

, .,
• ~

R83 ®

Assembly Language

Technical Reference Manual

Version 3.1

Copyright © 1984, 1987, 1990
Pick Systems
Irvine, California 92714

PROPRIETARY INFORMATION

This document contains information which is proprietary to and considered a trade
secret of Pick Systems. It is expressly agreed that it shall not be reproduced in whole or
pmt, disclosed, divulged, or othelwise made available to any third patty either directly
or indirectly. Reproduction of this document for any purpose is prohibited without the
prior express written authorization of Pick Systems.

Pick Systems provides this manual as is, without warranty of any kind, either express
or implied, included, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Pick Systems may make improvements and/or
changes in the specifications and/or program(s) described in this manual at any time.

Pick is a registered trademark of
Pick Systems, Irvine, California

First edition, 1984
Second edition, 1987
Third edition, 1990

•

•

Pick Systems
1691 Browning, Irvine, CA 92714
(714)261-7425 FAX: (714)250-8187

This entire document and any support materials or programs
have been provided under a confidentiality and non-disclosure
agreement. Any additional parties having access to such
information also need to supply an accepted, signed copy of this
statement to Pick Systems prior to gaining access.

Confidentiality and Non-Disclosure Agreement

The undersigned recognizes that in the course of business dealings with Pick Systems,
it has become necessary for Pick Systems to provide certain trade secrets, know-how
and other proprietary data and material information.

This may include, but is not limited to: documentation, engineering specifications, test
procedures, maintenance documentation, schematics and logic diagrams. Pick Systems
considers all such information and material, and any derivatives thereof, as proprietary
to and a trade secret of Pick Systems.

The undersigned recognizes and agrees with such classification and agrees to treat
ALL such information and material received from Pick Systems as proprietary to and
trade secrets of Pick Systems.

Furthermore, the undersigned agrees not to disclose, divulge, copy or otherwise make
available to any third party, either directly or indirectly, any information or material
received from Pick Systems without prior written approval.

Date

Company

Title

Name

Signature

iv

•

&

•

Caution on Using Pick Assembly Language

The Pick Operating System functions as multiple, concurrent processes, each executing
within one of many, intricately blended software components; and, at anyone point in
time, executing at one of several levels. The relationships and interdependencies of
these components and/or levels are often implied, rather than explicit. Thus, one may
perceive many seemingly transparent operations. Individuals versed in the theory of
operating systems tend to be more cognizant of these implied relationships.

On first exposure to the Pick Assembly Language, these implied relationships are often
overlooked by the uninitiated programmer, resulting in severe consequences, such as
loss of system/data integrity, within the virtual machine. As with most assembly
languages, a serious commitment to understanding the underlying architecture is
required prior to executing any resulting code in a production environment.

The kernel or monitor level of the virtual machine traps most violations of virtual
addressing continuity (such as handling boundary conditions on linked structures and
illegal address ranges) within the total virtual addressing space. However, the virtual
programmer is allowed a tremendous power:

Any and all virtual memory resources, including file space, process
works paces, control blocks, etc., are available to the virtual assembly
language programmer. It is only through strict adherence -- to
interfacing correctly with system routines, to observing
programmer-controlled boundary checking, to using interprocess
semaphores, and to using proper elements -- that resources are both
defined and preserved.

The Pick implementation makes extensive use of global structures such as control
blocks, tables, and/or memory resources, the very nature of which requires
broad-based knowledge. There also exists many seamless interfaces between
components and levels. Finally, implicit operations may take place right down at the
virtual instruction level.

The scope of this manual is not to act as a tutorial guide to utilizing the Pick Virtual
Assembly Language. Rather, the aim is to present a knowledge base of interface
specifications, which, taken collectively, may be utilized to create highly efficient
functionality within the Pick Operating Environment.

The forseen learning curve, and subsequent requirements of attention to programming
details, necessitate that the Pick Assembly Language be an unsupported product.

• • • • •

Although Pick Systems may provide access to its Assembly environment on various
hardware implementations (and always under a Confidentiality and Non-Disclosure
Agreement), the fact that Pick Systems cannot support any user whose system
is running with user-written (or third party supplied) assembly language
code should be a major consideration when electing to delve into the Pick Assembler.

v

vi

•

& •

MD

MLIST

file. name

{(options)}

description

Format Conventions

Words in all UPPERCASE are Pick terms.

Words or characters in boldface must be entered as shown in
uppercase. These are commands, file names, and options.

Words in italics are parts of the command which must be
replaced by an actual name, word or number. For example,
file. name might be replaced by ORDERS.

Information displayed within {} (braces) is optional.

Text printed in this type represents an actual word,
prompt, or listing that is output by the system.

vii

viii

•

•

Table of Contents

Format Conventions. .. vii

Introduction

The Pick Assembly Language 1
Installing . 2
Assembling and Loading. 4

Assembler Environment

Verbs... 7
Assembly Source Format. .. 12

Labels. 12
Operators. .. 12
Operands .. 13
Comments .. 13
Syntax... 13

Instruction Set

Instruction Categories. .. 15
Arithmetic Instructions. .. 16
Arithmetic Compare and Branch Instructions. .. 18
Assembler Directives. .. 19
Bit Instructions .. 20
Branch Instruetions. .. 21
Character Compare and Branch Instructions. .. 22
Character String Instructions. .. 23
Conversion Instructions .. 25
Logical Instructions. .. 26
Process Synchronization Instructions .. 27
Register Instructions. .. 28
Other Instructions. .. 29

Symbolic Operand Definitions. .. 30
Assembler Instructions. .. 33

ix

System Software

Executable Area (ABS) 57
Data Area. .. 58

Process Workspace Areas. .. 58
Process Control Blocks .. 59
Primary Workspace Area .. 59
Secondary Workspace Area .. 59

Files and Overflow Areas .. 60
System Subroutines. .. 62

Re-entrancy .. 62
Frame Usage. 63
Register Format. .. 63
Storage Register Format. .. 64
Addressing Modes. .. 64
PSYM Format .. 64

Subroutine Categories and Descriptions................ 67
Conversion Subroutines. .. 69
File I/O Subroutines. .. 70
Overflow Subroutines. .. 71
System-Level Retrieval Subroutines. .. 72
Tape Subroutines .. 73
Terminal and Printer Subroutines. .. 74
Workspace Routines. 75
Wrapup Routines. .. 76·
ASCII... 77
ATTOVF - ATTSPC ... 78
BLOCK.LETTERS .. 79
CONFIG - GPCBO. .. 81
CONY - CONVEXlT .. 82
CVDreg - CVXreg .. 86
DATE ... 87
DECINHIB... 88
DICTOPEN - FILEOPEN - GETFILE - OPENDD 89
DLINIT.. 91
DLINIT1... 92
DPTRCHK ... 93
EBCDIC ... 94
GACBMS .. 95
GETBUF .. 96
GETITM .. 97
GETOPT .. 99
GETOVF - GETBLK- GETSPC 100
GETUPD .. 101
GLOCK - GUNLOCK - GUNLOCK.LINE - GUNLOCK.ALL 102
GMAXFID .. 103
GMMBMS ... 104
GNSEQI ... 105

x

•

•

GNTBLI ... 106
HASH ... 107
HSISOS ... 108
INITTERM - RESETTERM. .. 109
ISINIT ... 110
LINK .. 111
LINE SUB .. 112
LOGOFF .. 113
MBDSUB - MBDNSUB - MBDSUBX 114
MD200 - MD201 .. 115
MD99 - MD992 - MD993 - MD994 - MD9995 - MD999 118
NEWPAGE .. 122
NEXTm - NEXTOVF - BMSOVF 123
PCRLF - FFDLY .. 125
PINIT ... 126
PONOFF .. 127
PRINT - CRLFPRINT. .. 128
PRIVTST1- PRITST2 .. 129
PROC User Exits .. 130
PRTERR ... 132
RDLABEL - RDLABEL1 .. 135
RDLINK - RDREC .. 136
READLIN - READLINX - READIB. .. 137
RELBLK - RELCHN - RELOVF 138
RETI - RETIX - RETIXU - RETIXX .. 139
RMODE ... 141
SETLPTR - SETTERM. .. 142
SETUPTERM .. 143
SLEEP .. 144
SORT ... 145
SYSTEM. CURSOR .. 147
TATT ... 149
TDET ... 150
TIME - DATE - TIMDATE 151
TPINIT .. 152
TPREAD - TPWRITE .. 153
TPSTAT ... 155
TSINIT .. 156
UPDITM ... 157
WEOF ... 159
WMODE ... 160
WRTLIN - WRITOB .. 161
WSINIT ... 163
WTLABEL - WTLABEL .. 164
XISOS ... 165
XMODE ... 166

xi

System Debugger

Entering the Debugger. .. 167
Break Conditions. .. 168
System Abort Conditions 169
Transitory Debugger Entries. .. 169

Referencing Data. .. 170
Data Specification .. 170

Prefix .. 170
Address. .. 170
Suffix .. 171

Data Reference Examples. .. 172
Debugger Commands ... 173
Arithmetic Utility Commands. .. 177
Interacting with the Debugger 178

Debugger Data Entry Conventions. .. 178

Appendix

A -- ABS Frames .. 181
B -- Process Workspace 183
C -- Register Conventions. .. 185
D -- Linked Frame Format. .. 187

Index .. 189

Figures

1 -- Accumulator Layout..................................... 16
2 -- AND, OR, and XOR Truth Table......................... 26
3 -- Executable Area (ABS) . 57
4 -- Process Workspace Area .. 58
5 -- File and Overflow Areas. 60

Tables

1 -- System Delimiters. 14
2 -- Variant Byte Format. 23
3 -- SICD Variant Byte Format. 24
4 -- Symbolic Operand Definitions . 34

xii

•

•

Introduction

The Pick Assembly Language

Computer languages can be divided into levels according to the sophistication of their
instructions. The lowest level is machine level, which is a series of binary digits.
Ultimately, all languages must be reduced to machine level. The next level consists of
assembly languages. These use mnemonic instructions that are translated into
machine language by a translation program known as an assembler. Higher level
languages approach a natural human language syntax. Pick/BASIC, C, PASCAL,
ADA, FORTRAN, and COBOL are examples of higher level computer languages.

High level languages are also translated into machine language by a translation
program known as a compiler. However, the translation of high level languages into
executable machine code does not produce as efficient a code as does the translation of
assembly language programs. Because it translates in a one-to-one correspondence, an
assembly language program shows a two- to three-time improvement in performance
as compared to an equivalent higher level language program.

One advantage of a higher level language is that, theoretically, it can be run on any
computer marketed. Once a compiler or interpreter for one of these languages has
been implemented on a specific computer, an application written in the language runs
the same on that computer as it would on different computers. Most assembly
languages are tied to specific hardware; programs written in a particular assembly
language cannot be run on other hardware. However, one assembly language that can
run on many types of hardware is the PICK Assembly Language. PICK is not tied to
any particular hardware, but rather applies the assembler process to many machines.

In use, the PICK Assembler is associated with a particular target computer. Assembly
language modules, also called source items and modes, are created and modified as
lines of source statements. These source items are assembled and loaded with other
object code items into an executable machine code item. The actual bit pattern of this
machine code item differs from machine type to machine type. For example, the
machine code item for the IBM PC/AT is totally different from that of the IBM RT, in
pattern as well as size. The generation of target object code is done by assembling the
PICK source code with associated files that define the actual target machine. The code
that is the PICK System is contained within 1024 of these assembly language modes.

1 Introduction

Installing

Floppy diskettes 1 and 2 contain all the necessary files to create, assemble and load
PICK Assembler code for the IBM PC/AT 3.1 or beyond. Ensure that you have at least
700 frames of disk space available. Follow these instructions to install the account:

1. At the TCL prompt (>),
type: LOGTO SYSPROG

2. To verify that there is no ASSEMBLER account on the system already,
type: LIST ONLY SYSTEM "ASSEMBLER"

3. Insert floppy # 1 in drive A.
To set the diskette drive and prepare for the restore,
type: SET-FLOPPY (SA

T-REW

4. Type: ACCOUNT-RESTORE ASSEMBLER

5. When prompted, I ACCOUNT NAME ON TAPE I,
type: ASSEMBLER

6. Load floppy #2 in the drive when requested; and, to continue,
type: C

7. The following files are restored with the ASSEMBLER account:

BP
NAT.OSYM
NAT.PSYM
NAT.SM
NAT.TSYM
OPT.ERRS
VIROSYM
VIRPSYM
VIRSM
VIRTSYM

Pick/BASIC Assembly utilities
Native Object Symbols file
Native Permanent Symbol file
Native Source Modes
Native Temporary Symbol file
Optimization errors
Virtual Object Symbols file
Virtual Permanent Symbol file
Virtual Source mode file
Virtual Temporary Symbol file

8. When the restore completes, you are returned to the TCL prompt.
Type: LOGTO ASSEMBLER

2 Introduction

•

•

9. To define the type of assembly (XT or AT),
type for:

ATs, SET·AT
XTs, SET·XT

The assembled code is stored according to assembly type
for ATs, in the file: NAT.SMS,AT
for XTs, in the file: NAT.SMS,XT

The SET creates a Q-pointer, NAT.SM, which simplifies addressing the
appropriate data area.

3 Introduction

Assembling and Loading

The PICK Assembler for the IBM PC-ATjXT uses the same source code as all other
PICK Systems. Use the following instructions to assemble and load your code:

1. Create your source code in the file, VIR.SM, using the editor, ED, with
the A option. The format for all Pick Assembly language programs is
demonstrated in the following sample program.

Type: ED VIR.SM item-name (A
I

Enter your source lines in a similar format:

001 FRAME 1023
002 * SAMPLE PROGRAM
003 * (Other
004 * descriptive
005 * information
006 * lines)
007 EP !GET.CHAR ENTRY POINT 0
008 EP !PUT.CHAR ENTRY POINT 1
009 NEP * ENTRY POINT 2
010 NEP * ENTRY POINT 3
011 NEP * ENTRY POINT 4
012 NEP * ENTRY POINT 5
013 NEP * ENTRY POINT 6
014 NEP * ENTRY POINT 7
015 NEP * ENTRY POINT 8
016 NEP * ENTRY POINT 9
017 NEP * ENTRY POINT 10
018 NEP * ENTRY POINT 11
019 NEP * ENTRY POINT 12
020 NEP * ENTRY POINT 13
02l NEP * ENTRY POINT 14
022 NEP * ENTRY POINT 15
023 !GET.CHAR EQU *
024 MOV TSBEG,TS
025 INC TS
026 READ TS
027 MCI X' FF' ,TS
028 ENT CONVEXIT
029 !PUT.CHAR EQU *
030 MOV TSBEG,TS
031 INC TS
032 WRITE TS
033 MCI X' FF' ,TS
034 ENT CONVEXIT
035 END *

Press the return key twice at the end of the last line; and, to file,
type: FI

4 Introduction

•

•

2.

3.

4.

5.

To assemble,
type: AS item-name

To check for Translation (lst pass) assembly errors,
type: LIST VIR.SM item(s)

The 'asm err' column will show any errors.

To check for Optimization and Native (2nd pass) assembly errors,
type: LIST NAT.SM item(s)

The 'opt err' and 'asm err' columns will show any errors. It is important
to check the 'obj siz dec' column to insure the final assembled object is not
over the maximum frame size of 2048 bytes. Object exceeding this size
will be truncated by MLOAD.

If there are no errors, to load the assembled code into the operating
system,
type: MLOAD NAT.SM item(s)

The Native assembly is loaded into the ABS area identified In the
FRAME statement on line 1 of the source mode.

5 Introduction

- --------------

•
6 Introduction • • • •

•

Assembler Environment
This chapter describes the verbs necessary to manipulate assembly language source
modes and the syntax needed to create those modes.

Verbs

The verbs described in this section are TCL (Terminal Control Language) verbs used
exclusively in the Assembler environment.

The following options are legal with most verbs:

suppresses footers.
suppresses headers.
suppresses the item.id.

option
F
H
I
N no pause; suppresses the pause at end of page on display to the

terminal.
p
S

sends output to the printer.
suppresses the "number of items" message.

For brevity, the above options are explained once, here. Additional options or
exceptions will be given under the specific verb.

Item.lists are shown as optional -- enclosed in braces {} -- since a select list can be
activated in the preceding statement. An item. list, therefore, can be an explicit list of
item.ids, an active select list or, in many cases, an asterisk (*) indicating all of the items.

AS item.id

The PICK Assembler is invoked by the Proc, AS. This proc reads the mode to be
assembled from the source file, VIRSM, and writes the generated object code in the
destination file, NAT.SM.

item.id names the source mode to be assembled.

The Assembler stores assembly errors as a subvalue in the source line causing the
error. Undefined references are also appended to the mode.

ERROR
OPCD?
OPRND REQD
ILGL OPCD: x
MUL-DEF
REF: UNDEF
TRUNC
UNDEF: x (,x)

DESCRIPTION
missing opcode
missing operand(s)
invalid opcode
symbol already defined
symbol not defined
operand value truncated
undefined symbols

WARNING: The Assembler account can only be used by one user at a time.

7 Assembler Environment

CREF file. name {item. list} {(options)}

A cross-index is created in the CSYM file of external references or operand symbols by
selecting elements of type b, c, d, e, f, h, n, r, s or t.

file. name
item. list

names the file containing the modes to be cross-indexed.
names the modes to be cross-indexed.

DUMP n{-m} {(options)}

The DUMP verb displays data in a frame in either character or hexadecimal format.
There are two types of frames: ABS and file. ABS frames may be object code
(Assembly or Pick/BASIC compiled), buffers or workspace required by the system.
ABS frames contain 2048 bytes and are not linked.

File frames contain 512 byes; 500 for data, 12 as link fields. Linked frames are used to
define data areas that are greater than 1 frame in length. The groups in data files may
expand as more data is placed in the group, so when the end of a frame is reached,
another frame is obtained from the system overflow and linked to the end of the group.

n

m
options

C

G

L

U

x

frame number (FID) of first frame. May be expressed in decimal or
hexadecimal. To indicate hexadecimal, precede the number with a
period C).
FID oflast frame to display.

Displays ABS frame; dump begins with byte 0 of the frame and
continues for 2048 bytes.
Group; specifies that the data starting at frame n is to be dumped,
and that the dump continue following either the forward or
backward links (depending on whether the u option is specified).
The dump terminates when the last frame in the logical chain has
been found.
Links; specifies that the dump be confined to the links of the frames
concerned. No data is displayed.
Upward trace. The data or links are traced logically upward. That
is, the backward links are used to continue the display.
Hexadecimal. The frames are dumped in hexadecimal with ASCII
representation along the right side of the display.

The format of the linked fields is shown in the appendix. Linkage information
displayed is meaningful only for linked frames. Unlinked frames have no specified
format. All 512 bytes may be used by the system.

8 Assembler Environment

•

•

MAP file. name {(options)}

Displays PCB (Primary Control Block), SCB (Secondary Control Block), DCB (Debug
Control Block), QCB (Quadrenary Control Block) symbols in a chart layout, giving
symbol name, location and size.

file. name names the file containing the symbols. Defaults to VIR.PSYM.

MLIST file. name {item.list} {(options)}

This verb prints or displays assembly language mode listings. The format includes
columns for the statement number, location counter, object code and the label, op-code,
operand and comment fields of the source code. Macro expansions are shown as source
code with the operation codes prefixed by a plus sign (+). Any error messages appear
in the location counter/object code area.

file. name
item. list
options

n{-m}

E

M

S

names the file containing the modes to be listed.
names the modes to be listed.

restricts the listing to line number n or the range, n through m,
inclusive.
error lines only; suppresses pagination and enters EDIT at the end of
the listing.
shows the macro-expansion of source statements. For translation
assemblies, shows the translation expansions.
suppresses the listing of the object code column.

MLOAD file. name {item. list} {(options)}

Once modes have been assembled, they can be loaded into the ABS area for execution
using the MLOAD verb. The assembled mode is loaded into the frame specified by
the FRAME op-code statement.

file. name
item. list
options

N
V

names the file containing the assembled modes to be loaded.
names the modes to be loaded.

returns the check-sum data without loading item.
verifies mismatches and errors only.

The mode will not 10M correctly if its size exceeds 2048 bytes, or if FRAME is not the
first statement assembled in the mode. In either case, a message indicates the error.

9 Assembler Environment

If the load is successful, this message is returned:

[216] MODE 'item.id' LOADED; FRAME = nnnn SIZE = sss CKSUM = ecce

where
nnnn is the 4-digit decimal number of the frame where the mode was

loaded.
sss is the number of bytes of object code loaded into the frame, expressed

in hexadecimal notation.
ecce is the byte check-sum for the object code in the loaded mode.

MVERIFY file. name {item. list} {(options)}

After assembling and loading a program, the verb MVERIFY can be used to check the
object code in the file of the assembled program against the code loaded into the ABS
area. Verification consists of comparing the check-sum for the assembled mode to the
check-sum of the code loaded into the ABS area. If there are no errors, the frame id,
size and the check-sum are displayed. If there are errors, the frame name, frame id and
number of mismatches are displayed.

file. name
item. list

options
A

E

names the file containing the assembled modes.
names the modes to be verified; may be a select list or explicitly named
modes.

outputs a columnar listing of all bytes which mismatch. Each value in
the assembled code which does not match is listed, followed by the
value in the executable frame.
lists errors only. Only statistics for modes with verify errors are listed.

SET-SYM file. name

SET -SYM defines which global symbol file the System Debugger will use. VIR.PSYM
is typically the file used. There is no system default.

STRIP-SOURCE file. name {item. list} {(options)}

Removes the source code from Assembly Language programs. This frees large
amounts of disc space by returning the frames back to overflow. Modes with the
source stripped out can still be verified against the ABS. The first six lines of the
source item will be copied without source code stripping. Standard PICK Systems
convention for source modes is for line 1 to be the "FRAME" statement and lines 2
through 6 to contain other descriptive information.

10 Assembler Environment

•

•

file. name nam~s the file that contains the source mode. After the verb is
invoked, the user is prompted for the name of the destination file
where the stripped object code is to be stored.

item. list names the modes to be stripped; may be a select list or explicitly
named modes.

XREF file. name {item. list} {(options)}

The XREF verb is used to build a cross reference in the XSYM file of symbols in the
cross-indexed file, normally CSYM.

file. name
item. list

names the file that contains the cross-indexed symbols.
names the modes to be cross referenced; may be a select list or
explicitly named modes.

11 Assembler Environment

Assembly Source Format

A PICK assembly language source program, called a mode, is a sequence of symbolic
statements existing as a data item in a file. A source mode can be created or modified
using the editor with the A option. Each source mode statement is an attribute in the
source mode item. The assembler assumes the first statement is a comment and
ignores it.

Each source statement contains the following fields:

{label} opcode {operandl{,operand2{,operand3}}} {comments}

A statement beginning with an asterisk (*) is treated as a comment. Every source
mode must begin with at least five comment statements. Usually several are employed
to summarize the purpose of the mode.

Unless a statement is a comment, it must contain an operator field, and may potentially
contain a label field, an operand field, and a comment field. Fields within statements
are separated by one or more spaces.

Labels

A label gives a symbolic name to a particular location and must be unique within the
mode in which it appears. Labels are optional for most statements but are required by
some due to the nature of the operation the statement signifies. If present, a label
begins in the first character position of the source statement and continues until it is
terminated by a space.

A label may consist of any number of alphanumeric characters. To avoid problems
when referencing labels and listing modes, a label should be reasonable in length, begin
with an alphabetic character, and not contain an asterisk (*), plus sign (+), minus sign
(-), apostrophe ('), comma (,), percent sign (%), at sign (@), or equal sign (=).

Operators

The operator is the "action word" of the assembly language statement. Every
statement, except those beginning with an asterisk, must have one. The operator field
begins after the spaces terminating the label, or after one or more initial spaces, if a
label is not present, and continues until it is terminated by a space.

An operator is a mnemonic either for a Pick Assembly Language instruction or for a
directive to the assembler. Some operators refer to macros which expand into multiple
assembly instructions. An operator can cause one or several machine instructions to be
generated as object code. Valid operators are limited to those defined in the VIR.OSYM
file being used by the Assembler for the mode being assembled.

12 Assembler Environment

•

•

Operands

Operands are the things operated upon by an operator. The operand field begins after
the spaces terminating the operator and continues until it, in turn, is terminated by a
space. The number of operands required in a statement is a function of the operator:
some operators require several and some require none. Multiple operands, if present,
are separated by commas.

An operand may be a symbolic reference to a label, variable, constant, register, or
storage register which is locally defined, or defined in the Processor Symbol File,
VIR.PSYM. An operand may also specify a literal value which gets assembled into the
object code of the instruction. A literal may be a positive or negative decimal number, a
hexadecimal number, which must be preceded by X and enclosed in single quotation
marks (for example, X'aa'), or an ASCII character, which must be preceded by C and
enclosed in single quotation marks (for example, C'a'). Plus (+) and minus (-)
arithmetic operators may be used to combine multiple terms to produce a single literal
value.

The asterisk (*) has special significance when used as an operand. When used with the
equate operator, an asterisk refers to the current value of the program location counter.
When used in the operand field of a statement that requires no operands, it simply
causes a comment in that statement to align with the comments of surrounding
statements.

Comments

Any assembly language statement may include commentary information following the
spaces terminating the last required field of the statement. Comments cause no object
code to be generated and do not affect instruction execution.

Syntax

Braces are used to indicate something optional (for example, {l} means the label I is
optional). An ellipsis is used to indicate continuation (for example, n,n, ... means the
sequence n,n, may continue).

Whenever two arithmetic elements are named as operands in an instruction (such as:
a,a or n,a), both of the elements are implied to be, and are required to be, equal in size
(that is, both half tallies, tallies, double tallies, or triple tallies).

The instruction code is listed in the first column, the operands associated with it (if
any) are listed in the second column, and a full description of how the instruction
operates is in the third column.

13 Assembler Environment

A list of valid operand forms is shown with each instruction definition.

EXAMPLE:

INC a
a,n
r,a

means that the INC instruction may be used with any of three different operand forms.
That is,

INC a
INC a,n
INC r,a

are all valid instruction forms.

The following symbols are used to represent the system delimiters in examples and
illustrations:

Symbol Delimiter Name

[start buffer mark
\ subvalue mark
1 value mark

attribute mark
segment mark

Abbreviation Hexadecimal Value

SB
SVB
VM
AM
SM

X'FB'
X'FC'
X'FD'
X'FE'
X'FF'

Table 1 System Delimiters

14 Assembler Environment

•

•

Instruction Set

This chapter defines the instructions provided by the Pick Assembly Language. The
instructions are first summarized by category, then listed alphabetically with details of
functional operation.

Some virtual assembly instructions expand into more than one low-level instruction,
and many instructions use elements not explicitly named in the instruction. In
particular, the accumulator and R15 are often used in many instruction expansions.

Instruction Categories

The following sections describe these categories of instructions used in the Assembler:

Arithmetic
Arithmetic Compare and Branch
Assembler Directive~
Bit
Branch
Character Compare and Branch
Character String
Conversion
Logical
Process Synchronization
Register
Other

Each instruction that belongs to the category is listed. Detailed information about each
instruction follows the categories in an alphabetical listing.

15 Instruction Set

Arithmetic Instructions
Arithmetic instructions, which operate on signed binary integers, may require one or
two operands. Each operand specifies a literal, or an 8-, 16-, 32-, or 48-bit arithmetic
element (that is, half tally, tally, double tally, or triple tally respectively).

The value of a literal is placed in the generated object code. It is stored as two, four, or
six bytes of object code. The number of bytes normally is determined by the size of the
destination element. For example, INC T2, 20 would use two object bytes to hold
the decimal literal "20" (that is, x'0014') because the destination element T2 is a tally.
The number of bytes allocated to literal storage for multiply and divide instructions is
determined by the size of the multiplicand or dividend. Four bytes are provided for
MUL and DIV. Six bytes are provided for MULX and DIVX. Specifying a literal
greater than the capacity of the object space provided usually results in an assembly
error. For example, INC T2, 65536 would be reported as an error.

The following arithmetic instructions operate on specified memory locations:

ZERO
ONE
INC
DEC
NEG
MOV

Zero
One
Increment
Decrement
Negate
Move

Another class of arithmetic instructions operate between a specified memory location
and a fixed location called the accumulator. The accumulator is a data element in the
PCB consisting of 8 contiguous bytes. Each byte of the accumulator is directly
addressable using the PCB elements. DO, the low-order four bytes, is the element used
in most operations. Dl, the accumulator extension, is used for the remainder in DIV
operations. FPO, the 6-byte accumulator, is a triple tally used for extended
mathematical functions. I-byte and 2-byte operands are sign extended to form a
double word value before the operation is performed. Storage operands may not cross
frame boundaries.

