CASE NET <0

PRINT "LOSS IS " : ABS(NET)
CASENET=O

PRINT "NO PROFIT OR LOSS ON THIS TRANSACTION."
END CASE

Loops (!LOOP, FOR)

Program llops are constructs that repeat the same sequence of statements
while a C01dition holds true or until a condition is met.

!

3: Overview of Statements and Functions 41

The LOOP Construct

The LOOP statement is the general-purpose looping construct in Pick
BASIC. It has (optionally) two sets of statements, the first of which is
executed before testing the condition clause, and the second of which is
executed only if the condition is verified. The condition is written as either
a WHILE or an UNTIL clause. If the WHILE clause is used, the loop will
continue as long the condition remains true; if the UNTIL clause is used,
the loop will continue as long as the condition is not true.

The following example will continue to prompt for a number until a
numeric value is entered:

LOOP
PRINT "ENTER A NUMBER":
INPUT NUMBER

UNTIL NUM(NUMBER) DO
PRINT "NUMERIC INPUT EXPECTED!"

REPEAT

The UNTIL clause can be replaced with a WHILE by negating the condition:

WHILE NOT(NUM(NUMBER)) 00

FOR Loops

In its simplest form a FOR loop performs a set of statements while
incrementing a number by 1. When the number reaches or surpasses a
specified maximum, the FOR loop exits. For example, a program printing
out the first ten perfect squares might read:

FOR I = 1 TO 10
PRINT I * I

NEXT I

In Pick BASIC, the FOR loop has been enhanced in two ways: an
increment other than 1 can be specified with the STEP clause, and the
WHILE and UNTIL clauses of the LOOP statement have been incorporated
into it.

Stopping a Program (STOP, ABORT, END)

Two statements cause a program to stop executing immediately: the STOP
statement and the ABORT statement. The difference between them is that if
the current program is called by a proc or another program, the STOP
statement returns to the calling proc or program, but an ABORT statement

42 Pick BASIC: A Reference Guide

returns direltly to TCL. In general, STOP statements are used for a normal
or nonfatal termination of a program, and ABORT statements are used for
abnormal termination.

STOP and ABORT are often used in ELSE clauses to file I/O and tape I/O
statements when the program becomes pointless if the statement fails.
STOP statements are also used between the main part of a program and its
internal subroutines. When a program is written with internal subroutines
at the end, a STOP statement is necessary to ensure that the subroutines are
not directly executed at the end of the program.

The END Statement

Beyond its function for delimiting THEN or ELSE statements, the END
statement can also be used (optionally) to designate the end of compilation.
When the compiler reaches an END statement that does not correspond to a
THEN, ELSE, or LOCKED clause, all compilation stops: any statements
or subroutines that come after the END statement in the source code are
ignored.

Internal Subroutines (GOSUB, RETURN)

An internal subroutine is a discrete sequence of statements starting with a
statement label and ending with a RETURN statement. In the source code,
subroutines are placed after the main part of the program, and precautions are
generally taken to ensure that they are never executed directly. Internal
subroutines are executed by GOSUB statements, which point to the
statement label.

For example, a subroutine labelled "8000" prints a report of the session's
transactions. The subroutine might be called by the following code:

PRINT "PRINTING A REPORT ... "
GOSUB8000
DISPLAY "REPORT PRINTED."

3: Overview of Statements and Functions 43

The subroutine itself might read:

8000 *PRINT A REPORT
PRINTER ON
PRINT "NUMBER OF TRANSACTIONS" , NO.OF.TRANS

PRINTER CLOSE
PRINTER OFF

RETURN

When GOSUB is executed, program control is transferred to the statement
label "8000" and continues until the RETURN statement is encountered.
Program control then continues with the statement following the GOSUB
statement, and the message "REPORT PRINTED" is displayed on the
screen.

The GOTO Statement

The GOTO statement is often grouped together with GOSUB, because they
share the same syntax and perform similar functions. However, the GOTO
statement serves only to transfer program execution to the statement label
and never returns to the statement following the GOTO statement unless
another GOTO is used.

External Program Control

This section discusses the program control constructs that call external
subroutines and that execute TCL commands.

External Subroutines (CALL)

The CALL statement transfers execution to an external subroutine. An
external subroutine is a sequence of statements that performs a discrete
function, compiled separately from the calling program. The subroutine
must be cataloged in the account before 1t can be called.

The first statement of the subroutine must be the SUBROUTINE statement,
and the last statement executed must be the RETURN statement. The
SUBROUTINE statement can take several parameters that correspond to the
parameters on the CALL statement that calls the subroutine. The nth

44 Pick BASIC: A Reference Guide

parameter i the SUBROUTINE statement and the nth parameter on the
CALL state ent become equivalent.

For exampl ,suppose a simple subroutine named ADDEMUP is called with
the following source lines:

PRINT "ENTER A NUMBER":
INPUT NUMBER1
PRINT "ENTER ANOTHER 'NUMBER":
INPUT NUMBER2
CALL ADDEMUP(NUMBER1 , NUMBER2, NUMBER3)
PRINT NUMBER1 :" PLUS" : NUMBER2 : " IS " : NUMBER3

and the subroutine ADDEMUP reads:

SUBAOUTINE ADDEMUP(A,B,C)
C=A+B

RETURN

The value of NUMBERl is passed to the variable A in the subroutine, the
value of NUMBER2 is passed to B, and the value of NUMBER3 is passed
to C. At the conclusion of the subroutine, the parameters are returned with
their new values (if any). Thus, ADDEMUP serves to place the sum of the
first two numbers in the variable NUMBER3.

Passing Parameters (COMMON)

The alternative to passing parameters with the CALL and SUBROUTINE
lines is the COMMON area, by which several programs can share the same
variables.

The COMMON statement permits multiple programs and subroutines to
use the same variables by accessing them according to the sequence in which
they are stored. Each program using the COMMON area must include a
COMMON statement, and the variables will be considered equivalent
according to their positions. Thus, in the simple example of a subroutine
shown earlier in this section, the main program might have read:

COMMON NUMBER1, NUMBER2, NUMBER3
PRIN~ "ENTER A NUMBER":
INPU NUMBER1
PRIN "ENTER ANOTHER NUMBER":
INPU NUMBER2
CALLl ADDEMUP
PRINT NUMBER1 :" PLUS" : NUMBER2 : " IS" : NUMBER3

3: Overview of Statements and Functions 45

and the subroutine ADDEMUP:

SUBROUTINE ADDEMUP(A,B,C)
COMMON A, B, C
C=A+B

RETURN

The variable NUMBERl in the main program and the variable A in the
subroutine are considered equivalent because of their positions in the
COMMON statement. The same is true of NUMBER2 and B, and of
NUMBER3 and C.

Executing a TCL Command (EXECUTE, DATA)

Both the EXECUTE statement and the CHAIN statement can be used for
executing a TCL command. EXECUTE is by far the more powerful of the
two statements, and is to be preferred to CHAIN.

The EXECUTE statement executes any TCL command and returns to the
current program. In addition, the RETURNING clause can be used to
determine error messages which may have resulted, and the CAPTURING
clause can be used to capture the terminal output generated by the command.

The CHAIN statement will execute the command but will not return to the
calling program.

The DATA Statement

The DATA statement places data in the secondary output buffer, or data
stack. If the data stack is not empty, any subsequent requests for input will
accept the response directly from the data stack, and the user will not be
given the opportunity to respond.

The data stack is helpful for executing TCL commands that request
information that the program can supply. For example, if a programmer
wishes to copy a file item before altering it in a program, the COpy verb
might be used (rather than writing a new item with the WRITE statement).
The COPY verb requests the operator to supply the new item ID, so the
DA T A statement could be used to store the new item ID on the data stack
before using EXECUTE to run the COpy verb.

Before EXECUTE returns to the calling program, it checks the data stack for
input. If the data stack is not empty, its contents are sent to TCL. Any
data left in the stack is cleared upon exiting from EXECUTE.

46 Pick BASIC: A Reference Guide

Using EXECUTE with Select-Lists

Although the Pick BASIC language has a SELECT statement for creating a
select-list, the EXECUTE statement can be used to run one of the ACCESS
select-list generators (e.g., SELECT, SSELECT, FORM-LIST,
QSELECT). The ACCESS select-list generators are often preferable to the
SELECT statement because they can include selection and sort expressions.
Selection and sort expressions cannot be supplied with the Pick BASIC
SELECT statement.

On most systems the active select-list is accessible to the next EXECUTE
statement.· For example, the next EXECUTE might use SAVE-LIST to
save the list in the POINTER-FILE. *
See the section "Reading and Updating File Items" later in this chapter for
more information about select-lists.

Executing Another Pick BASIC Program (ENTER)

To execute another Pick BASIC program, the EXECUTE statement is
recommended. There is, however, an ENTER statement which acts only to
execute another Pick BASIC program (the program must be cataloged) and
then exit without returning to the calling program.

Sending Output to the Screen and Printer

Output Devices (PRINT, CRT, DISPLAY)

There are two standard output devices available to a Pick BASIC program:
the terminal screen and the printer. The CRT and DISPLAY statementst
are identical: both send output only to the terminal screen. The PRINT
statement $ends its output either to the terminal screen or to the printer,
depending pn which has been selected as the "output device." The syntax of

* On some implementations the select-list is unavailable to subsequent EXECUTE
statements; on these systems, the DATA statement can be used to stack a
SAVE-LIS1 command to be executed before returning to the program.

t The SMA.standards only include CRT.

3.' Overview of Statements and Functions 47

all three statements is similar, except that the PRINT statement accepts the
ON keyword for multiple print units.

File items and attached tape devices can also be considered output devices in
a broader sense. For information on file and tape I/O, refer to the sections
"Reading and Update File Items" and "Reading and Writing Tapes" later in
this chapter.

Sending Output to the Printer (PRINTER ON/PRINTER OFF)

The PRINT statement by default sends output to the screen. There are two
ways, however, to force the PRINT statement to send output to the printer:
by the P option to the RUN command, or by the PRINTER ON statement.
The PRINTER ON statement signifies that the output from all subsequent
PRINT statements will be sent to a spooler print file. When the program
finishes executing, the print file is spooled to the printer. (See A Guide to
the Pick System for a detailed explanation of print files and the Pick
spooler.)

The PRINTER OFF statement returns to the default condition: the output
from all PRINT statements after a PRINTER OFF statement will be sent to
the terminal screen again.

To print output before the program finishes executing, use the PRINTER
CLOSE statement to send everything in the print file directly to the printer.

Print Units

When output is being sent to a printer, the ON keyword to PRINT becomes
significant. Generally, all printer output is sent to BASIC print unit O.
However, if several reports are being generated simultaneously, the ON
keyword can be used to place output in several different print units. These
print units are integral to Pick BASIC. When the print jobs held in various
print units are queued to the spooler for printing, they may be assigned
spooler entry numbers that are different from the print unit numbers
assigned by the BASIC source code.

For example, suppose a program generate~ two reports, one displaying the
names of all customers who are two months late on their bills, and the other
displaying the names of all customers who have birthdays approaching. The
program goes through each customer's record in sequence. If bills have not
been paid, the customer's name and address are sent to print unit 0, and the
customer is billed; if the customer has a birthday coming up, the name and

48 Pick BASIC: A Reference Guide

address are sent to print unit I, and the customer is sent a birthday card. At
the end of the program, two complete and distinct lists are printed out.

Formatting and Positioning Output

Normally output will be printed at the current position and will force a
carriage return and line feed at the end of output. The print expression,
however, may include features to tabulate output, to suppress the carriage
return and linefeed, and (in the case of screen output) to place output at any
coordinate, clear the screen, clear the line, or access any of several terminal
capabilities.

In addition, data can be formatted directly using a format expression.
Format expressions in Pick BASIC are used to convert stored data into a
readable format without changing the data itself.

Tabulation and Carriage Return Suppression

A comma in the print expression will force a tab to be printed at that
position. A trailing colon (:) specifies that the automatic carriage return
and linefeed be suppressed in output.

Formatted Screens (@)

The @ function provides direct control of a terminal screen. When the @
function is used in a print expression, it generates a command sequence that
is sent to the terminal screen, and the screen responds accordingly. In
particular, the @ function can be used to move the cursor to any coordinate
position on the screen. It can also be used to clear the screen, to clear to the
end of the line, or to place the text in blinking mode. A full list of the
features for the @ function is included in the reference page for@.

U sing the @ function, a formatted screen can be generated. Programs can
use the @ function to clear the screen and show a menu by sending menu
options to different positions on the screen. The programmer might choose
to turn the echo feature off to prevent user input from appearing on the
screen. I

For form~tted screens, the INPUT @ statement can take input from any
position or the screen. In addition, the INPUT @ statement can include an

I

3: Overview of Statements and Functions 49

expression to convert the format of the input. See the section "Terminal
Input" later in this chapter for more information on INPUT @.

For example, to print a menu on the screen, the source code might read:

PRINT @(-1) :
PRINT @(8,3) : "CHOOSE ONE: " :
PRINT@(16,6) : @(-13) : "E":@(-14) : "DIT AN ENTRY":
PRINT@(16,8) : @(-13) : "N":@(-14) : "EW ENTRY" :
PRINT@(16,10) : @(-13): "D":@(-14): "ELETE AN ENTRY":
PRINT@(16,12):@(-13) : "Q":@(-14) : "UIT":
ECHO OFF
INPUT @(1 ,23) : ANSWER, 1

The code in the preceding example does the following:

The first line of code clears the screen.

The second line prints "CHOOSE ONE" at column 8, row 3.

• The third through sixth lines print the menu options at specific
positions, with the first character in reverse video mode. Thus, the
first character stands out on the screen.

The seventh line turns off the echo.

The eighth line places the cursor at the bottom of the screen and
accepts a single character as a response.

Formatting Data

Numbers are often stored in a special internal format. Storing data in an
internal format makes calculation easier, but stored data can be difficult to
read. Format expressions convert numbers into a format that is easier to
read. In addition, the ICONV function converts string data that is being
input into a specified internal format, and the OCONV function converts
data strings stored in internal format into a specified output format.

For example, if you were to store the dollar amount "$14,912.15" with the
dollar sign and comma, no calculations on that number would be possible­
dollar signs and commas cannot be stored as part of a numeric string. Also,
if interest is being calculated on this dollar amount, it would be more
accurate if more than two decimal places were being kept.

Suppose the given dollar amount represents the current balance of a bank
account. The bank keeps this figure to five digits of precision to ensure that
any calculations are accurate-the actual figure stored might be
"1491214987". When this amount is printed in a monthly statement, the
data needs to be converted into a readable form. The program which

50 Pick BASIC: A Reference Guide

generates ~he monthly statements will therefore use a format expression
when it prints the data. The format expression descales the number, rounds
it to two decimal places, inserts commas where necessary, and places a
dollar sign in front of the number. If the variable BALANCE contains
"1491214987" and the program contains the lines:

PRECISION 4

PRINT BALANCE "29,$"

the output will be displayed or printed as:

$14,912.15

Output format is specified by adding a format expression after the data, as
shown in the example. In the source code, the "2" signifies that output
should be rounded to two decimal places. The "9" is a descaling code, which
determines where to place the decimal point-in this case, 5 digits from the
right. (Since the default precision of 4 decimal places was specified earlier
in the program, a descaling code of "9" is specified in the format expression.
The actual number used to descale the data is calculated by subtracting the
decimal precision (4) from the descaling code (9) in the format expression,
which gi\o'es a result of 5.) The"," specifies that a comma be printed at
every thousands place, and the "$" places a dollar sign in front of the
expression. There are many other codes available for formatting data. For a
full list and explanation of these codes, see Chapter 5.

Headings and Footings

The HEADING statement can be used to specify that a heading be printed at
the top of each page. It also has the facility to set up page parameters for
use by FOOTING and PAGE.

If the output is being sent to the screen, output will stop after each page of
text. If a FOOTING statement is specified, a footing will be supplied at the
end of th\! page, and the program will wait for a carriage return before
continuin, with output.

The PAG~ statement can be used to force a new page at any point in the
program.

Note that I HEADING, FOOTING, and PAGE only affect the same output
device thft PRINT does. If multiple print units are being used to print
several pIjint files simultaneously, HEADING, FOOTING, and PAGE will
affect only print unit 0 (the default).

3: OverVIew of Statements and Functions 51

I

Terminal Input

The INPUT Statement

In the simplest form of terminal input, the user can be prompted to enter a
value for the variable ANSWER with the statement:

INPUT ANSWER

This statement prints the prompt character on the screen and waits for
terminal input at that position. The user can type a response and press the
RETURN key for the response to be accepted. (The prompt character can be
reassigned with the PROMPT statement.)

Variations on INPUT

There are several variations to the INPUT statement. For example, suppose
that the answer the user is prompted for can be only "Y" for "yes" or "N" for
"no." The INPUT statement can specify that only one character is expected,
with the statement:

INPUT ANSWER,1

The maximum number of characters that will be accepted as input is one.
When the user types one character, the program assumes that the input is
complete and continues execution immediately, without waiting for a
carriage return. Any positive integer can be used in an INPUT statement as
the maximum length of input, up to the size of the input buffer.

To force the program to wait for a carriage return before accepting the
response, an underscore (_) can be placed at the end of the INPUT
statement. When you use the underscore, the program will send a "beep" to
the terminal if the user tries to type more than the maximum number of
characters, but it will wait for a carriage return before accepting the input.
Thus the user is given a chance to verify the response before continuing
with the program.

In addition, the INPUT statement can be used to print data in the field to be
written. The field might contain a default answer, to be accepted (by
pressing the RETURN key) or to be reassigned (by backspacing, typing the
new answer, and pressing the RETURN key). The field might also be filled
by a "fill character," showing (for example) five asterisks when a five-digit
zip code is requested.

52 Pick BASIC: A Reference Guide

Masked I Input Statements (INPUT @)

I

The INPUT @ statement combines two valuable enhancements to the
INPUT statement: it accepts screen coordinates for the input string, and it
allows input and output formatting to be applied directly to the input.

The INPUT @ statement takes screen coordinates as arguments. When
INPUT @ is executed, the prompt character is printed at the position
specified by the coordinates. If the variable to be input already has a value,
that value is displayed just after the prompt, with the cursor positioned at
the first character of the displayed value. The user can then either accept the
displayed value by pressing the RETURN key, or enter new data at the
prompt. Once the response has been supplied, the INPUT @ statement
verifies it against the format expression (if there is one). When the input
data is verified, it is converted to internal format for storage. If the response
is not verified, an error message is printed at the last line of the screen and
the user is prompted again.

There are a number of different kinds of format verification available. These
are discussed in the section "Formatting and Positioning Output" earlier in
this chapter, and also in Chapter 5 under the heading "Format Expressions."

Consider the case of a screen-formatted program which prompts for a date
and then converts it into internal format. Using the standard INPUT
statement, the program would have to use a loop to place the cursor at the
right position, prompt for the input, test for every way a date can be written
("JUNE 4 1990", "4 JUN 1990", "6/4/90", "06/04/1990", "6-4-90", etc.),
and then convert it to internal format. With the INPUT @ statement, on
the other hand, the programmer can simply write:

INPUT@(14,10) BIRTHDATE "D"

See the section "Sending Output to the Screen and Printer" earlier in this
chapter for more information on formatting data.

INPUTTRAP, INPUTNULL and INPUTERR

Several stat~ments were designed to be used concurrently with INPUT@.

The INPUTTRAP and INPUTNULL statements were designed to provide
escapes from the internal loop of INPUT @. The INPUTNULL statement
specifies a~haracter which will be interpreted as the null string by
INPUT @. The INPUTTRAP statement allows the programmer to specify
characters hich, if supplied as answers to INPUT @, will branch to
another stat ment label. Using INPUTTRAP, the operator can be told, in a

3: Overview of Statements and Functions 53

menu program for example, that entering ESC at any prompt will exit the
program, and entering CTRL-Z will return to the main menu.

The INPUTERR statement prints a message on the last line of the screen.
This message will be cleared when correct input is taken by a succeeding
INPUT @ statement. The INPUTERR statement can be used to print a
message about what sort of input is expected, or it can be used in a loop
with INPUT @ if a response requites further testing. For example, if the
programmer requires a date within the next year, the code might read:

TODAY =DATE()
VALID = 0
INPUTERR "PLEASE ENTER A DATE WITHIN THE NEXT YEAR"
LOOP

INPUT@(14,10) RES.DATE "D"
BEGIN CASE
CASE RES. DATE < TODAY

INPUTERR "INVALID INPUT. PLEASE ENTER A FUTURE DATE."
CASE RES.DATE > TODAY + 365

INPUTERR "PLEASE ENTER A DATE WITHIN THE NEXT YEAR."
CASE 1

VALID = 1
END CASE

UNTIL VALID DO REPEAT

See the section "Sending Output to the Screen and Printer" earlier in this
chapter for more information both on data formatting and on formatted
screens.

INPUT and the Data Stack

If the data stack is not empty, its contents will be supplied to any terminal
input statement, and the user will not be prompted. The data stack is
assigned with the DATA statement.

See the section "External Program Control" earlier in this chapter for more
information about the data stack.

Dynamic Array Processing

All data on Pick systems is stored as a string. File items are separated by
segment marks, and lines in file items are separated by attribute marks. For
processing data in file items, therefore, Pick BASIC supplies several
powerful string functions. Using these functions, fields in a file item can
be distinguished and processed separately.

54 Pick BASIC: A Reference Guide

There are t~o categories of string function: those that require a delimiter to
be specifie~, and those that assume the dynamic array delimiters.

File Items and Dynamic Arrays

Dynamic ~ays are powerful data structures in Pick BASIC, since they can
be used to represent the contents of a file item. A dynamic array is simply a
string variable with attribute marks, value marks, and subvalue marks taken
to be field delimiters.

When a file item is read into a string variable by a READ or READU
statement, the fields are separated by attribute marks (CTRL-", or
CHAR(254», and subfields are separated by value marks and subvalue marks
(CTRL-] and CTRL-\, or CHAR(253) and CHAR(252». The string variable
is thus in the form of a dynamic array and can be manipulated by the
dynamic array functions.

n::G" Note that when these delimiters are sent to the screen by
a PRINT or CRT statement, they do not appear as you
might expect them to: Pick BASIC subtracts 127 from
the ASCII value of a high-order character on output.
Thus CHAR(254) appears on output as -, CHAR(253)
appears as }, and CHAR(252) appears as I .

See the section "Reading and Updating File Items" later in this chapter for
more information on reading file items into a Pick BASIC program.

Dynamic Array Functions

To examine or alter the contents of a particular attribute, value, or subvalue
of a dynamic array, Pick BASIC provides the EXTRACT, REPLACE,
INSERT, and DELETE functions.

The EXT ACT function returns the contents of the specified attribute,
value, or s bvalue. For example, if Attribute 6 of the dynamic array CUST
contains th customer's zip code, a variable ZIP can be assigned with:

ZIP EXTRACT(CUST.6)

The REPL CE function replaces the contents with new data. For example,
if a custo er had a new zip code NEW.ZIP, the program can replace the old
zip code i Attribute 6 of the array CUST with:

CU T = REPLACE(CUST.6; NEW.ZIP)

3: Overview of Statements and Functions 55

The INSERT function inserts data as an attribute, a value, or a subvalue at
the given position. For example, if Attribute 6 of CUST does not exist, it
can be assigned to the customer's zip code ZIP with:

CUST = INSERT(CUST,6; ZIP)

The difference between REPLACE and INSERT is that REPLACE
overwrites any data already in the given position, whereas INSERT simply
moves the data to the next position. That is, if Attribute 6 already exists in
the previous example, the newly inserted data becomes Attribute 6, the old
Attribute 6 becomes Attribute 7, and so on.

The DELETE function deletes the specified attribute, value, or subvalue.
For example, Attribute 7 of CUST can be deleted with:

CUST = DELETE(CUST,7)

The DELETE function does not perform the same function as using
REPLACE with the null string. By deleting Attribute 7, Attribute 8
becomes Attribute 7, Attribute 9 becomes Attribute 8, and so on. On the
other hand, by replacing Attribute 7 with the null string, Attribute 7
becomes null and all other attributes remain unchanged.

The LOCATE Statement

The LOCATE statement provides an extremely powerful way to manipulate
dynamic arrays. The LOCATE statement searches for a particular attribute,
value, or subvaluewithin a dynamic array string (or subset thereof). If the
data has been sorted in ascending or descending order, the order can be
specified in the LOCATE statement. THEN and ELSE clauses are accepted
by LOCATE to specify action if the string is or is not found.

If the string is found, the LOCATE statement sets a specified variable to the
position where the data was found, and the statements of the THEN clause,
if included, are executed. If the string is not found where expected, the
variable is set to the current position plus one, and the statements in the
ELSE clause are executed. In the ELSE clause, the variable can be used
with an INSERT function to place the data in the proper position.

For example, if a dynamic array LIST contains names in alphabetical order
separated by attribute marks, a new name N,.AME can be inserted with:

56

LOCATE(NAME, LIST; POSITION; 'AL') THEN
PRINT NAME: " ALREADY LISTED."

END ELSE
NAMELIST = INSERT(LlST ,POSITION; NAME)

END

Pick BASIC: A Reference Guide

Alternatt1 Forms for Dynamic Array Processors
i

I

Many Pic~ implementations now support alternate forms for each of the
dynamic array processing functions. These forms uses angle brackets in
referencin8 a dynamic array field, thus simulating the syntax for referencing
dimensioned arrays. Since the angle brackets tend to be more "intuitive,"
they are generally preferred over the older syntax forms.

The preceding example lines might have read:

Old

ZIP = EXTRACT(CUST,6)
CUST = REPLACE(CUST,6; NEW.ZIP)
CUST =INSERT(CUST,6; ZIP)
CUST = DELETE(CUST,7)
LOCATE(NAME, LIST; POSITION; 'AL')

New

ZIP = CUST <6>
CUST <6> = ZIP
INS ZIP BEFORE CUST <6>
DELCUST<7>
LOCATE NAME IN LIST BY AL

Counting Delimiters and Substrings

The COUNT function returns the number of times a specified substring
appears in a string. The DCOUNT function returns the number of fields
separated by a given delimiter.

DCOUNT can be very useful for processing dynamic arrays as well as other
strings. For example, the number of attributes in a string ADDRESSES
can be determined with:

NO.OF.ATTRS = DCOUNT(ADDRESSES, CHAR(254))

Generalized String Processing

The EXTRACT, REPLACE, INSERT, and DELETE statements are very
powerful for referencing and adapting dynamic arrays in Pick BASIC, but
they dep~, d on the standard delimiters being used within the atray. If a
string wit different delimiters between its fields needs processing, the
program er is forced to use the more generalized string processing
functions.

I

I

3: Overview of Statements and Functions 57

Substring Extraction

A substring is specified by a starting character position and a substring
length, separated by commas and enclosed in square brackets. The general
syntax for a portion of a string is:

string [start,/ength]

where start is the starting column position and length is the length of the
substring. The brackets here are part of the syntax and must be typed.

Substring Assignment

Some Pick systems allow you to combine substring extraction syntax with
the assignment statement. The syntax is as follows:

var [start,/ength] = string

Using this syntax, substrings can be extracted and characters can be replaced
like the fields of a dynamic array or the elements of a dimensioned array.
For example, if the string NAME contains "SHAW, GEORGE
BERNARD", the variable FIRSTNAME can be assigned "GEORGE" with:

FIRSTNAME = NAME [7,6]

By using column positions, therefore, the EXTRACT function can be
simulated for string variables. To simulate the REPLACE, INSERT, and
DELETE functions, portions of a string can be assigned values directly. To
substitute the string "RALPH" for "GEORGE", for example, the code
might read:

NAME[7,6] = "RALPH"

The only thing which is not obvious in manipUlating substrings is how to
determine the column position and length of the substring. For this
purpose, the FIELD, COLl, COL2, LEN, and INDEX functions are a vital
part of string processing.

The FIELD Function

The FIELD function accepts any character as a delimiter and returns the
specified field, thus acting as a generalized EXTRACT. For example, if the
string NAME contains "SHAW, GEORGE BERNARD", then the last name
"SHAW" can be placed in the variable SURNAME with:

58 Pick BASIC: A Reference Guide

SURNAME = FIELD(NAME, "," ,1)

Notice th3jt the second comma is enclosed in quotes to indicate that it is the
second of three expressions and not an expression delimiter.

The COLt, COL2, and LEN Functions

The COLl and COL2 functions respectively return the column positions
immediately before and immediately after the last FIELD function. The
LEN function returns the number of characters in a string.

For example, if the string NAME contained "SHAW, GEORGE
BERNARD", the first name "GEORGE" could be deleted with:

FIRSTNAME = FIELD(NAME, " " ,2)
NAME [COL 1 (), COL2() 1 = " "

The string NAME now contains "SHAW, BERNARD".

The INDEX Function

The INDEX function returns the column at which a particular substring can
be found in a string. This value can be used in a substring assignment
statement to replace or delete the substring.

For example, if the variable NAME contained the string "SHAW, GEORGE
BERNARD", the word "BERNARD" could be stripped out with:

COLUMN = INDEX(NAME, "",2)
NAME = NAME [1, COLUMN -1 1

Trimming Spaces

The TRIM function removes all extra spaces from a string. It trims all
multiple spaces and all spaces at the beginning and at the end of a string.
Some Pijk implementations also support the TRIMF and TRIMB
functions, which respectively trim leading blanks and trailing blanks from a
string but eave all other blank spaces intact.

3: Overvirw of Statements and Functions 59

Dimensioned Arrays

A dimensioned array is a one- or two-dimensioned structure for data.
Elements of the array can be thought of as cells rather than fields.

The most significant difference between dimensioned and dynamic arrays is
that the size of a dimensioned array must be assigned at compilation,
whereas the size of a dynamic array' can vary at run-time according to need.
Each element in a dimensioned array has a direct pointer; each field in a
dynamic array, on the other hand, requires the entire string to be searched
through from the start.

For example, suppose a dynamic array contains a thousand attributes.
Attribute 999 actually refers to the data between the 998th and 999th
attribute marks; therefore, to access attribute 999, the processor has to
search through the string until 999 attribute marks are found. If several
fields towards the end of the string need to be accessed this way, the
run-time of the program can be drastically increased.

If, however, a vector (a one-dimensional array) were used instead of a
dynamic array, the processor has to access only a single direct pointer to
element number 999 in order to retrieve the data. Dimensioned arrays,
therefore, provide a shortcut to the field.

See Chapter 2 for a more complete description of the structure of
dimensioned arrays.

Assigning Dimensioned Array Variables (DIM)

Before a dimensioned array can be used, its dimensions need to be declared.
The DIM statement declares a dimensioned array. Since the DIM statement
is interpreted by the compiler, * neither variables nor expressions can be used
in a DIM statement.

If the array is to be allocated space in the common area, the COMMON
statement can also be used to declare a dimensioned array. Arrays that have
been declared with the COMMON statement, however, should not be
declared again with a DIM statement.

* Except on Prime INFORMATION and uniVerse systems, where DIM statements
are executed at run time.

60 Pick BASIC: A Reference Guide

MA TR~AD and MA TWRITE

The MA TREAD and MATWRITE statements read file items directly into
dimensioned arrays and write dimensioned arrays back into file items. See
the sectio~ "Reading and Updating File Items" later in this chapter for more
information on reading and writing file items.

The MAT Statement

The MAT statement assigns all elements of a dimensioned array to a single
value or to the values of another array. For example, to assign all elements
of an array ARRAY to "6", the code might read:

MATARRAY=6

This use of the MAT statement is a shorthand for:

FOR I = 1 TO MAXEL TS
ARRAY(I} = 6

NEXT I
where MAXELTS represents the maximum dimensions of the array.

To assign the elements of ARRAY to the elements of ARRA Y2, the code
might read:

MAT ARRAY = MAT ARRAY2

which is a shorthand for:

FOR I = 1 TO MAXEL TS
ARRAY(I} = ARRAY2(1}

NEXT I

Reading and Updating File Items

File Variables (OPEN)

Before an item in a file can be accessed, the file must be assigned a
symbolic f· arne, called a file variable". The file variable is necessary to
provide a ointer to the file. This pointer is used by the program each time
the file is . ccessed. The OPEN statement assigns a file variable to a file, so
that the program can read, write, select, or delete items in the file. All

3: Overvitw of Statements and Functions 61

subsequent access of the file must use the file variable rather than the
filename to reference the file.

If a file is opened and no file variable is specified, the program uses the
default file variable. Any subsequent file access statements that do not use a
file variable to reference the file will also use the default file variable. Only
one file at a time can be assigned to the default file variable.

Reading and Writing a File Item

Once a file is opened, any item can be directly accessed. The READ
statement assigns the string value of a file item to a dynamic array variable.
The fields of the array can then be accessed by the dynamic array processing
functions EXTRACT, REPLACE, INSERT, DELETE, and LOCATE. The
WRITE statement writes a new or updated dynamic array string into a file
item.

Pick BASIC provides several variations to READ and WRITE. The
READ V and WRITEV statements read and write only a single attribute of
an item, as a shortcut for programs which are concerned only with a single
attribute. In addition, the MATREAD and MA TWRITE statements read and
write items as dimensioned arrays, with each attribute corresponding to an
element of the array.

The file-reading statements are each equipped with THEN and ELSE clauses.
If the item is not found, the ELSE statements are executed; if it is found,
the THEN statements are executed. See the section "Internal Program
Control" earlier in this chapter for more information on the syntax of THEN
and ELSE clauses.

Item Locks (READU, WRITEU, RELEASE, etc.)

Each of the statements for reading a file item have corresponding statements
that place a lock on the item as it is read. These statements are the
READU, READVU, and MATREADU statements. (The "u" suffix stands
for "Update," declaring that the item might be changed and rewritten.) The
item lock is lifted either when the item is released with a RELEASE
statement, or when it is written with a WRITE, WRITEV, or MATWRITE
statement, or when the program is terminated. Until the lock is lifted, no
other users will be able to access the same item with a READU, READVU,
or MA TREADU statement.

62 Pick BASIC: A Reference Guide

Item locks only affect other READU, READVU, and MATREADU
statements. While an item is locked, programs can access the item with a
normal READ, READV, or MA TREAD statement, or they can even write
it with any of the file writing statements. The success of an item lock is
dependent on its being respected by all other programs that access the same
file.

If an item is to be written but the programmer does not want the lock
removed, the WRITEU, WRITEVU, and MATWRITEU statements should
be used in place of WRITE, WRITEV or MA TWRITE. These statements
will write the item but retain the item lock for subsequent update. The "U"
suffix again stands for "Update," declaring that further updates might occur.

The LOCKED Clause

The item-locking statements READU, READVU, and MATREADU are
each equipped with an optional LOCKED clause. Normally when a
program attempts to read and lock an item which is already locked, the
program waits for the item to be released before continuing with execution.
If the LOCKED clause is included, however, the program simply executes
the LOCKED statements and continues with execution immediately. The
LOCKED statements follow the syntax of THEN and ELSE clauses in Pick
BASIC.

The LOCKED clause helps to avoid the situation called the "deadly
embrace." A deadly embrace occurs when two users both lock items, and
before releasing their locks, each user then tries to read and lock the other
item. Without the LOCKED clause, both users will be indefinitely stuck,
since neither is free to unlock its item. If the LOCKED clause is used,
however, the deadly embrace cannot occur.

Select-Lists (SELECT, READNEXT)

Select-list variables can be created with the Pick BASIC SELECT
statement, or by using the EXECUTE statement to call one of the
ACCESS select-list generators. The SELECT statement does not accept the
selection or sort expressions accepted by the ACCESS verbs; however, the
SELECT statement does allow a select-list to be created from the attributes
of a dynamic array string. See the section "External Program Control"
earlier in this chapter for more information on using EXECUTE for
generating select-lists.

3: Overview of Statements and Functions 63

A select-list can also be created by executing one of the ACCESS select-list
generators and then immediately running the program. If the program is
designed this way, the SYSTEM(11) function* is recommended to test if
there is an active select-list.

Once the select-list is created, it can be read with the READ NEXT
statement. READ NEXT reads the next item ID in the select-list. After
selecting a file, the READ NEXT statement is generally used in a loop to
perform a procedure on all selected items.

Deleting File Items (DELETE, CLEARFILE)

The DELETE statement deletes a specific file item from an open file. It
should not be confused with the DELETE function (or the DEL statement
available on some implementations), both of which delete a field from a
dynamic array.

The CLEARFILE statement deletes all items in the data file.

Reading and Writing Tapes

Pick BASIC includes several statements for tape processing. For reading
and writing strings on tape, there are the READT and WRITET statements.
As expected, the READT statement reads the next record off the attached
tape device, and the WRITET statement writes a record onto the tape.

There are also statements to simulate the T-WEOF and T-REW commands.
The WEOF statement writes an End-Of-File mark at the current position of
the tape, and the REWIND statement rewinds the tape to the beginning.

Each of the tape I/O statements includes THEN and ELSE clauses to specify
action according to whether the tape statement was successful. The ELSE
clause is often used to produce a meaningful error message by calling the
SYSTEM(O) function. The SYSTEM(O) function returns a number that
indicates whether the latest tape I/O statement worked, and if it didn't, what
the problem was. See the SYSTEM function for more information.

* The number of the list-testing function may be different on your implementation.
Check your system documentation to see if your system's SYSTEM function
includes a list-testing option.

64 Pick BASIC: A Reference Guide

Execution Locks

The LOCK statement sets an execution lock, which establishes that only
one process can use a program or subroutine until the lock is removed. The
maximum number of locks differs on different Pick implementations:
earlier PICK Systems releases allowed up to 48, whereas 64 are now
supported. Other systems suppert up to 128. ADDS Mentor supports up
to 256. On some implementations these locks can be accessed only through
Pick BASIC.

Execution locks should not be confused with item locks, since they use a
very different mechanism.

Execution locks are set with the LOCK statement by specifying a lock
number. That lock number is determined only by local convention. All the
system does is establish the maximum number of "slots," and keep track of
whether the slot is taken or not. It is up to the application programs to take
advantage of this structure.

For example, suppose a particular subroutine tends to slow down the system
each time it is used. If a LOCK statement is used at the beginning of the
subroutine, only one user will be able to execute the subroutine at any
given time. The lock number should be unique.

Execution locks are released at the termination of the program, or at the
encounter of an UNLOCK statement. The UNLOCK statement can be used
to release a specific lock number or to release all locks set by the current
program.

The THEN and ELSE Clauses to LOCK

LOCK is supplied with optional THEN and ELSE clauses that have the
same effect as the LOCKED clause for READU. Normally, when a LOCK
statement is used on a lock number which is already locked, the program
will wait for the lock to be lifted before continuing with execution.
However, if the THEN or ELSE clause is included, the program will simply
execute the ELSE clause, if present, and continue with execution
immediately.

The THEN and ELSE clauses help to avoid the "deadly embrace." A deadly
embrace is when, for instance, one user sets execution lock 1, and another
user sets execution lock 2. The first user then attempts to access the
procedure controlled by lock 2, and the second user attempts to access the
procedure controlled by lock 1. Each user is now stuck, since the program

3: Overview of Statements and Functions 65

will wait indefinitely for the lock to be released, and neither is free to release
the lock that has already been set by their process. If the THEN or ELSE
clause is used, however, the deadly embrace cannot occur.

To display a list of all execution locks, use the WHAT verb.

Compiler Directives

This section discusses four compiler directive statements. These statements
are not supported by all systems* and are not included in the SMA
standards. Many of these statements begin with a dollar sign ($).

Comments in the Object Code

The $* statement places a comment directly in the object code of a program
when it is compiled. It is most useful for entering version numbers or
copyright information before software is distributed.

Reading In External Source Code

There are a number of statements, different on different Pick systems, that
tell the compiler to read source code from another file item. Among these
statements are INCLUDE, $INCLUDE, $INSERT, and $CHAIN.t

INCLUDE, $INCLUDE, and $INSERT are similar statements. All of these
statements result in the program being compiled as if the external source
code were written at the point where the INCLUDE statement has been
entered. Compilation then continues at the line after the INCLUDE
statement.

The INCLUDE statements are useful for any code that is used by several
different programs. An example of such code might be a file item
containing COMMON statements.

The $CHAIN statement is different from the INCLUDE statements in that
the compilation does not return to the original program. The $CHAIN
statement is not intended for code which might be shared by several

* Among those that do support them are Ultimate and ADDS Mentor.

t Only INCLUDE is listed in the SMA standards.

66 Pick BASIC: A Reference Guide

programs, but for programs which may have source code longer than 32K.
The $CHAIN statement allows several different file items containing source
code to be chained together.

The only restriction to INCLUDE, $INCLUDE, $INSERT, and $CHAIN is
that the number of bytes in the resulting object code cannot exceed 32K.

Miscellaneous Statements and Functions

The SLEEP and RQM statements suspend program execution for a number
of seconds, or until a specified time of day.

The ECHO ON/ECHO OFF statements tum the echo feature for the attached
process on or off.

The REM, *, and ! statements allow comment lines to be placed in the
source code. This statement allows the programmer to document code and
make it more accessible to future modification.

The PROCREAD and PROCWRITE statements allow the program to read
to and write from the primary input buffer of the calling proc.

Conversion Codes (ICONV, OCONV)

The ICONV function translates a string from external to internal format,
according to the ACCESS conversion codes. The conversion codes
supported are those for dates, time, hexadecimal, and table translation. The
OCONV function translates back from internal to external format. See Pick
ACCESS: A Guide to the SMA/RETRIEVAL Language for more
information about conversion codes.

The SYSTEM Function

The SYSTEM function returns significant information about the system.
The codes vary from system to system. The SYSTEM function provides
such information as:

o The command-line options used to the RUN command.

o The error code for a failed tape I/O statement, or the tape record
length.

3: Overview of Statements and Functions 67

• Whether the program was called by a proc, whether there is an active
select-list, whether the data stack is empty, or whether the program is
cataloged.

• Whether output is being sent to the printer, the number of lines left
on the current page, the current page number, and current open
spooler files.

• The operator's terminal type, or the number of lines or columns on
the operator's terminal.

• The user's account number, process number, or line number.

Entering the Debugger

If the BREAK key is pressed during program execution, the user is placed in
the Pick BASIC debugger. This feature can be disabled and reinstated with
the BREAK statement. The BREAK statement does not simply toggle the
break feature, it also increments and decrements the Break Inhibit Counter.

Alternative ways of entering the debugger are to use the D option to the
RUN command or to place a DEBUG statement directly in the source code.

Chapter 4 has a full description of debugger commands and how to use
them. See Chapter 4 for more information on using the Pick BASIC
debugger.

68 Pick BASIC: A Reference Guide

CHAPTER 4

Using the Pick BASIC
Debugger

Debugger Commands: Quick Reference

B .. Set breakpoint condition.

D .. Display breakpoint and trace tables.

DE .. Escape to system debugger.

DEBUG .. Escape to system debugger.

E ... Set or disable execution step.

END .. End program and return to TCL.

G Continue execution until next breakpoint, fatal error or step.

K ... Delete breakpoint condition.

LP .. Toggle output to the printer.

N .. Ignore specified number of breakpoints.

OFF .. Log off.

4: Using the Pick BASIC Debugger 69

P ... Toggle printing of program output.

PC Close print file and spool print job to the printer.

R .. Pop return stack.

S .. Display subroutine stack.

T Set trace variable or toggle trace table off and on.

U .. Remove trace variable from table.

V ... Verify the object code.

Z ... Identify source code.

$... Print current line number.

? ... Print current line number.

/ Print and change the value of a simple or array variable.

/* .. Print entire symbol table (all variables).

[... Set or remove a string window.

70 Pick BASIC: A Reference Guide

Fixing a Bug

A bug in a program is an error in the program's logic which either prevents
or impedes the program's performance. If a program doesn't work perfectly,
it is said to have a bug, and you must either fix it or find a way around it.

Most new programmers debug a program by running it, reading the error
message and its associated line number, and then examining the source code
at the specified line. In many cases, this is enough: short programs that
return messages like "RETURN EXECUTED WITH NO GOSUB" are fairly
easy to fix.

You can also place PRINT statements at key points of execution that report
what's happening as the program executes. You can place a PRINT
statement within a conditional to determine whether a condition has proven
true or not, or to display the value of variables. You can also include a
PRINT statement in a program loop to report how many times the loop is
being executed.

These debugging methods are fine as far as they go; however, they tend to
be tedious to implement, and you have to recompile the program after each
attempt. When you use the Pick BASIC interactive debugger, the
debugging process becomes simpler and tidier.

