© Malcolm Bull

Malcolm Bull
Training and Consultancy Publications

MB-Guide
to

AP/DOS

Malcolm Bull

MB-Guide

to

AP/DOS

MB-Guide

to

AP/DOS

by

Malcolm Bull

(c) Malcolm Bull 1992

MALCOLM BULL Training and Consultancy Services

MB-Guide to Advanced Pick: AP/DOS

(c) MALCOLM BULL 1993

Malcolm Bull

Training and Consultancy Publications
19 Smith House Lane

BRIGHOUSE

HD6 2JY

West Yorkshire

United Kingdom

Telephone: 0484-713577

ISBN: 1 873283 60 1

Edition: 2.5
Updated: 13:07:93

No part of this publication may be photocopied, printed or
otherwise reproduced, nor may it be stored in a retrieval
system, nor may it be transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or
otherwise without prior written consent of Malcolm Bull
Training and Consultancy Services. In the event of any
copies being made without such consent or the foregoing
restrictions being otherwise infringed without such consent,
the purchaser shall be liable to pay to Malcolm Bull Training
and Consultancy Services a sum not less than the purchase
price for each copy made.

Whilst every care has been taken in the production of the
materials, MALCOLM BULL assumes no liability with respect to
the document nor to the use of the information presented
therein.

The Pick system is a proprietary software product of Pick
Systems, Irvine, California, USA. This publication contains
material whose use is restricted to authorised users of the
Pick system. Any other use of the descriptions and
information contained herein is improper.

The use of the names PICK, OPEN ARCHITECTURE, ADVANCED PICK
and all other trademarks and registered trademarks is
gratefully acknowledged and respected.

MB-Guide to Advanced Pick: AP/DOS

Section

1

n N
—_

WWWwWwWwwwww
O~NDODNEWN =

N~ ()] oo, &~
nN — W N — —

@® ™

10

11

12
12.
12.
12.
12.
12.
12.

12.

O~NOOOHE WN =

WWwN =

N =

Contents

Introduction

wWwhat 1is AP/DOS
R83 / AP differences

File hierarchy and system organisation
D-pointer items

System accounts

Creating / deleting users

Creating / deleting accounts

System files

File structure

Pathnames

POVF

Installing AP/DOS
DOS and AP/DOS - disk cache

Starting up AP/DOS
Logging on

Logging off
Leaving AP/DOS

The keyboard

TCL and TCL commands
Stacker
DOS commands at TCL

Macros
Menus

Level pushing
Phantom processes
Transaction logging

Update Processor
Bridges

Cruising

Zooming
Double-clutching
Prestored commands
Cutting and pasting
Searching

Spelling check

Output Processor

Access

ROLL-ON modifier

SS - spreadsheet modifier
Attribute-definition items
Attribute 9: TYPE or V/TYPE
Attribute 14: Input conversion

Page

50

52
56
56
57
58
59

Contents / 1

MB-Guide to Advanced Pick: AP/DOS

14.3.3
14.3.4
14.3.5
15
156.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
156.9
15.10
15.11
15.12
15.13
15.14

17

17.1
17.2
17.3
17.4

20
21

22

Attribute 15: Macro
Attribute 17: Description
Attribute 20: Hot-keys

Processing codes
B code

CALL processing code
CU code

I code

I code

I code

ID code

IF code

MI code

MY code

0O code

V code

X code

Xc code

File indexing

Basic

ACCESS function

FILE statement

HEADING / FOOTING options
Dimensioned arrays

The spooler

File-saves

Coldstart features

Summary charts

Routes through the system

84

86

87

90

Contents / 2

MB-Guide to Advanced Pick: AP/DOS

P r e f a c e

Most of the MB-Guide beginner’s guides have been dedicated

to the R83 implementation of Pick, and together they cover
most aspects of that version of the system. This MB-Guide to
AP/DOS is concerned with the Advanced Pick implementation

and specifically to the version which runs under the DOS -
the Disk Operating System - on IBM PC and compatible
machines.

This MB-Guide considers:

X The major features of the Advanced Pick implementation,
highlighting

* The differences between R83 and Advanced Pick.

X The installation of Advanced Pick on an IBM PC or
compatible.

Rather than repeat everything that has been said in the
other MB-Guides, we have chosen to concentrate upon the
differences between R83 Pick and Advanced Pick. In the main,
these are completely new features or enhancements to
existing features. A detailed description of all aspects of
Advanced Pick can be found in Reference Manual.

The material will be of interest to those people who are
moving from R83 and other implementations across to the
AP/DOS: Advanced Pick implementation. The parallel booklet
entitled the MB-Guide to AP/NATIVE presents the same material
for those migrating to the native Advanced Pick
implementation.

You may find the following titles in the MB-Guide beginner’s
guide series useful in conjunction with the present volume:

* Access definitions & dictionaries

X Access sentences

X DOS for Pick users

* Operations & systems management

* Pick fundamentals

X Pick on the PC: this presents a general
introduction to the Pick system.

* Using Pick

You may find the following MB-Master self-tuition courses of
interest in conjunction with the material presented in this
MB-Guide:

* PICK1: Starting Pick
* PICK2: Pick systems management
* ACCESS1: Starting Access

This MB-+Guide is not intended to present an exhaustive
description of the subject but merely to place it in context
and give the reader enough information to use the facilities
and to survive.

Introduction / 1

MB-Guide to Advanced Pick: AP/DOS

Best use can be made of this MB-Guide if it is read in
conjunction with the reference literature which is provided
for your system. You should amend your copy of this guide so
that it accurately reflects the situation and the commands
which are used on the implementation which you are using. By
doing this, your MB-Guide will become a working document

that you can use in your daily work.

I hope that you enjoy reading and using this MB-Guide and
the others in the series, and welcome your comments.

Introduction / 2

MB-Guide to Advanced Pick: AP/DOS

Introduction

The Pick system has gone through a number of revisions. The
most popular implementation of Pick is that known as R83,
release 83, and is sometimes known as generic Pick. Since
its original release in the early 1980s, the release has gone
through several versions and the current version is R83
version 3.1

A11 other implementations of the operating system (with the
exception of those described below) are based upon the R83
release. In most cases, the individual licensees have added
their own facilities.

Following the production of the R83 release, Pick Systems
introduced a number of radical changes:

* File indexing
* Level pushing
X Macros

* Menus

%

A TCL stacker to store and re-issue TCL commands.

So great were these changes, that they represented more than
just another version of R83. Instead this version,
originally to be called R84, was named OA, Open
Architecture.

Further changes were made to the underlying strategy of R83
and OA and this version, known as AP, Advanced Pick, was
announced during 1988.

The major additional features in Advanced Pick are:

X An Update Processor to facilitate the creating and
maintenance of items through the dictionary definitions.

* An Output Processor based upon the principles of Runoff
and the Update Processor.

X Additional processing codes to ensure file integrity
and the ability to pass from one file to another during
file processing with the Update Processor.

* An ability to interact with other host operating
systems such as DOS and Unix, as shown below.

Pick Systems major products are now the R83 release and the
AP releases:

* AP/Native: this is a free-standing product running on
computer systems based upon Intel 286 and later
micro-processors,

* AP/DOS: this is a version of AP which runs as a program
on computer systems running under DOS.

% AP/RS6000 AIX, AP/AT&T Unix, AP/SCO, AP/DGUX: these are
versions of AP which run as a process on computer
systems running under the various manifestations of the

Page 1

MB-Guide to Advanced Pick: AP/DOS

Unix operating system.

These last implementations should not be confused with
systems such as UniData and uniVerse which are Pick-Tlike
systems running on Unix-based platforms.

A standard version (currently 5.2) is offered on all these

AP implementations. AP versions 6.0 and higher are available
for the AP/Unix implementations and offer facilities which
exploit the features of Unix and the C language.

Page 2

MB-Guide to Advanced Pick: AP/DOS

what is AP/DOS

AP/DOS now makes the full features of the Advanced Pick
implementation of the Pick system available as a software
package running within a DOS partition on an IBM PC or
compatible.

This means that:

* DOS commands can be issued at TCL or by way of a Basic
EXECUTE statement.

* Your PC can now run a Pick application just as it would
run Lotus 1-2-3, WordPerfect or any of the many other
DOS packages.

* DOS files are accessible. The R83 implementation
allowed you to transfer data between the Pick partition
and the DOS partition, but DOS files were not directly
accessible.

* Subroutines written in other languages - such as C -
can be accessed from Basic.

Like a PC, the AP/DOS implementation is a one-user system,
each PC working as a separate Pick system. However, data may
be passed between machines over a Novell network.

R83 / AP differences

Rather than repeat everything that has been said about the
R83 implementation in the other MB-Guides, we shall only
discuss the differences between R83 Pick and Advanced Pick.
In general, these are completely new features or enhancements
to existing Teatures. We shall Took at the following major
areas:

File hierarchy and system organisation
Accounts and files

Q-pointers and pathnames

Starting / leaving Advanced Pick
Logging on / off ++

Output Processor ++

Keyboard functionality ++

TCL and TCL commands

Stacker ++

Level pushing ++

Phantom processes ++

Macros ++

Menus ++

Transaction logging ++

Incremental file-saves ++

Update Processor ++

Access and Access processing codes
File indexing ++

Basic

The spooler

£ ¥ K K XK K K OH N KK K H K ¥ X K X

Those marked with the ++ symbol will be of special interest
to anyone moving from R83 to Advanced Pick.

Page 3

MB-~Guide to Advanced Pick: AP/DOS

One important point is that Advanced Pick no longer actively
supports Procs, indeed the Reference Manual makes no mention
of them. For compatibility, however, the Proc processor is
still available, and is identical to the version under R83.
This means that all the Procs which your application system
used under R83 will still work on OA and Advanced Pick, but
almost all those standard Pick features and utilities which
were previously implemented by Procs are now presented as
Basic programs or macros. For end-users, the concept of
Macros and Menus offers a simpler alternative to Procs when
producing new systems.

Page 4

MB-Guide to Advanced Pick: AP/DOS

File hierarchy and system organisation

The file hierarchy is essentially the same as on R83, except
that some of the account/user information which was formerly
held on the SYSTEM file has now been dispersed between the
USERS files and the MDS file. As we shall see, the USERS
file contains information about the individual users, and the
MDS file contains information about the accounts and their
MDs .

USERS file I=={ MDS file I

[I
| DICT ' \ pICT J pICT

I [[1

st | [or] [0z] [on]

A file may have any one of the three structures shown in the
diagram:

* A DICT only file,
* A DICT section and a single data section, or
* A DICT section and several data sections.

The USING clause is still available in Access sentences to
use the DICT of one file with the data of another.

D-pointer items

D-pointers are encountered as account-definition items (on
the MDS file) to define accounts, as file-definition items
(on the MD of the appropriate account) to define file
dictionaries, and as data-level identifiers (on the DICT
section of the appropriate file) to define the data
section(s) of the file.

The format of account-definition items and file-definition
items (and also data-level identifier items) has been
extended somewhat.

On Advanced Pick, the attribute-definition item has the
following structure:

001 dictionary-code
002 attribute-count
003 substitute-header
004 structure

005 not used

006 not used

007 output-conversion

Page 5

MB-Guide to Advanced Pick: AP/DOS

008 correlative
009 attribute-type
010 column-width
011 not used

012 not used

013 not used

014 input-conversion
015 macro

016 output-macro
017 description
018 not used

019 not used

020 hotkey.all
021 hotkey1

022 hotkey?2

023 hotkey3

024 hotkey4

025 hotkey5s

026 hotkey6

027 hotkey?7

028 hotkey8

029 hotkey9

030 hotkeyO0

Attribute 1: this is the D-pointer which defines each DICT
section and each data section. This consists of the letter D
followed by suitable combinations of the following codes:

L indicating that this file is to be the subject of
transaction logging, and all amendments to this file are
to be logged.

P Short items are normally held in the file space, as on
R83, but large items (848 bytes or more) are loaded
directly into frames of disk space with only a pointer
in the file space. This is illustrated in the diagram
below and discussed again in the section dealing with
file structure. The P code forces all items to be held
in this pointer form. Organising a file in this manner,
means that the process of finding any particular item is
much faster (since the physical items on the file are
only pointers of 8 bytes in size), but the retrieval of
any item will always require at least two disk read
operations (one or more to find the pointer, then a
further one or more to retrieve the item from the frames
of virtual memory).

Page 6

14)

15)

17)

20)

MB-Guide to Advanced Pick: AP/DOS

— File space

Item.AAAA (848 bytes

actual data held here Disk frames
Item.BBBB
Item.BBBB > 847 bytes actual data held here

only a pointer held here pF==>

Item.CCCC < 848 bytes

actual data held here

S indicating that item-ids are to be case sensitive.
Thus, on a file defined with this code, the keys FRED,
Fred and fred are three distinct item-ids. This
facility is necessary since all TCL commands (including
those which specify an item-id) may be entered in upper-
or lower-case.

Y are used as on previous versions to indicate that the
file is to be ignored (X) or that the contents are to be
ignored (Y).

Attributes 9, 14, 15 and 17 are used as described later in
our discussion of attribute-definition items. A1l other
attributes are used as previously (including the reallocation
parameter in attribute 13).

Attribute 9: as on R83, this specifies the justification of
the output data. Extended codes are available on Advanced
Pick.

Attribute 14: this specifies the input conversion.

Attribute 15: this specifies the macro - a list of
attribute-definition names which are to be used when zooming
to another item with the Update Processor.

Attribute 17: this is the description - a free-format text
field for any comments concerning the use and nature of the
file/attribute.

Attributes 20 onwards: these contain the CALLs to any
subroutines which are to be invoked by the hot-key
sequences. We discuss hot-keys in a separate section.

System accounts

Each Advanced Pick system comes with a number of standard
accounts and files already established:

Page 7

(1)

(2)

MB-Guide to Advanced Pick: AP/DOS

* DM - data manager account.

* PA - personal assistant account. This offers basic
office management facilities.

* QA - quality assurance account. This is a means of
fault and error reporting.

* TUTOR account.

The most important of these is the DM account. This is the
equivalent of the R83 SYSPROG account and is used for all the
important operational tasks:

* Creating new users and accounts,
* Performing file-save and file-restore operations,
* Deleting accounts.

DM is only privileged by having the necessary verbs which
other (non-privileged) accounts lack on their MDs.

Creating / deleting users

If the system has been set up appropriately, a new user can
be created by entering:

?
at the request for a user-id when logging on.

The System Manager can alsc create a new user directly by
means of the command:

UPDATE USERS username

and the Update Processor will ask for the following
information:

Name Enter the full name of the user
Address Optional

Zip Optional

Phone Optional

Keys Retrieval / update lock-codes
Password See (1) below

Privilege Enter one of SYSO or SYS1 or SYS2
Options Optional

Macro See (2) below.

If a password is specified at this stage, it should entered
in the clear (unencrypted) form; the Update Processor will
encrypt the password and display the encrypted form. The
password may also be set by means of the TCL PASSWORD
utility, as on R83.

The macro and subsequent lines may contain a series of TCL
commands which are to be executed when that user logs on.
These commands serve the same purpose as the logon Proc in
R83.

An existing user can be deleted by deleting the USERS item
through the Update Processor by means of the <Ctrl1> X O or XO

Page 8

(1)

1
} MB-Guide to Advanced Pick: AP/DOS

key sequTnce.

Creating / deleting accounts

|
A new account can be created in the normal manner, by means
of a command of the form:

CREATE-ACCOUNT accountname

and the Update Processor will be invoked to create a new
item on the MDS file. The user will be invited to enter the
following information and when <Return> is entered after the
final (REALLOCATION) input field, the new account will be
created.

Type This will be D

Modulo 37

Ret-1lock Optional

Upd-Tock Optional

Password See (1) below

Syspriv SYS2

Justification L

width 10

Reallocation Optional or in the form (mod)

If a password is specified at this stage, it should entered
in the clear (unencrypted) form; the Update Processor will
encrypt the password and display the encrypted form. The
password may also be set by means of the TCL PASSWORD
utility.

An account may also be created by invoking the Update
Processor directly:

UPDATE MDS accountname

in which case, the following information will be requested:

Type This will be D
Ret-1lock Optional
Upd-Tock Optional
Attribute-type L

and the completed item finally filed by the <Ctrl1> X F
sequence.

An account password may be assigned and/or changed by means
of the TCL PASSWORD utility.

Sim11ar1x. an account may be deleted by either of the forms:
DELETE-ACCOUNT accountname

or
UPDATE MDS accountname

followed by the <Ctrl1> X O sequence.

Page 9

MB-Guide to Advanced Pick: AP/DOS

In either case, the user will be asked whether he/she wants:
DISPLAY FILES BEFORE DELETING
DO YOU STILL WANT TO DELETE THE ACCOUNT
System files
Advanced Pick has several standard files holding information
which is necessary to all users. Some of these are accounts
in their own right (as the MDS file/account), some are files

owned by the DM data manager account, whilst others may be
individual files established for each user-account.

MDS

DM account

ABS DEVICES JOBS POINTER-FILE
ACCOUNTS ERRORS KEYBOARDS TCL-STACK
BLOCK-CONVERT FILE-OF-FILES MESSAGES USERS

BP FONTS NEWAC WORDS
BULLETIN FUNCKEYS PERSONNEL

DEPT GSYM PIBS

PA account

BP COUNTRY LOCATION
CATEGORY ENTITY STATEMENT
CODES JOURNAL ZCF

QA account

BP.QA MODEL RESULTS TPS.RUN
COMPONENT 0/s STATUS.CODES TYPE
LST PRIORITY TP.CODES

MANUF REQUESTS TPS

TUTOR account

BK UP.DOC UP.PRINT.CODE
BP UP.DOC.REPORT

The most important of these standard files are:

* MDS: holds details of all the master dictionaries
(accounts) on the system and is equivalent to the SYSTEM
file on R83 systems.