1 FPO 1

___ I 1

DI DO 1

_________________ -----------------1
T3 T2 TI TO 1

~~--~ --~---- --~--~ --~----I 1 H7 1 H6 1 H5 1 H4 1 H3 1 H2 1 HI 1 HO 1
1_1_1_1_1_1_1_1_1

Figure 1 Accumulator Layout

16 Instruction Set

•

•

For the following arithmetic instructions, if an operand specifies a triple tally such as
FPO, the Assembler automatically generates object code for the extended form of the
instruction; (for example, LOADX FPl). For an element less than 32 bits in size, the
sign bit of the element is propagated, or sign extended, through the remainder of DO.

LOAD
LOADX
STORE
ADD
ADDX
SUB
SUBX
MUL
MULX
DIV
DIVX

Load
Load extended
Store
Add
Add extended
Subtract
Subtract extended
Multiply
Multiply extended
Divide
Divide extended

17 Instruction Set

Arithmetic Compare and Branch Instructions

These instructions compare two operands and determine whether to branch depending
on the results. Arithmetic comparisons include the sign bits of the elements. In all
comparisons, the second operand is conceptually subtracted from the first; i.e., the
result is not stored and the operands are not changed.

BE
BU
BH
BHE
BL
BLE

Branch if equal
Branch if unequal
Branch if high
Branch if high or equal
Branch if low
Branch if low or equal

The following instructions compare a named operand to an implied operand of zero:

BZ
BNZ
BHZ
BHEZ
BLZ
BLEZ

Branch if zero
Branch if not zero
Branch if higher than zero
Branch if high or equal to zero
Branch if less than zero
Branch if less than or equal zero

The branch decrementing instructions are used for looping. For the a,l operand form,
the element named by the first operand is decremented by one. In the other formats,
the first operand is decremented by the value of the literal or the element named by the
second operand. The first operand is then tested against zero. If the specified condition
is met, a branch is taken to the local label named by the last operand.

BDZ
BDNZ
BDHZ
BDHEZ
BDLEZ
BDLZ

Branch decrementing zero
Branch decrementing not zero
Branch decrementing higher than zero
Branch decrementing higher than or equal to zero
Branch decrementing less than or equal to zero
Branch decrementing less than zero

18 Instruction Set

•

•

Assembler Directivies

An assembler directive is an instruction for the Assembler to perform a specific
function at assembly time. These directives do not generate object code.

%x
ADDR
ALIGN
CHR
CMNT
DEFx
DTLY
END
EQU
FRAME
FTLY
HTLY
INCLUDE
MTLY
ORG
TEXT
TLY

Define element
Address
Align
Character
Comment
Define element
Double tally
End program
Equate
Frame
Triple tally
Half tally
Include source
Define double tally address
Originate
Text
Tally

19 Instruction Set

Bit Instructions

A bit (binary-digit), the smallest unit of storage in any digital computer, can have two
states. In the Pick System, set and zero are used to describe the bit states. Each bit
instruction shown here allows setting, zeroing, or testing a specific bit.

SB Set bit
ZB Zero bit
MOV Move bit
BBS Branch ifbit set
BBZ Branch if bit zero

20 Instruction Set

•

•

Branch Instructions

Program :flow can branch as a result of a data comparison, a specific condition, or
unconditionally. Certain unconditional branch instructions push the location of the
next sequential instruction onto a return stack. The destination of any branch is
always a label, which, in a source program, may consist of any number of alphanumeric
characters. A label must not, however, contain colons (:), percent signs (%), plus signs
(+), minus signs (-), asterisks (*), or slashes (j). The following are unconditional
branch instructions:

B
BSL
BSLI
BSL*
ENT
ENTI
ENT*
RTN

Branch
Branch and stack location counter
Branch and stack location counter indirectly, using TO
Branch and stack location counter indirectly
Enter External Mode
Enter Indirect, using TO
Enter Indirect
Return from Subroutine

21 Instruction Set

Character Compare and Branch Instructions

The following instructions compare a character to a character range and determine
whether to branch depending on the results. The character range may be alphabetic,
numeric, or hexadecimal. The ranges for some instructions may be restricted and are
described, where applicable, in the descriptions listed alphabetically later in this
chapter.

BCA
BCNA
BCN
BCNN
BCX
BCNX

Branch if character alphabetical
Branch if character not alphabetical
Branch if character numeric
Branch if character not numeric
Branch if character hexadecimal
Branch if character not hexadecimal

The following instructions compare two operands and determine whether to branch
depending on the results. The comparison is logical, which means the characters are
treated as 8-bit, unsigned fields with the lowest possible character being x'OO' and the
highest being x'FF'. The character addressed by the first operand is compared to the
character addressed by the second operand. If the condition specified by the instruction
is met, a branch is taken to the label.

BCE
BCU
BCL
BCLE
BCR
BCRE

Branch if characters equal
Branch if characters unequal
Branch if character less than
Branch if character less than or equal
Branch if character higher than
Branch if character high than or equal

The following instructions compare two strings and determine whether to branch
depending on the results. A literal operand is used to specify the string delimiter. Any
character that is logically greater than or equal to the literal terminates a string. The
strings do not have to be terminated by the same delimiter.

BSTE
BSTU

Branch if strings equal
Branch if strings unequal

A three-way branch on a string comparison can be implemented by following the
Branch Strings instruction with a Branch Character instruction. For example:

BSTE r,r,n,EQUAL Branch if strings are equal
BCH r,r,HIGH Branch if string 1 > string 2
EQU * String 1 < string 2

EQUAL EQU *
HIGH EQU *

22 Instruction Set

•

• • • • • • • • • • • • ..
•

Character String Instructions

The character string instructions allow scanning or moving character strings. A
character string consists of any number of logically adjacent characters which can cross
linked frame boundaries. The transition of frame boundaries during instruction
execution is handled automatically and is transparent to the user. The XMODE facility
is relevant to many of these instructions. These are the Character String Instructions.

Exchange characters
Move character to character
Move character incrementing
Move incrementing character
Move incrementing incrementing
Move incrementing incrementing to R15
Move incrementing incrementing to count

XCC
MCC
MCI
MIC
MIl
MIlR
MIlT
MIlD
MIIDC

Move incrementing incrementing through delimiter
Move incrementing incrementing through delimiter
counting

MIIDT Move incrementing incrementing through delimiter or
to count
Scan incrementing to count
Scan incrementing through delimiter

SIT
SID
SIDC
SICD
SITD

Scan incrementing through delimiter counting
Scan incrementing counting delimiters
Scan incrementing through delimiter or to count

Several of the character string instructions contain a literal, known as a "variant byte"
or "scan mask." The variant byte controls byte-by-byte matching against preset
delimiters. The format of the variant byte literal for all character string instructions,
except SICD, is shown in the following table:

Bit Meaning

o (most significant) I = Stop on match
o = Stop on mismatch

I Compare to x'FF' (SM)
2 Compare to x'FE' (AM)
3 Compare to x'FD' (VM)
4 Compare to x'FC' (SVM)
5 Compare to character in SCO
6 Compare to character in SCI
7 (least significant) Compare to character in SC2

Table 2 Variant Byte Format

The most-significant bit determines whether the instruction stops on a "match"
condition (bit is set) or on a mismatch condition (bit is zero). Only those characters
whose corresponding bits are set are checked for match or mismatch. The first four
characters are the s)tstem delimiters. The last three are variable and reside in the
user's PCB.

23 Instruction Set

Some examples of variant bytes and their respective match conditions follow:

Mask Condition

x'Ol' Match on non-blank (if there is a blank in SC2).
x'CO' Match on SM.
x'EO' Match on SM or AM.
x'FO' Match on SM, AM, or VM.
x'AO' Match on AM.
x'A4' Match on AM or the character in SCO.

The SlCD instruction has a different variant byte format. This is due to the ready for
position nature of this instruction. Since an SleD is used to ready a register for string
insertion in a data structure, the variant byte is based on the number of delimiters
rather than just the delimiter. The format for the SlCD variant byte is:

Bit Meaning

o (most significant) 0 = count is not pre-decremented.
1 = count is pre-decremented before
instruction is started.

1 0 = scan terminates when a character is
greater than the delimiter set by bits 2-7.
1 = scan terminates only when a character is
found which is greater than the character
contained in SC2.

2 Scan delimiter is x'FE'. (AM)
3 Scan delimiter is x'FD'. (VM)
4 Scan delimiter is x'FC'. (SVM)
5 Scan delimiter is contained in SCO.
6 Scan delimiter is contained in SCI.
7 (least significant) Scan delimiter is contained in SC2.

Table 3 SleD Variant Byte Format

The most-significant bit of the variant byte is for ordinal positioning. Prior to the
instruction, the register is pointing to the byte before attribute 1 of the string. The
pre-decrement feature of the SlCD variant byte allows the attributes of the string to be
referenced by their logical numbering scheme.

The second bit is used when scanning for system level delimiters. Logical character
compares are used: x'FE'is > x'20'.

24 Instruction Set

•

•

Conversion Instructions

The following instructions provide the means to convert decimal and hexadecimal
string numbers to binary numbers and vice versa.

MBD
MBX
MBXN
MDB
MXB
MSDB
MFD
MSXB
MFX

Move binary to decimal
Move binary to hexadecimal
Move binary to hexadecimal
Move decimal to binary
Move hexadecimal to binary
Move string decimal to binary
Move string decimal to binary
Move string hexadecimal to binary
Move string hexadecimal to binary

25 Instruction Set

Logical Instructions

The following truth table defines the operations performed by the AND, OR, and XOR
instructions. The operations are performed on each bit of the elements specified and
the result replaces the destination operand. Unlike most Pick instructions, the
destination operand comes first in logical instructions

1 1 1 1 1 0 1 0 1 Value 1
1 __ 1 __ 1 __ 1 __ 1
1 1 1 0 1 1 1 0 1 Value 2

=====1=====1=====1=====1=====1========
1 AND 1 1 1 0 1 0 1 0 1
1 __ 1 __ 1 __ 1 __ 1 __ 1
1 OR 1 1 1 1 1 1 1 0 1 Results
1 __ 1 __ 1 __ 1 __ 1 __ 1
1 XOR 1 0 1 1 1 1 1 0 1
1 __ 1 __ 1 __ 1 __ 1 __ 1

Figure 2 AND, OR, and XOR Truth Table

These are the logical instructions:

AND
OR
XOR
SHIFT

And
Or
Exclusive or
Shift

26 Instruction Set

•

•

Process Synchronization Instructions

These instructions are used to synchronize execution of processes.

LOCK
RQM

Lock
Release time quantum

27 Instruction Set

Register Instructions

An address register contains the address of a character (that is, points to a character).
The register instructions operate directly on registers as opposed to instructions that
operate on data pointed to by registers. Register instructions which increment or
decrement the register value change the address where the register points.

BE
BU
DEC
INC
LAD
MOV
SETUP
SETUPO
SETUPl
SR
SRA
XRR

Branch if equal
Branch if unequal
Decrement register
Increment register
Load absolute difference
Move register to register
Setup register
Setup register to byte 0
Setup register to byte 1
Set register to FID
Set register to address
Exchange registers

28 Instruction Set

•

•

Other Instructions

These instructions do not conveniently fit into any of the previous categories. Most of
them relate to the operation of the system.

ECHO.ON
ECHO.OFF
EP
FRM.LOCK
FRM.UNLOCK
GET.TIME
HALT
MSG#
NEP
NOP
READ
RQM
SET.TIME
SETUP.BAUD
SLEEP
TIME
WRITE

Echo off
Echo on
Entry point
Frame lock
Frame unlock
Get time
Halt
Message number
No entry point
No operation
Read input queue
Release quantum
Set time
Set baud
Sleep
Get system time
Write to output queue

29 Instruction Set

Symbolic Operand Definitions

This table defines the operand types used with the Pick assembly language operators.
The 'a' symbol and 'v' symbol are used as a documentation convenience. Braces are
used to indicate something optional; e.g., {l} means the label, 1, is optional.

An asterisk (*) in the operand field has two possible functions: (1) when used with the
equate operator, the asterisk represents the current value of the program location
counter; or, (2) when used in a statement requiring no operands, the asterisk forces
alignment of a comment in that statement with comments of surrounding statements.

Symbol Meaning Definition

a Arithmetic Element This symbol is used as a convenience in
documen- tation to mean any of the following
four arithmetic elements: half tally, tally, double
tally, or triple tally. Whenever two arithmetic
elements are named as operands in an
instruction (such as: a,a,I), both of the elements
are implied to be, and are required to be, equal
in size; i.e., both half tallies, tallies, double
tallies or triple tallies.

b Bit An element having two states, addressed using a
base register, a byte displacement, and a bit
displacement

c Character An 8-bit element, addressed using a base
register and byte displacement

d Double tally A signed, numeric, 32-bit data element,
addressed using a base register and byte
displacement

e Quad tally A signed, numeric, 64-bit data element,
addressed using a base register and byte
displacement

f Triple tally A signed, numeric, 48-bit data element,
addressed using a base register and byte
displacement

h Half tally A signed, numeric, 8-bit data element,
addressed using a base register and byte
displacement

ItemlD

I Label

The name of an item, external to the current
mode

A location, internal to the current mode, to
which the program execution can transfer

30 Instruction Set

•

•

Symbol

m

n

0

P

r

s

t

v

Meani,g Definition

ModeID A 16-bit modal entry identification, comprised of
a 4-bit entry point and a 12-bit frame number

Literal A constant or immediate value whose size is
dependent upon the instruction in which it
appears

Frame ID An integer representing a frame, ranging from 1
toMAXFID.

Entry Point An integer, ranging from 0 to 15.

Address register One of sixteen 64-bit elements, RO through R15,
containing a frame and displacement to point to
a specific character in virtual memory

Storage register A 48-bit element used to save the frame and
displacement (virtual address) of an address
register addressed using a base register and a
16-bit word displacement

Tally A signed, numeric, 16-bit data element,
addressed using a base register and byte
displacement

Variant The variant byte specifies string movement
termination criteria.

Table 1 Symbolic Operand Definitions

31 Instruction Set

32

•
Instruction Set •

• • •

•

Assembler Instructions

ADD

ADDR

ADDX

ALIGN

AND

B

BBS

BBZ

a
n

n,n

a
n

III

c,n
r,n
1',1'

b,l

b,l

Add to Accumulator - The value of element a, or the
4-byte literal n, is added to DO with the sum replacing
the original contents of DO.

Address - This directive reserves storage and defines
the symbol in the label field to be type s, a storage
register. All symbols or variable names used as
operands must have a symbol type code. The first
operand specifies the displacement of the generated byte
address. The second operand specifies the FID or frame
number.

Add Extended - The value of element a, or the 6-byte
literal n, is added to FPO. The sum replaces the original
contents of FPO. If the operand is less than 6 bytes, a
6-byte operand is generated by extending the sign bit of
the operand.

Align - The assembly instruction following this
directive is aligned on an even address. The location
counter is adjusted, if necessary, by generating one
object byte of zero. This is useful before a section of
DEFinitions of tallies, double tallies etc., to ensure word
alignment.

Logical AND - The byte of the first operand is logically
ANDed with the mask byte of the second operand. The
result is stored at the byte of the first operand. The
second operand is unchanged.

Branch Unconditionally - A branch is taken to the
location specified by the local label.

Branch If Bit Set - If the bit is set (1), then a branch is
taken to the label. For this internal branch, the label
must reside in the same mode, in the same frame as the
branch instruction.

Branch If Bit Zero - If the bit is zero (0), then a
branch is taken to the label. For this internal branch,
the label must reside in the same mode, in the same
frame as the branch instruction.

33 Instruction Set

BCA

BCE

BCH

BCHE

BCL

r,l

c,c,l
c,n,l
c,r,l
n,c,l
n,r,l
r,c,l
r,n,l
r,r,l

c,c,l
c,n,l
c,r,l
n,c,l
n,r,l
r,c,l
r,n,l
1',1',1

c,c,l
c,n,l
c,r,l
n,c,l
n,r,l
r,c,l
r,n,l
1',1',1

c,c,l
c,n,l
c,r,l
n,c,l
n,r,l
r,c,l
r,n,l
1',1',1

Branch If Character Alphabetic - If the character
addressed by the register is alphabetic (ASCII A-Z, a-z;
hex 41-5A or 61-7A), then a branch is taken to the label.
The alphabetic range is implementation specific for the
character set and may not be exactly as stated above in
all cases, as in, for example, European language
character sets. For this internal branch, the label must
reside in the same mode, in the same frame as the
branch instruction.

Branch If Character Equal - The character
addressed by the first operand is compared with the
character addressed by the second operand. If the two
characters are equal, then a branch is taken to the label
specified by the third operand. For this internal branch,
the label must reside in the same mode, in the same
frame as the branch instruction.

Branch If Character Higher - The character
addressed by the first operand is compared with the
character addressed by the second operand. If the first
operand is numerically greater than the second operand,
the branch is taken to the label specified by the third
operand. For this internal branch, the label must reside
in the same mode, in the same frame as the branch
instruction.

Branch If Character Higher or Equal - The
character addressed by the first operand is compared
with the character addressed by the second operand. If
the first operand is numerically greater than or equal to
the second operand, then a branch is taken to the label
specified by the third operand. For this internal branch,
the label must reside in the same mode, in the same
frame as the branch instruction.

Branch If Character Lower - The character
addressed by the first operand is compared with the
character addressed by the second operand. If the first
operand is numerically less than the second operand,
then a branch is taken to the label specified by the third
operand. For this internal branch, the label must reside
in the same mode, in the same frame as the branch
instruction.

34 Instruction Set

•

•

BCLE

BCN

BCNA

BCNN

BCNX

BCU

BCX

c~c,l
c~n,l
c.r,l
n,c,l
n,r,l
r,c,l
r,n,l
1',1',1

1',1

1',1

1',1

1',1

c,c,l
c,n,l
c,r,l
n,c,l
n,r,l
r,c,l
r,n,l
1',1',1

1',1

Branch If Character Less than or Equal - The
character addressed by the first operand is compared
with the character addressed by the second operand. If
the first operand is less than or equal to the second
operand, then a branch is taken to the label specified by
the third operand. For this internal branch, the label
must reside in the same mode, in the same frame as the
branch instruction.

Branch If Character Numeric - If the character
addressed by the register is numeric (ASCII 0-9; hex
30-39), then a branch is taken to the label. For this
internal branch, the label must reside in the same mode,
in the same frame as the branch instruction.

Branch If Character Not Alphabetic - If the
character addressed by the register is not alphabetic,
(ASCII A-Z, a-z; hex 41-5A, 61-7A), then a branch is
taken to the label. The alphabetic range is
implementation specific to the character set. For this
internal branch, the label must reside in the same mode,
in the same frame as the branch instruction.

Branch If Character Not Numeric - If the character
addressed by the register is not numeric, (ASCII 0-9; hex
30-39), then a branch is taken to the label. For this
internal branch, the label must reside in the same mode,
in the same frame as the branch instruction.

Branch If Character Not Hexadecimal - If the
character addressed by the register is not hexadecimal,
(ASCII 0-9, A-F), then a branch is taken to the label.
For this internal branch, the label must reside in the
same mode, in the same frame as the branch.

Branch If Characters Unequal - The character
addressed by the first operand is compared with the
character addressed by the second operand. If the two
characters are unequal, then a branch is taken to the
label specified by the third operand. For this internal
branch, the label must reside in the same mode, in the
same frame as the branch instruction.

Branch If Character Hexadecimal - If the character
addressed by the register is hexadecimal, (ASCII 0-9,
A-F), then a branch is taken to the label. For this
internal branch, the label must reside in the same mode,
in the same frame as the branch instruction.

35 Instruction Set

BDHEZ

BDHZ

BDLEZ

BDLZ

BDNZ

BDZ

a,l
a,a,l
a,n,l

a,l
a,a,l
a,n,l

a,l
a,a,1
a,n,l

a,l
a,a,l
a,n,l

a,l
a,a,l
a,n,l

a,l
a,a,l
a,n,l

Branch Decrementing High or Equal to Zero - The
first operand is decremented by one, or by the value of
the second operand if there are three operands. Then if
the first operand is higher or equal to zero (> = 0), a
branch is taken to the label. For this internal branch,
the label must reside in the same mode, in the same
frame as the branch instruction.

Branch Decrementing Higher than Zero - The first
operand is decremented by one, or by the value of the
second operand if there are three operands. Then if the
first operand is arithmetically higher than zero, a
branch is taken to the label. For this internal branch,
the label must reside in the same mode, in the same
frame as the branch instruction.

Branch Decrementing Less than or Equal to Zero
- The first operand is decremented by one, or by the

value of the second operand if there are three operands.
Then if the first operand is less than or equal to zero, a
branch is taken to the label. For this internal branch,
the label must reside in the same mode, in the same
frame as the branch instruction.

Branch Decrementing Less than Zero - The first
operand is decremented by one, or by the value of the
second operand if there are three operands. Then if the
first operand is arithmetically less than zero, a branch is
taken to the label. For this internal branch, the label
must reside in the same mode, in the same frame as the
branch instruction.

Branch Decrementing Not Zero - The first operand
is decremented by one, or by the value of the second
operand if there are three operands. Then if the first
operand is not equal to zero, a branch is taken to the
label. For this internal branch, the label must reside in
the same mode, in the same frame as the branch
instruction.

Branch Decrementing Zero - The first operand is
decremented by one, or by the value of the second
operand if there are three operands. Then if the first
operand is zero, a branch is taken to the label. For this
internal branch, the label must reside in the same mode,
in the same frame as the branch instruction.

36 Instruction Set

•

•

BE

BH

BHE

BHEZ

BHZ

a,a,l
a,n,l
n,a,l

r,r,l
r,s,l
s,r,l
s,s,l

a,a,l
a,n,l
n,a,l
r,r,l
r,s,l
s,r,l
s,s,l

a,a,l
a,n,l
n,a,l
r,r,l
r,8,1
s,r,l
s,s,l

a,l
n,l

a,l
n,l

Branch If Equal - If the value of the element or literal
of the first operand is equal to the value of the second
operand, a branch is taken to the label. The contents of
both operands are treated as two's complement integers.
If the operands are of the same size, and are identical,
then the branch is taken. Otherwise, the sign bit
(highest-order bit) of the smaller operand is extended to
the left until the operands are the same size, and if the
two equal size elements are identical, the branch is
taken. For this internal branch, the label must reside in
the same mode, in the same frame as the branch
instruction.

If the register or storage register named by the first
operand and the register or storage register named by
the second operand are equal (that is, point to the same
character), then a branch is taken to the label.

Branch If Higher - If the value of the first operand is
arithmetically higher than (» the value of the second
operand, a branch is taken to the label. The contents of
both operands are treated as two's complement integers.
For this internal branch, the label must reside in the
same mode, in the same frame as the branch instruction.

Branch If Higher or Equal - If the value of the first
operand is arithmetically higher than or equal to (> =)
the value of the second operand, a branch is taken to the
label. The contents of both operands are treated as
two's complement integers. For this internal branch,
the label must reside in the same mode, in the same
frame as the branch instruction.

Branch If Higher or Equal to Zero - If the value of
the first operand is arithmetically higher than or equal
to zero (> = 0), a branch is taken to the label. For this
internal branch, the label must reside in the same mode,
in the same frame as the branch instruction.

Branch If Higher than Zero - If the value of the first
operand is arithmetically higher than zero (> 0), a
branch is taken to the label. For this internal branch,
the label must reside in the same mode, in the same
frame as the branch instruction.

37 Instruction Set

BL

BLE

BLEZ

BLZ

BNZ

BSL

BSL*

a,a,l
a,n,l
n,a,l
r,r,l
r,s,l
s,r,l
s,s,l

a,a,l
a,n,l
n,a,l
n,r,l
r,r,l
r,s,l
s,r,l
s,s,l

a,l
n,l
s,l

a,l
n,l
s,l

a,l
n,l
s,l

m

t

Branch If Less than - If the value of the first operand
is arithmetically less than «) the value of the second
operand, a branch is taken to the label. The contents of
both operands are treated as two's complement integers.
If the operands are not of the same size, the sign bit
(highest-order bit) of the smaller operand is extended to
the left until the operands are the same size. For this
internal branch, the label must reside in the same mode,
in the same frame as the branch instruction.

Branch If Less than or Equal - If the value of the
first operand is arithmetically less than or equal to (< =)
the value of the second operand, a branch is taken to the
label. The contents of both operands are treated as
two's complement integers. If the operands are not of
the same size, the sign bit (highest-order bit) of the
smaller operand is extended to the left until the
operands are the same size. For this internal branch,
the label must reside in the same mode, in the same
frame as the branch instruction.

Branch If Less than or Equal to Zero - If the value
of the operand is arithmetically less than or equal to
zero « = 0), a branch is taken to the label. For this
internal branch, the label must reside in the same mode,
in the same frame as the branch instruction.

Branch If Less than Zero - If the value of the operand
is arithmetically negative, a branch is taken to the label.
For this internal branch, the label must reside in the
same mode, in the same frame as the branch instruction.

Branch If Not Zero - If the value of the operand has
any value other than zero, a branch is taken to the label.
For this internal branch, the label must reside in the
same mode, in the same frame as the branch instruction.

Branch and Stack Location - The location of the
next instruction is pushed on the return stack, then a
branch is taken to the location specified by the label.
This branch is used to make a subroutine call. The stack
pointer element RSCW A is incremented by 4. The
address of the instruction following the BSL instruction
is moved to the 4-byte field in the process' PCB pointed
to by the return stack pointer. Next, a branch is taken
to the entry point (BSL m), or program label (BSL 1). If
the stack overflows, the process aborts to the debugger
with a "RTN STACK FORMAT ERROR" message.

Branch and Stack Location Direct - The next
instruction's location is pushed onto the return stack.
The operand is loaded into TO and a BSLI instruction is
executed.

38 Instruction Set

•

•

BSLI

BSTE

BSTU

BU

*

r,r,n,l

r,r,n,l

a,a,l
a,n,l
n,a,l

r,r,l
r,s,l
s,r,l
s,s,l

Branch and Stack Location Indirect - The location
of the next instruction is pushed on the return stack,
then a branch is taken to the mode whose address is in
the lower 2-byte tally, TO, of the accumulator.

Branch If Strings Equal - If two strings compare up
to a delimiter, the branch is taken to the label. Both
registers are incremented, then the bytes addressed by
each register are compared logically. If the characters
are equal and logically lower than the literal n, the
increment and comparison is repeated. When
characters are equal and logically greater than or equal
to the literal n, the strings are considered equal and a
branch is taken to the label. The strings are also
considered equal and a branch taken if the characters
compared are unequal, but both characters are greater
than or equal to the literal n. The registers now address
the string delimiter.

In other cases the strings are considered unequal and
the instruction terminates by falling through to the next
instruction. The registers now address the dissimilar
byte, not the delimiter.

The function of the literal n is to specify a lower
boundary for the delimiter that is considered to
terminate the strings. Any character that is found to be
logically greater than or equal to the literal n is
considered to terminate the string. The strings do not
have to be terminated by the same delimiter.

Branch If Strings Unequal - If two strings do not
compare up to the delimiter, then a branch is taken to
the label. Operation is similar to BSTE. In other cases,
the strings are considered unequal, and the instruction
terminates by falling through to the next instruction.

Branch If Unequal - If the value of the element or
literal of the first operand is not arithmetically equal to
(#) the value of the second operand, a branch is taken
to the label. The contents of both operands are treated
as two's complement integers. If the operands are not of
the same size, the sign bit of the smaller operand is
extended to the left until the operands are the same size.
For this internal branch, the label must reside in the
same mode, in the same frame as the branch instruction.

If the register or storage register of the first operand and
the register or storage register of the second operand do
not address the same character, then a branch is taken
to the label.

39 Instruction Set

BZ

CRR

CMNT

DEC

DEC

DEFx

a,l
n,l
r,l
s,l

c

n

a
a,a
a,n

r
r,a
r,n

s
s,a
s,n

Branch If Zero - If the value of the operand is equal to
zero, a branch is taken to the label. For this internal
branch, the label must reside in the same mode, in the
same frame as the branch instruction.

ASCII Character - This assembler directive, used in
parameter tables and monitor assembly code, generates
an in-line ASCII or binary character of one byte storage.

{l} CRR C'A' Generates x'41'
{l} CRR X'FF' Generates binary 11111111

Comment - The statement in which this directive
appears is treated as a comment. No object code is
generated.

Decrement - The first operand is decremented by one.
For the two operand form, the first operand is
decremented by the value of the second operand.

Decrement Register - The address of the register is
decremented by one. If the register is in linked format
and originally pointed to the first data byte of the frame
and the backward link of the current frame is zero, the
register attaches to data byte zero of the current frame.
Otherwise, an attempt is made to attach the register to
the last data byte of the frame pointed to by the
backward link of the current frame. "ILLEGAL FRAME
m" is an error which can be detected in this case.

With a storage register, the displacement portion of the
storage register is decremented by one, or by the two's
complement integer contained in the second operand.

Define Element - This assembler directive defines the
element whose symbolic name is given by the label and
whose type is given by the character (x) following "DEF".
All forms, except DEFN, require two operands, which
may be symbolic. The first specifies a base register; the
second operand specifies displacement. Everything
defining storage should be specified as one-half its actual
value, if it is not a one-byte definition such as half tallies
and characters (excluding literals and labels).