Your first experience with the Pick BASIC debugger is probably the result
of an accident, either through a fatal error or because you pressed the BREAK
key by mistake. At first, the only thing you want to know about the
debugger is how to get out of it (if you got into the debugger through a fatal
error, enter "END" at the debugger prompt; if you got into it because you
accidentally pressed the BREAK key, enter "G"). With a little patience,
however, you can learn to make the debugger do the dirty work of fixing a
program.

A Sample Program

To demonstrate how the debugger can be used, take the example of an
internal office program called BIRTHDAY. The BIRTHDAY program asks
users for their birthdays and then tells them how many days they have until
their next birthday. The program works fine for the programmer:

>RUN BP BIRTHDAY

4: Using the Pick BASIC Debugger 71

The screen is cleared and the following prompt appears:

ENTER YOUR BIRTHDAY: MMlDDIYY

The underline represents the position of the cursor. You enter a date:

ENTER YOUR BIRTHDAY: 6/4/65

The program converts the date and then prints out how many days until the
programmer's next birthday and how many years old they will be.

ENTER YOUR BIRTHDAY: 04JUN 1965
ON 06/04/1991, IN 319 DAYS, YOU WILL BE 26 YEARS OLD.

>

You are satisfied by this performance, since the tricky part of the program is
to make sure the it doesn't report a birthday that has already passed (e.g.,
"IN -46 DAYS, YOU WILL BE 25"). Since the test above was performed
in July 1990 and the date entered was in June, the tricky part seems to have
been solved.

Later the same day, however, it was reported that the program did not work.
In particular, when supplied a September date, the program still jumped
ahead a year:

ENTER YOUR BIRTHDAY: 3 SEP 1961
ON 09/03/1991, IN 410 DAYS, YOU WILL BE 30 YEARS OLD.

You quickly examine the source code but can't find an error. However,
using the debugger, perhaps we can discover something you missed.

Printing Source Code

First, we run the program with the D option. The D option forces the
program to enter the debugger before executing line 1.

>RUN BP BIRTHDAY (D)

Before the program begins execution, the debugger is invoked and "E I" is
printed, signifying that it stopped before executing line 1. The asterisk
(*) is the debugger prompt.

*E1
*

The first thing we want to do is examine the source code. Before we can
access the source code, however, we need to identify it with the Z command.

*Z<RETURN> FILE/PROG NAME?BP BIRTHDAY

The source code is now available for listing by the debugger with the L
command. Since it is a short program, L can be used with the * (asterisk)

72 Pick BASIC: A Reference Guide

option, specifying that the entire source code item should be printed. (In
actual practice it's usually a good idea to have a printed program listing next
to you when you are debugging a program.)

L
001 PROMPT" "
002 DIM BIRTHDAY(3), TODAY(3)
003 EQUATE TRUE TO 1,
004 FALSE TO 0, .
005 BIRTH.MONTH TO BIRTHDAY(l),
006 BIRTH.DATE TO BIRTHDAY(2),
007 BIRTH.YEAR TO BIRTHDAY(3),
008 THIS.MONTHTOTODAY(l),
009 THIS.DATE TO TODAY(2),
010 THIS.YEARTO TODAY(3)
011 INCREMENT = FALSE
012 PRINT@(-l):"ENTERYOUR BIRTHDAY:":
013 INPUT @(20,O) BIRTHDAY.INT "D"
014 TODAY.INT = DATEO
015 TODAY. EXT = OCONV(TODAY.INT,"D/")
016 MATPARSE TODAY FROM TODAY.EXT,"/"
017 BIRTHDAY.EXT = OCONV(BIRTHDAY.lNT,"D/")
018 MATPARSE BIRTHDAY FROM BIRTHDAY.EXT,"/"
019 IF THIS. MONTH > BIRTH.MONTH THEN
020 INCREMENT = TRUE
021 END
022 IF (THIS.MONTH = BIRTH.MONTH OR THIS.DATE >

BIRTH.DATE) THEN
023 INCREMENT = TRUE
024 END
025 IF INCREMENT THEN
026 THIS. YEAR += 1
027 END
028 AGE = THIS.YEAR - BIRTH.YEAR
029 NEXT.BIRTHDAY = BIRTH.MONTH : "/" : BIRTH.DATE : "/" :

THIS.YEAR
030 NEXT.BIRTHDAY.lNT = ICONV(NEXT.BIRTHDAY,"D")
031 DAYS.TO.BIRTHDAY = NEXT.BIRTHDAY.INT - TODAY.INT
032 IF DAYS.TO.BIRTHDAY = 0 THEN
033 PRINT
034 PRINT "HAPPY BIRTHDAY!"
035 PRINT "TODAY, " : TODAY.EXT:", YOU ARE" : AGE:"

YEARS OLD"
036 END ELSE
037 PRINT
038 PRINT "ON ":NEXT.BIRTHDAY:", IN": DAYS.TO.BIRTHDAY

:" DAYS,":
039 PRINT" YOU WILL BE ":AGE:" YEARS OLD."
040 END

4: Using the Pick BASIC Debugger 73

041 STOP
042 END

*
At first glance, it is obvious that the problem lies in the variable
THIS. YEAR: THIS. YEAR is being incremented when it should not be.
Before we start editing the program, however, we can use the debugger to
confirm our suspicions.

Using Breakpoints and Trace Variables

To examine the value of THIS. YEAR at the end of the program, we need to
set up a breakpoint so that we can examine variables before the program
ends. A breakpoint condition is a condition that invokes the debugger
whenever it is true.

The B command is used to assign a breakpoint condition. We choose to
break when the THIS. YEAR variable is equal to 1991.

*BTHIS. YEAR=1991 <RETURN> +

The breakpoint condition says to transfer into the debugger when the
variable THIS.YEAR is equal to 1991. The plus sign (+) is printed after
pressing the RETURN key to signify that the breakpoint was accepted into
the breakpoint table.

We enter THIS.YEAR as a trace variable. A trace variable is a variable that
is printed whenever a breakpoint is encountered. We enter it into the trace
table with the T command:

*TTHIS. YEAR<RETURN> +

We add to the trace table the variables THIS.MONTH, BIRTH.MONTH,
THIS.DATE, and BIRTH.DATE. We suspect that the problem may be that
these variables are not being assigned correctly.

*TTHIS.MONTH<RETURN> +
*TBIRTH.MONTH<RETURN> +
*TTHIS.OATE<RETURN> +
*TBIRTH.OATE<RETURN> +

To display the breakpoint and trace tables, we use the D command:

74

*0
T1 THIS.YEAR
T2 THIS.MONTH
T3 BIRTH.MONTH
T4 THIS.DATE
T5 BIRTH.DATE

Pick BASIC: A Reference Guide

T6
B1 THIS.YEAR=1991
B2
B3
B4

*
The G command continues execution of the program.

*G<RETURN>

The screen clears and the prompt is printed. We type "9/3/61" and press the
RETURN key:

ENTER YOUR BIRTHDAY: 9/3/61

The program then halts when the breakpoint is reached.

ENTER YOUR BIRTHDAY: 3 SEP 1961
*B128 END
THIS.YEAR 1991
THIS. MONTH 07
BIRTH.MONTH 09
THIS.DATE 20
BIRTH.DATE 03
*

As expected, the condition is true after line 27 has been executed. The
message "B 1 28" means that item 1 on the breakpoint table caused the
break, and the line about to be executed is line 28. (The actual text of that
line is displayed in half-intensity on the terminal screen.) The current
values of the trace variables are printed.

Displaying and Changing a Variable

The error in the program becomes increasingly obvious as we continue in
the debugger. Since the THlS.MONTH, BIRTH. MONTH, THIS.DATE,
and BIRTH.DATE contain the correct data, the problem is in the way they
are being compared. In order for THIS.MONTH to be incremented, the
INCREMENT variable must be true. We confirm this by using the /
command to print out the current value of INCREMENT:

*/INCREMENT

When we press the RETURN key, the value of INCREMENT is displayed,
and we are given the opportunity to change its value.

*/INCREMENT <RETURN> 1 =_

We type "0" as the new value for INCREMENT and press the RETURN key.

4: Using the Pick BASIC Debugger 75

*/INCREMENT <RETURN> 1 =O<RETURN>

*
We also reset the value of THIS.YEAR to 1990.

*/THIS. YEAR<RETURN> 1991 =1990<RETURN>

*

Using Execution Steps

To find out which comparison is failing, we want to step through the
crucial lines of the program this time around, to see what exactly is
happening. We want to begin the program executing again after line 19
with an execution step of 1. An execution step is a number of lines that
should be executed before returning to the debugger. The E command
should be used to specify the execution step:

*E1

We also add the variable INCREMENT to the trace table.

*TINCREMENT <RETURN>+

The G command continues execution after line 19. One line executes and
the program returns to the debugger. The line about to be executed will be
printed on the screen, along with any trace vruiables.

*G 19<RETURN>
*E20 IF THIS.MONTH > BIRTH.MONTH THEN
THIS.YEAR 1990
THIS.MONTH 07
BIRTH.MONTH 09
THIS.DATE 20
BIRTH.DATE 03
INCREMENTO
*

We step through 3 more times, until we find that the INCREMENT
variable has been changed.

76

*G
*E25 END
THIS.YEAR 1990
THIS.MONTH 07
BIRTH.MONTH 09
THIS.DATE 20
BIRTH.DATE 03
INCREMENT 1
*

Pick BASIC: A Reference Guide

By stepping through the program, we see that the INCREMENT variable is
changed immediately before line 25. We list lines 23 through 25 with the
Lcommand:

*L23-25
023 IF (THIS.MONTH = BIRTH.MONTH OR THIS.DATE >

BIRTH.DATE) THEN
024 INCREMENT = TRUE
025 END

*
The problem is in the conditional for the IF statement. It becomes obvious
that, as usual, the bug in the program is a simple logical error: the "OR" in
line 23 should be an "AND". With that simple edit, the program should
run correctly.

We exit the debugger with the END command, edit the source item, and
recompile. The output now reads:

ENTER YOUR BIRTHDAY: 3 SEP 1961
ON 09/03/1990, IN 45 DAYS, YOU WILL BE 28 YEARS OLD.

>

Assigning New Values for Testing

It appears that the bug is gone. We are not confident, however, that the
program will still behave correctly at the end of the year. Using the
debugger, we can change the value of the variable TODA Y.lNT in the
program and see whether the program still works.

Run the program again with the D option, use the Z command to supply
the file name and program name, and set a breakpoint to stop executing
before line 16. (The "$" symbol on the breakpoint table represents the
current line number.) Then continue execution with the G command.

>RUN BP BIRTHOA Y (0)

*E1
*Z<RETURN> FILE/PROG NAME?BP BIRTHOAY<RETURN>
*B$=16<RETURN> +
*G<RETURN>

You are prompted for a birthday. After typing a date, press the RETURN

key. The program halts before executing line 16.

4: Using the Pick BASIC Debugger 77

ENTER YOUR BIRTHDAY: 03 SEP 1961
*B116 TODAY. EXT = OCONV(TODAY.lNT,"Df')
*

Before line 16 is executed, reassign the value of the TODA Y.lNT variable
with the / (slash) command, then enter the G command to continue
execution.

*/TODAY oiNT <RETURN> 7672=8401 <RETURN>

*G<RETURN>

(8401 is the internal value of December 31, 1990.)

The program runs successfully.

ON 09/03/1991, IN 246 DAYS, YOU WILL BE 29 YEARS OLD.

>

Now that you have a taste of what the debugger can do and why you would
use it, we can go over the specifics of its operation.

Entering the Debugger

There are several ways to enter the debugger:

• Pressing the BREAK key during program execution invokes the Pick
BASIC debugger. (This feature can be turned off within a program
with the BREAK statement.)

• The D option to the RUN command causes the program to enter the
debugger before starting execution.

• On systems that support the DEBUG statement, when DEBUG is
encountered during program execution, the program enters the
debugger at that point.

Fatal errors also invoke the debugger, with or without the user's consent.
(Nonfatal errors invoke the debugger only if the RUN command is used with
the E option.)

When control passes to the debugger for any of the above reasons, the
current line number (preceded by I for "Interrupt," E for "Execution step," or
B for "Breakpoint") is printed, and the "*,, prompt is displayed.

Once in the debugger, you can print and change variable values, set
breakpoint conditions or execution steps, and continue execution with the G

78 Pick BASIC: A Reference Guide

command. When a breakpoint condition or execution step is reached, the
debugger is instantly re-entered.

The Symbol Table

Variables within a program are each assigned a symbol, to be referenced by
the interactive debugger. When a program or subroutine is compiled, a
symbol table is generated with the object code. The debugger accesses the
symbol table through the object code pointer in the file dictionary. If the
program calls an external subroutine, a complete symbol table can be
accessed by the debugger for the external subroutine.

The S option to COMPILE prevents the symbol table from being generated,
but it should be used only when a program is fully operational. Without
the symbol table, the debugger's function is greatly impeded.

Exiting the Debugger

Other than returning to program execution with G, the debugger can be
exited using the following commands:

END The END command exits program, debugger, and
calling proc or program (if any), and returns directly to
TCL.

OFF The OFF command exits both program and debugger,
and logs you offthe system directly.

DE[BUG] The DEBUG or DE command transfers execution to the
system debugger, and the "!" prompt is displayed. You
can return to the Pick BASIC debugger ("*" prompt)
with the G command to the system debugger.

Displaying and Changing a Variable (/)

One of the most valuable things you can learn about a failed program is
what happens to the variables at different points in the program. By
examining variable values, you can determine which variables are being

4: Using the Pick BASIC Debugger 79

assigned incorrectly and thus find out which statements are not being
executed properly.

Displaying All Variables

The /* command displays all variables in the symbol table. All variables
are reported, including file variables, select-list variables, and
dimensioned-array variables. For example:

/
FILEVAR
PROGRAM= TESTIT
FILE.ARRAY(1,1)=JOEY
FILE.ARRAY(1 ,2)=FRED FLINTS

By using the /* command, you can scan the values for all variables at once.
However, the /* command doesn't let you change any values, and if there are
many variables or some extremely long string variables, the values may
scroll past the screen too quickly to be read.

Displaying and Changing Simple Variables

You can print the values of simple variables (and optionally reassign them)
with the / command.

/var [;/ength 1

var

length

the variable name.

(not available on all systems). length limits the
number of characters to be displayed. When length is
specified, it overrides any string window specified with
a [] command.

A single variable can be displayed with the / (slash) command and the
variable name. You are shown the curr~nt value and prompted with an
equals sign to change the value at will. Whatever you type before pressing
the RETURN key becomes the new value for the variable.

80 Pick BASIC: A Reference Guide

For example, to display the current value of the variable STRING, you
might type:

*fSTRING

The debugger responds with the current value of STRING and an equals
sign. If STRING contains the word "HELLO", you see:

*fSTRINGcRETURN> HELLO=_

The underscore represents your cursor position.

You can then enter a value for STRING and press the RETURN key. To
leave the value unchanged, press the RETURN key without reassigning the
variable.

On systems that support the length argument, you can specify the number
of characters to be printed by ending the command with ;length. For
example, suppose the string RECORD is exceedingly long, containing over
2000 characters. If you try to print the output of RECORD in the
debugger, the entire screen fills up and the beginning of the string is scrolled
off the screen. Since you are interested only in the beginning of the string,
limit the number of characters to be printed out by specifying the ;length
parameter.

*fRECORD;70

This limits output to the first 70 characters of the variable.

Displaying and Changing Dimensioned Arrays

You can also print the values of a single element or of all elements of a
dimensioned array (and optionally reassign them) with the / command.

farray [(row [,column I) I

array

row

column

the name of the dimensioned array.

the row number of the array element. If row is omitted,
all elements of the array are printed.

the column number of the array element. If array is
two-dimensional, column must be supplied if row is
supplied.

4: Using the Pick BASIC Debugger 81

The individual elements of a dimensioned array can be treated like simple
variables by referencing them with parentheses. For example, to display the
current value of element 2,3 of array NAME.ARRAY, you might type:

*/NAME.ARRAY(2,3)

The debugger responds with the current value of NAME.ARRA Y(2,3) and
an equals sign. If element 2,3 contains "HERB", you would see:

*/NAME.ARRAY(2,3)<RETURN> HERB=~

The underscore represents your cursor position.

You then have the option of filling in a value for NAME.ARRA Y(2,3) or
leaving it unchanged by pressing the RETURN key.

Alternatively, you can display and change all elements of a dimensioned
array by omitting the element reference. For example, to display the current
values of all elements of array NAME.ARRA Y, you can type:

*/NAME.ARRAY

You are prompted with the value of each element of the array as if each had
been specified individually. For example:

*/NAME.ARRAY<RETURN> NAME.ARRAY(1, 1)="JOEY"=
NAME.ARRAY(1 ,2)="FRED FLlNTS"= ~

String Windows ([])

The value of some string variables might be too long to be printed on a
single screenful. For these strings, use the [] command to specify a subset
of each string to be printed.

[start, length]

start

length

the starting column of the substring.

the length of the substring. If length is 0, turn off
string windowing.

If start and length are both omitted, string windowing is turned off.

For example, suppose the string RECORD contains over a hundred
addresses separated by attribute marks, totaling over 2000 characters. When
you try to print the output of RECORD in the debugger, the entire screen

82 Pick BASIC: A Reference Guide

fills up and the beginning of the string is scrolled off the screen. Since you
are interested only in characters towards the middle of the string, limit the
number of characters to be printed out with:

*[800,400]
*/RECORD

This limits output to 400 characters.

Accessing Source Code

Lines of source code can be printed with the L command. However, before
L can be used, the Z command is necessary to identify the source code. For
that reason the Z command should be one of the first commands used when
entering the debugger.

Identifying Source Code (Z)

The Z command is necessary for the debugger to locate the source code.

After entering Z and pressing the RET URN key, the prompt
"FILE/PROGNAME?" will appear. Supply the filename and program name
separated by a space (not a slash, as the prompt would suggest). For
example, if the source code is in item ID TESTIT in file BP, enter:

*Z<RETURN> FILE/PROGNAME BP TESTIT

If the debugger prompt (*) returns, the command was accepted. If the
command is illegal for any reason (misspelling, extraneous spaces, etc.), the
message "NO SOURCE" is printed. If you press the RETURN key without
entering a file and program name, prompting continues until you supply a
filename and program name, or until you press the BREAK key.

The Z command not only enables source code listing but also permits the
current source line to be printed at half-intensity each time the debugger is
re-entered, or when the ? or $ commands are used.

If the program calls an external subroutine, the Z command can be used
again to point to the source code of that subroutine. However, it does not
have to be reinvoked each time execution transfers between the program and
the subroutine.

4: Using the Pick BASIC Debugger 83

Displaying Source Code (L, $, ?)

Once the source code has been identified with the Z command, you can use
the L command to display the source.

L[n[-mJI*J

n shows line n in the source code.

n-m shows the specified range of lines in the source code.

* shows all lines of the source code.

For example, to print out lines 59 through 61:

*L59-61
059 INPUT NAME:
060 IF NAME == '''' THEN
061 GOTO EXIT

*
If the Z command is not used before the L command, the message "NO
SOURCE" is printed.

In addition to L, the $ and ? commands print out the current line number and
the corresponding source line.

The $ and? commands are functionally identical. For example, the current
line can be shown with:

*$<RETURN> CUST.ENTRY L 59 INPUT NAME: OBJECT VERIFIES

In the example, "CUST.ENTRY" is the name of the program, "L 59" refers
to line number 59, and "INPUT NAME:" is the statement on that line of
code.

The source line ("INPUT NAME:") is printed at half-intensity. If the Z
command is not used before the $ command, the source code is omitted.

Breakpoints and Tracing

A breakpoint is a condition that invokes the debugger whenever it is true.
A trace variable is a variable that is defined to be printed automatically when
a breakpoint is encountered. The Pick BASIC debugger can support up to
four breakpoints and up to six trace variables at a time. Each external

84 Pick BASIC: A Reference Guide

subroutine to the program has its own breakpoint and trace table,
independent of the one created for the program.

Establishing a Breakpoint (B)

Use the B command to define a \:Ireakpoint in a program.

B var op value [& var op value I

var the variable name to be tested. Alternatively, var can be the
symbol $, specifying that the line number should be tested.

op one of the following operators:

= equals

not equals

> greater than

< less than

value the value to test the variable by. Can be a numeric value, a
string, or another variable in the program. If the value is a
string, it must be enclosed in single or double quotes. A
backslash is not accepted as a delimiter.

& logical connector for two conditions.

Although spaces have been supplied above for clarity, spaces are not
accepted in the syntax for the B command. If the command is accepted, a
plus sign (+) is printed. If the breakpoint table is already full with its
maximum of four breakpoints, the message "TBL FULL" is printed.

For example, to enter the debugger whenever the variable COUNT is greater
than 10 and the variable FOUND has a logical value of false (0):

*BCOUNT>10&FOUND=O

Line numbers can be tested as well as variables. To specify that a line
number is being tested, use a dollar sign in place of a variable name. For
example,

*B$>75&$<95

causes the program to re-enter the debugger whenever the program is
executing a line between 75 and 95 (exclusively). Conditions comparing
line numbers can be combined with conditions comparing variables. For
example,

4: Using the Pick BASIC Debugger 85

*8$> 75&FOUND=O

After a breakpoint condition is established with B, the program can continue
execution with the G command or with a linefeed (CTRL-J). When a
breakpoint condition is encountered, the debugger is re-entered. The letter
"B" with the breakpoint number and the line number are printed, along with
any trace variables. Trace variables are discussed in a later section of this
chapter.

Deleting a Breakpoint (K)

A breakpoint can be deleted from the breakpoint table with the K command.

K [n]

n delete breakpoint n. If n is omitted, delete all breakpoint
conditions. n is determined by its position on the breakpoint
table.

If the command is accepted, a minus sign (-) is printed.

Defining a Trace Variable (T)

The T command defines a trace variable. It also turns the trace table on and
off.

T [var]

var trace the variable var. If var is omitted, toggle the trace table
on or off.

If the trace variable is accepted, a plus sign (+) appears. If the trace table
is already full with its maximum of six variables, the message "TBL
FULL" is printed.

If the T command is used without any arguments, it toggles the trace table
on and off. When T turns the trace table on, the word "ON" is printed; if it
turns it off, the word "OFF" is printed. When the trace table is turned off,
trace variables are not printed when a breakpoint is reached.

For example, to print the value of the variable COUNT every time a
breakpoint is reached, enter:

*TCQUNT

86 Pick BASIC: A Reference Guide

Deleting a Trace Variable (U)

You can delete a variable from the trace table with the U command.

U [var]

var delete variable var from the trace table. If var is omitted, all
variables are deleted.

If the command is accepted, a minus sign (-) is printed.

Displaying Breakpoints and Trace Variables (D)

You can display the breakpoint and trace tables with the D command. For
example:

*0
T1 COUNT
T2 CUST.ARRAY(5)
T3
T4
T5
T6
81 COUNT>10&FOUND=O
82 $> 75&FOUND=O
83
84

In the example, two trace variables and two breakpoints have been
established.

Execution Control

Once you've entered the debugger, you often need to start the program
executing again, to see what actually happens. You can "control" the
program by establishing either breakpoints or execution steps before
continuing execution, to specify that the debugger should be reinvoked when
a condition becomes true or when a. number of statements have been
executed.

4: Using the Pick BASIC Debugger 87

Continue Execution (G)

The G command continues program execution.

G [line 1

line the line number to continue execution at. If omitted, the
current line number is assumed.

Once the G command is used, the program continues execution until the
next breakpoint or, if an execution step has been specified, until the
specified number of lines have been executed. See the next section for more
information on execution steps.

A linefeed (CTRL-J) is a synonym for the G command with no arguments­
that is, it continues execution at the current line number. The linefeed has
the advantage that it does not need to be followed by the RETURN key in
order to be interpreted.

~ The G command should not be used if the operator has
entered the debugger because of a fatal run-time error.
Continuing execution after a fatal error may result in
corrupted data structures. In such an instance, the
operator should exit the debugger immediately with the
END or the OFF command.

Setting an Execution Step (E)

The E command establishes or removes an execution step. An execution
step is a number of lines to be executed before automatically reinvoking the
debugger:

E [lines 1

lines return control to the programmer every specified number of
lines. If lines is omitted or 0, tum off the previous E
command.

After enabling E, you can return to the program with the G command.
When the specified number of lines is executed, the program returns to the
debugger with the current line number preceded by "E". By using an
execution step of 1, the program can be stepped through: you can examine
every source line before it is executed, thus tracing the action as it occurs.

88 Pick BASIC: A Reference Guide

While an execution step is in effect with E, breakpoints are disabled. The
program will not stop at breakpoints until E has been disabled again.

Execution steps are global; that is, if the program enters a subroutine, the
step remains unchanged.

Ignoring Breakpoints (N)

The N command specifies that the next n breakpoints should be ignored.

N [n 1

n bypass n breakpoints before returning control to the
programmer. If n is omitted, bypass I breakpoint.

Although breakpoints are ignored by using the N command, the trace table
is still printed at each bypassed breakpoint if it is enabled. By using the N
command, you can monitor the sequence of execution and the values of trace
variables at each breakpoint without re-entering the debugger. You can
disable the trace table with the T command.

The N command is global; that is, if the program enters a subroutine, the
N command remains in effect.

Printing Output

Toggling Program Output (P)

The P command toggles printing of output from the program. If P is
toggled OFF, only output from the debugger is printed; the output from the
program execution is not shown. When output is disabled with the P
command, the word OFF is printed; when it is re-enabled, the word ON is
printed. The default setting is ON.

Toggling Line Printing (LP)

The LP command toggles printing of all output on the line printer. If LP is
toggled ON, output is directed to the printer. When line printing is enabled

4: Using the Pick BASIC Debugger 89

with the LP command, the word "ON" is printed; when it is disabled again,
the word "OFF" is printed. The default setting is "OFF."

The LP command is an equivalent to the PRINTER ON and PRINTER
OFF statements in Pick BASIC.

Close the Printer (PC)

The PC command spools the debugger printer output to the printer. The
PC command in the debugger is an equivalent of the PRINTER CLOSE
statement in Pick BASIC. All debugger output held for the printer is sent
to be printed immediately, rather than after the program is completed.

Return Stack

When the program transfers to an internal subroutine, the return address is
pushed onto the return stack. The return address is the line the program
transfers to at the end of the subroutine-that is, the line containing the
statement immediately following the GOSUB that called the subroutine. If
the subroutine calls another subroutine, the second address is pushed on top
of the first address on the return stack, and so on for each embedded
subroutine. When a RETURN statement is encountered, the top value on
the stack is popped and taken as the return address for that subroutine.

Displaying the Return Stack (S)

The S command generates a list of line numbers on the return stack. The
debugger may respond in one of the following ways:

90

= line# source-line The current subroutine will exit to line line#.
When a RETURN statement is encountered,
execution will transfer to line line#. (The
corresponding source line is printed in half­
intensity.)

= lineJ# source-line[= line2# source-line ...]
Multiple subroutines are in effect. The current
(top-level) subroutine will exit to line lineJ #.
The next level subroutine will exit to line

Pick BASIC: A Reference Guide

STK EMP

ILSTK

line2#, and so on. (Corresponding source lines
are printed in half-intensity.)

Nothing in stack.

Illegal stack. This usually signifies that an
external subroutine is being executed. (External
subroutines are not monitored by the return
stack.)

Popping the Return Stack (R)

The R command pops the return stack. The program returns from the
current subroutine as if a RETURN statement had been encountered at that
point.

4: Using the Pick BASIC Debugger 91

CHAPTER 5

Statement and Function
Reference

This chapter is the reference section for Pick BASIC. Each statement or
function entry includes a description of its purpose, an explanation of its
syntax, and at least one example of its use. All statements and functions
listed in the SMA/BASIC Language Specification published in April, 1986,
are included. Footnotes are used to indicate which statements and functions
are not included in the SMA standards.

Readers who are unfamiliar with Pick BASIC should read Chapters 2 and 3
before referring to this chapter.

Enter a remark in the source code. *
The ! statement begins a comment line in the program.

! anything

anything any text can be placed after a ! statement.

The ! statement can be used to begin a comment line in the source code. It
is functionally identical to the REM and * statements. Comment lines
should be used to thoroughly document source code.

* Not included in the SMA standards.

5: Statement and Function Reference 93

Comment lines can be inserted into the object code with the $* statement.
See the $* statement for more information.

Examples

A program might be documented as follows:

94

!

Get attribute definitions from DICT of inventory file

OPEN 'DICT', 'INV' TO INV.DICT ELSE PRINT 'CANT OPEN
"DICT INV"'; STOP

READV DESC.AMC FROM INV.DICT,2 ELSE
PRINT 'CANT READ "DESC" AnR'; STOP

END
READV OOH.AMC FROM 'QOH',2 ELSE

PRINT 'CANT READ "OOH" AnR'; STOP
END

Open data portion of inventory file

OPEN ", 'INV' TO INV.FILE ELSE PRINT 'CANNOT OPEN
"INV"'; STOP

Prompt for part number

100 PRINT

END

PRINT 'PART-NUMBER ':
INPUTPN
IF PN = " THEN PRINT '--DONE--'; STOP
READ INV.lTEM FROM INV.FILE,PN ELSE

PRINT 'CANT FIND THAT PART'; GOTO 100
END
DESC = INV.lTEM<DESC.AMC>
OOH = INV.ITEM<OOH.AMC>

Print description and quantity-on-hand

PRINT 'DESCRIPTION -': DESC
PRINT 'QTY-ON-HAND -': OOH
PRINT
GOT0100

Pick BASIC: A Reference Guide

$*

$* Place a comment into the object code. *
The $* statement allows a comment to be embedded directly into the
program's object code at compilation.

$* text

text the comment text, enclosed within string delimiters
(single quotes, double quotes, or backslashes).

The $* statement directs the compiler to write the quoted text directly into
the object code of the program. These comments are generally used to place
copyright information or version numbers into object code before it is
distributed.

Examples

To place the string "HELLO" directly into the object code of a program, the
code might read:

$* "HELLO"

In the following application, the $* statement is used to place a copyright
into an adventure game:

$* " DRAGONS -- VERSION 1.1 "
$*" COPYRIGHT 1990 N. WEST, NBM INC."
EQUATE TRUE TO 1, FALSE TO 0,

BEL TO CHAR(7)

* Not included in the SMA standards.

5: Statement and Function Reference 95

$CHAIN

$CHAIN: Transfer to another file item for source code. *
The $CHAIN statement allows source code to be read in from another file
item.

$CHAIN [filename] item-ID

filename

item-/D

the name of the file containing the item. If filename is
omitted, the current file is assumed.

the item ID of the item containing the source code

The $CHAIN statement directs the compiler to read source code from the
specified item and compile it as if it were a part of the current item. The
$CHAIN statement differs from the INCLUDE, $INCLUDE, and $INSERT
statements in that the compiler does not return to the current item after
compiling the source code in the remote item; any statements appearing
after the $CHAIN statement are ignored.

The $CHAIN statement was originally designed for programs with source
code larger than 32K. By using $CHAIN statements, a very long source
program can be-broken up and stored in several smaller items which are
$CHAINed together, as long as the compiled object code does not exceed the
maximum item size supported by your system.

Examples

To transfer compilation to source code in item ID PROG2 in file BP, the
code might read:

$CHAIN BP PROG2

In the following application, a very long program is broken up into three
different source file items, each one but the last ending with a $CHAIN
statement that calls the next.

The source file item CUST.ENTRY contains the following:

EQUATE TRUE TO 1, FALSE TO 0,
AM TO CHAR (254), VM TO CHAR (253),

* Not included in the SMA standards.

96 Pick BASIC: A Reference Guide

PRINT "PRINT REPORTS?"
$CHtIN CUST.ENTRY2

$CHAIN

At the end10f CUST.ENTRY, source file item CUST.ENTRY2 is called
with a $CHAIN statement. CUST.ENTRY2 contains:

INPUT ANSWER

FOUND = FALSE
FOR I = 1 TO NO.OF.ELTS UNTIL FOUND

IF CUST.ARRA Y (I) < 1. 3 > = NAME THEN
$CHAIN CUST.ENTRY3

CUST.ENTRY2, in tum, calls CUST.ENTRY3, which reads:

FOUND = TRUE
END

NEXT I

Note in the example that a FOR loop and an IF construct are broken over
two file items.

$INCLUDE: Read in source code from another file item.*

The $INCLUDE statement allows source code to be read in from another file
item.

$INCLUDE [filename 1 item-IO

filename the name of the file containing the item. If filename is
omitted, the current file is assumed.

item-/D the item ID of the item containing the source code.

The $INCLUDE and $INSERT statements both direct the compiler to read
in source oode from the specified file item and compile it as if it were
written in the current item. The $INSERT statement is identical to the
$INCLUDE statement.

* The SMA standards form of this command is INCLUDE.

5: Statement and Function Reference 97

$INCLUDE

The $INCLUDE statement differs from the $CHAIN statement in that the
compiler returns to the main item and continues compiling with the
statement following the $INCLUDE.

The $INCLUDE statement is particularly useful for reading in items
containing COMMON and EQUATE statements, or any statements which a
programmer might want to be consilitent among several different programs.
Be careful, however, of naming conflicts among different file items.

$INCLUDE statements can be nested; that is, a program can $INCLUDE a
file item which $INCLUDEs another file item. However, the total object
code when compiled cannot exceed the maximum item size supported by
your system.

If the source code read in through an $INCLUDE statement generates a run­
time error message, the error message will display only the number of the
line which contains the $INCLUDE statement. The line numbers from the
external file item are not kept in the object code.

Examples

To read in the source code written in item ID SETUP in file BP, the code
might read:

$INCLUDE BP SETUP

In the following application, the $INCLUDE statement is used at the
beginning of a program to read in common variables, equated constants, and
the part of the program which opens the file.

$INCLUDE STARTUP
PRINT "ENTER THE CUSTOMER ID : ":
INPUTID
MATREAD PHONE.ARRAY FROM CUSTFILE, ID ELSE

PRINT ·CANNOT READ RECORD!"
STOP

END

The file item STARTUP contains the text:

98

COMMON PHONE.ARRAY(10), PHONEREC
EQUATE TRUE TO 1, FALSE TO 0, AM TO CHAR(254)
PROMPT""
OPEN "CUSTOMERS" TO CUSTFILE ELSE

ABORT 201, "CUSTOMERS"
END

Pick BASIC: A Reference Guide

$INSERT

$INSERT: R ad in source code from another file item. *
The $INS RT statement allows source code to be read in from another file
item.

$INSERT [filename 1 item-/D

filename the name of the file containing the item. If filename is
omitted, the current file is assumed.

item-/D the item ID of the item containing the source code.

The $INSERT and $INCLUDE statements both direct the compiler to read
in source code from the specified file item and compile it as if it were
written directly in the current item. The $INCLUDE statement is identical
to the $INSERT statement.

The $INSERT statement differs from the $CHAIN statement in that the
compiler returns to the main item and continues compiling with the
statement following the $INSERT.

The $INSERT statement is particularly useful for reading in items
containing COMMON and EQUATE statements, or any statements which a
programmer might want to be consistent among several different programs.
Be careful, however, of naming conflicts among different file items.

$INSERT statements can be nested; that is, a program can $INSERT a file
item which $INSERTs another file item. However, the total object code
when compiled cannot exceed the maximum item size supported by your
system.

If the source code read in through an $INSERT statement generates a run­
time error message, the error message will display only the number of the
line which contains the $INSERT statement. The line numbers from the
external file item are not kept in the object code.

Exampl!es

To read in the source code written in the item SETUP in file BP, the code
might read:

$INSERT BP SETUP

* Not includ~d in the SMA standards.

5: Statement and Function Reference 99

$INSERT

In the following application, the $INSERT statement is used at the
beginning of a program to read in common variables, equated constants, and
the part of the program which opens the file.

$INSERT STARTUP
PRINT "ENTER THE CUSTOMER ID:":
INPUTID
MATREAD PHONE.ARRAY FROM CUSTFILE,ID ELSE

PRINT "CANNOT READ RECORD!"
STOP

END

The file item STARTUP contains the text:

COMMON PHONE.ARRAY(10), PHONEREC
EQUATE TRUE TO 1, FALSE TO 0, AM TO CHAR(254)
PROMPT""
OPEN "CUSTOMERS" TO CUSTFILE ELSE

ABORT 201, "CUSTOMERS"
END

* Enter a remark in the source code. *
The * statement begins a comment line in the program.

* anything

anything any text can be placed after a * statement.

The * statement can be used to begin a comment line in the source code. It
is functionally identical to the REM and ! statements. Comment lines
should be used to thoroughly document source code.

Comment lines can be inserted into the object code with the $* statement.
See the $* statement for more information.

* Not included in the SMA standards.

100 Pick BASIC: A Reference Guide

Examples

A program might be documented as follows:
.*** •• ***** •••• ******************.******.**.

******* THIS IS A PROGRAM FOR ...
•• ****.****** ••••• ******************** ••••••

----- MAl N * •••• **** * ** ************ * ******.

LOOP UNTIL ...
GOSUB ROUTINE

REPEAT
STOP

****SUBROUTINES***********************
ROUTINE:

Assign a value to a variable.

The assignment statement assigns a value to a variable.

var= expr

var the variable whose value is to be assigned.

*

expr an expression evaluating to the value assigned to var.

The direct assignment statement (=) assigns the value of expr to the
variable var. Some Pick implementations also support some or all of the
following special forms of the assignment statement. These have the
general fonn var op= expr, which is equivalent to var = var op expr. They
are not included in the SMA standards.

var = expr var takes the current value of expr.

var += expr var becomes var plus the current value of expr.

var.....;:: expr var becomes var minus the current value of expr.

i
var *1 expr var becomes var multiplied by the current value of expr.

I var f=t. expr var becomes var divided by the current value of expr.

5: Statement and Function Reference 101

=

var := expr var becomes var concatenated with the current value of
expr.

Examples

If the SURNAME were to be appended to the variable NAME, the code
might read:

NAME: = SURNAME

In the following application, assignment statements are used to assign to
the variable PROFIT the value of COST minus PRICE, and then to
subtract from PROFIT the value of the overhead allotted to that sale. An
external subroutine CALC.OVERHEAD assigns the value OVERHEAD
based on the value of PROFIT.

PRINT "ENTER COST OF ITEM: "
INPUT COST
PRINT "ENTER PRICE AT WHICH ITEM WAS SOLD: "
INPUT PRICE
PROFIT = COST - PRICE
CALL CALC.OVERHEAD (PROFIT,OVERHEAD)
PROFIT - = OVERHEAD
PRINT "WITH OVERHEAD TAKEN INTO ACCOUNT, THE PROFIT IS:"
PRINT PROFIT

@(): Screen Control Function.

The @ function generates the screen format control sequences for a terminal.

102

@(co/,row)
@(-code)

col

row

-code

an expression to be taken as the column (x-coordinate)
of the position desired.

an expression to be taken as the row (y-coordinate) of
the position desired.

an expression to be taken as a numeric code signifying a
specific effect, such as clearing the screen. Codes are
listed below.

Pick BASIC: A Reference Guide

@()

All terminals have built-in internal command sequences which move the
cursor to a particular position, clear the screen, place text in reverse video,
etc. The @ function can be used to return the proper command sequence for
performing many terminal control functions. When the @ function is used
in a statement that produces terminal output (PRINT, CRT, DISPLAY, or
INPUT), the command sequence is sent to the terminal and performs the
appropriate action.

There are two forms of the @ function.

The first form, @(col,row), returns the command sequence for
moving to a specified column and row. Although both expressions
should be within the ranges of your particular display screen (usually
either 79 or 131 columns by 23 rows, with 0,0 as the upper left
comer of the screen), this is not enforced. If row is omitted, the
current row is assumed.

The other form of the @ function, @(-code), uses special codes, each
preceded by a minus sign. Table 5-1 lists some of the codes available
on most Pick implementations. Only the first four codes are included
in the SMA standards.

Table 5-1. Commonly Used @ Function Codes.

Code

@(-l)

@(-2)

@(-3)

@(-4)

@(-5)

@(-6)

@(-7)

@(-$)

@H)

@(-1O)

Description

Clear screen and position cursor at "home" (upper left
corner).

Position cursor at "home" (upper left corner). Same
as @(O,O).

Clear from cursor position to end of the screen.

Clear from cursor position to end of current line.

Begin blinking field.

End blinking field.

Begin protected field. Data in this field cannot be
overwritten.

End protected field.

Backspace one character.

Move cursor up one line.

Other codes may vary from system to system, although the codes listed in
Table 5-2 are found on many systems.

5: Statement and Function Reference 103

@()

Table 5-2. Some Additional @ Function Codes.

Code Description

@(-ll) Begin protected field.

@(-12) End protected field.

@(-13) Begin reverse video mode.

@(-14) End reverse video mode.

@(-15) Begin underline field.

@(-16) End underline field.

The @ function generates the command string for the terminal being used at
run time, according to the current terminal type defined by the TERM verb.
The most important thing to grasp about the @ function is that all it does
is generate a string of control characters which trigger a unique response
when they are sent to the screen.

The @ sign is used with the INPUT statement to prompt for input at a
specified position on the screen. The INPUT@ statement, however, does
not provide for any of the screen control codes listed in Tables 5-1 and 5-2,
only for moving the cursor. If the formatting properties of the INPUT @
statement are not taken advantage of, the same effect might be achieved by
preceding a standard INPUT statement with a PRINT statement which uses
the@ function directly.

The CALL and ENTER statements also recognize the @ sign in their
syntax lines, to signify that the name of the program to be called or entered
is kept in a variable. This use of the @ symbol, however, should not be
confused with its use in the @ function.

Examples

To clear the screen for a program, the code would read:

PRINT@(-1)

To print the words "QUIT?" at the bottom of the screen, the code would
read:

PRINT @(O,22) : "QUIT?"

In the following application the @ function is used in a PRINT statement
to clear the screen and prompt the user at position (30,10) on the screen. If
the user supplies an invalid answer, an error message appears on the bottom

104 Pick BASIC: A Reference Guide

@()

of the screen in blinking mode, and the previous invalid answer is erased.
The operator is then prompted again until a valid answer is provided.

PRINT@(-1):
CLEAR.ANSWER = @(30,10) : @(-4)
PRINT @(10, 10) : " ENTER A NUMBER: " : @(30,10):
LOOP

INPUT NUMBER :
IF NUM(NUMBER) THEN

VALID = 1
GOSUB COMPUTE

END ELSE
VALID = 0
PRINT @(0,22) : @(-5) : " NON-NUMERIC INPUT.":
PRINT "ENTER A NUMBER" : @(-6) : @(-4):
PRINT CLEAR.ANSWER :

END
UNTIL VALID DO REPEAT

The following techniques are used in the application:

• All PRINT and INPUT statements are followed by a colon to
suppress the automatic carriage return and line feed. This provides
more control over the screen: in auto-scroll mode, a line feed on
line 23 causes all lines above the cursor position to scroll up one
line.

• The sequence to clear the previous answer is placed in a variable
CLEAR. ANSWER, which is later sent to the screen with the PRINT
statement.

[]= : Assign a substring. *
The substring assignment statement replaces a part of a string.

string [start,length] = expr

string the string variable to be changed.

[... J the square brackets are part of the syntax and must be
typed.

start an expression evaluating to the starting character
position.

* Not included in the SMA standards.

5: Statement and Function Reference 105

[]=

length

expr

an expression evaluating to the ending character
position.

an expression evaluating to the replacement string.

The substring assignment statement allows any part of a string to have
another value assigned to it. The behavior of the substring assignment is
dependent on the values of start and length. The rules are as follows:

106

start >= 0 If start is nonnegative, it is taken as the starting
character position of the string from left to right. If
start evaluates to 0, the starting character position is I.
For example, if STRING is "HI THERE", then

start < 0

STRING [2,2] = " OW "

produces "HOWTHERE".

If start evaluates to a number greater than the length of
the string, then the replacement string is appended at the
end.

If start is negative, it is taken as the starting character
position from right to left. For example, if STRING is
"HI THERE", then

STRING [-2,2] = " OW "

produces "HI THEOW".

If the absolute value of start is greater than the length of
the string, its behavior is the same as if start were O.

length >= 0 If length is nonnegative, it is taken as the length of the
string to be replaced. Note that this length need not
correspond with the length of the replacement string.

If length evaluates to zero, then the replacement string
should be inserted without replacing any characters in
the string. (If start is negative, it is inserted to the left
of that position, otherwise it is inserted to the right.)

length < 0 If length is negative, it is taken as the ending character
position of the string portion to be replaced, counting
from right to left. For example, if STRING is "HI
THERE", then:

STRING [2, -2] = "OW"

Pick BASIC: A Reference Guide

produces "HOWE".