* ABS: holds details of the ABS frames and ABS usage.

* ACCOUNTS: holds the accounting history information and
is equivalent to the ACC file on R83 systems.

* BLOCK-CONVERT: holds information about the large block
letters which are used when you display or print
messages by means of the BLOCK-PRINT command.

Page 10

MB-Guide to Advanced Pick: AP/DOS

* BP: ko1ds all the support programs used by the
operating system.
i

|
X DEVIFES: holds details of all the devices recognized by
the |system.

* ERRORS: holds details of any errors detected by the
system.

x FILE-OF-FILES: holds details of all the files on the
system and is equivalent to the STAT-FILE on R83
systems. An item is added to this file whenever a new
file is created and the file is reset during an
account-restore or file-restore operation.

* JOBS: holds details of jobs handled by the phantom
processor.

* MESSAGES file: holds the standard help- and
error-messages used by the system and is equivalent to
the ERRMSG file on R83 systems.

X PIBS: holds details of all the processes which are
currently executing on the system. There is one item on
the PIBS file for each port on the system, and the data
recorded here is similar to that held on the ACC file on
R83 systems. The item-ids are the port numbers (no
leading zeroes), and the item holds details of the port,
including the location, the terminal characteristics of
the port (these are invoked when that port is logged
on), the time, date and identity of the last user, and
the time, date and identity of the last-used MD.

* POINTER-FILE: holds details of all the saved-lists
which have been established on the system.

X TCL-STACK: holds the stacks of TCL commands issued by
the users.

X USERS: holds details of all authorized users of the
system and their user-ids.

File structure

The frame size on Advanced Pick is 1024 bytes on some
implementations and 2048 bytes on others, and these frames
are used exactly as on previous versions of the operating
system.

The concept of separation is no longer used. Only a modulo
is required to define any section of any file, and the number
of frames in each group (the statistic previously known as
the separation) is always 1.

The same hashing algorithm is used as on R83, and the
accepted conventions for the choice of modulo (selecting a
prime number, or at least, avoiding multiples of 2 and 5)
still apply.

Page 11

MB-Guide to Advanced Pick: AP/DOS

Let us look at the DUMP of a typical frame on Advanced Pick.
We have shown only the first few bytes in this instance, the
remainder of the frame is filled with rubbish not related to
our file.

000 :........ AAAA“this is item aaaa and it will be held:
050 : directly within the file space.”"_........ BBBB"002:
100 2268 ittt ittt e ettt e e et e e

Here we see:

* An 8-byte field: this is the item-length field and an
indication of the nature of the item (whether it is
direct or a pointer item) are held within a control
string of 8 bytes before each item-id.

X The end-of-item marker (”"_) and the end-of-data marker
("__) are used as before.

* Items such as AAAA of which the data is 847 bytes in
length or shorter are held in the primary file space (as
on previous versions). This figure of 847 bytes
relates purely to the length of data in the item and
excludes the field-length count, the item-id and the
final end-of-item marker.

If we Took at this 8-byte field as a hexadecimal
string, we find that it is of the form:

00000000yyxx1000

where xxyy is the hexadecimal length of the item (this
represents the 8-byte field itself, plus the length of
the item-id, plus one attribute-mark, plus the length of
the true data and field separators, plus 1 for the

final attribute mark); note the way in which the xxyy
field is held. We should also mention that this value
is held as an odd number (1 being added, if necessary).
The 1 in the 13th digit indicates that this item is

held in the file space.

* Longer items (848 bytes or more) such as BBBB are
written directly to one or more frames of disk and only
a pointer-item is held in the file space. If we dump
the frame to which the pointer for item BBBB directs us
(hex 2268 = decimal 8888), we see the full item:

For items held in this manner, the 8-byte field would
be:

0000000011009000

with the 9 indicating how the item is held.

fid: 8888 : 0 0 0 O (2268 : 0 0 O O)

000 :_BBBB"this is item BBBB and, since it exceeds 847

Page 12

MB-Guide to Advanced Pick: AP/DOS

050 :byFes, it is held as a pointer in the file space.

100 : | This pointer points to the frame where the true:
150 : data is held.XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX :
200 1 XXXXXX XXX XX XXX XXX XXX XK XK XX XXX KK XX XXX KKKXXXKKXXXXX 2

850 :xx&xxx:
GO0 T XXXXXXXXXX XXX XXX XXX XXXXXK it e i aneeeeenennnnaat

This example was produced on an Advanced Pick system which
uses 1024-byte frames. The effect is similar on those
systems which uses 2048-byte frames.

The most significant consequence of this is that there is
now virtually no 1imit to the size of an item. The 32K
restriction of R83 is now raised to 2 gigabytes under
Advanced Pick.

Note that, for larger items, there will always be a
requirement to perform two (or more) disk accesses to find a
specific item: one to find the pointer and then a further one
(or more) to find the item itself.

If the D-pointer for a file includes the P code in attribute
1, then all items - large and small - will be held as pointer
items.

These points have some impact on the subject of file-sizing.
The algorithm discussed in the MB-Guide to files: monitoring
and sizing will use either of two values for the average size
of the items: if data within the items is 1ikely to be 847
bytes or less in length, then this figure should be used in
the algorithm; if the data is likely to be 848 bytes or more
(or it has been established with a DP pointer, as discussed
in Section 3.1), and the item is to be represented by a
pointer item, then a figure of 6 bytes (the size of the data
in a pointer item) should be used in the algorithm.

Pathnames

Q-pointers may be used to access files on other accounts and
can be set by means of the SET-FILE command. It is worth
noting that the syntax of the SET-FILE command is slightly
different:

SET-FILE account.name file.name {synonym.name}

where a synonym-name may be included to specify the name by
which the Q-pointer is to be saved on the MD of this account.
If this synonym-name is omitted, the name QFILE will be

used, as on R83 systems.

Advanced Pick, offers the concept of pathnames in which a
file-name can be specified in TCL commands and Access
sentences in any of these forms:

aaaa, ,
to identify the MD of account aaaa.

Page 13

MB-Guide to Advanced Pick: AP/DOS

aaaa, ffrfr,
to identify file ffff on account aaaa.

aaaa, ffff,dddd
to identify data section dddd of file ffff on account
aaaa.

Note that two commas must always be specified, and the
trailing comma(s) are essential in the first two instances.

Here are some typical uses of pathnames:
EDIT SYSPROG,, REBOOT
COPY TRAINING,STOCK, *
UPDATE PERSONNEL,STAFF,RETIRED 1234/AA
EDIT DICT TRAINING,STOCK, COLOUR
LIST TRAINING,STOCK, DESCR TOTAL VALUE
There is also the command:
STEAL-FILE aaaa,ffff,

which transfers the file-definition item for the file ffff
from the MD of an account aaaa to the current MD.

POVF

The POVF command (and the synonyms OVERFLOW and OVF) outputs
a summary of the space available. There are options:

A to output the FIDs and numbers of frames (this
reproduces the normal R83 report);

B to output just the numbers of frames available;

n-m to include only those frames with FIDs in the
specified range.

The system automatically sets aside a number of frames for
use in emergencies when the system is running out of disk
space. These reserve frames are shown in the POVF report.
You can use the commands:

SET-OVF-RESERVE (n
if you wish to change the number of reserved frames, or even:

SET-OVF-RESERVE (o

to release them entirely for emergency use.

Page 14

1)
2)

3)

4)

5)

MB-Guide to Advanced Pick: AP/DOS

Installing AP/DOS

To install AP/DOS, you will need:

* the set of system diskettes and file diskettes for
AP/DOS and

* your 12 digit activation number. This is supplied with
the diskettes. Make a note of your activation number
here:

Advanced Pick activation number

You will then:
Boot the DOS system,
Insert the Pick INSTALL diskette into drive A,
Enter the DOS command:
A:
Enter the command:
INSTALL

You should then follow the instructions displayed as AP/DOS
is installed.

Having installed the software, you should then invoke AP/DOS:
Enter the DOS command:
PICK:
and then choose option
A
to load the ABS data, then repeat this and choose option
F

to load the Files. At each stage, you should follow the
instructions which are displayed by AP/DOS.

AP/DOS is then ready to use.

Full installation instructions are supplied in the User'’'s
Guide which accompanies each set of AP/DOS diskettes.

DOS and AP/DOS - disk cache

AP/DOS will run under any of the current versions of DOS.

Page 15

MB-Guide to Advanced Pick: AP/DOS

Because of the SMARTDRV disk caching software which is
provided on MS-DOS version 5.0, you will benefit from using
that version of DOS. This greatly increases the speed of
AP/DOS by using expanded or extended memory to store data
being read from the hard disk. To use SMARTDRV, you should
add to your CONFIG.SYS file, a command of the form:

DEVICE=C:\DOS\SMARTDRV.SYS n

where n is the size (in Kb) of the cache which is to be
used. This may be any integer within the range 256 to 2048.
Full details of this command are given in the DOS 5.0 User’s
Guide and Reference manual.

If you have any other disk caching software, this may be
used with AP/DOS.

Page 16

1)
2)

3)

MB-Guide to Advanced Pick: AP/DOS

Starting up AP/DOS

AP/DOS runs exactly like any other DOS application. To use
AP/DOS you will:

Switch on your PC.
When you get the:
C:>

or similar DOS prompt, change to the directory where Pick is
to be found by entering a command of the form:

Ccb\ddddd

Your System Manager will tell you the name of the directory.
Make a note of the command(s) which you will use:

Issue the DOS command:

PICK /X
or:
PICKX

and this will invoke AP/DOs directly. Alternatively, you
may issue the DOS command:

PICK
and at the prompt:

Options: A) ABS, F) Files, X) Execute, Q) Quit =
you should press:

X

but do not press <Return>, and then wait whilst system
carries out a brief initialisation operation. You will then
be invited to log on.

Whilst the system is performing its initialisation and
setup, you should not touch the keyboard until the system
invites you to enter your user-id.

Your System Manager may arrange for your AUTOEXEC.BAT file
to include the necessary commands to change to the
appropriate directory and issue the PICK /X command
automatically. By doing this, you will be thrown straight
into AP/DOS when you boot up your machine.

Page 17

MB-Guide to Advanced Pick: AP/DOS

Logging on

Because of the structure of the Advanced Pick system, a user
needs to supply two sets of information when logging on:

1) The user-id (and password, if there 1is one), and
2) The account-name (and password, if there is one).

So, in general, a user will first identify himself/herself as
a user and then choose which (account) master dictionary
he/she wishes to use.

The user-id is the item-id for that user as it is held on the
USERS file. The information here specifies:

The L/UPD and L/RET lock-codes for the user.
The password for the user.

The system privileges level for the user.
The accounting options.

¥* H K ¥

The account-name (or master dictionary name) is the item-id
for the required master dictionary as it is held on MDS file.
The information here specifies:

X The location and modulo of the master dictionary for the
account.

X The L/UPD and L/RET lock-codes for the account.

X The password for the account.

* The system privileges level for the account.

A typical logging-on sequence for Advanced Pick will look
something like this:

08:30:59 28 Jul 1993
Advanced Pick - Enter your PICK user id: aaaa,bbbb
master dictionary: xxxX,yyyy

where aaaa is the user’s identity code (as on the USERS
file), bbbb is the user’s password, xxxx is the name of the
account which is to be used (as on the MDS file), and yyyy is
the password for that account.

Having logged on in this manner, a user may subsequently
change to another master dictionary by means of the:

LOGTO XXXX,Yyyyy

TO XXXX,YYYY
command without having to re-identify himself/herself again.
The use of passwords is optional in all cases, and you will
only be required to enter the password if one has been
applied to your user-id and/or the master dictionary. As on

R83, the user-id and/or the account-name may be entered alone
and any password will be accepted invisibly.

Page 18

1)

2)

3)

MB-Guide to Advanced Pick: AP/DOS

When you have logged on, the operating system will first look
to attributes 12 onwards of your item on the USERS file and
execute any TCL commands held there. This is the equivalent
of the logon Proc on R83 Pick. When this has been done, you
may be passed to TCL and the:

prompt will be displayed.

If the USERS item contains a LOGTO (or TO) command here, then
this will automatically log that user to the specified
account without asking for the name of the master dictionary
required. This makes the logon procedure almost identical to
that of R83 systems.

Logging off

When you have finished using the Pick system, you can take
one of a number of courses of action:

You can log to another master dictionary. You will do this
by means of one of the commands:

LOGTO XXXXX,YYYY
or
TO XXXXX,YYYYY

You can log off the system but leave the terminal free for
any other user. You will do this by means of the command:

OFF

and then the Pick system will ask you for the Pick user-id
and the master-dictionary name, as when you first log on.

You can leave Pick and return to DOS, as described in the
following section.

The system will perform a brief wrap-up operation and then
return you to the DOS:

C:>
prompt.

At this point, you may then use DOS in the normal manner or
you may switch off your machine.

Leaving AP/DOS
As we saw in the previous section, you can leave Pick and
return to DOS by logging to the DM master dictionary, by
means of the command:

LOGTO DM

and then issuing the:

EXIT

Page 19

MB-Guide to Advanced Pick: AP/DOS

command. You will be asked to confirm that you wish to
continue with the close-down, and the system will perform a
brief wrap-up operation and then return you to the:

C:>

or similar DOS prompt. At this point, you may then use DOS
in the normal manner or you may switch off your machine.

The various routes through the system are illustrated at the
end of this MB-Guide.

Page 20

MB-Guide to Advanced Pick: AP/DOS

The keyboard

Within Advanced Pick, the keyboard is given extended
functionality. The new actions are available whenever you
are using:

* The TCL stacker. You will use the extended keyboard
facilities to browse through the stack and to amend the
contents. We shall talk about the AP TCL stacker in a
lTater article.

* The Update Processor. You will use the extended
keyboard to create, change, maintain and/or delete the
items and the data fields on your files.

This means that many of the functions of the TCL stacker and
the Update Processor are invoked by typing simple key
sequences, rather than explicit commands (such as are used by
the Pick editor). Typically, these sequences consist of the
(Ctr1> key followed by one or more letters.

The keyboard sequences allow you to move through the stack or
through a data item and to perform a large number of other
actions. For example, the sequence:

(Ctr1> K

or, to use the underlined notation adopted in the Advanced
Pick Reference Manual:

K
will move the cursor one place to the right; the
sequence:
<Ctrl1> J or J
will move the cursor one place to the left; the
sequence:
<Ctrl1> L or L
will delete a single character; the sequence:
<Ctrl1> R or R
will enable/disable the insertion of text. Finally, the
sequence:
<Ctrl1> X F or XF
will file the item; the sequence:
<Ctrl> X O or X0
will delete the item, and so on.
There are a great many such actions. Some of the more

frequently-used are summarised at the end of this MB-Guide.
Another important feature of general keyboard usage - notably
TCL - is that almost all input is case insensitive. Thus, a
TCL command may be entered as either:

LIST STOCK

Page 21

MB-Guide to Advanced Pick: AP/DOS

list stock

with the same effect. Within a Basic program, the CASING
ON/OFF statement can be used to specify whether keyboard
input data is to be case sensitive or not.

When using the Update Processor, there is no 1imit to the
length of an input line, but on AP/DOS, the type-ahead buffer
is only 15 characters long.

Under AP/DOS, the full scope of the keyboard may be
available, including:

* PRINT SCREEN - to print a copy of the current screen.
* INSERT

* PAGE UP

* PAGE DOWN

X DELETE

although the normal cursor control keys (left-arrow,
right-arrow, up-arrow, down-arrow) cannot be used with the
Update Processor unless you have created and reset a
KEYBOARDS definition to set-up your keyboard correctly.

Page 22

MB-Guide to Advanced Pick: AP/DOS

TCL and TCL commands

TCL is the primitive operating medium for Advanced Pick, as
with all previous versions of the Pick system.

The following general points apply:

The TCL prompt has been changed from the > of R83 to the:

character.

A null TCL command will display the time and date immediately
before the TCL prompt. This can be enabled/disabled by the
commands :

TIMEDATE-ON
TIMEDATE-OFF

There are a number of commands, such as TIMEDATE-ON and
TIMEDATE-OFF, which enable/disable specific functions. 1In
general, these commands are explicit of the form:

TIMEDATE-ON
TIMEDATE-OFF

or they may be entered as:

TIMEDATE (N
TIMEDATE (F

respectively. The simple command:
TIMEDATE

with no options will display the current status of the
function. Other examples include:

BREAK-KEY-OFF / BREAK-KEY-ON
CASE-OFF / CASE-ON

LEGEND-OFF / LEGEND-ON
SPELLER-OFF / SPELLER-ON
STACK-OFF / STACK-ON
TCL-HDR-OFF / TCL-HDR-ON
TYPE-AHEAD-OFF / TYPE-AHEAD-ON

Any TCL command may be entered in either UPPER- or
lower-case. Thus,

sort stock
SORT STOCK
sort STOCK
SoRt. StOcK
Sort Stock

and so on, are all equivalent. This is a potential
mine-field and great care should be taken when choosing
filenames and item-ids.