40 Instruction Set

•

•

DIV

DIVX

DTLY

ECHO.OFF

a
n

a
n

d

*

ll} DEFB r,n Defines a bit.
{I} DEFC r,n Defines a character.
ll} DEFD r,n Defines a double-tally.
{l} DEFE r,n Defines a quad-tally.
{l} DEFF r,n Defines a triple-tally.
{l} DEFH r,n Defines a half-tally.
{l} DEFN n Defines a literal.
{l} DEFM p,a Defines a mode and entry point.
{l} DEFS r,n Defines a storage register.
{l} DEFT r,n Defines a tally.
{l} DEFT a,l Defines a tally element.
{l} DEFTL r,n Defines the lower tally of a dtly.
{ 1 } DEFTU r,n Defines the upper tally of a dtly.

Divide - The sign bit of the accumulator (DO) is
extended into the accumulator extension (Dl) to form a
64-bit dividend. The accumulator is then divided by the
operand, resulting in a 32-bit quotient in DO and a 32-bit
remainder in Dl. The sign of the quotient is determined
by the rules of algebra. The sign of the remainder is the
sign of the dividend. The contents of the operand are
not changed. A divisor of zero, which is technically
illegal, returns DO unchanged and Dl equal to zero.

Divide Extended - The sign bit of the 6-byte operand
is generated by extending the sign bit of the original
operand. Then the contents of FPO are divided by the
operand, resulting in a 48-bit quotient in FPO and a
48-bit remainder in FPl. The sign of the quotient is
determined by the rules of algebra. The sign of the
remainder is the sign of the dividend (original FPO). A
divisor of zero returns FPO unchanged and FPl zero.

Define Double Tally - This assembler directive is used
in parameter tables and monitor code. 4 bytes of storage
are reserved to and define a double tally containing the
value specified by the operand, which may be symbolic.

Echo OfT - Terminals attached to the Pick System
usually operate in an "echo-plex" mode. In this mode, a
character input from a keyboard is not displayed on the
terminal video until the computer receives the character
and sends it back to the terminal. Characters input
from the terminal are normally echoed automatically.
This instruction disables echoing by zeroing the echo bit
in the active process' PIB.

41 Instruction Set

ECHO.ON

END

ENT

ENT*

ENTI

EP

EQU

FRAME

*

*

m

t

*

I

*

a
n

*n

n

Echo On - This instruction enables terminal echo by
setting the echo bit in the active process' PIE.

End - This assembler directive marks the end of a
mode. The instruction pointer will not increment past
this instruction in the mode.

Enter External Mode - A branch is taken to the entry
point specified by the mode ID. The high order 4 bits of
the mode ID (m) are the entry point number (0-15).
The remaining 12 bits of the mode ID are the FID of the
frame.

Enter Direct - Branches to the entry point specified by
the operand. The operand is loaded into TO, and an
ENTI instruction is executed.

Enter Indirect - A branch is taken to the entry point
defined by TO.

Entry Point - At the beginning of every mode is a jump
table. Each entry point is an encoded address to which
control will be transferred via a branch instruction.
Each mode has a maximum of 16 entry points (0-15).
The entry point label is an external label which consists
of an entry point number and a frame number. This is
commonly known as a mode ID.

Equate - This instruction creates a symbol label with
the current location as its value. The label used with
this directive is equated to the value specified by the
operand, which may be symbolic.

The operand is equated to the symbol in the label field.

The symbol is created with the current location counter
plus or minus the literal. By having n = -1, it is possible
for the SRA instruction to address a text string at one
byte before the start of the text string.

Frame Location - The 4-byte literal n defines the
frame number of the ABS area into which the mode is
loaded. This instruction must be on line number 1 of a
mode.

42 Instruction Set

•

•

FRM.LOCK

FRM.UNLOCK

FTLY

GET. TIME

HALT

HTLY

INC

r

r

f

*

*

n

a

a,a
a,n

r
r,a
r,n

s
s,a
s,n

Frame Lock - Makes the frame pointed to by the
register permanent in RAM. This instruction ensures
that the frame is in a memory buffer, then locks that
frame in memory by setting status flags to indicate it is
not a candidate for being flushed to disk.

Frame Unlock - Reverse the status of the frame locked
in RAM. If the frame pointed to by the register was not
locked, no action is taken.

Define Triple Tally - This assembler directive is used
in parameter tables and monitor code. 6 bytes of storage
are reserved. The triple tally defined contains the value
specified by the operand, which may be symbolic.

Get Time - This instruction returns the system time
and date in internal format. The date, in days since
December 31, 1967, is returned in T2. The time, in
milliseconds since midnight, is returned in DO.

Halt - This instruction terminates code execution with
the abort "ILLEGAL OPCODE."

Define Half Tally - This assembler directive is used in
parameter tables and monitor code to reserve 1 byte of
storage. The half tally defined contains the value
specified by the operand, which may be symbolic.

Increment - This instruction increments the operand.
For the single operand form, the contents of the operand
is incremented by one.

For the two operand form, the contents of the first
operand is incremented by the contents of the second
operand.

For the address register form; the register is
incremented by one. If the new address is not in the
same buffer, either a "CROSSING FRAME LIMIT" error
occurs, if the register is in unlinked format, or an
attempt is made to attach the register to the first data
byte of the frame pointed to by the forward link of the
current frame. In this case, "FORWARD LINK ZERO"
and "ILLEGAL FRAME m" are errors which can be
detected if they occur.

For the storage register form, the displacement portion
of the register is incremented by one or by the two's
complement integer contained in the second operand.
No address errors are detected.

43 Instruction Set

INCLUDE

LAD

LOAD

LOADX

LOCK

1',1'

r,s
s,r
s,s

a

m
n

a

m
n

l'

Include item - This assembler directive instructs the
Assembler to include the item into the mode.
INCLUDE is used as a means of loading common
definitions into modes without redefining in each mode.

Load Absolute Difference This instruction
computes the difference, in bytes, between the address
pointed to by the register of the first operand and the
address pointed to by the register or storage register of
the second operand. The result is a positive integer in
TO. The number of bytes between registers is computed
as how many bytes from the address of the first operand
+ 1 to the byte address of the second operand. That is:
Rl = 40000.1; R2 = 40000.B; thus TO is computed B-1
= A (decimal, 10). Both operands must address the
same frame unless the frames are contiguously linked
and the difference between the frame numbers is less
than 32K.

Load - For the arithmetic element, the contents of the
element are loaded into the partition of the accumulator
DO that matches the element size. Then if the element
is less than 32 bits the sign bit of the element is
sign-extended to fill out the 32-bits of the accumulator
DO. For example, if H7 contains x'80', DO would contain
x'FFFFFF80' after executing the instruction LOAD H7.
6-byte operands are loaded into FPO.

For the literal and modal address form, the 4-byte value
of the literal is loaded into DO. No sign-extension occurs.
For example, if n contains x'80', DO would contain
x'00000080' after executing the instruction LOAD n.

Load Extended - For the arithmetic element, the
element contents are loaded into the accumulator
partition that matches the element size. If the element
is less than 48 bits, (that is a half tally, tally, or double
tally), the sign bit of the element is sign-extended to fill
out the 48-bits of the accumulator, FPO.

For the literal and modal address form, the 6-byte value
of the literal is loaded into FPO. No sign-extension
occurs.

Lock - This instruction is used for implementing
semaphores. If the tally addressed by the register is
zero, a lock is set by storing the lock number. This lock
number is the line number + 1. If the tally addressed
by the register is non-zero, that is, it is already locked by
another process, the active process is deactivated and at
the next snu, the lock is attempted again. This sequence
is repeated until the lock is successful.

44 Instruction Set

•
" •

•

MBD

MBX

r,l

a

a,r

n,a,r

a,r
c,r

n,a,r

For the two operand form, the lock is set like the single
operand form except a branch is taken to the label if the
lock has already been set by another process rather than
waiting for it to unlock.

The LOCK instruction concludes by incrementing the
PCB tally element INHIBITH. This prevents the active
process from breaking into the debugger until
INHIBITH is decremented back to zero by the
DECINHIB subroutine. This action offers some
protection against another process acquiring a shared
resource through a semaphore, then monopolizing that
resource by breaking into the debugger. LOCK should
never be used on the lock byte of a PCB as it will zero
the ACF.

Move Binary to Decimal - The binary integer from
element a is converted to an ASCII decimal string.
Register R15 is incremented, then the ASCII string is
moved to the location addressed by R15. The string is
padded with blanks if BKBIT is set, or with zeroes if
BKBIT is zero. The value of T4 specifies the minimum
length of the string. This form of the instruction loads
element a into the accumulator, then invokes the
subroutine MBDSUB.

For the two operand form, the element a is loaded into
the accumulator. Then the second operand is moved to
R15, a call is made to MBDSUB, then R15 is moved
back into the register of the second operand.

For the three operand form, the literal n specifies the
minimum length of the decimal string. The literal is
moved to T4, then the second operand is loaded into the
accumulator. The third operand is moved to R15 and a
call is made to MBDSUB, then R15 is moved back to
register r. The string is padded with blanks if necessary
for the length requirements. The string will exceed the
length of the first operand literal if the ASCII number of
the second operand is larger than the size limitation.
This instruction is a macro expansion of MBDNSUB.

Move Binary to Hexadecimal - The binary integer of
element a, or character c, is converted to an ASCII
hexadecimal string and stored at the register r + 1. The
maximum character length of the string is specified by
the number in HO. If B7 (the high-order bit of HO) is
set, the string is padded with leading zeroes.

The binary integer of the second operand is converted to
an ASCII hexadecimal string of the length specified by
the first operand literal. The string is padded with

45 Instruction set

MBXN

MCC

MCI

MDB

n,a,r
n,s,r

c,c
c,r
h,c
h,r
n,c
n,h
n,r
r,c
r,h
r,r

c,r
h,r
n,r
r,r

n,r,n

r,a

blanks if necessary for the length requirements. If the
integer is large, the string may exceed the length
requirement. The MBX instruction assumes that HO is
the count of the number of characters to output.

Move Binary to Hexadecimal - This instruction
expands to a macro which moves literal n to HO, sets B7
to force leading zeroes, then performs an MBX a,r
instruction.

Move Character to Character - The byte addressed
by the first operand is moved to the byte addressed by
the second operand.

Move Character Incrementing - The register of the
second operand is incremented by one, then the literal
or character referenced by the first operand is moved to
the byte addressed by the second operand.

For the three operand form, the literal or tally of the
third operand is moved to TO. The second operand
destination register is incremented by one, then the
character or literal referenced by the first operand is
moved to the byte addressed by the second operand.
Then TO is decremented by one. The incrementation.
character movement and decrementation of TO loop
continues until TO becomes zero.

Move Decimal to Binary - The ASCII decimal
character pointed to by the first operand is converted to
a binary number and stored into the second operand.
This is how ASCII decimal character strings are
converted to a single binary integer. The first operand is
incremented by one. The byte now addressed is
examined. If it is numeric (ASCII 0-9, hex 30-39), the
value of the second operand is multiplied by ten and the
binary equivalent of the number pointed to by the first
operand is added to the second operand. The process of
increment, check, multiply and add is repeated until the
byte addressed by the first operand is non-numeric. No
check for decimal validity or overflow is made.

46 Instruction Set

• • • • • • • • • • • • • • • • • • ..
•

• . '

•

MFD

MFX

MIC

r

r

r,c
r,r

Move Decimal String to Binary - This instruction
converts the ASCII decimal string at r+ 1 to a binary
number accumulated in FPO.

FPO is multiplied by ten for each character converted. It
is not zeroed by the instruction before conversion
begins. Normally FPO should be zeroed before
executing an MFD. The ASCII string may begin with a
plus or minus sign and may contain one decimal point.
Usually, the string is terminated by a system delimiter;
however, with the exceptions already mentioned,
conversion stops on any character that is not numeric.
Parameters are passed to the MFD instruction in half
tallies H6 and H7. The value of H6 determines the
maximum number of ASCII decimal characters to
convert (zero means 256). The value of the low-order
four bits of H7 are a scaling factor, which is used as an
exponent of ten to adjust the binary result to reflect a
fractional precision. This scaling factor specifies the
number of digits (0-15) to the right of an implied
decimal point in the decimal equivalent of the binary
result. The high-order four bits of H7 are used
internally by the MFD instruction as follows:

Bit 0 - Use varies by implementation.
Bit 1 - Set if at least one numeric is converted.
Bit 2 - Set if a decimal point is detected.
Bit 3 - Set if the number is negative .

Move Hexadecimal String to Binary - This
instruction converts the ASCII hexadecimal string at
r+ 1 to a binary number accumulated in FPO.

FPO is multiplied by sixteen for each character
converted, and it is not zeroed by the instruction before
conversion begins. FPO should be zeroed before
executing an MFX. A string is usually terminated by a
system delimiter; however, conversion stops on any
character that is not hexadecimal. A parameter is
passed to the MFX instruction in the half tally H6
specifying the maximum number of characters to
convert (zero means 256).

Move Incrementing Character to Character - The
register of the first operand is incremented by one.
Then the byte addressed by the first operand is moved
to the character referenced by the second operand.

47 Instruction Set

MIl

MIlD

MIIDe

r,r

r,r,a
r,r,n

r,r,v

r,r,v

Move Incrementing Character to Incrementing
Character - Both register operands are incremented by
one. Then the character addressed by the first operand
is moved to the character addressed by the second
operand.

For the three operand form, the literal of the third
operand is moved into TO. The registers are
incremented by one, the character addressed by the first
operand is moved to the character addressed by the
second operand, then TO is decremented. The cycle of
incrementation, character movement, TO
decrementation is repeated until TO becomes zero.

Move Incrementing Incrementing through
Delimiter - This instruction moves a string character
by character to another register up to and including the
delimiter of the source string. Both registers are
incremented by one, then the character addressed by the
first operand is moved to the character addressed by the
second operand. The byte moved is then checked for a
match with the variant byte. The process of register
increment, character movement and character match
check with the variant byte continues until the
character moved meets the termination criteria specified
by the variant byte. This instruction will alter the
position of both registers by at least one location.

Move Incrementing Incrementing through
Delimiter Counting- This instruction moves a string,
character by character, to another register up to and
including the delimiter of the string. TO is decremented
for each character moved. Both registers are
incremented by one, the character addressed by the first
operand is moved to the character addressed by the
second operand, and TO is decremented by one. The
byte moved is checked for a match using the variant
byte. This process of register increment, character
movement, character match check is repeated until the
character moved meets the termination criteria specified
by the variant byte. The number of bytes moved is the
difference between the original value of TO and the final
value of TO at the termination of the instruction. If TO
was initially zeroed then the count is the negative value
of TO. If TO was initially 1 then the count is the negative
value of TO excluding the delimter. Both registers are
incremented at least one.

48 Instruction Set

• ..
•

• . '

•

MIIDT

MIIR

MIlT

MOV

r,r,v

r,r

r,r

a,a
b,b
m,a
n,a

r,r

Move Incrementing Incrementing through
Delimiter or to Count - This instruction combines
the functions of the MIlD and MIlT instructions. Both
registers are incremented, then the character addressed
by the first operand is moved to the character addressed
by the second operand, then TO is decremented. The
byte moved is checked for a match using the variant
byte. This process of register increment, character
movement, character match check, TO decrement, and
TO not zero check continues until either TO equals zero,
or the byte moved meets the termination criteria
specified by the variant byte, then the instruction
terminates. If TO is initially zero, no character
movement occurs but both registers are incremented
one.

Move Incrementing Incrementing to R15 - This
instruction moves a string addressed by the first
operand to the address of the second operand until the
first register equals the address of R15. Both registers
are incremented, then the character addressed by the
first operand is moved to the character addressed by the
second operand. Then the first operand is checked for
an address match with R15. The process of increment,
move and compare address is repeated until the first
operand and R15 have the same address. If the first
operand intially equals R15, no operation is performed
and no register increments occur. If R15 is not ahead of
and in the same string as the first operand, this
instruction will not terminate resulting in a runaway
register .

Move Incrementing Incrementing to Count - This
instruction moves a string of fixed length. TO contains a
byte count (up to 65,535) specifying the number of bytes
to be moved. Both registers are incremented by one,
then the character addressed by the first operand is
moved to the character addressed by the second
operand, then TO is decremented by one. The process of
register incrementation, character movement, and
decrementation of TO continues until TO becomes zero.
If TO is initially zero, no operation is performed and no
register increments occur.

Move - The first operand replaces the value of the
second operand.

For the address register form, all eight bytes that define
the register are copied into the second register.

49 Instruction Set

r,s

s,r

s,s

MSDB r

MSG# n,n

MSXB r

MTLY n,m
n,n

MUL a
n

For the register to storage register form, the effective
register of the address register replaces the contents of
the storage register.

For the storage register to register form, the contents of
the storage register replace the address register. An
attempt is made to attach the register to a frame and if
the storage register is not legal, address errors will be
detected at this time.

For the storage register to storage register form, the
contents of the first storage register replace the contents
of the second storage register. No address errors are
detectable.

Move String Decimal to Binary - The ASCII decimal
string at r+ 1 is converted to a binary number and stored
in FPO. This instruction zeroes FPO, H6, and H7, then
executes an MFD r instruction.

Message Number - The value of the first operand
literal is multiplied by 4, then 4 is added (n*4+4) and
the result is moved to H3. The second operand literal is
moved to H2. This instruction is typically used before
calling the subroutine GET.MSG. The first operand
specifies a message class. The second operand specifies
a sequence number in that class.

Move String Hexadecimal to Binary - The ASCII
hexadecimal string at r+ 1 is converted to a binary
number and stored in FPO. This instruction zeroes FPO,
H6, and H7, then executes an MFX r instruction.

Mode ID - This assembler directive reserves storage
and sets up the symbol in the label field to be of type m,
which is a mode ID. A mode ID consists of a four-bit
entry point number and a twelve-bit frame number
(FID). The first operand in the instruction is used to
specify the entry point number, and must be in the
range ASCII 0-15; hex A-F. The second operand is used
to specify the frame number and may be a literal or a
previously defined mode ID.

Multiply - The contents of DO are multiplied by the
operand. The 4-byte result is stored in DO. The sign of
the product is determined by the rules of algebra. No
check for hexadecimal validity or overflow is made.

50 Instruction Set

•

•

MULX

MX.B

NEG

NEP

NOP

ONE

OR

ORG

READ

a
n

r,c
r,a
r,s

a

*

*

a

c,n
r,n
r,r

I
n
*
*n

r

Multiply Extended - The contents of FPO are
multiplied by the operand. The 6-byte result is stored in
FPO. The sign of the product is determined by the rules
of algebra. No check for hexadecimal validity or overflow
is made.

Move Hexadecimal to Binary - The ASCII
hexadecimal string addressed by the register is
converted to a binary number and stored in the second
operand. Then the byte is examined, and if hexadecimal
(ASCn 0-9 A-F), the second operand is multiplied by
sixteen and the binary equivalent of the number
addressed by the register is added to the second
operand. No check for hexadecimal validity or overflow
is made.

Negate - The operand is negated by replacing its value
with its two's complement. Thus, the sign of the
operand is changed. For example, 10 becomes -10, -300
becomes 300, etc.

Null Entry Point - This instruction specifies an entry
in the jump table for an entry point that has no value.
Equivalent to a HALT instruction.

No Operation - This instruction increments to the
next instruction without performing any operation.

One - The value of the operand is set to a numeric one.
The low order bit is set. All other bits are zeroed.

Logical OR - The byte referenced by the first operand
is logically ORed with the mask byte referenced by the
second operand. The result replaces the first operand.
The second operand is unchanged.

Origin - An assembler directive that sets the location
counter to the value of the operand, which may be
symbolic.

Read Input Queue - The next character from the
terminal input queue replaces the byte addressed by the
register. If the input queue is empty, the process is
suspended until a character is received from the
terminal. Characters transmitted by the terminal are
automatically queued in the PIB for the terminal.
Control characters are not echoed.

51 Instruction Set

RQM

RTN

SB

SET.TIME

SETUP.BAUD

SETUP

SETUPO

SETUP 1

•

•

b

•

•

r,n,d
r,n,n
r,t,d

r
r,d
r,n
r,d,n

r
r,d
r,n
r,d,n

Release Time Quantum - The process releases its
time slice, getting deactivated and the next process is
selected. The process must then wait for the next
select-next-user (SNU). The instruction is used in a
program loop that waits for an external event to occur.
No assumption can be made about the timing of an
RQM instruction.

Return from Subroutine - A location is popped off the
stack by decrementing the return stack (RSCW A) by 4.
Then a branch is made to that address. If the stack
pointer underflows, the debugger is entered with a
"RTN STACK EMPTY" abort.

Set Bit - The referenced bit is set to one.

Set System Time and Date - This monitor call sets
the time and date in internal format. FPO is set with T3
equal to the date in the number of days since Dec 31,
1967; DO equal to the time as number of milliseconds
since midnight.

Set Baud - This instruction sets the baud rate (that is,
transmit/receive rate) of the RS-232 communications
line associated with the PIB whose number is in Tl. A
negative number in Tl indicates the line attached to the
active process. The baud rate is in TO. Standard baud
rates are: 110, 150, 300,600, 1200, 2400,4800, 9600, and
19200.

Setup Register - The first operand is setup to the
frame specified by the Frame ID in the second operand.
The third operand gives the displacement within the
frame.

Setup Register to Link Field - The first operand is
setup to the specified frame. For the single operand
form, the FID is assumed to be in DO. For the two
operand form, the Frame ID is in the second operand.
Since the displacement is set to zero, the register
addresses the first byte in the frame, which is the Link
Field. The third operand gives the displacement within
the frame.

Setup Register to Data Byte - The first operand is
setup to the specified frame. For the single operand
form, the FID is assumed to be in DO. For the two
operand form, the Frame ID is in the second operand.
Since the displacement is set past the Link Field, the
register addresses the first Data Byte in the frame. For
the three operand form, the third operand is added to
the FID in DO.

52 Instruction Set

•

•

SHIFT

SICD

SID

r,r

r,v

r,v

Shift - The byte addressed by the first operand is
shifted right one bit. A zero bit is shifted in on the left.
The shifted byte replaces the byte addressed by the
second operand.

Scan Incrementing Counting Delimiters - The
function of this instruction is to position the register at a
specified point within a data structure containing
several levels of delimiters in a minimal number of
instructions. The register typically points one character
before where the scan is to begin. TO contains the
delimiter count. The variant byte specifies the scan
mode and termination criteria. If TO is initially zero, or
one, if bit 0 of the variant byte is set, the instruction
terminates immediately without incrementing the
register. The scan will unconditionally stop on a
Segment Mark (X'FF').

Termination is considered normal if the specified
number of delimiters are counted. With normal
termination, TO is zero and the register points at the last
delimeter counted.

Termination is considered abnormal if the instruction
terminates before the specified number of delimiters are
counted (for example, by reaching a delimiter logically
greater than the one specified). With an abnormal
termination, the count in TO is the number of delimiters
that must be inserted to create the data structure which
was initially implied. Also, the register is decremented
by one character position in preparation for a
subsequent character string instruction.

The variant byte is used differently for this instruction
from the way it is used for other character string
instructions. The format for SICD is detailed in the
Character String Instructions section.

Scan Incrementing to Delimiter - This instruction
is used to find the end of a string, or to scan a string to
find the first or last occurrence of a character in the
string. The first operand is incremented. Then the byte
addressed by the register is checked for a match with
the variant byte. The scan continues until the character
addressed by the first operand meets the termination
criteria specified by the variant byte. This instruction
will alter the position of the register by at least one
location.

53 Instruction Set

SIDC

SIDT

SIT

SLEEP

SR

r,v

r,v

l'

l'

r,a
r,s

Scan Incrementing to Delimiter Counting Down -
This instruction scans a string from a register to a
delimiter and keeps a count of the number of bytes
scanned. The register of the first operand is
incremented one. Then TO is decremented one, then the
byte addressed by the register is checked for a match
with the variant byte. The process of scan, decrement
TO, check match continues until the byte addressed by
the register meets the termination criteria specified by
the variant byte. The number of bytes scanned is the
difference between the value of TO before and after the
instruction. This instruction will alter the position of
the register by at least one location.

Scan Incrementing to Delimiter or to Count -
This instruction scans a string from a register to a
delimiter or until TO becomes zero. The register of the
first operand is incremented by one. Then TO is
decremented by one. Then the byte addressed by the
register is checked for a match with the variant byte.
The process of scan, TO decrement, byte match test
continues until the byte addressed by the register meets
the termination criteria specified by the variant byte or
TO becomes zero. No operation is performed if TO is
initially zero and no register incrementation occurs.

Scan Incrementing to Count - This instruction scans
the register forward the number of bytes specified by the
contents of TO. The register is incremented and TO is
decremented until TO becomes zero. No operation is
performed if TO is initially zero.

This instruction is logically equivalent to the instruction
"INC r,n", however, the SIT instruction can be used to
force usage of exception mode processing via XMODE if
the register increments to the end of a linked frame set.

Sleep - The tally addressed by the register is zeroed
(used to clear tally locks), then the active process is put
to sleep, that is, deactivated and not reactivated, only
when the system time equals the internal time in DO.
Sleep should never be done on the lock byte of a PCB as
it will result in zeroing the ACF.

Set Register to FID - This assembler directive
reserves storage and sets up the symbol in the label field
to be of type s, storage register. The first operand
specifies the displacement of the generated byte address.
The second operand is the FID. If the high-order bit of
the value of the second operand is set, the byte address
is in unlinked format; if zero, it is in linked format.

54 Instruction Set

•

•

SRA

STORE

SUB

SUBX

TEXT

TIME

TLY

WRITE

r,a
r,c
r,l
r,s

a
s

a
n

a
n

n{,n}

...

t

r

Set Register to Address - The first operand is set
addressing the first byte, that is, the leftmost or
high-order byte, addressed by the second operand.

Store Accumulator - The portion of the accumulator
matching the size of the operand is stored in the
operand. The accumulator is not changed.

Subtract from Accumulator - The value of the
operand is subtracted from DO. The difference replaces
the contents of DO.

Subtract Extended - The value of the operand is
generated by extending the sign bit of the original
operand, and then subtracting the 6-byte value from
FPO. The difference replaces the contents of FPO.

Reserving Text - Reserves storage for character or
hexadecimal data strings, or a combination of the two.
The data must be enclosed in single quotation marks
and prefaced with the letter C to select character data,
or X, to select hexadecimal data. Combined forms of the
two data types are separated by commas.

{l} TEXT C'0123' Character string (x'30313233')
{l} TEXT X'0123' Hexadecimal string (Binary 0000
0001 00100011)
{l} TEXT C'abc',X'FF'{, ... } Combined forms

Get System Time - This monitor call loads FPO with
T3 set to the date in number of days since Dec 31, 1967;
DO equal to the time as the number of milliseconds since
midnight.

Define Tally - This directive is used in parameter
tables and monitor code to reserve 2 bytes of storage.
The tally defined contains the value specified by the
operand, which may be symbolic,

Write to Output Queue - The byte addressed by the
register is placed into the terminal output queue. If the
queue is full, the process is suspended until there is
room in the queue.

55 Instruction Set

XCC

XOR

XRR

ZB

ZERO

r,r

c,n
r,n
r,r

r,r

r,s
s,r
s,s

b

a
s

Exchange Characters - The character addressed by
the first operand is exchanged with the character
addressed by the second operand.

Logical Exclusive OR - The byte addressed by the
first operand is logically exclusive ORed with the mask
byte referenced by the second operand. The result
replaces the byte referenced by the first operand. The
byte referenced by the second operand is unchanged.

Exchange Register with Register - The contents of
the two registers are exchanged. In this instance, the
operands are both source and destination operands. All
eight bytes from each operand are copied to the other
operand.

The storage register instructions expand into macros
which use R15 and MOV instructions.

Zero Bit - The referenced bit is zeroed.

Zero - The contents of the operand are replaced by zero.

56 Instruction Set

•

•

System Software

PICK is a virtual memory machine with all of the virtual memory (i.e., disk) being
directly addressable as if it where real memory.

The virtual memory of a PICK system resides on a disk drive divided into two types of
frames: 204B-byte frames for the ABS area and 512-byte frames for the data area.

Executable Area (ABS)

The lower-numbered frames on the disk are ABS frames, which contain system
software. The ABS area consists of executable object code. Software written in PICK
Assembly Language is loaded onto disk in the executable area. The length of the
executable area is a system generated parameter between 1023 and 4095. Frames 1
through 703 and frames 900 through 1023 of the executable area are reserved for
current and future PICK software.

FID (hex)
+-----------+---------------+

0001 0001 I PICK
· I Assembly

0703 02BF I Code
+-----------+---------------+

0704 02CO I User
· I Assembly

0899 0383 I Code
+-----------+---------------+

0900 0384 I PICK
· I Assembly

1023 03FF I Code
+-----------+---------------+

Figure 1 Executable Area (ABS)

57 System Software

Data Area

All frames after the ABS area are data frames. These frames contain process
workspace, file and overflow areas.