Similarly,

STRING [-2, -2] = "OW"

produces "HI THERWE".

[]=

If the positions specified by start and length overlap, characters are repeated
in the resulting string. For example, if STRING is "HI THERE", then:

STRING[7,-7] = "OW"

produces:

"HI THEOW THERE"

Similarly,

STRING[7,-7] = "OW"

also produces:

"HI THEOW THERE"

With the statement:

DIGITS[n , m] = "XX"

and the variable DIGITS containing "0123456789", the behavior of the
substring assignment statement can be summarized by the following table:

n>O n=O

m >0 Starting at position n, Same as n = I: replace
replace the next m the first n characters.
characters. DIGITS[O.4]="XX"

DIGITS[3.4]="XX" results in:
results in: DIGITS="XX567890"

DIGITS="12XX7890"

m=O Insert the replacement Same as n =1:
string at position n, insert the replacement
with no characters string at the beginning
deleted. of the original string,

DIG ITS[3,O]="XX" with no characters
deleted.

nrsults in: .
D,GITS="12XX34567890"

DIGITS[O,O]="xx"

I results in:

DIGITS="XX 1234567890"

5: Statement and Function Reference
I

n< 0

Starting at the nth
position from the end
of the string, replace
the next m characters.

DIGITS[~.4]="xx"

results in:

DIGITS="1234XX90"

Starting at the nth
position from the end
of the string, insert
the replacement string
with no characters
deleted.

DIGITS[~,O]="XX"

results in:

DIGITS="12345XX67890"

107

[]=

n>O n=O n< 0

m <0 Replace all characters Same as n = 1: replace Starting at the nth
from the nth position all characters from the position from the end
from the beginning of first position up to the of the string, replace
the string up to the nth mth position from the all characters up to the
position from the end end of the string. mth position from the
of the string. DIGITS[O,-41="XX" end of the string.

DIGITS[3,-41="XX" results in: DIGITS[--B.4]="XX"

results in: DIGITS="XX890" results in:

DIGITS="12XX890" DIGITS="1234XX890"

Example

In the following application, a full name in the string variable NAME is
reduced to the first initial and last name. (EQUATE statements are used to
differentiate a blank space from the null string for readability.)

EQUATE BLANK TO" n, NIL TO"·
NO. OF WORDS = DCOUNT (NAME, BLANK)
SURNAME = FIELD (NAME, BLANK, NO. OF WORDS)
POSITION = COL 1 () -1
NAME [2, POSITION] = BLANK

ABORT: Abort a program and return to TeL.

The ABORT statement terminates the current program and returns the user
to the TCL prompt, regardless of the environment in which the program
was executed.

ABORT [errmsg [,parameter1, parameter2, ... 1]

errmsg an integer corresponding to an error message from the
system message file (ERRMSG). The message will be
output upon termination of the program.

parameter 1, parameter2, ...
parameters to be passed to the error message.

The ABORT statement differs from the STOP statement in that a STOP
statement returns control to the calling environment (often a proc), whereas
ABORT terminates the calling environment (including procs and programs
within the current EXECUTE level) as well as the Pick BASIC program.

108 Pick BASIC: A Reference Guide

ABORT

In general, the ABORT statement is used for abnormal terminations of a
program, arid the STOP statement is used for normal terminations.

Example

The following example demonstrates how the ABORT statement can be
used to terminate a program on failure to open a file.

OPEN 'CUSTOMERS' TO CUSTFILE ELSE
ABORT 201, 'CUSTOMERS'

END

If the file CUSTOMERS is not found, the user receives the message:

[201] 'CUSTOMERS' IS NOT A FILE NAME

and returns directly to the TCL prompt.

ABS(): Return the absolute value of an expression.

The ABS function returns the absolute value of the given expression.

ABS(expr)

expr an expression evaluating to a numeric value.

The absolute value of any expression is defined as its positive value, that is,
the difference between itself and O. The absolute value of any positive
expression is itself, and the absolute value of a negative expression is
calculated by reversing the sign-that is, the absolute value of -6 is 6.

Examples

If the varia~le NUMBER contains "-1.732", then

ABS~NUMBER)

returns" 1. 7'32".

In the following application the ABS function is used to discover an error in
bookkeeping. Note that in printing the discrepancy a format expression
("2,$") is u$ed to make the data more readable.

!

5: Statement and Function Reference 109

ABS()

DIFF = ABS(PRICE - COST - PROFIT)
IFDIFFTHEN

PRINT "ERROR OF ": DIFF " 2,$ " : ". PLEASE CHECK. "
END

If the PRICE has been established as 9.99, the COST is 4.25, and the
estimated PROFIT has been set at 5.75, the resulting output will be:

ERROR OF $0.01. PLEASE CHECK.

ALPHA(): Test for an all-alphabetic string. *

The logical function ALPHA evaluates an expression to determine if it is a
string containing only alphabetic characters.

ALPHA(expr)

expr the string expression to be tested.

The ALPHA function determines whether the expression is an alphabetic or
nonalphabetic string. If the expression contains the characters "A" through
"z" or "a" through "z" (ASCII 65 - 90,97 - 122), it evaluates to true and a
value of 1 is returned. If the expression contains any other character (such
as numeric or special characters), it evaluates to false and a value of ° is
returned.

Examples

If the variable NAME contains "HENRY FRENKL", then:

ALPHA(NAME)

returns "I". However, if NAME contains "HENRY FRENKL 4th", the
ALPHA function returns 0.

In the following application, airline reservations require the traveler's
starting point and final destination. The travel agent must enter these with
the three-letter code assigned to airports.

PROMPT""
PRINT@(-1)
PRINT@(2,2) : "ENTER FLIGHT DATE: ":
INPUT@(30,2) DATE "D"

* Not included in the SMA standards.

110 Pick BASIC: A Reference Guide

ALPHA()

i

PRI~T @(2,4) : "ENTER FLIGHT NUMBER: ":
INPUT @(30,4) FL TNO,3 "0"
PRINT @(2,6) : "STARTING POINT: ":
VALID = 0
LOOP

INPUT @(30,6) START,3
IF NOT (ALPHA(START)) THEN

INPUTERR "PLEASE ENTER 3-LETTER AIRPORT CODE."
END ELSE

VALID = 1
END

UNTIL VALID DO REPEAT
PRINT @(2,8) : "FINAL DESTINATION: ":
VALID = 0
LOOP

INPUT @(30,8) DEST,3
IF NOT(ALPHA(DEST)) THEN

INPUTERR "PLEASE ENTER 3-LETTER AIRPORT CODE."
END ELSE

VALID = 1
END

UNTIL VALID DO REPEAT

ASCII(): Convert a string from EBCDIC to ASCII code.

The ASCII function converts a string in EBCDIC code into ASCII code.

ASCII(expr)

expr an expression evaluating to the string to be converted.

The ASCII function converts each character of the given expression from its
EBCDIC representation value to its ASCII representation value. It is the
inverse to the EBCDIC function.

The ASCII function does not convert a character to its numeric ASCII
value, or vice versa. Use the SEQ and CHAR functions for this.

Appendix C provides a full listing of ASCII codes.

5: Statem~nt and Function Reference 111

i

ASCII()

Example

In the following application, data is read from a tape which was written in
EBCDIC code. The ASCII function converts it into ASCII code.

READT STRING ELSE

END
STRING = ASCII(STRING)

BREAK: Control access to the debugger.

The BREAK statement allows the Break Inhibit Counter of a program to be
incremented or decremented, thus controlling access to the debugger.

BREAK[KEY10NIOFFle~r

ON decrement the Break Inhibit Counter by 1.

OFF increment the Break Inhibit Counter by 1.

expr an expression evaluating to true or false. If true, the
BREAK key is enabled; if false, the BREAK key is
disabled.

While a program is being executed, pressing the BREAK key will normally
transfer control from the program to the debugger. The BREAK statement
gives the programmer control over this feature.

The BREAK statement does not directly toggle the BREAK feature on and
off, but increments and decrements the Break Inhibit Counter. The counter
is usually set to 0, meaning that the BREAK feature is enabled. Each
BREAK OFF statement increments the counter by 1, and each BREAK ON
statement decrements the counter by 1. When the counter is set to any
number other than 0, the BREAK feature is off. Thus if two BREAK OFF
statements have been used in a program, the counter is set to 2, and two
BREAK ON statements will be necessary to return the counter to ° and re­
enable the BREAK key.

Using a counter instead of directly turning the BREAK key on and off
simplifies situations where a program calls another program or external
subroutine. By using a counter, it is ensured that the status of the BREAK
key in the calling program is maintained. This, of course, is dependent on

112 Pick BASIC: A Reference Guide

BREAK

each BREAK OFF statement being paired with a BREAK ON statement
before the end of the program or subroutine.

If the BREAK key is enabled (ON) and the BREAK key is pressed during the
execution of a SLEEP or RQM statement, the debugger is entered. When
"G" is pressed at the debugger prompt, the program resumes at the next
statement after the SLEEP statement. If the BREAK key is disabled (OFF)
and BREAK is pressed, it terminates the sleep without entering the debugger,
and the program resumes at the next statement after SLEEP or RQM.

The debugger can also be entered through a run-time error or by
encountering a DEBUG statement. See Chapter 4 for more information on
the Pick BASIC debugger.

Examples

To tum the break feature off for a program, the code would read:

BREAKOFF

At the end of the program, the break feature can be reinstated with:

BREAK ON

In the following application, a quiz program gives 60 seconds for the user to
answer a question. To answer the question before the time is up, the user is
allowed to press the BREAK key. A BREAK OFF statement is used to tum
off the debugging feature of the BREAK key during the sleep, so that
pressing the BREAK key will interrupt the sleep but not enter the debugger.
The INPUTIF statement is used after the sleep to examine the type-ahead
and determine if a response was entered.

ITEM = RND(99)
READ QUESTION FROM QUESTFILE,ITEM ELSE

PRINT "ERROR IN READING" : ITEM
STOP

END
PRINT @(0,23) : "ENTER ANSWER, PRESS RETURN AND BREAK." :
PRINT QUESTION <1> :
BREAKOFF
SLEEP 60
BREAK ON
INPUTIF ANSWER THEN

GOSUB EVAL
END ELSE

PRINT@(-1) : "NOT ANSWERED IN TIME. -3 POINTS."
POINTS-=3

END

5: Statement and Function Reference 113

CALL

CALL: Call an external subroutine.

The CALL statement transfers control from a main program to a cataloged
external subroutine.

CALL name [(expr1, expr2, expr3, ...) 1
CALL @var [(expr1, expr2, expr3, ...) 1

name

expr ...

@var

is the name of the subroutine to be called.

values to be passed to the cataloged subroutine. If one
of the values is an array variable, it must be preceded by
the MAT keyword and should be dimensioned in both
the main program and the subroutine.

var is a variable which has been assigned the item ID of
the cataloged subroutine to be entered.

The CALL statement can be used to enter a cataloged external subroutine.
An external subroutine is a subroutine that is compiled and cataloged
separately from the programs that call it. When the final RETURN
statement of the subroutine is encountered, program control is returned to
the original program at the statement following the CALL statement.

The subroutine to which the CALL statement branches must be cataloged,
and the first line of the subroutine must contain the SUBROUTINE
statement. * Control will be returned to the main program when a
RETURN is encountered in the subroutine which does not correspond to a
previous GOSUB within the same external subroutine. If there is no
RETURN statement, control will not return to the main program.

Each of the parameters listed in the CALL syntax line is passed into the
corresponding variable list on the SUBROUTINE syntax line. Other than
their positions on the CALL and SUBROUTINE syntax lines, there is no
correspondence between variable names in the calling program and
subroutine.

An alternative way of passing variables between programs and subroutines
is by using COMMON statements in both program and subroutine. See the
COMMON statement for more information.

* Some implementations allow comment lines before the SUBROUTINE statement.

114 Pick BASIC: A Reference Guide

CALL

Passing Arrays

When arra~s are being passed from the main program to a subroutine, the
array name must be preceded by the MAT keyword and there must be a
one-to-one correspondence to the elements being passed. For example, to
pass the 3 by 4 matrix MATRIX, enter:

CALL SUBR(MAT MATRIX)

The MATRIX array must be previously dimensioned in the program with
the DIM statement.

In the subroutine SUBR, the corresponding dimensioned array must also be
dimensioned. Note, however, that the corresponding arrays do not need to
have the same dimensions, as long as they have the same number of
elements. * The first two lines of the subroutine SUBR might read:

SUBROUTINE SUBR(MAT ARRAY1)
DIM ARRAY1 (6,2)

If the 3 by 4 matrix MATRIX in the main program contains:

I 2 3 4

RED BLUE GREEN YELLOW

A B C D

then when it is passed to ARRA YI, the 6 by 2 matrix will contain:

I 2

3 4

RED BLUE

GREEN YELLOW

A B

C D

* This is not true on all systems. On Prime INFORMA nON, for example, the
dimensions of an array cannot be changed between the calling program and a
subroutine.

5: Statement and Function Reference 115

CALL

Example

To call the subroutine ADDTHEM, passing variables A, B, and C, the
calling line in the main program would read:

CALL ADDTHEM(A, B, C)

The first line of the source code for ADDTHEM might then read:

SUBROUTINE ADDTHEM(X, Y, Z)

Variable A is passed to variable X, B is passed to Y, and C is passed to Z.
When the subroutine has finished, these values are passed in the opposite
direction.

CASE: Perform conditional execution.

The CASE construct performs a conditional selection of a sequence of
statements.

BEGIN CASE
CASE expr

statements
CASE expr

statements

END CASE

expr an expression to be evaluated for its logical value.

statement statements to be executed if the previous expr had been
tested to be logically true.

The CASE construct evaluates a series of conditions until one is true and
executes a set of statements accordingly. The expressions in the CASE
statements are evaluated sequentially for their logical value until a value of
true is encountered. When an expression evaluates to true, the statements
between the CASE statement and the next CASE statement are executed,
and all subsequent CASE statements are skipped. Execution continues with
the next statement following the END CASE statement.

116 Pick BASIC: A Reference Guide

CASE

If none of ~he expressions evaluate to true, no action is performed, and
program execution continues with the statement after the END CASE

I

statement.

The CASE statement can usually replace multiple nested IF constructs: it
is much more readable and easier to use.

Example

To test a variable NUMBER for positive or negative value, the source code
might read:

BEGIN CASE
CASE NUMBER> a

PRINT "POSITIVE"
CASE NUMBER < a

PRINT "NEGATIVE"
CASE 1

PRINT "ZERO"
END CASE

Note that the third and last condition reads "CASE I" instead of "CASE
NUMBER = 0". In this situation the two conditions are equivalent since
the last condition would only be tested if the first two failed. "CASE I" is
often used as the last condition of a CASE statement, as a catch-all
condition.

CHAIN: End program and execute a TeL command.

The CHAIN statement terminates execution of a program and executes a
TCL command.

CHAIN command-expr

command-expr any command to be passed to TCL.

Like the EXECUTE statement, the CHAIN statement executes a TCL
command. The CHAIN statement differs from the EXECUTE statement,
however, ip that it does not support any of EXECUTE's features (such as
capturing qutput or error messages), and it does not return to the program,
but returns Idirectly to the environment which called the program.

I

If the CHAIN statement is used to execute another program, parameters
cannot be directly passed to the second program. However, if the I option

5: Statement and Function Reference 117

I

CHAIN

(which suppresses initialization of all values) is used with the RUN verb,
the COMMON area can be used to pass parameters from one program to the
next. See the COMMON statement for more information.

I!P" SMA recommends that the I option not be used with
the RUN verb. The I option is available to support old
code (pre-EXECUTE statement). Any corruption of the
workspace area will cause problems if you try to use the
I option.

The data stack can be used to supply input which the TCL command might
request. See the DATA statement for more information.

Examples

To end a program by running another program, CONCLUDE, the code
might read:

CHAIN "RUN BP CONCLUDE"

CHAR(): Return the ASCII character of a decimal value.

The CHAR function returns the character with the given ASCII decimal
code.

CHAR(expr)

expr an expression evaluating to a numeric value.

The CHAR function converts a decimal value to its corresponding ASCII
character. It is particularly useful for accessing characters like attribute
marks (CHAR(254» and error bells (CHAR(7». The CHAR function is
commonly used in EQUATE statements, as demonstrated in the example
below.

The SEQ function is the inverse of the CHAR function, producing the
ASCII value of a given character. See the SEQ function for more
information.

See Appendix C for ASCII character codes.

118 Pick BASIC: A Reference Guide

CHAR()

Example

To send an error bell to the screen, the code might read:

CRTCHAR(7)

CLEAR: Initialize all variables to zero.

The CLEAR statement assigns a value of 0 to all variables throughout the
program.

CLEAR

The CLEAR statement is generally used at the beginning of a program to
set previously assigned and unassigned values of all variables to zero. * This
procedure avoids run-time errors for unassigned variables. If you use the
CLEAR statement later in the program, any values that have already been
assigned to variables (including array variables) are lost.

The CLEAR statement cannot be used to initialize only selected variables.
If it is used, all variables in the program are initialized to O.

~ The CLEAR statement is often used to prevent the run­
time warning message which normally ensues when an
unassigned variable is used. This practice, however, is
not always desirable, since the unassigned variable
message can be useful for detecting programming errors
(such as misspelled variable names).

Prime INFORMATION and uniVerse have a CLEAR COMMON statement
that assigns a value of zero to all variables previously named in the
common area.

Example

In the following application the CLEAR statement is used at the beginning
of the program to initialize variables. Thus, when the previously unused
variable STOPNOW is used as the loop control, no error message ensues.

* On some Pick systems, the values of all variables are set to null rather than zero.

5: Statement and Function Reference 119

CLEAR

CLEAR

LOOP UNTIL STOPNOW DO

PRINT "00 YOU WANT TO STOP (Y OR N)" :
INPUT ANSWER, 1
IF ANSWER = "Y" THEN STOPNOW = 1

REPEAT

CLEARFILE: Clear the data from a file.

The CLEARFILE statement deletes all items in a previously opened file.
This statement does not delete the file itself, but it clears out the data from
it completely.

CLEARFI LE [filevar 1

fi/evar the file variable to which the file had been opened. If
filevar is not specified, the default file variable is used,
which is the last file opened without an assigned file
variable.

[g' Be cautious when using CLEARFILE. If the dictionary
of a file is open to fi/evar, on some systems
CLEARFILE deletes the entire contents of the
dictionary, including the data file D-pointer!

Examples

To clear the data from a file opened to DATAFILE, the code might read:

CLEARFILE DATAFILE

In the following application, the file TRANS.LOGS contains logs for all
transactions during the week. The program fragment shown clears all logs
at the request of the operator.

120

OPEN" TRANS.LOGS " TO LOGFILE ELSE
ABORT 201, " PRINTLOG "

END
PRINT" EMPTY ALL TRANSACTION LOGS (Y OR N) " :

Pick BASIC: A Reference Guide

INPUT ANSWER
IF ANSWER = " Y " THEN

CLEARFILE LOGFILE
PRINT" ALL TRANSACTION LOGS EMPTIED. "

END ELSE
PRINT" TRANSACTION LOGS UNTOUCHED. "

END

COLl(): Return preceding column position.

CLEARFILE

The COLI function returns the column position of the character
immediately preceding the substring returned by the most recent FIELD
function.

COL1()

After the execution of a FIELD function, the CaLl function returns the
column position immediately preceding the selected substring. Although
the COLI function takes no arguments, the parentheses are required to
identify it as a function.

If no FIELD function precedes the CaLl function, a value of zero is
returned. If the delimiter expression of the FIELD function is null or if the
string is not found, the CaLl function returns a zero value.

The CaLl, COL2, and FIELD functions can be used to perform array
processing for strings with delimiters other than the attribute mark
(CHAR(254)), value mark (CHAR(253)), and subvalue mark (CHAR(252)).

Examples

To determine the column position before the third word in a string
STRING, the code might read:

WORD = FIELD(STRING, " ", 3)
POS = COL1()

If STRING contains "IT WAS TWENTY YEARS AGO TODAY", WORD
will contain "TWENTY" and pas will contain "7". With this infornlation,
the string can be cut off after the second word with:

STRING = STRING[1, POS I
and STRING will contain, " IT WAS ".

5: Statement and Function Reference 121

COLl()

In the following application, the NAMES string contains a list of names
separated by commas. To replace a name, the COLI function is necessary
to determine where the replacement should start.

CURR.NAME = FIELD(NAMES, ",", NAME.NBR)
IF NEW.NAME # "" THEN

NAMES = NAMES [1 ,COL 1 OJ : NEW.NAME : NAMES [COL2 0,9999]
END

COL2(): Return following column position.

The COL2 function returns the column position of the character
immediately after the substring returned by the most recent FIELD function.

COL2()

After the execution of a FIELD function, the COL2 function returns the
column position immediately following the selected substring. Although
the COL2 function takes no arguments, the parentheses are required to
identify it as a function.

If no FIELD function precedes the COL2 function, a value of zero is
returned. If the delimiter expression of the FIELD function is null or if the
string is not found, the COL2 function returns a zero value.

The COL2, COLl, and FIELD functions can be used to perform array
processing for strings with delimiters other than the attribute mark
(CHAR(254», value mark (CHAR(253», and subvalue mark (CHAR(252».

Example

To determine the column position after the third word in a string STRING,
the code might read:

WORD = FIELD(STRING, " ", 3)
POS =COL2()

If STRING contains "IT WAS TWENTY YEARS AGO TODAY", WORD
will contain "TWENTY" and POS will contain "14". With this
information the string can be cut off after the third word with:

STRING = STRING[1, P08-1]

and STRING will contain, "IT WAS TWENTY".

122 Pick BASIC: A Reference Guide

COMMON

COMMON: Assign space allocation sequence for variables.

The COMMON statement is used to determine the sequence in which
specified variables are allocated space. It allows programs and subroutines
to access the same variables.

COM[MONJ var1 [,var2, ... J

var ... the names of the variables to be shared. val' can be a
simple variable, a file variable, or an array variable.

The COMMON statement provides a storage area for the specified variables
which is accessible by other programs and by external subroutines. The
variables can be defined using different names in separate programs and
subroutines, but they must be defined in the same exact order. The
COMMON statement must precede any use of the variables that it names
during compilation.

By using a COMMON statement, the sequence in which they are allocated
space is explicitly set, and other programs using the same COMMON area
can access the same variables by position. By using COMMON, variables
do not have to be supplied in CALL and SUBROUTINE statements.
COMMON can also be used for programs that have been linked via the
CHAIN statement, as long as the I option is used with the RUN verb to
prevent reinitialization.

~ It is essential that the order in which variables are listed
in COMMON statements be consistent between
programs and subroutines. Once a COMMON
statement is changed, all other subroutines and
programs using the same COMMON area need to be
recompiled with the same change in COMMON. For
that reason it is suggested that if the COMMON area is
used, the same variable names be used in programs and
subroutines and that the COMMON statement be placed
in a library, to be read via an INCLUDE, $INCLUDE,
or $INSERT statement: this way, a change needs to be
made only once, although all related programs and
subroutines still need to be recompiled.

Arrays can be declared in a COMMON statement, with the same syntax as
in a DIM statement. If an array is declared by a COMMON statement, it
should not also be declared in a DIM statement, or an error will occur at
compile time.

5: Statement and Function Reference 123

COMMON

Example

If PROGRAM 1 contains the line:

COMMON A, B, ADDRESSES(3,3)

and SUBR2 contains:

COMMON X, Y, MATRIX(3,3)

then, if PROGRAM 1 calls SUBR2 with the line:

CALLSUBR2

variables A and X will be equivalent, and variables Band Y will be
equivalent, and elements of the dimensioned arrays ADDRESSES and
MATRIX will be equivalent.

CONVERT: Convert characters in a string. *
The CONVERT statement can be used to replace characters in a variable.

CONVERT expr1 TO expr21N var

exprJ

expr2

var

the list of original characters to be converted.

the list of characters to replace original characters.

the variable to be converted.

The CONVERT statement replaces every occurrence of each of the specified
characters with the corresponding replacement character. It treats each
expression as a list of characters, not as a string: the first character in exprJ
is replaced with the first character in expr2, the second character in expr J is
replaced with the second character in expr2, and so on.

Every time a character listed in expr J appears in the string, it is replaced by
the corresponding replacement character, regardless of how many times it
appears. If expr J contains more characters than expr2, the extra characters
are deleted from the converted string. If the second expression contains more
characters than the first, the extra characters in expr2 are ignored. If a
character is repeated in the first expression, only the first assignment is
made and all subsequent assignments of that character are ignored.

* Not included in the SMA standards.

124 Pick BASIC: A Reference Guide

CONVERT

Examples

If the variable STRING contains "I LIKE IT", all "K"s can be changed to
"V"s with:

CONVERT "K" TO "V" IN STRING

The resulting string will be "I LIVE IT". However,

CONVERT "UKE" TO "LOVE" IN STRING

will produce the string, "0 LOVE OT".

In the following application the CONVERT statement is used to tum a
comma-separated list of names, NAMES, into a dynamic array, by
converting each comma into an attribute mark.

EQUATE AM TO CHAR(254)

CONVERT "," TO AM IN NAMES

As a comma-separated list, fields of the NAMES array can be deleted,
inserted, or arranged only through a sequence of statements involving
FIELD, COLl(), etc. By converting commas to attribute marks, however,
fields can be manipulated using the more powerful (and more intuitive)
dynamic array functions.

Another common use of CONVERT is to delete extraneous characters from
input. For example:

EQUATE NIL TO""

INPUT SOC.NBR
CONVERT "-., "TO NIL IN SOC.NBR

COS(): Return the cosine of the expression.

The COS function returns the trigonometric cosine of the expression.

COS(expr)

The expression expr is treated as an angle expressed as a numeric value in
degrees. Values outside the range of 0 to 360 degrees are interpreted as
modulo 360.

5: Statement and Function Reference 125

COS()

Example

In the following application the COS function is used with a standard
trigonometric formula to calculate the sine of an angle without using the
SIN function.

SINE = SQRT(1 - COS(ANGLE) • COS(ANGLE))
PRINT" THE SINE IS CALCULATED AS:" : SINE

COUNT(): Count the number of occurrences of a substring.

The COUNT function determines how many times a character or string of
characters occur within a specified string.

CQUNT(string,chars)

string

chars

an expression evaluating to the string to be searched.

an expression evaluating to the substring to be searched
for and counted.

The COUNT function returns the number of times a substring is repeated
within a string. If the substring is null, the number of characters in the
string is returned.

The COUNT function actually counts the number of starting points for the
specified substring within the string. That is, for each character in the
string, it determines whether an occurrence of the specified substring begins
at that character. If it does, its return value will be incremented by one.
This means that if there are overlapping occurrences of the substring within
the string, COUNT will return as many occurrences as it can find, regardless
of whether the starting character is a part of a previous occurrence. *
The DCOUNT function returns the number of fields separated by a given
one-character delimiter. See the DCOUNT function for more information.

* Not true on all systems. On Prime INFORMATION and uniVerse systems, for
instance, COUNT() counts only discrete instances of chars. No part of the
matched substring is recounted toward another match.

126 Pick BASIC: A Reference Guide

COUNT()

Example

To assign the variable NUMS to the number of times the substring "ANA"
occurs in the string "BANANA", enter:

NUMS = COUNT("BANANA","ANA")

This statement assigns a value of 2 to NUMS. Note that the two
occurrences of "ANA" overlap.

CRT: Send data to the tenninal display screen.

The CRT statement sends data to the terminal display screen. It is similar
to the PRINT statement except that it writes only to the terminal. The
DISPLA Y statement is functionally similar to the CRT statement.

CRT print-expr

print-expr is a print expression, optionally combined with
commas and colons to designate the format of the
output. If print-expr is omitted, a blank line is output.

The CRT statement causes data to be output to the terminal screen,
regardless of whether a PRINTER ON statement has been executed.

Formatted Output

Format expressions can be used to provide complex output formatting for
variables. In the CRT, DISPLAY, and PRINT statements, however,
commas and colons can be used to specify tab stops and suppress line feeds.

Expressions separated by commas are printed at preset tab positions.
Multiple commas can be used together to insert consecutive tabs
between expressions. However, tab positions cannot be specified
without being surrounded by expressions.

Colons (:) encountered between expressions are interpreted
normally as the string concatenation operator. If the last character of
the CRT statement is a colon, however, the line feed and carriage
return which usually follow the PRINT statement are suppressed.
This is especially useful when an INPUT statement is to follow, or
in formatted screen programs.

5: Statement and Function Reference 127

CRT

• The @ function can be used with the CRT statement to send the
cursor to a specified location on the screen. In this way formatted
screens can be generated within programs.

For examples of using commas and colons to format output, see the PRINT
statement page.

Examples

To print the string "HELLO ... " to the screen, the code might read:

CRT"HELLO ... "

In the following application the CRT statement is used to send output to
the terminal screen even if the PRINTER ON statement is active.

FOR 1=1 TO 10
CRT "RESULT NUMBER" : I : "TO PRINTER (Y OR N)" :
INPUT ANSWER
IF ANSWER = "Y" THEN

PRINTER ON
END ELSE

PRINTER OFF
END
PRINT "RESULT NUMBER" : I : " IS: " : RESULTS{I)

NEXT I

The program execution might look like this (with the user's input in bold):

RESULT NUMBER 1 TO PRINTER {Y OR N)?Y

ENTRY # 6
RESULT NUMBER 2 TO PRINTER {Y OR N)?N
RESULT NUMBER 2 IS: 98
RESULT NUMBER 3 TO PRINTER {Y OR N)?Y

ENTRY#7
RESULT NUMBER 4 TO PRINTER (Y OR N)?

DATA: Store data in an input stack.

The DATA statement stores the specified data for use by subsequent input
requests.

DATA expr1 [expr2, ... 1

expr an expression evaluating to the data to be stored.

128 Pick BASIC: A Reference Guide

DATA

The DATA statement places one or more values in a first-in-first-out (FIFO)
input stack. These values will be used as responses to INPUT statements
encountered later in the program, in the order in which they are placed in the
stack.

The DATA statement is intended to be used when a CHAIN, ENTER,
EXECUTE, or INPUT statement is used to execute another program or a
proc, TCL, or ACCESS verb: the first value in the input stack will be used
to supply any input which is prompted for. Thus a program which
generally prompts the user for values can be called directly, and each of the
values can be supplied without user intervention.

Example

The DATA statement can be used in a sequence to save a file item before it
is changed in the program. Since the COPY verb prompts for an item name
to copy to, the DATA statement is used to stack the response to the
prompt.

DATA 10: ".OLD "
EXECUTE "COPY CUSTOMERS" : 10

DATE(): Return the date in internal format.

The DATE function returns the current date in internal format.

DATE()

The DATE function returns the numeric value of the internal system date.
The internal format for the date is the number of days since December 31,
1967, which is considered day O. All dates after December 31, 1967, are
positive numbers representing the number of days that have elapsed since
then. All dates prior to day 0 are negative numbers representing the number
of days prior to this date.

Data calculations are generally much easier when dates are stored in internal
format. For example, 90 days from -940 is easier to calculate than 90 days
from June 4, 1965. To convert an internal date to external ("human­
readable") format, the OCONV function can be used with the "D"

5: Statement and Function Reference 129

DATE()

specification. Similarly, the ICONV function can be used to convert from
external to internal format.

The TIME function returns the current time in internal format, and the
TIMEDA TE function returns the current time and date in external format.
See the TIME and TIMEDA TE functions for more information.

Example

In the following application the last billing date for each customer is stored
in Attribute 8 of the file item, in internal format. Thirty days are given for
the bill to be paid. The DATE function is used to capture the current date
and compare it against the last billing date, to determine if the bill is
overdue.

PRINT "ENTER THE CUSTOMER ID : " :
INPUTID
READV BILLING. DATE FROM CUSTFILE , ID , 8 ELSE

PRINT "CANNOT READ!"
STOP

END
TODAY = DATE ()
PAY.DATE = BILLlNG.DATE + 30
PAY.DATE.EXT = OCONV(PAY.DATE, "D")
BEGIN CASE
CASE TODAY < PAY.DATE

PRINT "CUSTOMER'S NEXT BILL IS DUE" : PAY.DATE.EXT: "."
CASE TODAY = PAY.DATE

PRINT "CUSTOMER'S BILL IS DUE TODAY."
CASE TODAY> PAY.DATE

PRINT "CUSTOMER'S BILL WAS DUE" : PAY.DATE.EXT : n."
PRINT "CUSTOMER'S BILL IS": TODAY-PAY. DATE :" DAYS

OVERDUE."
END CASE

DCOUNT(): Return the number of fields separated by a delimiter.

The DCOUNT function returns the number of fields separated by a specified
delimiter.

DCOUNT(string,char)

string an expression evaluating to the string to be searched.

130 Pick BASIC: A Reference Guide

DCOUNT()

char an expression evaluating to the character to be used as a
delimiter. If char evaluates to more than one character,
only the first character will be searched for.

The DCOUNT function returns the number of delimited fields contained
within a data string.

DCOUNT differs from COUNT in that it only searches for a single character
and returns the number of values separated by delimiters rather than the
number of occurrences of a character or string of characters. If the null
string is used as the delimiter, the length of the string plus one is returned.
If the string evaluates to the null string, zero is returned. If the delimiter is
not found within the string, a value of 1 is returned.

In most instances the DCOUNT function returns the same value as
performing the COUNT function and adding 1. This should not be relied
on, however-note that when performed on the null string (IOn), DCOUNT
returns 0, while COUNT + 1 returns 1.

The DCOUNT function is particularly useful for processing dynamic arrays;
for example, it can be used to count the number of values or subvalues
within an attribute.

Example

In the following application the DCOUNT function is used to determine the
number of attributes and the number of values in a dynamic array. Each
individual value of the array can then be displayed with imbedded FOR
loops, as if it were a matrix.

NO.OF.ATTRS = DCOUNT(RECORD , CHAR(254))
FOR 1=1 TO NO.OF.ATTRS
NO.OF.VALS = DCOUNT(RECORD <I>, CHAR(253))

FOR J = 1 TO NO.OF.VALS
PRINT RECORD < I , J >

NEXT J
NEXT I

5: Statement and Function Reference 131

DEBUG

DEBUG: Enter the Pick BASIC debugger. *
The DEBUG statement enters the Pick BASIC debugger at the current line
of execution.

DEBUG

The DEBUG statement invokes the interactive Pick BASIC debugger.
When this statement is encountered, the execution of the program is stopped
and the debugger is entered.

As expected, the DEBUG statement is particularly useful while debugging a
program. Alternatives are to try to force a pause in program execution
(through a SLEEP or INPUT statement) long enough to hit the BREAK key
to enter the debugger, or to run the program with the D option.

Example

In the following application the internal subroutine CALCULATE is
executed, and then the value of the variable MONTH is examined. If
MONTH contains an unexpected value, an error message is printed and the
debugger is entered.

GOSUB CALCULATE
IF MONTH> 12 OR MONTH < 1 THEN

PRINT "ERROR IN CALCULATION OF VARIABLE' MONTH'"
DEBUG

END

DEL: Delete an element from a dynamic array. *
The DEL statement deletes an attribute, value, or subvalue from a specified
dynamic array.

DEL array <attr# [,value# [,subval# 11>

array the dynamic array to be changed.

attr# an expression evaluating to the attribute number.

* Not included in the SMA standards.

132 Pick BASIC: A Reference Guide

value#

subval#

DEL

an expression evaluating to the value number. If value#
is omitted or equal to 0, the entire attribute is deleted.

an expression evaluating to the subvalue number. If
subval# is omitted or equal to 0, the entire value is
deleted.

DEL is the statement equivalent of the DELETE function.

If the attribute, value, or subvalue expressions evaluate to a negative
number or a number greater than the number accessible, no action is taken.
If the expression evaluates to a noninteger value, it is truncated to an integer
value.

The DEL statement does not have the same effect as using the REPLACE
function to replace the element with the null string (""). The REPLACE
function removes the data while leaving the delimiters intact, whereas the
DEL statement removes the delimiters as well as the data. For example,
replacing Attribute 2 of an array with "" leaves an empty Attribute 2, but
deleting Attribute 2 forces Attribute 3 to become Attribute 2, Attribute 4
to become Attribute 3, and so on.

Example

To delete value 3 of Attribute 5 of the array RECORD, the code would
read:

DEL RECORD < 5, 3 >

DELETE: Delete a file item from a file.

The DELETE statement deletes an item from a file.

DELETE [filevar , 1 item-ID

filevar

item-/D

the variable to which the file was opened. If filevar is
not specified, the default file variable is used, which is
the file most recently opened without a file variable
assignment.

an expression evaluating to the item ID of the item to
be deleted.

5: Statement and Function Reference 133

DELETE

The file must have been opened with the OPEN statement before it can be
deleted. If the file item is not found, no action is taken.

Example

In the following application the INVENTORY file for a shoe store contains
information about each shoe sold. The style number is used as the item ID
for each shoe. When a shoe has been discontinued, the DELETE statement
is used to delete the record from the INVENTORY file.

PRINT "ENTER DISCONTINUED STYLE NUMBER: " :
INPUT STYLE.NO
DELETE INVENTORY, STYLE.NO

DELETE(): Delete an element from a dynamic array.

The DELETE function deletes an attribute, value, or subvalue from a
specified dynamic array. It is the function equivalent of the DEL statement.

array = DELETE(array, attr# [,value# [,5ubval# 11)

array

attr#

value#

subval#

the dynamic array to be changed.

an expression evaluating to the attribute number.

an expression evaluating to the value number. If value#
is omitted or equal to 0, the entire attribute is deleted.

an expression evaluating to the subvalue number. If
subval# is omitted or equal to 0, the entire value is
deleted.

If the attribute, value, or subvalue expressions evaluate to a negative
number or a number greater than the number accessible, no action is taken.
If the expression evaluates to a non integer value, it is truncated to an integer
value.

The DELETE function does not have the same effect as using the
REPLACE function to replace the element with the null string (""). The
REPLACE function removes the data while leaving the delimiters intact,
whereas the DELETE function removes the delimiters as well as the data.
For example, replacing Attribute 2 of an array with "" leaves an empty

134 Pick BASIC: A Reference Guide

DELETE()

Attribute 2, but deleting Attribute 2 forces Attribute 3 to become
Attribute 2, Attribute 4 to become Attribute 3, and so on.

Example

To delete value 3 of Attribute 5 in the array RECORD, the code might
read:

RECORD = DELETE(RECORD, 5, 3)

DIM: Declare array variables.

The DIM statement is necessary to declare the dimensions of array variables
before they are used within a program.

DIM[ENSION] var1 (rows [,columns]) [,var2 (rows
[,columns]) ...]

var... is the name of the array.

rows [,columns] contains the maximum dimensions of the array,
with rows and columns being whole number
constants.

The DIM statement defines the dimensions of an array variable. It must be
used prior to any reference to the array in the program. For a matrix (a two­
dimensional array), use the DIM statement to set the maximum number of
rows and columns available for the elements of the array. For a vector (a
one-dimensional array), use the DIM statement to set the maximum number
of elements in the array. See Chapter 2 in this guide for a complete
explanation of matrixes and vectors.

The array name can be any legal variable name.The dimensions can be any
positive integer. When specifying the two dimensions of a matrix, you
must use a comma to separate the row and column expressions. These
expressions are referred to as indexes. Note that the dimensions must be
written as whole numbers; fractional expressions and variables are not
allowed.

You can use a single DIM statement to define multiple arrays. If you define
more than one array with a single DIM statement, you must use commas to
separate the array definitions. The DIM statement can be broken into two or
more lines, provided that the new line occurs directly after the comma.

5: Statement and Function Reference 135

DIM

The DIM statement declares the name and size of the array only: it does not
assign values to the elements of the array. Assignment of values to the
elements is done with the MAT, MATPARSE, MATREAD,
MA TREADU, and assignment statements.

The DIM statement is necessary to preassign the specified number of entries
for the array variable. Alternatively, arrays can also be preassigned in a
COMMON statement, which is used to declare variables that will be shared
among programs and external subroutines. See the COMMON statement
for more information.

Example

The following application declares a matrix called CUSTOMER with 10
rows and 5 columns (for a total of 50 elements), and a vector called PARTS
with 15 elements.

DIM CUSTOMER(1 0,5) , PARTS(15)

DISPLA Y: Send data to the terminal display screen. *
The DISPLA Y statement sends data to the terminal screen. It is similar to
the PRINT statement except that it writes only to the terminal. The
DISPLAY statement is identical to the CRT statement.

DISPLAY print-expr

print-expr is a print expression, optionally combined with
commas and colons to designate the format of the
output (as described below). If print-expr is omitted, a
blank line is output.

The DISPLAY statement causes data to be output to the terminal screen,
regardless of whether a PRINTER ON statement has been executed.

* Not included in the SMA standards.

136 Pick BASIC: A Reference Guide

DISPLAY

Formatted Output

Format expressions can be used to provide complex output formatting for
variables. In the CRT, DISPLAY, and PRINT statements, however,
commas and colons can be used to specify tab stops and suppress line feeds.

• Expressions separated by commas are printed at preset tab positions.
Multiple commas can be used together to insert consecutive tabs
between expressions. However, tab positions cannot be specified
without being surrounded by expressions.

• Colons (:) encountered between expressions are interpreted
normally as the string concatenation operator. If the last character of
the DISPLAY statement is a colon, however, the line feed and
carriage return which usually follow the PRINT statement are
suppressed. This is especially useful when an INPUT statement is to
follow, or in formatted screen programs.

• The @ function can be used with the DISPLA Y statement to send the
cursor to a specified location on the screen. In this way formatted
screens can be generated within programs.

For examples of using commas and colons to format output, see the PRINT
statement page.

Examples

To print the string "HELLO ... " to the screen, the code might read:

DISPLAY "HELLO ... "

In the following application the DISPLA Y statement is used to send output
to the terminal screen even if the PRINTER ON statement is active.

FOR 1=1 TO 10
DISPLAY "RESULT NUMBER" : I : " TO PRINTER (Y OR N)" :
INPUT ANSWER
IF ANSWER = "Y" THEN

PRINTER ON
END ELSE

PRINTER OFF
END
PRINT "RESULT NUMBER" : I : " IS: .. : RESUL TS(I)

NEXT I

5: Statement and Function Reference 137

DISPLAY

The program execution might look like this (with the user's input in bold):

RESULT NUMBER 1 TO PRINTER (Y OR N)?Y

ENTRY # 6
RESULT NUMBER 2 TO PRINTER (Y OR N)?N
RESULT NUMBER 2 IS: 98
RESULT NUMBER 3 TO PRINTER (Y OR N)?Y

ENTRY # 7
RESULT NUMBER 4 TO PRINTER (Y OR N)?

EBCDIC(): Convert a string from ASCII to EBCDIC code.

The EBCDIC function converts a string in ASCII code into EBCDIC code.

EBCDIC (expr)

expr an expression evaluating to the string to be converted.

The EBCDIC function converts each character of the given expression from
its ASCII representation value to its EBCDIC representation value. The
EBCDIC function is the inverse of the ASCII function.

Appendix C supplies a full listing of ASCII codes.

Example

In the following application a file item needs to be converted from ASCII to
EBCDIC and written onto a tape to be read by a non-Pick system.

STRING = EBCDIC(STRING)
WRITET STRING ELSE

ECHO: Tum system echo on or off.

The ECHO statement toggles the system echo on the user's terminal.

ECHO [ON I OFF I expr 1

138 Pick BASIC: A Reference Guide

ECHO

ON tum system echo on (default).

OFF tum system echo off.

expr an expression evaluating to a numeric value. If expr
evaluates to 0, the echo is turned off; if expr evaluates
to a number other than 0, the echo is turned on.

The ECHO statement controls the display of input characters on the
terminal screen. Normally, all data entered by the user is echoed to the
screen as it is typed. The ECHO OFF statement turns off the echo feature,
and the ECHO ON statement turns it back on.

If ECHO OFF is specified, subsequent input characters are read by the
system as usual, but only control characters (CHAR(l) to CHAR(31») are
displayed on the terminal screen. The ability to tum off character display
with ECHO OFF is particularly useful for entering passwords and other
confidential information.

The ECHO OFF statement does not affect the echo of control characters for
input which is taken directly from the user's terminal.*

I(g' The echo feature is not reinstated at the end of a
program, so an ECHO OFF statement should be
followed by an ECHO ON statement before the end of a
program.