Page 23

MB-Guide to Advanced Pick: AP/DOS

3 A utility called R83.SETUP can be used to invoke the set of

commands:
BRK-DEBUG the <(Break> key will invoke the debugger;
ESC-DATA the <(Esc> key is a normal data key;
SPELLER-OFF disable the spelling checker;
LEGEND-OFF disable the pick legend on Spooler

output;
TCL-HDR-OFF disable the TCL header on Spooler output;
TIME-DATE-OFF disable the time/date display at TCL;
WHO (C set the WHO output as described below;
TERM ,,,,2 set the form-feed delay of the terminal
characteristics to 2;

which, when used in conjunction with the <Caps Lock> key will
cause the system to behave like a standard R83 system.

x There are duplicate definitions for many verbs and keywords
both with and without hyphens. Thus, CREATE-FILE may be
entered as CREATEFILE. This is made possible by having MD
entries for both CREATE-FILE and CREATEFILE. However, the
alternate entries are not universally available, so it is
probably better to stay with the standard and hyphenated
forms.

X There are also abbreviated forms for many verbs and keywords.
Thus, CREATE-FIILLE may be entered as CF. This is made
possible by having MD entries for both CREATE-FILE and CF,
but such abbreviations are not universally available, so it
is probably better to stay with the full forms.

* The format of the MD entries for the TCL verbs has changed.

* Many TCL activities are now performed by Basic programs. This
means that they are get-at-able and can be inspected to see
the true action of the activity, and - in extreme
circumstances - they may even be modified for your own
requirements.

* The TCL input buffer was 140 characters in length on R83. On
Advanced Pick, the input buffer is virtually unlimited in
size.

* The nature and output of many familiar commands has been

modified. 1In particular, where R83 systems used the
account-name to identify the current user, AP uses the
user-id in some contexts and the master-dictionary name in
others.

* The on-line HELP facility provided by the EPICK
(encyclopaedia Pick) can be called up by commands of the
form:

HELP xXxxx
There are one or two specific points:

* Certain TCL commands assume the * if an item-1list is omitted:

EDIT STOCK

Page 24

MB-Guide to Advanced Pick: AP/DOS

COPY STOCK
CT STOCK

in contrast to that of R83 which would require an item-1list
to be specified.

Note that the Update Processor requires the * to process all
items, otherwise it will generate a new random item-id and
create a new item.

Certain Access sentences will now accept item-ids with or
without quotes:

T-DUMP STOCK 1234 3456

The TCL stacker is standard on Advanced Pick and will store
an unlimited number of TCL commands for future use. We
discuss the stacker in a separate section.

A11 the TCL commands issued by the user may be recorded on a
file for inspection. The commands are recorded on the file

CAPTCL and the lists of commands are held with item-ids of
the form:

uxp
where u is the user-id and p is the port-number.
The recording is enabled/disabled by the:

CAPTURE-ON
CAPTURE-OFF

commands or the equivalent:

CAPT (N
CAPT (F

commands. This is quite distinct from the stacks which are
stored by the TCL stacker.

The word DATA is optional on the CLEAR-FILE command.

The POVF command (and the synonyms OVERFLOW and OVF) outputs
a summary of the space available. There are options: A to
output the FIDs and numbers of frames (this reproduces the
normal R83 report); B to output just the numbers of frames
available; n-m to include only those frames with FIDs in the
specified range.

The TANDEM facility is available to 1ink the current process
to any other process, so that input at either port affects
both.

The WHO command displays the port-number (p), the user-id (u)
and the master dictionary name (d) in the form:

p ud

The command:

Page 25

MB-Guide to Advanced Pick: AP/DOS

WHO (C

will specify that the WHO command (and the equivalent U50BB
user-exit) is to display the information in the form:

p du

as some application systems expect the master dictionary
(account) name to be the second field. This format is
associated with the user-id and is retained over LOGTO and TO
commands and until the user logs off.

A number of new TCL commands have been introduced for use
with macros and menus: COMMENT, DISPLAY and PROMPT.

A large number of additional TCL commands are available. We
list these below. Those marked *L are associated with
level-pushing; *P are associated with the phantom processor;

*T are associated with the transaction logger.
in the Advanced Pick Reference Manual.

can be found

ABS.FID EXPORT RESTORE-ACCOUNTS
ADD F-RESIZE RMBI

ADDBI FID RUN-LIST

ASSIGNFQ FRAME-FAULT SEARCH

BOOTSTRAP IMPORT SEARCH-SYSTEM
BRK-DEBUG *L INIT-OVF SEND-MESSAGE / SM
BRK-LEVEL *L ISELECT SET-HALF

CAPT ISSELECT SET-OVF-OVF
CAPTURE-OFF LD SET-RUNAWAY-LIMIT
CAPTURE-ON LDF SH

CASE LEGEND SPELLER

CHECK-WS LEGEND-OFF STACK-OFF
CHECK.DX LEGEND-ON STACK-ON

CHKSUM LIST-COMMANDS STARTLOG *T
COLDSTART LIST-FILES STARTSCHED *p
COLDSTART.LOG LIST-J0OBS STEAL-FILE
COMMENT LIST-LOGOFFS STOPLOG *T
COMPILE LIST-MACROS STOPSCHED *P
COMPILE-CATALOG LIST-MENU suB

COMPILE-RUN LIST-MENUS TCL *L
CONV-CASE LIST-PIBS TCL-HDR

CP LIST-RESTORE-ERRORS| TCLOG

CREATE-ABS LIST-USERS TERMP
CREATE-INDEX LIST-VERBS TIMEDATE
CREATE-MACRO LISTBI TOTAL-ON

DATE LISTC TXLOG-STATUS *T
DEBUG LOG-MSG U / UP / UPDATE
DELETE-INDEX MD-RESTORE ub

DIAG MUL UNLOCK-GROUP

DISC NFRAME-INDEX UPDATE-ACCOUNTS
DISPLAY NSELECT UPDATE-MD

DIV OoP VERIFY-ABS

END OVERFLOW / OVF VERIFY-INDEX
ESC-DATA *L PROMPT WHICH

ESC-LEVEL *L REBUILD-OVF Z{H} (S} *P
ESC-TOGGLE *L RECOVER-ITEM / RI

EXEC RENAME-FILE

Page 26

Full details

MB-Guide to Advanced Pick: AP/DOS

Stacker

The Advanced Pick TCL stacker allows you to recall a TCL
command which you entered earlier and issue it again.

The stacker is normally active, but it may switched off/on
by means of the STACK-OFF and STACK-ON commands.

When the stacker is active, all TCL input is automatically
added to the stack as are those commands invoked through
macros and menus (except those macros with the N
identifier). If you re-issue a TCL command which you issued
previously, the original command will be moved at the top of
the stack; this avoids your filling the stack with copies of
identical commands.

The contents of the stack can be inspected by the standard
Update Processor facilities, allowing you to:

* To search for a specific substring within the stack.
We describe this is a separate section.

X To navigate up and down the stack by means of the
<Ctrl1> D and <Ctrl1> F sequences.

* To re-issue a command by pressing <Return> when the
required command is reached.

* To amend the displayed command by using the cursor
movement and editing sequences:

{Ctrl1> J cursor left one character
<Ctr1> K cursor right one character
<Ctr1> L delete a character
<Ctrl1> Y cursor left one word
{Ctr1> U cursor right one word
{Ctr1> O delete a word

W

<Ctril1> insert a blank space

{Ctr1> R enable/disable text insertion
* To delete a command by means of the <(Ctrl1> E sequence.
* To leave the inspection of the stack by means of the

(Ctr1> X sequence.

The stacks of TCL commands are held on the TCL-STACK file
which is held on the DM account, each separate user’'s list
being held with the user-id as the item-id.

There is no 1imit to the number of commands which are held
in the stack, so you must take care to clear it down (or
delete the item) from time to time by means of a sequence
such as:

UPDATE TCL-STACK,username
or
UPDATE DM, TCL-STACK, username

Page 27

MB-Guide to Advanced Pick: AP/DOS

DOS commands at TCL

There are a number of new TCL commands which are provided
specifically for use with DOS:

ADDBI DISC LISTBI RENAME [D]
ATTRIB [D]| DISKCOMP [D]| MKDIR [D]| RESTORE [D]
BACKUP [D]| DISKCOPY [D]| MODE COM [D]| RMBI

CHDIR [D]]| EDLIN [D]| MODE LPT [D]| RMDIR [D]
CHKDKS [D]| ERASE [D]| MODE [D]| SET [D]
CLS EXIT MORE [D]| TREE [D]
COMP [D]| EXPORT PATH [D]| TYPE [D]
DEL [D]| FORMAT [D]| PC-COPY [D]| Xcopy [D]
DIR [D]| IMPORT PROMPT [D]

Those marked with [D] invoke the equivalent DOS command.

If your configuration is suitable, you may also invoke DOS
commands directly from TCL by issuing commands of the form:

IDIR

prefixing the DOS command by the ! character, and from
within Basic programs by statements of the form:

EXECUTE ’!DIR’

Page 28

MB-Guide to Advanced Pick: AP/DOS

Macros

Advanced Pick offers the concept of macros. A macro allows
you to establish an item containing a sequence of TCL
commands which can be invoked by a single command. The
purpose of a macro is similar to that of a Proc, although the
construction is much simpler.

The general format of a macro-definition item is:

000 macro name

001 M or N {comments}

002 TCL command 1]data 1]data 2]
003 TCL command 2]data 1]data 2]
004 TCL command 3J]data 1]data 2]

n TCL command m]data 1]data 2]

The first attribute of the macro-definition item starts with
the identifier M or N followed by optional comments. If M is
used, then - as each TCL command in the macro is executed -
it is added to the stack of TCL commands and passed to the
user to modify/issue. If N is used, the commands of the
macro are executed without any such user-intervention.

Each attribute from attribute 2 onwards holds a set of
values, representing:

1) The TCL command which is to be executed, followed by

2) An optional stack of input data which is to feed the
TCL command.

The macro processor will handle any number of TCL commands.

A typical example might be:

000 STOCK.MACRO. 1
001 M
002 SORT STOCK BY PART.NO LPTR

or, if the macro is to invoke several commands one after
another:

000 STOCK.MACRO.2

001 M THE MAIN STOCK CONTROL ROUTINES FOR THE STORES
002 SORT STOCK BY PART.NO LPTR

003 COPY STOCK * (0)](STOCK.BACKUP

004 RUN PROGS STOCK.MAINT

005 CLEAR-FILE DATA STOCK.BACKUP

The macro is invoked by typing the name of the macro -
STOCK.MACRO.1 or STOCK.MACRO.2 as if it were a TCL command.
Thus, when this latter macro is invoked by means of the TCL

Page 29

MB-Guide to Advanced Pick: AP/DOS

command:
STOCK .MACRO. 2

the macro processor will display each of the TCL commands in
turn and wait for you to hit <Return> to execute the command.
Before you hit <Return>, you may use the standard cursor
controls of the Update Processor to amend any part of the
display to patch the TCL command before it is invoked. The
<Ctr1>X command will ignhore the command.

If any of the TCL commands (or the patched TCL commands) is
invalid, then the macro will abandon.

A1l macro-definition items are held on the MD and may be
created by means of the Update Processor:

UPDATE MD macro.name
or by means of the CREATE-MACRO command:

CREATE-MACRO macro.name

CREATE-MACRO macro.name (N
which will establish the last executed TCL command (taken
from the top of the TCL stack) and save it on the MD as a
macro with the name macro.name. The N option on the
CREATE-MACRO command will establish the macro with an N

identifier in attribute 1.

Currently, it is not possible to hold macros on any file
other than the MD. The command:

LIST-MACROS filename

will list the macros on the DICT section of the specified
file.

If a macros is invoked by a command such as:

macro.name text
then the specified text will be appended to the end of the
first command in the macro. Apart from this facility, it is
not possible to tailor the contents of a macro to incorporate
data supplied at execution time.
A number of TCL commands are provided specifically for use
in macros: these are COMMENT, DISPLAY and PROMPT. They are
all used to display information on the screen.
The COMMENT command is used to display output on the screen
and produce special effects and cursor-positioning and has
the form:

COMMENT {text} {text} ... {text} {+}

where text is an expression of the following form:

Page 30

MB-Guide to Advanced Pick: AP/DOS

(c,r) to specify the column (c) and row (r) position for
the cursor. This is similar to the @(c,r) function
in Basic and the (c,r) element in the Proc T
statement.

(-n) to produce one of the cursor control effects.

This is similar to the (-n) element in the Proc T
statement and the @(-n) function in Basic.

(xn) to output the character whose decimal value is n.
This is similar to the In element in the Proc T
statement.

(XXXxX) to output the string xxxxx.

+ to hold the cursor at the end of the output string.

The DISPLAY command has the form:

DISPLAY message
and will display the message on the screen.
The PROMPT command has the form:

PROMPT {message}

and will display the message:

{message} -- Quit/Continue (q/c) ?

on the screen and accept a response of Q or C from the user.

A response of Q will abort the macro/menu, a response of C

will continue with the macro/menu.

Menus

Advanced Pick offers the concept of menus, allowing you to

set up a system of TCl commands which can be invoked by menu

selection.

The general format of a menu-definition item is:

000 menu name

001 ME

002 menu title

003 descriptive text 1]Help message 1]TCL command
004 descriptive text 2]Help message 2]TCL command
005 descriptive text 3]Help message 3]TCL command

W N -

n descriptive text m]Help message m]TCL command m

The first attribute of the menu-definition item contains the
identifier:

ME

followed by optional comments on the same line.

Page 31

MB-Guide to Advanced Pick: AP/DOS

The second attribute contains the title which is to be
displayed at the head of the menu screen. This heading may
include the codes:

i’ to display the name of the menu,
'd’ to display the date,

t’ to display the time and the date,
to display the page number.

Note that these codes must be followed by a space.

For each option to be offered on the menu, attributes 3
onwards will hold a set of three values, representing:

1) A descriptive text which is to be shown alongside that
option on the menu.

2) An optional help message which is to be displayed if
the user solicits further information about that option.

3) The T7CL command which that option is to invoke. This
may be any TCL command and even another menu name.

Several TCL commands may be specified as a sequence of
multivalues.

A typical example might be:

000 STOCK.MENU
001 ME The main stock control menu for the stores
002 Stock Control Processing
003 Display stock items
Display a list of the records on the STOCK file
SORT STOCK BY PART.NO
004 Print stock items
Produce a printed list of the records on the STOCK file
SORT STOCK BY PART.NO LPTR
005 Add new stock records
Add new records to the STOCK file
RUN STOCK.BP ADD.REC
006 Change stock records
Change existing records on the STOCK file
RUN STOCK.BP MOD.REC
007 Delete stock records
Delete ol1d records from the STOCK file
RUN STOCK.BP DEL.REC

when this menu-definition item is invoked by means of the
command :

STOCK .MENU

the menu processor will interpret the menu-definition item
and:

Page 32

MB-Guide to Advanced Pick: AP/DOS

* Display the menu title

* Display the available options and an associated numeric
control code which will invoke that option

X Display an input prompt message

* Accept the user's control code and react accordingly

In this instance, the screen image will be:

Stock Control Processing

1) Display stock items 4) Change stock records
2) Print stock items 5) Delete stock records
3) Add new stock records

Enter number of choice, number ? for Help, <Return> to exit menu,
or verb:

The user may then enter the required option:

* A response of, say, 2 will select option 2 (the Print
stock items option) and invoke the TCL command:

SORT STOCK BY PART.NO [PTR

* A response of, say, ?2 or 2? will display the
appropriate help message:

Produce a printed list of the stock items

* A response of <(Return> will drop out of the menu, and
pass to TCL.

* Any other response will be regarded as a TCL command
and executed.

wWhen the appropriate action has been taken, the user will be
asked to:

Hit any key to return to the Menu
and the menu will be redisplayed and the action repeated.
The menu processor will handle any number of options, and
the screen display will be tailored to handle varying lengths
of descriptive text, producing only a single 1list if the
texts are long.

Menu-definition items are held on the MD and may be created
by means of the Update Processor:

UPDATE MD menuname

Currently, it is not possible to hold menus on any file
other than the MD. There are two associated commands:

LIST-MENU filename {itemlist}

Page 33

MB-Guide to Advanced Pick: AP/DOS

which will produce a formatted listing of the menu(s) on the
specified file.

LIST-MENUS filename
which will 1list all the menus on the DICT section of the
specified file. Since all menus are normally held on the MD,
the practical form of these commands are:

LIST-MENU MD {itemlist}
and:

LIST-MENUS MD
If a macros is invoked by a command such as:

macroname text

then the specified text will be appended to the end of the
first command in the macro.

Page 34

MB-Guide to Advanced Pick: AP/DOS

Level pushing

When you are carrying out any processing - be it a long
Access report, an update program, or whatever - your terminal
will be locked out until the process has finished and

control returns to you. This can be inconvenient.

When you are in the midst of a process, Advanced Pick allows
you to press the <(Esc> key to suspend the current process and
then issue a TCL command. When you interrupt a process in
this manner, the system stops execution and saves all the
necessary parameters so that the execution can be resumed
exactly where it was interrupted, it then replaces the normal
system prompt by:

to indicate the level at which you are processing. You may
then issue any TCL command to initiate a second process. The
second process may, in turn, be interrupted and a further
operation invoked. When each process has completed at the
Tower level, the appropriate prompt:

will be displayed, and you may issue a further TCL command
at this Tower level.