Process Workspace Areas

The process workspace area contains the process' control blocks and primary and
secondary workspaces.

FID (hex)
+-----------+---------------+--------------+

1024 0400 I Line 0 PCB
· I and Primary I

1055 041F I Workspace I
+- - - - - - - - - - -+- - - - - - - - - - - - - --+

1056 0420 I Line 1 PCB
· I and Primary I

1087 043F I Workspace I
+- - - - - - - - - - -+- - - - - - - - - - - - - --+

1088 0440 workspaces

WSSTART-1

Spooler PCB
and Primary
Workspace

Process
Control
Blocks
and
Primary
Workspaces

+- - - - - - - - - - -+- - '" - - - - - - - - - - - -+- - - - - - - - - - - - --+
WSSTART I Line 0 Secondary

· I Secondary Workspaces
· I Workspace

+- - - - - - - - - - -+- - - - - - - - - - - - - --+
I Line 1

· I Secondary
· I Workspace

+- - - - - - - - - - -+- - - - - - - - - - - - - --+
I SPOOLER

· I Secondary
· I Workspace

+- - - - - - - - - - -+- - - - - - - - - - - - - - -+- - - - - - - - - - - - --+

Figure 2 Process Workspace Area

58 System Software

•

., ..
•

Process Control Blocks

The control blocks for a process are the Primary Control Block (PCB), Secondary
Control Block (SCB), Debugger Control Block (DCB) and Quadrenary Control Block
(QCB).

The PCB contains storage for a process' registers, accumulators, pointers to the
workspaces and additional storage elements. The SCB and QCB contain additional
storage elements. The DCB contains storage elements for the Debugger.

The MAP verb can be used to diagram the elements of the process control blocks.

Primary Workspace Area

The primary workspace area is made up of 32 contiguous frames, pre-defined and
available to each process. A quick-reference table of a process workspace is shown in
Appendix B.

Each workspace is defined by a beginning pointer and an ending pointer, both of which
are storage registers (SjR's). When the process is at the TCL level, all these pointers
have been set to an initial condition. At other levels of processing, the beginning
pointers should normally be maintained; the ending pointers may be moved by system
or user routines. The address registers (AjR's) that are named after these workspaces
(IS, OS, AF, etc.) need not necessarily be maintained within their associated
workspaces; however, specific system routines may reset the AjR to its associated
workspace. See Appendix C for the Register Conventions associated with these
workspaces. Conventionally, a buffer beginning pointer addresses the byte preceding
the actual location where the data starts. This is because data is usually moved into a
buffer using one of the "move incrementing" type of instructions, which increment the
AjR before the data movement.

Secondary Workspace Area

The secondary workspace area is a set of contiguous, linked frames initialized by the
system at coldstart or system generation time. Each process has three secondary
workspaces: IS, OS and HS, usually of 127 frames each. WSSTART is the starting FID
of the secondary workspaces, which continues to the end of the workspace area.
Processes that require additional workspace acquire and release that space from the
overflow pool through standard routines such as: GETOVF, GETBLK, GETSPC and
RELOVF, RELBLK, RELCHN.

The starting FID of the workspace may be computed by:

WSSTART = PCBO + (number oflines) * 32

Each line has (3) workspaces of WSSIZE contiguous frames.

59 System Software

Files and Overflow Areas

After the work area are the PICK files, beginning with the SYSTEM file. The base of
the SYSTEM file, SYSBASE, is the beginning of the file space. On a newly generated or
restored system, all other files on the system immediately follow the SYSTEM file. At
the end of the files is the start of Available Space, (Overflow), which continues until the
end of the disk, MAXFID. (See the left side of the files figure.)

On a running system, the Overflow area will become fragmented as frames are taken
and returned to the Overflow pool. (See the right side of the files figure.)

+-----------+ +---------------+
SYSBASE

files
files

+---------------+
Overflow

+-----------+ +---------------+
files

+---------------+
Overflow

+---------------+
Overflow

files

+---------------+

MAXFID Overflow
+-----------+ +---------------+
After Restore Fragmented

Figure 3 File and Overflow Areas

Beginning immediately after the Work Area, the remainer of the virtual memory,
called the File Area, is available for the storage of data in files. The portions of the File
Area not allocated to files are maintained as a pool of Available Space.

The beginning of the File Area is a system generation parameter called SYSBASE. If
may be computed via the following general formula:

SYSBASE = PCBO +
«number of processes) * 32) +
«number of processes) * (pre-assigned workspace) * 3)

60 System Software

•
" • • • • • • • • • • • • •

., ..
•

Pre-assigned work-space is set to WSSIZE frames per process per work-space (WSSIZE
is generally 127). Each process (including the SPOOLER) had 3 secondary workspaces
of WSSIZE frames each.

As an example, a system with 17 channels (18 processes, including SPOOLER) will
have the start of the File Area at frame:

1024 + (18 * 32) + (18 * 381) = 8458

The end of the File Area is the highest available disk frame, MAXFID.

File Area frames which are not allocated to the files are maintained as a pool of
Available Space, often called Overflow. Available Space is used by the PICK system file
management routines as additional data space and scratch workspace by other
processors. The PICK system maintains a table of pointers identifying the Available
Space, which may be either linked or contiguous. Contiguous Available Space consists
of blocks of connecting frames, defined by starting and ending numbers, that can be
taken out of the pool either singly or as a block. Linked Available Space can only be
taken a frame-at-a-time. Conversely, space may be released by processors to the linked
available pool a frame-at-a-time, or to the contiguous pool as a block.

At the conclusion of a FILE-RESTORE, there will be one principle block of Contiguous
Available Space, extending from the end of the current data space through the last
available data frame.

As the system obtains and releases Available Space and as files are created and deleted,
Available Space becomes fragmented. At any particular time there may be several
blocks of Contiguous Available Space, and a chain of Linked Available Space. Available
frames will be placed in the Linked Available Chain only when there are 31 sets of
Contiguous Available Space, representing the maximum that the system space
management routines can maintain.

Logically, there is no differences between Available Space in linked chains and
contiguous sets; however, certain processors, such as the CREATE-FILE processor,
obtain frames from contiguous space only. Therefore, if Available Space is severely
fragmented, there may actually not be enough space to create a large file.

61 System Software

System Subroutines

Assembly language programming is facilitated by a set of system subroutines that allow
standardized interaction with the computers resources. These subroutines work with a
set of addressing registers, storage registers, tallies, characters, bits, and buffer
pointers, collectively called functional elements. In order to use any of these routines,
therefore, it is essential that the calling routine set up the appropriate functional
elements as required by the called routine's input interface.

The standard set of functional elements are pre-defined in the Virtual Permanent
Symbol File (VIR.PSYM), and is therefore always available to the programmer.
Included in the VIRPSYM file are the mode ID's (program entry points) for the
standard system subroutines. The symbols in the VIRPSYM file should be treated as
reserved symbols, although there is no reason that a symbol internal to an assembly
language program cannot have the same name as a symbol defined in the VIRPSYM
file, so long as the symbol defined in the VIRPSYM file is not referenced in the
assembly language program.

Re-Entrancy

In practically all cases, the system software is re-entrant; that is, the same copy of the
object code may be used simultaneously by more than one process. For this reason, no
storage internal to an assembly language program should be utilized. Instead, the
storage space directly associated with a process is used. This is part of the process's
Primary, Secondary, Debugger, and Quadrenary Control Blocks.

An assembly language program may utilize storage internal to the program if it is to be
used in a non re-entrant fashion; however, in most cases, the functional elements
defined in the VIRPSYM file will be sufficient.

In some cases an assembly language program may be required to use storage internal
to the program. These programs should be set up to be executable by only one process
at a time; that is, the code is locked while a process is using it, and any other process
attempting to execute the same code waits for the first process to unlock it.

The following sequence illustrates this:

aRC X'OOOO'
LOCKBYT TLY X'OOOO' INITIAL CONDITION FOR LOCK BYTE

(RESERVE TALLY FOR LOCK BYTE) CMNT *

SETUPO R1S,LOCKBYT POINT R1S TO LOCK BYTE AT X'OOOO'
LOCK R1S LOCK IF POSSIBLE ELSE WAIT
BSL DECINHIB ENABLE BREAK KEY

62 System Software

• ..

•

Frame Usage

Frames are referenced in linked or unlinked mode. In unlinked mode a frame contains
512 bytes of addressable space, physical bytes 0 through 511. In linked mode a frame
contains 500 bytes of addressable space, physical bytes 12 through 511, and a 12 byte
header, physical bytes 0 through 11, containing link information.

OFFSET LINKED MODE
< 0 byte in previous frame

uses backward links,
if backward links = 0
'BACKWARD LINK ZERO'
if backward links > MAXFID
'REFERENCING ILLEGAL FRAME'

o byte 511 in previous frame
1-500 physical bytes 12-511
1-511
> 511 byte in next frame

uses forward links,
if forward links = 0
'FORWARD LINK ZERO'
if forward links > MAXFID
'REFERENCING ILLEGAL FRAME'

Register Format

UNLINKED MODE
'CROSSING FRAME LIMIT'

physical byte 0 of frame

physical bytes 1-511
'CROSSING FRAME LIMIT'

The Virtual machine has 16 registers -- RO through R15. Each register is 8 bytes long,
defined within the process's PCB/SCB/DCB/QCB. The format of these registers is as
follows:

BYTE
OFFSET

0-1
2-3
4
4:0
4:1
5-7

DESCRIPTION
real memory segment
real memory offset
flags
bit 0 indicates frame is LINKEDjUNLINKED
bit 1 indicates frame is ATTACHED/DETACHED
FRAME ID (FID)

63 System Software

Storage Register Format

Each storage register is 6 bytes in length, defined within the PCB/SCB/DCB/QCB.
The format of these registers is as follows:

BYTE
OFFSET

0-1
2
2:0
2:1
3-5

DESCRIPTION
real memory offset
flags
bit 0 indicates frame is LINKED(UNLINKED
bit 1 indicates frame is ATTACHED/DETACHED
FRAME ID (FID)

Addressing Modes

The Virtual machine supports 4 addressing modes:

MODE NAME MODE DESCRIPTION
IMMEDIATE the data is contained in the operand

MCC C'G' ,R1S
DIRECT the contents of one of the 16 registers is

referenced
MOV R7,R8

INDIRECT the contents of one of the 16 registers (RO - R1S)
is used to reference the data
MCC R7,R8
MIC R7,R8
MIl R7,R8

RELATIVE the data is referenced using one of the 16
registers (RO through R1S) and an offset
MOV RO;10,VAR

PSYMFormat

The PSYM files (PSYM, VIR.PSYM, and NAT.PSYM) contain global symbols:

SYMBOL DESCRIPTION LENGTH PHYSICAL OFFSET
B bit 1 bit =OFFSET
C character 1 byte =OFFSET
D double tally 4 bytes =OFFSET*2
F triple tally 6 bytes =OFFSET*2
H half tally 1 byte =OFFSET
R register 8 bytes =OFFSET*2
S storage register 6 bytes =OFFSET*2
T tally 2 bytes =OFFSET*2

64 System Software

•
" • • • • • • • • • • • • • • • • • • ..
• ..

•

The PSYM symbols have the following format:

line 1 B/C/D/H/L/F/S/T
line 2 offset
line 3 base register

line 1 R
line 2 register number

line 1 M
line 2 enter point
line 3 frame id

line 1 N
line 2 value

(0 through 15)

65 System Software

66

• • • • • • • • • • • • • • • • • • • ..
•

System Software • • • •

•

Subroutine Categories and Descriptions

Many of the standard Pick System software routines are available to assembly language
programmers. These routines, which may be considered functional extensions to Pick
Assembly Language, are particularly useful for interacting with the file system and for
performing I/O with the terminal, tape, and printer.

Unless otherwise specified, each routine is called as a subroutine using a BSL
instruction and returns to the calling program by way of an RTN instruction.

The available routines are described in the following pages using the structure shown
below. All sections of the structure are not present in every description, but if present,
they appear in the order given.

SUBROUTINE.NAME

This section gives a brief description of the functional operation of the
system routine.

Input Interface

This section describes input parameters which the calling program
should pass to the system routine.

Output Interface

This section describes output parameters passed back to the calling
program from the system routine.

Element Usage

This section lists elements which may be altered during execution of
the system routine. A user should also assume that DO, DI, D2, T4,
T5, R14, R15, SYSRO, SYSRI, and SYSR2 may be altered by any
system routine.

Subroutine Usage

Exits

This section lists other subroutines which may be called by the system
routille and specifies the maximum additional subroutine nesting level.

This section specifies subroutines which may be called upon
completion of the current system routine.

67 System Software

Errors

This section describes any error conditions which may be detected by
the system routine.

Example

This section gives an example of how to use this subroutine.

68 System Software

•

•

Conversion Subroutines

These routines do data conversion. MBDSUB is a stand-alone subroutine which
converts a binary number to a decimal ASCII string. It is used by the different
variations of the MBD instruction.

The other routines described in this section are elements of the PICK System
Conversion Processor, which performs the data conversions defined for ACCESS and
PICK/BASIC, and also provides a facility for implementing user-written conversion
routines. The Conversion Processor, invoked by calling CONV, determines which user
routine is requested, transfers to it and returns through CONVEXIT.

CONV
CONVEXIT
MBDSUB
MBDSUBX
CVDreg
CVXreg
ASCII
EBCDIC

conversion processor
conversion processor exit
convert binary to decimal
convert binary to decimal
convert ASCII decimal to binary
convert ASCII hex to binary
convert ASCII to EBCDIC
convert EBCDIC to ASCII

69 System Software

-~ ---------

File I/O Subroutines

The file I/O routines are complementary and interrelated. Some of them are used
internally by others. Notice that the interfaces for GETITM, RETIX, and UPDITM are
very similar.

A file is opened by calling the open routine, which defines the file by storing its base fid,
modulo, and the appropriate flags in basemod. A file must be opened before calling any
of the other file I/O routines.

Once a file is opened, a specific item is retrieved from the file by calling RETIX. All
items of the file are retrieved by repetitively calling GETITM, which internally uses
GNSEQI, GNTBLI, and RETIX to retrieve the items in the order in which they are
stored. Items are added, deleted, or modified by calling UPDITM.

GETITM
GMMBMS
GNSEQI
GNTBLI
DICTOPEN
RETIX
UPDITM
RDREC
HASH
LINK
GLOCK
GUNLOCK
GETACBMS
CONFIG
SORT

get the next item
get the master dictionary
get the next sequential item
get next table entry
open file
retrieve item
update item
read links of a FID
locate group into which item-ID would hash
initialize a set of contiguous frames
lock a group
unlock a group
get base, modulo and separation of ACC file
get base, modulo and separation of SYSTEM file
ACCESS interface

70 System Software

•

•

Overflow Subroutines

The Overflow routines manage the pool of common available frames known as the
system Overflow space.

ATTOVF
NEXTIR
RELOVF
GETOVF
DLINIT

attach a frame from Overflow
attach a frame from Overflow off IR register
release a frame to Overflow
get a frame from Overflow
get a set of contiguous frames from Overflow

71 System Software

System-Level Retrieval Subroutines

These subroutines retrieve system configuration parameters and allow access to the
system time and date.

The TIME routine gets the current system time in hours, minutes, and seconds (that
is, hh:mm:ss). DATE returns the system date in day, month, and year (that is, dd
mmm yyyy). GMAXFID returns the largest legal frame number of the executing
system configuration. The GPCBO routine returns the frame number of the level 0
PCB for process O.

DATE
GMAXFID
GPCBO
TIME
TIMDATE
PRIVTSTI
PRIVTST2
LINESUB
SLEEP
DECINHIB

get date
get maximum frame number
get frame number of PCBO
get time
get time & date
check for a minimum of privilege level "SYSl"
check for a minimum of privilege level "SYS2"
get process line number
put process to sleep for specified time
enable break key

72 System Software

•

•

Tape Subroutines

These routines manipulate and perform the I/O for the virtual tape drive.

TPSTAT
TPINIT
TATT
TDET
WEOF
TPREAD
TPWRITE
WTLABEL
RDLABEL

get tape status
initialize the tape and its status word
attach the tape unit to current process
detach the tape unit from current process
write end offile mark
read data from tape
write data to tape
write a standard label to tape
read a standard label from tape

73 System Software

Terminal and Printer Subroutines

These subroutines perform terminal I/O and write data to printers, tape, and hold files.

READLIN issues a prompt character, then reads the user's response into the ib buffer.
Several editing functions are available as characters are being input. WRTLIN outputs
a line of data from the OB buffer to the active process' terminal. It provides automatic
footing, heading, and page numbering capabilities. However, if WRTLIN is called with
LPBIT set, the line of data is not sent to the terminal, but is routed as specified by the
SP-ASSIGN options that are in effect. These options, set by the SP-ASSIGN verb, may
specify that the data be spooled to a printer, written to a hold file, written to tape, or
simply discarded. WRTLIN calls SP.PPUT to accomplish the specified output.

The GET.MSG and PRINT routines retrieve and display system messages. The
PRTERR routine retrieves a message from the system MESSAGES file and displays it,
along with parameters which may be provided. SYSTEM. CURSOR performs cursor
positioning and forms control for either the terminal or printer.

GET.MSG
PCRLF
PRINT
PRTERR
READLIN
SYSTEM. CURSOR
WRTLIN
GETBUF
PONOFF
BLOCK.LETTERS
GET OPT
SETTERM
RESETTERM
SETLPTR
SETUPTERM
INITTERM

get message
print cr If on terminal
print message on terminal
print error message
read line from terminal
terminal/printer control
write line to terminal
read a line; process control characters
toggle echo on or off
block print a string
process and option string
set term type
set term type
set line printer as output device
setup terminal/printer characteristics
setup terminal/printer characteristics

74 System Software

•

•

Workspace Routines

These routines manipulate a process' workspace.

PINIT
GETUPD
TSINIT
ISINIT
WSINIT
HSISOS
ISOS
XlSOS

initialize PCB, SCB and DCB
initialize the UPD register triad
initialize the TS register triad
initialize all workspace
initialize BMS, AF, CS, IB, OB, TS triads
initialize HS, IS, OS register triads .
initialize IS and OS register triads
swap IS and OS register triads

75 System Software

Wrapup Routines

These routines do wrapup processing, which consists of processing the history string,
closing open print files, releasing temporary Overflow space, and initializing certain
process-related elements in preparation for beginning another task.

WRAPUP is the primary wrapup routine. MD99, MD992, MD993, MD994, and
MD995 are entries to WRAPUP which offer convenient interfaces for generating error
messages.

Substrings within the history string may specify retrieving and displaying error
messages from the MESSAGES file, updating file items, and deleting file items.

MD99
MD992
MD993
MD994
MD995
MD999
LOGOFF

message numbers in REJCTR, REJO, REJI; uses RMODE
message number in CI, parameter in D9
message number in CI, parameter in C2
message number in CI, parameter at R4
message number in CI, parameter at BMSBEG
process history string; uses RMODE
wrapup a process and log it off

-------- ----

•

76 System Software

•

• ..
• • • • • • • •

ASCII

Convert a character from ASCII to EBCDIC.

Input Interface

IB

Output Interface

IB

Element Usage

R15
TO

Subroutine Usage

none

R

R

R
T

Points to the character to be converted.

Points to the same location but now the character is
EBCDIC equivalent.

77 System Software

ATTOVF-ATTSPC

Attach Overflow - Obtain a frame from the overflow table and link it to the frame
specified in double tally RECORD. The forward link field of the frame specified in
RECORD is set to point to the overflow frame obtained. The backward link field of the
overflow frame is set to the value of RECORD. The other link fields of this overflow
frame are zeroed.

ATTSPC - functions the same as ATTOVF except that if no overflow is available, the
user is prompted to try again or quit.

Input Interface

RECORD

Output Interface

OVRFLW

Element Usage

INHIBITH
DO
R14
R15

Subroutine Usage

GETOVF

D

D

B
D
R
R

Contains the FID of the frame to which an overflow frame
is to be linked.

Contains the FID of the overflow frame if obtained, or
zero if no more frames are available.

Incremented while overflow table is accessed.
Used by GETOVF
Utility
Utility

Two additional levels of subroutine linkage required

•
78 System Software • • • •

•

BLOCKLETTERS

This routine prints block letters on the terminal or line printer. It is used, for instance,
by the TCL verbs BLOCK-TERM and BLOCK-PRINT.

Input Interface

IS

ZBIT

OBSIZE

OB
SBO

AFBEG
BMSBEG
HSEND
LISTFLAG
SMCONV
NOBLNK
LFDLY
PAGSIZE
PAGSKlP
PAGFRMT

Output Interface

OB
PAGINATE
PAGHEAD

Element Usage

BITS
SCO
SCI
SC2
REJCTR
CI
CTRI6
CTR17
CTR18
CTRI9
DO
Dl

R

B

T

R
B

S
S
S
B
B
B
T
T
T
B

R
B
S

C
C
C
C
T
T
T
T
T
T
D
D

Points one byte before the first character to be output; the
end of data is marked by the character pair SM Z (Z); no
space after the SM. If any element in the data-string
contains a SM, it must be terminated by a SB.
If set, output is directed to the terminal, otherwise output
is passed to the spooler for line printer listing or other use.
Contains the maximum number of characters on each
output line.
= OBBEG.
If set, no test for terminal or printer output is made,
terminal or printer characteristics are not initialized, the
output device is not advanced to top-of-form, and the
heading is not set null. All these actions take place if SBO
is not set.

Point to scratch area.
At end of history string.
Output list/no list.

As required by WRTLIN.
from term settings.

Pagination control.

= OBBEG.
set.
Points to a null page heading (SM) at HSEND if SBO= o.

79 System Software

BASE
MODULO
SEPAR
IR
UPD
BMS
AF
OB
CS
TS
R15
SR4

SR22
CTR
R14
T7
SYSR

Subroutine Usage

D
T
T
R
R
R
R
R
R
R
R
S

S
T
R
T
S

Utility.

Used by CVTNIR.
Used by RETIX.
Used by WRTLIN.

RETIX; GBMS if the system file "BLOCK-CONVERT" is found; CVTNIR;
WRTLIN; NEWPAGE if required; PRNTHDR if SBO=O; PCLOSEALL and
SETLPTR if SBO= 0 and ZBIT = 0; SETTERM if SBO= 1 or ZBIT = 1.

Six additional levels of subroutine linkage required if "BLOCK-CONVERT" is a
"Q"-code item in the master dictionary, otherwise five levels required.

Errors

BLOCK-SUB exits to WRAPUP (MD995 or MD99) under the following conditions:

Error Number
520
521
522

523
524
525

Error Type
Null input data.
Too many characters (more than nine) in a word to block.
BLOCK-CONVERT file missing or improperly defined in
the master dictionary.
Block output would exceed page width.
An input character is not in the BLOCK-CONVERT file.
An input character is improperly formatted in the
BLOCK-CONVERT file.

80 System Software

•

•

CONFIG - GPCBO

CONFIG and GPCBO both retrieve the FID for PCBO.

Input Interface

none

Output Interface

TO T Holds the FID ofPCBO.

Element Usage

R14 R
TO T

81 System Software

CONV - CONVEXIT

Conversion Exit - These entry points are used to call the entire conversion processor as
a subroutine, which will perform any and all valid conversions specified in the input
string. Other entry points may be used to perform certain specific conversions.
Multiple conversion codes are separated by VM's in the conversion string. Conversion
is called by the ACCESS pre-processor to perform conversions on "input" data (in
selection criteria), and by the LIST jSORT processor to perform "output" conversion.

CONY is the usual mode ID used to invoke conversion processing. The loop control
structure uses CONVEXIT as the entry point to which any part of the conversion
processor returns in order to check if more conversion is required (further VM's and
conversion codes in the conversion string).

Input Interface

TSBEG

IS

MBIT

DBIT
DAFI
XBIT

Output Interface

TSBEG
TS

TSEND
IS

S

R

B

B
B
B

S
R

S
R

Points one before the value to be converted; the value is
converted "in place", and the buffer is used for scratch
space; therefore it must be large enough to contain the
converted value; the value to be converted is terminated
by any of the standard system delimiters (SM, AM, VM,
or SVM).
Points to the first character of the conversion code
specification string for CONY; for CONVEXIT, points at
least one byte before the next conversion code (after a
VM) or AM at the end of the string, or to the AM; the
code string must end with an AM; initial semicolons (;)
are ignored.
Set if input conversion is to be performed; zero for output
conversion.
As required by TRANSLATE.

As required by FUNC.

Points one before the converted value.
Points to the last character of the converted value; a SM
is also placed one past this location; TS = TSEND = TSBEG
if a null value is returned.

Points to the AM terminating the conversion codes.

82 System Software

•

• • • • • Element Usage • • Element Conversions Where Used • • DBIT B F,T

• XBIT B F

• GMBIT B F
WMBIT B F • SBW B All • SBl2 B All

• DAFl B T

• DAF9 B T

• SC2 C C,D,F,T

• T3 T F,MD
T4 T D,F,MD,MT • T5 T D,F,MD,MT • T6 T D,F,M

• T7 T F,MD

• CTRl T C,F,G,T

• CTRl2 T F

• CTR13 T F
CTR20 T All • CTR21 T D,MD,T • CTR22 T D

• CTR23 T D,MD

• CTR28 T T

• Dl D C,F,MT,T
D2 D D,F,MD,MT • D3 D MT • D7 D F

• D8 D F

• D9 D F

• FPO F F,MD

• FPl F F,MD
FP2 F F,MD • FP3 F F

• FP4 F F

• FP5 F F

• FPX F F,MD,T

• (SYSRO)

• FPY F F,MD
BASE D T • MODULO T T

• SEPAR T T

• RECORD D T

• SIZE T T

• NNCF H T
FRMN D T • FRMP D T • NPCF H T

• • • • • 83 System Software • • •

Element Conversions Where Used

XMODE T C,F,MT,T
IR R T
BMS R T
RI4 R D,MD,MT,MX,T
RI5 R All
SYSRI S T
SYSR2 S T
S4 S T
S5 S F
S6 S C,T
S7 S All
SRO S C,F
SRI S F
SR4 S C,T

Subroutine Usage

CVTHIS for "U" conversions; QCORR for "G" conversions; TRANSLATE for "T"
conversions; CONCATENATE for "C" conversions; additional subroutines as
used by routines listed under "Exits" below, and by user-written routines.

The number of additional levels of subroutine linkage required depends on the
conversions performed - see the documentation for the various conversion
routines for more specific information.

NOTE: For "F" conversions, CFUNC may call CONV recursively.

User Exits Conversion Processing

The conversion processor will pass control to a user-written routine if a "uyxxx"
code is found in the conversion string, where "xxx" is the hexadecimal mode ID of
the user routine and where "y" is the entry point. This routine can then perform
special conversion before returning. The input interface for the user routine will
be identical to that described in the preceding section. After performing the
conversion, the user routine should set up the output interface elements to be
compatible with CONVEXIT, and then exit via an external branch to that point to
continue the conversion process if multiple conversions are specified. further
conversions from being performed. Elements used by the regular conversion
routines may safely be used by user routines; however, if additional elements are
needed, a complete knowledge of the processor that called CONV (LIST,
SELECTION, etc.) will be necessary.

84 System Software

•

•

Exits

To IDATE for "D" conversions on input (MBIT= 1); to ODATE for "D" conversions
on output; to ICONVMD or OCONVMD for "MD" conversions on input or output;
to CFUNC for "F" conversions; to TlMECONV for "MT" conversions; to
HEXCONV for "MX" conversions; all these routines, however, return to
CONVEXIT.

For output conversion, a null value returned causes an immediate end of
conversion processing.

Errors

CONY exits to WRAPUP after setting RMODE to zero under the following
conditions:

705
706

707

megal conversion code.
megal "T" conversion: format incorrect, filename cannot
be found, etc.
DLjID cannot be found for a "T" conversion file.

WRAPUP is also entered without setting RMODE to zero under the following
error conditions:

708
339

Value cannot be converted by a "T" conversion.
Invalid format for input data conversion.

85 System Software

CVDreg - CVXreg

Convert Value from Decimal or Hexadecimal to Binary - Each subroutine converts a
string that starts one past the register and is terminated by an invalid character.
Decimal conversions are terminated by a non-decimal and hex conversions are
terminated by a non-hexadecimal character. The converted value is stored in the
accumulator FPO. The register will point to the terminating character upon exit.
MSDB & MSXB are used to do the conversion.

Input Interface

Subroutine

CVDIB
CVDIR
CVDIS
CVDOS
CVDR15
CVXIB
CVXIR
CVXIS
CVXOS
CVXR15

Output Interface

FPO
CTRI

NUMBIT

Element Usage

none.

Subroutine Usage

MSDB;MSXB

Conversion Register

decimal IB
decimal IR
decimal IS
decimal OS
decimal R15
hexadecimal IB
hexadecimal IR
hexadecimal IS
hexadecimal OS
hexadecimal R15

Contains the converted binary value. F
T Contains the low-order two bytes of FPO. Except for

CVDR15 and CVXR15.
B Set to one if terminated by a system delimeter or a

decimal point, cleared to zero upon termination by all
others.