Examples

In the following application the user needs to log on to the program and is
prompted for a password, which is kept in a file opened to PASSFILE. The
ECHO OFF statement is used before accepting the password, so that it does
not appear on the screen.

READV PASSWD FROM PASSFILE , NAME,1 ELSE
PRINT "LOGON NOT FOUND!"
STOP

END
PRINT "PASSWORD: " :
ECHO OFF
INPUT PASSWORD
ECHO ON

* Some Pick systems allow you to disable control characters entirely from user
input. See, for example, ADDS Mentor's INPUT CTRL statement.

5: Statement and Function Reference 139

ECHO

IF PASSWD # PASSWORD THEN
PRINT "SORRY."
ABORT

END

Note that the ECHO ON statement is executed immediately after the INPUT
statement. If ECHO ON had been included any later, then every time the
program aborted because of a bad password, the echo feature would remain
off when the user returned to TCL.

In the next application a counter ECHO.COUNT is used to simulate the
Break Inhibit Counter. Instead of using ECHO ON, the counter is
incremented by one and ECHO ECHO.COUNT is executed instead.
Similarly, the counter is decremented by one to tum the echo feature off.
By using a counter, programs and subroutines can intermix without danger
of a subroutine prematurely reinstating the echo feature.

ECHO.COUNT += 1
ECHO ECHO.COUNT

CAll ACCESS.TEST(ECHO.COUNT)

ECHO. COUNT -= 1
ECHO ECHO. COUNT
STOP

If the subroutine ACCESS.TEST uses the same method of manipulating
the echo, the status of the echo feature is maintained throughout the
program.

SUBROUTINE ACCESS.TEST(COUNTER)
COUNTER+= 1
ECHO COUNTER

COUNTER-=1
ECHO COUNTER
RETURN

ELSE: Initiator used with conditional statements.

For information about the THEN I ELSE construct, see the IF statement.

140 Pick BASIC: A Reference Guide

END

END: End compilation or a group of THEN I ELSE statements.

The END statement is used to designate the end of a program or the end of a
group of statements begun with a THEN or ELSE clause.

END

Use the END statement to terminate a Pick BASIC program or a clause
within an IF, file I/O, or tape I/O statement.

An END statement can be the last statement in a Pick BASIC program, but
it is not mandatory.* When an END statement that is not associated with
an IF, LOCK, or I/O statement is encountered, all subsequent lines of the
program are ignored by the Pick BASIC compiler. Note that any
subroutines which can have been entered after a program END statement are
not recognized.

((g> In using the END statement with multiple conditional
statements, take care to use the correct number of END
statements. The wrong number of END statements will
cause the compilation to abort.

Examples

In the following example, END statements are used with nested IF
constructs:

SUIT = RND(4)
IF SUIT = 0 THEN

SUIT = "CLUBS"
END ELSE

IF SUIT = 1 THEN
SUIT = "DIAMONDS"

END ELSE
IF SUIT = 2 THEN

SUIT = "HEARTS"
END ELSE

IF SUIT = 3 THEN
SUIT = "SPADES"

END
END

END
END

* Except on Prime INFORMATION, where END is mandatory.

5: Statement and Function Reference 141

END

NUM = RND(13)

END

The last END is interpreted by the compiler as the end of the program.

ENTER: Transfer control to another program.

The ENTER statement can be used to transfer permanent control to another
program. Both the ENTERed program and the program containing the
ENTER statement should be cataloged.

ENTER { item-/D I @var}

item-/D

@var

is the item ID of the program to be entered.

var is a variable which has been assigned the item ID of
the program to be entered.

The ENTER statement transfers program control from the calling program
to another program. Program sequence will not return to the calling
program. For this reason, the ENTER statement should not be used within
a subroutine, nor should it be used to call a subroutine.

Parameters to be passed between programs must be declared through
COMMON statements in both programs. All other variables will be
initialized upon entering the new program.

Example

In the following application the user is prompted for the program to enter,
and then the ENTER statement is used to transfer control to the appropriate
program.

142

PRINT "WOULD YOU LIKE TO:"
PRINT" " ,"1. EDIT AN EXISTING ITEM"
PRINT" " ,"2. CREATE A NEW ITEM"
PRINT"" ,"3. DISPLAY AN EXISTING ITEM"
PRINT" " , "(ENTER ANY OTHER PROGRAM)"
PRINT
PRINT "ENTER 1, 2 OR 3":
INPUT ANSWER

Pick BASIC: A Reference Guide

BEGIN CASE
CASE ANSWER = 1

ENTER EDIT.ITEM
CASE ANSWER = 2

ENTER CREATE.ITEM
CASE ANSWER = 3

ENTER DISPLAY.ITEM
CASE 1

ENTER @ANSWER
END CASE

EQUATE: Assign values at compile time.

ENTER

The EQUATE statement allows a constant to be assigned at compile time.

EQU[ATE) varTO value [,var2TO value2, ...]

var the name to be assigned to the constant.

value a constant, another variable, or the CHAR function.

The EQUATE statement can be used to define a constant or to make one
variable equivalent to another. The value is compiled directly into the
object code, so there is no storage location generated for the variable.
EQUATE differs from the standard assignment statement (=) in that the
assignment is made at compilation and does not have to be reassigned each
time the program is executed.

Only literal constants or other variables can be used as the value. No
operators or functions can be used in value, since otherwise it could not be
evaluated until run time. The one exception is the CHAR function.

The EQUATE statement is most commonly used to define constants and to
provide more meaningful names for variables. Any number of variables can
be assigned with a single EQUATE statement, with each clause separated by
a comma. An EQUATE statement can be broken into two or more lines,
provided that the newline occurs directly after the comma. Multiple
EQUATE statements can be used in a program as long as the same variable
is not equated twice.

A variable cannot be referred to prior to the EQUATE statement which
defines it, or an error similar to the following will occur at compile time:

[B115] LINE 9 LABEL 'ERR.BELL' IS USED BEFORE THE EQUATE
STMT

5: Statement and Function Reference 143

EQUATE

This error message occurs if the variable is used in any way. This includes
assignment via the standard assignment operator (=), or if the variable had
been previously equated.

Common uses of the EQUATE statement are:

EQUATE AM TO CHAR(254),
VM TO CHAR(253),
SVM TO CHAR(252),
TRUET01,
FALSE TOO,
BELL TO CHAR(?)
ESC TO CHAR(2?)

Example

In the following application the EQUATE statement is used to give
meaningful names to the elements of an array. It is also used to give
meaningful names to the bell character (CHAR(7» and to logical true and
false (1 and 0), to make the program more readable.

DIM CUST(6)
EQUATE BELL TO CHAR(?), TRUE TO 1, FALSE TO 0
EQUATE NAME TO CUST(1), ADDRESS TO CUST(2),

CITY TO CUST(3), STATE TO CUST(4),
ZIP TO CUST(5), PHONE TO CUST(6)

EXECUTE: Execute a TeL command and return to the program. *
The EXECUTE statement executes a specified TCL command from within
the program, and then returns execution to the statement that follows the
EXECUTE statement in the program.

EXECUTE eommand-expr [CAPTURING evar 1
[RETURNING rvar 1

command-expr any valid TCL command.

* The SMA standards define a simpler version of the EXECUTE statement than the
one described here. Most implementations of Pick BASIC now support the
enhanced version we describe.

144 Pick BASIC: A Reference Guide

EXECUTE

CAPTURING cvar place the command output in cvar. *
RETURNING rvar place all error message numbers in rvar.*

The EXECUTE statement is a powerful statement for executing TCL verbs
from within a Pick BASIC program.

The CAPTURING clause can be used to capture the output of the command
into a string variable. The output will be in the form of a dynamic array,
with each line of output separated by attribute marks (CHAR(254». This
clause is particularly useful for programs that need to access information
that is unavailable to the program directly (such as output from the
SYSPROG verbs WHAT and WHERE).

The RETURNING clause can be used to capture the error messages from the
command into a string variable. This variable will be a string of error
message numbers separated by spaces. If a spooler hold file is created by the
command, the hold file entry number is also entered into the returning
variable.

The DATA statement can be extremely powerful when used with the
EXECUTE statement. With the DATA statement, known responses can be
stacked for subsequent EXECUTE commands that require operator input.
Any leftover data on the stack will be cleared upon return from the
EXECUTE statement. See the DATA statement for more information.

EXECUTE can be used to run another Pick BASIC program, which in turn
can run a third Pick BASIC program. Each of these constitutes an
execution level. On some implementations the SYSTEM function can be
used to return the current execution level. Up to at least five levels are
supported on most systems.

In using the CAPTURING clause, be careful of TCL verbs that clear the
screen before displaying output. If the TCL verb clears the screen, the
screen-clearing string will also appear in the capturing variable cvar. Other
terminal manipulation strings might also appear. These strings can be
stripped out with the INDEX function.

EXECUTE with Select-Lists

The EXECUTE statement can be used to generate a select-list to be used by
a READ NEXT statement in the program. Thus EXECUTE provides an

* Not all implementations support the CAPTURING and RETURNING clauses.

5: Statement and Function Reference 145

EXECUTE

alternative to the SELECT statement. On many implementations the
SYSTEM function can be used to detennine whether a select-list is present.

When EXECUTE produces a select-list, the data stack is checked for input
before control returns to the program. Any input in the stack is submitted
to TCL as a command and executed with the select-list available to it.

On most Pick systems, if a select-list is active when the EXECUTE
statement is executed, the select-list is passed to the executed TCL
command. On some implementations, however, select-lists which have
been returned to the Pick BASIC program cannot be used by subsequent
EXECUTE statements. On these systems, the DATA statement can be used
to stack a SAVE-LIST command to be executed before returning to the
program.

Printing Output from EXECUTE

The output of EXECUTE is sent to the tenninal unless otherwise specified
with the P option to the command. If the P option is supported by the
command, EXECUTE uses the default print file. If this file is already open,
the output from EXECUTE is appended to it. The print file, however, will
not be closed upon completion of EXECUTE, but will need to be closed by
the SP-CLOSE command, by the PRINTER CLOSE statement, or by
tenninating the program.

Examples

To select a list and then save it, the DATA and EXECUTE statements can
be used together as follows:

DATA "SAVE-LIST NAMES"
EXECUTE "SSELECT TFILE BY NAME"

After the SSELECT command is run, the data stack is examined and the
SA VE-LIST command is executed before returning to the program.

In the following application the EXECUTE statement allows the operator to
edit and compile another program until it successfully compiles. The
RETURNING clause is used to detennine if the compile was successful.

The DCOUNT function supplies the number of errors which were returned.
The FIELD function extracts the last error. If the last error is "B 1 00"
("COMPILATION ABORTED; NO OBJECT CODE PRODUCED"), then

146 Pick BASIC: A Reference Guide

EXECUTE

the program is edited and compiled again; otherwise, the program is
executed.

SUCCESS=O
LOOP

EXECUTE "DE BP " : PROGRAM
EXECUTE "COMPILE BP " : PROGRAM RETURNING RESULT
NO.OF.ERRS = DCOUNT(RESULT," ")
IF FIELD(RESULT," ",NO.OF.ERRS) = "B100" THEN

PRINT @(-1) : "DIDN'T COMPILE"
END ELSE

PRINT@(-1)
EXECUTE "RUN BP " : PROGRAM
SUCCESS = 1

END
UNTIL SUCCESS DO REPEAT

In the next example the operator would like to know if a certain user is
logged on. The EXECUTE statement executes "WHO A" and then searches
through each line for the other user. The FIELD function is used to
determine if the other user is logged on, and then the FIELD function is
used again to isolate the process number. Thus all processes the other user
is logged on to are reported.

EQUATE TRUE TO 1, FALSE TO 0,
BLANK TO " ", NIL TO ''''

PRINT "WHO TO SEARCH FOR? ":
INPUT PERSON
EXECUTE "WHO A" CAPTURING LIST
CLEARSTR = @(-1)
LEN.CLEARSTR = LEN(CLEARSTR)
LOOP

POS = INDEX(LlST,CLEARSTR,1)
UNTIL pas = 0 DO

LIST = LIST [1 ,POS-1] : LIST [POS + LEN.CLEARSTR,9999]
REPEAT
NO.OF.LOGINS = DCOUNT(LlST , AM)
FOUND = FALSE
FOR I = 1 TO NO.OF.LOGINS

LINE = LIST <I>
IF FIELD(LlNE , BLANK, 2) = PERSON THEN

PROCESS = FIELD(LlNE , BLANK, 1)
IF FOUND = FALSE THEN

FOUND = TRUE
PRINT PERSON: " ON PROCESS" : PROCESS

END ELSE
PRINT NIL. "ALSO PROCESS" : PROCESS

END
END

NEXT I

5: Statement and Function Reference 147

EXP()

EXP(): Return e to the specified power.

The EXP function returns the value of the base number e raised to the power
of the given expression. It is the inverse of the LN function.

EXP(expr)

expr an expression evaluating to a numeric value.

e is an irrational number, with an approximate value of 2.7183. The EXP
function is essentially equal to PWR(2.7183,expr), but it produces results of
greater accuracy. If the expression is too large or too small, zero is returned.

Example

To assign e lO to the variable NUM, the code would read:

NUM = EXP(10)

EXTRACT(): Return an attribute, value, or subvalue from an array.

The EXTRACT function is used to access a specified attribute, value, or
subvalue from a dynamic array string. There· are two forms to the
EXTRACT function: the first uses the keyword "EXTRACT", and the
second uses angle brackets.

148

EXTRACT(array,attr# [,va/ue# [,subva/#]])

array<attr# [,va/ue# [,5ubva/# I]>

array

attr#

value#

subval#

the dynamic array string.

an expression evaluating to the attribute number.

an expression evaluating to the value number. If value#
is omitted, the entire contents of the attribute is
returned.

an expression evaluating to the subvalue number. If
subval# is omitted, the entire contents of the value is
returned.

Pick BASIC: A Reference Guide

EXTRACT()

If an attribute, value, or subvalue expression evaluates to a noninteger
value, it is truncated to an integer value. Negative numbers are not valid for
attr#, value#, or subval#.

Examples

To assign the contents of Attribute 6 of the string array ADDRESS to the
variable ZIP, the code would read:

ZIP = EXTRACT(ADDRESS, 6)

or

ZIP = ADDRESS < 6 >

In the following application, a program prints the billing information for a
customer. The first and second attributes of the record CUST.REC contain
the customer's name, and the sixth, seventh, and eighth attributes contain
the customer's billing information.

EQUATE BLANK TO" ", NIL TO ""

NAME = CUST.REC< 1 > : BLANK
NAME := CUST.REC< 2 >
PRINT NAME
PRINT "CREDIT CARD: " , CUST.REC< 6 >
PRINT "ACCT. NO. :" , CUST.REC< 7 >
PRINT "EXPIRES:" , OCONV(CUST.REC< 8 >, "0")

FIELD(): Return a delimited substring of a string.

The FIELD function searches through a string and returns a specified
substring, based on a delimiter and the number of occurrences to search for.

FIELD (expr,delimiter,n)

expr an expression evaluating to the string to be searched.

delimiter an expression evaluating to the delimiter to be searched
for. Only one character will be accepted as a delimiter;
any subsequent characters are ignored.

n an expression evaluating to the number of the substring
you want to retrieve.

5: Statement and Function Reference 149

FIELD()

The FIELD function returns the substring in an expression which lies
between the n-I and nth occurrences of the delimiter. If n is I, the
substring from the beginning of the expression to the first occurrence of the
delimiter is returned.

Examples

If STRING contains "NOW IS THE TIME", the third word of the string
("THE") can be assigned to the variable THIRD with:

THIRD = FIELD(STRING, " ", 3)

In the following application, Attribute 1 of the MEMBER array holds the
member's full name, and Attribute 8 holds the date on which the customer
first joined the health club. The FIELD function is used to isolate the
month from the rest of a date in external format, in order to determine if the
customer's annual fee is due.

NOW = FIELD(TIMEDATE() , "" , 4)
MEM.DATE = MEMBER<8>
MEM.DATE = OCONV(MEM.DATE , "D")
MONTH = FIELD(MEM.DATE,"", 2)
IF MONTH = NOW THEN

DUES.OWED : = MEMBER<1 >
END

An easier way to do this, of course, is to use a DM conversion code with
OCONV.

FOOTING: Specify the footing for output pages.

The FOOTING statement specifies the text to be printed at the bottom of
each page of output. *

FOOTING expr

expr an expression evaluating to the text to be printed as the
footing. The full syntax of expr is similar to that of
the FOOTING modifier in ACCESS:

* On some implementations, the HEADING statement is necessary to initialize the
page parameters for a program, otherwise the FOOTING statement will have no
effect.

150 Pick BASIC: A Reference Guide

FOOTING

[text] ['options'] [text] ['options'] ...

The following options can be included in expr, enclosed
in single quotes:

P[n] Current page number, right-justified in a field of
n blanks (default is 4).

PN Current page number, left-justified.

L Carriage return and line feed.

T Current time and date.

D Current date.

C Center the line.

Multiple options can be specified within a single set of
quotes.

Multiple FOOTING statements can be used to change the footing within a
single program, with each FOOTING statement taking effect on the current
page of output. Pagination begins with page 1 and increments
automatically on generation of each new page.

Output will be suspended after each footing until a carriage return is input.
This feature can be disabled by the N option to the HEADING statement.

The HEADING, FOOTING, and PAGE statements affect the same output
device that the PRINT statement does. The PRINTER statement toggles
the output device between the terminal screen and the printer. If multiple
print units are used, the HEADING, FOOTING, and PAGE statements will
only affect print unit 0 (the default).

Example

In the following application the FOOTING statement sets up a footing on
each page with "Status Report" in the left comer and the page number on
the right. The SPACE function is used to generate the correct number of
spaces in the footing.

FOOTING "Status Report" : SPACE(57) : "Page 'PC' "

5: Statement and Function Reference 151

FOR

FOR: Repeat a procedure with an incrementing variable.

The FOR ... NEXT construct is designed to allow a set of statements to be
repeated and a variable to be incremented until the variable reaches a
designated maximum value.

FOR var = start-expr TO end-expr [STEP step-expr 1
[{ WHILE I UNTIL} expr
statements 1

NEXT var

var=start-expr

end-expr

step-expr

WHILEexpr

UNTIL expr

set the specified variable var to the value of
start-expr for the first iteration.

stop iterating when var exceeds end-expr

increment var by step-expr for each iteration. If
the STEP clause is not specified, 1 is the default
increment.

continue the loop as long as expr evaluates to
true. Once expr evaluates to false, continue
program execution after the NEXT statement.

continue the loop until expr evaluates to true.
Once expr evaluates to true, continue program
execution after the NEXT statement.

A FOR ... NEXT program loop is a series of statements that execute
repeatedly, with a variable var incremented by a specified amount for each
iteration. (The default increment is 1.) The first time the statements are
executed, the specified variable var is assigned the value start-expr. The
second time they are executed, var is assigned the value start-expr + 1 and so
on, until var exceeds the value of end-expr. The NEXT clause defines the
end of the loop, forces the increment of the variable var, and returns control
to the FOR statement.

The body of the loop is skipped if start-expr is greater than the end-expr and
step-expr is positive.

Note that although start-expr is usually 1 and end-expr is usually specified
as a positive integer, these are not fixed restrictions: any Pick BASIC
expression which evaluates to a numeric value can be used.

Alternative syntax forms involve the STEP clause and the WHILE and
UNTIL clauses.

152 Pick BASIC: A Reference Guide

FOR

If the STEP step-expr clause is specified, step-expr is taken as the increment
instead of 1, and the step-expr is added to the value of var for each iteration.
Note that step-expr does not have to be positive, so var can exceed end-expr
on the onset of a loop with a negative step, and the loop will continue as
long as var is greater than or equal to end-expr. In addition, step-expr does
not have to evaluate to an integer, so any decimal value can be specified as
the step in a FOR loop.

The WHILE and UNTIL clauses can be added to the FOR loop to provide
additional flexibility. These clauses will behave just as they do in the
standard LOOP structure. See the LOOP reference page for more
information.

FOR ... NEXT loops can be nested, provided that:

• each loop has a unique variable var as its counter.

• the NEXT statement for the inside loop appears before the NEXT
statement for the outside loop.

Example

In the following application the DCOUNT function returns the number of
attributes in the dynamic array CUST.REC, and a FOR loop is used to print
each attribute of the array.

NO.OF.ATIRS = DCOUNT(CUST.REC,CHAR(254))
FOR 1=1 TO NO.OF.ATIRS

PRINT I,CUST.REC < I >
NEXT I

Format Expressions: Specify a format for data.

Format expressions return the given data in a specified format. They are
particularly useful for generating output in a human-readable form.

expr format-expr

expr

format-expr

an expression evaluating to the text to be
formatted.

an expression evaluating to the formatting codes
to be used. The syntax for format-expr is
described below.

5: Statement and Function Reference 153

Format Expressions

Formatted data is produced by simply specifying the format expression
directly after the data. In Pick BASIC, if one expression immediately
follows another, the second expression is automatically taken as a format
expression for the first.

The format expression interprets the given expression as straight numeric
data or as the internal format for a date. For an internal date, a D should be
entered as the first character in the format expression, and the next two
characters determine the number of characters to be taken as the suffix for
the year and the character to be used as a delimiter. See the section "Internal
Date Conversion" for more information on using format expressions to
convert an internal date into external format.

For straight numeric data, the format expression is broken into the
following components:

[format-string 1 [[(1 format-mask [) 11

The format string formats the data itself, and the format mask formats the
field in which the result is placed. Although the parentheses around the
format mask are optional, they are highly recommended in order to clearly
delineate the format mask from the format string.

Be aware that if a format expression does not match the syntax expected, or
if the data expression does not evaluate to a numeric value, the results could
be bizarre and no error message will be printed.

The formatting codes can be used with the masked input statement,
INPUT @, to accept only data matching the specified code and store it in its
raw form. See the INPUT @ statement for more information.

Formatting Numbers

The format string for numeric data is a series of characters in the following
order:

154

j Justification code. Justification can be one of the following:

L Left justification (default).

R Right justification.

Justification codes are meant to be used in conjunction with
the format masking codes listed below. The justification codes

Pick BASIC: A Reference Guide

Format Expressions

have no effect unless the format masking codes are used to
specify a field size and background character.

n Decimal precision code. A single-digit number (0-9) to be
taken as the number of digits to be printed following the
decimal point. If n is 0, a decimal point will not be printed.
If the descaling code (m) is specified, the decimal precision
must be specified first.

m Descaling code. A single-digit number (0-9) to be taken as the
descaling factor. A descaling code equal to the current
precision (4 by default on most systems) will return the
number unchanged, and a de scaling code equal to the current
precision plus 1 will return the number divided by 10. In
general, a descaling code equal to the current precision plus x
will return the current number divided by lOX. If the descaling
code is specified, the decimal precision (n) must be specified
first.

Z Convert all leading zeros to blanks. This has no effect on
leading zeros generated by using the % character in a right­
justified format mask.

Insert commas. Every three digits to the left of the decimal
point will be grouped together by commas, each comma
representing a thousands position.

c Credit indicator code. One of the following:

C Place "CR" after negative values and two blank spaces
after all other values.

D Place "DB" after positive values and two blank spaces
after all other values.

E Place negative values between angle brackets « ... »,
and all other values between blank spaces.

M Place a minus sign after negative values.

N Suppress the minus sign in negative values.

If a decimal precision code (n) is not specified with a credit
indicator code, a precision of 0 is assumed.

$ Place a dollar sign at the beginning of the resulting data.

5: Statement and Function Reference 155

Format Expressions

Format Masks

The format mask includes any of the following codes:

$ Place a dollar sign at the beginning of the field.

a Any character to be placed in the field as a filler.

#[n] Place data in a field of n blanks. If n is not specified, the next
character of the resulting data is returned.

*[n] Place data in a field of n asterisks. If n is not specified, the
next character of the resulting data is returned.

%[n] Place data in a field of n zeros. For a right-justified field, this
code forces leading zeros. If n is not specified, the next
character of the resulting data is returned.

Although all specifications are optional, Pick BASIC makes certain
assumptions about the positioning of format codes. In particular, an initial
alphabetic character will be taken as a justification code, and an initial
numeric character will be taken as a decimal precision code. Thus, in order
to specify either the zero suppression code (Z) or the credit indicator codes
(C, D, E, M, N), either a justification code or a decimal precision code must
be specified first. Similarly, in order to specify a descaling code, a decimal
precision code must immediately precede it.

Internal Date Conversion

For internal date conversion, the syntax of the format expression is as
follows:

D [year 1 [{ separator I subcode } 1

where year is a single-digit number, separator is any character, and subcode
is a special date subcode if no date is specified. year determines how many
digits to return from the end of the year, with all digits as the default (for
example, "-940" "D" produces "4 JUN 1965", and "-940" "D2" produces "4
JUN 65"). separator determines the delimiter for the output fields, in which
case the month, date and year are returned in their numeric values delimited
by c (for example, "-940" "Dr produces "06/04/1965"). Date subcodes are
fully described in Pick ACCESS: A Guide to the SMA/RETRIEVAL
Language.

156 Pick BASIC: A Reference Guide

Format Expressions

Examples

Consider a program which reports the balances in a customer's bank
account. For accuracy, the current balance and balance at the beginning of
the month are kept to five decimal places. Also, the date on which the
account was last updated is kept in internal format.

BEGIN.BAL = ACCT.REC<7>
BALANCE = ACCT.REC<8>
LAST. UPDATE = ACCT.REC<10>
TODAY = DATE()
PRINT
ELAPSED = TODAY - LAST.UPDATE
PRINT "LAST UPDATE WAS" : ELAPSED:" DAYS AGO" :
PRINT" ON" : LAST.UPDATE "D2I'
PRINT
PRINT "BALANCE AT START OF MONTH WAS" : BEGIN.BAL "2,$"
PRINT "CURRENT BALANCE IS " : BALANCE "2,$"
PRINT "WITH A CHANGE OF " : BALANCE-BEGIN.BAL "2,$"

All dollar values are formatted with the "2,$" code, specifying that:

• only two decimal points should be shown.

• commas should be placed at every thousands point.

• a dollar sign should precede the number.

In addition, the internal date is formatted with the "D2/" code, so that only
the last two digits of the year are shown, and slashes (/) are used to delimit
the fields.

If a file item from which ACCT.REC was read contains the following data
in Attributes 7 through 10:

00778.22545
008 2943.56657
009
0108096

then the following is printed on the screen:

LAST UPDATE WAS 14 DAYS AGO ON 03/01190
BALANCE AT START OF MONTH WAS $78.23
CURRENT BALANCE IS $2,943.57
WITH A CHANGE OF $2865.34

5: Statement and Function Reference 157

Format Expressions

Now consider the same program, but with the balances kept as integer
values. In actual practice, all numbers on Pick systems are stored as
integers, so the file item from which ACCT.REC was read would actually
read:

0077822545
008294356657
009
0108096

To access the data correctly, the integer values need to be divided by 105. If
the current precision is 4, the last five lines of code would read:

PRINT "LAST UPDATE WAS": ELAPSED:" DAYS AGO" :
PRINT "ON" : LAST.UPDATE "D2!'
PRINT "BALANCE AT START OF MONTH WAS" : BEGIN.BAL "29,$"
PRINT "CURRENT BALANCE IS" : BALANCE "29,$"
PRINT "WITH A CHANGE OF " : BALANCE - BEGIN.BAL "29,$"

The only difference to note is that the format string is now "29,$". If the
precision is 4, the resulting data shows a decimal point five places from the
right. The following is printed on the screen:

LAST UPDATE ON ACCOUNT WAS 14 DAYS AGO ON 03/01/90
BALANCE AT BEGINNING OF MONTH WAS $78.23
CURRENT BALANCE IS $2,943.57
WITH A CHANGE IN BALANCE OF $2865.34

Note that the results are the same, as expected.

Now imagine that instead of printing out the account balances directly, we
would like it tabulated on the screen. Possible source code might read:

158

PRINT "BEGAN MONTH WITH" ,"CURRENT BALANCE" ,
"INCREASE/DECREASE"
PRINT BEGIN.BAL "R29 , $(#16)" , "":
PRINT BALANCE "R29 , $(#15)" , BALANCE - BEGIN.BAL "R29 ,
$(#17)"

Pick BASIC: A Reference Guide

Format Expressions

In parentheses for each of the masking codes is "#n", with n representing the
maximum number of characters in the field, in this case the number of
characters in the heading col\umn. "#n" places the data in a field of n
spaces. The "R" at the beginning of the format expression specifies right­
justified data (so that if multiple accounts were reported, all decimal points
would line up). With the same data as the previous example, the result
might be:

BEGAN MONTH WITH CURRENT BALANCE INCREASE/DECREASE

$78.23 $2,943.57 $2,865.34

GOSUB: Branch to an internal subroutine.

The GOSUB statement transfers control to the statement with the specified
label, where the program will sequentially proceed until it reaches a
RETURN statement. The GOSUB statement has two forms of execution:
the direct branch to a specified subroutine, and the computed branch to one
of several subroutines.

GOSUB label
ON expr GOSUB label1 label2

label ... statement labels as described in Chapter 2.

expr an expression evaluating to a numeric value.

When the first form is used, program control is transferred to the line
starting with the specified label. Once a RETURN statement is
encountered, program control transfers back to the statement following the
corresponding GOSUB in the main program. In well-structured programs,
an internal subroutine should comprise only the set of statements confined
between the branch label and the RETURN statement.

The ON ... GOSUB syntax variation, or computed GOSU8, can be used to
call different subroutines according to the value of expr. expr is evaluated
and truncated into an integer n, and the subroutine beginning with the nth
label on the statement line is given control of the program. If expr
evaluates to a number less than I or greater than the number of statement
labels listed, no action is taken.

The colon is optional in the statement label reference. Furthermore, the
statement label can be anywhere in the program; that is, it can either
precede or follow the referencing GOSUB statement. If the specified
statement label is not found, an error message is printed at compile time.

5: Statement and Function Reference 159

GOSUB

Examples

The following example shows how a GOSUB statement can be used to
allow the user some control of program execution.

PRINT "WOULD YOU LIKE THE RESULTS? (Y OR N)":
INPUT ANSWER
IF ANSWER = "Y" THEN GOSUB CALC

* CONTROL RETURNS HERE AFTER CALC

CALC: • CONTROL TRANSFERS HERE IF ANSWER = Y

RETURN

The next example shows how a computed GOSUB statement can be used in
a menu-driven program. Note that the input is tested for a proper value and
that execution is suspended until a reasonable response is supplied.

160

EQU TRUE TO 1, FALSE TO 0

VALID = FALSE
LOOP

PRINT "CHOOSE A MENU (1, 2, OR 3) " :
INPUT MENU
IF MENU = 1 ! MENU = 2 I MENU = 3 THEN

VALID = TRUE
END ELSE

PRINT "ILLEGAL ENTRY."
END

UNTIL VALID DO REPEAT
* BRANCH TO REQUESTED MENU
ON MENU GOSUB MENU1, MENU2, MENU3
* CONTROL RETURNS HERE AFTER SUBROUTINE

STOP
MENU1: * CONTROL TRANSFERS HERE IF MENU 1 IS CHOSEN

RETURN

Pick BASIC: A Reference Guide

GOSUB

MENU2: * CONTROL TRANSFERS HERE IF MENU 2 IS CHOSEN

RETURN
MENU3: * CONTROL TRANSFERS HERE IF MENU 3 IS CHOSEN

RETURN

GOTO: Transfer program control to a specified label.

The GOTO statement transfers control to the line with the specified
statement label, from which the program will sequentially proceed until it
reaches the end of the program or another GOTO statement. The GOTO
statement has two forms of execution: the direct branch to a specified label,
and the computed branch to one of several labels.

GO[TO] label
ON expr GO[TO] label 1 label2

When the first form is used, program control is directly transferred to the
line starting with the specified label.

The ON ... GOTO syntax variation, or computed GOTO, can be used to
branch to different labels according to the value of expr. expr is evaluated
and truncated into an integer n, and the program branches to the statements
starting at the nth label on the ON ... GOTO line. If expr evaluates to a
number less than 1 or greater than the number of statement labels listed, no
action is taken.

The colon is optional in the statement label reference. Furthermore, the
statement label can be anywhere in the program; that is, it can either
precede or follow the referencing GOTO statement, as long as it is before
the end of the program. If the specified statement label is not found, an
error message is printed at compile time.

5: Statement and Function Reference 161

GOTO

Example

The following example shows how a GOTO statement can be used to
conditionally jump to another point in the program.

IF CARD(1 ,1) + CARD(1 ,2) = 21 THEN
PRINT "BLACKJACK! YOU WIN!"
GOTO GAMEEND

END ELSE ...

GAMEEND:
PRINT "WANT TO PLAY AGAIN?" :

HEADING: Initialize parameters, specify heading for output pages.

The HEADING statement specifies the text to be printed at the top of each
page of output. *

HEADING expr

expr an expression evaluating to the text to be printed as the
footing. The full syntax of expr is similar to that of
the HEADING modifier in ACCESS:

[text] ['options'] [text] ['options'] ...

The following options can be included in expr, enclosed
in single quotes:

P[n] Current page number, right-justified in a field of
n blanks (default is 4).

PN Current page number, left-justified.

L Carriage return and line feed.

T Current time and date.

D Current date.

* On some systems the HEADING statement is also necessary for initializing page
parameters for an output device.

162 Pick BASIC: A Reference Guide

HEADING

N Do not wait for carriage return at end of page.

C Center the line.

Multiple options can be specified within one set of
single quotes.

Multiple HEADING statements can be used to change the heading within a
single program. The first HEADING statement initializes the page
parameters for the program; each subsequent HEADING statement will not
take effect until the next page of output. Pagination begins with page 1
and increments automatically on generation of each new page.

If the output device is the screen, initializing the page parameters also
enables the no-page feature, which suspends output at the end of each page
until a carriage return is input. This feature can be disabled by the N option
to the HEADING statement. Unlike the other options to HEADING, the N
option will take effect on the current page of output. The N option is
usually used when output is not going to the terminal but is being routed
through the auxiliary port to the printer.

The HEADING, FOOTING, and PAGE statements affect the same output
device that the PRINT statement does. The PRINTER statement toggles
the output device between the terminal screen and the printer. If multiple
print units are used, the HEADING, FOOTING, and PAGE statements
affect only print unit 0 (the default).

Example

In the following application the HEADING statement sets up a heading on
each page with "Status Report" in the left comer and the page number on
the right. The SPACE function is used to generate the correct number of
spaces in the heading.

HEADING "Status Report":SPACE(57):"Page 'PC' "

ICONV(): Convert data from external to internal fonnat.

The ICONV function converts data from external format to internal format,
according to the conversion code specified.

ICONV(expr, code)

5: Statement and Function Reference 163

ICONV()

expr an expression evaluating to the data to be converted.

code an expression evaluating to the conversion code, as
described below.

The ICONY function is intended for storing data which would be more
consistent or more flexible in internal format.

For example, the internal format for the date is the number of days since
December 31, 1967, which is considered day O. An dates after December
31, 1967, are positive numbers representing the number of days that have
elapsed since then. All dates prior to day 0 are negative numbers
representing the number of days prior to this date.

When storing a date, it is preferable to store it in internal format, which
makes calculations on that date easier to perform. To convert back from
internal format to external format, use the OCONY function.

The conversion codes for ICONY correspond to the conversion codes used in
ACCESS. Among the more common codes used in Pick BASIC are:

D Convert date to internal format.

MT[H][S] Convert time to internal format.

H 12-hourformat.

S include seconds.

MX Convert hexadecimal to ASCII representation.

Among the ACCESS codes that cannot be called by the ICONY function
are "F", "A", and "S". For more information about conversion codes, see
Pick ACCESS: A Guide to the SMA/RETRIEVAL Language.

Example

To convert the variable TIME into internal format, the code would read:

CURR.TIME = ICONV(CURR.TIME. "MT")

164 Pick BASIC: A Reference Guide

IF

IF: Perform conditional execution.

The IF construct allows execution of a statement or series of statements if
the calculated expression is true, or of a separate set of statements if it is
false. The syntax can take a number of forms, depending on how many
lines are taken by the complete IF ... THEN ... ELSE construct. Syntax is
fully explained in the next section. The single-line form of the syntax is as
follows:

IF expr { THEN statements [ELSE statements 11 ELSE statements}

expr is any Pick BASIC expression to be calculated for its
logical value.

statements is a statement or set of statements to be executed
conditionally.

The IF construct calculates the given expression for its logical values. The
expression is false if it evaluates to 0 or the null string; it is true if it
evaluates to anything else. If the expression is true, the statements
following THEN are executed; if the expression is false, the statements
following the ELSE are executed, or if there is no ELSE clause, the
program continues with the next executable statement.

Both the THEN clause and the ELSE clause are optional; however, one or
the other must be included.

IF constructs can be nested. However, it is recommended to use a CASE
construct instead, if possible.

Statement Syntax

Although the logistics of the IF construct are relatively simple, the syntax
is very exact. The simplest form of the IF construct is the single-line form
given in the preceding section. It is possible, however, to include multiple
statements in either the THEN or the ELSE clauses. In such cases the
program is much easier to read if each statement is entered on its own line.
The END statement must be used as a terminator for multiline THEN and
ELSE clau$es; END should not be used, however, to terminate single-line
THEN or ELSE clauses.

5: Statement and Function Reference 165

IF

Single-line and multiline syntax can be combined. The following syntax
fonns are possible:

IF exprTHEN statements ELSE
statements

END

IF exprTHEN
statements

END ELSE statements

The full fonn of the IF construct with multiline THEN and multiline ELSE
clauses is as follows:

IF expr {THEN
statements

END [ELSE
statements

END 11 ELSE
statements

END}

When multiline THEN and ELSE clauses are used, the following
restrictions apply:

• Neither THEN nor ELSE can begin a program line.* For example,
the following construct:

IF ANSWER="Y"
THEN ...

results in an error message at compile time.

• When the statements following THEN or ELSE are kept on a single
line, they must be separated by a semicolon (;). That is, the
following construct is correct:

IF PROFIT THEN GOSUB 100; PRINT PROFIT ELSE GOSUB
200; PRINT LOSS

• When the statements following the THEN or ELSE are written on
more than one line, THEN or ELSE must be the last word on its line

* Except on Prime INFORMATION and uniVerse systems, where THEN and
ELSE can begin a program line.

166 Pick BASIC: A Reference Guide

IF

and an END statement must end the set of statements. For example,
the above example can be written:

Example

IF PROFIT THEN
GOSUB 100
PRINT PROFIT

END ELSE
GOSUB200
PRINT LOSS

END

In the following application, IF constructs are nested to calculate the winner
in a game of blackjack. It is sometimes difficult to determine which END
statement belongs with which THEN or ELSE. A CASE statement would
perhaps be more appropriate to this function. See the CASE statement for
more information.

IF DEALERSCORE > 21 THEN
PRINT "I WENT OVER. YOU WIN."
YOURWINS = YOURWINS + 1

END ELSE
IF NOT(DEALERSCORE < YOURSCORE) THEN

PRINT "MY SCORE IS" : DEALERSCORE : ". I WIN."
IF DEALERSCORE = YOURSCORE THEN

PRINT "" ,"HOUSE RULES-DEALER ALWAYS WINS IN A TIE."
MYWINS+= 1

END
END ELSE

IF NOT(HIT = 11) THEN
PRINT "MY SCORE IS" : DEALERSCORE : ".1 HAVE TO HOLD. "
PRINT "YOU WIN."
YOURWINS + = 1

END ELSE PRINT "5 CARDS. I WIN."; MYWINS + = 1
END

END

INCLUDE: Read in source code from another file item.

The INCLUDE statement allows source code to be read in from another file
item.

INCLUDE [filename 1 item-/D

5: Statement and Function Reference 167

INCLUDE

filename

item-/D

the name of the file containing the item. If filename is
omitted, the current file is assumed.

the item ID of the item containing the source code

The INCLUDE statement directs the compiler to read in source code from
the specified file item and compile it as if it were written in the current
item. The $INSERT and $INCLUDE statements are functionally similar to
the INCLUDE statement.

The INCLUDE statement differs from the $CHAIN statement in that the
compiler returns to the main item and continues compiling with the
statement following the INCLUDE.

The INCLUDE statement is particularly useful for reading in items
containing COMMON and EQUATE statements, or any statements which a
programmer might want to be consistent among several different programs.
Be careful, however, of naming conflicts among different file items.

INCLUDE statements can be nested; that is, a program can INCLUDE a
file item which INCLUDEs another file item. However, the total object
code when compiled cannot exceed the maximum item size supported by
your system.

If the source code read in through an INCLUDE statement generates a run­
time error message, the error message will display only the number of the
line which contains the INCLUDE statement. The line numbers from the
external file item are not kept in the object code.

Examples

To read in the source code written in item ID SETUP in file BP, the code
might read:

INCLUDE BP SETUP

In the following application, the INCLUDE statement is used at the
beginning of a program to read in common variables, equated constants, and
the part of the program which opens the file.

168

INCLUDE STARTUP
PRINT "ENTER THE CUSTOMER ID : ":
INPUTID
MATREAD PHONE.ARRAY FROM CUSTFILE, ID ELSE

PRINT "CANNOT READ RECORD!"
STOP

END

Pick BASIC: A Reference Guide

The file item STARTUP contains the text:

COM¥ON PHONE.ARRAY(10), PHONEREC
EQUATE TRUE TO 1, FALSE TO 0, AM TO CHAR(254)

PROMPT""
OPEN "CUSTOMERS" TO CUSTFILE ELSE

ABORT 201, "CUSTOMERS"
END

INCLUDE

INDEX(): Return the position of a substring within a string.

The INDEX function searches through a string for a specified substring and
returns the starting column position of the substring.

INDEX(string,substring,n)

string an expression evaluating to the string to be searched
through.

substring an expression evaluating to the substring to be searched
for.

n an expression evaluating to the occurrence of the
substring to search for.

The INDEX function returns the starting column position for a specified
occurrence of a substring in a string.

If the nth occurrence of the substring is found within the string, the starting
column position of the substring is returned. If substring is null, 1 is
returned. If the specified occurrence of the substring cannot be found, a
value of zero is returned.

Examples

If the string STRING contains "NOW IS THE TIME", to assign the
column number of the beginning of the third word ("THE") to the variable
POS, the code would read:

EQU BLANK TO" "

POS = INDEX(STRING, BLANK, 3)

5: Statement and Function Reference 169

INDEX()

In this instance POS would contain "8".

In the following application the INDEX function is used within a global
change of a string. The LEN function is used to determine the length of the
original string. Within a LOOP, the INDEX function returns the column at
which the string next occurs.

PRINT "GLOBAL CHANGE: "
PRINT
PRINT "STRING TO CHANGE: " :
INPUT ORIG.STR
PRINT "CHANGE TO : " :
INPUT NEW.STR
LENGTH = LEN(ORIG.STR)
LOOP

POS = INDEX(RECORD , ORIG.STR , 1)
UNTIL POS = 0 DO

RECORD = [1,P05-1]: NEW.STR: RECORD [POS + LENGTH,9999]
REPEAT

In the next example the INDEX function is used with a formatted screen
menu. In the ON ... GOSUB statement, the INDEX function returns ai,
2, or 3, which forces a branch to the first, second, or third subroutine listed.

EQUATE TRUE TO 1 , FALSE TO 0
PRINT @(-1) : @(4 , 4) : "WOULD YOU LIKE TO : " :
PRINT @(4 , 7) : "ADD A RESERVATION: " :
PRINT @(4 , 8) : "CHANGE A RESERVATION: " :
PRINT @(4 , 9) : "REMOVE A RESERVATION: " :
PRINT @(O , 23) : "ENTER A , C OR R : " :
LOOP

VALID = TRUE
PRINT @(18 , 23) : @(--4) :
INPUT CHOICE, 1 :
IF COUNT("ACR" , CHOICE) # 1 THEN

VALID = FALSE
END

UNTIL VALID DO REPEAT
ON INDEX("ACR" , CHOICE, 1) GOSUB ADD. CHANGE, REMOVE

INPUT: Request terminal input.

The INPUT statement requests terminal input from the user and assigns the
input to a variable.