:xxxX Invoke Process #1
Process #1
1T11111111111111
1111111111111
111111111111111
11<Break:
::yyyy Invoke Process #2
Process #2
222222222222222
222222222222222
222222222222222
22<Break:
:::zzzzZ Invoke Process #3
Process #3
333333333333333
333333333333333
333333333333333
333333333333333
ends

2222222222222

222222222222222
222222222222222
ends

The following special TCL responses are available when the:

Page 35

MB-Guide to Advanced Pick: AP/DOS

prompt is displayed:

<Return> to return to the previous level and continue
execution of the process there.

END to terminate the process at the Jower level.
This action makes the level-pushing feature
similar to the action of the <Break> key under
R83.

OFF to log the user off the system and terminate
all processes.

DEBUG to enter the interactive system debugger, or,
if the execution of a Basic program has been
interrupted, to enter the Basic symbolic
debugger.

To avoid confusing users who are familiar with the normal
action of the <Break> key, the <(Esc> key may be used instead
of the (Break> key for level-pushing. The following TCL
commands are available to control this:

BRK-LEVEL
will assign the <Break> for level-pushing,

ESC-LEVEL
will assign the <Esc> for level-pushing,

BRK-DEBUG
will assign the <Break> for invoking the debugger (the
conventional role),

ESC-DATA
will assign the <(Esc> for sending the <(ESCAPE>
character (the conventional role).

ESC-TOGGLE
will switch the action of the <Esc> key from
lTevel-pushing to sending the <ESCAPE> character, and
vice versa.

If the ESC-LEVEL is enabled, you can still generate the
(Esc> data character by means of the sequence:

<Ctr1> [

The depth of the processing level for each user is now shown
in the STAT field of the modified WHERE report:

Ln PCB PIB ABS Stat R1 & Return stack contents
FID Stat Base
000 00215A FF10 000012 6 ws.where1:01E ws.who:236

depth of nesting —

The processing may be interrupted and nested up to 16

Page 36

MB-Guide to Advanced Pick: AP/DOS

levels, beyond this depth, any interruptions will be ignored.

Page 37

10

MB-Guide to Advanced Pick: AP/DOS

Phantom processes

This command invokes a phantom process and then allows the
user to continue with other work whilst the phantom process
is carried out in the background.

The general format of the command is:
Z{H}{S} tclcommand

The H option will send all the terminal output to a spooler
hold file, and the S option will suppress any error messages
which may be generated generated by the phantom task.
Without the S option, the phantom process will display all
messages on the terminal at which the task was initiated.

If the Phantom Processor is invoked by the simple commands Z
or ZH or ZHS without specifying a TCL command, then the user
will be asked for:

1) The user-id (and the password) which is to be used.
The default is the current user-id.

2) The name of the account (and the password) which is to
be used. The default is the current master dictionary.

3) The TCL command which is to be invoked,

4) The line on which the process is to be run. The
default is any available phantom line.

5) Any input data to be submitted to the command. A blank
data Tine is represented by <Ctr1> N, and the end of the
input data is indicated by a null Tline.

The phantom task will then be initiated and the user’s
terminal will be freed for normal use.

The JOBS file holds details of all jobs handled by the
phantom processor.

The TCL commands STARTSCHED and STOPSCHED are used to
enable/disable the phantom processor.

Page 38

11

MB-Guide to Advanced Pick: AP/DOS

Transaction logging

Transaction logging is a feature in which any changes made
to a file are logged immediately to the backing storage
device. In the event of a system failure, the system may be
restored from the last file-save tape and then the logged
transactions rolled forward to recover the system to the
state at the time of the failure.

Only files whose D-pointer items have an L in attribute 1
are involved in transaction logging. This can be set by
specifying the L option on the CREATE-FILE command which
creates the file, and may be modified by means of the Update
Processor.

The TCL commands STARTLOG and STOPLOG are used to
enable/disable the transaction logger. Any transaction
logging which is carried out whilst the logger is suspended
are written to disk and dumped to backing storage when the
logger is restarted. The TCL command TXLOG-STATUS will
display the transaction logger status

Page 39

12

MB-Guide to Advanced Pick: AP/DOS

Update Processor

The Update Processor performs a number of réles:

* As a general purpose editor, replacing the EDIT verb.
The standard Editor is still available in Advanced
Pick.

* As an application tool.

But, in general, the complexity of the key sequences which
are used to control the processor (and the fact that these
cannot generally be re-assigned for a specific application)
mean that the Update Processor is really a tool for the
technical user - the programmer - rather than for the
non-technical end-user. The end-user will be supported by
applications software.

The Update Processor is invoked by a command of the form:

UPDATE filename {itemlist} {(options}
or

UP filename {itemlist} {(options}
or

U filename {itemlist} {(options}

where filename is the file which is to be maintained, and
itemlist is the list of item-ids which are to be processed.

The options are:
[o] to clear the screen before each item is presented;

I to bring the item-id into the UP workspace where
it can be amended just like any other attribute.
By changing the item-id, you can leave the current
item and move to another item on the file. This is
identical to the action of the ID-PROMPT modifier.

L to indicate that the processing is to be Look only
and items cannot be updated/filed;

S to disable the spelling checker on entry to the UP.
There are several special forms:

UPDATE STOCK
will create a unique item-id (based upon the current
date and a system-wide sequence number) and then proceed
to accept the data for that item. When the item is
filed (by the <Ctr1> X F sequence), control will return
to TCL.

UPDATE STOCK DATE-ENTRY
will create a unique item-id (based upon the current
date and a system-wide sequence number) and then proceed
to accept the data for that item. As each item is
filed (by the <Ctrl1> X F sequence), a new item will be
presented. The sequence <Ctrl> X K will terminate the
activity and return to TCL.

Page 40

12.

MB-Guide to Advanced Pick: AP/DOS

UPDATE STOCK itemtl item2
will apply the Update Processor to the specified items.
when one item is filed (by the <Ctrl1> X F sequence), the
next item will be presented.

The list of items can be abandoned by means of the
(Ctr1> X K sequence.

The sequence <Ctr1> X B will leave the current item and
return to the previous item in the list.

As the item is being modified, the <Ctr1> keys are used to
move through and modify the item.

In all cases, if there is a macro held in attribute 15 of

the data-level identifier for the file, the attributes shown
there will be displayed as field identifiers before the data
is accepted for the item(s). If there is no macro list, then
the line-numbers 001, 002, and so on, will be displayed for
each input 1line (as with the standard EDITor).

The special form:

UD filename itemlist {(options}
is used for editing items - such as attribute definitions -
which are held on the dictionary section of the file.

D-pointers cannot be edited by means of the standard Editor.

The Update Processor has facilities specifically for use
with Basic program items:

* The sequence <Ctrl1> X R will file, compile and run the
item,
* The sequence <Ctrl1> X C will file, compile and

catalogue the item.
Bridges

The concept of referential integrity between the data on our
files demands that, if the CLIENT record for client 1234
indicates that this client submitted order-number 234, then
the ORDER record 234 must also indicate that this was
submitted by client number 1201.

CLIENT
000 1201 <== client number
001 JONES BROS
002 34 HIGH STREET

003 23413451567 <== Order numbers
ORDER

000 234 <== Order number

001 1201 <== client number

002 8166

003 25000

Page 41

12.

MB-Guide to Advanced Pick: AP/DOS

Most database management systems require considerable
programming effort to enforce referential integrity between
the files. Advanced Pick controls the referential integrity
of the files automatically by the concept of bridging.

There is an implied (logical) bridge between the

order-number 1in attribute 3 of the CLIENT file and attribute
0 of the ORDER file, and (in the opposite direction) between
the client-number in attribute 1 of the ORDER file and
attribute 0 of the CLIENT file: for each client number in the
ORDER items, there must be a corresponding client on the
CLIENT file, and for each order number in the CLIENT items,
there must be a corresponding order on the ORDER file.

The B processing code will allow us to specify such a
relationship between the files. We would use the
correlative:

BCLIENT;1;3

in the data-level identifier item of the ORDER file to
establish such a bridge to operate in both directions, from
the ORDER file to the CLIENT and from the CLIENT file to the
ORDER.

wWhenever an item is added to or deleted from the ORDER file,
attribute 3 of the CLIENT file is changed accordingly.
Furthermore, in this situation, the Update Processor will not
allow the order-numbers on the CLIENT file to be deleted
until the corresponding order on the ORDER file has been
deleted. We discuss the B processing code in a separate
section.

Cruising

If an index is available for an attribute which is being
handled by the Update Processor, the user may cruise through
this index looking for the required value. To illustrate
this, let us imagine that an employee’s surname is to be
entered and that an index is being maintained for the
surname. If the user enters a name or part of a name, such
as:

S

followed by the <Ctr1> U key, all the surnames starting with
S will be presented one at a time as the <Ctr1> U key is
repeatedly pressed. The <Ctrl1> Y key can be used to go back
up the index. When the required name is presented, the user
will press <(Return> and that name will be placed into the
item which is being updated.

Zooming

Whilst using the Update Processor, the concept of zooming
allows the user to take an attribute in the current item and
use this as a key to go to a second file and processor the
corresponding item there.

Page 42

MB-Guide to Advanced Pick: AP/DOS

Let us imagine that you are modifying an item on the
PERSONNEL file and that the cursor is positioned at the DEPT
field where the current value is ADMIN:

PERSONNEL
Code 12345
Name SMITH — DEPARTMENT
Dept ADMIN =========zz==z=) Ref ADMIN

| | Title Administration

If we press the sequence:
<Ctrl1> G G

the Update Processor will jump across to allow us to modify
(or create) the item on the DEPARTMENT file with the item-id
ADMIN. When we use a <Ctrl1> F sequence to terminate the
activity on the DEPARTMENT file, we shall return to the
PERSONNEL item.

If, whilst the cursor is at the DEPT field of the PERSONNEL
item, we press the keys:

<Ctr1> Y
or
<Ctr1> U

the Update Processor will cruise through the index of the
DEPARTMENT file displaying the TITLEs for each item. When we
press <Return> the appropriate REF for that DEPARTMENT item
will be placed into the DEPT field of the current PERSONNEL
item. Thus, if you enter a value (or a part of a value) for
the DEPT:

ADMIN

and then press the <Ctrl1> Y key, you will cruise backwards
through the index of DEPARTMENTs starting at ADMIN, and the
<Ctr1> U key will cruise forwards through the DEPARTMENT
index. When the required name is presented, the user will
press <Return> and that REF will be placed into the PERSONNEL
item which is being updated.

When the DEPT is entered into the PERSONNEL item, the Update
Processor will display the full TITLE of that DEPARTMENT.

These actions require that:

* There is an index for the REF field of the DEPARTMENT
file,
* There is an I index correlative in the DEPT field of

the PERSONNEL file which refers to the index for the
DEPARTMENT file.

* There is a Tfile correlative in the DEPT field of the
PERSONNEL file,

Page 43

12.

12.

1)

MB-Guide to Advanced Pick: AP/DOS

Double-clutching

Let us imagine that we are using the Update Processor to
modify item 12345 on the ORDER file, as in the diagram below.
The concept of double-clutching combines the actions of
zooming and cruising to allow us to use the current CLIENT
field 8901 to pass to that item on the CLIENT file, and then
to cruise through the items on the ORDER file for that
client.

ORDER

Ref 12345

Date 29/07/93

Amount 25.00 — CLIENT

Client 8901 =—m=—=——m——=) Ref 8901

! Name JONES & COMPANY
Address 34 HIGH ST..
Orders 2000]3000] ..

ORDER

Ref 2000 < d
Date 14/06/93

Amount 125.25

Client 8901

The sequence <Ctrl1> G G is used to make both transfers. The
zooming to another file may continue virtually indefinitely.

At each stage, you may make any changes to the item which is
currently active, leaving (and returning to the
previously-active item) by means of the <Ctrl1> X F or <Ctrl»
X X sequence.

These actions require that there are indexes for the CLIENT
and the ORDER file.

Care must be taken that you do not attempt to change an item
which you (or indeed any other user) is already editing. 1If
this happens, the system will report:

'xxx' locked by line yy
retry/look/quit (r/1/q)?

Prestored commands

As with the R83 Pick EDITor, the Update Processor has
facility to create and execute a prestore command or sequence
of commands. The prestore command(s) are held in a single
prestore buffer, and a number of commands are available for
handling this buffer.

Create and modify the prestore buffer by the sequence:
<Ctrl1> Z L

This invokes the Update Processor to modify the contents of
the prestore buffer. Commands are entered entered into the
buffer without the <Ctrl1> key and text operands are enclosed

’ "

in or " characters.

Page 44

2)

3)

4)

5)

MB-Guide to Advanced Pick: AP/DOS

Process the contents of the prestore buffer by the sequence:
<Ctr1> P

Save the current contents of the prestore buffer as an item
on a file by the sequence:

<Ctrl1> Z W

(that is, prestore Write.) and when the Update Processor
asks for the prestore id, enter:

prestore.id <Return>

specifying the id by which the prestore section is to be
saved.

Load a previously saved item into the prestore buffer by the
sequence:

«Ctr1>» Z R

(that is, prestore Read), and when the Update Processor asks
for the prestore id, enter:

prestore.id <Return>

specifying the id by which the prestore section was
previously saved.

Load and then execute a previously saved item into the
prestore buffer by the sequence:

Ctr1>» Z R

(that is, prestore Read), and when the Update Processor asks
for the prestore id, enter:

prestore.id <Ctrl1> P

specifying the id by which the prestore section was
previously saved.

If the prestore id is entered in the form:

(filename itemid
the prestore sections can be held as items on a specific
file. If only an id is specified, then it is assumed that
the prestore commands are held on the MD.
The format of the prestore item is:

000 prestore.id

001 P
002 XXXXXXXXXXX == Update processor commands

Page 45

12.6

1)

2)

3)

4)

MB-Guide to Advanced Pick: AP/DOS

Current — Prestore — Pick ——
item buffer file
Z1 ZR
> (mem——— L EM

{ ey frrr———— item
13 W |

Cutting and pasting

The Update Processor has facilities for handling a block of
text using the technique known as cut and paste.

At any one time, there is a single cut buffer available for
holding text which has been cut and/or is to be pasted into
an item. The following actions are available for handling
the cut buffer. They all start with <Ctr1> C (for cutting).
Mark and delete a block of text by the sequence:

<Ctr1> C D
to mark the start of the block, and

<Ctrl1> C C

to mark the end of the block. The cut block is deleted from
the document and loaded into the cut buffer.

Mark a block of text and place it in the cut buffer by the
sequence:

<Ctr1> C L
to mark the start of the block, and
<Ctr1> Cc C

to mark the end of the block. The document is not changed,
but the marked block is loaded into the cut buffer.

Paste in a block of text: The cursor is first moved to the
required position, and the current contents of the cut buffer
are pasted into position by the sequence:

<Ctri> C P
You should remember that the cut buffer is initialsed each
time you invoke the Update Processor, so it is not possible
to carry text from one item to another (except by
writing/reading the cut buffer, as described below).

Save the current contents of the cut buffer as an item on a
file by the sequence:

<Ctr1> C W

Page 46

5)

1)

2)

MB-Guide to Advanced Pick: AP/DOS

(that is, Cut Write) and then, when the Update Processor
asks for the cut id, enter:

cut.id <Return>
specifying the id by which the cut section is to be saved.

Paste a previously cut section by the sequence: the cursor
is first moved to the required position.

{<Ctr1> C R

(that is, Cut Read), and when the Update Processor asks for
the cut id, enter:

cut.id <Return>
specifying the id by which the cut section was previously
saved. This action is similar to the ME command of the Pick
EDITor.
If the cut id is entered in the form:

(filename itemid

the cut sections can be held as items on a specific file.
If only an id is specified, the cuts are held on the MD.

The cut buffer is empty when the Update Processor is
invoked, and the contents are lost when the UP session
terminates; thus, the buffer can be used to pass text from
one item to another in the same UP session, but not between
sessions.
Searching
The Update Processor offers search and/or replace
facilities. This is accomplished by a number of different
sequences:
To search only
The sequence:

(Ctr1> A string <Return>

<Ctr1> A string <Ctrl1> M
will search for the specified string.
To search and replace
The sequence:

<Ctrl1> A stringtl <Ctrl1> R

and when the system asks for a replacement string:

string 2 <Return>

Page 47

3)

4)

12.

MB-Guide to Advanced Pick: AP/DOS

will search for and replace occurrences of string?! by
string2. When an occurrence is found, the system will accept
a further response from the user. This will be any of:

Ctrl1> A
to ignore this occurrence and find the next,

<Ctrl1> N
to replace this and all further occurrences,

<Ctrl1> R
to replace this occurrence and find the next,

Ctrl1> X
abandon the search/replace.

To replace all occurrences

The sequence:
(Ctrl1> A stringt <Ctrl1> R

and when the system asks for a replacement string:
string 2 <Ctri> N

will replace all occurrences of string?! by string2, without
any intervention from the user.

To repeat the search
The sequence:
<Ctrl1> A
at any point, will repeat the last search,

These key sequences are summarised at the end of this
MB-Guide.

Spelling check

The Update Processor has an automatic spelling checker based
upon the WORDS file held on the DM account. Whenever an
unrecoghised word is encountered, the processor will beep and
allow the user to enter any of:

Ctri1y A
to accept the word.

<Ctrl1> A <Ctril> A
to accept the word and, when it is complete, add it to
the WORDS file.

<Ctrl1> A <Ctrl1> A <Ctrl> A
to disable the spelling checker.

(Ctri1> U
to scan the WORDS file and find the next acceptable

Page 48

MB-Guide to Advanced Pick: AP/DOS

word.

<Ctr1> Y
to scan the WORDS file and find the previous acceptable
word.