86 System Software

•

•

DATE

DATE places the date into the area pointed to by R15. The format is DD MMM YYY.

Input Interface

R15

Output Interface

R15

Element Usage

R14
R15
DO

R

R

R
R
D

Points one before the location where the date will be
stored.

Points to the last character in the date.

87 System Software

DECINHIB

DECINHIB is used to decrement the half tally INHIBITH in an attempt to re-enable
the break key. Normally, this half tally is first incremented and then this subroutine is
called at a later time to decrement it. DECINHIB decrements INHIBITH by one if it is
not zero. If INHIBITH is already zero and a break key has been requested the
debugger is entered. This mechanism will ensure that different routines requiring
break inihibition may call each other without problems of break key reactivation.

Input Interface

none

Output Interface

INHIBITH H decremented as described above.

Element Usage

INHIBITH H

Exits

To the debugger if INHIBITH is zero

88 System Software

•

•

DICTOPEN - FILE OPEN - GETFILE - OPENDD

These routines are used to set up the BASE, MODULO, SEP AR parameters for a file
based on a given file name. The file name must be of the form: {DICT/DATA}
Dictname{,Dataname} .

DICTOPEN opens only the dictionary portion of a file.

FILEOPEN & GETFILE open only the specified portion of a file.

OPENDD opens both the dictionary and data portions of the file. If only the dictionary
portion of the file is specified then only the dictionary portion is opened.

Input Interface

IS

RTNFLG

Output Interface

BASE
MODULO
SEPAR

DBASE

DMOD

DSEP

FBASE
FMOD
FSEP

IS
BMSBEG

BMS
RMBIT
DAF8

R

B

D
T
T

D

T

T

D
T
T

R
S

R
B
B

Points one character before the file name (any number of
blanks) and of the form shown above. It must be
terminated by a blank, a system delimiter or a character
specified in SCO.
Set to one if the routine should return to the calling
program if the file cannot be opened. If zero and the file
cannot be opened WRAPUP is entered.

Contains the base fid where the file begins, if found.
Contains the modulo of the file, iffound.
Contains the separation of the file, if found.

(OPENDD only) Contains the base fid of the dictionary of
the file, if found.
(OPENDD only) Contains the modulo ofthe dictionary of
the file, if found.
(OPENDD only) Contains the separation of the dictionary
of the file, iffound.

(OPENDD only) = BASE, if found.
(OPENDD only) = MODULO, iffound.
(OPENDD only) = SEPAR, iffound.

Points one character past the file name
Will have a copy of the file name without "DICT" or
"DATA".
Points to am AM added after the file name.
Set to one if the file parameters are successfully retrieved.
Set to one if only the dictionary portion was opened.

89 System Software

Element Usage

SCI H
SC2 H
all elements used by RETIX.

Subroutine Usage

Seven additional levels of subroutine linkage may be required.

Exits

To WRAPUP if RTNFLG = o.

90

• System Software •

• • •

•

DLINIT

DLINIT is used to obtain a block of contiguous overflow space for a file. After checking
the input parameters and obtaining the necessary number of frames, if available, it
enters DLINIT1 to initialize the frames. If not enough space is available for the file,
DLINIT calls NOSPACE to determine if processing should be aborted.

Input Interface

MODULO

SEPAR

Output Interface

BASE

OVRFLW
RMBIT

Element Usage

R14
R15
INHIBITH
DO

Subroutine Usage

T

T

D

D
B

R
R
H
D

Contains the modulo and separation parameters for the
file,
if MODULO is initially less than or equal to zero, it is set
to elevenj if SEP AR is initially less than or equal to zero,
it is set to one, and if initially greater than 127 it is set to
127.

Contains the beginning FID of a contiguous block of size
MODULO·SEPAR if the space is available, othetwise
unchanged.
=BASE if the requested space is available, otherwise =0.
Set if the requested space is obtained, otherwise
unchanged.

Used by GETBLK.

GETBLKj NOSPACE if the requested space is unavailable.

Three additional levels of subroutine linkage required.

Exits

To DLINIT1 if the requested space is obtained; to NSPCQ (WRAPUP) from
NOSPACE if the space is unavailable and processing is aborted by the user.

91 System Software

DLINITI

DLINITI initializes the link fields of a file as specified by its base, modulo, and
separation parameters, and sets each group empty by adding an AM at the beginning
(in the first data byte).

Input Interface

BASE
MODULO
SEPAR

Output Interface

R14

R15

RECORD

NNCF

Element Usage

CTRI
FRMN
FRMP
NPCF

Subroutine Usage

LINK

D
T
T

R

R

D

H

T
D
D
H

Contains the base, modulo, and separation
of the file; one frame is linked
even if MODULO is less than or equal to zero.

Points to the first data byte in the first frame of the last
group in the file (set by LINK).
Points to the last byte of the last frame of the last group in
the file (set by LINK).
One greater than the FID of the last frame of the last
group in the file.
= SEPAR-l.

Utility.

Used by LINK.

One additional level of subroutine linkage required.

92 System Software

•

•

DPTRCHK

DPTRCHK is used to check if an item is a D pointer. The criteria is: Attribute 1 must
start with a D, optionally followed by C,x, Y or Z. Attribute 2 through 4 must be
numeric. There must be at least 10 total attributes.

Input Interface

R15

Output Interface

R15
DBIT
XBIT
YBIT
CBIT

Element Usage

R15
SR15
D2
T3
FPO

Subroutine Usage

R

R
B
B
B
B

R
S
D
T
f

Must point on the 1st character of 1st attribute

Remains unchanged
Set if valid D pointer
SetifDX
SetifDY
Set if DC

One additional level of subroutine linkage required.

93 System Software

EBCDIC

EBCDIC is used to convert a character from EBCDIC to ASCII.

Input Interface

IB

Output Interface

IB

Element Usage

R15
TO

Subroutine Usage

none.

R

R

R
T

Points to the character to be converted.

Points to the same location but now the character is
ASCII equivalent.

94 System Software

•

•
" • • • • • • • • • • • •

GACBMS

GACBMS retrieves the base, modulo and separation of the system ACC file.

Input Interface

none

Output Interface

BASE
MODULO
SEPAR

Element Usage

D
T
T

same as FILEOPEN

Subroutine Usage

Contains the base fid of the ACC file.
Contains the modulo of the ACC file.
Contains the separation of the ACC file.

Seven additional levels of subroutine linkage may be required.

95 System Software

GETBUF

This routine accepts input data from the terminal and performs an editing on the
characters obtained. GETBUF also prints an initial prompt character at the terminal
before reading input. Control is returned when a non-editing control character is
input, or when the number of characters specified in TO or Tl are input. These
keystrokes allow the entry of Pick delimiters:

Control-H

Control-X

Control-R
Rubout

Control-shift-K
Control-shift-L
Control-shift-M
Control-shift-N
Control-shift-O

Logically backspaces the buffer pointer; echoes character
in BSPCH.
Logically deletes the entire input buffer; echoes CR/LF
and prints the prompt character (».
Retypes the input line.
Ignored; the character is echoed, but is not stored in the
buffer.
Converts to internal delimiter SB; echoes [.
Converts to internal delimiter SVM; echoes /.
Converts to internal delimiter VM; echoes].
Converts to internal delimiter AM; echoes ".
Converts to internal delimiter SM; Echoes _.

NOTE: The high order bit of aU characters that are input is zeroed.

Input Interface

BSPCH

PRMPC

TO
Tl

R14

R15

Output Interface

R15

Element Usage

DO

C

C

T
T

R

R

R

Contains the character to be echoed to the terminal when
the back space key is pressed.
Character output as a "prompt" when input is first
requested by GETBUF, and after certain editing
operations.
Contains the maximum number of characters accepted.
Contains the maximum number of characters to be
accepted.
Points one byte before the beginning of the input buffer
area.
Points one byte before the beginning of the input buffer
area.

Points to the control character causing return to the
calling routine.

96 System Software

•

• ..
• • • • • • • • • • • • • • • • •

GETITM

This routine sequentially retrieves all items in a file. It is called repetitively to obtain
items one at a time until all items have been retrieved. The order in which the items
are returned is the same as the storage sequence.

If the items retrieved are to be updated by the calling routine (using routine UPDITM),
this should be flagged to GETITM by setting bit DAFl. For updating, GETITM
performs a two-stage retrieval process by first storing all item-ids (per group) in a table,
and then using this table to actually retrieve the items on each call. This is necessary
because, if the calling routine updates an item, the data within this group shifts
around; GETITM cannot simply maintain a pointer to the next item in the group, as it
does if the "update" option is not flagged.

An initial entry condition must also flag GETITM by zeroing bit DAF7 before the first
call. GETITM then sets up and maintains certain pointers which should not be altered
by calling routines until all the items in the file have been retrieved (or DAF7 is zeroed
again).

NOTE: The Output Interface elements are functionally equivalent with those of
RETIX.

Input Interface

DAF7 B

DAFI B
DBASE D
DMOD T
DSEP T
BMSBEG R

OVRFLCTR D

Output Interface

RMBIT B
SIZE T
R14 R
IR R
SR4 (3

XMODE T
SRO S
BMS R

DMSEND S
DAF9 B

Initial entry flag: must be zeroed on the first call to
GETITM.
If set, the "update" option is in effect.
must be the base fid of the file
must be the modulo of the file
must be the separation of the file
Points one byte prior to an area where the item-id of the
item retrieved on each call may be copied.
Meaningful only if DAFI is set, if non-zero, the value is
used as the starting FID of the overflow space table where
the list item-id is stored; if zero, GETSPC is called to
obtain space for the table.

(See RETIX documentation).

= R14 ifDAFl is set, otherwise as set by GNSEQI.
As set by RETIX ifDAFl is set, othelwise as set by
GNSEQI.
= BMS if DAFI is set, otherwise unchanged.
= O.

97 System Software

Element Usage

BASE
MODULO
SEPAR
RECORD

NNCF
FRMN
FRMP
NPCF
OVRFLW

D
T
T
D

H
D
D
H
D

Used by GETITM and other subroutines for accessing file
data.

Used by GETSPC ifDAFl is set and OVRFLCTR is
initially zero.

These elements should not be altered by any other routine while GETITM is used:

DAFI B
DAF7 B
DBASE D
DMOD T
DSEP T
SBASE D
SMOD T
SSEP T
NXTITM S

OVRFLCTR D

Subroutine Usage

(See Input Interface).

The beginning FID ofthe current group being processed.
The number of groups left to be processed.
Unchanged.
The saved values of DBASE
DMOD
and DSEP when the routine was first called.
Points one before the next item-id in the prestored table if
DAFI is set, otherwise points to the last AM of the item
previously returned.
Contains the starting FID of the overflow space table if
DAFI is set, otherwise unchanged.

RDREC, GNSEQI; GNTBLI (I o cal) , RETIX, and GETSPC (if OVRFLCTR = 0) if
DAFI is set. BMSOVF used with XMODE.
Four additional levels of subroutine linkage required

Errors

See RETIX documentation "Exits"; GETITM, however, continues retrieving items
until no more are present even after the occurrence of errors.

98 System Software

• • • • • • • • • • • • • ..
•

•

GETOPT

This routine converts an option string to internal usage. Options are character strings
or a single or pair of numeric strings. A pair of numeric strings are separated by a
hyphen. Alphabetic options set their corresponding flags ("A" sets AFLG, etc.). All
flags AFLG thru ZFLG are cleared upon entry. So are NUMFLG 1 and NUMFLG2.

Input Interface

IR

Output Interface

NUMFLG1
D4
NUMFLG2
D5
AFLG

ZFLG

R

B
D
B
D
B

B

Points one before the option string.

Set if D4 has a value
holds the 1st numeric value
Set if D5 has a value
holds the 2nd numeric value
Set if A option found

Set if Z option found
RMBIT B Set if no errors are found in the option format, otherwise

zeroed and all flags described above cleared.
IR R Points to the last character processed

Element Usage

DO and D1

Subroutine Usage

Two additional levels of subroutine linkage required.

Example

:LIST MD (BS

BFLG = 1; NUMFLG1 = 1; D4 = 5; NUMFLG2 = 0
AFLG = 0; CFLG thru ZFLG = 0; D5 = 0

99 System Software

GETOVF-GETBLK-GETSPC

These routines obtain overflow frames from the overflow space pool maintained by the
system. GETOVF and GETSPC are used to obtain a single frame; GETBLK is used to
obtain a block of contiguous space (used mainly by the CREATE-FILE processor). The
link fields of the frames obtained by a call to GETBLK are not reset or initialized in any
way - this is a function of the calling routine. GETOVF and GETSPC zero all the link
fields of the frame they return. These routines cannot be interrupted until processing
is complete.

Input Interface

DO

Output Interface

OVRFLW

Element Usage

INHIBITH
DO
R14
R15

Subroutine Usage

D

D

B
D
R
R

Contains the number of frames needed (block size), for
GETBLK only.

If the needed space is obtained, this element contains the
FID of the frame returned (for GETOVF and GETSPC) or
the FID of the first frame in the block returned (for
GETBLK); if the space is unavailable, OVRFL W = o.

Utility.

SYSGET (but not used by GETOVF, if a frame is obtained from a multiple-frame
block in the system overflow table): three internal subroutines; GETOVF called
by GETSPC; NOSPACE called by GETSPC if no frames are available

One additional level of subroutine linkage required by GETOVF and GETBLK;
three levels required by GETSPC.

Exits

For GETSPC; to NSPCQ if no more frames are available and processing is
aborted by the user; this is a function of NOSPACE.

100 System Software

•

•

GETUPD

GETUPD initializes the UPD register triad to point to the UPD workspace (frame
PCB+28).

Input Interface

None

Output Interface

UPD

UPDBEG
UPDEND

R

s
s

Points to the first data byte of the 28th frame after the
process's PCB.
Points to the first byte of the above frame
Points to the last byte of the above frame.

101 System Software

GLOCK - GUNLOCK - GUNLOCK.LINE - GUNLOCK.ALL

GLOCK and GUNLOCK lock and unlock a group in a file. They are used to ensure
that a file will not be updated by more than one process at a time. GLOCK will lock a
group in a file so that any other attempt to lock the group will cause that process to
hang until the lock is unlocked.

GUNLOCK frees the lock on the group.

GUNLOCK.LINE unlocks all the groups locked by this line.

GUNLOCK.ALL initializes the group lock tables.

Locking
First, the lock table is locked, then the group to be locked is entered into the table
and the table is unlocked. If the group has already been locked by another process
or the table is full of entries, then the terminal will beep until either the lock is
free or an entry in the table becomes available.

Unlocking
First the lock table is locked, then the table is searched for the group to be
unlocked. If found and it is associated with this process, the entry is made
available. Finally, the lock table is unlocked.

Input Interface

RECORD D Contains the beginning FID of the group to be locked.

Output Interface

none

Element Usage

CH9 C
CTRI T
R14 R
R15 R
SYSRO S
SYSRI S
SC2 H
DO D

Subroutine Usage

One additional level of subroutine linkage required to either LOCK or UNLOCK

102 System Software

•

•

GMAXFID

GMAXFID returns the MAXFID of the system to the accumulator.

Input Interface

none

Output Interface

DO D Contains the MAXFID

Element Usage

R14 R
DO D

103 System Software

GMMBMS

GMMBMS is used to retrieve the SYSTEM file's base, modulo and separation.

Input Interface

none

Output Interface

BASE
MODULO
SEPAR

Element Usage

D
T
T

R14 R

Contains the base FID of the SYSTEM file.
Contains the modulo of the SYSTEM file.
Contains the separation of the SYSTEM file.

104 System Software

•

•

GNSEQI

This routine gets the next sequential item from a tile. If the pointer into the file
(register NXTITM) is at the end of a group, it returns with bit RMBIT zero; othelWise
it copies the item-id into the area specified by register BMS, updates NXTITM, sets
RMBIT, sets registers pointing to the beginning and end of the item, and returns the
item size in tally SIZE. If a non-hexadecimal digit is found in the item count field, or
the computed item size is negative or zero, GNSEQI immediately returns to the routine
which called it.

Input Interface

NXTITM

BMS

Output Interface

RMBIT
NXTITM

BMS

SRO

IR

SIZE
XMODE

S

R

B
S

R

S

R

T
D

Points one before the beginning of the next item to be
retrieved (or the AM at the end of the group).
Points one before the area to which the item-id is to be
copied.

Set if an item was successfully retrieved, otherwise zeroed.
Points one before the following item or end-of-group AM
if RMBIT is set, otherwise unchanged.
Points to an AM after the copied item-id if the item was
retrieved, otherwise unchanged.
The initial value of NXTITM if not at the end of the
group, otherwise unchanged.
Points to the AM after the item-id if RMBIT is set; points
to the AM before the item-id if SIZE is zero negative;
points to the AM indicating end of group data if there
were no more items in the group when the routine was
called; points to the character in error if a
non-hexadecimal character is found in the item count
field.
Contains the value of the item count field if RMBIT is set.
= O.

105 System Software

GNTBLI

This routine retrieves the next entry from a table consisting of strings (typically
item-ids) separated by AM's, and terminated by a 8M. On each call, the routine checks
if its pointer (register NXTITM) is at the end of the table. If it is, the routine exits with
bit RMBIT zero; otherwise the next table element is copied into the buffer specified by
register BM8, NXTITM is set pointing to the following element, and RMBIT is set.

Input Interface

NXTITM 8
BM8 R

Output Interface

NXTITM 8

IR R

BM8 R

RMBIT B

Points one before the next table entry (or 8M).
Points one before the area to which the table entry is to be
copied.

Points to the AM following the entry which was copied, if
one was copied, otherwise one before the 8M at the end of
the table.
= NXTITM if an element was copied, othelwise NXTITM
+l.
Points to an attribute mark one past the end of the entry
copy, if present, otherwise unchanged.
Zeroed if NXTITM points to the end of the table when the
routine is called, othetwise set.

106 System Software

•

• • • • • • • • • ..
•

HASH

This routine computes the starting FID of the group into which an item would hash.

Input Interface

BMSBEG
BASE
MODULO
SEPAR

Output Interface

RECORD

Element Usage

R14
R15
DO

S
D
T
T

D

R
R
D

Points one character before the item-id
Contains the base of the file to hash into
Contains the modulo of the file to hash into
Contains the separation of the file to hash into

Contains the FID to which the item-id would hash to

107 System Software

HSISOS

This routine sets up the register triads for the HS, IS, and OS workspaces as described
below. It does not link frames in the workspaces.

Input Interface

R2
HS
HSBEG
HSEND
IS
ISBEG
ISEND

OS
OSBEG
OSEND

Element Usage

DO

R
R
S
S
R
S
S

R
S
S

Points to the Secondary Control Block (PCB+ 1).
Points to the beginning of the HS workspace (PCB + 10).
=HS.

Points to the beginning of the IS workspace (PCB + 16).
= IS.
Points to the last data byte in the primary OS workspace
(3000 bytes past ISBEG).
Points to the beginning of the OS workspace (PCB + 22).
= OS.
Points to the last data byte in the primary OS workspace
(3000 bytes past OSBEG). The first byte in each
workspace is set to X'OO'.

108 System Software

•

•

INITTERM - RESETTERM

These routines are used to intitialize terminal and line printer characteristics.
RESETTERM is called from WRAPUP before reentering TCL; INITTERM is called
from LOGON.

Input Interface

OBSIZE

OBBEG

Output Interface

TOBSIZE
TPAGSIZE
POBSIZE
PPAGSIZE
PAGSKIP
LFDLY
BSPCH
CCDEL
SMCONV
STKFLG
PAGINATE
NOBLNK
LPBIT
TPAGNUM
TLINCTR
PPAGNUM
PLINCTR
PAGNUM
LINCTR
PAGHEAD
OB
OBSIZE
R14
OBEND

T

S

T
T
T
T
T
T
C
B
B
B
B
B
B
T
T
T
T
T
T
S
R
T
R
S

Contains the value of the output (OB) buffer
(RESETTERM only).
Points to the start of the OB buffer.

Initialized to default values, as by.
SETUPTERM (INITTERM only).

=0.

Contains zero in the frame field.
= OBBEG.
TOBSIZE.
= OBBEG+OBSIZE.

109 System Software

lSI NIT

ISINIT simply invokes WSINIT and HSISOS to initialize all the process workspace
pointers.

Input Interface

See WSINIT and HSISOS documentation

Output Interface

BMS,AF,CS,IB,OB,TS,HS,IS,OS triads are initialized

See WSINIT and HSISOS documentation

Element Usage

DO

Subroutine Usage

WSINIT, HSISOS

Three additional levels of subroutine linkage required

110 System Software

•

•

LINK

LINK initializes the links of a set of contiguous frames. The frames will be linked
contiguously fOlWard and backward.

Input Interface

RECORD
NNCF

Output Interface

R14
R15

Element Usage

FRMN
FRMP
RECORD
NNCF
NPCF
R14
R15
DO

Subroutine Usage

D
H

R
R

D
D
D
H
H
R
R
D

Contains the starting FID of a set of contiguous frames
Contains one less than the number of frames in the set.

Points to zeroth byte of 1st frame
Points to last byte oflast frame

One additional level of subroutine linkage required.

111 System Software

LINESUB

This routine returns the line number of the calling process in the accumulator

Input Interface

None

Output Interface

DO

Element Usage

R14
Dl

Subroutine Usage

GPCBO.

D

R
D

Contains the line number associated with the process.

One additional level of subroutine linkage required.

•
112 System Software •

• • •

•

LOGOFF

LOGOFF is a routine used to exit the TCL process and return to the logon process. It
will abort any executes currently in progress, initialize all workspace, detach the tape,
compute charges and send the process to logon.

LOGOFF changes the process status to 3 and then enters WRAPUP for the final
processing. Process status is reflected by USER:

-1
1
2
3
4
5
6

Input Interface

none.

Output Interface

RSCWA
INHIBITH
RTNFLG
XMODE
USER

Subroutine Usage

T
H
B
T
T

Process Status
spooler, not valid user, not logged on
ABS restore, coldstart tape, file restore
in process oflogging off
OFF was entered, log off user
debugger
logged on, normal running
user is valid and in process of logging on

Set = x'0184' (Initializes return stack)
Set to one (can't break till logged on)
Set to one
Set to zero
Set to 2 (logging off)

Four additional levels of subroutine linkage required.

Exits

To MD99 to perform the final wrapup before being sent to logon.

113 System Software

MBDSUB-MBDNSUB-MBDSUBX

These routines convert a binary number to the equivalent string of decimal or
hexadecimal characters. The number is specified in the 4-byte Accumulator for
MBDSUB and MBDNSUB; the 6-byte accumulator for MBDSUBX.

MBDSUB and MBDSUBX return only as many characters as are needed to represent
the number, while MBDNSUB always return a specified minimum number of
characters (padded with leading zeroes or blanks when necessary). For a negative
number, a minus sign precedes the numeric string

These subroutines are implicitly called by the instructions MBD and MBDN.

Input Interface

DO
FPO
T4

BKBIT

R15

Output Interface

BKBIT
R15

D
F
T

B

R

B
R

The number to be converted; for MBDSUB, MBDNSUB.
The number to be converted; for MBDSUBX.
The minimum string length. Leading zeroes or blanks
are padded to ensure that the string is at least this length.
The string may exceed this length if the value is high
enough. For MBDNSUB.
Set ifleading blanks are required as fill. Zero if zeroes are
required as fill. For MBDNSUB
Points one byte prior to the area where the converted
string is to be stored. The area must be at least eighteen
bytes in length for MBDSUBX. MBDSUB and
MBDNSUB require at most eleven bytes.

= O.
Points to the last converted character.

114 System Software

•

•

MD200 - MD201

TCL-II Processor - These entry points (not subroutines) into the TCL-II Processor are
used whenever a verb requires access to a file, either to all items or to explicitly
specified items within a file.

MD200 is entered from the TCL-I processor after decoding the verb (primary mode
ID=2).

MD201 is used by TCL-II itself to regain control from WRAPUP under certain
conditions. TCL-II exits to the processor whose mode ID is specified in MODEID2.
Typically, processors such as the EDITOR, ASSEMBLER, LOADER, etc., use TCL-II to
feed them the set of items which was specified in the input data.

On entry, the TCL-II Processor checks the verb definition for a set of option characters
in attribute 5. Verb options are the single characters, used in any sequence and
combination, listed below (all other characters are ignored):

Option

C
E

F

N

P

U

z

Meaning

Copy - items retrieved are copied to the IS workspace.
Expand - items retrieved are expanded and copied to the
IS work space; ignored if the "C" option is not present.
File access only - file parameters are set up but any
item-list is ignored by TCL-II; if this option is present,
any others are ignored.
New item acceptable - if the item specified is not on file,
the secondary processor still gets control (the EDITOR,
for example, can process a new item).
Print - on a full file retrieval (all items), the item-id of
each item is printed as it is retrieved.
Updating sequence flagged - if items are to update as
retrieved, this option is mandatory.
Final entry required - the secondary processor will be
entered once more after all items have been retrieved
(the COpy processor, for instance, uses this option to
print a message).

The input data string to TCL-II consists of the file name, followed by a list of items or
an asterisk, which specifies all items in the file. The file name may be preceded by the
modifier, DICT, which specifies access to the dictionary of the file. The item-list may be
followed by a list of options, enclosed in parentheses, for the secondary processor. See
GETOPT documentation for further information about options.

115 System Software

Input Interface

IR
SR4
MODEID2

BMSBEG

ISBEG

R
S
T

S

S

Points to the AM before attribute 5 of the verb.
Points to the AM at the end of the verb.
Contains the mode ID of the processor to which TCL-II
transfers control (assuming no error conditions are
encountered) .
Points one prior to an area where the file name is to be
copied, if the "F" option is present, otherwise one prior to
an area where item-ids are to be copied.
Points one prior to an area where items are to be copied, if
the "C" option is present.

Elements as required by GETFILE

Output Interface

DAFI
DAF2
DAF3
DAF4
DAF5
DAF6

DAFIO

DAFll

B
B
B
B
B
B

B

B

Set if the "U" option is specified.
Set if the "C" option is specified.
Set if the "P" option is specified.
Set if the "N" option is specified.
Set if the "Z" option is specified.
Set if the "F" option is specified, or if a full file retrieval is
specified (no "F" option).
Set if more than one item is specified in the input data,
but not a full file retrieval ("*").
Set if the "E" option is specified.

NOTE: The above bits are not initialized to zero.

DAF8

DAF9
IS

ISBEG
BMSBEG
RMBIT

SBASE
SMOD
SSEP
BASE
MODULO
SEPAR
DBASE
DMOD
DSEP
SCO

B

B
R

S
S
B

D
T
T
D
T
T
D
T
T
C

Set if a file dictionary is being accessed, otherwise reset
(from GETFILE).
= O.
Points one past the end of the file name in the input
string if the "F" option is present; points to the last AM in
the copied item if the "C" option is present, othelwise to
the end of the input string.
Unchanged.

Set if the file is successfully retrieved if the "F" option is
present.
Contain the base, modulo, and separation
of the file being accessed.

= SBASE, SMOD, SSEP on the first exit
only (from MD200).

Contain the base, modulo, and separation
of the dictionary of the file being
accessed if the "F" option is present.
Contains a SB if the last item-id in the input string is
enclosed in quotes, otherwise is blank.

116 System Software

•

•

The following specifications are meaningful only when the "F" option is not
present:

SRO
SIZE
SR4
ISEND
IR

RMODE
XMODE

S
T
S
S
R

T
T

Points one prior to the count field of the retrieved item.
Contains the value of the count field of the retrieved item.
Points to the last AM of the retrieved item.
= IS if the "C" option is present.
Points to the last AM of the retrieved item to be copied, if
the "C" option is present, otherwise points to the AM
following the item-id.
MD201 if items are left to be processed, otherwise = O.
= O.

Elements as set up by GET OPT if the input data contains an option string

Element Usage

Cl T Used for error messages.
Elements used by the various subroutines below

Subroutine Usage

GETFILE; if no "F" option: GET OPT if the input data contains an option string,
GETITM for full file retrieval, RETIX. and one internal subroutine if not full file
retrieval, GETSPC if more than one item (but not "*") specified, EXPAND if the
"E" option is present, WRTLIN if the "P" option is present. MD201 only:
WSINIT; GNTBLI if more than one item (but not "*") specified. MD995 and
BMSOVF used with XMODE.

Seven additional levels of subroutine linkage required by MD200; five additional
levels required by MD201 for full file retrieval, otherwise three levels required.

Errors

These conditions cause an exit to the WRAPUP processor:

Error
13
199

200
201
202

203
209

Condition
DLjID item not found, or in bad format.
IS work space not big enough when the "C" option is
specified.
No file name specified.
File name illegal or incoreectly defined in the M/DICT.
Item not on file; all messages of this type are stored
until all items have been processed; items which are on
file are still processed.
No item list specified.
The format of the option list is bad.