INPUT var [= expr] [,Iength-expr 1 [,fillchars] [_ 1 [:]

170 Pick BASIC: A Reference Guide

var [= expr]

length-expr

fillchars

INPUT

assign input data to variable var. If expr is
specified, var is initially set to expr and the
current value of expr is displayed on the screen as
a default value. The user can then modify the
default value before pressing the RETURN key,
or accept it by pressing the RETURN key without
modification.

an expression to be interpreted as the maximum
number of characters to be input from the
terminal. When this number of characters is
input, the program automatically interprets a
carriage return. If length-expr evaluates to 0 or
1, only one character is accepted. If the user does
not wish to fill the input field, a carriage return
can be entered manually.

an expression evaluating to a string of one, two,
or three characters. The first character is taken as
a format mask for the input field, and the second
is used as an overstrike filler for portions of the
field left unwritten. The cursor returns to the end
of the input data unless there is a third fill
character, in which case the cursor remains at the
end of the formatted field.

an underscore specifies that a carriage return must
be entered by the user, even if the input length
equals length-expr. If the user tries to exceed the
maximum length, a bell rings.

a colon suppresses the automatic line feed and
carriage return when the value is input.

The INPUT statement pauses program execution and prompts for a
response. Data entered at the terminal becomes the assigned value of the
specified variable var.

Use the optional length-expr to specify the maximum length, or number of
characters,. allowed as input. When the specified number of characters is
entered, an automatic carriage return and line feed are executed. An
underscore (_) disables the automatic carriage return and line feed, and
instead forces a beep to sound if the user tries to exceed the maximum

5: Statement and Function Reference 171

INPUT

length. When the maximum length is exceeded, all subsequent characters
are ignored except for the standard editing control characters, listed below.

Editing Control Characters.

Character

CTRL-H or BACKSPACE

CTRL-R

CTRL-W

CTRL-X

Function

Erase one character.

Redisplay current input field.

Erase one word.

Clear entire input.

A fill character can be used to outline the length of the input field for the
user. This allows the user to see the length of the input field. If a second
character is specified, it is used to fill the unused portion of the field after
the user presses the RETURN key. If a third character is specified, the cursor
remains at the end of the formatted field after the excess part of the input
field is overstriken; otherwise, it returns to the end of the input data. (The
actual value of the third character is not significant.)

The INPUT statement causes only the prompt character to be printed on the
screen. The default prompt character is a question mark (?), but it can be
reassigned with the PROMPT statement. See the PROMPT statement for
more information. A PRINT statement must be used before the INPUT
statement in order to tell the user what sort of input is required.

Examples

To ask the user to supply a name, the code might read:

PRINT "ENTER YOUR NAME"
INPUT NAME

If the name cannot exceed 20 characters, the input line might read:

INPUT NAME, 20_

If the user tries to enter more than 20 characters, a beep sounds.

To prompt the user to respond either Y for yes or N for no, the code might
read:

PRINT "DO YOU WANT TO EXIT (Y OR N)?"
INPUT ANSWER, 1

The first character the user types is accepted, and the program continues. No
carriage return is necessary.

172 Pick BASIC: A Reference Guide

INPUT

In the following application, a customer is prompted for changes in his
billing inforrhation. The example also makes use of the PRINT statement
with the @ function, generating a formatted screen.

LOOP
PRINT @(10, 10) : "ENTER YOUR ACCOUNT NUMBER: ":
INPUT ACCT, 6 , "?"

WHILE NOT{NUM{ACCT)) OR LEN{ACCT) # 6 DO
PRINT @(0,23) : "PLEASE ENTER A 6-DIGIT ACCOUNT NUMBER" :

REPEAT
ON.FILE = 1
READ CUST.REC FROM CUSTFILE,ACCT ELSE

ON.FILE = °
END
IF NOT{ON.FILE) THEN

CUST.REC = ""
CHANGE = 1

END ELSE
PRINT@{-1):@{10,10):"HASYOUR BILLING CHANGED (Y OR N)":
INPUT ANSWER, 1

END
IF ANSWER = 'Y' THEN

CHANGE = 1
END ELSE

CHANGE=O
END
IF CHANGE THEN

PRINT @(-1) :
CORRECT = "0"
LOOP

PRINT @(5,5) : "MODIFY AS NEEDED: " :
PRINT@{10,10) : "NAME: ":@{30,10) :
INPUT NAME = CUST.REC<1 > :
PRINT @(10, 12) : "ADDRESS: ": @(30,12) :
INPUT ADDRESS = CUST.REC<2> :
PRINT@{10,14) : "CITY,STATE,ZIP: " :@(30,14) :
INPUT CSZ = CUST.REC<3> :
PRINT
CUST.REC<1> = NAME
CUST.REC<2> = ADDRESS
CUST.REC<3> = CSZ
PRINT@{-1):@{5,5) : "NOW ON FILE:"
FOR 1= 1 T03

PRINT@(15,10 + 2· I) : CUST.REC<I>:
NEXT I
PRINT @(0,23) : "IS THIS CORRECT (Y OR N)?" :
INPUT ANSWER, 1
IF ANSWER = 'Y' THEN

CORRECT = 1
END ELSE

CORRECT = °

5: Statement and Function Reference 173

INPUT

END
UNTIL CORRECT DO REPEAT

END

In the preceding example, the INPUT statement is first used to record the
customer's account number. The account number must be a number of six
digits. For clarification, six question marks are printed to the screen after
the prompt, and the user can then write over those question marks. Since it
is important that the correct account number be entered, the automatic line
feed and carriage return is suppressed with the underscore (_). What the
user sees is:

ENTER YOUR ACCOUNT NUMBER: ??????

If the account is already on file, the INPUT statement is next used to find
out if the customer's billing information has changed. Since a yes or no
answer will suffice, only one character is accepted and the automatic line
feed and carriage return is enabled.

The INPUT statement is then used to allow the customer to change his or
her billing information. For each field the current contents are printed and
the user has the option of accepting it or modifying it. If the correct
information is on file, only pressing the RETURN key is necessary; if the
information needs to be changed, the user can use the backspace key to
modify the field before pressing the RETURN key. For example, for the
first such field what the user might see (with user input in bold) is:

MODIFY AS NEEDED:
NAME: JOHN SMITH_

The prompt, represented here by the underscore, waits at the end of the input
field. The customer can now use the backspace key to erase the field and
enter a different name, or change the one already on file. When the customer
is satisfied with the contents of the "NAME" field, the RETURN key can be
pressed to record it. This process repeats for each field. At the end of the
loop, the modified contents of the array are printed for the user to verify
before continuing with the program.

INPUT @: Request terminal input at a specified location.

The INPUT @ statement is a variation of the INPUT statement.
INPUT @ maintains formatted screens and provides format masking.

INPUT @(x,y) var [,length] [format-expr]

174 Pick BASIC: A Reference Guide

var

length

format-expr

INPUT @

the name of the variable to which user input will
be assigned.

the maximum length of the field to be input.
Once length characters have been input, an
automatic carriage return and line feed are
assumed, as in the standard INPUT statement.

an expression evaluating to the formatting codes
to be used. The syntax for format-expr is
described below.

The INPUT @ statement is in many ways an enhancement on the INPUT
statement in that it allows you to specify the exact location on the screen at
which the user is to be prompted. It also provides direct format verification
so that input will not be accepted if it does not fit the specified format.

Using the standard INPUT statement, you would have to precede the INPUT
statement with the proper PRINT statement (using the @ function) to
position the cursor at a specific position on the screen. Also, with the
standard INPUT statement, a loop would often have to be used with several
tests to ensure that the input matches a particular format.

When the user is prompted, the prompt character appears one space to the
left of the position specified by the coordinate (x,y), and the current value of
var (if any) is printed (in the specified format). The user can accept the
current value by pressing the RETURN key, or can enter another value. The
user will continue to be prompted until the input fits the requested format.
When input matches the specified format, it is printed in its external format
and then stored in the variable var in its internal format.

If the original value of var does not fit the required format, no error is
output.

~ The INPUT @ statement does not accept any of the
other screen manipulation codes available with the @
function (such as clearing the screen or providing text in
a standout mode).

5: Statement and Function Reference 175

INPUT @

Example

In the following application the INPUT @ function is used to prompt for
the salary and starting date of a new employee.

**** NEXT 3 LINES: PRINT THE 3 FORMA TIED ROWS FOR INPUT
PRINT@(-1) :@(10,10) : "YOUR NAME":
PRINT @(10,12) : "NEW SALARY" :
PRINT @(10,15) : "EFFECTIVE DATE" :
**** INPUT FOR NAME AT PROPER COLUMN, ROW
INPUT @(30, 1 0) NAME
**** INPUT FOR SALARY, WITH MONETARY FORMAT
INPUT@(30,12) SALARY "R2,"
**** INPUT FOR DATE EFFECTIVE, WITH DATE FORMAT
INPUT @(30, 15) DATE "D"

INPUTCLEAR: Clear the type-ahead buffer.*

The INPUTCLEAR statement clears the type-ahead buffer for the process
executing the program.

INPUTCLEAR

Any data in the type-ahead buffer is erased.

Example

In the following application a subroutine GO.CALC is called, which can
take several minutes to execute. The user can become impatient during this
time and attempt to abort the program by typing control sequences. The
GO.CALC subroutine is therefore followed by an INPUTCLEAR
statement, to ensure that the when the subroutine is finished, the user has a
chance to read the results before continuing with the program.

BREAKOFF
ECHO OFF
GOSUB GO.CALC
INPUTCLEAR
PRINT "PRESS ANY KEY TO CONTINUE: ":

* Not included in the SMA standards.

176 Pick BASIC: A Reference Guide

INPUTERR

INPUTERR: Oisplay an error message on last line of screen. *
The INPUTERR statement prints the specified text at the last line of the
screen. It is used in conjunction with the INPUT @ statement.

INPUTERR print-expr

print-expr a print expression, optionally combined with commas
for tabulation as in the PRINT statement. See the
PRINT statement for more information on the format
for print expressions.

An entry to the next INPUT @ statement erases any messages previously
sent to the bottom of the screen with INPUTERR.

The INPUTERR statement allows the programmer to provide additional
error messages to an INPUT @ statement. Like the error messages built
into the INPUT @ statement, the message printed by INPUT @ is cleared
from the screen when a response to INPUT @ is received.

Examples

To print the message "ERROR! NUMERIC DATA EXPECTED" on the
bottom of the screen, the code would read:

INPUTERR "ERROR! NUMERIC DATA EXPECTED"

The following program asks for the closing date for a property transaction.
The closing must occur within 45 days of approving the mortgage, so after
the masked INPUT @ statement verifies that a date is entered, the date is
verified as being within 45 days from today, and the INPUTERR statement
is used if it is not. The program continues to prompt the user for a closing
date until a satisfactory one is entered.

EQUATE TRUE TO 1, FALSE TO 0
PROMPT""
PRINT @(O,O) : "ENTER THE CLOSING DATE: " :
LOOP

INPUT@(24,O) CLOS.DATE "D"
TODAY = DATE()
IF ClOS.DATE >= TODAY AND CLOS.DATE < = TODAY + 45 THEN

VALID = TRUE
END ELSE

* Not included in the SMA standards.

5: Statement and Function Reference 177

INPUTERR

INPUTERR "CLOSING MUST BE COMPLETED WITHIN 45 DAYS"
VALID = FALSE

END
UNTIL VALID DO REPEAT

INPUTIF: Capture terminal input from the type-ahead buffer. *
The INPUTIF statement captures input from the type-ahead buffer and
assigns the input to a variable.

INPUTIF var [= expr 1 [,Iength-expr 1 [,fillchars] [_1 [: 1 { THEN
statements [ELSE statements 11 ELSE statements}

var [= expr]

length-expr

fillchars

assign input data to variable var. If expr is
specified, var is initially set to the value of expr,
and characters in the type-ahead buffer are
appended to that value.

an expression to be interpreted as the maximum
number of characters to assign to var.

an expression evaluating to a string of one, two,
or three characters. The first character is taken as
a background mask for the input field, and the
second is used as an overstrike filler for portions
of the field left unwritten. The cursor will return
to the end of the input data unless there is a third
fill character, in which case the cursor will
remain at the end of the formatted field.

an underscore specifies that a carriage return must
be entered by the user, even if the input length
equals length-expr. If the user tries to exceed the
maximum length, a bell will ring.

a colon suppresses the automatic line feed and
carriage return when the value is input.

THEN statements execute statements if the type-ahead buffer is not
empty. For details about the syntax of THEN
clauses, see the IF statement.

* Not included in the SMA standards.

178 Pick BASIC: A Reference Guide

INPUTIF

ELSE statements execute statements if the type-ahead buffer is
empty. For details about the syntax of ELSE
clauses, see the IF statement.

The INPUTIF statement checks the type-ahead buffer, and if it is non-null,
assigns the variable var initially with the contents of the type-ahead buffer
and executes the THEN part of the statement. Unless a maximum length
(length-expr) has been specified with no underscore (_), pressing the
RETURN key is necessary. If there is no data in the type-ahead buffer, the
variable is not assigned and the ELSE clause is executed.

If the type-ahead buffer is empty, the variable is not assigned and the user is
not prompted. However, if the type-ahead buffer is not empty, but a
carriage return is required to complete the input, the user is prompted with
the type-ahead buffer input.

The INPUTIF statement includes many features reflecting those of the
standard INPUT statement. See the INPUT statement for more information.

Examples

To assign the variable TYPEA with the current contents of the type-ahead
buffer and print "TYPE AHEAD EMPTY" if no data is received, the code
would read:

INPUTIF TYPEA ELSE
PRINT "TYPE AHEAD EMPTY"

END

In the following application a requested calculation can take several minutes
to complete. The user is allowed to use the ESC key to exit from the
program, and the INPUTIF statement is repeated at every iteration to see if
the ESC key was entered in the type-ahead buffer.

PRINT "ENTER <ESC> TO EXIT."
LOOP

LOOP
INPUTIF STOPVAR,1 : THEN

IF STOPVAR = CHAR(27) THEN
GOSUBEXIT

END
TA.EMPTY=O

END ELSE
TA.EMPTY= 1

5: Statement and Function Reference 179

INPUTIF

END
UNTIL TA.EMPTY DO REPEAT

UNTIL ... OO REPEAT

INPUTNULL: Establish character as null in input. *
The INPUTNULL statement defines a character to be interpreted as the null
string if sent as a response to an INPUT @ statement.

INPUTNULL expr

expr an expression evaluating to a single character. Any
extraneous characters in the expression are ignored.

The INPUTNULL statement allows the programmer to specify a character to
be used as an exit from a masked INPUT @ statement.

Normally the INPUT @ statement continues to prompt the user until a
response matching the format expression is entered. The only exceptions to
this are the characters specified by the INPUTTRAP statement and the null
string. The INPUTNULL statement allows the programmer to specify a
character to be interpreted as the null string, thus providing an exit from
INPUT@.

Example

In the following application the user is prompted for a price, and the
INPUTNULL statement is used to allow the user to specify 0 by entering
an X.

INPUTNULL" X "
PRINT @(-1) : "ENTER A DOLLAR AMOUNT"
INPUTERR 'ENTER "X" FOR A ZERO AMOUNT'
INPUT @ (23,0) VALUE "L2,$"

* Not included in the SMA standards.

180 Pick BASIC: A Reference Guide

INPUTTRAP

INPUTTRAP:: Transfer control of program according to input data. *
The INPUTtRAP statement establishes characters that, when input as full
responses to an INPUT @ statement, force a branch to the specified labels.

INPUTTRAP expr { GOTO I GOSUB } /abe/1, /abe/2, /abe/3, ...

expr

GOTO

GOSUB

labeln

an expression evaluating to characters to be searched for
in the input.

branch to the specified label, without returning.

branch to the subroutine starting at the specified label,
and return to the line following the INPUTTRAP
statement when a RETURN statement is encountered.

statement labels to be branched to. If the input is the
nth character in expr, the nth label is branched to.

The INPUTTRAP statement provides an escape from masked input
statements. It is used to declare characters which will be accepted as
responses to an INPUT @ statement, specifying the statement labels to
which each character will branch.

The structure of the INPUTTRAP statement is analogous to the
ON ... GOTO and ON ... GOSUB statements, except that the branching
variable is taken directly from input instead of from the evaluation of an
expression. The primary purpose of the INPUTTRAP statement is that
when an INPUT @ statement is used with format expressions, it will
continue to prompt for input until the input matches the specified format.
The INPUTTRAP statement allows the programmer to provide an exit from
the looping structure of the INPUT @ statement.

If the INPUTTRAP statement is used with the GOSUB keyword, program
execution returns to the line following the INPUTTRAP statement when
the subroutine is finished, not to the line following the INPUT @
statement.

* Not included in the SMA standards.

5: Statement and Function Reference 181

INPUTTRAP

Example

In the following application the user is prompted for a dollar amount. If the
user wishes to exit from the program at this point, or would like to start the
program over again, the characters "E" or "Q" can be entered as a response.
The INPUTTRAP statement ensures that if the characters "E" or "Q" are
entered, the program will branch directly to the specified statement labels.

PRINT @(O,3) : "ENTER AMOUNT OF PAYMENT: ":
PRINT @(O,23) : "ENTER 'E' IF YOU MADE AN ERROR, 'Q' TO QUIT" :
INPUTIRAP "EQ" GOTO ASK.QUESTIONS, EXIT
INPUT@(26,3) PAYMENT "L2,$"

INS: Insert an attribute, value, or subvalue into an array. *
The INS statement inserts an attribute, value, or subvalue into a specified
position in a dynamic array.

INS expr BEFORE array <attr# [,value# [,5ubval# 11>

expr

array

attr#

value#

an expression evaluating to the data to be inserted.

the dynamic array to be changed.

an expression evaluating to the attribute number. If
attr# is equal to 0, the entire array is replaced. If attr#
evaluates to a negative number, the attribute is appended
to the end of the array. If attr# evaluates to a number
greater than the number of attributes in the array, the
data is appended to the end of the array, with the
appropriate number of empty attributes inserted.

an expression evaluating to the value number. If value#
is omitted or equal to 0, the value is inserted before the
attribute. If value# evaluates to a negative number, it is
appended at the end of the attribute. If value# evaluates
to a number greater than the number of values in the
attribute, the data is appended to the end of the attribute,
with the appropriate number of empty values inserted.

* Not included in the SMA standards.

182 Pick BASIC: A Reference Guide

INS

I
subv41# an expression evaluating to the subvalue number. If

subval# is omitted or equal to 0, the subvalue is
inserted before the value. If subval# evaluates to a
negative number, it is appended to the end of the value.
If subval# evaluates to a number greater than the
number of subvalues in the value, the data is appended
to the end of the value, with the appropriate number of
empty subvalues inserted.

INS is the statement equivalent of the INSERT function.

If an attribute, value, or subvalue expression evaluates to a noninteger
value, it is truncated to an integer value.

The LOCATE statement can be particularly useful with the INS statement
to insert array elements in an ascending or descending order. See the
LOCATE statement for more information.

Example

In the following application the user creates an alphabetical list of each
item ID in the file AIRPORTS. The file is selected, and when each
item ID is read, the LOCATE statement is used to find its alphabetical
position. The INS statement is then used to insert the current ID in the
proper position.

EQUATE TRUE TO 1, FALSE TO 0
OPEN "AIRPORTS" TO AIRPORTFILE ELSE

ABORT 201, "AIRPORTS"
END
SELECT AIRPORTFILE TO LIST
ALPH.LlST = ""
END.OF.LlST = FALSE
LOOP

READNEXT ID FROM LIST ELSE
END.OF.LlST = TRUE

END
UNTIL END.OF.LlST DO

LOCATE ID IN ALPH.LlST BY "AL" SETIING POSITION THEN
, PRINT ID:" DUPLICATE ENTRY! POSSIBLE FILE CORRUPTION"

ABORT
END ELSE
. INS ID BEFORE ALPH.LlST <POSITION>

END
REPEAT

5: Statement and Function Reference 183

INSERT()

INSERT(): Insert an attribute, value, or subvalue into an array.

The INSERT function inserts an attribute, value, or subvalue into a
specified position in a dynamic array. INSERT() is the function equivalent
of the INS statement.

array = INSERT(array,attr# [,value# [,subval#]] { , I ;} expr)

array

attr#

value#

subval#

the dynamic array to be changed.

an expression evaluating to the attribute number. If
attr# is equal to 0, the entire array is replaced. If attr#
evaluates to a negative number, the attribute is appended
to the end of the array. If attr# evaluates to a number
greater than the number of attributes in the array, the
data is appended to the end of the array, with the
appropriate number of empty attributes inserted.

an expression evaluating to the value number. If value#
is omitted or equal to 0, the value is inserted before the
attribute. If value# evaluates to a negative number, it is
appended at the end of the attribute. If value# evaluates
to a number greater than the number of values in the
attribute, the data is appended to the end of the attribute,
with the appropriate number of empty values inserted.

an expression evaluating to the subvalue number. If
subval# is omitted or equal to 0, the subvalue is
inserted before the value. If suhval# evaluates to a
negative number, it is appended to the end of the value.
If subval# evaluates to a number greater than the
number of subvalues in the value, the data is appended
to the end of the value, with the appropriate number of
empty subvalues inserted.

expr an expression evaluating to the data to be inserted.

Either a comma or a semicolon can separate the subvalue expression from
the replacement data, but if the subvaille is omitted, then a semicolon must
be used.

If an attribute, value, or subvalue expression evaluates to a noninteger
value, it is truncated to an integer value.

184 Pick BASIC: A Reference Guide

INSERT()

The LOCAtE statement can be particularly useful with the INSERT
function to insert array elements in an ascending or descending order. See
the LOCATE statement for more information.

Example

In the following application the user creates an alphabetical list of each
item ID in the file AIRPORTS. The file is selected, and when each
item ID is read, the LOCATE statement is used to find its alphabetical
position. The INSERT function is then used to insert the current ID in the
proper position.

EQUATE TRUE TO 1, FALSE TO 0
OPEN "AIRPORTS" TO AIRPORTFILE ELSE

ABORT 201 , "AIRPORTS"
END
SELECT AIRPORTFILE TO LIST
ALPH.LlST = ""
END.OF.LlST = FALSE
LOOP

READNEXT 10 FROM LIST ELSE
END.OF.LlST = TRUE

END
UNTIL END.OF.LlST DO

LOCATE 10 IN ALPH.LlST BY "AL" SETIING POSITION THEN
PRINT 10 : " DUPLICATE ENTRY! POSSIBLE FILE CORRUPTION"
ABORT

END ELSE
ALPH.LlST = INSERT(ALPH.LlST ,POSITION; 10)

END
REPEAT

INT(): Return the integer portion of an expression.

The INT function truncates an expression to its integer value.

INT(expr)

expr an expression evaluating to a numeric value.

Use the INT function to return the integer portion of an expression expr.
The fractional portion of the value is truncated (not rounded), and the integer
portion remaining is returned.

5: Statement and Function Reference 185

INT()

Example

In the following application the INT function is used to calculate the
number of items that can be bought for a given amount at a set price:

PRINT "HOW MUCH DO YOU HAVE TO SPEND? $" :
INPUT AVAILABLE
NUMBER = INT(AVAILABLElPRICE)
PRINT "EACH ITEM COSTS" : PRICE"2,$": "."
PRINT "FOR" :AVAILABLE"2,$" : "YOU CAN GET" : NUMBER :"ITEMS."

LEN(): Return the length of an expression.

The LEN function returns the length of a string expression.

LEN(expr)

expr any string expression.

The LEN function reports the number of characters in a string. All blank
spaces (including trailing blanks) are included in the calculation.

Examples

To assign the number of characters in the string STRING to the variable
LENGTH, the code would read:

LENGTH = LEN(STRING)

If STRING contains "HI, MOM", LENGTH will contain "7".

In the following application the INDEX function is used within a global
change of a string. The LEN function is used to determine the length of the
original string.

186

PRINT "GLOBAL CHANGE: "
PRINT
PRINT "STRING TO CHANGE: .. :
INPUT ORIG.STR
PRINT "CHANGE TO : " :
INPUT NEW.STR
LENGTH = LEN(ORIG.STR)

Pick BASIC: A Reference Guide

LOOP
POS = INDEX(RECORD , ORIG.STR , 1)

UNTIL POS = 0 DO

LEN()

RECORD = [1 ,P08-1] : NEW.STR : RECORD [POS + LENGTH,9999]
REPEAT

LN(): Return the natural log of an expression.

The LN function returns the log base e of an expression. The LN function
is the inverse of the EXP function.

LN (expr)

expr an expression evaluating to a numeric value.

The LN function returns the natural log of an expression. The natural log is
the the log base e of a given expression. e is an irrational number, with an
approximate value of 2.7183.

Example

To assign the natural log of 10 to the variable NLOG, the code would read:

NLOG = LN(1 0)

LOCATE(): Find an attribute, value, or subvalue in a string.

The LOCATE statement is used to find the occurrence of an attribute, value,
or subvalue within a specified dynamic array. If it is not found, LOCATE
finds the proper position at which the string should be inserted.

There are two forms of the LOCATE statement, both using the LOCATE
keyword. The second form, which is the only version included in the SMA
standards, allows the programmer to specify where in the dynamic array to
start searching, and uses the angle bracket syntax similar to that of the
EXTRACT function.

LOCA TE(string,array [,attr# [,val#]] ; var [; 'seq']) { TH EN
statements [ELSE statements] 1 ELSE statements}

5: Statement and Function Reference 187

LOCATE()

LOCATE string IN array [<attr# [,val# 1> 1 ,start [BY seq 1
SETTING var { THEN statements [ELSE statements 11 ELSE
statements}

string

array

attr#

an expression evaluating to the string to be searched for
in the dynamic array.

an expression evaluating to the dynamic array to be
searched.

an expression evaluating to the attribute number to be
searched. The first value number matching the string
will be placed in var. If attr# is omitted or equal to 0,
the entire dynamic array is searched and the first
attribute number which matches the string is placed in
var.

val# an expression evaluating to the value number to be
searched within the specified attribute. The first
subvalue number matching the string will be placed in
var. If val# is omitted or equal to 0, the entire attribute
is searched and the first value number which matches
the string is placed in var.

var the variable to be assigned.

start position to start searching with (default is 1). If string
is in the first start-l positions, it will not be found;
however, if string is found, var will still be assigned a
value as if it had started searching with 1.

seq an expression evaluating to the sequence in which
elements are sorted. In the first syntax line given
above, seq must be enclosed in single quotes. Possible
values are:

A ascending order.

D descending order.

AL ascending order, left-justified.

DL descending order, left-justified.

A R ascending order, right-justified.

DR descending order, right-justified.

188 Pick BASIC: A Reference Guide

LOCATE()

THEN statements
if found, execute the specified statements. For details
about the syntax of THEN clauses, see the IF
statement.

ELSE statements
if not found, execute the specified statements. For
details about the syntax of ELSE clauses, see the IF
statement.

The LOCATE statement searches a dynamic array for an attribute, value, or
subvalue, and places an integer in var depending on whether it is found. If it
is found, the integer indicates the position where the expression was found;
if it is not found, the integer indicates where it should be inserted.

The LOCATE statement can be used with the INSERT statement: if the
string is not found, the number placed in var can be used with a subsequent
INSERT statement to place the string in the proper sequence.

Unless the BY clause is used, the sequence is assumed to be random: if the
string is not found, var is assigned the number of the last position plus 1.
Thus a subsequent INSERT statement places the string at the end of the
sequence. However, if the elements to be searched are already sorted into an
ascending or descending ASCII sequence, the BY clause can be used to
specify the order to be maintained. If the string is not found and the BY
clause is used, var is therefore assigned the position which would maintain
the order, and a subsequent INSERT statement places the string in its proper
place. Note, however, that if the BY clause is used and the elements are not
in the expected sequence, an element which is out of order is not found.

Either the THEN or the ELSE clause must be used with the LOCATE
statement. A common use of the ELSE clause is to insert the string into
the proper position, using the position returned in var.

Example

In the following application the user creates an alphabetical list of each
item ID in the file AIRPORTS. The file is selected, and each item ID is
read with READNEXT. The LOCATE statement does not actually find the
ID in the list, but returns into the variable POSITION the position where it
should have been found. (If the ID is found in the list, the program aborts
since it would imply duplicate item IDs.) The INS statement is then used
to insert the current ID in the proper position.

5: Statement and Function Reference 189

LOCATE()

EQUATE TRUE TO 1, FALSE TO 0
OPEN "AIRPORTS" TO AIRPORTFILE ELSE

ABORT 201, "AIRPORTS"
END
SELECT AIRPORTFILE TO LIST
ALPH.LlST = ""
END.OF.LlST = FALSE
LOOP

READNEXT ID FROM LIST ELSE
END.OF.LlST = TRUE

END
UNTIL END.OF.LlST DO

LOCATE ID IN ALPH.LlST BY "AL" SETTING POSITION THEN
PRINT ID : " DUPLICATE ENTRY! POSSIBLE FILE CORRUPTION"
ABORT

END ELSE
INS ID BEFORE ALPH.LlST <POSITION>

END
REPEAT

The LOCATE statement in this example might also have read:

LOCATE(ID, ALPH.LlST; POSITION; "AL") THEN ...

LOCK: Set an execution lock.

The LOCK statement sets an execution lock for the current process.

LOCK expr [ELSE statements 1

expr expr evaluates to a number designating as the
lock number.

ELSE statements if a lock has already been set by another user,
execute statements. If the ELSE clause is not
specified, the program pauses until the execution
lock is lifted. For details about the syntax of
ELSE clauses, see the IF statement.

The significance of each execution lock is designated by the application
developer. By establishing a unique execution lock for a specific procedure,
the programmer can ensure that two users cannot run the same procedure
simultaneously.

At least 64 execution locks are available; some Pick systems support more.
The TCL verb WHAT produces a list of all current execution locks and the
process numbers which have set them.

190 Pick BASIC: A Reference Guide

LOCK

For protec~ing file items, the READU, READVU, and MATREADU
statements use a completely different method of item locking.

Execution locks, like item locks, are automatically released at the end of the
program. The UNLOCK statement can be used, however, to unlock a
procedure before terminating the program.

Example

In the following application the external subroutine REMOTE. MAIL uses a
modem to send an electronic message to a remote system and then reports to
the user that the message was successfully sent. By using the LOCK
statement, it is ensured that two users will not be using the modem at once.
In this example, execution lock number 56 is the one that has been
established for this subroutine.

The LOCK statement is actually called twice in the example. The first time
it is called, an ELSE clause is included to give the user the chance to exit.
If the user chooses not to exit, the LOCK statement is called again without
an ELSE clause, and the program will wait for the modem to be freed before
continuing.

SUBROUTINE REMOTE.MAIL (MESSAGE, MODEMLlNE)
LOCK 56 ELSE

PRINT "MODEM IN USE. ABORT MESSAGE? (Y OR N)":
INPUT ANSWER, 1
IF ANSWER = "V" THEN

LOCK 56
END ELSE

GOSUB EXIT
END

END
GOSUB 20; * Encumber modem line
GOSUB 30; * Send modem initialization string

UNLOCK 56
RETURN

5: Statement and Function Reference 191

LOOP

LOOP: Structure for program looping.

The LOOP construct provides a two-tiered structure for repeated execution of
a group of statements.

LOOP
[statements 1

{ WHILE I UNTIL} expr DO
[statements 1

REPEAT

The LOOP statement starts a program loop. The first group of statements
is executed, and when the WHILE or UNTIL clause is reached, a test is
performed. Depending on the result, execution continues either with the
second group of statements or with the statements following the REPEAT
clause.

The WHILE clause allows a positive condition to be specified: as long as
this condition is true (i.e., evaluates to 1), the loop repeats. The UNTIL
clause allows a negative condition to be specified: the loop repeats as long
as the specified condition is not true (Le., evaluates to 0).

Statements included between the LOOP and the WHILE or UNTIL clause
are executed at least once; they are repeated again each time the loop is
iterated. The statements between the WHILE and UNTIL are executed only
if the condition passes; they are repeated each time the loop is iterated, but
only if the condition passes in each iteration.

Although it is possible to exit the loop by means other than the conditional
WHILE and UNTIL statements (for example, by using GOTO or GOSUB in
the DO statements), it is not recommended to do so.

Example

In the following application, numbers are prompted for and then multiplied.
The program continues to prompt for a number until a valid number is
entered. The program continues to prompt for numbers to multiply until a
zero is entered as the first number.

192

LOOP
LOOP

PRINT "ENTER A NUMBER (ENTER 0 TO EXIT): ":
INPUT NUM1

UNTIL NUM(NUM1) DO
PRINT NUM1 :.: NOT A NUMBER. USE 0 TO EXIT'

Pick BASIC: A Reference Guide

REPEAT
UNTIL. NUM1 = 0 00

LOOP
PRINT "ENTER A SECOND NUMBER: ":
INPUT NUM2

UNTIL NUM(NUM2) 00
PRINT NUM2 : ": NOT A NUMBER"

REPEAT
PRINT NUM1 :" TIMES" : NUM2 : " IS" : NUM1 *NUM2 : "."

PRINT
REPEAT

MAT: Assign values to elements of an array.

LOOP

The MAT statement is used either to assign a single value to all elements of
an array, or to copy all elements of one array into another.

MAT array = expr
MAT array1 = MAT array2

MAT array = expr assign the evaluated value of expr to all elements
of the array.

MATarrayl = MAT array2
assign each element of array2 to the
corresponding element in arrayl The arrays thus
become equivalent. Note that each array must
have been dimensioned via the DIM statement to
have the same number of elements, although the
actual dimensions do not need to be identical.
The elements are assigned in consecutive order,
regardless of whether the dimensions are the
same.

The MAT statement can be used only for assigning a value to all elements
of an array or to make two arrays equivalent in data. It cannot be used to
perform matrix arithmetic.

In passing a,dimensioned array to an external subroutine, the MAT keyword
must precede the array name. See the CALL statement for more
information.

5: Statemem and Function Reference 193

MAT

Example

If the array ARR I has been dimensioned to be a 12-element vector and the
array ARR2 has been dimensioned to a 3 by 4 matrix, ARRI can be
assigned the elements of ARR2 with:

MAT ARR1 = MAT ARR2

If ARR2 contained:

1

2

3

FIRST

FIFTH

NINTH

then ARR I will contain:

1

2

3

4

5

6

7

8

9

10

11

12

FIRST

SECOND

THIRD

FOURTH

FIFTH

SIXTH

SEVENTH

EIGHTH

NINTH

TENTH

ELEVENTH

1WELFTH

2

SECOND

SIXTH

TENTH

3 4

THIRD FOURTH

SEVENTH EIGHTH

ELEVENTH 1WELFTH

MA TBUILD: Create a dynamic array from a dimensioned array. *
The MATBUILD statement writes the consecutive elements of a
dimensioned array into a dynamic array. It is the inverse of the
MATPARSE statement; that is, a string converted into a dimensioned array
with MATPARSE can be reconstructed, using the same delimiters, with
MATBUILD.

* Not included in the SMA standards.

194 Pick BASIC: A Reference Guide

MATBUILD

We give two syntaxes. The first syntax line shows how MATBUILD is
implemente~ on several R83 systems; the second shows how it is
implemented on uniVerse systems.

MATBUILD string FROM array, delim

MATBUILD string FROM array [,start [,end 11 [USING delim 1

string

array

delim

start

end

USING

the string or dynamic array to be created.

the dimensioned array from which the elements are read.

an expression evaluating to the characters used to
delimit elements in string. The behavior of the
MA TBUILD statement is dependent on the number of
characters specified as delimiters.

the element of the array to begin with. If not specified,
or if out of range, the default is 1.

the element of the array to end with. If not specified, or
if out of range, the default is the size of the array. In
IDEAL and INFORMATION flavor accounts on
uniVerse systems, to retain overflow elements from
array, end must be either less than or equal to zero, or
greater than the size of array.

specifies the characters used to delimit elements in
string. If not specified, the default is an attribute mark.
To specify a null delimiter, specify USING with no
option.

The behavior of the MA TBUILD statement is dependent on the number of
characters specified as delimiters:

Number of Delimiters

o (de lim = "")

2 or more

Result

Each element of array is placed into
string without delimiters.

Each element of array is placed into
string separated by the delimiter
character delim.

The fields of array will be loaded in the
dynamic array. They will be
alternating data and delimiter elements.

5: Statement and Function Reference 195

MAT BUILD

On uniVerse systems, PICK flavor arrays store overflow elements in the
last element (see example 3 below); IDEAL and INFORMATION flavors
store overflow elements in element zero.

Examples

Using Two Delimiters

If array ARR 1 is dimensioned to be a 5 by 2 matrix and ARR 1 contains:

2

then:

2

3

4

5

THIS -
IS -
A -

STRING

MATBUILD STRING FROM ARR1, "--"

produces as STRING:

THIS-IS-A-STRING

Using One Delimiter

If ARRI contains:

2

1 THIS IS

2 A STRING

3

4

5

then:

MATBUILD STRING FROM ARR1, "-"

will also produce:

THIS-IS-A-STRING

196 Pick BASIC: A Reference Guide

MATBUILD

Using No Delimiters

If ARRI contains:

then:

1

2

3

4

5

T

I

-
S

A

2

H

S

I

-
-STRING

MATBUILD STRING FROM ARR1, "n

will produce:

THIS-IS-A-STRING

The three arrays shown above are representative of arrays which were
composed with the MA TPARSE statement using the same delimiters.

MATPARSE: Create a dimensioned array from a dynamic array.*

The MATPARSE statement separates the elements of a string expression
into consecutive elements of a dimensioned array. It is the inverse of the
MATBUILD statement. The array must be named and dimensioned in a
DIM or COMMON statement before it is used in this statement.

We give two syntaxes. The first syntax line shows how MATPARSE is
implemented on several R83 systems and on Prime INFORMATION; the
second shows how it is implemented on uniVerse systems.

MATPARSE array FROM string, delim [SETTING var J

MATPARSE array [,start [,end J I FROM string [{ , I USING}
delim J [SETTING var J

array the dimensioned array to be created.

string an expression evaluating to the string or dynamic
array from which to read the elements.

* Not included in the SMA standards.

5: Statement and Function Reference 197

MATPARSE

de lim

SETTING var

start

end

USING

an expression evaluating to the characters used to
delimit elements in string. The behavior of the
MA TPARSE statement is dependent on the
number of characters specified as delimiters.

assign to var the number of fields separated by
delim in the string. The resulting var can be
tested to determine if it is larger than the
dimensions of the array. (The SETTING phrase
is not available on Prime INFORMATION
systems.)

an optional starting pOSItIOn within array. If
start is less than 1, the default is 1.

an optional ending position within array. If end
is less than 1 or greater than the size of array, the
default is the size of the array.

specifies the characters used to delimit elements
in string. If not specified, the default is an
attribute mark. To specify a null delimiter, omit
the comma or USING after string.

The behavior of the MA TP ARSE statement is dependent on the number of
characters specified as delimiters:

198

Number of Delimiters Result

o (de lim ::)

2 or more

Each character of string is placed into a
separate element of array.

Each field separated by the delimiter
character delim is loaded into a separate
element of array. The delimiter character
itself will not be stored.

Fields and delimiters alternate as
elements of array. Fields will occupy all
odd-numbered elements of the array, and
delimiters will occupy all even-numbered
elements. Consecutive delimiters will be
placed in the same element if they are
identical, but will be placed in separate
elements if they are different, with a null
field element in between.

Pick BASIC: A Reference Guide

MATPARSE

If the dimensions of the dimensioned array are too small to accommodate the
parsed string, the leftover portion is appended to the last element of the
array, delimiters intact.

On uniVerse systems, PICK flavor arrays store overflow elements in the
last element (see the first example below); IDEAL and INFORMATION
flavors store overflow elements in element zero.

Examples

Using No Delimiters

If a string STRING contained:

THIS-IS-A-STRING

and the array ARRI were dimensioned to a 7-element vector, then:

MATPARSE ARR1 FROM STRING, ""

(0 delimiters) would produce as ARR 1 :

1

2

3

4

5

6

7

T

H

I

S

-
I

S-A-STRING

Using One Delimiter

If the single delimiter "-" was specified:

MATPARSE ARR1 FROM STRING, "-"

5: Statement and Function Reference 199

MATPARSE

would return into ARRl:

1 THIS

2 IS

3 A

4 STRING

5

6

7

Using Two Delimiters

If two delimiters are specified:

MATPARSE ARR1 FROM STRING, "--"

then ARR 1 would contain:

1

2

3

4

5
6

7

THIS

-
IS

-
A
-

STRING

For each of these examples, MA TBUILD with the same delimiters can be
used to reconstruct the string.

MA TREAD: Read a file item as a dimensioned array.

The MA TREAD statement reads a file item and assigns each attribute to an
element of a dimensioned array.

200

MATREAD array FROM [filevar, J item-/D {THEN
statements [ELSE statements J I ELSE statements}

array the dimensioned array to be assigned. The array
must have been dimensioned with a DIM or
COMMON statement before it can be assigned
with the MA TREAD statement.

Pick BASIC: A Reference Guide

filevar

item-/D

MATREAD

the file variable to which the file was opened. If
filevar is not specified, the default file variable is
used, which is the last file opened without a file
variable assigned.

an expression evaluating to the item ID to be
read. If the item is not found, the contents of
array remains unchanged.

THEN statements execute statements if the item ID is found. For
details about the syntax of THEN clauses, see the
IF statement.

ELSE statements execute statements if the item ID is not found.
For details about the syntax of ELSE clauses, see
the IF statement.

The MA TREAD statement assigns the attributes of a file item to
consecutive elements of the specified dimensioned array. The first attribute
of the item becomes the first element of array, the second attribute of the
item becomes the second element of array, and so on. The array must be
named and dimensioned in a DIM or COMMON statement before it is used
in this statement.

A MA TREAD statement does not set an update lock on the specified record.
That is, the record remains available for update to other users. To prevent
other users from updating the record until it is released, use a MA TREADU
statement. See the MA TREADU statement for more information.

If the number of attributes in the file item is greater than the dimensions of
the array, the remainder of the attributes are placed into the last element of
the array, separated by attribute marks (CHAR(254». If the number of
elements in the array is greater than the number of attributes in the item, the
extra elements in the array are assigned a null value.

The MA TREAD statement functionally yields the same result as using the
READ statement to read a dynamic array and then using the MA TPARSE
statement to assign a dimensioned array to the same elements.

5: Statement and Function Reference 201

MATREAD

Example

In the following application, the item containing an employee's statistics is
read into the dimensioned array EMP. The MATREAD statement reads the
elements of the array from the EMPLOYEES file.

EQU TRUE TO 1, FALSE TO 0

ITEM.ABORTED = FALSE
ITEM.ON.FILE = TRUE
READ.COMPLETED = FALSE
LOOP

MATREAD EMP FROM EMPLOYEES,EMP.lD THEN
PRINT ""EMPLOYEE'S DATE OF BIRTH IS" :
OCONV (EMP(11),'D')

END ELSE
PRINT "NOT ON FILE"

END

MATREADU: Read a dimensioned array, setting an item lock.

The MATREADU statement performs a MATREAD, simultaneously
setting an item lock.

202

MATREADU array FROM [fi/evar, 1 item-ID [LOCKED
statements] {THEN statements [ELSE statements 11 ELSE
statements}

array

filevar

item-/D

the dimensioned array to be assigned. The
array must have been dimensioned with a
DIM or COMMON statement before it
can be assigned with the MATREADU
statement.

the file variable to which the file was
opened. If filevar is not specified, the
default file variable is used, which is the
last file opened without a file variable
assigned.

an expression evaluating to the item ID to
be read. If the item is not found, the
contents of array remains unchanged.

Pick BASIC: A Reference Guide

LOCKED statements

THEN statements

ELSE statements

MATREADU

execute statements if the item was already
locked by another process. The statements
of the LOCKED clause follow the syntax
of statements in THEN or ELSE clauses.

execute statements if the item ID is
found. For details about the syntax of
THEN clauses, see the IF statement.

execute statements if the item ID is not
found. For details about the syntax of
ELSE clauses, see the IF statement.

The behavior of the MA TREADU statement is identical to that of the
MA TREAD statement, except that a lock is placed on the item to be read.

When an item is locked, it cannot be read by another READU, READVU,
or MATREADU statement until the lock is removed. The lock is removed
by exiting the program, updating the file with the WRITE, WRITEV, or
MATWRITE statements, or releasing the lock with the RELEASE
statement. The file can be updated without removing the item lock with the
WRITEU, WRITEVU, or MATWRITEU statements. Although there is no
theoretical limit to the number of items that can be locked, the size of the
item lock table will vary from implementation to implementation.

If the MATREADU statement is executed on an item already locked by
another user, the program hangs until the lock is released, unless the
LOCKED clause is specified. The LOCKED clause allows the user to exit
from the MATREADU statement without waiting for the item to be
released. Note that if the LOCKED clause is used, the array variable array
will not be assigned.