<Ctrl1> 2 §
to switch the spelling checker on/off. If the Update
Processor is invoked with the S option, the spelling
checker will be disabled.

The TCL commands SPELLER/SPELLER-ON/SPELLER-OFF are used to
interrogate/enable/disable the spelling checker.

Before these facilities can be used, an index for the WORDS
file must be created by means of the command:

CREATE-INDEX WORDS AQ

Page 49

MB-Guide to Advanced Pick: AP/DOS

Output Processor

The Output Processor - OP - is essentially an updated
version of Runoff and is used to produce a document according
to a set of text lines and OP commands held in an item.

Although a great many OP features and commands are identical
to those of Runoff (and Runoff is still available for
compatibility), those users who are familiar with Runoff will
need to know the differences between this and OP:

Output Processor commands may be embedded anywhere within the
text. It is not necessary to hold them on separate command
lines, as is the case with Runoff commands.

A1l active commands, such as .JUSTIFY, are disabled by the
X-form .XJUSTIFY.

The concept of Output Processor macros allows the user to set
up standard items which can be called in much the same way as
with .READ commands. These macros are held on a file and
have item-ids of the form

- XXXXX

and the macros are invoked simply by including the item-id
within the text, just like a normal Output Processor command.
The name of the file which holds the macros is declared on a
.MACRO FILE command. If no such command has been used, the
current file is assumed to be the macro file.

There are facilities for automatic numbering of figures and
tables. The number is of the form:

cce—nnn

where ccc is the chapter number and nnn is the sequential
number for the figure or the table.

There is a greater recognition of the facilities of current
printers, with facilities for subscripts, superscripts and
fonts.

Although Runoff and the Output Processor are similar, the two

are not compatible and Runoff documents cannot be handled by
the Output Processor.

The Advanced Pick Reference Manual gives full details of the

OP commands. The following are noteworthy for the reader who
has used Runoff.

.appendix / .apx .set chapter / .sch
.block center / .bc .subscript / .sub
.boldface / .bf .superscript / .sup
.char .tab left / .t1
.col .tab right / .tr
.columns set / .columns .tab rightm / .trm
.cursor .table / .tbl

.date .tc heading / .tch

Page 50

MB-Guide to Advanced Pick: AP/DOS

.default / .df

.tcl

.em .tcl box / .tclbox
.figure / .fig .underline / .ul
.font / .f .underline words / .uw

.gohanging tab / .ght
.hanging tab / .ht
.hyphenate / .hy
.indent rmargin / .irm
.index heading / .ixh
.italics / .it

pi

.variable columns / .vcol
.vmi

WX

.xblock centre / .xbc
.xboldface / .xbf

.xcol

.xcolumns

.macro file / .mf
.over char / .oc
.paging / .pg
.preface / .pf
.prefix page / .pp

.xhyphenate / .xhy
.xitalics / .xit
.xpaging / .xpg
.xpreface / .xpf
.xprefix page / .xpp

.print ptoc / .pptoc .xsub
.print toc / .ptoc . Xsup
.right margin / .rm .xul

A document is displayed on the screen or sent to the spooler
by means of the OP command. This has the general form:

OP filename itemlist {(options}

where filename and itemlist identify the document(s) to be
output and the options include any of:

m output just page m
m-n output pages m to n inclusive.

c suppress CHAIN and READ commands.

D double-spacing, and

T triple-spacing.

H suppress HEADING commands.

J suppress HILITE commands.

S suppress boldface, underlines, italics and fonts.

Page 51

MB-Guide to Advanced Pick: AP/DOS

Access

There are a few extensions to the Access enquiry language
under Advanced Pick.

LIST ... BY is now identical to SORT ... BY
Note that this does not yet apply to SELECT and SSELECT.

There are new verbs for handling select-1lists and
saved-lists:

+ COMPARE-LIST
+ SORT-LIST

The ISELECT and the ISSELECT verbs select all the items which
are in the same physical group as a specific item and have
the form:

ISELECT file.name item.id
ISSELECT file.name item.id

The NSELECT verb produces a list of items in the current
select-1ist which are not is a given file. A typical usage
might be:

SELECT FILE1
NSELECT FILE2

to produce a select-list of all those items which are on
FILE1 but not on FILE2.

There are several synonyms for the familiar verbs for
handling select-1lists and saved-lists:

+ CL for COPY-LIST;
+ DL for DELETE-LIST;

+ EDIT-LIST invokes the standard line-editor to edit a
saved-1list, whereas:

+ EL invokes the Update Processor to edit a saved-list.

+ GL for GET-LIST;

+ LL for LIST-LISTS;

+ SL for SAVE-LIST;

There is a new list-processing verb: FL. This has the form:
FL filel 1list1 {operators} {file2} 1list2}

and allows lists held on two files to be combined by the set
operators:

= intersection, to build a 1ist of items in both
lists;

+ union, to build a list of items in either 1list;

- exclusion, to build a list of items in listt but

Page 52

MB-Guide to Advanced Pick: AP/DOS

not in list2.

The result is produced as a select-1list which can be used in
the familiar manner.

The syntax of Access sentences is much the same as before,
although there are some new keywords and conventions:

Apostrophes may be omitted when specifying item-ids in an
Access sentence. Thus, the forms:

LIST STOCK 1000 2000 DESCRIPTION
SORT STOCK > 2000 COLOUR PRICE
T-DUMP PROGRAMS LIST.WAGES PRINT.WAGES

are equivalent to:

LIST STOCK 1000’ ’2000’ DESCRIPTION
SORT STOCK > 2000’ COLOUR PRICE
T-DUMP PROGRAMS ’'LIST.WAGES’ ’'PRINT.WAGES’

Care must be taken in the use of apostrophes if a file has
any items and attribute-definitions with the same item-ids.
If there is any conflict, a word is assumed to be an
attribute-definition.

Note that it is still necessary to use quotation marks when
specifying values in selection criteria:

LIST STOCK WITH COLOUR "RED"

The maximum length of an Access sentence was 140 characters
in length on R83. On Advanced Pick, there is virtually no
1imit on the length of the sentence which you may type in.
The continuation sequence which allowed you to type in a long
sentence in short segments has been discontinued.

The FILL modifier (and the equivalent R option) may be used
with an Access sentence which is too wide for the screen (or
printer) and which would otherwise produce non-columnar
output. When this is used, the data is output with the
headings and the data continuing across the page in a
text-1ike manner.

STOCK : 2000 DESCRIPTION SETTEE, YELLOW, OAK
DATE 04 DEC 89 QTY 18

STOCK : 3000 DESCRIPTION SIDEBOARD, BLUE, ASH
DATE 25 DEC 89 QTY 58

STOCK : 4200 DESCRIPTION SETTEE, GOLD, ASH
DATE 14 DEC 89 27 DEC 89 QTY 55 10

The DATA-ENTRY modifier allows a series of new items to be
created by means of the Update Processor.

The DUPLICATE modifier can be used with files and attributes
for which an index is available. This is discussed in a

Page 53

MB-Guide to Advanced Pick: AP/DOS

separate section.

The file-name is included in the default heading for Access
reports.

There are additional options with HEADING and FOOTING
modifiers.

The ID-PROMPT modifier causes the Update Processor to ask for
the item-id and allows the item-id to be edited, thereby
leaving the current item and moving to another when using the
Update Processor.

The IFNO connective has been added. This has the same meaning
as WITHOUT, as in:

LIST STOCK IFNO QUANTITY
LIST STOCK WITH NO QUANTITY
LIST STOCK WITHOUT QUANTITY

The relational operator IS is offered as a synonym for =, EQ
and EQUAL. Note that ARE is still a throwaway modifier.

There is a new LEGEND facility which allows the user to
specify a piece of text which is to appear at the foot of
every Access report which is sent to the printer. The text
is specified (in Update Processor format) in an item with the
item-id LEGEND which is held on the MESSAGES, file.

The inclusion of this message in Access reports is
enabled/disabled by the LEGEND-ON / LEGEND-OFF commands and
the LEG-SUPP modifier (or the equivalent K option) in Access
sentences.

A legend for a specific user may be placed on the MESSAGES
file with the item-id:

LEGEND*user.id

The XXX ITEMS LISTED message has been changed so that it
shows how many items were listed and how many items are on
the file.

The NI-SUPP modifier (or the equivalent B option) suppresses
the XXX ITEMS LISTED message at the end of an Access report.
The equivalent S option (available on R83) has been
withdrawn.

The ROLL-ON modifier (and the synonym TOTAL-ON) rolls the
output data into the following column, the previous column or
as a new column. This is discussed in a separate section.

The SAMPLING modifier will enable you to restrict your report
to a specific number of items on the file. For example, the
sentence:

LIST STOCK SAMPLING 20

will display only the first twenty items on the file. 1If
selection criteria are included in the sentence, as in

Page 54

MB-Guide to Advanced Pick: AP/DOS

SORT STOCK WITH COLOUR "RED" SAMPLING 20

then these are evaluated before the sampling of the first
twenty items takes place, reporting 20 red items.

The SS - spreadsheet - connective produces a tabular summary
of the values of one attribute between specific dates held in
another attribute. This is discussed in a separate section.

When an Access sentence produces a report on the printer, the
sentence is normally shown at the head of the report. The
action may be disabled/enabled for all Access reports by
means of the TCL-HDR-ON and TCL-HDR-OFF commands and, for an
individual report, by the TCL-SUPP modifier. The simple
TCL-HDR will display the current status of the TCL headers.

Attributes 11 and above of the system definition items
(user-definition items, file-definition items, data-level
identifier items, attribute-definition items) are used for a
of purposes.

On R83 systems, an Access sentence such as:
LIST STOCK

with no output 1list, will automatically include numeric
attribute-names 1, 2, 3 and so on, in the sentence, if these
are available; this set of numeric attribute-names comprise
what is known as the implicit output list. This is still
supported on Advanced Pick but there is a further extension:

Attribute 15 of the data-level identifier item may hold a
list of attribute-definitions which are to be used in the
absence of any other output specification. This macro
specification is also used by the Update Processor. Any list
held here is used in preference to the attribute-names 1, 2,
3, 4 and so on.

The macro may include the temporary attribute items described
below.

The ONLY modifier suppresses the use of the macro and
displays only the item-ids.

A facility known as temporary attribute items which allow the
use of attribute names such as A1, A2, A3 and so on in Access
sentences. These are similar to the %A1, *A2 and *A3
definitions of R83 except that attribute-definition items A1,
A2 and A3 do not exist, they are constructed for temporary
use by the Access processor. The A1 definitions allocate the
maximum possible width to the field in order to fit all the
fields on the screen (or the printed page). For
compatibility, the *A0, *A1 and other names are still
available.

If the file dictionary contains explicit datanames A1, A2 and
so on, these will be respected and will take precedence over
the temporary attribute items.

Page 55

MB-Guide to Advanced Pick: AP/DOS

ROLL-ON modifier

The ROLL-ON modifier rolls the output data into the
following column, the previous column or as a hew column.

The format of the ROLL-ON modifier is the same as the
BREAK-ON modifier discussed in section 4.9:

ROLL-ON attribute "message"”

where the message consists of any string of text and/or
options - the options being enclosed in apostrophes. The
options are the same as for the BREAK-ON modifier.

The annotated output below illustrates how several values
may be rolled into one column, each being identified by a
string of asterisks.

:SORT STOCK DESCRIPTION ROLL-ON PRICE ROLL-ON MINIMUM
STOCK..... DESCRIPTION..............
1500 CHAIR, BLUE, LAMINATE <== DESCRIPTION
* 60 <== MINIMUM
*x 25.00 <{== PRICE
2234 CHAIR, GREEN, OAK
* 30
*x 10.00
95556 TABLE, RED, PINE
* 25
** 50.00

If the column to the left of the ROLLed-ON attribute has
been modified by a TOTAL or other modifier, then the data
will be rolled into the column to the right. If the column
to the right has also been modified, then a new column will
be created to hold the data.

SS - spreadsheet modifier

The SS - that is, SpreadSheet - connective produces a
tabular summary of the values of one attribute between
specific dates which are held in another attribute. For
example, the sentence:

SORT STOCK SS DATED "15/11/92" "20/11/92" QTY

produces a table (spreadsheet) with columns headed 15/11/92,
16/11/92, 17/11/92 and so on up to "20/11/92" showing the
total of the QTY attribute for those items which have a DATED
attribute on the appropriate dates.

15/11/92 16/11/92 17/11/92 18/11/92 19/11/92 20/11/92 Total

55 12 89 104 82 99 441

Page 56

14.

MB-Guide to Advanced Pick: AP/DOS

The output is euiqvalent to the control-break subtotals
produced by a sentence such as:

SORT STOCK BY DATED BREAK-ON DATED TOTAL QTY WITH DATED
>= "15/11/92" AND <= "20/11/92"

The general form of the SS clause is:

SS date.field "start.date” "end.date” total.field
The reference literature indicates that, if the end.date,
20/11/92 1in our example, is omitted, then the current date is
used, and that, if the start.date, 15/11/92 in our example,
is also omitted omitted, then the processor will generate
enough columns to fill the width of the report.

The G option may be specified to suppress row and column
totals.

Attribute-definition items

On Advanced Pick, the attribute-definition item has the
following structure:

001 dictionary-code
002 attribute-count
003 substitute-header
004 structure

005 not used

006 not used

007 output-conversion
008 correlative

009 attribute-type
010 column-width

011 not used

012 not used

013 not used

014 1input-conversion
015 macro

016 output-macro

017 description

018 not used

019 not used

020 hotkey.all

021 hotkey1l

022 hotkey2

023 hotkey3

024 hotkey4

025 hotkey5b

026 hotkey6

027 hotkey7

028 hotkey8

029 hotkey9

030 hotkeyO

Attributes 1 to 10 of attribute-definition items are used in

Page 57

9)

14)

15)

17)

20)

.3.

1

MB-Guide to Advanced Pick: AP/DOS

exactly the same way on previous versions, except that
attribute 9 has additional codes:

Attribute 9: this specifies the justification of the output
data. Extended codes are available on Advanced Pick.

Advanced Pick uses some of attributes 11 onwards. These

extra fields are primarily concerned with the Update
Processor:

Attribute 14: this specifies the input conversion.

Attribute 15: this specifies the macro - a list of
attribute-definition names which are to be used when zooming
to another item with the Update Processor.

Attribute 17: this is the description ~ a free text field
for any comments concerning the use and nature of the
attribute.

Attributes 20 onwards: these contain the CALLs to any
subroutines which are to be invoked by the hot-key sequences.

These are discussed in detail in the following sections.

Attribute-definition items are created and modified by means
of the UD - Update Dictionary - macro.

Attribute 9: TYPE or V/TYPE

Attribute 9 of D-pointer items and attribute-definition
items is the TYPE or V/TYPE. This is a single letter
specifying the justification of the output data, and
indicates the way in which the output data is to be fitted
within the column-width.

The extended codes on Advanced Pick are:

W indicates that, for non-columnar output, this attribute
is to be processed as a piece of text by the Output
Processor.

WW indicates that, for non-columnar output, this attribute
and all subsequent attributes are to be processed as a
piece of text by the Output Processor.

X is used on conjunction with L, R or T and indicates
that the column for this attribute (and the associated
column heading) is to be expanded to fill the width of
the output report when this attribute is the right-most
on the report.

If several fields on a report use the X code, then each
will be expanded (in proportion to the column-wdith
specified in attribute 10) so as to fill the width of
the report.

For account-definition items (on the MDS file), this
justification applies to the item-ids of the items on the MD
of the account; for file-definition items (on the MD of the

Page 58

4.

4.

.3.

.3.

3.

3.

MB-Guide to Advanced Pick: AP/DOS

account), this justification applies to the item-ids of the
items on the DICT section; for data-level identifier items
(on the DICT section of a file), this justification applies
to the item-ids of the items on the data section;

Attribute 14: Input conversion

Attribute 14 of D-pointer items and attribute-definition
items this specifies the input conversion - processing codes
which are to be applied to the data immediately after it has
been entered by the user under the control of the Update
Processor. 1In general, the codes specified here can be any
combination of the regular processing codes and the new input
conversions implemented in Advanced Pick, and will be used

to validate and transform the input data before it is written
to the file.

If no input conversion is applied to a field, then - when
using the Update Processor - the user must enter the data for
that field in the appropriate internal form, although the
data will be re-displayed in the correct external form.

Attribute 15: Macro

Attribute 15 of D-pointer items and attribute-definition
items this specifies the macro. This is a list of
attribute-definition items separated by spaces.

For data-level definition items, this is used as the default
output Tist which is to be used if no output list is
specified in an Access sentence. This macro list overrides
the normal effect of attributes named 1, 2, 3 and so on.

The macro list in the data-level definition item is also
used to indicate which fields are to be presented when items
are modified by means of the Update Processor.

For attribute-definition items, this is a list of
attribute-definition names which are to be used when this
attribute is used to zoom to another item with the Update
Processor.

Attribute 17: Description

Attribute 17 of D-pointer items and attribute-definition

items this is the description - a free text field for any
comments concerning the use and nature of the attribute.

This text is used as a help message displayed if the user
enters:

?
at any input field when using the Update Processor.
Attribute 20: Hot-keys
Attribute-definition items - and file-definition items -
which are used by the Update Processor can exploit the

hot-key feature whereby the user may invoke a Basic
subroutine by hitting a hot-key.