117 System Software

MD99 - MD992 - MD993 - MD994 - MD995 - MD999

WRAPUP Processor - These are the entry points into the system routine which wraps
up the processing initiated by a TCL statement, performs disk updates and prints
messages as required, and reinitializes functional elements for processing another TCL
statement. WRAPUP may also be treated as a subroutine by setting tally RMODE to
the mode ID of the routine to which WRAPUP should return control after it is done.

NOTE: The WRAPUP Processor always sets the return stack to a null or empty
condition before exiting.

The various entry points are provided to simplify the interface requirements when
WRAPUP is used to store or print messages from the ERRMSG file; the features of
each can be seen in the following table:

MD99

MD992

MD993

MD994

MD995

MD999

Message numbers (without any parameters) may be stored in
REJCTR, REJO; and REJI (no action is taken if zero. If
RMODE is zero, messages are printed regardless of the value
of VOBIT. The messages are set up in the history string and
control passes to MD999.

Cl contains a message number; D9 contains a numeric
parameter. The value in Cl is converted to an ASCII string
and used as the item-id to be retrieved from the ERRMSG file.
This entry is commonly used for numeric parameters that
might exceed 32767. The message is set up in the history
string and control passes to MD99.

Cl contains a message number; C2 contains a numeric
parameter; the value in Cl, converted to an ASCII string, is
used as the item-id of an item to be retrieved from the message
file (normally ERRMSG). The message is set up in the history
string, and control passes to MD99.

Cl contains a message number; IS points one before the
beginning of a string parameter, which is terminated by an AM
or SM; the message is set up in the history string and control
passes to MD99.

Like MD994, except the string parameter is stored at
BMSBEG + 1 through an AM or SM.

The history string is processed, and process work spaces are
reinitialized; control passes to TCL if RMODE is zero,
otherwise to the routine specified by RMODE.

118 System Software

•

•

Input Interface

HSBEG
HSEND

S
S

Points one byte before the beginning and
the end, respectively, of the history string; if
HSBEG=HSEND, the string is null.

Three types of history string elements are recognized by WRAPUP; all others are
ignored. The type of processing done for each element depends on the second, and
possibly third character of the element string. (The quote marks in the following
examples are not part of the string.)

1. Output message

SM "0" AM message-id AM (parameter AM ...) SM

Where "message-id" is the item-id (normally a decimal numeric) of an item in the
message file

The parameter string is passed to PRTERR for message formatting (see PRTERR
documentation)

2. Disk Update/Delete

SM "DU" AM base VM modulo VM separ AM item-id AM item­
body AM SM

SM "DD" AM base VM modulo VM separ AM item-id AM SM

Where "DU" causes the item in the file specified by "base", "modulo", and
"separation" to be replace, and "DD" deletes it

3. (End of history string)

SM Z

Conventionally, a process wishing to add data to the history string begins at
HSEND + 1. After the additional elements are added, the string is terminated by a
SM, a space and "Z". HSEND is set pointing to this SM.

WMODE T

RMODE T

VOBIT B

If non-zero, the value is used as the mode ID for an
indirect subroutine call (BSLI *) executed immediately
after the history string has been processed, and before
work space and printer characteristics are reset; this
allows special processing to be done on any entry into
WRAPUP.
If non-zero, WRAPUP exits to the specified mode ID
instead of to TCL.
If set and RMODE is non-zero, messages are stored in the
history string for output on a later entry into WRAPUP
with RMODE zero.

119 System Software

REJCTR T

REJO T
REJ1 T

C1 T
C2 T
LPBIT B
OVRFLCTR D

USER T

Output Interface

HSEND S

VOBIT B
LPBIT B
WMODE T
REJCTR T
REJO T
REJ1 T
RMODE T
INHIBIT B

May contain message numbers which do not require
parameters. REJCTR is always tested tirst;
then REJO is tested and used;
and then REJ1 is tested and used; no action is taken on a
zero value; a value of 9999 is used internally by WRAPUP
to identify which messages have been processed, and
should not be used as an input value for REJO or REJ1.
(See MD993, MD994, and MD995 above).

If set, all open spool tiles are closed.
If non-zero, used as the starting FID of a linked set of
overflow frames released to the system overflow space
pool. Used by SORT, for instance, to store the beginning
FID of a sorted table, in which case overflow space used
by SORT is always released, even if processing is aborted
by an "END" command from DEBUG.
Controls the tinal exit from WRAPUP when RMODE = o.

= HSBEG except when messages are stored instead of
printed.

= o.

Return stack Null: RSEND=X'OlBO', RSCWA=X'0184', and the rest of
the return stack is filled with X'FF'

Elements as initialized by WSINIT (and ISINIT if RMODE= 0).

The following elements are set up only if RMODE = 0:

XMODE T = o.
OVRFLCTR T
IBSIZE T = 140.

Element Usage

UPD R
BASE D
MODULO T Used in disk updates.
SEPAR T
CH8 C
R15 R Used by NSPCQ.
Elements used by the subroutines below:

120 System Software

•

•

Subroutine Usage

WSINIT; MBDSUB for message numbers; PRTERR to print messages; CVTNIS
and UPDITM to do disk updates; CRLFPRINT if a format error is found in a "DD"
or "DU" history string element; PCLOSEALL if LPBIT= 1; ifRMODE=O: ISINIT,
RESETTERM, RELSP (if USER=2), RELCHN (if OVRFLCTR is non-zero);
UNLOCK, GLOCK, GUNLOCKLINE, and TILD by NSPCQ.

Maximum of seven additional levels of subroutine linkage required if RELCHN
must print an error message; maximum of six levels required for PRTERR. Four
levels required for UPDITM. Three levels required for ISINIT. Two levels always
needed for WSINIT.

Exits

To the entry point specified in RMODE if non-zero. To LOGOFF if USER = 3 (set,
for instance, by the DEBUG "OFF" command). To MDO if USER= 2 (set by the
LOGOFF processor); otherwise to MDl.

Errors

If a format error is found in a "DD" or "DU" history string element, the message:

DISK-UPD STRING ERR

is displayed, and processing continues with the next element.

121 System Software

NEWPAGE

This routine is used to skip to a new page of the terminal or line printer and print a
heading. No action is performed, however, if bit PAGINATE or tally PAGSIZE is zero.

Input Interface

As for WRTLIN, except OB is first set equal to OBBEG by this routine

Output Interface

Same as for WRTLIN.

Element Usage

Same as for WRTLIN.

Subroutine Usage

WRTLIN and routines called by it, if PAGINATE is set and PAGSIZE is greater
than zero. Additional subroutine linkage required only if WRTLIN is called. See
WRTLIN documentation for the nubmer of additional levels of linkage required,
and add 1.

122 System Software

•

•

NEXTIR - NEXTOVF - BMSOVF

NEXTIR obtains the fOlWard linked frame of the frame to which register IR currently
points. If the fOlWard link is zero, the routine attempts to obtain an available frame for
the system overflow space pool and link it up appropriately (see ATTOVF
documentation). In addition, if a frame is obtained, the IR register triad is set up before
return, using routine RDREC.

NEXTOVF may be used in a special way to handle end-of-linked-frame conditions
automatically when using register IR with single- or multiple-byte move or scan
instructions (MIlD, MIl, or MCI). Tally XMODE should be set to the mode ID of
NEXTOVF before the instruction is executed. If the instruction causes IR to reach an
end-of-linked-frame condition (FolWard Link Zero), the system will generate a
subroutine call to NEXTOVF, which will attempt to obtain and link up an available
frame, and then resume execution of the interrupted instruction (assuming a frame
was obtained). If there are no more frames in the overflow space pool, N08PACE is
called. The "increment register by tally" instruction cannot be handled in this manner.

NEXTOVF is also used by UPDITM with register T8. If NEXTOVF is entered with T8
at an end-of-linked-frames condition, a branch is taken to a point inside UPDITM.
Under any other condition (other than IR or T8 end-of-linked-frame), NEXTOVF
immediately enters the DEBUGGER.

BM80VF is used to handle end-of-linked-frame conditions automatically when using
register BM8 (R8).

Input Interface

IR

ACF

BM8

Output Interface

IR
IRBEG
IREND
RECORD
R15
NNCF
FRMN
FRMP
NPCF
OVRFLW

R

H

R

R
8
8
D
R
:::i
D
D
H
D

Points into the frame whose fOlWard-linked frame is to be
obtained (displacement unimportant).
For NEXTOVF only, must contain X'06' for IR
end-of-linked-frame handling (set automatically by MIlD,
Mil, and MCI instructions).
For BM80VF only, points into the frame whose fOlward
link is zero (displacement unimportant)

Point to the first data byte of the fOlward linked frame.
=IR.
Points to the last byte of the fOlWard linked frame.
Contains the FID of the frame to which IR points.

As set by RDLINK for the FID in RECORD.

= RECORD if ATTOVF called, othelwise unchanged.

123 System Software

Element Usage

R14 R Used by RDLINK.
Elements used by ATTOVF if a frame is obtained from the overflow space pool.

Subroutine Usage

RDLINK; ATTOVF if a frame must be obtained from the overflow space pool;
NOSPACE if ATTOVF cannot find any more frames.
Three additional levels of subroutine linkage required.

Exits

Normally returns via RDREC; possibly to NSPCQ if NOSPACE used; to 5,DBI if
ACF not X'06' or X'OD' (NEXTOVF only).

124 System Software

• ..
• • • • • • • • • • • • • • ..
• • • • • • • • • •

•

PCRLF-FFDLY

PCRLF prints a carriage return and line feed on the terminal and enters FFDL Y,
which prints a specified number of delay characters (X'OO').

Input Interface

LFDLY
TO

Output Interface

None

Element Usage

R14

H
T

R

Contains the delay count (for PCRLF only).
Contains the delay count (for FFDLY only).

125 System Software

----~------

PINIT

PINIT is used for process initialization. Pointers are set up to all workspaces; links are
set up in frames of linked workspaces (HS, IS, OS, and PROC). All elements in the
primary, secondary, and tertiary (DEBUG) control blocks are zeroed, except as noted
below.

Input Interface

RO

Output Interface

R2
HS
HSBEG
HSEND
IS
ISBEG
ISEND
OS
OSBEG
OSEND
IBSIZE
OBSIZE
TTLY
INHIBIT
PBUFBEG
PBUFEND

R

R
R
S
S
R
S
S
R
S
S
T
T
T
B
S
S

Points to the PCB of the process to be initialized.

Points to the process's SCB (PCB+ 1).
The beginning of the HS workspace (PCB+ 10).
= HS.

Points to the beginning of the IS workspace (PCB+ 16).
= IS.

Point to the beginning of the OS workspace (PCB + 22).
= OS.

= 140
= 100
= 0 (For DEBUG use).
=1.
set to beginning of PROC workspace (PCB + 6)
set to end of PROC workspace (PCB + 9)

Other elements as initialized by WSINIT

Address registers, and the PCB elements PRMPC, SCO, SCI, and SC2 (all
characters) are not zeroed. In addition, the tertiary control block is initialized for
the debugger by setting the corresponding INDEBUG bit to 1, and setting the
corresponding Rl and return stack elements to execute debugger code.

Subroutine Usage

WSINIT (local), LINK.
Three additional levels of subroutine linkage required.

126 System Software

•

•

PONOFF

Echo Toggle - PONOFF is used to toggle the bit LISTFLAG, which controls output to
the terminal. If set to one, output is enabled.

Input Interface

IfLG
LFLG

Output Ip.terface

LISTFLG

Element Usage

none.

B
B

B

Set to one to for\!e disable of output.
Set to one to force enable of output.

Will be toggled if IFLG & LFLG are zero

127 System Software

PRINT - CRLFPRINT

PRINT and CRLFPRINT send messages to the terminal. A message is a block of text
embedded in the calling program. CRLFPRINT precedes the text with a CR and LF
(carriage return and line feed).

NOTE: These routines are not consistent with line printer and pagination
conventions. Therefore, they should be used for short prompts and error
messages. Also, they cannot be captured through the Basic EXECUTE
statement.

The message must be a string that immediately follows the subroutine call. This string
must also be terminated by one of the system deli meters. The different delimeters
cause different terminating action to be taken.

Input Interface

Delimeter Action Taken

End of message. CR & LF printed. RTN executed.
End of message. CR & LF printed. RTN executed.
CR & LF printed and message processing continues.

8M
AM
VM
8VM End of message. RTN executed without printing CR & LF.

Message must follow B8L instruction.

Output Interface

none

Element Usage

R14
R15
DO

Example

R
R
D

BSL PRINT

TEXT C'HELLO' ,X' FF'

128

SM terminated message

System Software

•

•

PRDrrSTI-PRDrrST2

These routines check to see if the calling process has appropriate system privilege
levels: PRIVTSTI checks for a minimum privilege level of "SYSl"; PRIVTST2 checks
for a minimum privilege level of "SYS2".

If the process does not have the appropriate system privilege level, the following actions
are taken:

bits, PQFLG and LISTFLAG, are set to zero,
tally, RMODE, is set to zero,
the History String is set to null (HSEND=HSBEG),
tally REJCTR is set to 82 (an error message number),
an exit is taken to MD99.

Otherwise, the routines run normally.

PRIVTSTI
PRIVTST2

Bit tested (error if not set).

SYSPRIVI
SYSPRIV2

129 System Software

PROC User Exits

A user-written program can gain control during execution of a PROC by using the
Uxxxx or Pxxxx command in the PROC where "xxxx" is the hexadecimal mode ID of
the user routine. The routine can perform special processing, and then return control
to the PROC processor. Necessarily, certain elements used by the PROC processor are
maintained by the user program; these elements are marked with an asterisk in the
table below.

Input Interface

*BASE
*MODULO
*SEPAR
*PQBEG
*PQEND
PQCUR
IR
*PBUFBEG

*ISBEG
*STKBEG

IE

*SR35
*SBIT
*ZBIT

*SC2

IS

UPD

D
T
T
S
S
S
R
S

S
S

R

S
B
B

C

R

R

Points one prior to the first PROC statement.
Points to the terminal AM of the PROC.
Points to the AM following the Uxxxx or
Pxxxx statement.
Points to the buffer containing the primary and secondary
(if any) input buffers; buffer format is SB ... Primary
input ... SM SB ... Secondary input ... SM.
Points to the buffer containing the primary output line.
Points to the buffer containing "stacked input" (secondary
output).
Is the current input buffer pointer (may point within
either the primary or secondary input buffers).
Points to the beginning of the current input buffer.
Set if a ST -ON command is in effect.
Reset to identify the PROC processor in certain system
subroutines.
Blank.

SBIT on

Points to the last
byte moved into
the secondary
output buffer

Points to the last
byte moved into
the secondary
output buffer

SBIT off

Points to the last
byte moved into
the primary output
buffer

Points to the last
byte moved into
the primary output
buffer

•
130 System Software •

• • •

•

Output Interface

IR

IS
UPD
IB

Exits

R

R
R
R

Points to the AM preceding the next PROC statement to
be executed. May be altered to change PROC execution.
May be altered as needed to alter data
within the input and output buffers, but
the formats described above must be maintained

The normal method of returning control to the PROC processor is to execute an
external branch instruction (ENT) to PQXIT. To return control and also reset the
buffers to an empty condition, entry PQLINK may be used. If it is necessary to
abort PROC control and exit to WRAPUP, bit PQFLG should be reset before
branching to any of the WRAPUP entry points.

When a PROC eventually transfers control to TCL (via the "P" operator), certain
elements are expected to be in an initial condition. Therefore, unless the elements
are deliberately set up as a means of passing parameters to other processors, these
elements should be reset before returning to the PROC. Specifically, the bits
ABIT through ZBIT are expected to be zero in the TCL-II and ACCESS
processors. It is best to avoid usage of these bits in PROC user exits. Also, the
scan character registers SCO, SCI, and SC2 must contain an SB, a blank, and a
blank, respectively.

131 System Software

PRTERR

PRTERR is used to retrieve and print a message from the system file ERRMSG. If
EBASE is zero, PRTERR attempts to set EBASE, EMOD, and ESEP to the parameters
for the system file ERRMSG, and exits abnormally if unable to do so. A parameter
string may be passed to the routine, in which case the parameters are formatted and
inserted according to the codes in the message item. Items in the ERRMSG file consist
of an arbitrary number of lines where a line is delimited by an AM, with each line
containing a code letter in column one, possibly followed by a string or numeric
parameter (numeric parameters enclosed in parentheses). The possible codes and their
meanings are listed below. Braces indicate optional parameters; the parenthesis are
required; no blank is necessary between the code letter and the parameter string.

A {(n)}

D

E [string]

H {string}

L {(n)}

R {(n)}

S {(n)}

T

X (n)

Definition

Insert parameter - The next parameter from the
parameter string, if any, is placed into the output buffer;
if n is specified, the parameter is left-justified in a blank
field oflength n.

Insert date - The system date in DD MMM YYYY format
is added to the output buffer.

Insert item.id - The message item-id, surrounded by
brackets, is placed into the output.

Insert string - The character string is moved into the
output buffer.

Linefeed - The output buffer is printed, and n line feeds
are output; (one if n is not specified).

Insert parameter - The next parameter from the
parameter string, if any, is moved to the current position
in the output buffer. If an n is specified, the parameter is
right-justified in a blank field of length n.

Set pointer - The pointer to the current position in the
output buffer is repositioned to the specified column;
column one if n is not present.

Insert time - The system time in HH:MM:SS is added to
the output buffer.

Skip parameter - The pointer to the current position in
the output buffer is incremented by n spaces; if the end of
a line is reached (see below), the buffer is printed and a
new line is started.

132 System Software

•

•

Input Interface

TS

EBASE
EMOD
ESEP
MBASE
MMOD
MSEP
OBSIZE

R

D
T
T
D
T
T
T

Points one prior to the message item-id, which must be
terminated by an AM; parameters optionally follow,
being delimited by AM's; the parameter string must end
with a SM.
ERRMSG file.

Master Dictionary. Exit abnormally if zero.

Contains the maximum number of characters to be
output on a line (normally set at logon time).

Other elements as required by WRTLIN.

Output Interface

TS

EBASE
EMOD
ESEP
LINCTR
PAGNUM

Element Usage

SB60
SB61
CTRO
T6
BASE
MODULO
SEPAR
AF
IR
BMS
BMSBEG
OB
R14
SR4
CTRI
SYSRI
INHIBIT

R

D
T
T
T
T

B
B
T
T
D
T
T
R
R
R
S
R
R
S
T
S
B

Points to the AM after the message item-id if no
parameters are processed.

Updated if bit PAGINATE is set.

Used with "R" code messages.
Used with "S" code messages.
Set during retrieval of file ERRMSG, if EBASE is
originally zero, and reset afterwards to the value on entry .

All elements used by WRTLIN (unless PRTERR exits abnormally), and elements
used by GBMS ifPRTERR attempts retrieval of the system file ERRMSG.

133 System Software

Subroutine Usage

RETIX, WRTLIN, DATE (for "D" code messages), TIME (for "T" code messages),
GBMS (for retrieving ERRMSG); Six additional levels of subroutine linkage
required if GBMS attempts retrieval of an ERRMSG file which is a "Q" code item,
otherwise four levels required.

Exits

To 2,ABSL if EBASE and MBASE are both zero.

134 System Software

•

•

RDLABEL - RDLABELI

RDLABEL is used to read a standard 80 byte label on the tape.

RDLABELI is used to be sure only reel one is inserted.

Label Format

L.XXXX.HH:MM:SS .. DD/MMM/YYYY.{47 chars for name}ARR

where

xxxx
HH:MM:SS
DDjMMMjYYYY
RR

Input Interface

none

Output Interface

UNLABEL

TPRECL

Element Usage

R14
R15
T3
Accumulator

Subroutine Usage

B

T

R
R
T

is a segment mark
is a blank
is an attribute mark
is the 4-character block size in ASCII hex
is the current system time
is the current system date
is the current 2-character reel number

Set to one if if data on tape is not a label. Otherwise it is
cleared.
If UNLABEL is zero then it holds the value of the block
size specified in the label read.

TPSTAT is called by this subroutine. Seven additional levels of subroutine
linkage may be required.

135 System Software

RDLINK - RDREC

RDLINK is used to read the links of the FID number stored in RECORD. RDREC also
sets up IR to RECORD.

Input Interface

RECORD

Output Interface

RECORD
IR
R15
NNCF
NPCF
FRMN
FRMP

Element Usage

R15
DO

Subroutine Usage

none

T

D
R
R
H
H
H
H

R
D

Contains the FID to read its links

unchanged
Points to byte zero of frame in RECORD (RDREC only)
Points to byte one of frame in RECORD
set to link info
set to link info
set to link info
set to link info

• 136 System Software •

• • •

•

READLIN - READLINX - READIB

READLIN, READLINX and READIB are the standard terminal input routines.
IBBEG points to the area where the input characters will be stored. Characters will be
input until a CR or LF is encountered or the number of characters equals the count in
IBSIZE. The CR or LF is overwritten with a SM and IBEND will point to this segment
mark upon return.

READ LIN and READIB check first for stacked input and process tab characters as
padded blanks but READLINX does not.

READLIN and READLINX echo a trailing CR and LF to the terminal when the CR or
LF is entered to terminate the input sequence but READIB does not.

Editing

CTRL-H
CTRL-W
CTRL-X

Backspace function
Backspace word function
Cancel line function

Input Interface

IBBEG
IBSIZE
STKFLG

CCDEL
ITABFLG
PRMPC

Output Interface

m
IBEND
STKFLG
STKINP

Subroutine Usage

S
T
B

B
B
C

R
S
B
S

Start of buffer.
Maximum number of characters to accept.
Set if stack exists, stacked input available. Zero if to get
input from terminal.
Set to delete control characters entered.
Set to process tab characters using input tab table in QCB.
The prompt character.

= mBEG.
SM terminating data.
Zeroed if the end of stacked data has been reached
Points the next available line of stacked data

Two additional levels of subroutine linkage required

137 System Software

RELBLK-RELCHN-RELOVF

These routines are used to release frames to overflow. RELOVF is used to release a
single frame, RELBLK is used to release a block of contiguous frames, and RELCHN is
used to release a chain of linked frames (which mayor may not be contiguous). A call
to RELCHN specifies the FID of a linked set of frames; the routine will release all
frames in the chain until a zero forward link is encountered.

Input Interface

OVRFLW

DO

Output Interface

None

Element Usage

OVRFLW
R14
R15
DO
Dl
D2

Subroutine Usage

D

D

D
R
R
D
D
D

Contains the FID of the frame to be released (for
RELOVF), or the first FID of the block or chain to be
relased (for REBLK and RELCHN, respectively).
Contains the number of frames (block size) to be released;
for RELBLK only.

Utility.

Accumulator.
Used by SYSREL.

SYSREL; two internal subroutines.
Two additional levels of subroutine linkage required.

138 System Software

•

•

RETI - RETIX - RETIXU - RETIXX

These are the entry points to the standard system routine for retrieving an item from a
file. The item-ID is explicitly specified to the routine, as are the base, modulo, and
separation file parameters.

If the entry RETIXX is used, the number of the first frame in the group in which the
item may be stored must be specified additionally.

The other entries perform a hashing algorithm to determine the group. The group is
searched sequentially for a matching item-ID. If the routine finds a match, it returns
pointers to the beginning and end of the item, and the item size (from the item count
field).

If entry RETIXU is used, the group is locked during processing, preventing other
programs from accessing (and possibly changing) the data. The item-ID is specified in
a buffer defined by register BMSBEG.

If entry RETI is used, register BMS must point to the last byte of the item-ID, and an
AM will be appended by the routine.

For all other entry points, the item-ID must already be terminated by an AM.

Input Interface

BMSBEG
BMS

BASE
MODULO
SEPAR
RECORD

Output Interface

BMS
BMSEND
RECORD

NNCF
FRMN
FRMP
NPCF
XMODE

S
R

D
T
T
D

R
S
D

H
D
D
H
T

Points one byte before the item-ID.
Points to the last character of the item-ID, for RETI,
RETIXX, and RETIX only.

Contains the beginning FID of the group to be searched;
for RETIXX only.

Point to the last character of the item-ID.
= BMS.
Contains the beginning FID of the group to which the
item-ID hashes (set if HASH is called).

Contain the link fields of the frame
specified in RECORD; set by RDREC.

= o.

139 System Software

Item Found Item Not Found

RMBIT B = 1 =0
SIZE T = value of item =0

count field
R14 R Points one byte prior Points to the last

to the item count AM of the last item
field in the group

IR R Points to the Points to the AM
first AM of the indicating end of
item group data (=R14+1)

SR4 S Points to the =R14
last AM of the
item

Element Usage

DO D Accumulator.
Dl D Accumulator.
R15 R

Subroutine Usage

RDREC (local), HASH (except for RETIXX; local), GLOCK (RETIXU only),
IROVF (for IR overflow space handling and error conditions); Three additional
levels of subroutine linkage required (for IROVF and GLOCK, RDREC and HASH
require one level)

Exits

If the data in the group is bad - premature end of linked frames, or
non-hexadecimal character encountered in the count field - the message.

GROUP FORMAT ERROR ~

is returned (where ~ is the FID indicating where the error was found), and
the routine returns with an "item not found" condition. Data is not destroyed, and
the group format error will remain.

140 System Software

•

• I. I.
•

RMODE

RMODE is a tally used to store the mode ID of a routine which used by WRAPUP to
exit to instead of going to TCL. If RMODE is non-zero, the return stack is cleared
(RSCWA is set = X'0184') and register triads AF, BMS, CS, TS, IB and OB are
initialized. WRAPUP will not print any messages until the final entry to WRAPUP
(RMODE is zero). In this way, WRAPUP can be used as a subroutine. The Selection
Processor uses this technique. WRAPUP is called after each item is processed and
RMODE returns control to the Selection Processor.

141 System Software

~ -----------

SETLPTR - SETTERM

These routines are used to set output characteristics such as line width, page depth,
etc., to the previously-specified values for either the terminal or the line printer. In
addition, the current line number and page number are saved so that when switching
from terminal to line printer and back, pagination will continue automatically from the
previous values.

Input Interface

LPBIT
LINCTR
PAGNUM
OBSIZE
TPAGSIZE

PPAGSIZE
TOBSIZE

POBSIZE
TLINCTR

PLINCTR
TPAGNUM

PPAGNUM

B
T
T
T
T

T
T

T
T

T
T

T

Reset by SETTERM; set by SETLPTR.
Current line number.
Current page number.
Size of the OB buffer.
Number of printable lines or per page for the terminal or
line.
printer.
Size of the output (OB) or buffer for the terminal or line
printer.

Contains the current line number for the or terminal or
line printer.

Contains the current page number for the or terminal or
line printer.

NOTE: TPAGSIZE, TOBSIZE, TLINCTR, and TPAGNUM are required only by
SETTERM; PPAGSIZE, POBSIZE, PLINCTR, and PPAGNUM are
required only by SETLPTR.

Output Interface

PAGSIZE
OBSIZE
LINCTR
PAGNUM
TLINCTR

PLINCTR
OBSIZE
R14
OBEND

T
T
T
T
T

T
T
R
S

Set to the appropriate characteristics
for terminal or line printer output.

= LINCTR; TLINCTR set by SETLPTR, PLINCTR or set
bySETTERM.

= 79 if originally zero.
= OBBEG + OBSIZE.
The area from the address pointed to by OBBEG to that
pointed to by OBEND is filled with blanks

• 142 System Software •

• • •

•

SETUPTERM

Set the default value for terminal and line printer characteristics (as used by
INITTERM).

Input Interface

BSPCH
LFDLY

TOBSIZE
TPAGSIZE
POBSIZE
PPAGSIZE
PAGSKIP

Output Interface

C
T

T
T
T
T
T

The character to be echoed for a backspace.
The number of fill characters to be output after a CRjLF
in the lower byte; if the upper byte is greater than one, a
form feed is output before each page of paginated output,
and that number of fill characters is output.
The terminal line width.
The terminal page depth.
The printer line width.
The printer page depth.
The number of lines to be skipped at the bottom of each
page.

Default values initialized as described

143 System Software

SLEEP

This routine causes the calling process to go into an inactive state for a specified
amount of time. Either the amount of time to sleep or the time at which to wake up
may be specified.

Input Interface

DO

RMBIT

Output Interface

None

Element Usage

T2
D2

Subroutine Usage

D

B

T
D

Contains the number of seconds to sleep, up to 86400 (one
day), or the time to wake up (number of seconds past
midnight) if RMBIT is reset.
Set if DO contains the number of seconds to sleep, and
reset if it contains the time to wake up.

Used on a monitor call
to get system time.

SLEEP uses SLEEPSUB; One addition level of subroutine linkage required by
SLEEPSUB.

144 System Software

•

•

SORT

This routine sorts an arbitrarily long string of keys in ascending sequence only; the
calling program must complement the keys if a descending sort is required. The keys
are separated by SM's when presented to SORT, they are returned separated by SB's.
Any character, including system delimiters other than the SM and SB may be present
within the keys.