If the item does not exist, the item lock is still set, and the ELSE clause is
executed. Thus the MATREADU statement can be used to reserve an item
for use by the program even if it does not yet exist.

The MA TREADU statement performs the same function as using the
READU statement to read a dynamic array and then using the MATP ARSE
statement to assign a dimensioned array to the same elements.

Example

In the following example, the MA TREADU statement is used to read a file
item from the file opened as EMPLOYEES. This item is placed into the

5: Statement and Function Reference 203

MATREADU

dimensioned array EMP with Attribute 1 going into EMP(1), Attribute 2
going into EMP(2), etc. If the item is currently locked by another user, a
message is displayed and the user can try again or quit. Once the
MATREADU has successfully completed, either the item is modified, if it
was on file, or is added. The MA TWRITE statement is then used to write
the item back to the file, releasing the item lock in the process.

EQU TRUE TO 1 , FALSE TO 0

ITEM.ABORTED = FALSE
ITEM.ON.FILE = TRUE
READ.COMPLETED = FALSE
LOOP

MATREADU EMP FROM EMPLOYEES,EMP.ID LOCKED
PRINT "** ITEM LOCKED. PRESS RETURN TO"
PRINT ''TRY AGAIN, ENTER 'Q' TO QUIT = ":
INPUTRESP
IF OCONV(RESP, "MCU") = "Q" THEN ITEM.ABORTED = TRUE

END ELSE
ITEM.ON.FILE = FALSE
READ.COMPLETED = TRUE

END
UNTIL READ.COMPLETED OR ITEM.ABORTED DO REPEAT
IF ITEM.ABORTED THEN

NULL ;* Skip processing
END ELSE

IF ITEM.ON.FILE THEN
GOSUB PROCESS. EXISTING. ITEM

END ELSE
GOSUB PROCESS.NEW.ITEM

END
END
MATWRITE EMP TO EMPLOYEES,EMP.ID

MATWRITE: Write a dimensioned array into a file item.

The MA TWRITE statement writes the elements of a dimensioned array as
attributes of a file item.

MATWRITE array ON [filevar, I item-ID

204 Pick BASIC: A Reference Guide

array

filevar

item-ID

MATWRITE

an expression evaluating to the dimensioned array to
write into the file item.

the variable to which the file was opened. If filevar is
not specified, the default file variable is used, which is
the file most recently opened without an assigned file
variable.

an expression evaluating to the item ID of the item to
be written.

The MA TWRITE statement writes a dimensioned array onto a file item,
overwriting any data previously stored in that item. If the file item does not
exist, a new item is created. Element 1 of the dimensioned array becomes
Attribute 1 of the file item, element 2 becomes Attribute 2, etc.

Example

To write the dimensioned array EMPLOYEE into an item with item-ID
NAME in the file opened as EMP.F1LE, the code would read:

MATWRITE EMPLOYEE ON EMP.FILE , NAME

MATWRITEU: Write an array into a file item, retaining item locks.

The MA TWRITEU statement writes the elements of a dimensioned array as
attributes of a file item, leaving item locks intact.

MATWRITEU array ON [filevar, 1 item-/D

array

filevar

item-/D

an expression evaluating to the dimensioned array to
write into the file item.

the variable to which the file was opened. If filevar is
not specified, the default file variable is used, which is
the file most recently opened without an assigned file
variable.

an expression evaluating to the item ID of the item to
be written.

The MA TWRITEU statement is identical to the MA TWRITE statement,
except that item locks are not lifted by the MA TWRITEU statement.

5: Statement and Function Reference 205

MATWRITEU

Element 1 of the dimensioned array becomes Attribute 1 of the file item,
element 2 becomes Attribute 2, etc.

Example

In the following application the MA TWRITEU statement is used to update
inventory information which is still being processed, and is therefore not
available to other users for updating.

INPUT OTY.ORD
INV.lTEM (10) += OTY.ORD; ·Update qty committed
MATWRITEU INV.ITEM ON INV.FILE, PN

MOD(): Return remainder of one expression divided by another.*

The MOD function divides one expression by another and returns the
remainder. It is functionally equivalent to the REM function.

MOD(expr1, expr2)

The MOD function returns the value of the remainder after division is
performed on exprJ byexpr2. This is also called exprl modulo expr2. The
expressions can evaluate to any numeric value, with the exception that
expr2 cannot be zero.

Examples

To place the remainder in the variable NUMB when 17 is divided by 5, the
code would read:

NUMB = MOD(17,5)

In this instance, NUM would contain "2".

* Not included in the SMA standards.

206 Pick BASIC: A Reference Guide

MOD()

In the following application the MOD function is used to calculate a
customer's change after a purchase.

PRINT "HOW MUCH DO YOU HAVE TO SPEND? $":
INPUT AMOUNT
NUMBER = INT(AVAILABLElPRICE)
CHANGE = MOD(AVAILABLE,PRICE)
PRINT "EACH ITEM COSTS" : PRICE"2,$" : "."
PRINT "FOR" : AMOUNT "2,$" : " YOU CAN GET " : NUMBER: "
ITEMS."
PRINT "YOUR CHANGE WILL BE " : CHANGE "2,$" : "."

A sample run might appear as follows (with the operator's input in bold):

HOW MUCH DO YOU HAVE TO SPEND? $4
EACH ITEM COSTS $1.25.
FOR $4.00 YOU CAN GET 3 ITEMS.
YOUR CHANGE WILL BE $0.25.

NEXT: Terminator used with FOR ... NEXT loops.

For information about the NEXT terminator, see the FOR statement.

NOT(): Return the logical inverse of an expression.

The NOT function returns the logical inverse of a given expression.

NOT(expr)

expr the expression to be logically inverted.

The NOT function returns the logical complement of the value of expr. If
the expression evaluates to true, the NOT function returns a value of false.
If the value of expr is false, the NOT function returns a value of true.

An expression is considered false if it evaluates to 0 or the null string
(nn). If an expression evaluates to any other value, it is considered true.
See Chapter 2 for more information on logical values.

5: Statement and Function Reference 207

NOT()

Example

The following example demonstrates how the NOT function can be used to
verify that meaningful data has been input by the user:

LOOP
PRINT "ENTER YOUR ACCOUNT NUMBER: " :
INPUT ACCT,6, "?"

WHILE NOT (NUM(ACCT») DO
PRINT "MUST BE NUMERIC."

REPEAT

The account number input must be numeric in order to be valid. If it is not,
the program is aborted.

NULL: Null statement.

The NULL statement results in no action. It is meant as a filler for clauses
which require a statement, regardless of whether action is necessary.

NULL

The NULL statement has been devised for situations in which a statement is
required but no operation is to be performed. It is seldom necessary, but is
often used for program readability and consistency.

Example

The following example demonstrates how the NULL statement can be used
in an IF construct.

IF ZIP MATCHES "SN" THEN
NULL

END ELSE

END

In the preceding example the NULL statement is used as a placeholder. The
THEN clause requires at least one statement, so the NULL statement is used
to allow the program to compile.

Note that in Pick BASIC this construction is not required; the THEN
clause is not mandatory in an IF statement, as long as an ELSE clause

208 Pick BASIC: A Reference Guide

NULL

exists. However, if the THEN clause is omitted, the statement would make
sense to the compiler but it might not to the reader. The NULL statement
is used to make clear to the reader that if the match returns a value of true,
no action is taken.

NUM(): Detennine if an expression is numeric.

The NUM function is used to test a given expression for numeric data.

NUM(expr)

expr the expression to be tested.

The NUM function determines whether the expr is a numeric or a
nonnumeric string. If expr contains only numeric characters, the function
evaluates to true and a value of 1 is returned. If expr contains nonnumeric
characters, the expression evaluates to false and a value of 0 is returned.

A single decimal point within a numeric string is considered a numeric
character; that is, if the expression contains only numbers and a decimal
point, the expression evaluates to true (1). However, if a second decimal
point is encountered in the string, the expression evaluates to false (0) since
a second decimal point is meaningless in a mathematical expression.

Commas and dollar signs are never considered numeric characters; that is, a
numeric string containing a comma or dollar sign evaluates to false,
regardless of whether all other characters are numbers.

Example

In the following application, the NUM function is used to verify that a valid
numeric response was input:

LOOP
PRINT "ENTER YOUR ACCOUNT NUMBER: " :
INPUT ACCT,6, "1"

WHILE NOT (NUM(ACCT)) DO
PRINT "MUST BE NUMERIC."

REAEAT

Note that tl1e decimal precision used by the program is a consideration in
this example. For example, if the precision is 4 (the default) and the user
enters a value with five decimal positions (such as 3.14159), the NUM

5: Statement and Function Reference 209

NUM()

function returns false (0) and the program stops. See the PRECISION
statement for more information.

OCONV(): Convert data from internal to external format.

The OCONV function converts data from internal format to external format,
according to the conversion code specified.

OCONV(expr, code)

expr an expression evaluating to the data to be converted.

code an expression evaluating to a conversion code.

Data is stored in internal format for consistency and flexibility. The
OCONV function converts the data back to external format. For example,
dates are generally kept as the number of days since December 31, 1967-so
June 4, 1965 would be stored as -940, and OCONV(-940,"D") produces
"4 JUN 1965."

To convert back from external format to internal format, use the ICONV
function.

Conversion Codes

The conversion codes for OCONV correspond to the conversion codes used
in ACCESS. Among the more common codes used in Pick BASIC are:

D

MT[H][S]

M{LIR}

MX

Convert date to external format.

Convert time to external format.

H 12-hour format.

S include seconds.

Format numbers.

Convert ASCII to hexadecimal representation.

Among the ACCESS codes that cannot be called by the OCONV function
are "F", "A", and "S". For more information about conversion codes, see
Pick ACCESS: A Guide to the SMA/RETRIEVAL Language.

210 Pick BASIC: A Reference Guide

OCONV()

Exampl~s

To convert. data in the string STRING into hexadecimal format, the code
might read:

STRING = OCONV(STRING, "MX")

ON: Conditionally branch to a subroutine.

For information about the ON conditional phrase, see the GOSUB and
GOTO statements.

OPEN: Open a file.

The OPEN statement is necessary to access a file in the current program.

OPEN [diet] file [TO filevarJ { THEN statements [ELSE
statements] I ELSE statements}

diet an expression evaluating to the keyword DIeT.
If the dictionary expression is not specified, the
data file is assumed.

file an expression evaluating to the filename to be
opened. If the file is one of several data files
associated with a single file dictionary, it can be
opened by the syntax, 'dictnamejile', with
dictname the name of the file dictionary.

TO fi/evar define fi/evar as the file variable name by which
the file will be accessed. If the TO fi/evar clause
is not specified, the file can be accessed only as
the default file variable.

THEN statements execute statements if filename is opened
successfully. For details about the syntax of
THEN clauses, see the IF statement.

ELSE statements execute statements ifJilename cannot be opened.
This clause is generally used to cause print error
messages or to stop or abort the program. For

5: Statement and Function Reference 211

OPEN

details about the syntax of ELSE clauses, see the
IF statement.

The OPEN statement prepares a file for use by the current Pick BASIC
program. All references to a file within a Pick BASIC program must be
preceded by a separate OPEN statement for that file.

If a file variable is not assigned with the TO keyword, the file is assigned to
the default file variable. Any subsequent file I/O statements that do not
specify a file variable will default to this file. Note that default file
variables are not local to the program from which they are executed: when a
subroutine is called, the current default file variable is shared with the
calling program.

There is no limit to the number of files which can be open at a given time.
However, if multiple files are opened and accessed concurrently, file
variables must be used. The default file variable can represent only one file
at a time.

Example

In the following application, the OPEN statement is used to open a
reservation file, and the operator is asked to enter the customer's last name,
to be used as an item ID. If the reservation file is not found, the program
will abort. A READ statement is then used to find the file item. If the
item is found, any current reservations will be shown; if not, a new
reservation can be entered.

212

OPEN "RESERVATIONS" TO RES.FILE ELSE
ABORT 201 ,"RESERVATIONS"

END

LOOP
PRINT "LAST NAME: " :
INPUT ITEM.ID
READ RECORD FROM RES.FILE,ITEM.ID THEN

PRINT ITEM.ID : " ON FILE."
GOSUB SHOW.RES

END ELSE
PRINT ITEM.lD : " NOT ON FILE"
GOSUB ENTER. RES

END
UNTIL LAST.NAME = " .. DO REPEAT

Pick BASIC: A Reference Guide

PAGE

PAGE: Advance the page on the output device.

The PAGE statement causes the current page to be ended and the footing to
print at the bottom of the page. *

PAGE [expr 1

expr an expression evaluating to the page number to appear on the
next page.

The PAGE statement ends the current page of output by sending the footing
to the bottom of the page and waiting for a carriage return to continue
output. The N option to the HEADING statement suppresses waiting for
the carriage return.

If a page number is specified, the next page of output is numbered with the
new page number expr. Each subsequent page number will increment by
one. Note that the current page number is numbered expr-l, which appears
in the current page footing if a page number is included in the footing
specifications. The page heading is not affected until the next page of
output.

The HEADING, FOOTING, and PAGE statements affect the same output
device that the PRINT statement does. The PRINTER statement toggles
the output device between the terminal screen and the printer. If multiple
print units are used, the HEADING, FOOTING, and PAGE statements
affect only print unit 0 (the default).

Example

In the following application the contents of each item in a file are printed
with the internal subroutine PRINTOUT. The PAGE statement is used
before PRINTOUT is called to ensure that each report starts on page 1.

LOOP
READNEXT ITEM ELSE

END.OF.LlST = 1
END

UNTIL END.OF.LlST DO
MATREAD REPORT FROM LOGFILE,ITEM ELSE ...
PAGE 1

* On some implementations, the HEADING statement is necessary to initialize the
page parameters for a program, otherwise the PAGE statement will have no effect.

5: Statement and Function Reference 213

PAGE

GOSUB PRINTOUT
PRINTER CLOSE

REPEAT

PRECISION: Declare decimal precision.

The PRECISION statement determines the decimal precision of numeric
values used in the current program.

PRECISION digits

digits an expression evaluating to the number of fractional digits to
which numeric values will be calculated. Any fractional digits
in the result of a conversion that exceed digits are rounded off.
digits can be any integer from at least 6, * with a default value
of 4. A precision of zero implies that all values will be
treated as integers throughout the program.

Precision can be declared anywhere within the program.

II:l? Only one PRECISION declaration is allowed in a
program; if more than one is encountered, a warning
message is printed and the second PRECISION
declaration is ignored. However, if external subroutines
are called, each external subroutine should include a
PRECISION statement matching that of the main
program. If the precision differs between the calling
program and the subroutine, a warning message is
printed and the second declaration is ignored.

Trailing fractional zeros are dropped during output. Therefore, when an
internal number is converted to an ASCII string, the result might appear to
have fewer decimal places than the precision setting allows. However,
regardless of the precision setting, the calculation always reflects the
maximum accuracy of which the computer is capable.

The range of possible numeric values varies from system to system. If the
precision is set to a value less than the default (4 on most systems), the
range of allowable numbers is increased accordingly.

* Some implementations allow a greater precIsIOn to be set; some older
implementations allow only a maximum of 4 (the default).

214 Pick BASIC: A Reference Guide

PRECISION

Example

The following example demonstrates how the precision statement affects the
output of a calculation of 7t:

PRECISION 2
CIRC = 25.13276208
RAD=4
PI = CIRC/ RAO/2
PRINT PI

The following output is displayed:

3.14

PRINT: Send data to the output device.

The PRINT statement sends data to the terminal screen or to another
specified print unit.

PRINT [ON unit# 1 print-expr

ON unit# specifies that data should be output to a spooler print
unit unit#. unit# can be any integer in the range 0 to
254, with 0 as the default. Print unit 0 is interpreted as
either the terminal screen or the printer, depending on
previous use of the PRINTER statement. When the
program is terminated or when a PRINTER CLOSE
statement is used, all print units are output to the
printer. This option is used when several different
reports are being generated by the program
simultaneously.

print-expr is a print expression optionally combined with commas
and colons to designate the format of the output (as
described below). If print-expr is omitted, a blank line
is output.

The PRINTER statement determines the output device to which data is to be
written b~ the PRINT statement. See the PRINTER statement for more
information. There is also a CRT (or DISPLAY) statement available in
Pick BASIC, which is identical to the PRINT statement except that it
always prints its output to the screen, regardless of whether a PRINTER ON
statement had been issued.

5: Statement and Function Reference 215

PRINT

Formatted Output

Format expressions can be used to provide complex formatting
specifications for output. See Format Expressions for more information.
In the PRINT statement, however, commas and colons can be used to
specify tab stops and suppress line feeds.

Expressions separated by commas are printed at preset tab positions.
Multiple commas can be used together to cause multiple tabulations
between expressions. However, tab positions cannot be specified
without being surrounded by expressions.

Colons (:) encountered between expressions are interpreted normally
as the string concatenation operator. If the last character of the
PRINT statement is a colon, however, the line feed and carriage
return which usually follow the print statement is suppressed. This
is especially useful when an INPUT statement is to follow, or in
formatted screen programs.

• The @ function can be used with the PRINT statement to send the
cursor to a specified location on the screen. (Don't try to use the @
function when sending output to the printer!)

Examples

In the following application, the full contents of a dimensional array are
printed via a FOR ... NEXT loop. Only one element is printed at a time,
however; hence, to imitate the actual structure of the array, tab stops are
generated with commas and new lines are suppressed with colons. Before a
new row is begun, the carriage return is generated by a null PRINT
statement.

FOR 1=1 T04
FORJ=1 T03

PRINT EMPLOYEE(I,J), " " :
NEXT J
PRINT

NEXT I

If the array EMPLOYEE contains the name, telephone number, and marital
status of each employee, the output might be:

216

FRED HENKEL
ARCHIE ANDREWS
MARGARET WOOD
LUCY RICARDO

555-1234
555-4321
867-5309
338-6887

SINGLE
MARRIED
SEPARATED
MARRIED

Pick BASIC: A Reference Guide

PRINT

In the next example, the @ function is used with the PRINT statement to
print an errOr in blinking text onto the bottom of the screen. It also clears
the rest of the line, in case there had already been text on that line. Note
that the cursor remains at the bottom of the screen after the error message is
printed.

PRINT "ENTER YOUR SOCIAL SECURITY NUMBER: "
PROMPT""
INPUT ANSWER, 11,"*#"_
IF ANSWER MATCHES "3N-2N-4N" THEN

GOSUB SOCSEC
END ELSE

PRINT @(O,23) : @(-5) : ANSWER:": DOES NOT MATCH SS #" :
PRINT @(-6) : @(-4) :

END

PRINTER: Specify the output device.

The PRINTER statement is necessary to redirect output to either the
terminal screen or the printer. By default, all output will be sent to the
terminal screen unless a PRINTER ON statement is issued or the P option
is used at run time.

PRINTER ON I OFF I CLOSE

ON directs all subsequent program output sent by the
PRINT, HEADING, FOOTING, or PAGE statements
to a print unit. The contents of the print unit are
printed when the program terminates. If output is
requested from the printer before program termination,
the PRINTER CLOSE statement must be used to flush
the output.

OFF

CLOSE

directs all subsequent program output immediately to
the terminal screen.

sends all contents of the print unit (that is, all output
sent while the PRINTER ON statement was in effect)
to the printer immediately.

By default, all output is sent to print unit 0, which is immediately written
to the terminal display screen unless the PRINTER ON statement is used.

5: Statement and Function Reference 217

PRINTER

If the PRINTER ON statement is used, the contents of print unit 0 is sent
to the spooler, where it is held as an open print file until the program has
been terminated or until a PRINTER CLOSE statement is used, at which
point the print job is spooled to the printer.

The program output device can also be established at run time. The TCL
command RUN has a P option that allows the program to run as if a
PRINTER ON statement had been issued at the beginning of the program.

The Pick BASIC statement CRT (or DISPLAY), is identical to the PRINT
statement except that it is not affected by the PRINTER statement. That is,
all data which is output via the CRT statement is sent to the terminal
screen, regardless of whether the PRINTER ON statement is active. The
CRT statement is designed to facilitate programs in which some output is
sent to the terminal and some to the printer, since it allows printing to the
terminal without toggling PRINTER OFF and PRINTER ON statements.

Example

To direct subsequent PRINT output to the printer, enter:

PRINTER ON

The output is sent to print when the program is exited.

PROCREAD: Read the primary input buffer of the calling proc. *
The PROCREAD statement assigns the string value of the primary input
buffer of the calling proc to a variable.

PROCREAD var { THEN statements [ELSE statements 11 ELSE
statements}

var the variable to be assigned the current value of
the primary input buffer.

THEN statements execute statements if buffer is read successfully.
For details about the syntax of THEN clauses,
see the IF statement.

* Not included in the SMA standards.

218 Pick BASIC: A Reference Guide

PROCREAD

ELSE statements execute statements if program was not called by a
proc, or if the input buffer was empty. For
details about the syntax of ELSE clauses, see the
IF statement.

The PROCREAD statement can be used to access the primary input buffer
of a calling proc. On some implementations the SYSTEM function can
determine whether the program was called by a proc.

To write to the primary input buffer, use the PROCWRITE statement.

Example

In the following application, the program DIALOUT should be called only
by a proc. If the program was called directly, an error message is printed and
execution is stopped.

PROCREAD ARGUMENTS ELSE
PRINT "ERROR! "
PRINT "'DIALOUT MUST BE CALLED FROM A PROC"
ABORT

END

PROCWRITE: Write to the primary input buffer of the calling proc. *
The PROCWRITE statement writes data into the primary input buffer of the
calling proc.

PROCWRITE expr

expr an expression evaluating to the string to be written into
the primary input buffer.

The PROCWRITE statement writes to the primary input buffer of a calling
proc. Any previous data in the primary input buffer is erased and replaced
by the given data.

Some Pick systems include an optional ELSE clause in their PROCWRITE
syntax. Statements in the ELSE clause are executed if the program was not
called by a proc.

* Not included in the SMA standards.

5: Statement and Function Reference 219

PROCWRITE

To read from the primary input buffer, use the PROCREAD statement.

Example

In the following application, the program asks the operator if reports should
be printed out. The response is used in the program, but is also passed to
the calling proc with PROCWRITE.

PRINT "SEND RESULTS TO THE PRINTER? (Y OR N)" :
INPUT ANSWER, Y
IF ANSWER = "Y" THEN

PRINTER ON

END
PROCWRITE ANSWER

PROMPT: Assign the prompt character.

The PROMPT statement can be used to reassign the prompt character from
its default setting of "?".

PROMPT expr

expr an expression evaluating to a single character, to be
taken as the prompt character. If expr evaluates to more
than one character, only the first character is used as the
prompt.

The character specified by a PROMPT statement is sent to the output device
whenever an INPUT statement is used, to signal the operator that input is
requested before execution may continue. The default prompt is "?".

Note that the prompt character is generated by each INPUT statement and
not by PRINT statements.

Example

In the following application, the colons (:) at the end of each PRINT
statement do not designate a prompt but simply suppress the line feed or

220 Pick BASIC: A Reference Guide

PROMPT

carriage return for display purposes. The prompt character is generated by
the INPUT· statement, not by the PRINT statement.

PRINT "00 YOU WANT TO KNOW YOUR SCORES (Y OR N)" :
INPUT ANSWER
IF ANSWER = ''Y'' THEN

PROMPT":"
PRINT "ENTER GAME NUMBER" :
INPUT GAME
PRINT "YOUR SCORE IN GAME" :
PRINTGAME:
PRINT" WAS" :
PRINT SCORES(GAME)

END

The resulting output (with the operator's input in bold) is:

00 YOU WANT TO KNOW YOUR SCORES (Y OR N)?Y
ENTER GAME NUMBER:2
YOUR SCORE IN GAME 2 WAS 78

PWR(): Returns an exponential value.

The PWR function returns the value of one number raised to the power of a
second number.

PWR(expr1,expr2)

exprl an expression evaluating to a numeric value.

expr2 an expression evaluating to the exponent that expr 1 is
to be raised to.

The PWR function raises the first expression to the power of the second
expression. Any number raised to the power of 0 will return 1.

Example

To assign MAX.LEN the value of 215, enter:

MAX. LEN = PWR(2,15)

5: Statement and Function Reference 221

READ

READ: Read a file item as a dynamic array.

The READ statement assigns the string value of a file item to a variable.

READ array FROM [filevar, I item-ID {THEN statements [ELSE
statements II ELSE statements}

array the variable, in dynamic array form, to which the
string value of the item is assigned.

filevar the file variable name to which the file was
opened. If filevar is not specified, the default file
variable is used, which is the file most recently
opened without an assigned file variable.

item-ID an expression evaluating to an item ID. If the
specified item ID does not exist, var is assigned
the value of the null string ("").

THEN statements execute statements if item-ID is read success­
fully. For details about the syntax of THEN
clauses, see the IF statement.

ELSE statements execute statements if item-ID cannot be read.
For details about the syntax of ELSE clauses, see
the IF statement.

Before a file can be accessed in a READ statement, it must be opened with
an OPEN statement or an error will occur at run time. See the OPEN
statement for more information.

In Pick BASIC there are also READU, READV, and READVU statements
available. The READU statement sets an item lock on the file item before
reading it, the READVstatement reads a single attribute from a given file
item, and the READVU statement sets an item lock and then performs a
READV. See the READU, READV, and READVU statement pages for
more information.

Example

In the following application, the OPEN statement opens a reservation file
and the operator is asked to enter the customer's last name, to be used as an
item ID. If the reservation file is not found, the program aborts. A READ
statement is then used to find the file item. If the item is found, any current

222 Pick BASIC: A Reference Guide

READ

reservation~ are shown; if it is not found, a "NOT ON FILE" message is
displayed.

OPEN "RESERVATIONS" TO RES.FILE ELSE
ABORT 201 ,"RESERVATIONS"

END

LOOP
PRINT "LAST NAME: ":
INPUT ITEM.ID
READ RECORD FROM RES.FILE,ITEM.ID THEN

PRINT ITEM.ID : " ON FILE."
GOSUB SHOW. RES

END ELSE
PRINT ITEM.ID : " NOT ON FILE"

END
UNTIL LAST.NAME = "" DO REPEAT

READNEXT: Read the next value in a select-list.

The READNEXT statement reads the next sequential value in a select-list.

READNEXT var1 [,var2] [FROM select-var] {THEN
statements [ELSE statements] 1 ELSE statements}

varl

var2

select-var

read the next value in the select-list and assign it
to varl.

assign the value mark count to var2. This
option is applicable only to select-lists
constructed through the TCL SSELECT verb.

read values from the named select-list variable
select-var. If select-var is not specified, the
default select-list variable is used.

THEN statements execute statements unless at the end of the list.
For details about the syntax of THEN clauses,
see the IF statement.

ELSE statements execute statements if at the end of the list. For
details about the syntax of ELSE clauses, see the
IF statement.

5: Statement and Function Reference 223

READNEXT

The READ NEXT statement assigns the next value from an active select-list
to the specified variable. If it is a select-list of item IDs, the variable can
then be used in a READ statement to read the file item. (The SELECT
statement might also create a select-list of attributes from a dynamic array.)

See the SELECT statement for more information on creating select-lists. If
a value is successfully read from the select-list, var is assigned to the value,
and the THEN statements are executed; when the end of the select-list is
reached, var is set to the null string and the ELSE statements are executed.

Example

In the following application we create an alphabetical list of each item ID
in the file AIRPORTS. The file is selected to the select variable LIST, and
each item ID is read from LIST with READNEXT. The END.OF.LIST
variable is set to true when the READ NEXT statement fails to read any
more item IDs, and is used to complete the loop. The actual alphabetizing
is accomplished with the LOCATE and INS statements.

224

EQUATE TRUE TO 1, FALSE TO 0
OPEN "AIRPORTS" TO AIRPORTFILE ELSE

ABORT 201, "AIRPORTS"
END
SELECT AIRPORTFILE TO LIST
ALPH.LlST = ""
END.OF.LlST = FALSE
LOOP

READNEXT ID FROM LIST ELSE
END.OF.LlST = TRUE

END
UNTIL END.OF.LlST DO

LOCATE ID IN ALPH.LlST BY "AL" SETTING POSITION THEN
PRINT ID : " DUPLICATE ENTRY! POSSIBLE FILE CORRUPTION"
ABORT

END ELSE
INS ID BEFORE ALPH.LlST <POSITION>

END
REPEAT

Pick BASIC: A Reference Guide

READT

READT: Read next record from magnetic tape.

The READT statement reads the next record (block) on the magnetic tape
unit, assigning its value to the specified variable.

READT var { THEN statements [ELSE statements 11 ELSE
statements}

var the variable, in dynamic array form, into which
the next record is read.

THEN statements execute statements if record is successfully read.
For details about the syntax of THEN clauses,
see the IF statement.

ELSE statements execute statements if record cannot be read. For
details about the syntax of ELSE clauses, see the
IF statement.

If a record is read, its value is assigned to the specified variable and the
THEN statements are executed. If the record cannot be read, the specified
variable is assigned the null string and the ELSE statements are executed.

A record might not be read because the tape has not been attached or because
an End-Of-File mark was encountered. To determine why a tape could not
be read, the SYSTEM function is often used in the ELSE portion of a
READT statement. See the SYSTEM function for more information.

Example

The program segment in the following example reads data off a tape and
prints it in a readable format. The item IDs are printed and then each
attribute is printed on a separate line, preceded by the attribute number.

LOOP
READT NEWRECORD ELSE

IF SYSTEM(O) = 2 THEN
END.OF.TAPE = TRUE

END ELSE
PRINT "SYSTEM ERROR --"
GOSUBEXIT

END
END
REC.NUM+= 1

UNTIl;. END.OF.TAPE DO
PRINT

5: Statement and Function Reference 225

READT

PRINT "PRESS ANY KEY TO READ RECORD": RECNUM: ":":
INPUT CHAR,1
PRINT
NO.OF.ATIRS = DCOUNT(NEWRECORD , AM)
FOR 1= 1 TO NO.OF.ATIRS

PRINT I, NEWRECORD< I >
NEXT I

REPEAT

READU: Read a file item as a dynamic array. locking the item.

The READU statement perfonns a READ, simultaneously setting a lock on
the item to be read.

226

READU array FROM [filevar,) item-ID [LOCKED
statements] { THEN statements [ELSE statements] I ELSE
statements}

array

fi/evar

item-/D

LOCKED statements

THEN statements

ELSE statements

the variable, in dynamic array form, to
which the string value of the item is
assigned.

the file variable name to which the file
was opened. If filevar is not specified, the
default file variable is used, which is the
file most recently opened without an
assigned file variable.

an expression evaluating to an item ID.
If the specified item ID does not exist, va,.
is assigned the value of the null string
('lit).

exec lite statements if the item was already
locked by another process. The statements
of the LOCKED clause follow the syntax
of statements in THEN or ELSE clauses.

execute statements if item-ID is read
successfully. For details about the syntax
of THEN clauses, see the IF statement.

execute statements if item-ID cannot be
read. For details about the syntax of
ELSE clauses, see the IF statement.

Pick BASIC: A Reference Guide

READU

The behavior of the READU statement is identical to that of the READ
statement, ~xcept that a lock is placed on the file item to be read. When an
item is locked, it cannot be read by another READU, READVU, or
MA TREADU statement until the lock is removed. The lock is removed by
exiting the program, updating the file with the WRITE, WRITEV, or
MA TWRITE statements, or releasing the lock with the RELEASE
statement. The file can be updated without removing the item lock with the
WRITEU, WRITEVU, or MATWRITEU statements. Although there is
no theoretical limit to the number of items that can be locked, the size of
the item lock table will vary from implementation to implementation.

If the READU statement is executed on an item already locked by another
user, the program hangs until the lock is released, unless the LOCKED
clause is specified. The LOCKED clause allows the user to exit from the
READU statement without waiting for the item to be released. Note that if
the LOCKED clause is used, var is not assigned.

If the item does not exist, the item lock is still set and the ELSE clause is
executed. Thus the READU statement can be used to reserve an item for
use by the program even if it does not yet exist.

Example

In the following application, the file CUSTOMERS contains customer
billing information. The program tries to read the a customer's record. If
the item is not locked, the program goes on to update addresses; otherwise
the user is asked to try later.

OPEN "CUSTOMERS" TO CUSTFILE ELSE
ABORT 201 • "CUSTOMERS"

END
READU RECORD FROM CUSTFILE • NAME LOCKED

PRINT "ITEM IS LOCKED! TRY AGAIN LATER."
END ELSE

5: Statement and Function Reference 227

READV

READV: Read a single attribute of a file item.

The READV statement reads a single attribute of a file item and places it
into a dynamic array variable.

READV array FROM [filevar,] item-ID, attr# { THEN
statements [ELSE statements] I ELSE statements}

array the variable, in dynamic array form, to which the
string value of the attribute is assigned.

fi/evar the file variable name to which the file was
opened. If filevar is not specified, the default file
variable is used, which is the file most recently
opened without an assigned file variable.

item-ID an expression evaluating to an item ID. If the
specified item ID does not exist, var is assigned
the value of the null string ('''').

attr# an expression evaluating to an attribute number
in the specified item. If the specified attribute
number does not exist, var is assigned the value
of the null string ("").

THEN statements execute statements if the attribute is read
successfully. For details about the syntax of
THEN clauses, see the IF statement.

ELSE statements execute statements if the item cannot be found or
if the attribute cannot be read. For details about
the syntax of ELSE clauses, see the IF
statement.

Before a file can be accessed in a READV statement, it must be opened with
an OPEN statement or an error will occur at run time. See the OPEN
statement for more information.

In Pick BASIC, there are also READ, READU, and READVU statements
available. The READVU statement sets an item lock on the item before
reading the attribute. The READ statement reads the entire file item, and
the READU statement sets an item lock on the item before reading it. See
the READU, READ, and READVU statement pages for more information.

228 Pick BASIC: A Reference Guide

READV

Example

In the following application the file represented by CUSTFILE contains the
name, address, and phone number of each customer. The phone number is
stored in Attribute 6 of each item. To retrieve only the customer's phone
number, the READV statement is used to read Attribute 6.

PRINT "ENTER CUSTOMER ID : " :
·INPUTID

READV PHONE FROM CUSTFILE,ID,6 ELSE
PRINT "ERROR!"
STOP

END
PRINT ID , PHONE

READVU: Read an attribute of a file item, setting an item lock.

The READVU statement performs a READV, simultaneously setting a lock
on the item from which the attribute is to be read.

READVU array FROM [filevar, I item-ID, attr# [LOCKED
statements I { THEN statements [ELSE statements II ELSE
statements}

array

filevar

item-ID

attr#

the variable, in dynamic array form, to
which the string value of the attribute is
assigned.

the file variable name to which the file
was opened. If filevar is not specified, the
default file variable is used, which is the
file most recently opened without an
assigned file variable.

an expression evaluating to an item ID.
If the specified item ID does not exist, var
is assigned the value of the null
string ("").

an expression evaluating to an attribute
number in the specified item. If the
specified attribute number does not exist,
var is assigned the value of the null
string ("").

5: Statement and Function Reference 229

READVU

LOCKED statements

THEN statements

ELSE statements

execute statements if the item was already
locked by another process. The statements
of the LOCKED clause follow the syntax
of statements in THEN or ELSE clauses.

execute statements if the attribute is read
successfully. For details about the syntax
of THEN clauses, see the IF statement.

execute statements if the item cannot be
found or if the attribute cannot be read.
For details about the syntax of ELSE
clauses, see the IF statement.

The behavior of the READVU statement is identical to that of the READV
statement, except that a lock is placed on the file item to be read. When an
item is locked, it cannot be read by another READU, READVU, or
MA TREADU statement until the lock is removed. The lock is removed by
exiting the program, updating the file with the WRITE, WRITEV, or
MATWRITE statements, or releasing the lock with the RELEASE
statement. The file can be updated without removing the item lock with the
WRITEU, WRITEVU, or MA TWRITEU statements. Although there is no
theoretical limit to the number of items that can be locked, the size of the
item lock table will vary from implementation to implementation.

If the READVU statement is executed on an item already locked by another
user, the program hangs until the lock is released, unless the LOCKED
clause is specified. The LOCKED clause allows the user to exit from the
READVU statement without waiting for the item to be released. Note that
if the LOCKED clause is used, var is not assigned.

If the item does not exist, the item lock is still set and the ELSE clause is
executed. Thus the READVU statement can be used to reserve an item for
use by the program even if it does not yet exist.

Example

In the following application, the file CUSTOMERS is read and locked by
READVU.

230

OPEN "CUSTOMERS" TO CUSTFILE ELSE
ABORT 201 , "CUSTOMERS"

END
PRINT "ENTER CUSTOMER ID: ":

Pick BASIC: A Reference Guide

INP\,JT ID
FO~ND=O
READVU PHONE FROM CUSTFILE,ID,6 FOUND THEN

PRINT "ITEM IS FOUND."
FOUND = 1

END ELSE
PRINT "ERROR!"
STOP

END

RELEASE: Release item locks in a file.

READVU

The RELEASE statement releases item locks in a file, without performing
an update.

RELEASE [[fiIevar, I item-/D I

filevar

item-ID

the file variable to which the file had been opened. If
filevar is omitted and item-/D is specified, the default
file variable is used, which is the last file opened
without a file variable assigned.

an expression evaluating to the item 10 to be released.
If item-ID is not specified, then filevar cannot be
specified, and all item locks set by the current program
are released.

The RELEASE statement unlocks any item locks set by the READU,
READVU, and MATREADU statements.

Item locks can be released three ways: through a WRITE, WRITEV, or
MA TWRITE statement, through a RELEASE statement, or by ending the
program execution.

Example

In the following application, item locks are set with the READU statement
at the onset of the program, but once it is verified that the item will not be
updated during the execution of the program, the RELEASE statement is
used to free the item so that other users can update it.

READU INFO.REC FROM INFOFILE,ID ELSE
PRINT ID : " NOT FOUND."
STOP

5: Statement and Function Reference 231

RELEASE

END
PRINT "CURRENT INFORMATION ON THAT CUSTOMER IS:"
NO.OF.ATIRS = DCOUNT(INFO.REC , CHAR(254))
FOR I = 1 TO NO.OF.ATIRS

PRINT I
END
PRINT "IS THIS CORRECT (Y OR N)"
INPUT ANSWER,1
IF ANSWER = "Y" THEN

RELEASE INFOFILE,ID
END ELSE

REM: Enter a remark in the source code.

The REM statement begins a comment line in the program.

REM anything

anything any text can be placed after a REM statement.

The REM statement can be used to begin a comment line in the source
code. It is functionally identical to the! and * statements. Comment lines
should be used to thoroughly document source code.

Comment lines can be inserted into the object code with the $* statement.
See the $* statement for more information.

Examples

A program might be documented as follows:

REM
REM GET ATIRIBUTE DEFINITIONS FROM DICT OF INVENTORY

FILE
OPEN 'DICT', 'INV' TO INV.DICT ELSE PRINT 'CANT OPEN

"DICT INV"'; STOP
READV DESC.AMC FROM INV.DICT,2 ELSE

PRINT 'CANT READ "DESC" A DR'; STOP
END
READV OOH.AMC FROM 'OOH',2 ELSE

PRINT 'CANT READ nOOH" ADR'; STOP
END

REM OPEN DATA PORTION OF INVENTORY FILE

232 Pick BASIC: A Reference Guide

REM

OPEN ", 'INV' TO INV.FILE ELSE PRINT 'CANNOT OPEN
"INV"'; STOP

REM PROMPT FOR PART NUMBER
100 PRINT

PRINT 'PART-NUMBER ':
INPUTPN
IF PN = " THEN PRINT '--DONE--'; STOP
READ INV.lTEM FROM INV.FILE,PN ELSE

PRINT 'CANT FIND THAT PART'; GOTO 100
END
DESC = INV.ITEM<DESC.AMC>
QOH = INV.ITEM<QOH.AMC>

REM PRINT DESCRIPTION AND QUANTITY-ON-HAND
PRINT 'DESCRIPTION -': DESC
PRINT 'QTY-ON-HAND -': QOH
PRINT
GOTO 100

END

REM(): Return remainder of one expression divided by another.

The REM function divides one expression by another and returns the
remainder. Note that the REM function is not the same as the REM
statement, which is used for documentation of a program. The REM
function is functionally equivalent to the MOD function.

REM(expr1, expr2)

The REM function returns the value of the remainder after division is
performed on exprl byexpr2. This is also called exprl modulo expr2. The
expressions can evaluate to any numeric value, with the exception that
expr2 cannot be zero.

Examples

To place the remainder in the variable NUMB when 17 is divided by 5, the
code would read:

NUMB = REM(17,5)

In this instance, NUM would contain "2".

In the following application the REM function is used to calculate a
customer's change after a purchase.

5: Statement and Function Reference 233

REM()

PRINT "HOW MUCH DO YOU HAVE TO SPEND? $":
INPUT AMOUNT
NUMBER = INT(AVAILABLE/PRICE)
CHANGE = REM(AVAILABLE,PRICE)
PRINT "EACH ITEM COSTS" : PRICE"2,$" :
PRINT "FOR" : AMOUNT "2,$" : .. YOU CAN GET" : NUMBER: ..
ITEMS."
PRINT "YOUR CHANGE WILL BE .. : CHANGE "2,$" :

A sample run might appear as follows (with the operator's input in bold):

HOW MUCH DO YOU HAVE TO SPEND? $4
EACH ITEM COSTS $1.25.
FOR $4.00 YOU CAN GET 3 ITEMS.
YOUR CHANGE WILL BE $0.25.

REPEAT: Tenninator used with LOOP statements.

For information about the REPEAT terminator, see the LOOP statement.

REPLACE(): Replace an attribute, value, or subvalue in an array.

The REPLACE function replaces a specified attribute, value or subvalue in
an array with another expression. There are two forms of the REPLACE
function listed below. The first form uses the REPLACE keyword, and the
second form uses angle brackets similar to the EXTRACT angle brackets.

234

array = REPLACE(array,attr# [,value# [,5ubval# 11 { , I ; } expr)

array <attr# [,value# [,5ubval# 11> = expr

array

attr#

value#

the dynamic array to be changed.

an expression evaluating to the attribute number. If
attr# is equal to 0, the entire array is replaced. If attr#
evaluates to a negative number, a new attribute with the
new data is appended to the end of the array. If attr#
evaluates to a number greater than the number of
attributes in the array, a new attribute with the new data
is appended to the end of the array, with the correct
number of empty attributes inserted.

an expression evaluating to the value number. If value#
is omitted or equal to 0, the entire contents of the

Pick BASIC: A Reference Guide

subval#

expr

REPLACE()

attribute is replaced. If value# evaluates to a negative
number, a new value with the new data is appended to
the end of the attribute. If value# evaluates to a number
greater than the number of values in the attribute, a new
value with the new data is appended to the end of the
attribute, with the correct number of empty values
inserted.

an expression evaluating to the subvalue number. If
subval# is omitted or equal to 0, the entire contents of
the value is replaced. If subval# evaluates to a negative
number or a number greater than the number of
subvalues in the value, a new subvalue with the new
data is appended to the end of the value. If subval#
evaluates to a number greater than the number of
subvalues in the value, a new subvalue with the new
data is appended to the end of the value, with the correct
number of empty subvalues inserted.

the string expression with which to replace the specified
attribute, value, or subvalue.

In the first form of REPLACE, either a comma or a semicolon can delimit
the subvalue expression from the replacement data, but if the subvalue is
omitted, then a semicolon must be used.

If an attribute, value, or subvalue expression evaluates to a noninteger
value, it is truncated to an integer value.

Examples

To replace Attribute 8 of the array RECORD with the string "NEW
YORK", the code would read:

RECORD = REPLACE(RECORD, 8, "NEW YORK")

or:

RECORD<8> = "NEW YORK"

In the following application the dynamic array CUST.REC has the
customer's billing information (credit card, account number, and expiration
date) in Attributes 6, 7, and 8. The REPLACE function is used to change
the customer's billing information.

5: Statement and Function Reference 235

REPLACE()

PRINT "YOUR CURRENT BILLING IS:" :
PRINT
PRINT "CREDIT CARD: ",CUST.REC< 6 >
PRINT "ACCOUNT NO. ",CUST.REC< 7 >
PRINT "EXPIRES",CUST.REC< 8 >
PRINT "DO YOU WANT TO CHANGE THIS (Y OR N)?":
INPUT ANSWER,1
IF ANSWER = ''Y' THEN

PRINT "CREDIT CARD: ":
INPUT CARD
CUST.REG< 6 > = CARD
PRINT "ACCOUNT NO.: :
INPUT ACCT.NO
CUST.REC< 7 > = ACCT. NO
PRINT "EXPIRATION DATE: ":
INPUT EXP.DATE
CUST.REC< 8 > = EXP.DATE

END ELSE

END

RETURN: Return control to the main program.