Page 59

MB-Guide to Advanced Pick: AP/DOS

A hot-key is a key sequence of the form:
Ctrl1> X n

where n is an integer 0 to 9, and the subroutines (if any)
to be invoked by the hot-keys are declared in attributes 20
to 30 of the file-definition item and the
attribute-definition item:

020 hotkey.all
021 hotkey1t
022 hotkey?2
023 hotkey3
024 hotkey4
025 hotkey5b
026 hotkey6
027 hotkey?7
028 hotkey8
029 hotkey$
030 hotkeyO

If the user presses a hot-key sequence:
Ctrl1> X n

when entering a data field via the Update Processor, the
processor will execute the first-encountered of:

1) the hotkey.all entry in the attribute-definition
item for the data field;

2) the hotkeyn entry in the attribute-definition item
for the data field;

3) the hotkey.all entry in the file-definition item;
4} the hotkeyn entry in the file-definition item.

A typical entry for a hot-key definition might be:
020 CALL SUB.HOTKEY.ALL.STOCK

or:

021 CALL STOCK.HOT.O

The Basic subroutine has the familiar form, with the
following observations:

* No data is passed between the Basic subroutine and the
data item being processed by the Update Processor.

* The ACCESS function 1is not available for capturing data
from the item being updated.

* The subroutine must have:

SUBROUTINE subroutine.name(parameter)

Page 60

15.

15

1

MB-Guide to Advanced Pick: AP/DOS

as the first 1ine although the parameter contains only
a null value and is ignored outside the subroutine.

If several hot-key subroutines are to be called one after
another, these may be specified in a form such as:

021 CALL STOCK.CHECK]CALL STOCK.HOT.O
separating the individual routine-names by value-mark.
Processing codes

Advanced Pick introduces a number of additional processing
codes:

B code - bridge correlative
CALL code - invoke a Basic subroutine
CU code - character update

I code - attribute index

I code - file index

I code - file reference

ID code - item-id

IF code - logical testing

MI code - mandatory input

MY code - hexadecimal to ASCII
O code - ordered multivalues

V code - value limitation

X code -~ prevent amendment

Xc code - update stamp

Some of these are used in file-definition items and
data-level identifier items, whilst others are used in as
familiar Access correlatives in attribute-definitions items.
In some cases, these new codes are provided for use in
conjunction with the Update Processor and are held in the
input conversion field (attribute 14) of the appropriate
definition item.

The D - date - code has a new form: DF to display the date in
a form such as: July 29, 1993.

B code

The B -~ bridge - correlative is used in data-level
identifier items and indicates that there is a relationship
between an attribute on this file and an item on another
file. It is a powerful means of ensuring data integrity
within the database. Bridging is discussed in a separate
section.

The B processing code will allow us to specify such a
relationship between the files. We should use the
correlative:

BCLIENT;1;3

in the data-level identifier item of the ORDER file to
establish such a bridge to operate in both directions, from
the ORDER file to the CLIENT and from the CLIENT file to the
ORDER.

Page 61

MB-Guide to Advanced Pick: AP/DOS

Whenever an item is added to or deleted from the ORDER file,
attribute 3 of the CLIENT file is changed accordingly. In
this situation, the Update Processor will not allow the
order-numbers on the CLIENT file to be deleted until the
corresponding order on the ORDER file has been deleted.

The full form of the B code is:
Bfilename;a;b{;c}

where filename indicates the file (the CLIENT file in our
example) to which this file (the ORDER file) is associated
(bridged); a is the attribute in the ORDER file which holds
the item-ids of the CLIENT items; b is the attribute in the
CLIENT file which forms the other end of the bridge.

The parameter c suppresses the bridge back to this (the
ORDER) file implied by the parameter b, and has one of the
forms:

n;+ meaning add the value of attribute n of the
current ORDER item to attribute b in the CLIENT

item,

n;- meaning subtract the value of attribute n of the
current ORDER item from attribute b in the CLIENT
item,

d meaning that the current ORDER item may be deleted
even though there may be a value for attribute a of
the item.

The following points are important when using bridges:

x When a new order is created on the ORDER file, the
order-number will be added to the corresponding item on
the CLIENT file.

* If there is no corresponding item on the CLIENT file, a
new - empty - item will be created there.
* A bridge will prevent either the ORDER record or the

CLIENT record being deleted by any Advanced Pick tool
(such as the Update Processor or the EDITor) so long as
there is a corresponding CLIENT or ORDER item on file.
* If, say, the client-number within the ORDER item is
changed, the order-number will be removed from the
original CLIENT item and added to the new CLIENT item.
15.2 CALL processing code

The CALL processing code is used to call a Basic subroutine
from within an Access definition.

An example of the code might be:

CALL DRTNOO1

Page 62

15.

MB-Guide to Advanced Pick: AP/DOS

which will call a Basic subroutine catalogued with the name
DRTNOO1.

Since this code, like all Access processing codes, can be
used in the 7nput conversion field of an attribute-definition
item, Advanced Pick opens up the way to powerful data
validation and transformation when used with the Update
Processor.

When a definition using this code is encountered in an
Access sentence, control is transferred to the subroutine:

SUBROUTINE DRTNOO1(INVALUE)

and a single parameter (INVALUE in this instance) is passed
across containing the value derived (thus far) by the
definition. Any processing may be done within the
subroutine, including data input and output. When the
subroutine processing is complete (and a Basic RETURN
statement is encountered in the subroutine), the contents of
the subroutine parameter (INVALUE) will be passed back to the
Access processor and used for any further processing by

other correlatives, the BY connective and the TOTAL modifier,
before final output on the Access report.

Within the CALLed subroutine, other details of the file and
the current item can be obtained by means of the ACCESS
function.

CU code

Used as an input conversion in an attribute-definition item,
the CU code allows character by character amendment of the
data. The form is simply:

Ccu

Otherwise, when a user invokes the Update Processor to

change this field on a file, the current contents of the
field will be removed and replaced entirely by the new data
which the user enters. However, if the definition includes
this CU processing code, then the user may amend the existing
data - character by character - and use the Advanced Pick
cursor-control keys to skip over existing characters without
changing them.

I code
Used as an input conversion in an attribute-definition item,
the I code indicates that an index exists for this attribute.
The form is simply:

I
wWhen this attribute is being processed by the Update

Processor, it allows the user to cruise through the entries
in the index by means of the Advanced Pick control keys.

Page 63

15,

15.

5

MB-Guide to Advanced Pick: AP/DOS

I code

This is held in the data-level identifier item and may be
established by the CREATE-INDEX command. Indexing is
discussed in a separate section.

Alternatively, the user may apply the code explicitly by
setting attribute 8 of the data-level identifier item to:

IA2(GO 1)

indicating that index entries are to be maintained (in this
case) for the second word of attribute 2. When a
CREATE-INDEX command is next issued for this file, then the
index will be established and this I code will be replaced by
an entry of the form:

198765A2(G0 1)

holding the frame address (98765 in this instance) of the
root node of the appropriate index. Once the frame address
of the root node has been set by the CREATE-INDEX command, it
must not be changed by the user.

Whenever an item is added, changed or deleted from this
file, the index will be maintained by the operating system.

Whenever any sorting or SSELECTion is performed on a field
which is defined by a attribute-definition using this same A
correlative, then the index will be used in performing the
sort.

I code

Used as an input conversion in an attribute-definition item,
this form of the I code indicates that the contents of this
attribute are based upon the data which is indexed in another
file.

For example, when we are using the Update Processor to enter
data into the ORDER file, one piece of data which will be
required is the client-number. When we are asked to enter
the client-number, we should like to be allowed to enter the
client name (or a part of it) and then get the system to look
through the index of client names until we find the correct
one and then use the client-number of that client as input
data for the new ORDER item. This process of browsing
through an index to another file is known as zooming.

In this situation, a typical instance of the I code used in
the ORDER file might be:

ICLIENT ;A1

which - when placed in the input conversion of the

definition for the client-number on the ORDER file - will
allow us to zoom across to the CLIENT file and browse through
the index of attribute 1 (the name) of the CLIENT file
whilst editing the client-number field of the ORDER file.

Page 64

15.

MB-Guide to Advanced Pick: AP/DOS

There should also be a Tfile processing code, such as:
TCLIENT;C; ;1

in the attribute-definition for the client-number field of
the ORDER file to permit the user to cruise through the
CLIENT file.

wWhen asked for a client-number, the user can zoom across to
the index for the CLIENT file by means of the Advanced Pick
controls keys.

ID code

Used as an input conversion in a data-level identifier item,
the ID code specifies the manner in which the Update
Processor is to create new item-ids as items are added to the
file. There are several forms of the code.

ID with no parameters, the code will create a unique item-id
of the form:

dn

where d is the internal date and n is a unique sequence
number .

IDAexpression
will use the A (correlative) expression to derive the
item-id from the other data in the item.

IDn
will create unique numeric item-ids starting at n. As
new items are added to the file, the system will update
the value of n in this code to reflect the next number
to be used.

As new item-ids are generated under the control of this
code, if it is found that an item already exists with the
generated item-id, then the system will increment the
generated item-id until a unique item-id is obtained.
Furthermore, if the code is currently set at, say:

ID500
Then any gaps in the sequence of item-ids lower than 500
will be ignored. Such gaps can be filled in by resetting the
code to:

IDO
IDT will create an item-id of the form:

dt

where d is the internal date and t the internal time.

Page 65

15.

MB-Guide to Advanced Pick: AP/DOS

IF code

The IF processing code is used to test one or more
conditions and output an expression if the result is true, or
another expression in the result is false.

The general format of the code is:

IF condition THEN expression
IF condition ELSE expression
IF condition THEN expression ELSE expression

where condition is any conditional expression and expression
is any output expression (which may include a further IF
code).

Some examples are:

IF 7 ¢ 2 THEN "BELOW" ELSE "NOT BELOW"
will test the contents of attribute 7 of the data item,
and output the word BELOW if the value is less than the
contents of attribute 2, otherwise the word NOT BELOW
will be output.

IF 2+"0" = "0" THEN 5 ELSE 2
will test the contents of attribute 2 of the data item;
if the value is zero or null, then the contents of
attribute 5 will be output, otherwise the contents of
attribute 2 will be output.

IF 2 = 5 THEN "OK" ELSE IF 2 < 5 THEN "LOW" ELSE "HIGH"
will output one of the words OK, LOW or HIGH according
to the relative contents of attributes 2 and 5.

IF 1 = "0" THEN "ZERO VALUE FOUND"
IF 1 = "0" ELSE "NON ZERO VALUE"
IF 1 > 2 THEN 1 ELSE 2

IF 2+4 > 7 THEN 2+4 ELSE 7

IF 1 AND 2 THEN 1+2 ELSE "0"

IF 1 OR 7 THEN "OK" ELSE "ERROR"

IF 1 AND 7 THEN IF 1 > 7 THEN 1 ELSE 7 ELSE "0"

IF N(VALUE) > "1000" THEN "REVIEW" ELSE N(VALUE)/100
IF 1 THEN IF 2 THEN 3 ELSE 4 ELSE 5

IF N(SO) < "100" THEN N(S1) ELSE N(S2)

IF (IF 1 THEN 2 ELSE 3) THEN 4

IF N(CODE)R = "2" THEN (N(QTY)*N(PRICE2)R)(MD2) ELSE
IF N(CODE)R = "3" THEN (N(QTY)*N(PRICE3)R)(MD2)
ELSE (N(QTY)*N(PRICE1)R)(MD2)

Normally, the code will comprise matching sets of
IF/THEN/ELSE clauses, but the END keyword may be used for
situations where an ELSE is not to be paired with the latest
IF:

IF 1=2 THEN IF 3=4 THEN 5 END ELSE 6
L I)

1 1]]

in which the ELSE 6 pairs with the first IF and the first

Page 66

15.9

15.10

15.11

15.12

MB-Guide to Advanced Pick: AP/DOS

THEN, not with the THEN 5. Without the END, the code would
be interpreted as:

IF 1=2 THEN IF 3=4 THEN 5 ELSE 6
L i 1 |

The following report shows the output from these codes (used
in definitions called CODE1 and CODE2, respectively), for
various values of attributes 1, 2, 3 and 4.

>LIST TESTER *A1 %*A2 *xA3 *A4 CODE1 CODE2
TESTER.... Attr1 Attr2 Attr3 Attr4 CODE1 CODE2
1 111 222 333 444 666
2 111 111 333 444 666
3 222 222 333 333 555 555
4 111 222 333 333 666

MI code

Used as an input conversion in an attribute-definition item,

the MI code specifies mandatory input, that is, that the user
must enter a data value into the field when using the Update

Processor. The form is simply:

MI

If the user attempts to enter null for such a field, then
the system will beep and return to input the data.

MY code

This converts hexadecimal data into ASCII character format.
The form is simply:

MY
O code

Used as an input conversion in an attribute-definition item,
the O code specifies that, as they are added to the file by
the Update Processor, the multivalues of this field are to be
sorted into left-justified ascending order. The form is
simply:

e}
V code

Used as an input conversion in an attribute-definition item,
the V code specifies a maximum number of multivalues which
are allowed in this field when using the Update Processor.
Sorted into left-justified ascending order. An instance
might be:

V5

Page 67

15.13

15.14

MB-Guide to Advanced Pick: AP/DOS

which will only permit 5 multivalues to be entered. The
special form:

VO
Prevents the user from entering any data into the attribute.
X code

Used as an input conversion in an attribute-definition item,
the X code specifies that the field cannot be amended by
means of the Update Processor. The form is simply:

X
Xc code

Used as an input conversion in a data-level identifier item,
this form of the X code specifies a stamp that is to be set
in a specific attribute of each item as it is updated. There
are several forms of the code:

XANn
will put the name of the user in attribute number n of
the updated item.

XDn
will put the current date in attribute number n.

XSn
will accumulate in attribute number n the number of
seconds for which the item was handled by the Update
Processor.

XTn
will put the current time in attribute number n.

If a further element V is specified - XAnV, XDnV, XSnV, XTnV
- then the stamp will be appended to the stamp attribute as a
new multivalue, otherwise the stamp will replace the

previous contents of the attribute.

Page 68

16

MB-Guide to Advanced Pick: AP/DOS

File indexing

Any item on a Pick file can only be retrieved if you know
the name of the file and the item-id of the specific item.
For example, the items on the STAFF file will be uniquely
identified by the item-id, the employee number. However,
there may be an operational requirement to find an item if
you know the employee’s surname or the department in which
the employee works. Such secondary information, the surname
or the department, will probably not be unique and is known
as a secondary key into the file. Advanced Pick allows you
to create an index which will offer faster access to the data
on your files by way of such a secondary key. A file may
have any number of such indexes, one for the surname, one for
the department, one for the telephone number, and so on. 1In
fact, the index (some people use the term B-tree) may be
based upon any information derived from the item. The
instructions for deriving the index-key are specified as A
processing codes, and the operating system stores these
instructions together with the FID of the root of the index
in attribute 8 the data-level definition item for the data
section of the file. They will be held in the form of an
I-code, such as:

I03DBF4A3(G1 1)

This particular instance shows that the root FID of the
index which is based on the A processing code:

A3(G1 1)

is to be found in frame 03DBF4 (= frame 252916 in decimal).
The index is held in frames of virtual memory, not on a Pick
file.

If the file has more than one index, each index will have
its own I-code in the data-level definition item for the
file. These are organised as multivalues of attribute 8.

The index is maintained automatically by the operating

system whenever items are added, modified or deleted from the
main data file by any of the standard Advanced Pick
processors, including:

x The Update Processor,
* The COPY verb,
X The T-LOAD verb.

Apart from its value in file-access, a major application of
the index is in cruising, that is scanning backwards/forwards
through the file using the specified field as a key. Thus,
if we have an index for the employee’s surname, we can cruise
through all the SMITHs until we find the one we want.

The CREATE-INDEX command is used to create a new index for a
file. The general form of the statement is:

CREATE-INDEX filename code

where filename is the name of the file for which the index

Page 69

MB-Guide to Advanced Pick: AP/DOS

is to be created, and Acode is the A processing code which is
to be used. Here are some examples:

CREATE-INDEX LIBRARY AOQ
will create an index to the file LIBRARY, the keys for
the entries in the index consisting of the item-id of
the items on the LIBRARY file.

CREATE-INDEX STAFF A3(Gt1 1)
will create an index for the STAFF file, the keys
consisting of the second word of attribute 3 (this might
well be the surname) of the items on the STAFF file.

In each case, the CREATE-INDEX verb will establish a B-tree
index with the nodes held in frames of disk space (not as
items on a file), and it will then go on to set up an I-code
for the index in the data-level identifier item for the
relevant file, as described above.

A number of Basic statements and other facilities are
provided to support indexing.

* The VERIFY-INDEX command checks the integrity of an
index.
* The NFRAME-INDEX command displays the number of frames

consumed by index.

* The DELETE-INDEX command deletes a specific index,
removing the index and the I-code.

If there is an index for the sort keys of a SORT or SSELECT
sentence, then these will be used to speed up the action of
the sort. Thus, if we issue an Access sentence such as:

SORT STAFF BY SURNAME

and the processing code in the attribute-definition item for
SURNAME matches any of the existing A processing codes for an
index for the STAFF file, then this index will be used to
retrieve the sorted data.

The DUPLICATE modifier may be used in conjunction with the
WITH modifier in a context such as:

LIST STOCK WITH DUPLICATE LOCATION DESCRIPTION LOCATION

to list only those items which have duplicate index keys for
the LOCATION field, that is, where two or more items have the
same LOCATION field.

The Basic ROOT statement is used to find the FID of the root
of an index for a file and allow the program to access items
by means of the index. The general form of the statement is:

ROOT filename, acode TO root THEN / ELSE
where: filename is the name of the file for which the index

is to be used; acode is the A processing code which is used
to maintain the index; root is the variable which is to hold

Page 70

MB-Guide to Advanced Pick: AP/DOS

the FID of the root, this will be used in subsequent KEY
statements to retrieve item-ids from the index, rather like a
normal file-variable.

The Basic KEY statement allows the program to access items
by means of the index established for the file. The general
form of the statement is:

KEY(code, root, key, id) THEN / ELSE
where: code is any of

C to return the closest match to the key,

N to return the next key to key,

P to return the previous key,

R to read the key and return the corresponding item-id.
root is a variable which contains the FID of the root of the
index, and is set by means of the ROOT statement; key is a
variable which contains the index-key which the program is
passing to the routine which scans the index; 7d contains the

item-id of the required item. The ELSE clause is executed
if the required key cannot be found.

Page 71

17

MB-Guide to Advanced Pick: AP/DOS

Basic

The Advanced Pick implementation differs from previous
versions of Basic in the following important areas:

It is not necessary to have the program file defined with a
DC-pointer. A Basic program can be held and compiled on any
type of file.

Any Basic programs transferred from R83 to AP must be
recompiled before they can be used on AP.

The format of catalogued-pointers on the MD has changed.

Blank 1lines may appear within the source program.
Previously, there had to be at least an asterisk there to
placate the compiler. Labels without a following statement
are also permitted:

DESTINATION:
10

There are two verbs to compile a Basic program:

+ BASIC which is identical to previous versions in which
variable names are case sensitive (that is, FRED and
Fred are different variables), and

+ COMPILE in which variables names are not case sensitive.

On release 6.0 and higher which is offered for use on Unix
systems, there is a new version of Basic, known as flash
Basic. This compiles directly into object code and is
therefore significantly faster than standard Pick Basic code
which is interpreted at run-time.

A number of additional verbs are available: COMPILE to
compile a Basic program in which the variables and the Basic
keywords are entered in upper- and/or lower-case; COMPILE-RUN
to compile and then execute a Basic program; COMPILE-CATALOG
to compile and then catalog a Basic program or subroutine.

The B/LIST command is used to indent/format a Basic source
program.

The RUN-LIST command will execute, one after another, a
sequence of programs submitted as a select-list. This might
be used in a sequence such as:

SSELECT WAGES.PROGRAMS = "YEAR.END]"
RUN-LIST WAGES.PROGRAMS

Many of the features of Basic on Advanced Pick - such as the
IN and OUT statements - will be familiar to programmers who
have worked with Release 3.1 PC Pick.

The ~ operator and the *x operator are used for
exponentiation.

The \ operator can be used to return the remainder after

Page 72

MB-Guide to Advanced Pick: AP/DOS

integer division. Thus:
A\B
is equivalent to MOD(A,B).
The literature tells us that a feature, known elsewhere as

operator assignment, is available. This accepts the
following notation:

Statement Equivalent

AAA += BBB AAA = AAA + BBB
AAA -= BBB AAA = AAA - BBB
AAA := BBB AAA = AAA : BBB
AAA x= BBB AAA = AAA x BBB
AAA /= BBB AAA = AAA / BBB
AAA \= BBB AAA = AAA \ BBB

Oon my 5.2 version, these forms would not compile.
The range of @ function calls has been extended.

On those systems which work alongside DOS or Unix
environments, there is a range of statements - of the form
%¥xxxx - which will communicate with those environments and
handle their files.

Substring assignments can be used to insert a substring
within a string. Thus, the sequence:

STRING="'ABCDEFGHIJKLMNOPQ’
STRING[2,3]="PQRST’
CRT STRING

would display: APQRSTEFGHIJKLMNOPQ

More complex is the group-store version. This resembles some
aspects of the Access Group-extraction code and replaces one
or more groups of data within a string. Thus, the sequence:

STRING = "A,B
STRING[",", 2,
CRT STRING

,C,D,E,F,G"
3] = "X,vy,z"
would display: A,X,Y,Z,E,F,G

The ACCESS function has been provided to access data within
subroutines which are called by Access attribute-definitions.

The ASSIGNED function can be used to determine whether or not
a variable has been assigned a value. This is useful in
subroutines which are called by user programs and where data
parameters may or may not have been set up correctly before
calling the subroutine.

The CASING ON/OFF statements can be used to specify whether
keyboard input data is to be case sensitive or not.

Page 73

MB-Guide to Advanced Pick: AP/DOS

The CLOSE statement has been provided to close a file which
is no longer to be accessible to the program.

Labelled COMMON blocks of data, such as:
COMMON /STAFF/ NAME, AGE, RATE, CLOCK.NO

are available for use in subroutines which only handle a
subset of the COMMON data.

The CONVERT statement translates the contents of a string
acccording to two control strings.

The DEL and INS statements are offered for handling dynamic
arrays, as other many non-Pick systems. The statement:

DEL REC<1,2,3>
is equivalent to the standard:
REC=DELETE(REC,1,2,3)
and the statement:
INS ’ABC' BEFORE REC<1,2,3>
is equivalent to the standard:
REC=INSERT(REC,1,2,3; 'ABC’)

wWhen handling dimensioned arrays, logical expressions may use
the form:

arrayname (%)
in a statement such as:
IF LIST(x) = 0’ THEN ... ELSE

to take a specified action if any element of the dimensioned
array satisfies a certain condition.

The ERROR statement can be used to display a message from the
MESSAGES (or ERRMSG) file. Unlike the STOP statement, which

also outputs a message, the ERROR statement does not
terminate the program.

The ERROR() function returns the TCL command which invoked
the program. Thus, the statement:

PRINT ERROR()
is similar to the sequence:

TCLREAD DUMMY ELSE STOP
PRINT DUMMY

The EXIT statement leaves the current loop by skipping to the
statement immediately following the next physical NEXT or

Page 74

MB-Guide to Advanced Pick: AP/DOS

REPEAT statement.

Under certain implementations, the EXECUTE statement can be
used to invoke commands in the host environment, such as DOS
and Unix commands.

The FILE statement is used to open a file, declare a suitable
dimensioned array and accept data references of the form
STOCK(QUANTITY) to use Access dictionary definitions in the
coding of a Basic program.

The FOLD statement breaks a string down into substrings of a
specific length.

The GET statement gets a string of ASCII characters from a
specific port. The port must have been attached by means of
the DEV-ATT command. The associated GETX statement returns a
hexadecimal string.

The SEND and SENDX statements will send a string to a port.

The HEADING/FOOTING statement has an extended range of
options.

IN and OUT are provided for single character I/0, as on PC
Pick.

The IN and INPUT statements have extended forms:
IN variable {FOR time {THEN / ELSE statements}}

INPUT variable { ,length} {:} {_} {FOR time {THEN / ELSE
statements}}

In all cases, the time is the 1imit (expressed in tenths of a
second, and in the range 1 to 32767) for which the processor
will wait for the user’s input. If data is entered within
this time 1imit, THEN clause is taken; if no data is entered
with the time 1imit, the ELSE clause is taken.

$INCLUDE is offered as an alternative to INCLUDE.
LET is optional on assignment statements.

MATBUILD statement uses the contents of a dimensioned array
to construct a dynamic array:

MATBUILD dynarr FROM dimarr USING char(254)

MATPARSE statement uses the contents of a dynamic array to
load a dimensioned array:

MATPARSE dimarr FROM dynarr {USING char(254)} SETTING
count.variable

The simple assignment statement can also be used to transfer
data - element by element - between a dimensioned array and a
dynamic array. Thus, the statement:

SALES.DIM = SALES.STORE

Page 75

MB-Guide to Advanced Pick: AP/DOS

will transfer the individual elements of the dynamic array
SALES.STORE to the dimensioned array SALES.DIM (which is
declared in the normal manner), and the statement:

SALES.STORE = SALES.DIM

will use the elements of the dimensioned array SALES.DIM to
construct a dynamic array in the variable SALES.STORE.

The OCCURS function searches a specific string for substrings
which occur a specific number of times.

The statements which handle the backing storage device may
specify the ONERR clause. This is similar to the ELSE
condition except that ONERR places a code in SYSTEM(O0)
indicating the nature of the error. ONERR and ELSE cannot be
specified in the same statement.

The THEN/ELSE clauses may be omitted on the OPEN statement.
A form such as:

OPEN ’STOCK’
is equivalent to the standard form:
OPEN ’STOCK’ ELSE STOP 201, ’STOCK’

The PRECISION statement will allow a precision in the range 0
to 9. The default is still 4.

The THEN/ELSE clauses may be omitted on the various READ
statements. A form such as:

READ S.REC FROM ITEM.ID
is equivalent to the standard form:
READ S.REC FROM ITEM.ID ELSE S.REC='’

The READTL statement will read the label on the backing
storage device. This has the form:

READTL variable THEN / {ELSE / ONERR statement(s)}

The READTX command will read a record from backing storage
and pass this to the program as a hexadecimal string. This
means that records which include Pick and Basic control
characters - such as CHAR(255) - can be processed.

The equivalent WRITETX is not available.

The REPLACE statement is used within a bridge 1ink to change
an item-id.

The ROOT statement finds the root of a B-tree index, and the
KEY statement uses this to find within the index a specific
item-id which matches a given argument. The KEY statement
has options to return the item-id which matches the argument,
the next sequential item-id, or the previous item-id,

Page 76

17.

MB~Guide to Advanced Pick: AP/DOS

The SORT function sorts the elements of a dynamic array.

The SOUNDEX function returns a four-digit code equivalent to
a specified string. This has the form:

CODE=SOUNDEX (NAME)
or:
CODE=SOUNDEX (NAME , TYPE)

where TYPE is 0 (for R83 compatible census codes), or 1 (for
standard English soundex codes).

The SUM function will add together will add together all the
adjacent subvalues of a dynamic-array and replace these with
the result as a single value; if there are no subvalues, then
it will add together all the adjacent values to produce a
single attribute; if there are no adjacent values, then it
will add together all the attributes to return a single
numeric result.

The range of SYSTEM function calls has been extended.

The TCL statement execute a specific TCL command and,
optionally, returns the error-message numbers generated by
the command to a dimensioned array in the program. A
sequence of several TCL commands may be invoked if the
individual commands are separated by attribute-marks. The
format of the statement is:

TCL tcl.command {to dimensioned.array}

The general effect of the TCL statement is similar to that of
the EXECUTE statement.

The TCLREAD statement will pass the TCL command which invoked
the program into a specified variable.

The C language receives special attention within AP/DOS and
the various AP/Unix versions where C functions may be invoked
within Basic programs.

ACCESS function

The CALL processing code in an Access attribute definition
passes the current data value to a CAlLLed subroutine as a
single argument. Other details of the file and the current
item can be obtained within the subroutine by means of the
ACCESS function.

The ACCESS function takes a single numeric argument, each of
which returns a specific piece of information.

The arguments for the ACCESS function include:

1 returns the file-variable for the data section of the
file. This may be used in READ statements within the
subroutine without having to execute an OPEN statement.

2 returns the file-variable for the DICT section of the

Page 77

MB-Guide to Advanced Pick: AP/DOS

18

19

20

21

file. This may be used in READ statements within the
subroutine. The DICT section is a useful place to store
accumulators and control totals generated by the
subroutine.

returns the entire contents of the current item as a
dynamic-array. This is useful in extracting further
data from the item. This will be null if this is a new
item.

returns the current item counter, that is, the number of
items processed thus far by the Access report. 1In
addition to its use in calculating averages and the
like, this can also be used to clear and maintain
running totals (for example, it might be appropriate to
clear an accumulator when this has a value of 1).
returns the current attribute counter, that is, the
number of the attribute which is being processed by the
attributed definition which called the Basic subroutine.
returns the current value counter.

returns the current subvalue counter.

returns the current detail-line counter, that is, the
number of lines printed since the last control-break.

returns the current control-break level counter.
returns the current item-id.

returns the name of the file.

returns 1 if the item is being deleted.

returns the root variable when used with files for which
an index is being maintained by the operating system.

returns the current cursor column position, when used
with the AP Update Processor.

returns the current row column position, when used with
the AP Update Processor.

returns 1 if the item is new.
returns 1 if performing an input-conversion.

specifies which value of the macro (attribute 15) is to
be used.

returns the character which terminated the last keyboard
input.

returns 1 if the item has changed.

specifies a character string to be passed to the Update
Processor.

Page 78

17.

MB-Guide to Advanced Pick: AP/DOS

References to the ACCESS function may be unacceptable in
certain contexts. For example:

READ RECORD FROM ACCESS(1), 'CONTROL’ THEN

must be paraphrased in a manner such as:
FILE.VAR=ACCESS(1)
READ RECORD FROM FILE.VAR, ’CONTROL’ THEN

FILE statement

The FILE statement allows a Basic program to make greater

use of the file dictionaries, as illustrated by this
fragment:

* Process items on STOCK file

* Open the STOCK file
FILE STOCK
* Messages and displays
* Main loop
LOOP
i INPUT KEY
I UNTIL KEY = ESC DO
MATREAD STOCK FROM FV.STOCK, KEY THEN
PRINT HDR
PRINT KMESS: KEY
PRINT DMESS: STOCK(DESC)

PRINT QMESS: STOCK(QTY)
PRINT LMESS: STOCK(LOCN)

| INPUT CHANGE

I STOCK(QTY) = STOCK(QTY) + CHANGE
MATWRITE STOCK ON FV.STOCK, KEY

I END
REPEAT
The statement:
FILE STOCK

stimulates the compiler to perform a number of tasks:

+ Open the file called STOCK to the file-variable
FV.STOCK.
+ Recognise identifiers of the form:

Page 79

17.

MB-Guide to Advanced Pick: AP/DOS

STOCK(DESC)
STOCK(QTY)
STOCK(LOCN)

as references to the Access attribute-definition items
DESC, QTY and LOCN on the DICT section of the STOCK
file.

+ Set up a dimensioned array called STOCK. The
references to the attribute-definitions for the STOCK
file are checked by the compiler and the highest
numbered attribute determines the size of the
dimensioned array set up by the program. The
dimensioned array is one more than the highest attribute
referenced in order to handle any data attributes
beyond those used in this program.

Since the details of the attribute-definitions are bound
into the program when it is compiled, any changes which are
made to the file dictionary and which affect these
definitions will not be reflected in the program until it is
recompiled.

HEADING / FOOTING options
In all contexts - Basic, Runoff, Access - the general form

of the HEADING and FOOTING statement is unchanged, but there
are additional options:

J right-justifies the following text.

N suppresses end-of-page pause on terminal output.

R outputs the current page-number in Roman numerals.
S outputs subsequent text in italics, if the output

device supports this facility. XS will switch this off.

U underlines subsequent text, if the output device
supports this facility. XU will switch this off.

\ outputs subsequent text in boldface, if the output
device supports this facility. XV will switch this off.

X has the combined effect of XS, XU and XV in switching
off all special output effects.

XS switches off italic output which was invoked by the S
options.

Xu switches off underlined output which was invoked by the
U options.

XV switches off boldface output which was invoked by the V
options.

Dimensioned arrays

Some of the statements for handling dimensioned arrays have
changed slightly. After the following statements:

Page 80

MB-Guide to Advanced Pick: AP/DOS

DIM DIMARR(5)
STRING="A’
DYNARR='A’ :CHAR(254):’B’

DIMARR=0
will leave DIMARR containing element 1 0
element 2 null
element 3 null
element 4 null
element 5 null

MAT DIMARR=0
will leave DIMARR containing element

1 0

element 2 0

(the standard action) element 3 0
element 4 0

element 5 0

DIMARR=STRING

will leave DIMARR containing element 1 A
element 2 null
element 3 null
element 4 null
element 5 null

DIMARR=DYNARR

will leave DIMARR containing element 1 A
element 2 B
element 3 null
element 4 null
element 5 null

and this followed by:

STRING=DIMARR
will leave STRING containing:

A:CHAR(254):B
Thus, the statement:
DIMARR = DYNARR

is equivalent to the MATPARSE statement found on some
systems, and the statement:

DYNARR = DIMARR

is equivalent to the MATBUILD (or MATUNPARSE) statement
found on some systems.

When reading data from a file, the forms:
READ DIMARR FROM

and:
MATREAD DIMARR FROM

are identical, provided that DIMARR has been declared as a
dimensioned array. The same comments apply to the

Page 81

MB-Guide to Advanced Pick: AP/DOS

WRITE/MATWRITE statements.

Page 82

MB-Guide to Advanced Pick: AP/DOS

18 The spooler

The Advanced Pick spooler is essentially the same as on
previous versions. The TCL commands which are associated
with the spooler:

LISTPEQS SP-EDIT STARTPTR

SP~ASSIGN SP-KILL STOPPTR

LISTPTR SP-OPEN

SP-CLOSE SP-TAPEOUT
are unchanged and the LISTPEQS and other reports have their
familiar forms:

Spooler Queue Elements. 29 Jul 1993 08:30:59
Job Stat Lnk Line Status Copies Form Frames Date Time User
1 80C8 0 ch p 1 0 1 29/07/93 08:56:59 dm
2 8548 3 0 c p 1 0 12 29/07/93 09:40:16 dm
3 8548 0 c p 1 0 1 29/07/93 09:40:57 dm

3 Queue Elements. 14 Frames in use.

These are described in detail in the MB-Guide to the
spooler, and in the Advanced Pick Reference Manual.

A new command is:
ASSIGNFQ q p

which associates form-queue number g with printer p. There
will be a definition for printer p on the DEVICES file.

Page 83

19

MB-Guide to Advanced Pick: AP/DOS

File-saves
In general, the processes:

file-save

file-restore

account-save

account-restore

selective restore (SEL-RESTORE)

¥* ¥ ¥ H ¥

are performed exactly as on R83 systems.
The following changes are of interest:

The R83 and Advanced Pick T-DUMP / T-LOAD files are
compatible in both directions, and R83 file-save /
account-save files can be used for account-restore and/or
sel-restore purposes on Advanced Pick, though Advanced Pick
file-save / account-save files cannot be used to pass data to
R83 implementations.

The file-save will process a select-list of accounts to be
saved. Thus, sequences such as:

SELECT MDS ’'WAGES’ ’PAYROLL’ ’PAY.STATS’
FILE-SAVE

SELECT MDS ’WAGES’ 'PAYROLL’ ’PAY.STATS’
SAVE (DFT

will save just the accounts WAGES, PAYROLL, PAY.RATES
together with the DM account.

Irrespective of whether or not you use transaction logging,
Advanced Pick offers an incremental file-save facility which,
during a file-save operation, will dump only those groups
which have been changed since the last complete system save
(file-save).

The items which have been changed by any process have a flag
set to indicate this. When an incremental file-save is
performed, only these flagged items will be saved. The
various options of the SAVE command may then un-flag these
items.

The FILE-SAVE command now asks:
Is this an incremental save?

and then proceeds in the familiar manner. The ACCOUNT-SAVE
command is unchanged.

There is a facility to save only those items whose item-ids
are held in attribute 25 onwards of the item on the
FILE-OF-FILES file which relates to the file being processed.

The SAVE verb has new options associated with the incremental
save facility:

Page 84

MB-Guide to Advanced Pick: AP/DOS

The

to save all items which have been changed since the last
file-save, and then clear the changed-flags so that
these items will not appear on subsequent incremental
saves.

to perform a full file-save/account-save but do not
remove the changed-flag from those items which have been
changed since the last file-save, so that the changed
items will appear on subsequent incremental saves.

:FILES command is no longer used to perform a

file-restore.

The

file-restore action can now be performed by taking the F

option when the system is rebooted with a file-save / system
disk loaded.

The

account-name which is specified on the ACCOUNT-RESTORE

command will be assumed if a null response is given to the
NAME OF ACCOUNT ON DISK message.

The

RESTORE~ACCOUNTS utility will read through a file-save

diskette/tape and restore any accounts which are not on the
system.

The
any
and
the

UPDATE-ACCOUNTS utility is available when transferring
master dictionaries from R83 systems to Advanced Pick,
this will update the verbs on the master dictionaries to
Advanced Pick level. The command has the form:

UPDATE-ACCOUNTS account.name {account.name}

Page 85

20

MB-Guide to Advanced Pick: AP/DOS

Coldstart features

A number of coldstart macros are invoked whenever the system
is started:

* SYSTEM-COLDSTART is held on:
DM,MD, SYSTEM-COLDSTART
and contains a number of general initiation commands.

It will be worth inspecting this item and removing any,
such as:

CLEANPIBS

SETPIBO
VERIFY.SYSTEM

which may reset any parameters which the user wished to
set permanently and/or hinder your system.

X USER-COLDSTART is held on:
DM,MD, USER-COLDSTART

and should be amended to include any special routines
which are to be invoked when the system is started.

Recall that:

* wWhen an individual user logs on, any commands specified
in the macro field of the USERS entry will be invoked,
and

x When a user logs to another MD, any Logon Proc held on
the MD with the name of the account (MD) will be
invoked.

Page 86

21

MB-Guide to Advanced Pick: AP/DOS

Summary charts

In this final section, we summarise the most important key
sequences which are used with the Update Processor.

In this table, I have used the same notation as in the
Advanced Pick Reference Manual for the control keys:

Y
XF

M

representing the sequence <Ctrl1> Y and:
representing the sequence <Ctrl1> X F and:

representing the sequence <Ctrl1> M that is,
¢(Return> key.

the

Key

TCL stacker

I><imio

Go to next command in TCL stack
Go to previous command in TCL stack
Abandon the displayed command

General cursor movement

ININININININ I ICIHITIZIZIXICIHI MO I
IOomMm>» o

INININ
ooz

IN
<

Move cursor up one line

Move cursor left one sentence

Move cursor right one sentence

Move cursor to end of paragraph/attribute
Move cursor right to next tab stop

Move cursor left one character

Move cursor right one character

Move cursor to next paragraph/attribute
Move cursor down one line

Move cursor down one screen

Move cursor to top of item

Move cursor right one word

Move cursor left one word

Move cursor to line 9

Redisplay screen with current line at top
Redisplay screen with current 1line at bottom
Move cursor to end of item

Move cursor to end of paragraph/attribute
Display with bottom 1ine at 1ine 11 of
screen and cursor at line 12

Move cursor down one screen

Redisplay screen

Display with bottom 1line at 1line 17 of
screen and cursor at line 18

Move cursor up one screen

General text editing

INIZI<|TIOIFITIm

Delete to end of sentence

Overwrite character to left with a space
Delete one character

Delete to end of a word

Toggle overtype/insert mode

Insert a value-mark

Insert one space

Display column position mask

Page 87

MB-Guide to Advanced Pick: AP/DOS

2D Delete to end of item

20 Delete to end of paragraph/attribute

T Set tab stops

2z Cancel last change
General filing

XB Return to the previous item

XC File, compile and catalog the (program) item

XE Abandon the item without filing

XF File the item

XI Rename and file the item

XK Abandon the item(s) and return to TCL

XN Exit item and go to a new item

X0 Exit and delete the item

XP File and print the item

XR File, compile and run the (program) item

XS Save the item and continue

XX Abandon the item without filing
General Update Processor functions

D Cruise to previous indexed item and edit

E Get next sequential index

F Cruise to next indexed item and edit item

G Zoom to another file

u Get next indexed item

Y Get previous indexed item
Cut and paste

o] Mark end of text block

cD Mark start of text block for deletion

CL Mark start of text block for copying

CcP Paste in marked block

CRfiM Read text from a file

CWTiM Write current paste block to a file
Pre-store command buffer functions

P Execute command(s) in prestore buffer

ZL Amend command(s) in prestore buffer

ZRfiM Read prestore buffer from a file

ZRTipP Read prestore buffer from a file and execute

ZWfiM Write prestore buffer to a file

A Repeat last search
Search and replace functions

AxM Search for string x

AXRyN Replace all occurrences of string x by
string y

AxRyM Replace occurrences of string x by string y
confirming changes

A Ignore this occurrence and repeat the search

N Replace all occurrences

R Replace this occurrence and repeat the
search

X Abandon search

MB-Guide to Advanced Pick: AP/DOS

Spelling checker functions

zs Disable the spelling checker

A Ignore the word

AA Accept the word and add to the WORDS file
AA Disable the spelling checker

Page 89

MB-Guide to Advanced Pick: AP/DOS

22 Routes through the system

This diagram illustrates some of the possible routes through
the system.

Switch machine on

I [
<— DOS work I PICK

Switch off

| Enter user-id / password |

Enter md name / passworggJ

EXIT >—

Your Pick work done here

—< LOGTO EXIT —>—
or TO

You can use DOS facilities from within AP/DOS, but we have
not shown this on the diagram.

Page 90

MB-Guide to Advanced Pick: AP/DOS

Index

Ixxxx DOS commands 28
$INCLUDE directive 75
* in TCL commands 25

**x and ~ operators 72
:FILLES 85

(Ctr1> A key 47, 48
<Ctr1> D key 27
<Ctr1> E key 27
Ctrl1> F key 27
<Ctr1> J key 27
(Ctr1> K key 27
<Ctrl1> L key 27
(Ctr1> O key 27
<Ctr1> R key 27
(Ctr1> sequences 21
<Ctrl1> U key 27
<Ctrl1> W key 27
<Ctr1> X B key 41
<Ctr1> X C key 41
<Ctr1> X F key 40, 41
{Ctrl1> X K key 41
<Ctrl1> X key 10, 27
<Ctr1> X R key 41
Ctrl1> Y key 27

@ 73

_\ operator 72
"~ operator 72

Abbreviated commands 24

ABS file 10

ACC file 10, 11

ACCESS 73, 77

Access 52

ACCESS function 63

Account name 18

Account-definition item 5§

ACCOUNT~RESTORE 85

Accounts 7

ACCOUNTS file 10

Activation number 15

Advanced Pick versions 1, 2

AP = Advanced Pick 1

ASSIGNED 73

ASSIGNFQ 83

Attribute index code 63

Attribute-definition item 5,
57

B 42, 61

B-tree = Balanced tree 69
B/LIST 72

BASIC 72

Basic 72

Basic item 41

Basic program file 72

Basic symbolic debugger 36
Blank lines in programs 72
BLOCK-CONVERT file 11

BP file 11
BREAK-KEY-ON/OFF 23

Bridge correlative 61, 62
Bridges / Bridging 41
BRK-DEBUG / BRK-LEVEL 35

C language 77

CALL 62, 77

CAPT 25

CAPTCL file 25

CAPTURE-ON/OFF 25

Case sensitivity 7, 22, 23,
72, 74

CASE-ON/OFF 23

CASING 22, 74

CL 52

CLEAR-FILE 25

CLOSE 74

Coldstart 86

COMMENT 30

COMMON 74

COMPARE-LIST 52

COMPILE 72

COMPILE-CATALOG 72

COMPILE-RUN 72

Conditional tests 66

CONVERT 74

CREATE-ACCOUNT 9

CREATE-INDEX 69

CREATE-MACRO 30

Creating / deleting master
dictionaries 9

Creating a new account 9

Creating a new user 8

Cruising 42, 63, 69

CU code 63

Cursor control keys 21, 22

Cut and paste 46

D-pointer 5, 41

Data General 2
DATA-ENTRY 40, 53
Data-level identifier 5
DC-pointer 72

Default output list 59
DEL 74

DELETE key 22
DELETE-ACCOUNT 9
DELETE-INDEX 70
Deleting a user 9
Deleting an account 9
Description 7, 59
DEVICES file 11, 83
DICT section 5

Page 1

MB-Guide to Advanced Pick: AP/DOS

Dimensioned arrays 74, 75, 82 Input conversion 7, 59, 63

Disk cache 15 INS 74
DL 52 INSERT key 22
DM - data manager account 7 Installing AP/DOS 15
DOS 73 Interactive debugger 36
DOS commands 28 IS operator 54
Double-clutching 44 ISELECT / ISSELECT 52
DUPLICATE 54, 70 Item format 12
Dynamic arrays 74, 75 Item size 13
Item structure 11
EDIT-LIST 52 Item-id processing 65
EL 52
EPICK 24 JOBS file 11
ERRMSG file 11
ERROR() 74 KEY 71, 77
ERRORS file 11 Keyboard 21
ESC-DATA / ESC-LEVEL 35
EXECUTE 75 Labelled COMMON 74
EXIT 20, 75 Leaving AP/DOS 19
LEG-SUPP 54
FILE 75, 79 LEGEND-ON / OFF 54
File hierarchy 5 LET keyword 75
File index code 64 Level pushing 35
File reference code 64 LIST BY 52
File synonym 13 LIST-MACROS 30
File-definition item 5 LIST-MENU 33
FILE-OF-FILES file 11, 84 LIST-MENUS 34
File-restore 85 LL 52
File-save / account-save Location 11
files 84 Logging on/off 18, 19
FILL 53 Logical tests 66
FL 52 Logon Procs 8, 19, 86
Flash Basic 72 LOGTO / TO 19
FOLD 75
FOOTING 54, 75, 80 Macro 7, 41, 55, 59
Frame size 11 Macro on USERS file 86
Macros 29
GET 75 Mandatory input 67
GETX 75 MATBUILD / MATPARSE 75
GL 52 MATREAD / MATWRITE 82
MDS file 5, 9, 10, 18
HEADING 54, 75, 80 ME identifier with menus 31
HELP 24 Menus 31
Help message 59 MESSAGES file 11, 54
Hexadecimal to ASCII 67 MI 67
Hot-keys 7, 58, 59 MY 67

Hyphenated commands 24
NFRAME-INDEX 70

I 63, 64 NI-SUPP 54

ID 65 NSELECT 52

ID-PROMPT 40, 54

IF 66 O 67

IFNO 54 OA = Open Architecture 1
Implicit output list 55 OCCURS 76

IN 75 ONERR clause 76
Incremental file-save 85 OP 51

Incremental file-saves 84 OP options 51

Index in programs 70 OPEN 76

Indexing 63, 69 Operator assignment 73

Page 2

MB-Guide to Advanced Pick: AP/DOS

OouUT 75
Output Processor 50

PA - personal assistant
account 7

PAGE DOWN key 22

PAGE UP key 22

Password 8, 9, 18

Paste; cut and paste 46

Pathname 13

Phantom process 38

PIBS file 11

Pointer items 6

POINTER-FILE file 11

POVF 14, 25

PRECISION 76

Prestore commands 44

Prevent amendment 68

PRINT SCREEN key 22

Processing codes 61

Procs 4

Program file 72

PROMPT 31

Q-pointer 13

QA - quality assurance
account 7

QFILE 13

R83 / AP differences 3
R83 release 1

R83.SETUP 24

READ 76, 82

READTL 76

READTX 76

Referential integrity 41
REPLACE 76
RESTORE-ACCOUNTS 85
ROLL-ON 54, 56

ROOT 70, 76

RUN-LIST 72

Runoff text processing 50

SAMPLING 54

SAVE options 84
Saved-1lists 52
Searching 47
Secondary key 69
SEL-RESTORE 84
Select-1lists 52
SEND / SENDX 75
SET-FILE 13
SET-OVF-RESERVE 14
SL 52

SORT 77

SORT-LIST 52
SOUNDEX 77
SPELLER-ON/OFF 23, 49
Spelling checker 48

Spooler 83

SS 56

STACK-ON / STACK-OFF 23, 27

Stacker 27

Starting up AP/DOS 17

STARTLOG / STOPLOG 39

STARTSCHED / STOPSCHED 38

STAT-FILE file 11

STEAL-FILE 14

STOP 74

Substring assignment 73

SUM 77

Switching the PC on/off 17,
20

Switching the system on/off
19

Symbolic debugger 36

Synonym; file 13

SYSTEM 77

System accounts 7

System debugger 36

SYSTEM file 5, 10

System files 10

System organisation 5

SYSTEM-COLDSTART 86

T-DUMP files 84

T-LOAD files 84

TANDEM 25

TCL 77

'’ commands 23, 26, 31

'’ input buffer 24

'’ prompt 23

stacker 27

TCL-HDR-ON / OFF 23, 55

TCL-STACK file 11, 27

TCL-SUPP 55

TCLREAD 77

Temporary attribute items 55

Terminal characteristics 11

Text processing 50

Time-out in Basic INPUT
statements 75

TIMEDATE-ON/OFF 23

TOTAL-ON 54

Transaction logging 6, 39

TUTOR account 7

TXLOG-STATUS 39

TYPE 58

Type-ahead buffer 22, 24

TYPE-AHEAD-ON/OFF 23

’y

U 40

ub 41, 58

Unix 2, 73

UP 40

UPDATE 40

Update Processor 40
Update stamp 68

Page 3

MB-Guide to Advanced Pick:

AP/DOS

UPDATE-ACCOUNTS 85
USER-COLDSTART 86

User-id 18
USERS file 5, 8, 11, 18, 19,
86

USING clause. 5

vV 67
Value limitation 67
VERIFY-INDEX 70

WHERE 36

WHO 25

WORDS file 48
WRITE 82

X 68
Xc 68

Z / ZH / ZHS 38
Zooming 42, 59, 64

Page 4

MB-Guide to Advanced Pick: AP/DOS

MB-Guide beginners guides

The following titles are available in the MB-Guide series:

Access definitions & dictionaries
Access sentences

Advanced Pick

Advanced Pick: AP/DOS
Advanced Pick: AP/NATIVE
Basic language

Basic programming topics: 1
Basic programming topics:
Basic symbolic debugger
CompuSheet+

Creating and using Procs
DOS for Pick users
Development standards
Error Messages

File design

File-save & file-restore
Files: file sizing tables
Files: monitoring & sizing
Group format errors

Jet word processing
Operations & systems management
Pick fundamentals

Pick on the PC

Pick terminology

Producing training courses
Program design

Runoff text processing
Security

Spooler

System debugger

System design

The Pick system

Using Pick

Using backing storage
Using the Jet editor

Using the Pick editor
uniVerse for Pick users

LR R B B B R N R R EE BRI B EE CEE R R K R R IR R R R NN N RN N K

In preparation

Accu/Plot

Basic programming topics: 3
Mathematics for computing
Pick: reference tables
Programming in C

SQL

System health check

* K ¥ ¥ X K

MB-Guides

The booklets in the MB-Guide series cover a
range of fundamental topics of interest to
users and those responsible for developing,
implementing and running Pick systems.

Each MB-Guide deals with a specific aspect of
the operating system and the booklets
represent an economical introduction to the
various topics and the whole series forms an
integrated presentation of the subject matter.

The booklets are intended to be a working
document and, for this reason, space is
provided for the user’s notes, and the reader
is encouraged to amend the booklet so that it
applies to his/her own system.

The series of MB-Guides is of special interest
to new users, and is a convenient source of
information for training organisations,
software houses and others who are responsible
for the instruction and support of their
clients and staff in the fundamental aspects
of the Pick operating system.

Malcolm Bull

Training and Consultancy Publications

R