The sort algorithm used is an n-way polyphase sort-merge. The original unsorted key
string may grow by a factor of 10%. A separate buffer is required for the sorted key
string, which is about the same length as the unsorted key string. The growth space is
contiguous to the end of the original key string; the second buffer may be specified
anywhere. SORT automatically obtains and links overflow space whenever needed.
Due to this, one can follow standard system convention and build the entire unsorted
string in an overflow table with OVRFLW containing the beginning FID the setup is:

start of end of "growth" start of
unsorted keys unsorted keys space second buffer
<- - - - - - - - - - - - / - - / - - - - - - - - - - - -x- - - - - - - - - - - - -x- - - - - - - - - -/-

The second buffer pointer then is merely set at the end of the growth space, and SORT
is allowed to obtain additional space as required. Alternately, the entire set of buffers
may be in the IS or OS workspace if they are large enough.

Input Interface

SRI
SR2
SR3

Output Interface

SRI

S
S
S

S

Points to the SM preceding the first key.
Points to the SM terminating the last key.
Points to the beginning of the second buffer.

Points before the SB preceding the first sorted key (the
exact offset varies from case to case). The end of the
sorted keys (separated by SB's) is marked by a SM.

145 System Software

Element Usage

HBIT B
LBIT B
SB1 B
SC2 C
XMODE T
DO D
IS R
OS R
BMS R
TS R
CS R
R14 R
R15 R
Sl S
S2 S
S3 S
S5 S
S7 S
S8 S
S9 S

Subroutine Usage

COMP; GWS used with XMODE.
Four additional levels of subroutine linkage required.

146

-- ---------

• System Software •

• • •

•

SYSTEM. CURSOR

SYSTEM. CURSOR is used to generate the escape sequences needed for screen format
commands commonly used from BASIC with PRINT @O

By using positive numbers in TO, x,y coordinate positioning is achieved.

By using negative numbers according to the chart below screen functions are generated.

-1
-2
-3
-4
-5
-6
-7
-8
-9
-10
-11
-12
-13
-14
-15
-16
-17
-18
-19
-20
-21
-22
-23
-24
-25
-26
-27
-28
-29
-30
-31
-32
-99
-100
-101

Function Action

clear screen and place cursor at home position.
move cursor to home position.
clear to end of screen from current position.
clear to end of line from current position.
enable blink function.
disable blink function.
enable protect function.
disable protect function.
backspace function.
move cursor up one line.
enable protect mode.
disable protect mode.
reverse video on.
reverse video off.
underline on.
underline off.
slave on.
slave off.
cursor right.
cursor left.
graphics (alt char set) on.
graphics (alt char set) off.
keyboard lock.
keyboard unlock.
control char enable.
control char disable.
write status line.
erase status line.
initialize terminal modes.
download function keys.
non-embedded standout on.
non-embedded standout off.
embedded visual attributes.
half intensity.
full intensity.

147 System Software

Input Interface

R15 R
TO T

CTR10 T

CTRll T

Output Interface

R15 R

Element Usage

R14 R
R15 R
CTR10 T
CTRll T
CTR40 T
TO T
T2 T
T4 T

Example

Putting an x at 15,15.

LOAD 15
STORE CTR10
STORE CTRll
MOV OB,R15

Points one before location to store the escape sequence
Holds the code for the function: TO < 0 gets system
function. TO > = 0 and CTR10 > -2 gets x,y positioning.
TO > = 0 and CTR10 < -1 gets user defined function
Y coordinate (row) for x,y positioning. May also contain a
parameter to pass to a user defined function
X coordinate (column) for x,y positioning.

Points on the last character in the escape sequence

TO = positive--x,y coordinates
copy TO to y coordinate storage
copy TO to x coordinate storage
set up pointer in output buffer

BSL SYSTEM. CURSOR
MOV R15,OB
MCl C'x' ,OB put x after escape sequence
BSL WRTLIN write it to the terminal

148 System Software

•

•

TATT

TATT is used to attach the tape device to the current user. If unsuccessful then bit
ATTACH is cleared.

Input Interface

TPRECL

Output Interface

ATTACH

Element Usage

R14
R15
D4
DO

T

B

R
R
D
D

Contains the block size desired. If not in a valid range
then the upper tally of D4 is used instead.

Set if the tape was successfully attached othelwise is is
cleared.

149 System Software

TDET

TDET is used to detach the tape from the current process. The QCB is unlocked for
other uses.

Input Interface

none

Output Interface

ATTACH B Cleared

• 150 System Software •

• • •

•

TIME - DATE - TIMDATE

These routines return the system time and/or the system date, and store it in the
buffer area specified by register R15. The time is returned as on a 24-hour clock.

Entry Buffer size

TIME
DATE
TIMDATE

9
12
22

Input Interface

R15

Output Interface

R15

R14FID

Element Usage

DO
D1
D2
D3

Subroutine Usage

R

R

D

D
D
D
D

Format required (bytes)

HH:MM:SS
DDMMYYYY
HH:MM:SS DD MMM YYYY

Points one prior to the buffer area.

Points to the last byte of the data stored; the byte
immediately following contains a blank.
= 0 (DATE and TIMDATE only).

Accumulator.
Used by TIME and TIMDATE only.

TIME used by TIMDATE; MBDSUB used by TIME.

Two additional levels of subroutine linkage required by TIMDATE, one level
required by TIME, none by DATE

151 System Software

TPINIT

TPINIT is used to initialize the tape control block (QCB), it's buffers and the tape
status word TAPSTW.

The bits defined in the Tape Status word are:
PROTECT
EOTBIT
EOFBIT
TPRDY
PARITY

Input Interface

ATTACH

Output Interface

PROTECT
EOFBIT
EOTBIT
TPRDY
PARITY
RI3

Element Usage

RI4
RI5
DO

Subroutine Usage

B

B
B
B
B
B
R

R
R
D

Must be set to one by TATT subroutine

Set if write protected
Set if end of file
Set if end of tape, zero if beginning of tape
Set to one if no errors occur
Set on a parity error
Used to point to the tape control block (QCB)

Two additional levels of subroutine linkage required.

Example

BSL TATT
BBZ ATTACH,XIT
BSL TPINIT

attached to another user?

152 System Software

•

•

TPREAD - TPWRITE

TPREAD reads a specified number of bytes from the tape into a buffer pointed to by
R15 at entry to the routine.

TPWRITE writes a specified number of bytes from the buffer pointed to by R15.

Both TPREAD and TPWRITE use a virtual tape drive with common routines. The
initial execution of either entry point causes initialization of two buffers of a size
sufficient to contain TPRECL, assigned during execution of the T-ATT verb or
obtained by the RDLABEL routine from the tape record size in the standard R83 tape
label. These buffers are released during WRAPUP processing after RMODE and
WMODE complete. The process returns to TCL or the CHAIN or PROC analogs to
TCL.

At all times after initialization, R7 is live and points to the current address or write
location in the tape buffers. R7 must be saved and reserved if used between reads or
writes. The contents of the accumulator is the number of characters to transfer to or
from the tape buffer. The alignment of R7 in the buffer and the relative size of
TPRECL and DO do not need to be considered.

If DO is zero on a read, then TPREAD will return to the calling routine with R 7
pointing one before the next string to be read, XMODE will be set to the tape handler
routine TPRXMODE or TPWXMODE, and the old XMODE, if any, will be in YMODE.
This allows transparant tape reading using MIlD or MIlT R7, XX. A fOlward link zero
fault on R7 will cause the next tape record to be read into the last buffer, R7 to be reset
to the beginning of the current buffer; and execution then continues in the MIl
instruction. The user is responsible for handling an end-of-file condition when reading
the tape. When this occurs, the EOFBIT will be set.

If DO is zero on a write, then TPWRITE will fill the rest of the tape buffer with the
character pointed to by R15, which will cause the buffer to be written to tape. This is
recommended in order to send the last partial tape record to the tape, after which
WEOF should be executed.

Input Interface

ATTACH
TPRECL
R15

R7

DO

B
T
R

R

D

Must be set. Use T-ATT verb.
As above.
Points to one byte before the source or destination buffer
start location.
Must be the same at the beginning of the next tape
operation as it was at the end of the last tape operation.
Initialized by TPREAD TPWRITE on first-time call.
Counts the number of bytes to be transferred to or from
the tape buffers.

153 System Software

Output Interface

R15

DO
EOFBIT
EOTBIT

Element Usage

R

D
B
B

Points at the end of the source or destination buffer if DO
was non-zero; unchanged if DO was zero.
= O.
Indicates end-of-file on read if set.
Indicates end-of-tape if set; the tape handler will rewind
the tape and tell the operator to mount the next tape.
This may be executed in the middle of an MIl instruction,
as above, which will then continue to execute when the
new reel is mounted and the label handled.

The tape handler will stack and restore most of the elements which it uses.
However, the following elements are modified:

T5
'1'6
T7
YMODE
D2
R2;HO
R4

R7
R14
R15

Subroutine Usage

T
T
T
T
D
H
R

R
R
R

For any current XMODE.

Store a flag.
Used as a pointer to the text block in the write-label
routine.
The tape buffer pointer.

TPREAD and TPWRITE use an extensive set of internal subroutines in such a
way that element usage is transparent outside of the above set. Both may go to
seven levels of subroutine usage if either encounters a padty error while handling
a label on the second and following tape reels.

Control is transferred to the PRINT, CRLFPRINT and PCRLF routines for
attention by the operator in a manner transparant to the calling routine. They
include no write ring, parity error after ten retries, tape not ready, and block
transfer incomplete messages and recovery alternatives.

154 System Software

•

•

TPSTAT

TPSTAT is used to check the status of the tape drive until ready. If the drive is not
ready (TPRDY = 0), the status bits are retrieved in a loop until the tape becomes ready
(TPRDY = 1) or a time out occurs. If a time out occurs the following message will be
displayed:

TAPE NOT READY
CONTINUE OR QUIT (C/Q)

This subroutine is useful because it will not return until the tape is ready to process its
next operation. Setting TPRDY to zero and calling this subroutine, returns control
only when the previous operation has completed.

Input Interface

none

Output Interface

TPRDY
EOFBIT
EOTBIT
PARITY
PROTECT

Element Usage

R14
HO

Subroutine Usage

B
B
B
B
B

R
D

Always one upon exit
Updated if TPRDY is zero upon entry
Updated if TPRDY is zero upon entry
Updated if TPRDY is zero upon entry
Updated if TPRDY is zero upon entry

One additional levels of subroutine linkage required.

Exits

Aborts during looping phase on a time out.

155 System Software

TSINIT

This routine initializes the register triad associated with the TS workspace.

Input Interface

None

Output Interface

TS
TSBEG
TSEND

Subroutine Usage

R
S
S

Point to the beginning of the TS workspace (PCB + 5).
= TS.
Point to the last byte of the TS workspace (511 bytes past
TSBEG)j this is an unlinked workspace. The first byte of
the workspace is set to X'OO'.

One internal subroutine.
One additional level of subroutine linkage required.

156 System Software

•

•

UPDITM

UPDITM perform updates to a file defined by its base FID, modulo, and separation. If
the item is to be deleted, these routines compress the remainder of the data in the
group in which the item resides. If the item is to be added, it is added at the end of the
current data in the group. If the item is to be replaced, it is replaced in place, sliding
the remaining items in the group to the left or right as necessary.

If the update causes the data in the group to reach the end of the linked frames,
NEXTOVF is entered to obtain another frame from the overflow space pool and link it
to the previous linked set; as many as required are added. If the deletion or
replacement of an item causes an empty frame at the end of the linked frame set, and
that frame is not in the primary area of the group, it is released to the overflow space
pool.

UPDITM uses RETIXU to retrieve the item to be updated, locking the group. Once the
item is retrieved, processing cannot be interrupted until completed.

Input Interface

BMSBEG

TS

CR8

BASE
MODULO
SEPAR

Output Interface

S

R

C

D
T
T

Points one prior to the item-id of the item to be updated;
the item-id must be terminated by an AM.
Points one prior to the item body t6 be added or replaced
(no item-id or count field); not needed for deletions; the
item body must be terminated by a SM.
Contains the character 'D' for item deletion; 'u' for item
addition or replacement.
Contain the base, modulo, and separation
of the file being updated.

Remainder of the last frame in the group filled with blanks

Element Usage

D3 D
D4 D
NNCF H
FRMN D
FRMP D
NPCF R

Elements used by the various subroutines below.

157 System Software

Subroutine Usage

RDREC; HASH, GLOCK, and RETIXU RELCHN if overflow frames returned;
WTLINK if data ends in the last frame of "prime" space, or in overflow space;
COPYALL if the item is on file; BKUPD; GUNLOCK; NEXTOVF, BMSOVF,
and IROVF used with XMODE.
Four additional levels of subroutine linkage required by UPDITM.

Errors

If the group data is bad (premature end of linked, or non-hexadecimal character
found in an item count field), IROVF is entered to print a warning message, and
the group data is terminated at the end of the last good item before processing
continues.

158 System Software

•

•

WEOF

WEOF is used to write end of file mark on a tape that has been previously attached.

Input Interface

ATTACH B Must be set by TATT

Output Interface

EOFBIT Set to one

Element Usage

R14 R
R15 R
DO D

Example

BSL TATT
BBZ ATTACH,XIT attached to another user?
BSL TPINIT
BSL WEOF

159 System Software

WMODE

WMODE is a tally which is used to store a mode ID of a routine which will be called as
a subroutine from WRAPUP. Right before WRAPUP initializes a process' workspace it
checks WMODE. If this tally is non-zero then a BSL'" WMODE instruction is
executed. This mechanism is useful to do extra or special final processing not normally
done by the standard WRAPUP routines.

160 System Software

•

•

WRTLIN - WRITOB

These routines output data to the terminal or line printer. WRTLIN deletes trailing
blanks from the data and enters WT2. WT2 adds a trailing carriage return and line
feed, increments LINCTR, and enters WRITOB, which outputs the data.

The data to be output begins at the address referenced by OBBEG and continues
through the address pointed to by OB. Output is routed to the terminal if bit LPBIT is
off, otherwise it is stored in the printer spooling area. Pagination and page heading
routines are invoked automatically, if bit PAGINATE is set. If it is set, when the
number of lines output in the current page (in LINCTR) exceeds the page size (in
PAGSIZE), the following actions take place: 1) the number of lines in PAGSKIP are
skipped; 2) the page number in PAGNUM is incremented; and, 3) a new heading is
printed. A value of zero in PAGSIZE suppresses pagination regardless of the
PAGINATE setting.

Input Interface

OBBEG
OB

LPBIT

LISTFLAG
NOBLNK
LFDLY

PAGINATE
PFILE

S
R

B

B
B
T

B
T

Points one byte prior to the output data buffer.
Points to the last character; the buffer must extend at
least one character beyond this location.
If set, output is routed to the spooler. The routine
SETLPTR should be used to set this bit so printer
characters are set up correctly.
If set, all output to the terminal is suppressed.
If set, blanking of the output buffer is suppressed.
Lower byte contains the number of fill characters to be
output after a CR/LF.
If set, pagination and page-headings are invoked.
Contains the print file number for PPUT; meaningful
only if LPBIT is set.

The following specifications are meaningful only if PAGINATE is set:

PAGHEAD S

PAGHEAD S
PAGSIZE T
PAGSKIP T

PAGNUM T
PAGFRMT B

LFDLY T

Points one byte before the beginning of the page-heading
message; if the frame field of this register is zero, no
heading is printed.
Points to the location of the page-heading message.
Contains the number of printable lines per page.
Contains the number of lines to be skipped at the bottom
of each page.
Contains the current page number.
If set, the process pauses at the end of each page of output
until some terminal input (even just a carriage return) is
entered.
If the upper byte is greater than one, and output is to the
terminal, a form-feed (X'DC') is output at the top of each
page, and the number n the upper byte is used as the
number offill characters output after the form feed.

161 System Software

Output Interface

OB R = OBBEG.

The following specifications are meaningful only if PAGINATE is set:

LINCTR
PAGNUM
T7

Element Usage

R14
R15
SYSRI
R8
RECORD
OVRFLW
SYSR2

T4
T5

D2
D3

T
T
T

R
R
S
R
T
T
S

T
T

D
D

Reset appropriately.

Contains the original value ofPAGNUM.

Scratch

Used by PPUT (when LPBIT is set).

Used if PAGINATE is set and the header message
contains a VM.

Used if PAGINATE is set and the header message
contains an SVM.

All elements used by ATTOVF (called by PPUT if more disk space needed).

Subroutine Usage

FFDLY, PPUT (if LPBIT setO, WT2 (if PAGINATE set and the header message
contains a VM), TIMDATE (if PAGINATE set and the header contains a SVM),
DATE (if PAGINATE set and the header message contains two SVM's in
succession).

Four additional levels of subroutine linkage required if LPBIT is set; three levels
required for TIMDATE; one level always required for LFDLY.

162 System Software

•

•

WSINIT

This routine initializes the process workspaces shown below. In each case, the
"beginning" storage register (and associated address register, if present) is set pointing
to the first byte of the workspace. The "ending" storage register is set pointing to the
last data byte. All workspaces, except TS and the PROC workspace (called PBUF), are
contained in one frame; PBUFBEG and PBUFEND define a 4-frame linked workspace.

Workspace Triad
BMS, BMSBEG, BMSEND
CS, CSBEG, CSEND
AF, AFBEG, AFEND
TS, TSBEG, TSEND
m, mBEG, mEND
OB, OBBEG, OBEND
PBUF,PBUFBEG,PBUFEND

Input Interface

Size (Bytes)
50
50
100
Contents of mSIZE; max. 140
Contents ofOBSIZE; max. 140
511
2000 (4 linked frames)

mSIZE
OBSIZE

T
T

Size of m buffer.
Size of OB buffer.

Output Interface

Registers are set up as described above. The first byte of each workspace, except
the OB, is set to x'OO'. The OB workspace is filled with blanks (x'20'). mSIZE and
OBSIZE are set to 140 if initially greater.

Element Usage

R14
R15

Subroutine Usage

R
R

TSINIT (local), and one internal subroutine.
Two additional levels of subroutine linkage required.

163 System Software

WTLABEL - WTLABELI

WTLABEL is used to write a standard 80 byte label on the tape. WTLABELI is used
to be sure reel one is current reel number.

Label Format

_ L. XXXX. HH: MM: SS .. DD/MMM/YYYY. (4 7 chars for name) "'RR_

where

xxxx
HH:MM:SS
DD/MMMfYYYY
RR

Input Interface

IS

Output Interface

UNLABEL

Element Usage

R14
R15
T3
Accumulator

Subroutine Usage

R

B

R
R
T

is an attribute mark
is a blank
is a segment mark
is the 4-character block size in ASCII hex
is the current system time
is the current system date
is the current 2-character reel number

Points one before the label name, terminated by a SM

Set to one if IS points to a null string otherwise cleared. If
IS points one before a SM then it is considered a null
string.

TPSTAT is called by this subroutine. Seven additional levels of subroutine
linkage may be required.

164 System Software

•

•

XISOS

XISOS exchanges the contents of the register triad IS with register triad OS.

Input Interface

none

Output Interface

IS
ISBEG
ISEND
OS
OSBEG
OSEND

Element Usage

Accumulator

R
S
S
R
S
S

= OS
= OSBEG
= OSEND
= IS
= ISBEG
= ISEND

165 System Software

XMODE

XMODE is a tally where a mode· ID is stored. This mode ID is used to pass control
when a Forward Link Zero condition occurs. If an instruction reaches an
end-of-linked-frame condition, the debugger is entered. The offending register number
is stored in ACF. DO is copied into Dl. IfXMODE is zero, the instruction aborts with a
"Forward Link Zero" message. If XMODE is non-zero, control passes through ENT*
XMODE to the specified mode ID. This is known as an 'XMODE trap'. An XMODE
trap will occur when using character string instructions.

The most common use for XMODE trapping is to attach a frame to the end of the set of
linked frames and continue executing the instruction that caused the trap. This
involves setting up the register that caused the trap (stored in ACF) to the last byte
executed and RTNing to the instruction that caused the trap. Usually the last byte
executed successfully is the last byte in the frame.

There are standard system subroutines that use this mechanism. If using a string
instruction with IR or BMS then have XMODE set to IROVF or BMSOVF and
overflow attachment will be transparent.

When writing XMODE trap routines, check ACF for the proper register. The fOlward
link zero could occur on any register, especially during debugging a piece of code. On
MIlT type instructions that use the accumulator, since DO is used by the debugger to
transfer control, you must copy Dl back to DO.

Example

Handling a possible Forward Link Zero.

FRM.SIZE DEFN 511

X.TRAP

*

MOV
MIlD
ZERO

EQU

X.TRAP,XMODE
R15,HS,X'EO'
XMODE

*

Able to trap FLZ aborts
Copy data
Disable trap mechanism

* XMODE TRAP HANDLER, ATTACHES OVERFLOW.

*
BE ACF,15,GOOD.REG If not R15, enter Debugger
ZERO XMODE Prevent endless loop
ENT 5,DBl Enter debugger with FLZ

GOOD.REG MOV R15FID,RECORD Set up for ATTOVF
BSL ATTOVF Link up another frame
SETUP R15,FRM.SIZE,R15FID

last byte of frame
RTN * Done

166 System Software

•

•

System Debugger

The System Debugger is mainly a tool for monitoring and controlling the execution of
assembly language programs. To accomplish this, facilities are provided:

to step through instructions,

to set breakpoints,

to display and modify data anywhere in virtual memory,

to verify the proper operation of programs,

to identify programming errors.

Other uses of the Debugger are:

to terminate program execution;

to enable or disable terminal display;

to send messages between processes;

to report and log system abort conditions.

Since full utilization of the Debugger allows changing data anywhere in the system,
security becomes an important consideration. Therefore, most debugger commands
require SYS2 privileges. A user with SYSO or SYS1 privileges is essentially restricted
to resuming the execution of a program, terminating the execution of a program, or
logging off.

Entering The Debugger

The Debugger is entered for three different reasons:

1) to respond to a break condition,

2) to respond to a system abort condition,

3) in a transitory manner, to take advantage of its distinct environment.

167 System Debugger

Break Conditions

The most common break condition is caused by pressing the terminal <BREAK> key
(< CTRL-BREAK> on some terminals). Generally, you may enter the Debugger at will
simply by pressing the <BREAK> key. Program execution can be terminated by
pressing the <BREAK> key, then typing the word END. Other break conditions,
defined from within the Debugger, are breakpoints, data change breaks, instruction
step breaks, and program change breaks.

There are times when the Debugger will not respond to the <BREAK> key. Certain
system functions, for example, inhibit break until they finish what they have begun.
For these cases, the break is postponed, and the effect is that there may be a noticeable
delay between the time the break key is depressed, and the time the Debugger is
entered. Another example is that an application might be implemented in such a way
that the break key is always inhibited. In this case, pressing <BREAK> has no effect.

When the Debugger is entered due to a break condition, it identifies the break by
displaying whichever of the following is applicable:

Break Condition Indication

Break Key i fid:ddd

Breakpoint b fid:ddd

Data Change i fid:ddd
y fid.ddd data ...

Instruction Step e fid:ddd

Program Change m fid:ddd I r fid:ddd

"fid.ddd data ... " represents the frame number and displacement of the data element
being monitored, followed by its data.

After displaying the reason for a break, the Debugger displays the contents of any data
elements which are being traced, then prompts with an exclamation point (!) for what
to do next. The following format is typical:

i fid:ddd

168 System Debugger

•

•

System Abort Conditions

Hardware failures or assembly-level programming errors can cause situations where
the execution of an instruction or the performance of a system function becomes either
illegal or illogical. When this happens, the task in progress is aborted. The Debugger
is entered to report the reason for the abort by displaying one of the following messages:

ILLEGAL OPCODE ABORT @ fid:ddd

RTN STACK FORMAT ERR ABORT @ fid:ddd

REFERENCING FRAME ZERO; reg= n abort @ fid:ddd

CROSSING FRAME LIMIT; reg= n abort @ fid:ddd

FORWARD LINK ZERO; reg= n abort @ fid:ddd

BACKWARD LINK ZERO; reg= n abort @ fid:ddd

PRIVILEGED OPCODE ABORT @ fid:ddd

REFERENCING ILLEGAL FRAME; reg= n abort @ fid:ddd

GROUPFORMATERRORXXXXXX

Transitory Debugger Entries

Sometimes the Debugger is entered and exited without the user being aware. One
example of this is testing to see if a break condition has been met. Any time the
program step mode is in effect, or any breakpoints or data change breaks are defined,
the Debugger is entered prior to the execution of each virtual instruction. Then, unless
a break condition has been satisfied, it is exited, only to be entered again for the next
instruction. This activity causes system performance to degrade when breakpoints,
especially data change breaks, are set.

A second example is receiving a message from another process. The Debugger
performs this function because it can interrupt a task in progress, display the message,
then resume the task at the point it was interrupted.

169 System Debugger

Referencing Data

Data may be referenced from the Debugger directly or indirectly; numerically, by frame
and displacement; or symbolically, by name. The symbol tables are defined from TeL
before symbolic references by using the SET·SYM verb.

Data Specification

Data locations and display formats are defined for the Debugger through data
specifications, or < data spec> 'so The format of a < data spec> is as follows:

{prefix} {address} {suffIx}

Data, from anywhere in virtual memory, may be displayed by entering a <data spec>
in response to the Debugger's exclamation mark prompt. Data specifications may also
be placed in the trace or data change tables to cause the selected data fields to be
displayed on break conditions or monitored for change.

PrefIx

{prefIx} {address} {SUffIX}

The prefIX is a single character which specifies the data display mode:

C character display
I integer display
X hexadecimal display

If a prefix is not included in a < data spec>, then the previous, or default, data display
mode is used. Hexadecimal is the default.

Address

{prefix} {address} {suffix}

The address defines the location of the data element in virtual memory. It may be
presented numerically or symbolically, and may specify a direct or indirect addressing
mode.

A direct numeric address consists of a frame number and displacement, or a
displacement alone (that is, fid.ddd or ddd). The PCB FID is assumed if a frame
number is not specified.

1024.10
1024,12

the 16th byte (X'lO') in frame 1024 (period means hex)
the 12th byte (X'OC') in frame 1024 (comma means decimal)

170 System Debugger

•

•

A direct symbolic address consists of a symbol name preceded by "I." A window size,
which may be overridden, is automatically determined by the symbol type.

10BBEG
ICTR21
IFPO

OBBEG storage register in the PCB
CTR21 in the 8CB
arithmetic accumulator

An indirect address may consist of a register name, a symbol name preceded by an
asterisk (*), or a numeric address preceded by an asterisk. A symbolic element
specified for indirect addressing must be a register or storage register. A location
specified numerically is treated as a storage register. An error message is displayed if it
does not contain a valid frame number and displacement.

R14
*R14
*OBBEG
*.ID4

address ofR14
address pointed to by R14
address pointed to by OBBEG
also address pointed to by OBBEG

If an address is not included in a < data spec>, then the next data window beyond the
previous one is used.

Suff"lX

{pretix} {address} {suffix}

The suffix begins with a semicolon. It may include combinations of the following: a
character specifying the element type (T), an offset from the specified address (0), and
a number defining the width of the data field (W).

The format of a suffix is:

;{T}{O}{W}

T type - a single character specifying the element type
o offset - a positive or negative number specifying an offset from the address
W width - a positive number defining the width of the data field (that is, data

window)

A window definition (that is, ;W) specifies the width of the data element being
monitored or displayed.

;16 16 byte data window

An explicit offset may be used in conjunction with a window definition (that is, ;O,W).
The data reference is to the address, plus the offset, for the window specified.

;10,8 8 byte data window at address+ 10
;-5.10 16 byte data window at address-5

171 System Debugger

If a type is specified in a suffix, the field width and display format are determined
automatically. However, either may be overridden by using a prefix or window
definition. The characteristics implied by the various types are as follows:

~ Display Format Window8ize

B bit 1 bit
C character 1 byte
D integer 4 bytes (double tally)
F integer 6 bytes (triple tally)
H integer 1 byte (half tally)
R hexadecimal 8 bytes (register)
8 hexadecimal 6 bytes (storage register)
T integer 2 bytes (tally)

An offset, used in conjunction with a type definition, expresses multiples of the field
width implied by the type.

;8
;D5
;B4,4

6 byte hexadecimal data window (storage register)
4 byte integer data window at address + (5*4)
4 bit data window beginning at address + 4 bits

When a suffIx defines the type as "bit," a displacement in a numeric address (that is,
fid.ddd) is also assumed to be in bits.

If a suffix is not included in a <data spec>, then the previous, or default, window
definition is used. ;8 is the default.

Data Reference Examples

These examples show several ways data may be displayed from the Debugger:

XI024.0;8

X.I00;8

IRO

CR15;16

IOBBEG

C*OBBEG;32

IABIT;4

Displayed Data

Hexadecimal display of 8 bytes beginning at
displacement 0 of frame 1024

Hexadecimal display of 8 bytes beginning at location
X'100' in the PCB (that is, RO).

Same as above.

Character display of 16 characters beginning at the
location R15 points to.

Contents of the OBBEG storage register.

Character display of 32 characters beginning at the
location OBBEG points to.