The RETURN statement returns program control from a subroutine to the
main program or to a specified statement label.

RETURN [TO label)

TO label pass control of the specified program to the line marked
by the specified label.

A RETURN statement terminates a subroutine. Without the TO clause, a
RETURN statement returns execution to the line following the GOSUB or
CALL statement. The TO clause can be used to exit only internal
subroutines called by GOSUB statements.

236

((§' Care should be exercised when using the TO clause.
Any other GOSUBs or CALLs that were active at the
time the GOSUB was executed remain active, and errors
can result.

Pick BASIC: A Reference Guide

RETURN

Example

In the following application a subroutine for performing all the final
calculations in an accounting program is called CALCULATE, and the
subroutine for exiting the program is called EXIT. The EXIT subroutine
clears the screen, calls another subroutine called REPORT to print out a
final report of transactions, and prints" --EO]" before exiting.

PRINT "CONTINUE WITH ALL CALCULATIONS?":
INPUT ANS,1
IF ANS = "Y" THEN

GOSUB CALCULATE
END ELSE

GOSUBEXIT
END

STOP
EXIT:

PRINT @(-1) : "REPORT OF TRANSACTIONS:":
GOSUB REPORT
PRINT "-- EOJ"
STOP
RETURN

CALCULATE:

RETURN

REWIND: Rewind a magnetic tape to the beginning.

The REWIND statement rewinds the attached magnetic tape to the
Beginning-of-Tape.

REWIND { THEN statements [ELSE statements 11 ELSE
statements}

THEN statements execute statements if tape is attached and
successfully rewound. For details about the
syntax of THEN clauses, see the IF statement.

ELSE statements execute statements if tape is not attached. For
details about the syntax of ELSE clauses, see the
IF statement.

5: Statement and Function Reference 237

REWIND

If the tape is not attached, the ELSE clause is executed.

Example

In the following application, all records on a tape are to be displayed on the
screen. Before the records can be read via a READT statement, the
REWIND statement is used to ensure that the tape is positioned at the
beginning.

REWIND ELSE
PRINT "TAPE NOT ATIACHED!"
GOSUBEXIT

END
LOOP

READT RECORD ELSE

RND(): Return a random number.

The RND function returns a random positive integer.

RND expr

expr an expression evaluating to an integer. The random number
generated will be between 0 and expr-I.

If expr evaluates to a negative value, the RND function returns O. If expr
evaluates to a noninteger value, the decimal part to expr is truncated.

Example

In the following application, a user is asked to guess a number from
to 10:

238

PRINT "GUESS A NUMBER FROM 1 TO 10"
INPUT GUESS
ANSWER = RND(10) + 1
IF GUESS = ANSWER THEN

PRINT "YOU WIN"

Pick BASIC: A Reference Guide

END ELSE
PRINT "NO, IT WAS" : ANSWER

END

RQM: Sleep for a specified number of seconds.*

RND()

The RQM statement causes program execution to pause for a specified
number of seconds or until a given time of day. RQM stands for "release
quantum": it terminates the executing program's current time-slice, or
quantum. The SLEEP statement is functionally the same as the RQM
statement.

RQM [expr]

expr an expression evaluating to the n.umber of seconds to sleep for,
or to a specific time in the form of a 24-hour clock. To
specify a time, expr should be of the form:

hh:mm [:ssl

representing the hour, minute, and (optionally) second to sleep
until. If no expression is specified, the current time-slice is
released.

If the BREAK key is enabled (ON) and the BREAK key is pressed during a
sleep, the debugger is entered. When "G" is pressed at the debugger prompt,
the program resumes at the next statement after the RQM statement. If the
BREAK key is disabled (OFF) and BREAK is pressed, it terminates the sleep
without entering the debugger, and the program resumes at the next
statement after RQM.

Example

In the following application, the program sleeps until 3PM and then sends a
beep to the screen as a reminder to the user.

ROM 15:00
PRINT CHAR(7)

* Not included in the SMA standards.

5: Statement and Function Reference 239

SELECT

SELECT: Create a select-list.

The SELECT statement selects all item IDs from a file, or the first value of
all attributes in a dynamic array variable. The data selected is placed in a
select-list, to be accessed by a subsequent READNEXT statement.

SELECT [var I filevarJ [TO select-varJ

var the dynamic array to be selected. The select-list will
contain only the first value of each multivalued attribute
in the variable.

filevar a file variable, previously assigned by an OPEN
statement. The select-list will contain all item IDs in
the system file opened to filevar.

select-var assign the name select-var to the select-list. If
select-var is not specified, the default select-list variable
will be used.

The SELECT statement forms a list of all item IDs from the specified file.
The file must have been opened by an OPEN statement before data can be
selected. The list created by the SELECT statement can then be accessed by
a subsequent READ NEXT statement.

Alternatively, the SELECT statement can be used to form a select-list of the
first value of each attribute in a dynamic array.

For a select-list of item IDs, either the SELECT statement can be used, or
the TCL select-list generators (SELECT, SSELECT, FORM-LIST, etc.)
can be called with the EXECUTE statement. The SELECT statement
performs the same function as the TCL SELECT verb without any selection
or sort expressions, and in that respect is less versatile than using the
EXECUTE statement to access TCL.

Example

In the following application we create an alphabetical list of each item ID
in the file AIRPORTS. The file is selected to the select variable LIST with
the SELECT statement. Each item is then read from LIST with the
READ NEXT statement. The actual alphabetizing is accomplished with the
LOCATE and INS statements.

240 Pick BASIC: A Reference Guide

SELECT

EQUATE TRUE TO 1, FALSE TO 0
OPEN "AIRPORTS" TO AIRPORTFILE ELSE

ABORT 201 , "AIRPORTS"
END
SELECT AIRPORTFILE TO LIST
ALPH.LlST = ""
END.OF.LlST = FALSE
LOOP

READNEXT 10 FROM LIST ELSE
END.OF.LlST = TRUE

END
UNTIL END.OF.LlST DO

LOCATE 10 IN ALPH.LlST BY "AL" SETIING POSITION THEN
PRINT 10 : " DUPLICATE ENTRY! POSSIBLE FILE CORRUPTION"
ABORT

END ELSE
INS 10 BEFORE ALPH.LlST <POSITION>

END
REPEAT

SEQ(): Return the decimal value of an ASCII character.

The SEQ function returns the decimal value for the supplied character.

SEQ(expr)

expr an expression evaluating to a single character. If expr
evaluates to a string longer than one character, only the
first character is evaluated.

The SEQ function returns the decimal value for the ASCII character given.
It is the inverse of the CHAR function.

See Appendix C for ASCII character codes.

Examples

To return the ASCII decimal value for a space into a variable SPACESEQ,
the code would read:

SPACESEQ = SEQ (" ")

In this instance, the variable SPACESEQ would contain "32".

In the following application, a string has standard control characters
(decimal! through decimaI3!) converted into printable equivalents. The

5: Statement and Function Reference 24!

SEQ()

SEQ function is used to return the ASCII decimal value of each character,
and that value is then used to determine whether the character falls into the
ASCII range of control characters.

NO.OF.CHARS = LEN(STRING)
NEW.STRING =
FOR I = 1 TO NO.OF.CHARS

CHARACTER = STRING[I ,1 1
ASC = SEQ(CHARACTER)
IF (ASC > 0 AND ASC < 32) THEN

NEWCHAR = "A" : CHAR(ASC + 64)
END ELSE

NEWCHAR = CHARACTER
END
NEWSTRING := CHARACTER

NEXT I
STRING = NEW.STRING

SIN (): Return the sine of the expression.

The SIN function returns the trigonometric sine of the expression.

SIN(expr)

The expression expr is treated as an angle expressed as a numeric value in
degrees. Values outside the range of 0 to 360 degrees are interpreted as
modulo 360.

Example

In the following application the SIN function is used with a standard
trigonometric formula to calculate the cosine of an angle without using the
COS function.

COSINE = SQRT(1 - SIN(ANGLE) * SIN(ANGLE))
PRINT" THE COSINE IS CALCULATED AS : .. : COSINE

SLEEP: Sleep for a specified number of seconds.

The SLEEP statement causes program execution to pause for a specified
number of seconds, or until a given time of day. SLEEP terminates the
executing program's current time-slice, or quantum (see the RQM

242 Pick BASIC: A Reference Guide

SLEEP

statement). The RQM statement is functionally the same as the SLEEP
statement.

SLEEP [expr 1

expr an expression evaluating to the number of seconds to
sleep for, or to a specific time in the form of a 24-hour
clock. To specify a time, expr should be of the form:

hh :mm [:ss]

representing the hour, minute, and (optionally) second
to sleep until. If no expression is specified, the current
time-slice is released.

If the BREAK key is enabled (ON) and the BREAK key is pressed during a
sleep, the debugger is entered. When "G" is pressed at the debugger prompt,
the program resumes at the next statement after the SLEEP statement. If
the BREAK key is disabled (OFF) and BREAK is pressed, it terminates the
sleep without entering the debugger, and the program resumes at the next
statement after SLEEP.

Example

In the following application, the program sleeps until 3PM and then sends a
beep to the screen as a reminder to the user.

SLEEP 15:00
PRINT CHAR(7)

SOUNDEX(): Convert a string into its phonetic equivalent.*

The SOUNDEX function uses the soundex algorithm to convert a string
into its phonetic equivalent.

SOUNDEX(expr)

expr an expression evaluating to a string value. Any
nonalphabetic characters in expr are ignored.

* Not included in the SMA standards. Prime INFORMATION implements the
soundex algorithm with the ICONV SOUNDEX (S) conversion code.

5: Statement and Function Reference 243

SOUNDEX()

The SOUNDEX function evaluates the expression and returns the first
alphabetic letter of the string, followed by a 1- to 3-digit phonetic code.
The soundex algorithm is used to analyze the input string. The codes are
assigned as follows:

Code Letters

1 B,F,P, V

2 C, G, J, K, Q, S, X, Z

3 D,T

4 L

5 M,N

6 R

Any letters not included in the above assignments are ignored by the
SOUNDEX function, as are all nonalphabetic characters.

Consecutive duplicate codes are not repeated by the SOUNDEX function.
That is, SOUNDEX("LLLLLLLL") will return L4, regardless of how many
Ls are repeated, and SOUNDEX("DAMNA TION") will return "D535" (the
M and N are considered phonetically equivalent).

The purpose of the SOUNDEX function is to provide protection against
strings not being matched because one was misspelled. However, it is not
recommended to accept its conclusions without some confirmation. Some
of the phonetic matches which the SOUNDEX function generates can be
unrealistic.

Example

In the following application, each item ID in a file SOUND FILE is a
SOUNDEX code, and contains a list of the customers whose names are
SOUNDEX equivalents to that code. When a customer's name is entered,
the SOUNDEX code is taken and the corresponding file item is read into a
dimensioned array XREF for cross-reference.

244

DIM XREF(1 000)
FOUND=TRUE
PRINT "ENTER NAME:" :
INPUT NAME
LIKE = SOUNDEX(NAME)
MATREAD XREF FROM SOUNDFILE, LIKE ELSE

PRINT "NO LIKE ENTRIES"

Pick BASIC: A Reference Guide

SOUNDEX()

END ELSE

SPACE(): Generate a specified number of spaces.

The SPACE function produces a string of the specified number of blank
spaces.

SPACE(expr)

expr an expression specifying the number of spaces to be
generated.

Use the SPACE function to return a string composed of blank spaces. It is
essentially the same as STR(" ",expr)

Example

To print Attribute 1 of a dynamic array indented five spaces, enter:

PRINT SPACE(5) : RECORD<1 >

SQRT(): Return the square root of an expression.

The SQRT function returns the square root of an expression, given that the
expression evaluates to a positive number.

SQRT(expr)

expr an expression evaluating to a numeric value.

If expr evaluates to a negative value, the SQRT function returns a value
of o.

5: Statement and Function Reference 245

SQRT()

Example

The following example demonstrates how the SQRT function can be used to
calculate the diagonal of a given rectangle:

DIAGONAL = SQRT(HEIGHT " 2 + WIDTH" 2)
PRINT "THE DIAGONAL OF THE RECTANGLE IS" : DIAGONAL: "."

STOP: Terminate execution of a program.

The STOP statement terminates the program and returns the user to the
calling environment.

STOP [errmsg [,parameter1, parameter2, ... I

errmsg is an integer corresponding to an error message from the
system message file (ERRMSG). The message is
output upon termination of the program.

parameter 1, parameter2, ...
are parameters passed to the error message.

The STOP statement terminates program execution and returns system
control to the calling environment, which can be a menu, another Pick
BASIC program, or a proc. When an error message is specified, it is printed
on the terminal screen before the STOP statement is executed, with the
specified parameters inserted.

The STOP statement can be used in any part of a program. It is generally
used at the logical end of a program or in the ELSE part of a file I/O or tape
I/O statement.

To stop the program and return directly to TCL, use the ABORT statement.

Examples

The following example demonstrates how the STOP statement can be used
to terminate a program when it fails to locate a file item.

246

READ CUST.REC FROM CUSTFILE,ID ELSE
PRINT "ITEM" : 10 :" NOT FOUND!"
STOP

Pick BASIC: A Reference Guide

STOP

END

In the next example, the STOP statement is used to signify the end of
program execution. The text below the STOP is not executed directly as
part of the program sequence but can be accessed through GOTO or GOSUB
statements. At run time the program stops at the STOP statement, but the
source lines have been compiled and can be executed nonsequentially.

GOSUB ADDEMUP

STOP
ADDEMUP: * THIS SUBROUTINE DOES THE COMPUTATION.

Had an END statement been used instead of a STOP statement, the
ADDEMUP routine would not have been compiled.

STR(): Repeat a character string n times.

The STR function repeats the given character string a specified number of
times.

STR(string, number)

string

number

the string expression to be repeated in the generated
string.

an expression specifying the number of times string is
to be repeated in the result. If number does not evaluate
to an integer, it is truncated. If number evaluates to a
value less than 1, no value is returned.

The STR f~nction produces a specified number of repetitions of a particular
character stiring.

5: Statement and Function Reference 247

STR()

Examples

To print ten asterisks on the screen, the code might read:

PRINT STR(" * ",10)

In the following application, a table is printed listing an initial mortgage,
interest rate, amount of payments, and the number of years and months it
will take to payoff the mortgage at that rate. The STR function is used to
produce a line across an 80-column screen between the heading and the data.

PRINT "MORGAGE","RATE",·PAYMENTS","YEARS","MONTHS"
PRINT STR("_",80)
PRINT
PRINT ORIG.MORG"L,$",ORIG.RATE,PAYMENT"L2,$",YEARS MONTH

SUBROUTINE: Identify a subroutine.

The SUBROUTINE statement must be the first statement in an external
subroutine. *

SUBROUTINE [name] [(var1 [,var2] ...)]

name

var ...

is the name of the subroutine.

variables to be assigned by the corresponding CALL
statement. If var is an array variable, it must be
preceded by the MAT keyword.

An external subroutine is a subroutine which has been compiled and
cataloged separately from the programs that call it. It can then be called by
any program with the CALL statement. When a RETURN statement is
encountered without a corresponding GOSUB, program control returns to
the main program. If there is no ending RETURN statement, control will
not return to the main program. See the CALL statement for more
information.

The SUBROUTINE statement must be the first line in an external
subroutine. The name of the subroutine can be supplied, but it is not
necessary since the subroutine is addressed by its item ID.

The variables var must make a one-to-one correspondence with the
parameters supplied on the corresponding CALL statement line. Each of the

* Some implementations allow comment lines before the SUBROUTINE statement.

248 Pick BASIC: A Reference Guide

SUBROUTINE

parameters listed in the CALL syntax line are passed into the corresponding
variable list on the SUBROUTINE syntax line. Other than their positions
on the CALL and SUBROUTINE syntax lines, there is no correspondence
between variable names in the calling program and the subroutine.

An alternative way of passing variables between programs and subroutines
is to use COMMON statements in both program and subroutine. See the
COMMON statement for more infonnation.

If an array variable is passed, it must be preceded by the MAT keyword and
dimensioned in both the main program and the subroutine. See the CALL
statement for infonnation on passing arrays.

Examples

The first line of the subroutine ADDTHEM might read:

SUBROUTINE ADDTHEM (X, Y, Z)

and the corresponding line for calling ADDTHEM might read:

CAll ADDTHEM (A, B, C)

Variable A is passed to variable X, B is passed to Y, and C is passed to Z.
When the subroutine has finished, these values are passed in the opposite
direction.

SUM(): Add elements of a dynamic array.*

The SUM function calculates the sum of numeric data in a dynamic array
string.

SUM(string)

string the dynamic array string.

Data is added by the SUM function only at the lowest delimiter level in the
string. The SUM function adds each group of lowest-level elements into a
single number, removing the lowest-level delimiters.

If the string contains all three levels (subvalues, values, and attributes), the
SUM function will have to be called three times to produce a single numeric

* Not included in the SMA standards.

5,' Statement and Function Reference 249

SUM()

value; if the string contains two of the three levels, the SUM function will
have to be called twice.

Examples

If STRING contains:

101\20\30\401\50]60\70]801\90

then:

STRING= SUM(STRING)

produces:

101\901\50]130]801\90

If we once again performed STRING= SUM(STRING), we would have:

1 01\901\2601\90

and STRING = SUM(STRING) again would finally give us:

450

In the following application, a program to maintain inventory for a shoe
store keeps a record of each shoe style in a separate file item. The format
for each file item is that each attribute represents a color that the shoe style
is manufactured in, and within each attribute are eight multivalues
representing different sizes in that color, ranging from 5 1/2 to 9.

A program to perform a quick calculation of the number of shoes still
available in that style might read:

250

EQUATE AM TO CHAR(254)
OPEN "SHOES" TO STYLE FILE ELSE ...
PRINT "ENTER STYLE NO."
INPUT 10
READ STYLEREC FROM STYLEFILE, 10 ELSE ...
COLORREC = SUM(STYLEREC)
NO.OF.COLORS = DCOUNT(STYLEREC, AM)
FOR I = 1 TO NO.OF.COLORS

PRINT "COLOR" : I, COLORREC< I >
NEXT I
PRINT ''TOTAL ON HAND", SUM(COLORREC)

Pick BASIC: A Reference Guide

SYSTEM(

SYSTEM(): Return general status infonnation about the system.

The SYSTEM function returns status information about the operator's
terminal, the current output device, the tape drive, or a variety of other
system variables. Like the @ function, the SYSTEM function is
implemented differently on different Pick systems. Check the
documentation supplied with your system for complete details about the use
of SYSTEM function codes.

SYSTEM (expr)

expr an expression evaluating to a system function code,
some of which are listed in the tables of system
function codes.

The SYSTEM function checks on the status of the system function
specified. Table 5-3 lists the SMA standard system function codes accepted
by the SYSTEM function, and gives the significance of the returned values.
If expr evaluates to a number not listed below, 0 is assumed.

Table 5-3. SMA Standard System Function Codes.

Code Function

o The error code of the last READT, WRITET, WEOF, or
REWIND statement. Error codes are as follows:

Tape unit is not attached.

2 EOF read from tape unit.

3 Attempt was made to write a null string to tape.

4 Attempt was made to write a record longer than tape
record length.

o if program output is being sent to the terminal, I if program
output is being sent to a printer device.

2 Current page width on the screen.

3 Current number of lines on the screen.

4 Number of lines remaining on current page of output.

5 Number of lines already printed on the current page of
output. (On most systems, 5 gives the current page number.)

6 Current page number. (On most systems, 6 gives the number
of lines already printed on the current page of output.)

7 A single character representing the terminal type code. See
the TERM verb for possible values.

8 Current tape record length.

5: Statement and Function Reference 251

SYSTEM()

Table 5-4 lists some additional system function codes that follow the same
conventions on many Pick systems. They are not included in the SMA
standards, and not all implementations (Ultimate, for example) follow these
conventions.

Table 5-4. Other System Function Codes.

Code Function

9 Current number of charge units.

10 0 if the secondary output buffer is empty, 1 if it contains
data.

11 1 if the unassigned select-list is present, 0 otherwise.

12 System time in milliseconds.

15 Options used to invoke execution of current program, in the
fonn:

options"n"m

where 1\ is an attribute mark (CHAR(254» and:

options

n

m

are the letter options used.

is the first number specified.

is the second number specified.

The SYSTEM function can be very useful for programs which create reports
and perform tape handling.

Examples

In the following application designed for a GA system, the program uses the
SYSTEM function to check the user's privilege level.

SYSPRIV = SYSTEM(20)
IF SYSPRIV < 2 THEN

PRINT "Your privilege level is insufficient "
PRINT "to run this program."
ABORT

END

In the next application, a WRITET statement is used to write a record onto a
tape. Although the SYSTEM(O) function's response of "4" is reserved for
data strings longer than the tape record length, the WRITET statement
avoids this eventuality by truncating the data and printing an error message.
The SYSTEM(8) function is therefore used to determine if the data is too
long, and to truncate it into the appropriate number of segments if
necessary. In the ELSE clause of the WRITET statement the SYSTEM(O)

252 Pick BASIC: A Reference Guide

SYSTEM()

function is then used to determine the error code and print the corresponding
message.

MAX.LEN = SYSTEM(8)
REC.LEN = LEN(CURR.REC)
NO.OF.SEGS = REC.LEN / MAX. LEN
NO.OF.SEGS = INT(NO.OF.SEGS)
IF REM(REC.LEN,MAX.LEN) THEN

NO.OF.SEGS + = 1
END
FOR I = 1 TO NO.OF.SEGS

BEGIN.COL = (MAX.LEN * (1-1)) + 1
SEGMENT = CURR.REC[BEGIN.COL, MAX.LEN]
WRITET SEGMENT ELSE

ERROR.CODE = SYSTEM(O)
BEGIN CASE

CASE ERROR.CODE = 1
PRINT "ERROR! TAPE NOT ATIACHED"
GOSUBEXIT

CASE ERROR.CODE = 3
PRINT 10:": ITEM IS EMPTY"

END CASE
END

NEXT I

The next example prints a string of asterisks across the screen:

COLS=SYSTEM(2)
PRINT STR(,,*",COLS)

Finally, if the programmer needed to determine if the I option to RUN was
used, the code might read:

EXEC.STRING = SYSTEM(15)
LETIERS = EXEC.STRING<1 >
IF COUNT(LETIERS, "I") THEN ...

T AN(): Return the tangent of the expression.

The TAN function returns the trigonometric tangent of the expression.

TAN(expr)

The expression expr is treated as an angle expressed as a numeric value in
degrees. Values outside the range of 0 to 360 degrees are interpreted as
modulo 360.

5: Statement and Function Reference 253

TAN()

Example

To assign the variable TANGENT to the tangent of an angle ANGLE, enter:

TANGENT = TAN(ANGLE)

THEN: Initiator used with conditional statements.

For information about the THEN I ELSE construct, see the IF statement.

TIME(): Return the time of day in seconds.

The TIME function returns the current system time in internal format.

TIME()

The internal time expression represents the number of seconds, to the
nearest second, that have passed since midnight.

The DATE function can be used to return the current date in internal format.
To receive both the time and the date in external format, use the
TIMEDATE function.

Example

In the following application, the program checks the time of day and
informs the user if it is too late to record the transaction that afternoon.

254

TIME = TIME()
FIVE.PM = 3600 * 17
IF TIME> FIVE.PM THEN

PRINT "IT IS CURRENTLY AFTER FIVE PM."
PRINT "YOUR TRANSACTION WILL NOT BE RECORDED" :
PRINT "UNTIL THE NEXT BUSINESS DAY."

END ELSE
GOSUB RECORD

END

Pick BASIC: A Reference Guide

TIMEDATE()

TIMEDATE(): Return the time and date in external fonnat.

The TIMEDATE function returns the current system time and date in
external format.

TIMEDATE()

The current time and date is returned by the TIMEDA TE function in the
following form:

HH:MM:SS DO MMM YYYY

where:

HH hours (based on 24-hour clock)

MM minutes

SS seconds

DD day

MMM month

yyyy year

To receive just the current time in internal format, use the TIME function.
To receive just the current date in internal format, use the DATE function.
The TIME function returns the number of seconds since midnight, and the
DATE function returns the number of days since December 31, 1967.

Example

In the following application, the current time is shown at the beginning of
the program. To get the current time, the TIMEDA TE function is used and
the date is stripped out with the FIELD function.

CURR.TIME = TIMEDATE()
CURR.TIME = FIELD(CURR.TIME," ",1)
PRINT "BEGINNING THIS SESSION AT" : CURR.TIME

5: Statement and Function Reference 255

TRIM()

TRIM(): Remove extraneous blanks from a string.

The TRIM function removes any extraneous blank spaces from the given
string.

TRIM(expr)

expr an expression evaluating to the string to be trimmed.

The TRIM function reduces multiple consecutive blank spaces and tabs in
expr to one blank space or tab, and removes all leading and trailing spaces.

When creating a new file item, it is a good practice to TRIM the name of
the new item, to provide consistency and avoid later confusion.

Example

In the following example the TRIM function is used as soon as the operator
enters a last name which will be used as an item ID. Any extra spaces that
the operator might have entered in the name are then stripped out, making
the item ID more likely to be matched successfully.

PRINT "ENTER LAST NAME: " :
INPUT NAME
NAME = TRIM(NAME)
READ RECORD FROM GUESTS,NAME ELSE

FOUND=O
END

TRIMB(): Remove trailing blanks from a string. *
The TRIMB function removes any trailing blank spaces from the given
string.

TRIMB(expr)

expr an expression evaluating to the string to be trimmed.

The TRIMB function removes all trailing spaces. Any spaces embedded in
the string or leading the string are left intact.

256 Pick BASIC: A Reference Guide

TRIMB()

Example

In the following application the TRIMB and TRIMF functions are used on
the address input by the operator.

PRINT "ENTER YOUR ADDRESS: " :
INPUT ADDRESS
ADDRESS = TRIMF(ADDRESS)
ADDRESS = TRIMB(ADDRESS)

TRIMF(): Remove leading blanks from a string. *
The TRIMF function removes any leading blank spaces from the given
string.

TRIMF(expr)

ex p r an expression evaluating to the string to be trimmed.

The TRIMF function removes all leading spaces. Any spaces embedded in
the string or trailing the string are left intact.

Example

In the following application, the customer's name is entered last name first.
The last name is used as an item ID, and the first name becomes the first
attribute of the file item. The FIELD function separates the last name from
the first name, and the TRIMF function removes the leading space that
generally follows the comma.

PRINT "ENTER YOUR NAME (LAST NAME, FIRST NAME): ":
INPUT NAME
ITEM.ID = FIELD(NAME , " , " , 1)
ITEM.lD = TRIM(ITEM.lD)
FIRST. NAME = FIELD(NAME , " , " , 2)
FIRST.NAME = TRIMF(FIRST.NAME)

* Not included in the SMA standards.

5: Statement and Function Reference 257

UNLOCK

UNLOCK: Release execution locks.

The UNLOCK statement releases execution locks set by the program.

UNLOCK [expr 1

expr an expression evaluating to the lock number to be
released. Valid lock numbers are from 0 to at least 63.*
If expr is omitted, all execution locks set by the
program are released.

The UNLOCK statement releases execution locks that were set by a LOCK
statement in the program. It can be used either to release a specific lock or
to release all locks currently set.

In writing a subroutine you should unlock any execution locks explicitly
with the lock number, otherwise locks which might have been established
by the main program could be lifted prematurely.

The UNLOCK statement does not affect item locks established with the
READU, READVU, or MATREADU statements. Item locks are released
with the RELEASE statement or with a WRITE, WRITEV, or
MA TWRITE statement.

If there are no current execution locks set, or if the lock number specified
has not been locked, no action will be taken.

Example

In the following application the external subroutine REMOTE.MAIL uses
the LOCK statement for execution lock number 55. The UNLOCK
statement is used at the end of the subroutine. Note that lock number 55 is
specified for the UNLOCK statement, so only the specific lock set by the
current program is affected.

SUBROUTINE REMOTE.MAIL (MESSAGE, MODEMLlNE)
LOCK 55 ELSE

UNLOCK 55
RETURN

* Many Pick systems support more than 64 locks.

258 Pick BASIC: A Reference Guide

UNTIL

UNTIL: Initiator used with FOR and LOOP statements.

For information about the UNTIL initiator, see the FOR and LOOP
statements.

WEOF: Write an End-of-File mark.

The WEOF statement writes an End-of-File mark at the current position of
an attached magnetic tape.

WEOF { THEN statements [ELSE statements II ELSE
statements}

THEN statements execute statements if tape is attached and EOF is
successfully written. For details about the
syntax of THEN clauses, see the IF statement.

ELSE statements execute statements if tape is not attached. For
details about the syntax of ELSE clauses, see the
IF statement.

Example

After writing a tape, the code might read:

WEOFTHEN
WRITET RECORD ELSE
PRINT "EOF CANNOT BE WRITTEN"
GOSUBEXIT

END

WHILE: Initiator used with FOR and LOOP statements.

For information about the WHILE initiator, see the FOR and LOOP
statements.

5: Statement and Function Reference 259

WRITE

WRITE: Write an item to a file.

The WRITE statement writes an item to a file.

WRITE array ON [filevar, I item-ID

array

filevar

item-/D

an expression evaluating to the dynamic array
representing the contents of the file item.

the file variable to which the file was opened. If filevar
is not specified, the default file variable is used, which
is the file most recently opened without an assigned file
variable.

an expression evaluating to the item ID of the item to
be written.

The WRITE statement writes a new value to the specified item of a file.
Any data previously stored in the specified file item is overwritten. If the
item does not exist, a new item is created.

When updating a file, the WRITE statement releases the item lock set with
a READU statement. To maintain the item lock as it was set by the
READU statement, use the WRITEU statement instead of WRITE. See the
WRITEU statement for more information.

Example

In the following application, Attribute 6 contains the customer's phone
number. A new phone number is prompted for and then placed into
Attribute 6. The new item is then written back to the file.

260

PRINT "ENTER THE NEW PHONE NUMBER: ":
INPUT NEW.PHONE
CUST.REC<6> = NEW.PHONE
WRITE CUST.REC ON CUSTFILE,ITEM.ID

Pick BASIC: A Reference Guide

WRITET

WRITET: Write a tape record onto a magnetic tape.

The WRITET statement writes the given text as the next record on the
attached magnetic tape.

WRITET expr {THEN statements [ELSE statements 11 ELSE
statements}

expr an expression evaluating to the text to be written
to the tape.

THEN statements execute statements if tape is successfully written.
For details about the syntax of THEN clauses,
see the IF statement.

ELSE statements execute statements if tape cannot be written. For
details about the syntax of ELSE clauses, see the
IF statement.

The WRITET statement writes a record at the current position on an attached
magnetic tape. If the data to be written is longer than the maximum record
length on the tape, the data is truncated and an error message is printed.

A tape might not be writable because the tape has not been attached or
because the record to be written evaluates to the null string. To determine
why a tape record could not be written, the SYSTEM function is often used
in the ELSE portion of a WRITET statement. See the SYSTEM function
for more information.

Example

In the following application, each item of a file is written to tape. After
SELECTing the item IDs of the file, the READNEXT statement is used to
read each item ID and each item is then read and written to tape. If the item
is not written, the SYSTEM function determines the error message, and an
appropriate error message is printed.

SELECT TEMPFILE
END.OF.LlST = 0
LOOP

READNEXT 10 ELSE
END.OF.LlST = 1

END

5.' Statement and Function Reference 261

WRITET

UNTIL END.OF.LlST DO
READ CURR.REC FROM TEMPFILE,ID THEN

WRITET CURRREC ELSE
ERROR CODE = SYSTEM(O)
BEGIN CASE

CASE ERROR. CODE = 1
PRINT "ERROR! TAPE NOT ATIACHED"
GOSUB EXIT

CASE ERRORCODE = 3
PRINT 10:" : ITEM IS EMPTY"

END CASE
END

END ELSE
PRINT "ERROR IN READING RECORD ":10
PRINT "PRESS RETURN TO ACKNOWLEDGE" :
INPUTRESP

END
REPEAT

WRITEU: Write an item to a file, retaining item locks.

The WRITEU statement writes an item to a file, leaving item locks intact.

WRITEU array ON [filevar, 1 item-ID

array

fi/evar

item-/D

an expression evaluating to the dynamic array
representing the contents of the file item.

the file variable to which the file was opened. Iffilevar
is not specified, the default file variable is used, which
is the file most recently opened without an assigned file
variable.

an expression evaluating to the item ID of the item to
be written.

The WRITEU statement is identical to the WRITE statement, except that
item locks are not affected by the WRITEU statement. The new value is
written to the specified item of a file, but any item locks remain intact.

262 Pick BASIC: A Reference Guide

WRITEU

Example

In the following application the WRITEU statement is used to update
inventory information which is still being processed, and is therefore not
available to other users for updating.

INPUT QTY.ORD
INV.ITEM <10> += QTY.ORD ; ·Update qty committed
WRITEU INV.ITEM ON INV.FILE, PN

WRITEV: Write the value of one attribute to a file.

The WRITEV statement writes or updates a single attribute of an item.

WRITEV expr ON [filevar,] item-ID,attr#

expr

filevar

item-/D

attr#

an expression evaluating to the dynamic array variable
representing the contents of the attribute.

the file variable to which the file was opened. If filevar
is not specified, the default file variable is used, which
is the file most recently opened without an assigned file
variable.

an expression evaluating to the item ID of the item to
be written.

an expression evaluating to the number of the attribute
to be written. If attr# evaluates to a noninteger, it is
truncated. If attr# evaluates to 0, expr is written to
Attribute 1 and all existing attributes are pushed up one
(i.e., Attribute 1 becomes Attribute 2, Attribute 2
becomes Attribute 3, and so on). If attr# evaluates to a
negative value, expr is written as the last attribute in
the item, and all previous attributes remain unchanged.
In this respect the behavior of the WRITEV statement
parallels that of the INS statement.

5: Statement and Function Reference 263

WRITEV

The WRITEV statement writes a new value to the specified attribute of a
file item. Any data previously stored in the specified attribute is
overwritten. If the item or attribute does not exist, a new attribute or item
is created.

When updating a file, the WRITEV statement releases the item lock set
with a READVU statement. To maintain the item lock as it was set by the
READVU statement, use a WRITEVU statement instead of WRITEV. See
the WRITEVU statement for more information.

Example

In the following application, Attribute 6 of the file opened as CUST.FlLE
contains the customer's phone number. A new phone number is prompted
for, and the new item is then written back to the file.

READV PHONE FROM CUST.FILE,ID,6 ELSE
PRINT "CREATING A NEW RECORD"

END
PRINT "ENTER THE NEW PHONE NUMBER: ":
INPUT NEW.PHONE
WRITEV NEW.PHONE ON CUSTFILE,ITEM.ID, 6

WRITEVU: Write an item to a file, retaining item locks.

The WRITEVU statement writes a single attribute of an item to a file,
leaving item locks intact.

264

WRITEVU expr ON [filevar, 1 item-ID,attr#

expr

filevar

item-/D

attr#

an expression evaluating to the dynamic array variable
representing the contents of the attribute.

the file variable to which the file was opened. If filevar
is not specified, the default file variable is used, which
is the file most recently opened without an assigned file
variable.

an expression evaluating to the item ID of the item to
be written.

an expression evaluating to the number of the attribute
to be written. If attr# evaluates to a noninteger, it is

Pick BASIC: A Reference Guide

WRITEVU

truncated. If attr# evaluates to 0, expr is written to
Attribute 1 and all existing attributes are pushed up one
(i.e., Attribute 1 becomes Attribute 2, Attribute 2
becomes Attribute 3, and so on). If attr# evaluates to a
negative value, expr is written as the last attribute in
the item, and all previous attributes remain unchanged.
In this respect the behavior of the WRITEVU statement
parallels that of the INS statement.

The WRITEVU statement is identical to the WRITEV statement, except
that item locks are not affected by the WRITEVU statement. The new value
is written to the specified attribute of a file, but any item locks remain
intact.

Example

In the following application the WRITEVU statement is used to update
inventory information which is still being processed, and is therefore not
available to other users for updating.

INPUT OTY.ORD
INV.ITEM <10> += OTY.ORD; *Update qty committed
WRITEVU INV.ITEM<10> ON INV.FILE, PN, 10

5: Statement and Function Reference 265

~-------------

APPENDIXES

APPENDIX A

Pick BASIC Program
Examples

Appendix A provides examples of actual Pick BASIC programs. The
programs are diverse in application in order to show a variety of
programming techniques.

Programming Example 1: Triples

Example I demonstrates the use of internal subroutine branching. This
program finds pythagorean triples.

PRINT
PRINT 'SOME PYTHAGOREAN TRIPLES ARE:'
PRINT
FORA=1 TO 40

FOR B=1 TO A-1
CC=A*A+B*B
GOSUB50
IF C = INT(C) THEN PRINT B,A,C

NEXTB
NEXT A
STOP

* SQUARE ROOT SUBROUTINE
50 C=CC/2

END

FOR 1=1 TO 20
X=(C+CC/C)/2
IF C = X THEN RETURN
C=X

NEXT I
RETURN

Appendix A: Pick BASIC Program Examples 269

Programming Example 2: Guess

Example 2 demonstrates the use of conditional branching within a loop.
This program is a guessing game.

270

HEADING"
HISSCORE=O; YOURSCORE=O

10 PAGE
PRINT 'GUESS NUMBERS BETWEEN 0 AND 100'
PRINT 'MACHINE: ':HISSCORE:' ':'YOU:':YOURSCORE
PRINT
NUM=RND(1 01)
FOR 1=1 T06

PRINT 'GUESS ':1:' ':
INPUT GUESS
IF GUESS=NUM THEN

PRINT
PRINT 'CONGRATULATIONS, YOU WON!'
YOURSCORE= YOURSCORE+ 1
GOT060

END
IF GUESS<NUM THEN PRINT 'HIGHER'
IF GUESS>NUM THEN PRINT 'LOWER'

NEXT I
PRINT
PRINT 'YOU LOST YOU DUMMY, YOUR NUMBER WAS ':NUM
HISSCORE=HISSCORE+ 1

60 PRINT

END

PRINT 'AGAIN?':
INPUT X
IF X = 'NO' THEN STOP
GOT010

Pick BASIC: A Reference Guide

Programming Example 3: INV-INQ

Example 3 demonstrates the use of file inquiry logic. This program queries
an inventory file. It reads the dictionary of file INV to get the attribute
numbers of DESC (description) and QOH (quantity on hand). The program
then prompts the user for a part number, which is the item ID of an item in
INV, and uses the attribute numbers to read and display the part description
and quantity on hand. The program loops until a null part number is
entered.

*

100

END

GET ATIRIBUTE DEFINITIONS FROM DICT OF INVENTORY
FILE

OPEN 'DICT', 'INV' TO INV.DICT ELSE PRINT 'CANT OPEN
"DICT INV"'; STOP

READV DESC.AMC FROM INV.DICT,2 ELSE
PRINT 'CANT READ "DESC" A TIR'; STOP

END
READV QOH.AMC FROM 'QOH',2 ELSE

PRINT 'CANT READ "QOH" ATIR'; STOP
END
OPEN DATA PORTION OF INVENTORY FILE
OPEN ", 'INV' TO INV.FILE ELSE PRINT 'CANNOT OPEN

"INV"'; STOP
PROMPT FOR PART NUMBER
PRINT
PRINT 'PART-NUMBER ':
INPUTPN
IF PN = " THEN PRINT '--DONE--'; STOP
READ INV.ITEM FROM INV.FILE,PN ELSE

PRINT 'CANT FIND THAT PART'; GOTO 100
END
DESC = INV.lTEM<DESC.AMC>
QOH = INV.lTEM<QOH.AMC>
PRINT DESCRIPTION AND QUANTITY-ON-HAND
PRINT 'DESCRIPTION -': DESC
PRINT 'QTY-ON-HAND -': QOH
PRINT
GOTO 100

Appendix A: Pick BASIC Program Examples 271

Programming Example 4: Format

Example 4 demonstrates the use of structured block format. This program
formats a Pick BASIC program to display block structuring by indenting
lines.

272

*---- DEFINITIONS
10 SP = 6 ; * LEFT MARGIN COLUMN NUMBER

ID = 3 ; * NUMBER OF SPACES TO INDENT
*---- INITIALIZATION

SPX = SP
LlNE.NO = 0

*---- INPUT FILE NAME AND PROGRAM NAME
PRINT
PRINT
PRINT 'PICK.BASIC FILE NAME - ':; INPUT FILE
IF FILE = " THEN STOP
OPEN ", FILE ELSE PRINT 'CANT OPEN FILE -': FILE; GOTO 10
PRINT 'PICK. BASIC PROGRAM NAME - ':; INPUT NAME
IF NAME =" THEN GOTO 10
NEWITEM="
READ ITEM FROM NAME ELSE

PRINT 'CANNOT FIND THAT PROGRAM'
GOTO 10

END
*---- GET NEW LINE, IF NONE - THEN DONE
100 LlNE.NO = L1NE.NO + 1

LINE = EXTRACT(ITEM,LlNE.NO,O,O)
IF LINE = " THEN

WRITE NEWITEM ON NAME
PRINT; PRINT; PRINT '--DONE--'; GOTO 10

END
LABEL = "

*---- STRIP OFF LEADINGffRAILING SPACES
200 IF LlNE[1,1] =" THEN LINE = L1NE[2,32767]; GOTO 200
210 IF LlNE[LEN(L1NE),1] =" THEN

LINE = LlNE[1,LEN(L1NE)-1]; GOTO 210
END

---- LOOK FOR A COMMENT ('', '!', OR 'REM')
IF L1NE[1,1] = ,., THEN GOTO 1500
IF L1NE[1,1] = '!' THEN GOTO 1500
IF LlNE[1,3] = 'REM' THEN GOTO 1500

*---- LOOK FOR 'FOR'
IF LlNE[1 .4]='FOR ' AND INDEX(L1NE,'NEXT ',1 »0 THEN

GOT02000
END
IF L1NE[1 .4]='FOR ' AND INDEX(L1NE,'NEXT ',1)=0 THEN

GOTO 1000
END

*---- LOOK FOR 'END'

Pick BASIC: A Reference Guide

IF LINE = 'END' THEN GOTO 1100
IF LlNE[1 .4] = 'END' THEN

IF LlNE[LEN(LlNE)-4,5] = ' ELSE' THEN GOTO 1200
END

*---- LOOK FOR 'NEXT'
IF LlNE[1 ,5] = 'NEXT' THEN GOTO 1100

*---- EXTRACT LEADING NUMERIC LABEL
IF LlNE[1 ,1] MATCHES '1 N' THEN

L=2
300 IF LlNE[L,1] MATCHES '1 N' THEN L=L+ 1; GOTO 300

LABEL = LlNE[1 ,L-1]
LINE = LlNE[L,32767]
GOT0200

END
*---- LOOK FOR LINE ENDING IN ' ELSE' OR ' THEN' ('IF' OR 'READ')

X = LlNE[LEN(LlNE)-4,5]
IF X = 'THEN' THEN GOTO 1000
IF X = ' ELSE' THEN GOTO 1000

*---- THIS IS JUST ANOTHER LINE, THEREFORE NO CHANGE
GOT02000

*---- INDENT ON SUBSEQUENT LINES
1000 SP = SP -ID

GOT02000
*---- OUTDENT ON THIS AND SUBSEQUENT LINES
1100 SP=SP-ID
*---- OUTDENT THIS LINE ONLY
1200 SPX = SPX - ID

GOT02000
*---- PRINT WITH NO INDENTATION
1500 SPX = 0
*---- WRITE NEW LINE
2000 NEW.LlNE = LABEL: STR(", SPX-LEN(LABEL)): LINE

PRINT NEW.LINE
NEWITEM = REPLACE(NEWITEM,LlNE.NO,O,O,NEW.LlNE)
SPX=SP
GOTO 100

END

Appendix A: Pick BASIC Program Examples 273

Programming Example 5: Lot-Update

Example 5 demonstrates the use of file update logic. This program updates
data on lots in a housing tract. Item IDs in the file LOT are
TRACT.NAME*LOT.NUMBER.