Bit display of 4 bits beginning with ABIT.

172 System Debugger

•

•

Debugger Commands

The Debugger prompts for a command with the exclamation mark (!). Any of these
commands may then be entered, terminated by a carriage return. If an invalid
command or illegal address is entered, the Debugger displays an error message and
prompts for a new command.

A

A/elmtname

B
Bifid
B/fid.ddd

C {addr }{ suffix}

D

E{n}

END <CD

Address - The A command, without an argument, displays
the address of the next virtual assembly instruction to be
executed.
If an element is specified, the address of the element is
displayed.

Set breakpoint - An entry is placed in the breakpoint table
to cause a break to occur whenever the address, specified by
mode and displacement, is encountered during instruction
execution. If no address is specified, the Debugger breaks at
all instructions in the mode. A maximum of four breakpoints
may be in effect at a time. A II + II is displayed if the breakpoint
is added; "TBL FULL" is displayed if the table already holds
four entries.

The B command, without an argument, displays "" and
removes all entries from the breakpoint table.

Character display - The C command puts the Debugger in
character display mode. In this mode, each character from
storage is converted to a printable ASCII character for display;
non-printable characters are represented as periods (for
example, x'0061626300' is displayed as ".abc."). Normally, C
is used as a prefix in a data specification. When used alone, it
displays the next data window beyond the one previously
displayed.

Display tables - The current state of the breakpoint, trace,
and data change tables are displayed in the following order:

BRKTBL
TRCTBL
CHGTBL

Toggle instruction step mode - The E command alone
turns off the single step mode. With instruction stepping
enabled, a break to the Debugger occurs following the
execution of each virtual instruction.

End - The Debugger tables and other control elements are
initialized, then the user's process is sent to the TCL
Command Processor. This command is used to conclude a
debugging session.

173 System Debugger

G

G/fid
G/fid.ddd
G/fid{.ddd}

I{ addr }{ suffix}

K
K/fid
K/fid.ddd

L
L<data spec>

Go - The G command, without an argument, causes
instruction execution to proceed with the next virtual
instruction. Typing linefeed is equivalent to this command
form, and only requires one keystroke. If the G command is
used with an illegal address, or with no address following a
system abort condition, "ADDR" is displayed, then the
Debugger prompts for a new command.

If a FID is specified, instruction execution commences at the
mode and displacement given, or at the beginning of the mode
if a displacement is not provided.

Integer display - This command puts the Debugger in
integer display mode. In this mode the data from storage is
treated as a numeric element (that is, a half tally, tally, double
tally, or triple tally) and is displayed as a decimal integer (for
example, if TO = x'FFFF', then I/TO displays "-1"). A window
specification greater than six bytes (that is, > triple tally) may
cause unexpected results, as only the low-order tally is
converted and displayed. Normally, I is used as a prefix in a
data specification. When used alone, it displays the next data
window beyond the one which was previously displayed.

Remove (kill) breakpoint - The entry, specified by FID
and displacement, is removed from the breakpoint table. A
displacement of zero is assumed if one is not provided. A "-" is
displayed if the breakpoint is removed; "NOT IN TBL" is
displayed if the defined breakpoint is not in the table. The K
command, without an argument, displays "-" and removes all
entries from the breakpoint table.

Display/modify frame links - The L command displays
the link fields of the frame identified by < data spec> in the
following format:

fid NNCF: FRMN FRMP: NPCF

FID = current frame number
NNCF = number of next contiguous frames
FRMN = next linked frame
FRMP = prior linked frame
NPCF = number of prior contiguous frames

174 System Debugger

•

• •• • • • • • • • • • • • • • • •

M

ME
ME linenumber

N
N skip count

OFF

P

R
R regnumber

Toggle program step mode (modal trace) - The M
command alternately enables or disables program stepping;
"on" or "off" is displayed as appropriate. With program
stepping enabled, a break to the Debugger occurs following
the execution of each virtual instruction that causes a transfer
from one assembly program (mode) to another. The program
name and displacement of the next virtual instruction are
displayed:

M fid:ddd I r fid:ddd

An "M" indicates entering a new mode through a B or BSL
instruction. An "R" indicates returning to a previous mode, to
the location following a BSL.

Assign PCB by line - The ME command causes subsequent
debugger PCB references to be made to the PCB associated
with the specified line number (that is, someone else's PCB).

The ME command, without an argument, causes the
Debugger to revert to using the PCB associated with the
active process (that is, your own PCB).

Set break skip count - The N command establishes a
number of break conditions that the Debugger will skip
before actually breaking, and prompting for a command. The
trace data for all break conditions are displayed whether a
break occurs or not. A system abort condition is handled
immediately, regardless of the skip count.

The N command, without an argument, sets the break skip
count to zero to cause the Debugger to break for all break
conditions.

Logoff - The active process is logged off and returned to the
logon process. Executing this command is equivalent to
executing "OFF" at TCL.

Toggle terminal display mode - The P command
alternately enables or disables terminal output display, by
setting or zeroing LISTFLAG. "ON" or "OFF" is displayed, as
appropriate.

Display data through register - The R command, when
used with a number between 0 and 15, displays data
indirectly through the specified register (Le., the data pointed
to by the register). The data display type and window may be
specified concurrently (for example, XR15.10;8); otherwise,
the most recent, or default, specification is used.

The R command, without an argument, displays the next data
window beyond the one which was previously displayed.

175 System Debugger

T
T < data spec>

TIME

U
U < data spec>

X{addrHsuffix}

y
Y <data spec>

z
Z < data spec>

Set trace definition· An entry placed in the trace table
causes the specified data window to be displayed whenever a
break occurs. A maximum of eight trace definitions may be
in effect at a time. A" +" is displayed if the trace definition is
added; "TBL FULL" is displayed if the table already holds
eight entries.

The T command, without an argument, displays "" and
removes all entries from the trace table.

Display time and date· The current system time and date
are displayed as follows:

hh:mm:ss dd mmm yyyy

Remove trace definition (untrace) . The entry, identified
by the data specification, is removed from the trace table. A
"." is displayed if the trace definition is removed; "NOT IN
TBL" is displayed if the defined entry is not in the table.

The U command, without an argument, displays "." and
removes all entries from the trace table.

Hexadecimal display· The X command puts the Debugger
in hexadecimal display mode. In this mode, each character
from storage is converted to two printable ASCII hexadecimal
characters for display. Normally, X is used as a prefix in a
data specification. When used alone, it displays the next data
window beyond the one which was previously displayed.

Set data change definition . An entry placed in the data
change table causes a break to occur if the specified data
changes. A maximum of three data change definitions may
be in effect at a time. A" +" is displayed if the data change
definition is added; "TBL FULL" is displayed if the table
already holds three entries. Using the data change feature
makes the system runs significantly slower.

The Y command, without an argument, displays "" and
removes all entries from the data change table.

Remove data change definition· The entry, identified by
the data specification, is removed from the data change table.
A "." is displayed if the data change definition is removed;
"NOT IN TBL" is displayed if the entry is not in the table.

The Z command without an argument displays "." and
removes all entries from the data change table.

176 System Debugger

•

•

Arithmetic Utility Commands

The arithmetic utility commands may be executed from either the Debugger or TeL.
For accurate results, the numeric arguments should be whole numbers, with no
punctuation other than a leading plus or minus sign.

ADDD nl n2 Add decimal to decimal - The two decimal numbers are added and
the sum is displayed.

ADDX nl n2 Add hexadecimal to hexadecimal - The two hexadecimal
numbers are added and the sum is displayed.

DIVD nl n2 Divide decimal by decimal - The decimal number nl is divided by
the decimal number n2 and the quotient and remainder are displayed.

DIVX nl n2 Divide hexadecimal by hexadecimal - The hexadecimal number
nl is divided by the hexadecimal number n2 and the quotient and
remainder are displayed.

DTX n Convert decimal to hexadecimal - The decimal number n is
converted to its hexadecimal equivalent and displayed.

MULD nl n2 Multiply decimal times decimal - The two decimal numbers are
multiplied and the product is displayed.

MULX nl n2 Multiply hexadecimal times hexadecimal - The two hexadecimal
numbers are multiplied and the product is displayed.

SUBD nl n2 Subtract decimal from decimal - The decimal number n2 is
subtracted from the decimal number nl and the difference is
displayed.

SUBX nl n2 Subtract hexadecimal from hexadecimal - The hexadecimal
number n2 is subtracted from the hexadecimal number nl and the
difference is displayed.

XTD n Convert hexadecimal to decimal - The hexadecimal number n is
converted to its decimal equivalent and displayed.

177 System Debugger

Interacting with the Debugger

The Debugger prompts for a command with the exclamation mark (!). A command or
<data spec>, terminated by a carriage return, may be entered in response. Depressing
the linefeed key at the "!" prompt is equivalent to typing "G<cr>." That is, it causes the
next virtual instruction to be executed. This feature is often used when stepping
through instructions because it only requires one keystroke.

Entering an invalid command, naming an undefined symbol, or using an illegal address
causes "CMND?," "ILLGL SYM," or "ADDR" to be displayed. The Debugger prompts for
a new command after displaying an error message.

If a < data spec> is entered, the defined data window is displayed, followed by an equal
sign (=):

!jABIT<cr> 0=

The" =" is a solicitation to change the data being displayed:

!jABIT<cr> 0= l<cr>
!jABIT<cr> 1=

New data may be entered to modify that shown. Alternatively, a carriage return may
be typed to return to the command processor; a < CTRL > P may be typed to display
the previous data window; or a <CTRL> N, or linefeed, may be typed to display the
next data window. A <CTRL> Nand linefeed differ in that a <CTRL> N causes the
window to be displayed on a new line preceded by its address, while a linefeed causes it
to be displayed on the same line with no address. Any of the characters just mentioned
may also be used to terminate data entry.

Debugger Data Entry Conventions·

In some cases, the new data must be compatible with the data being modified. The
following is a summary of conventions and restrictions which apply when entering data:

<bits>

, < characters>

Bit string insertion - If the display type is "bit," then the
input string must only contain l's and O's, must be less than
40 characters long, and must be no greater than the width of
the display window. The bits in the display window are
replaced by the bits in the input string, beginning from the
left.

Character string insertion - A character string is
preceded by a single quote ('). It must contain printable
characters, and must be less than 39 characters long. The
characters in the display window are replaced by those in the
input string, beginning from the left.

178 System Debugger

•

•

. < hexadecimal >

{ + }{ -} <integer>

Hexadecimal string insertion - A hexadecimal string is
preceded by a period (.). It must only contain hexadecimal
characters, must contain an even number of nibbles, and
must not be more than 19 characters long. The characters in
the display window are replaced by the characters in the
input string, beginning from the left.

Integer insertion - An integer may contain a leading plus
or minus sign; otherwise, it must only contain decimal
characters. The display window is treated as a numeric
element (that is, half tally, tally, double tally, or triple tally).
It must be 1, 2, 4, or 6 bytes in length, and must not cross a
frame boundary. The new integer replaces all previous data
in the window.

Editing functions which may be used while entering data are:

<CTRL> H (backspace),
<CTRL> R (redisplay),
<CTRL> W (cancel last word), and
<CTRL> X (cancel line).

Functions described for the system subroutine, "READLIN", are not supported.

179 System Debugger

180

•
Appendix •

• • •

• • • • Appendix A • • ABS Frames

• • • Frames Used By • • 001- 207 Pick Systems

• 208 - 208 Mainlink

• 209 - 221 Pick Systems

• 222 - 223 Jet
224 - 311 Pick Systems • 312 - 313 Compu-sheet • 314 - 339 Pick Systems

• 340 - 380 Jet

• 381 - 398 Pick Systems

• 399 - 399 Accu-Cursor

• 400 - 407 Pick Systems
408 - 417 Accu-Plot • 418 - 419 Pick Systems

• 420 - 421 Compu-Sheet

• 422 - 422 Pick Systems

• 423 - 428 Compu-Sheet

• 429 - 429 Pick Systems
430 - 459 Accu-Plot • 460 - 467 Compu-Sheet • 468 - 469 Pick Systems

• 470 - 485 Mainlink

• 486 - 511 Compu-Sheet

• 512 - 559 Jet

• 560 - 572 Mainlink
573 - 574 Available • 575 - 591 Mainlink • 592 - 599 Available

• 600 - 703 Keyword

• 704 - 899 Available

• 900 - 1023 Pick Systems

• • • • • • • • • • • • • • • • • 181 Appendix • •

182

•
Appendix •

• • •

• • • • Appendix B
• Process Workspace • • • • • • PCB

• Offset Name Size Description

• 0 PCB 512 Accumulators • Address Registers • Return Stack

• • 1 SCB 512 Counters

• Storage Registers

• 2 DCB 512 System Debugger Control Block • • 3 QCB 512 Used by System Software Routines

• • 4 BMS 50 Disc File I/O

• AF 50 Scratch
CS 100 Scratch • IB 0-140 Terminal Input Routine • OB 0-140 Terminal Output Routine .

• • 5 TS 512 Conversions

• 6-9 PROC 2048 PROC Working Space • • 10 - 15 HS 3072 Used for WRAPUP Messages

• • 16 - 21 IS 3072 Used by System Subroutines

• 22 - 27 OS 3072 U sed by System Subroutines • • 28 - 29 UPD 1024 Used By Data/BASIC Debugger • • 29- 31 1536 System Software Routines

• PickWare

• or available

• • • • • • • • • • • • • 183 Appendix • •

Workspace Linked?

BMS No

AF No
CS No

IB No

OB No

TS No

PROC Yes

HS Yes

IS Yes
OS Yes

Remarks

Normally contains an item-ID when communicating with
the disc file I/O routines; typically, the item-ID is copied to
the BMS area, starting at BMSBEG+ 1; BMSBEG may be
moved to point within any scratch area. BMSEND
normally points to the last byte of the item-ID; BMS (A/R)
is freely usable except when explicitly or implicitly calling a
disc file I/O routine.

These workspaces are used by any system subroutine,
though the A/R's are used as a scratch registers.

Used by terminal input routines to read data; IBBEG may
be moved to point within any scratch area before use:
IBEND conventionally points to the logical end of data; IB
A/R is freely usable except when explicitly or implicitly
calling a terminal input routine.

Used by terminal output routines to write data. OBEG and
OBEND should not be altered; they always point to the
beginning and end of the OB area; OB (A/R)
conventionally points one byte before the next available
location in the OB buffer.

This workspace is used by the system subroutines
associated with the Conversion processor, though the TS
A/R is used as a scratch register.

Used exclusively by the PROC processor for working
storage; user-exits from PROC's may change pointers in
this area.

Used as a means of passing messages to the WRAPUP
processor at the conclusion of a TCL statement; may be
used as a scratch area if there is no conflict with the
WRAPUP History String formats; HSBEG should not be
altered; HSEND conventionally points one byte before the
next available location in the buffer (initial condition is
HSBEG= HSEND).

These workspaces are used interchangeably by some
system routines since they are the same size (equal to HS).
Specific usage is noted under the various system routines.
ISBEG and OSBEG should not be altered, but may be
interchanged if necessary; initially, ISEND and OSEND
point 3000 bytes past ISBEG and OSBEG respectively. IS
and OS A/R's are freely usable except when calling system
subroutines that use them.

184 Appendix

•

•

Appendix C
Register Conventions

Registers 0 and 1 have specifically defined meanings; they should never be changed in
any way by programs. The other fourteen may be considered general purpose
registers with the limitation that system software conventions determine the usage of
most address registers.

Register Synonym Usage

RO PCB Addresses byte zero of the process' Primary Control
Block

RI Program Counter When the process is inactive, addresses the location

R2 SCB

R3 HS

R4 IS

R5 OS

R6 UPD

R7 IR

R8 BMS

R9 AF

RIO IB

Rll OB

RI2 CS

RI3 TS

RI4 Scratch

RI5 Scratch

of the next instruction to execute. When active,
addresses byte zero of the frame in which the
process is currently executing.

Points to the Secondary Control Block at logon and
after entering the debugger or WRAPUP Processor.

History String, Used for WRAPUP messages. Exit
to TCL via WRAPUP resets R3 to PCB+ 10.

Used by System Subroutines

Used by System Subroutines

Used by the Pick/BASIC Debugger

Used by RETIX and for Item Retrieval

Used for Disc File I/O

Used by System Subroutines and as scratch

Freely usable except when explicitly or implicitly
calling a Terminal Input Routine.

Freely usable except when explicitly or implicitly
calling a Terminal Output Routine.

Used by System Subroutines, and as scratch

Used by System Subroutines associated with the
Conversion Processor, and as scratch

Used by System Subroutines; Available to the User

Used by System Subroutines and some
instructions; Available to the User

185 Appendix

186

• Appendix •

• • •

•

Appendix D
Linked Frame Format

The first frame of a linked set of frames will have zero npcf and backward link fields.
The last frame of such a set will have zero nncf and forward link fields. The nncf and
npcf fields are normally zero, except in the linked workspace allocated to each process
and in files that have a separation greater than one.

Byte Display Description

0 • Unused byte

1 nncf Number of next contiguous frames (count of
frames that are linked forward off this one,
whose FIDs are sequential to this)

2-5 forward link FID of the frame that is next in logical sequence
to this one

6-9 backward link FID of the frame that is logically previous to this
one

A npcf Number of previous contiguous frames (count of
frames that are linked backwards to this one,
whose FIDs are sequential to this)

B • Unused byte

C Start of data Following the link fields is the 500-byte data
block.

187 Appendix

188

• R83 Index •

• • •

•

! (exclamation mark), use of, 173
abort

conditions, 167, 169
task,169

ABS, 57
ACC file, 95
add

decimal to decimal, 177
hexadecimal to hexadecimal, 177

Address, 173
Address Format, 170
Area, 60
arithmetic

utility commands, 177
ASCII, 69, 77, 94
Assign PCB by line, 175
attach

overflow, 78, 123
tape, 149

ATTOVF,78
ATTSPC,78
Available Space, 57

contiguous, 61
linked,61
linked available chain, 61
maximum contiguous, 61

Backward Link Zero, 169
block letters, 79
BLOCK-CONVERT, 79
BLOCK-PRINT, 79
BLOCK-TERM, 79
BMSOVF,123
break

conditions, 168
key, 168

break key, 88
breakpoints, 167, 168
BSL,67
carriage return, 125
Categories

subroutine, 67
character

display, 173
CONFIG,81
Contiguous

Available Space, 61
frames, 111
overflow, 91

controlling execution, 167
CONV, 69, 82
Conversion

Processor, 69, 82

Subroutines, 69
convert

decimal to hexadecimal, 177
from ASCII, 77
from binary, 114
from decimal, 86
from EBCDIC, 94
from hexadecimal, 86
hexadecimal to decimal, 177
option string, 99
to ASCII, 94
to binary, 86
to decimal, 114
to EBCDIC, 77
to hexadecimal, 114

CONVEXIT, 69, 82
CREATE-FILE, 61
CRLFPRINT, 128
Crossing Frame Limit, 169
CVDIB,86
CVDIR,86
CVDIS,86
CVDOS,86
CVDR15,86
CVXIB,86
CVXIR,86
CVXIS,86
CVXOS,86
CVXR15,86
D pointer, 93
Data Change Breaks, 168
Data Conversion, 69
data specifications, 170
date, 72, 87, 151
date and time, 72
DCB,63
Debugger, 167
Debugger Arithmetic Commands, 177

Add decimal to decimal, 177
Add hexadecimal to hexadecimal, 177
Convert decimal to hexadecimal, 177
Convert hexadecimal to decimal, 177
Divide decimal by decimal, 177
Divide hexadecimal by hexadecimal, 177
Multiply decimal times decimal, 177
Multiply hexadecimal times
hexadecimal, 177
Subtract decimal from decimal, 177
Subtract hexadecimal from hexadecimal,
177

Debugger Commands
,175

189 R83 Index

Address, 173
Assign PCB by line, 175
Character Display, 173
Display data through register, 175
Display frame links, 174
Display Tables, 173
Display time and date, 176
End,173
Execute instruction step mode, 173
Go, 174
Hexadecimal display, 176
Integer Display, 174
Kill Breakpoint, 174
Logoff,175
Modify frame links, 174
Remove Breakpoint, 174
Remove data change definition, 176
Remove trace definition, 176
Set break skip count, 175
Set Breakpoint, 173
Set data change definition, 176
Set trace definition, 176
Toggle instruction step mode, 173
Toggle program step mode, 175
Toggle terminal display mode, 175
untrace, 176

Debugger Control Block, 62
Debugger Conventions

Bit string insertion, 178
Character string insertion, 178
Hexadecimal string insertion, 179
Integer insertion, 179

Debugger Data Reference Examples, 172
Debugger prompt, 178
DECINHIB, 88
detach tape, 150
DICTOPEN,89
disable

terminal display, 167, 175
Display

data through register, 175
Tables, 173
time and date, 176

Display/modify frame links, 174
divide

decimal by decimal, 177
hexadecimal by hexadecimal, 177

DLINIT,91
DLINIT1,92
DPTRCHK, 93
EBCDIC, 77, 94
echo

190

toggle, 127
enable

terminal display, 167, 175
End (Debugger Command), 173
end-of-file mark, 159
end-of-linked-frame, 78, 123, 166
EOF,159
EOFBIT, 152, 159
EOTBIT,152
ERRMSG,132
error messages, 76
Exclamation Mark, use of, 173
Executable Area, 57
Execute instructions step mode, 173
execution

controlling, 167
monitoring, 167

Explicit Offset, 171
FFDLY, 125
FID,57
File, 60
File I/O Subroutines, 70
FILE-RESTORE, 59, 61
FILEOPEN, 89
Format

PSYM,64
register, 63
storage register, 64

Forward Link Zero, 123, 166, 169
fragmentation, 59
frame ID, 57
frames

linked,63
unlinked, 63

functional elements, 62
GACBMS,95
get next item, 105
get next table entry, 106
GETBLK, 100
GETBUF,96
GETFILE,89
GETITM,97
GETOPT,99
GETOVF,100
GETSPC, 100
GETUPD, 101
global

symbols, 64
GLOCK, 102
GMAXFID, 103
GMMBMS, 104
GNSEQI,105

R83 Index

•

•

GNTBLI,106
Go, 174
GPCBO,81
group

lock,102
unlock,102

Group Format Error, 169
GUNLOCK, 102
GUNLOCK.ALL, 102
GUNLOCK.LINE, 102
HASH,107
Hexadecimal display, 176
history string, 76
HS register triad, 108
HSISOS, 108
1/0,74
lllegal Opcode Abort, 169
INHIBITH, 88
initialize tape, 152
initializing

printer characteristics, 109
process workspaces, 126
terminal characteristics, 109
workspace, 110, 163

INITTERM, 109
input, 96, 137
Input Interface, definition, 67
Instruction Step Breaks, 168
Integer Display, 174
interacting with the Debugger, 178
IS, 165
IS register triad, 108, 165
ISINIT,110
items

adding, 70
deleting, 70
modifying, 70

Kill Breakpoint, 174
line feed, 125
line number, 112
LINE SUB, 112
LINK, 111
LINK-WS,59
linked

workspace, 59
Linked Available Space, 61
LISTFLAG, 175
LOGOFF, 113, 175
1{A)[FID,57,59, 61, 103
MBDNSUB, 114
MBDNSUBX, 114
MBDSUB, 69, 114

191

MBDSUBX,114
MD200,115
MD201,115
MD99,118
MD992,118
MD993,118
MD994,118
MD995,118
MD999,118
message

from another process, 169
messages, 128
modal trace, 175
monitoring execution, 167
multiply

decimal times decimal, 177
hexadecimal times hexadecimal, 177

NAT.PSYM,64
NEWPAGE, 122
NEXTIR,123
NEXTOVF,123
OFF,175
OPENDD,89
opening a file, 89
OS register triad, 108
output, 142, 143
Output Interface, definition, 67
Overflow, 57,59,61, 78,91,138

frames, 100
pool, 59, 60
subroutines, 71

PAGINATE, 122, 161
PARITY,152
PCB, 59, 63
PCRLF,125
performing I/O, 67
PICK System Conversion Processor, 69
PINIT, 126
PONOFF,127
Prefix Format, 170
Primary Control Block, 62
PRINT, 128
PRINT @O, 147
printer, 109, 142, 143, 161
printer characteristics, 109, 142, 143
Printer Subroutines, 74
printing, 79
privilege level, 129
Privileged Opcode Abort, 169
PRIVTST1, 129
PRIVTST2, 129
PROC, 130

R83 Index

process
initialization, 126
workspace, 58

process workspace, 59
program

entry points, 62
step mode, 169

Program Change Breaks, 168
PROTECT, 152
PRTERR,132
PSYM, 64
QCB, 63, 150, 152
Quadrenary Control Block, 62
RDLABEL,135
RDLABEL1, 135
RDLlNK, 136
RDREC, 136
re-entrancy, 62
read

links, 136
tape, 153

READIB,137
Readlin, 74, 137
READLINX,137
Referencing Frame Zero, 169
Referencing illegal Frame, 169
register

format, 63
triad, 108, 156, 165

RELBLK, 138
RELCHN,138
release overflow, 138
RELOVF,138
remove

Breakpoint, 174
data change definition, 176
trace definition, 176

reserved symbols, 62
RESETTERM, 109
RETI,139
RETIX, 70, 139
RETIXU, 139
RETIXX,139
retrieving items, 97, 139
RMODE,141
RTN,67
Rtn Stack Format Err Abort, 169
SCB, 63
Secondary Control Block, 62
secondary workspace, 59
set

Break Skip Count, 175

192

Breakpoint, 173
data change definition, 176
output characteristics, 142
output default, 143
trace definition, 176

SET-SYM, 170
SETLPTR, 142
SETTERM,142
setting

default, 143
output characteristics, 142
output default, 143
printer characteristics, 142, 143
terminal characteristics, 142, 143

SETUPTERM,143
SLEEP, 144
SORT,145
SPOOLER,59
status

of tape drive, 155
Subroutine

element usage, 67
errors, 67
example, 67
exits, 67
input inteiface, 67
name, 67
output inteiface, 67
subroutine usage, 67

Subroutine Structure, 67
subroutines, 62

Conversion, 69
File 1/0,70
Overflow, 71
System-Level Retrieval, 72
Tape Subroutines, 73
Terminal and Printer, 74
Workspace, 75
Wrapup, 76

subtract
decimal from decimal, 177
hexadecimal from hexadecimal, 177

Suffix Format, 171
symbolic debugger, 170
SYSBASE, 59, 60
System Abort Conditions, 169
system date, 72, 151
system debugger, 167
System file, 59, 104
system privilege levels, 129
system time, 72, 151
System-Level Retrieval Subroutines, 72

•
R83 Index •

• • •

•

SYSTEM. CURSOR, 147
tape

attach,149
detach, 150
end-of-file mark, 159
1/0,73
initialize, 152
label, 164
read, 153
read label, 135
routines, 73
status, 73
status of drive, 155
write, 153
writing label, 164

TAPSTW, 152
task abort, 169
TATT,149
TCL-II Processor, 115
TDET,150
terminal

characteristics, 109, 142, 143
1/0,74
input, 96
messages, 128
output, 161

terminal, 109, 142, 143, 161
Terminal and Printer Subroutines, 74
terminal input, 137
terminate execution, 167
TIMDATE, 151
time, 72, 151
time and date, 72
toggle

instruction step mode, 173
program step mode, 175
terminal display mode, 175

TPINIT,152
TPRDY, 152, 155
TPSTAT, 155
TPWRITE, 153
trace, 168
Transitory Debugger Entries, 169
TS register triad, 156
TSINIT,156
untrace, 176
UPD register triad, 101
update item, 157
UPDITM,157
User Exits, 82,130
utility commands, 177
VIR.PSYM, 62, 64

193

virtual,57
Virtual Permanent Symbol File, 62
virtual tape drive, 153
WEOF,159
Window Definition, 171
WMODE, 160
workspace, 110, 126, 163
workspace routines, 75
Wrapup, 76, 118, 141, 160
Wrapup Processor, 118
write

tape, 153
tape label, 164

Writlin,74
WRITOB,161
WRTLIN,161
WSINIT,163
WSSIZE, 59, 61
WSSTART,59
WTLABEL, 164
WTLABEL1, 164
XISOS, 165
XMODE,166

R83 Index

•

•

s Y S T EMS

R83 Assembly Manual
Jan. 1990 Edition

Customer
Comment
Form

Pick Systems would like to hear from your regarding the R83 Assembly Manual. Your
comments, recommended enhancements and suggested corrections on both the product and this
manual will assist us in making improvements.

Please indicate the type of user/reader you most nearly represent:

D Systems Programmer D Applications Programmer
D Consultant D Prospective User

Comments: __ _

Enhancements:
Is any material missing? If so, please describe and indicate where it should be placed: ____ _

Please make suggestions for improvement~· __________________________________ _

Corrections:
Page Number Description

Thank you.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 7303

POSTAGE WILL BE PAID BY ADDRESSEE

SYSTEMS

1691 Browning
Irvine, CA 92714

IRVINE,CA

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

•