274

100 * INITIALIZATION
PROMPT'='
CLEAR

*

DIM DESC(30), TYPE(30)
OPEN 'DICT', 'LOT' ELSE

PRINT "CAN'T OPEN DICT LOT"
STOP

END

200 * GET DESCRIPTIONS, CONVERSIONS
FOR I = 1 TO 30

READ DICT ITEM FROM I ELSE
PRINT "DICTIONARY ITEM "':1:'" NOT FOUND"
GOT0250

END
D = EXTRACT(DICT.ITEM,3,0,0) ; *S/NAME--DESCRIPTION
IF D #" THEN DESC(I) = D:STR('.',15-LEN(D))
IF C[1 ,2] = 'MD' THEN

TYPE(I) = 'NUM'
GOT0250

END
IF C[1 ,1] = '0' THEN TYPE(I) = 'DATE"

250 *

*

*

NEXT I

OPEN ",'LOT' ELSE
PRINT "CAN'T OPEN LOT FILE."
STOP

END

300 * GET THE TRACT NAME
PRINT

*

PRINT "TRACT NAME":
INPUT TRACT
IF TRACT = 'STOP' OR TRACT = 'END' THEN STOP
IF TRACT = " THEN GOTO 300
READ INFO FROM TRACT ELSE

PRINT ''TRACT ''':TRACT:'''LOT ON FILE"
GOT0300

END

Pick BASIC: A Reference Guide

400 * GET A VALID LOT NUMBER
PRINT
PRINT "LOT NUMBER. ":
INPUT NUMBER
IF NUMBER = " THEN GOTO 400
IF NUMBER = 'END' OR NUMBER = 'STOP' THEN GOTO 300
IF NUM(NUMBER) = 0 THEN

*

PRINT "MUST BE A NUMBER"
GOT0400

END
NUMBER = TRACT:'*':NUMBER
READ ITEM FROM NUMBER ELSE

ITEM="
PRINT "NEW LOT"

END

450 *

*

*

NOT. SOLD =0
FOR I = 1 TO 30

GOSUB 1000 ; * UPDATES THE I'TH ATIRIBUTE
IF I = 10THEN

IF EXTRACT(ITEM,1 0,0,0) = " THEN
NOT.SOLD = 1
1=19

END
END

IF I = 21 THEN
IF NOT.SOLD THEN GOTO 500

END
NEXT I

500 * VERIFY DATA & STORE
PRINT
PRINT" OK ":
INPUT OK
IFOK="THEN

WRITE ITEM ON NUMBER
GOT0400

END
IF OK = 'L' THEN

PRINT
FOR L= 1 TO 30

ATI = EXTRACT(ITEM,I,O,O)
IF ATI = ''THEN GOTO 550
PRINT DESC(L):
IF TYPE(L) = 'DATE' AND NUM(DATE) THEN

ATI = OCONV(ATI:DO')
END
IF TYPE(L) = 'NUM' AND NUM(ATI) THEN

ATI=0.01 ·ATI
END

Appendix A: Pick BASIC Program Examples 275

276

PRINT An 'R###############'
550 NEXTL

*

GOT0500
END
GOT0400

1000 * UPDATE'S THE I'TH AnRIBUTE OF "ITEM"

*

IF DESC(I) = " THEN RETURN ;*NOT NEEDED OR NOT FOUND
PRINT DESC(I):
CURRENT = EXTRACT(ITEM,I,O,O)

IF TYPE(I) = 'NUM' THEN
1100 * NEED A NUMBER (AMOUNT)

*

*

PRINT CURRENT*.01 'R##############':
INPUT RESPONSE
IF RESPONSE = "THEN RETURN ;* JUST LOOKING
IF RESPONSE # " THEN

ITEM = REPLACE(ITEM,I,O,O,")
RETURN ;* DELETE THIS An.

END
IF NUM(RESPONSE) = 0 THEN

PRINT "MUST BE A NUMBER"
GOTO 1100

END

ITEM = REPLACE(ITEM,I,O,O,RESPONSE*100)
RETURN

END

IF TYPE(I) = 'DATE' THEN
1200 * NEED A DATE

1250 *

PRINT OCONV(CURRENT,'DO') 'R###############':
INPUT RESPONSE
IF RESPONSE = " THEN RETURN ;* JUST LOOKING
IF RESPONSE = T THEN

DATE=DATEO
GOTO 1250

END
IF RESPONSE = "THEN

ITEM = REPLACE(ITEM,I,O,O,");'* DELETE THIS An.
RETURN

END
DATE = ICONV(RESPONSE,'D')
IF DATE =" THEN

PRINT "USE DATE FORMAT 'MONTH/DAYNEAR'"
GOTO 1200

END

ITEM = REPLACE(ITEM,I,O,O,DATE)
RETURN

END

Pick BASIC: A Reference Guide

1300 * NO NECESSARY FORMATS

END

PRINT CURRENT 'R###############':
INPUT RESPONSE
IF RESPONSE = " THEN RETURN
IF RESPONSE # " THEN RESPONSE = "
ITEM = REPLACE(ITEM,I,O,O,RESPONSE)
RETURN

Appendix A: Pick BASIC Program Examples 277

APPENDIX B

Error Messages

Appendix B lists some of the more common Pick BASIC error messages
that are found in the ERRMSG file of most Pick systems. Please note that
the list is representative rather than complete, since each manufacturer has
made additions and changes to its own ERRMSG file to suit its particular
needs. See the documentation supplied with your system for more complete
information about system-specific error messages.

Compiler Messages

Error messages generated by the COMPILE or BASIC verbs are printed
along with the error number and the cause of the error when not
self-explanatory .

When a compile-time error occurs, the error number is printed followed by
the line number in which it was found and the associated error message. For
example:

[B115] LINE 2 LABEL BELL IS USED BEFORE THE EQUATE STMT

Error number B 115 was detected on line 2 of the program. The error
message is taken from the system ERRMSG file.

See A Guide to the Pick System for more information about the ERRMSG
file.

Appendix B: Error Messages 279

Table B-1. Pick BASIC Compiler Error Messages

Error # Error Message Cause

BIOO COMPILATION ABORTED; NO Compilation was not
OBJECT CODE PRODUCED. completed. This message is

printed after all other error
messages, to warn the user that
the object code was not
updated.

BIOI MISSING "END", "NEXT",
"WHILE", "UNTIL", "REPEAT",
OR "ELSE"; COMPILATION
ABORTED, NO OBJECT CODE
PRODUCED.

BI02

BI03

BI04

BI05

B106

BAD STATEMENT

LABEL 'label'lS MISSING

LABEL 'label'lS DOUBLY
DEFINED

'array' HAS NOT BEEN
DIMENSIONED

'array' HAS BEEN
DIMENSIONED AND USED
WITHOUT SUBSCRIPTS

B 107 "ELSE" CLAUSE MISSING

The statement was not
recognized as a valid Pick
BASIC statement.

Label indicated by GOTO or
GOSUB was not found.

More than one statement was
found beginning with the same
label.

Variable array was referred to
with dimensioned array syntax,
but was not dimensioned in the
program.

Dimensioned array array was
used without subscripts.

BI08 "NEXT" STATEMENT MISSING A FOR loop was begun
without a corresponding NEXT
statement.

BI09 VARIABLE MISSING IN "NEXT" Iteration variable is missing in
STATEMENT NEXT statement.

BIIO 'END' STATEMENT MISSING

BIll "UNTIL" OR "WHILE" MISSING
IN "LOOP" STATEMENT

280 Pick BASIC: A Reference Guide

Error # Error Message Cause

BIl2 "REPEAT" MISSING IN "LOOP"
STATEMENT

BIl3 TERMINATOR MISSING Garbage following a legal
statement, or quote missing.

B114 MAXIMUM NUMBER OF Using the default descriptor size
VARIABLES EXCEEDED of 10, the maximum number of

variables (including array
elements) is 3223.

Bll5 LABEL 'var' IS USED BEFORE The equate-variable var is
THE EQUATE STMT referenced before it has been

defined.

B116 LABEL 'var' IS USED BEFORE COMMON variable var has
THE COMMON STATEMENT been referenced before it has

been defined.

B117 LABEL 'array' IS MISSING A Dimensioned array is referenced
SUBSCRIPT LIST without a subscript list.

B1l8 LABEL 'var' IS THE OBJECT
OF AN EQUATE STMT AND IS
MISSING.

B119 WARNING - PRECISION A PRECISION statement
VALUE OUT OF RANGE- specified a value other than 0
IGNORED! through at least 6.

BI20 WARNING - MULTIPLE When two PRECISION
PRECISION STATEMENTS- statements are included, only
IGNORED! the first one is read.

BI21 LABEL 'c' IS A CONSTANT The program attempted to
AND CAN NOT BE WRITTEN assign an EQUATEd variable
INTO to another value.

BI22 LABEL 'c' IS IMPROPER TYPE

B124 LABEL 'array' HAS LITERAL An attempt has been made to
SUBSCRIPTS OUT OF RANGE. access an element of a

dimensioned array beyond its
dimensions.

B154 FOR statement with no NEXT
statement.

Appendix B: Error Messages 281

Error # Error Message Cause

B I 99 FORMAT ERROR IN SOURCE The file that the program
FILE DEFINITION resides in does not have a DC­

type pointer.

B209 FILE IS UPDATE PROTECTED.

B210 FILE IS ACCESS PROTECTED.

B220 'CSYM' IS NOT A FILE NAME
OR NEEDS A DATA LEVEL.

Run-Time Messages

There are two types of message that can be encountered during run-time:
warning messages and fatal messages. Warning messages indicate that
illegal conditions have been smoothed over (by making an appropriate
assumption), and do not result in program termination. Fatal error
messages result in program termination and deposit the user in the Pick
BASIC debugger.

When an error occurs, the error number is printed followed by the error
message. For example:

[B27] LINE 87 RETURN EXECUTED WITH NO GOSUB

Error number B27 was detected on line 87 of the program. The error
message is taken from the system ERRMSG file.

See A Guide to the Pick System for more information about the ERRMSG
file.

Table B-2. Run-Time Error Messages (Warning).

Error # Error Message Cause

B9 WRITE, DELETE or CLEARFILE An unassigned variable was

BIO

282

operation attempted on read referenced. A value of 0 is
only file. assumed.

VARIABLE HAS NOT BEEN
ASSIGNED A VALUE; ZERO
USED!

An unassigned variable was
referenced. A value of 0 is
assumed.

Pick BASIC: A Reference Guide

Error # Error Message Cause

B13 NULL CONVERSION CODE IS A conversion was attempted
ILLEGAL; NO CONVERSION with ICONV or OCONV with
DONE! no conversion code.

B16 NON-NUMERIC DATA WHEN A string variable was
NUMERIC REQUIRED; ZERO encountered when a number
USED! was required. A value of 0 is

assumed.

B19 ILLEGAL PATTERN Illegal pattern used with
MATCH of MATCHES
operator.

B20 COL1 OR COL2 USED PRIOR COLl or COL2 function used
TO EXECUTING A FIELD before FIELD function used. A
STMT; ZERO USED! value of 0 is assumed.

B21 MATREAD: NUMBER OF The number of attributes in the
ATTRIBUTES EXCEEDS item exceeds the dimensioned
VECTOR SIZE size of the array; the remaining

attributes are placed as a
dynamic array in the last
element of the array.

B24 DIVIDE BY ZERO ILLEGAL; Division by zero attempted.
ZERO USED! The operation will return 0

(not 00).

B26 'UNLOCK c' ATTEMPTED An attempt was made to unlock
BEFORE LOCK! a lock which the program did

not lock.

B209 FILE IS UPDATE PROTECTED.

B210 FILE IS ACCESS PROTECTED.

Appendix B: Error Messages 283

Table B-3. Run-Time Error Messages (Fatal).

Error # Error Message Cause

BI RUN-TIME ABORT AT LINE n The program is aborted. The
debugger is not invoked.

BI2 FILE HAS NOT BEEN OPENED File indicated in I/O statement
has not been previously opened
via an OPEN statement.

BI4 BAD STACK DESCRIPTOR Either the length of the
input-lists or output-lists in the
CALL and SUBROUTINE
statements are different; an
attempt is made to execute an
external subroutine as a main
program; a file variable is used
as an operand; or a variable has
been assigned a value with a
precision greater than program
allows.

BI5 ILLEGAL OPCODE: "C" Object code for item indicated
by RUN verb contains garbage
or external subroutine without
SUBROUTINE statement.

BI7 ARRAY SUBSCRIPT Array subscript is less than or
OUT-OF-RANGE equal to zero or exceeds the

dimensions indicated by a DIM
statement.

BI8 ATTRIBUTE NUMBER LESS An attribute number less than -
THAN -1 IS ILLEGAL I was specified in a READV or

WRITEV statement.

B25 PROGRAM 'prog' HAS NOT The specified external
BEEN CATALOGED subroutine must be cataloged

before referenced in a CALL
statement.

B27 RETURN EXECUTED WITH NO
GOSUB

B28 NOT ENOUGH WORK SPACE Not enough work space
assigned.

284 Pick BASIC: A Reference Guide

Error # Error Message Cause

B29 CALLING PROGRAM MUST BE An external call cannot be made
CATALOGED unless the calling program is

also catalogued.

B30 ARRAY SIZE MISMATCH Array sizes in MAT Copy
statement, or in CALL and
SUBROUTINE statements, do
not match.

B31 STACK OVERFLOW The program has attempted to
call too many nested
subroutines.

B32 PAGE HEADING EXCEEDS Page heading is too long.
MAXIMUM OF 1400
CHARACTERS

B33 PRECISION DECLARED IN Precision must be same
SUBPROGRAM 'c IS between calling program
DIFFERENT FROM THAT subroutines.
DECLARED IN THE MAINLINE
PROGRAM

B34 FILE VARIABLE USED WHERE
STRING EXPRESSION
EXPECTED

B41 LOCK NUMBER IS GREATER Maximum number of locks
THAN 47 available is 47.

Debugger Messages

The following messages are used by the Pick BASIC debugger.

Table B-4. Debugger Messages.

Message Description

*E x Single step breakpoint at line number x .

*Bn x Table breakpoint at line number x; n equals
number of breakpoint.

*v = x Value of variable at breakpoint

*Nvar Variable not found in statement.

CMND? Command not recognized.

NST AT# Statement number out of range of program.

Appendix B: Error Messages 285

Message Description

SYM NOT FND Symbol not found in table.

UNASSIGNED VAR Variable not assigned a value.

STACK EMPTY The subroutine stack is empty.

STACK ILL Illegal subroutine stack format.

TBL FULL Trace or break table full.

ILLGL SYM Illegal symbol.

NOT IN TBL Not in trace break table.

NO SYM TAB Symbol table not in file.

286 Pick BASIC: A Reference Guide

APPENDIX C

List of ASCII Codes

Decimal Hex Character Symbol Remark

0 0 NUL Null prompt character

I I "A SOH Cursor home

2 2 liB STX

3 3 "C ETX

4 4 liD EOT End of Transmission

5 5 liE ENQ

6 6 "F ACK Cursor forward

7 7 "G BEL Bell

8 8 "H BS Backspace

9 9 "I HT Hard Tab

10 A AJ LF Cursor down

II B "K VT Vertical address

12 C ilL FF Screen erase

13 D "M CR Carriage return

14 E AN SO

15 F AO SI

16 10 lip DLE Horizontal address

17 II IIQ DCI

18 12 "R DC2 Redisplay input field

19 13 liS DC3

20 14 liT DC4

21 15 "U NAK Cursor back

Appendix C: List of ASCII Codes 287

Decimal Hex Character Symbol Remark

22 16 IIV SYN
23 17 IIW EIB Erase word
24 18 IIX CAN Erase character
25 19 lIy EM
26 lA liZ SUB Cursor up
27 1B ESC
28 lC FS
29 10 OS
30 IE RS
31 IF US
32 20 SPACE
33 21 Exclamation Point
34 22 Quotation Mark
35 23 # Sharp Sign
36 24 $ Dollar Sign
37 25 % Percent Sign
38 26 & Ampersand
39 27 Apostrophe
40 28 (Left Parenthesis
41 29) Right Parenthesis
42 2A * Asterisk
43 2B + Plus Sign
44 2C Comma
45 2D Hyphen
46 2E Period
47 2F I Slash (Virgule)
48 30 0
49 31
50 32 2
51 33 3
52 34 4
53 35 5
54 36 6
55 37 7
56 38 8

288 Pick BASIC: A Reference Guide

Decimal Hex Character Symbol Remark

57 39 9
58 3A Colon
59 3B Semicolon
60 3C < Left Angle Bracket
61 3D = Equal Sign
62 3E > Right Angle Bracket
63 3F ? Question Mark
64 40 @ "At" Sign
65 41 A
66 42 B
67 43 C
68 44 D
69 45 E
70 46 F
71 47 G

72 48 H

73 49 I

74 4A J

75 4B K
76 4C L

77 4D M

78 4E N

79 4F 0
80 50 P
81 51 Q
82 52 R
83 53 S
84 54 T

85 55 U

86 56 V

87 57 W

88 58 X
89 59 Y

90 5A Z

91 5B [Left Square Bracket

Appendix C: List of ASCI/ Codes 289

Decimal Hex Character Symbol Remark

92 5C \ Backslash

93 50] Right Square Bracket

94 5E II Caret

95 5F Underscore

96 60 Back Quote

123 7B Left Curly Brace

124 7C Vertical Bar

125 70 Right Curly Brace

126 7E Tilde

127 7F OEL

251 FB SB II[Start buffer (ESC. CTRL-D

252 FC SVM 11\ Subvalue Mark (CTRL-\)

253 FO VM II] Value Mark (CTRL-])

254 FE AM 1111 Attribute Mark (CTRL-II)

255 FF SM II Segment Mark (CTRL-_)

290 Pick BASIC: A Reference Guide

A P PEN D I X D

BASIC Statements, Pick
Functions, and Operators

Appendix 0 lists all Pick BASIC statements, functions, and operators
described in this guide, along with some others that are available on selected
Pick and Pick-related systems. Statements, functions, and operators that are
included in the SMA standards are indicated in the left-most column.

Statements, M ~ ~ ~ l q,,~Jj
'$' Functions, .~~~ ~ ~.~
~ and Operators :q,,"'~ (;~:q,,' §

• 1\ • • • •
• ! [comment] • • • • • •
• ! [OR] • • • • •
• # [NE] • • • • • •

#< [GE] • •
#> [LE] • •
$* [comment] • •
$CHAIN • • • •
$INCLUDE • • • •
$INSERT • • • •

• & [AND] • • • • •
• * [comment] • • • • • •
• * [multiplier] • • • • • •

** [exponentiation] • •
• + • • • • • •
• - • • • • • •

Appendix D: Pick BASIC Statements, Functions. and Operators 291

ItI ItI
Statements, ~ ;;, !o.W)

h~ Functions, ~ ~ flIr;;;..qj
.~~ :\'; ;:. ~.~

and Operators ~~~l~~'§
• / • • • • • •
• • • • • • •
• < • • • • • •
• < > [arrays] • • • • • •

< > [NE] • • • • • •
• <= • • • • • •
• = • • • • • •

=< • • • •
=> • • • •

• > • • • • • •
> < [NE] • • • • •

• >= • • • • • •
• @() • • • • • •

[]= • • • •
• ABORT • • • • • •
• ABS() • • • • • •

ALPHA() • • • • •
• AND • • • • • •
• ASCII() • • • • • •
• BEGIN CASE • • • • • •

BREAK [KEY] • • • •
• BREAK • • • • • •
• CALL • • • • • •
• CASE • • • • • •
• CAT • • • • •
• CHAIN • • • • • •
• CHAR() • • • • • •
• CLEAR • • • • • •

CLEAR COMMON • •
• CLEARFILE • • • • • •
• COLl() • • • • • •
• COL2() • • • • • •
• COM [MON] • • • • • •

CONVERT • • •
• COS() • • • • • •

292 Pick BASIC: A Reference Guide

Statements, ,s. ~
~ i ~,..J:

h~ Functions, .~~~ ~~.~
and Operators 'lJ..:"<i~ ~l~'¢' §

• COUNT() • • • • • •
• CRT • • • • •
• DATA • • • • • •
• DATE() • • • • • •
• DCOUNT() • • • • •

DEBUG • • • •
DEL • • • • •

• DELETE • • • • • •
• DELETE() • • • • • •
• DIM[ENSION] • • • • • •

DISPLAY • • •
• 00 • • • • • •
• EBCDIC() • • • • • •
• ECHO • • • • • •
• ELSE • • • • • •
• END • • • • • •
• END CASE • • • • • •
• ENTER • • • • •
• EQ • • • • • •
• EQU[ATE] • • • • • •
• EXECUTE • • • • • •
• EXP() • • • • • •
• EXTRACT() • • • • • •
• FIELD() • • • • • •
• FOOTING • • • • • •
• FOR ... NEXT • • • • • •
• GE • • • • • •
• GO [TO] • • • • • •
• GOSUB • • • • • •
• GOTO • • • • • •
• GT • • • • • •
• HEADING • • • • • •
• ICONV() • • • • • •
• IF • • • • • •
• INCLUDE • •

Appendix D: Pick BASIC Statements, Functions, and Operators 293

Statements, ..s- '*' ~ ~ ~';;;..J:
~ Functions, .~~~;:. ~.~
'" and Operators ",'" ~ ~ ~"" ~
• INDEX() • • • • • •
• INPUT • • • • • •
• INPUT@ • • • • • •

INPUTCLEAR • • • •
INPUTERR • • • •
INPUTIF • •
INPUTNULL • • • •
INPUTIRAP • • • •
INS • • • • •

• INSERT() • • • • • •
• INT() • • • • • •
• LE • • • • • •
• LEN() • • • • • •

LET • • • • • •
• LN() • • • • • •
• LOCATE() • • • • • •
• LOCK • • • • • •
• LOOP • • • • • •
• LT • • • • • •
• MAT • • • • • •

MATBUILD • • •
• MATCH[ES] • • • • • •

MATPARSE • • • •
• MATREAD • • • • • •
• MATREADU • • • • • •
• MATWRITE • • • • • •
• MATWRITEU • • • • • •

MOD() • • • • • •
• NE • • • • • •
• NEXT • • • • • •
• NOT() • • • • • •
• NULL • • • • • •
• NUM() • • • • • •
• OCONV() • • • • • •
• ON • • • • • •

294 Pick BASIC: A Reference Guide

q, q,
Statements, ~ ~ ~r.ij

~ Functions,
~ §; flJ~q,

.&~ ~ ;:; .~.~
~ and Operators ¢'~ ~~~, §

• OPEN • • • • • •
• OR • • • • • •
• PAGE • • • • • •
• PRECISION • • • • • •
• PRINT [ON] • • • • • •
• PRINTER • • • • • •

PROCREAD • • • • •
PROCWRITE • • • • •

• PROMPT • • • • • •
• PWR() • • • • • •
• READ • • • • • •
• READNEXT • • • • • •
• READT • • • • • •
• READU • • • • • •
• READY • • • • • •
• READVU • • • • • •
• RELEASE • • • • • •
• REM [comment] • • • • • •
• REM() • • • • • •
• REPEAT • • • • •
• REPLACE() • • • • • •
• RETURN [TO] • • • • • •
• REWIND • • • • • ..
• RND() • • • • • •

RQM • • • • •
• SELECT • • • • • •
• SEQ() • • • • • •
• SIN() • • • • • •
• SLEEP • • • •

SOUNDEX() • • •
• SPACE() • • • • • •
• SQRT() • • • • • •
• STOP • • • • • •
• STR() • • • • • •
• SUBROUTINE • • • • • •

Appendix D: Pick BASIC Statements, Functions, and Operators 295

Statements, ~ ~ ~ ~ Functions,
~ i' lZJ~qj

~
.'&~~ ;:; .~.~

and Operators ~o;;~ "'~~, §

SUM() • • • •
• SYSTEM() • • • • •
• TAN() • • • • • •
• THEN I ELSE • • • • • •
• TIME() • • • • • •
• TIMEDATE() • • • • • •
• TRIM() • • • • • •

TRIMB() • • • •
TRIMF() • • • •

• UNLOCK • • • • • •
• WEOF • • • • • •
• WHILE I UNTIL • • • • • •
• WRITE • • • • • •
• WRITET • • • • • •
• WRITEU • • • • • •
• WRITEV • • • • • •
• WRITEVU • • • • • •

296 Pick BASIC: A Reference Guide

I N D E X

! statement 18,67,93-94
$* statement 18, 66, 95
$CHAIN statement 66, 96-97
$INCLUDE statement 66, 97-98
$INSERT statement 66, 99-100
* statement 18,67, 100-101
: operator 26
= statement 16, 19,21,36, 101-

102
operator assignment 36

@ function 49-50, 102-105
[] = statement 58

A

ABORT statement 42-43, 108-109
ABS function 24, 37, 109-110
ACCESS

conversion codes 67
account number

of user 68
ALPHA function 30, 39, 110- til
AND operator 28
arithmetic operators 23
arrays

definition of 30
dimensioned. See dimensioned

arrays.
dynamic. See dynamic arrays.
dimensioned vs. dynamic 60

Index

ASCII codes
converting from EBCDIC 111-

112
converting to EBCDIC 138
decimal. See decimal codes.

ASCII function 111-112
assignment

of COMMON area 123-124
of constants 19,36,37, 143-

144
of dimensioned arrays 6 t, 123-

124, 193-194
of simple variables 19-20,21,

36, 101-102, 123-124
of substrings 105-108
operator assignment 36
to zero 36, 119

assignment statements 10 1-102
attribute marks 54
attributes

definition of 30

B

BASIC command. See COMPILE
command.

BEGIN CASE statement 41, 117
Boolean expressions. See logical

expressions.
Boolean functions. See logical

functions.

297

BPfile 1,4
Break Inhibit Counter 68, 112
BREAK key 12,68,71,78,112
BREAK statement 68, 78, 112-113
BSYM file 10

c

CALL statement xxi, 44-45, 114-
116

carnage return
suppressing 49

CASE statement 41, 116-117
CAT (:) operator 26
CATALOG command 3,13-14
cataloging a program 3, 13-14,68
CHAIN statement 13,46, I 17-1I8
CHAR function 118-119
charge units 252
CLEAR statement 36, 119-120
CLEARFILE statement 64, 121
COLl function 59, 121-122
COL2 function 59, 122
comments

in object code 18,66,95
in source code 18, 67, 93-94,

100-101,232-233
COMMON area 45, 60
COMMON statement 32, 45-46,

60,66, 123-124
COMPILE command 2,6-12

A option 9
C option 11
E option 11
L option 11
M option 10
P option 12
S option 11, 79
X option 10

compiling a program 2, 6-12

298

conditional statements 39-42
constants

assigning 19,36-37, 143-144
definition of 15, 19
naming 20

control characters
for editing 172

conversion codes. (See also
internal format.) 67, 163-
164,210-211

CONVERT statement 124-125
COS function 24, 38, 125-126
COUNT function 57,126-127
CREATE-FILE command 1-2, 4
CRT statement 47-51,127-128

D

Dartmouth College xx
data

alternating types 20
numeric 20, 22-23
string 20
types of 20

data stack 46,54, 129
status of 68

DATA statement 46,54, 128-129,
145

with EXECUTE statement 46-
47

DATE function 129-130
DC definition code 4
DCOUNT function 57, 130-131
deadly embrace 63, 65
DEBUG statement 68, 78, 132
debugger (see also debugging a

program). 11, 69-91
assigning new values 77
breakpoints 74, 84-86, 87, 89
continuing execution 75, 88

Pick BASIC: A Reference Guide

controlling execution 87 -89
disabling breakpoints 89
displaying all variables 80
displaying and changing values

79, 80-82, 83
displaying breakpoints and trace

variables 74
displaying values 75-76
entering 12, 68, 78-79, 112-113
execution steps 76, 88-89
exiting 77, 79
identifying source code 83
introduction to 71
list of commands 69-70
printing output 89-90
printing source code 72-74, 83-

84
prompt (*) 72
return stack 90-91
sample program 71-78
string windows 82-83
trace variables 74-75, 86-87

debugger commands
$ 84
/75-76, 78,80-83
/* 80
? 84
B 74, 77, 85-86
CTRL-J 88
D 74, 87
DEBUG 79
E 76,88-89
END 77, 79
G 75, 88
K 86
L 72-74,84
LP 89-90
N 89
OFF 79
P 89
PC 90
quick reference 69-70
R 91

Index

S 90-91
T 74,86
U 87
Z 72, 83

debugging a program
entering the debugger 112-113,

132
DECAT ALOG command 14
decataloging a program 14
decimal codes

converting to 241-242
decimal precision 38
DEL statement 57, 132-133
DELETE function 56, 134-135
DELETE statement 64, 133
delimiters

counting 130-131
for string data 20, 25-26

DIM statement 32, 60, 135-136
dimensioned arrays xxi, 31-32, 60-

61
assigning all elements 61, 193-

194
converting to and from dynamic

arrays 194-200
defining 32,60, 135-136
definition of 60
reading from file items 61, 200
structure 31-32
vs. dynamic arrays 60
writing to file items 204-206

DISPLAY statement 47-51, 136-
138

dynamic array functions xxi
dynamic arrays (see also strings).

xxi, 30-31, 54-57
adding elements 249-250
angle bracket notation « » 57
converting to and from

dimensioned arrays 194-
200

counting delimiters 57, 130-131
counting elements 57

299

definition of 30
deleting an element 56, 132-135
delimiters 30, 55
extracting an element 55, 148-

149
functions 55-57
inserting an element 56, 182-

185
length 31
locating an element 56, 187-190
reading from file items 222-223,

226-231
replacing an element 55-56,

234-236
statements 57
structure 30-31
vs. dimensioned arrays 60
writing to a file item 260, 262-

265

E

EBCDIC codes
converting from ASCII 138
converting to ASCII 111-112

EBCDIC function 138
ECHO statement 67, 138-140
editing control characters 172
ELSE clause

syntax of 40, 165-167
with execution locks 65-66

END CASE statement 41, 116
END statement 40, 43, 141-142
ENTER statement 47,142-143
EQUATE statement 16, 19,36-37,

143-144
error bells

generating 118

300

error messages
interpreting 71
suppressing 13

errors
run-time 12

EXECUTE statement xxi, 13,46-
47,63, 144-147

with DATA statement 46-47
with select-lists 47. 145-146

executing a program 2, 12-13
fatal errors 12, 78
from a proc 67
nonfatal errors 12, 78
options used 252

executing a TCL command 144-147
execution locks xxi, 65-66, 190-

191
releasing 65, 258

execution steps 88-89
definition of 76

exiting the debugger 77
EXP function 24, 38, 148
exponents 221
expressions 21-30

definition of 15
logical. See logical

expressions.
numeric. See numeric

expressions.
string. See string expressions.
using parentheses 23

external format 67
external subroutines xxi, 248-249

definition of 44
entering 114-116
returning from 236-237
symbol table 79

EXTRACT function 55, 148-149

Pick BASIC: A Reference Guide

F

FIELD function 58, 121, 122, 149-
150

file
creating 1

File Definition item 4
file items. See items.
file variables 32

assigning 61-62,211-212
default 62
definition of 61

files
opening 61

FOOTING statement 51, 150-151
FOR loops 42, 152-153
FOR statement 152-153
format expressions 50-51, 53, 153-

159
format masks 156
formatted screens xxii, 49-50, 53,

102-105
formatting

numbers 154-155
output 49-51, 153-159,216

functions 37-39
definition of 22
logical. See logical functions.
numeric. See numeric

functions.
trigonometric 38

functions (Boolean). See logical
functions.

G

GOSUB statement 43-44, 159-161
GOTO statement 44, 161-162

Index

H

HEADING statement 13, 51, 162-
163

I

ICONV function 50, 67, 163-164,
211

IF statement 39-40, 165-167
INCLUDE statement 66, 167-169
INDEX function 59,169-170
input 52-54, 170-176

error messages 54, 177-178
format expressions 53,174-176
formatted screens 53,174-176
from calling proc 67, 218-219
from tape 64,225-226
from type-ahead buffer 178-180
prompt character 52,220-221
stack 129
toggling echo feature 67, 138-

140
with data stack 54

INPUT statement 52, 170-174
INPUT @ statement 49, 53-54,

174-176
error messages 177
escaping with INPUTTRAP 181
null character with

INPUTNULL 180
INPUTCLEAR statement 176
INPUTERR statement 54, 177-178
INPUTIF statement 178-180
INPUTNULL statement 53, 180
INPUTTRAP statement 53, 181-

182
INS statement 57, 182-183
INSERT function 56, 184-185

301

INT function 24, 37, 185-186
internal format (see also conversion

codes). 67
converting dates 156-157, 164
converting from 50,153-159,

210-211
converting to 50, 163-164
definition of 50

internal subroutines 43-44
branching to 159-161
definition of 43
return stack 90-91
returning from 236-237

intrinsic functions
definition of 24

intrinsic functions. See functions
item locks xxi, 62-63, 202-206,

231-232
items 61-64

as dynamic arrays 31
deleting 64, 121, 133-134
in a program xxi
locking 202--206
locks 62-63
opening 211-212
reading as dimensioned arrays

61,200-204
reading as dynamic arrays 55,

62-63, 222-223, 226-231
releasing locks 62, 231-232
selecting 63-64
writing from dimensioned arrays

204, 205-206
writing from dynamic arrays 62,

260, 262-265

K

keywords
definition of 15

302

L

LEN function 59, 186-187
line number

of user 68
line feed

suppressing 49
LN function 24, 38, 187
LOCATE statement 56, 187-190
LOCK statement 65-66, 190-191
LOCKED clause 63
locks. See also item locks,

execution locks.
releasing 62, 231-232, 258

locks (execution) xxi, 65-66, 190-
191,258

locks (item) xxi, 62-63, 202-206,
231-232

logical expressions 26-30
definition of 26

logical functions 38-39
list of 29-30

logical operators 28
LOOP statement 42, 192-193

M

masked format. See format
expressions.

MAT statement 61,193-194
MA TB UILD statement 194-197
MATCH[ES] operator 29
MATPARSE statement 197-200
MA TREAD statement 61, 62, 200-

202
MATREADU statement 62-63,

202-204
matrix

definition of 31

Pick BASIC: A Reference Guide

MA TWRITE statement 61, 62,
204-205

MA TWRITEU statement 63, 205
MOD function 24, 37, 206-207
multiple statements

separating xxi

N

natural logs
calculating 187

NEXT clause 152
NOT function 30, 38, 207-208
NULL statement 40-41,208-209
NUM function 30, 39, 209-210
numbers

formatting 154-155
numeric expressions 21-25
numeric functions 24-25, 37-38

precision 38

o

object code
compacting II
creating 6-12
documenting 66, 95

OCONV function 50, 67, 210
opcodes. See pseudo-assembler

code
OPEN statement 32, 61-62,212
operands

definition of 21
operator assignment 10 1-102
operators

arithmetic 23
definition <!If 21

Index

logical. See logical operators.
relational. See relational

operators.
OR operator 28
output 47-51,215-217

format expressions. See format
expressions.

formatted screens 49-50
formatting 49-51,216
from compiler 12
headings and footings 51, 150-

151,162-163,213-214
lines left on page 251
number of lines 251
page number 213,251
status of 68
suppressing carriage return and

linefeed49
to printer 13,48-49,215,217-

218,251
to terminal 127-128, 136-138

output format
converting to 50

p

PAGE statement 51,213-214
parentheses

in arithmetic expressions 23
Pick BASIC

development from BASIC xx
features xx-xxii

Pick BASIC statements 36-68
assignment 36-37
categories of 16
compiler directives 66-67
conditional 39-42
dimensioned arrays 60-61
dynamic arrays 54-57
executing TCL commands 46-47

303

execution locks 65-66
I/O 47-54
input 52-54
items 61-64
loops 41-42
miscellaneous 67-68
output 47-51
overview 35-68
program control 39-47
reading and writing tapes 64
stopping 42-43
string functions 57-59

precision 38
PRECISION statement 38, 214-

215
primary input buffer 67, 219-220
PRINT statement 47-51,215-217
print units 48-49,51
PRINTER CLOSE statement 48
PRINTER OFF statement 48
PRINTER ON statement 13,48
PRINTER statement 217-218
printing compiler output 12
printing output. See output.
PROC

capturing input from 67
process number

of user 68
PROCREAD statement 67, 218-

219
PROCWRITE statement 67,219-

220
program control

definition of 39
external 44-47
internal 39-44

program file 1, 4
creating 4
definition 1

program format 15-18
PROMPT statement 52, 220-221
prompts

debugger (*) 72

304

pseudo-assembler code
listing 9
suppressing EOLs 11

PWR function 24, 37, 221

R

random numbers
generating 238-239

READ statement 55, 62, 222-223
reading tapes xxii
READ NEXT statement 32, 64,

223-224
READT statement 64, 225-226

error codes 251
READU statement 55, 62-63, 226-

227
READV statement 62, 228-229
READVU statement 62-63, 229-

231
relational operators 27-28

list of 27
with string values 27-28

RELEASE statement 62, 231-232
REM function 25, 37, 233-234
REM statement 18,67, 232-233
REPEAT statement 192
REPLACE function 55-56, 234-

236
RETURN statement 43-44, 45,

159-161,236-237
REWIND statement 64,237-238

error codes 251
RND function 25, 37, 238-239
RQM statement 67, 239
RUN command 2,12-13

A option 12
capturing options to 67
D option 12, 68, 72, 78
E option 12, 78

Pick BASIC: A Reference Guide

fatal errors 12
I option 13
N option 13
nonfatal errors 12
options used 252
P option 13, 48
S option 13

running a program 2, 12-13

s

screen formatting 102-105
screen manipulation xxii
secondary input buffer

status 252
segment marks 54
SELECT statement 32-33,47, 63-

64,240-241
select-lists 32, 47, 240-241, 252

reading 223-224
status of 252
types of 32-33
variables 47,63-64,68
with EXECUTE 47, 145-146

SEQ function 241-242
SIN function 25, 38, 242
SLEEP statement 67, 242-243
sorting

with LOCATE and INSERT
189

SOUNDEX function 243-245
source code

chaining 96-97
compiling 6-12
definition of 4
documenting 18,67,93-94,95,

100-101,232-233
format 15-16
from another file item 66-67,

96-100

Index

including 97 -98, 167-169
inserting 99-100
listing 11
spaces in 17

SPACE function 245
spaces

generating 245
in source code 17
trimming 59, 256-257

SQRT function 25, 37, 245-246
statement labels xx, 15, 17

alphanumeric xx, 17
definition of 17
for internal subroutines 43
format 17
length xx
numeric 17

statements. See also Pick BASIC
statements

breaking onto multiple lines 16
categories of 16
separating 15

STOP statement 42-43, 246-247
STR function 247-248
string expressions 25-26

format 25-26
string functions xxi
strings

calculating length of 59, 186-
187

capturing column positions 59,
121-122,169-170

concatenating 26
converting characters 124-125
counting delimiters 130-131
counting substrings 57, 126-127
deleting a field 59
delimiters 20, 25-26
extracting a field 58-59, 149-150
functions 57-59
in arithmetic expressions 24
repeating characters 247-248
square bracket notation ([]) 58

305

substring assignment 58
trimming spaces 59, 256-257

SUBROUTINE statement 44-45,
248-249

subroutines
external. See external

subroutines.
internal. See internal

subroutines.
substring assignment statement 58,

105-108
subvalues

definition of 30
SUM function 249-250
symbol table 11, 79

suppressing 11, 79
SYSTEM function 64, 67-68,251-

253

T

tabulation 49
TAN function 25, 38, 253-254
tape I/O. See also tapes.

error codes 251
length of record 251

tapes
error codes 251
length of record 251
reading xxii, 64, 225-226
rewinding 237-238
writing End-of-File 259
writing to xxii, 64, 261-262

terminal control xxii
terminal status 68, 251
THEN clause

syntax of 40, 165-167
with execution locks 65-66

time 252
TIME function 254

306

TIMEDATE function 255
trace variables 74-75, 86-87

definition of 74
trigonometric functions 38
TRIM function 59, 256
TRIMB function 59, 256-257
TRIMF function 59,257
type-ahead buffer

clearing 176
input from 178-180

u

UNLOCK statement 65,258
UNTIL clause 42

v

values
definition of 30

variables
arrays. See arrays.
assigning 19-20
cross-referencing 10
definition of 15, 19
dimensioned arrays. See

dimensioned arrays.
dynamic arrays. See dynamic

arrays.
mapping 10
naming 17, 20

vector
definition of 31

Verb Definition item 13, 14

Pick BASIC: A Reference Guide

w

WEOF statement 64, 259
error codes 251

WHILE clause 42
workspace 13
WRITE statement 62, 260
WRITET statement 64,261-262

error codes 251
WRITEU statement 63, 262-263
WRITEV statement 62, 263-264
WRITEVU statement 63, 264-265
writing programs 1-14

sample program 1-3
writing to tapes xxii

Index 307

About the Author

Linda Mui is a technical writer at O'Reilly & Associates. She has worked in
UNIX system administration and text processing (troff), and co-authored the
Nutshell Handbook on UNIX terminal databases (termcap and term info). She
has also worked as a consultant at Digital Equipment Corporation and the Open
Software Foundation.

About the Editor

W. Clifton Oliver is the technical editor of the Pick Series. He is a consultant
who has worked with the Pick system since 1974, using it to implement a wide
range of applications. His clients have included Fortune 500 corporations,
individual end users, and Pick system manufacturers. Mr. Oliver is also an
instructor, speaker, and columnist.

Overseas Distributors

Effective January 1, 1990, custom~rs outside the U.S. and Canada will be able
to order Nutshell Handbooks and the X Window System Series through distributors
near them. These overseas locations offer international customers faster order
processing, more local bookstores and local distributors, an increased
representation at trade shows worldwide, as well as the high level, quality service
our customers have always received.

AUSTRALIA & NEW ZEALAND
(orders and inquiries)
Addison-Wesley Publishers, Pty. Ltd.
6 Byfield Street
North Ryde, N.S.W. 2113
AUSTRALIA
Telephone: 61-2-888-2733
FAX: 61-2-888-9404

UNITED KINGDOM & AFRICA
(orders and inquiries)
Addison-Wesley Publishers, Ltd.
Finchampstead Road
Wokingham, Berkshire RG 11 2NZ
ENGLAND
Telephone: 44-734-794-000
FAX: 44-734-794-035

EUROPE & THE MIDDLE EAST
(orders and inquiries)
Addison-Wesley Publishers, B. V.
De Lairessestraat 90
1071 PJ Amsterdam
THE NETHERLANDS
Telephone: 31-20-764-044
FAX: 31-20-664-5334

ASIA inquiries (excluding Japan)
Addison-Wesley Singapore Pte. Ltd.
15 Beach Road #05-09/10
Beach Centre
Singapore 0718
SINGAPORE
Telephone: 65-339-7503
FAX: 65-339-9709

ASIA orders (excluding Japan)
Addison-Wesley Publishing Co., Inc.
International Order Department
Route 128
Reading, Massachusetts 01867 U.S.A.
Telephone: 1-617-944-3700
FAX: 1-617-942-2829

JAPAN
(orders and inquiries)
Toppan Company, Ltd.
Ochanomizu Square B, 1-6
Kanda Surugadai
Chiyoda-ku, Tokyo 101
JAPAN
Telephone: 81-3-295-3461
FAX: 81-3-293-5963

~AREFERENCE GUIDE
Pick BASIC: A Reference Guide is comprehensive documentation forappli-
cationssprogrammers. The large reference section covers all Pick BASIC,. ,

statements and functions. This book's material is organized for easy access,
as a reference manual should be. Explanations are clearly written and can be
understood in a single reading. Each statement or function is illustrated by a
nontrivial sample program. The debugger, which is thinly documented
elsewhere, is fully covered here.

Contents include:

• Creating Pick BASIC programs
• Format, data, and expressions
• Functional overview of statements and functions
• Using the Pick BASIC 'debugger
• Statement and function reference
• Appendixes, which provide program examples, error messages, ASCII
.codes, and a table of statements, functions, and operators supported by
SMA "and selected Pick implementations

• Index

The 'Pick Series is for users who want mom out of Pick documentation-
understanding a passage at first reading; speedily looking up an option;
finding complete coverage of a topic; having a guide you can give to a first-
time user. The Pick Series offers a complete Pick documentation set for all
users, based on a mature implementation of the Pick operating system (R83),
with notes on SMA standards and specific differences among major Pick
implementations.

ISBN # 0-937175-42-0

O'Reilly & Associates, Inc:

-. . --._,_L...:..:

