

.. .,

PROPRIETARY INFORMATION

The information contained herein IS proprietary to and
considered a trade secret of Mlcrodala Corporation
and shall not be reproduced In whole or part without
the written authorization of Mlcrodata Corporation

~11977 Microdata Corporation
All Rights Reserved
TM -Trademark of Microdata Corporation
Specifications Subject to Change Without Notice
Printed In US.A

Price: $20.00

(3.0 SERIES)

Assembly Language
Programming Manual

771049

•

® MicrodataCor~ion III 17481 Red Hill Avenue, Irvine, California 92714
Post Office Box 19501, Irvine, California 92713
Telephone: 714/540-6730' TWX: 910-595-1764

""""" ..

SECTION

1

2

3

TABLE OF CONTENTS

TITLE

INTRODUCTION
1.1 THE REALITY CPU AND HARDWARE
1.2 THE REALITY SYSTEM ARCHITECTURE
1.3 THE REALITY INSTRUCTION SET
1.4 RESTRICTIONS ON USE OF ASSEMBLY LANGUAGE

ON REALITY
1.5 r-1ANUAL ORGANIZATION AND CONVENTIONS

REALITY CPU REFERENCE INFORMATION
2. 1 SYSTEM STRUCTURE

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9
2.10

2.1.1 SYSTEM COMPONENTS
2.1. 2 INFORMATION FORMATS
VI RrUAL STORAGE
2.2.1 VIRrUAL STORAGE ORGANIZATION
2.2.2 ADDRESSING VI RrUAL STORAGE
CORE STORAGE
2.3.1 CORE STORAGE ORGANIZATION
2.3.2 ADDRESSING CORE STORAGE
VI RrUAL STORAGE MANAGEMENT
2.4.1 FRAME FAULTS
2.4.2 AUTOMATIC FRAME WRITES
PROCESSES
2.5.1 PROCESS IDENTIFICATION BLOCK
2.5.2 PRIMARY CONT ROL BLOCK
FRAME FORMATS AND LINKAGES
2.6.1 FRAME FORMATS
2.6.2 LINKED SETS OF FRAMES
ADDRESS REGISTERS
2.7.1 ADDRESS REGISTER ATTACHMENT
2.7.2 CAUTIONS INVOLVING REGISTER ATTACH~
2.7.3 ATTACHMENT AND DETACHMENT OF ADDRES~

REGISTERS
THE MONITOR
2.8.1 MONITOR FUNCTIONAL ELEMENTS
2.8.2 PROCESS SCHEDULING
PERIPHERAL I/O
PROGRAM TRAPS

REALITY ASSEMBLY LANGUAGE (REAL)
3.1 SOURCE LANGUAGE

3.2
3.3
3.4
3.5
3.6

3.1.1 LABEL FIELD
3.1.2
3.1. 3
3.1.4
3.1.5
3.1.6

OPERATION FIELD
OPERAND FIELD
OPERAND FIELD EXPRESSIONS
COMMENT FIELD
DOCUMENTATION CONVENTIONS

CALLING THE ASSEMBLER
LISTING OUTPUT
LOADING
VERIFYING A LOADED PROGRAM MODE
TCL-II CROSS REFERENCE CAPABILITY
3.6.1 CROSS-INDEX VERB

i

PAGE

1-1
1-1
1-1
1-3

1-3
1-4

2-1
2-1
2-1
2-1
2-1
2-1
2-2
2-3
2-3
2-3
2-3
2-5
2-5
2-5
2-6
2-7
2-13
2-13
2-14
2-16
2-17
2-18

2-18
2-19
2-19
2-19
2-20
2-2C

3-1
3-1
3-1
3-1
3-1
3-1
3-2
3-2
3-2
3-3
3-3
3-5
3-6
3-6

SEcrrON

4

3.7

TABLE OF CONTENTS (Continued)

TITLE

3.6.2 X-REF VERB
3.6.3 XREF PROC
THE REAL INSTRUCTION REPERTOIRE
3. 7.1 CHARACTER INSTRUCTIONS (MOVES)

CHARACTER INSTRUCTIONS (TESTS)
BIT INSTRUCTIONS

PAGE

3-6
3-8
3-8
3-9
3-12
3-13

3. 7.2
3 7.3
3.7.4
3.7.5
3.7.6
3.7.7
3.7.8
3.7.9
3.7.10
3.7.11
3.7.12

DATA MOVEMENT AND ARITHMETIC INSTRUCTIONS 3-13

3.8

3.9
3.10
3.11
3.12

REGISTER INSTRUCTIONS
DATA COMPARISON INSTRUCTIONS
TRANSLATE I'NSTRUCTIONS
EXECUTION TRANSFER INSTRUCTIONS
I/O AND CONTROL INSTRUCTION
ASSEMBLER DIRECTIVES
ADDRESS REGISTER USAGE
REAL INSTRUCTION SIDE EFFECTS

ASSEMBLER TABLES
3.8.1 TSYM/PSYM TABLE ENTRY FORMATS
3.8.2 OSYM TABLE-LOOKUP TECHNIQUE
3.8.3 TSYM TABLE ENTRY SETUP
ASSEMBLER OUTPUT
ASSEMBLER ERROR MESSAGES
REAL INSTRUCTION SUMMARY
PROGRAMMING CONSIDERATIONS AND CONVENTIONS
3.12.1 REENTRANCY
3.12.2
3.12.3
3.12.4
3.12.5
3.12.6

WORK-SPACES OR BUFFERS
DEFINING A SEPARATE BUFFER AREA
USAGE OF XMODE
INITIAL CONDITIONS
SPECIAL PSYM ELEMENTS

THE INTERACTIVE DEBUGGER (DEBUG)
4.1 ENTERING DEBUG
4.2

4.3

4.4
4.5

4.6
4.7
4.8

THE DEBUG CONTROL COMMANDS
4.2.1 CONTROL COMMAND SYNTAX
4.2.2
4.2.3

DEBUG CONTROL TABLES
c..'ONTROL COMMANDS

THE DEBUG DATA DISPLAY COMMANDS
4.3.1 WINDOWS
4.3.2
4.3.3
4.3.4

DATA DISPLAY COMMANDS
DATA REPLACEMENT SPECIFICATIONS
SPECIAL CONTROL CHARACTERS

THE FORMATTED TRACE
SYMBOLIC REFERENCES
4.5.1 SYMBOLIC OPERATORS
4.5.2
4.5.3

DISPLAY FEATURES
SYMBOLIC WINDOWS

THE ADDRESS FUNCTION
THE LINKS FUNCTION
BIT DATA
4.8.1 SYMBOLIC BITS

ii

3-15
3-17
3-18
3-19
3-21
3-22
3-24
3-25
3-25
3-26
3-27
3-27
3-27
3-28
3-29
3-32
3-32
3-33
3-35
3-35
3-36
3-36

4-1
4-1
4-1
4-1
4-2
4-3
4-4
4-4
4-5
4-6
4-6
4-8
4-8
4-9
4-9
4-10
4-10
4-11
4-11
4-11

TABLE OF CONTENTS (Continued)

SECTION TITLE PAGE

4.8.2 BIT ADDRESSES 4-11
4.8.3 REPLACING BIT DATA 4-12
4.8.4 BIT WINDOWS 4-12

4.9 BREAK MESSAGES 4-12
4.10 EXAMPLES 4-13

4.10.1 SIMPLE EXAMPLE 4-13
4.10.2 EXTENDED EXAMPLE 4-14

5 SYSTEM S'JBROUTINES 5-1

6 CONVERSION FROM LEVEL 2.X TO 3.0 6-1

iii

FIGURE NO.

1-1

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12

3-1
3-2
3-3

LIST OF FIGURES

TITLE

Hierarchy of System Architecture

Information Formats
Memory Management Tables
PIB General Format
PCB Elements Accessed by Firmware
Primary Control Block
Secondary Control Block
Unlinked Vs. Linked Frame Formats
Link Field Format
Examples of Linked Sets of Frames
Address Register Format
Attachment & Detachment of Address Registers
Order Codes

Sample Assembly Listing
Sample of CSYM File After CROSS-INDEX
Sample of XSYM File After X-REF

iv

PAGE

1-2

2-2
2-4
2-6
2-7
2-9
2-11
2-13
2-14
2-15
2-16
2-17
2-21

3-4
3-7
3-7

HOW TO USE THE REALITY® MANUALS

The Reality® manuals are written in modular format with each pair of facing
pages presenting a single topic.

This and other Reality manuals differ substantially from the typical reference
manual format. The left-hand page of each topic is devoted to text, while the
right-hand page presents figures referred to by the text. At the head of each
text page are a pair of titles, the first title naming the section, the second
the topic. Immediately below these titles is a brief summary (boxed) of the
material covered in the topic.

The advantage of this format will become readily apparent to the reader as he
uses this manual. First, the figures referred to in the text are always con­
veniently right in front of the reader at the point where the reference is made.
Secondly, the reader knows that when he turns the page, he has completed one
idea and is ready to encounter a new one.

Documentation for the Reality system includes the following:

Reality Programmer's Reference Manual, #1048

Reality EDITOR Operator's Guide, #1052

Reali ty ENGLISH T .M. Programming Manual, #1038

Reali ty DATA/BASICT.M. Programming Manual, #1051

Reality PROC and BATCH Programming Manual, #1044

Reality Assembly Language Programming Manual, #1049

Reality Bisync Operator's Guide, #1043

The examples throughout this manual use certain conventions as defined in
Figure A.

CONVENTION MEANING i.. Shaded text I'epI'esents the useI"s input.

TEXT StaYidaI'd text I'epI'esents computeI' output
pI'inted by the system.

TEXT Italicized text is used for comments and notes
which help explain or descI'ibe the example.

@ This symbol I'epI'esents a caI'I'iage retUY'n.

~ This symbol I'epI'esents a space (blank).

Figure A. Conventions Used Throughout This Manual

----------------~-~-

SECTION 1

INTRODUCTION

1.1 THE REALITY® CPU AND HARDWARE

The Reality system runs on a Microdata 1600 CPU. Although small in size, it has
the architecture of a medium scale computer. Its main memory is core, and is ex­
pandable to 131,072 bytes. The CPU cycle time is 200 nanoseconds, and the main
memory full cycle time is 1 microsecond. The CPU is microprogrammed, meaning that
the assembly language instructions are executed by many small micro-instructions
which are "close" to the machine. These .micro-instructions (filCmware) are in read­
only, fixed memory, as t~1is affords higher execution speeds. Taking this approach
permits proven hardware to be used for Reality systems while allowing the ,flexibil­
ity of a custom instruction set.

The mass memory is disc, which is organized into 512 byte blocks called frames.
Over 300 megabytes of disc storage can be configured on a Reality system. There
is a large list of supporting hardware which can be interfaced to the 1600 Computer,
including tapes, communication devices, terminals, etc.

1.2 THE REALITY SYSTEM ARCHITECTURE

Figure 1-1 shows an overall view of the software on the Reality system. The firmware
is burned onto integrate~ circuit chips and placed on a firmware board. The monitor
serves to allocate disc activity and to schedule processes for activation. It uses
assembly language instructions which are executed by the firmware. There is a large
volume of available system software, also written in assembly language, with instruc­
tions executed by the firmware. This system software includes compilers, utilities,
the assembler, and a large number of subroutines to which the user may interface.

Reality will support up to 32 separate asynchronous processes (terminals plus the
work they are doing). Because Reality code is reentrant, each may be running the
same or different tasks.

Reality assembly language operates through its own set of registers, stacks, accu­
mulators, and other data structures. Each process is assigned a control block which
contains 16 addressing registers, an accumulator, a return stack which will hold 11
entries, an accumulator extension, and a large number of other registers, counters,
pointers, and flags which make the assembly language very powerful. The 16 address
registers in a control block can access any byte in disc space. Relative addressing
is also possible using an offset displacement plus one of the registers to any bit,
byte, word (16 bits), double word (32 bytes), or triple word (48 bits) in the entire
virtual memory.

Input and output to the terminals is handled automatically by the firmware, which
makes these operations fast. Input and output to the discs are handled automati­
cally by the monitor and firmware, a feature which greatly simplifies the program­
ming task.

1-1

HIGHER LEVEL
LANGUAGES (RPG,
ENGLISHT •M., DATA!BASICT •M•

SYSTEM SOFTWARE

@- MONITOR
TAPE

FIRMWARE

CPU & CORE

Figure 1-1. Hierarchy of System Architecture

1-2

1.3 THE REALITY INSTRUCTION SET

The Reality Computer System has an extensive instruction set. The main features
include:

• Bit, byte, word, double-word, and triple-word operations.

• Memory-to-memory operation using relative addressing on bits, bytes, words,
double-words, and triple-words.

• Bit operations permitting the setting, resetting, and branching on condition
of a specific bit.

• Branch instructions which permit the comparison of two relative memory
operands and branching as a result of the compare.

Addressing register operations for incrementing, decrementing, saving, and
restoring addressing registers.

• Byte string operations for the moving of arbitrarily long byte strings from
one place to another.

• Operations for the conversion of binary numbers to printable ASCII characters
and vice versa.

• Arithmetic instructions for loading, storing, adding, subtracting, multiplying,
and dividing the extended accumulator and a memory operand.

• Control instructions for branching, subroutine calls, and program linkage.

1.4 RESTRICTIONS ON USE OF ASSEMBLY LANGUAGE ON REALITY

While the use of assembly language on Reality is supported, certain restrictions
are placed on this usage to insure compatibility from one release to another, and to
insure that the systems are both hardware and software supportable. The following
are not supported.

1) Any change to the asserr~ly code system software supplied by Microdata.

2) Any interface to routines not documented in the chapter SYSTEM SUBROUTINES
in this manual.

3) Any interface to P.I.B's or other data or code in non-virtual core.

4) Any code written in monitor mode.

5) Any modifications, deletions or additions to the tables PSYM and OSYM as
supplied on SYS-GEN tapes.

6) Any interface to a device or peripheral not supplied by Microdata.

1-3

1.5 MANUAL ORGANIZATION AND CONVENTIONS

This manual is organized as follows:

• Section 2 is essentially a "reference manual" for the Reality CPU. It des­
cribes the system structure and the machine instructions.

• Section 3 describes the Reality Assembly Language (REAL).

• Section 4 describes the Interactive Debugger (DEBUG), which may be used to
monitor and control program execution.

• Section 5 documents Microdata-supplied system subroutines (and their inter­
faces) which users may call.

In presenting general command formats throughout this manual, the following conven­
tions apply.

Convention

UPPER CASE

lower case

{}

{} ...

Meaning

Characters or words printed in upper case are required and must
appear exactly as shown.

Characters or words printed in lower case are parameters to be
supplied by the user (e.g., file name, item-ID, data, etc.).

Braces surrounding a word and/or parameter indicate that the word
and/or parameter is optional and may be included or omitted at
the user's option.

If an ellipsis (i.e., three dots) follows the terminating
bracket, then the enclosed word and/or parameter may be omitted
or repeated an arbitrary number of times.

In presenting examples, the following conventions apply:

Convention Meaning ... '.
: <l
:', ,',,'

Shaded 'text represents the user's input.

TEXT Standard text represents output printed by the system.

This symbol represents a carriage return.

This symbol represents a line feed.

1-4

SECTION 2

REALITY CPU REFERENCE INFORMATION

This section is a "reference manual" for the Microdata Reality cpu. It provides a
description of the system structure; of the arithmetic, logical, branching, skipping,
and input/output operations; and of the interrupt and storage management system.
Input/output devices are discussed in separate documents.

2.1 SYSTEM STRUCTURE

2.1.1 SYSTEM COMPONENTS

The Reality system consists of a core storage unit, a tape drive, a printer, a disc
storage device used as a virtual storage unit, a central processing unit (CPU), and
from one to 32 input/output terminals. There is a one-to-one correspondence between
a terminal attached to the system and a process. Additional input/output devices
such as magnetic tape un:i.ts, disc units, card readers, and printers may be attached
to the system. Input/output devices, other than a process's terminal, may be ac­
cessed by any process. The disc unit containing the virtual store, however, cannot
be accessed as an input/output unit, except by the monitor.

2.1.2 INFORMATION FORMATS

The system CPU processes information in units of 8 bits, or in multiples of 8 bits
at a time. Each 8-bit unit is called a byte.

Information may be a single byte, or may be grouped together in fields. Fields of
two, four, and six bytes are called words, double words, and triple words, respec­
tively. A field made up of an arbitrary number of bytes is called a string. The
location of any field is specified by the address of the leftmost byte of the field.
Addresses increase from left to right.

Within any information format, the bits making up the format are nurr~ered from left
to right, starting with O. Figure 2-1 shows the information formats.

2.2 VIRTUAL STORAGE

All information in the Reality system, other than the monitor program and certain
data used by the monitor, is stored in virtual space. "Virtual" means that the
physical location of this space moves from disc to core and from core to disc auto­
matically, without attention from the user.

2.2.1 VIRTUAL STORAGE ORGANIZATION

Virtual storage is organized into blocks of 512 bytes each. Each block is called
a frame. Frames are numbered from one to some maximum number which depends on the
system configuration. When frames are needed for processing, they are moved into
core for access by the CPU. Frames which are not used often are moved into disc
storage to make room for other frames in core. This movement of frames is handled

2-1

BYTE

Iuooollol

a BITS 7
• •

WORD

1111100011010010111

0 7 8 1
5

DOUBLE WORD

1111000001100011111000000001101010111

0 7 8 1 1 2 2 3
5 6 3 4 I

TRIPLE vlORD

00100111

0 7 8 I I 2 2 3 3 3 4 4

5 6 3 4 I 2 9 0 7

Figure 2-1. Information Formats

automatically by the Reality firmware and monitor, so as far as the user is con­
cerned, available space can be viewed as a linear set of frames. Whether data is
actually in core or on disc at any given time is of little importance, and is con­
sidered only when optimizing programs.

2.2.2 ADDRESSING VIRTUAL STORAGE

All program references to information are references to virtual storage. Fields
in virtual storage are referenced via a frame number (frame-ID, or FlO) and a
displacement. If the fie:d being referenced is a single byte or a string, the
displacement is the number of bytes relative to the first data byte of the frame.
If the reference is to a word, double word or triple word, the displacement is
the number of words relative to the first data byte of the frame. References to
instructions are via a 12-bit frame number. Therefore, programs must be located
in the first 4096 frames.

2-2

2.3 CORE STORAGE

2.3.1 CORE STORAGE ORGANIZATION

Core storage is also organized into 512-byte blocks, called buffers. A few buffers
are reserved for the mOllitor, tables, and status indicators which are required to
operate the Reality system. The remaining buffers are available for storing data
read in from disc; one buffer can hold exactly one frame of virtual storage.

Any core buffer can hold any frame, and at any given time the buffers in core will
have a scattering of frames. Frames are read into core as buffers become available,
without regard to which buffers they are. Frames are written back to disc as they
fall into disuse.

2.3.2 ADDRESSING CORE S~ORAGE

Byte locations in core storage are consecutively numbered starting with zero. A
group of bytes is addressed by the leftmost byte of the group. The number of bytes
in a group is either implied or explicitly defined by the particular Reality in­
struction. The addressing mechanism uses a one-bit bank select register and a
sixteen-bit binary address register, giving a maximum of 131,072 addressable bytes.

2.4 VIRTUAL STORAGE MANAGEMENT

The Reality monitor uses several tables to manage the movement of frames between
core and disc.

The Buffer Status Table contains the status of each buffer in core storage--whether
it is I/O-busy, core locked (not to be read into) or, write-required (data in frame
changed) •

The Buffer Map (or FlO Table) is a table containing the virtual storage addresses
of all frames currently in core buffers.

The Buffer Queue (or Links Table) is a linked list of buffer numbers used to schedule
buffers for disc I/O efficiently.

The Hash Address Table (HAT) and the Hash Link Table (HLT) are used to locate frames
in core storage. To det2rmine whether a given frame is in core or not, the frame
number is transformed ("hashed") into a HAT entry number, which points to a list of
HLT entries. This list contains the numbers of all frames in core which have the
same HAT entry number. If the given frame number is not in the list, the frame is
not in core, and a frame fault is then generated in order to read the frame in from
disc.

Figure 2-2 shows the interaction of the memory management tables.

2-3

HAT

START START HERE TO SEE IF A FRAME
IS IN CORE & IF SO, WHERE

HASH TRANSFORMATION

LIST 2

LIST N

HLT

........

D
D

.....
ENTRIES POINT TO
LINKED LISTS

COMPOSED OF SEVERAL
INTER'IWINED LINKED LISTS.

PER BUFFER CONNECTS BUFFERS HAVING FID's ~
1 BLOCK

IN CORE WHI CH HASH THE SAME. /

BUFFER QUEUE (ORDERS BUFFERS BY
MOST RECENT USAGE)

00
/

I

DD D/~'
/

I ,

o O/D
/

I
I

OCJD
BUFFER MAP (SHOWS FRAMES)

Figure 2-2. Memory Management Tables

2-4

I
I

I
I

I
/

/
I

I

2.4.1 FRAME FAULTS

If a program (process) attempts to reference data which is not in core, it is de­
activated and marked disc-roadblocked by the firmware, and the monitor is activated
to search for an available buffer for the frame. If an available buffer exists and
the required disc drive is not busy, the monitor sets that buffer's status to 1/0-
busy and core locked , zeroes the frame number in the Buffer Map, and commands the
disc to read the requested frame into that buffer. Then the monitor selects another
process for activation. When the disc interrupt occurs, indicating completion of the
read, the monitor stores the requested frame number in the Buffer Map, clears the
I/O-busy and core locked buffer status, and clears the process's disc-roadblocked
flag. The monitor then starts another disc read, if possible, for another process,
and selects another process for activation.

If a process needs a frame read into core and no buffer is available, the monitor
finds the least recently used buffer which is not cOfelocked, writes it out to disc
if its write-required flag is set, and marks it available. By the time a buffer is
written out, however, the disc drive required to read in the desired frame may be
busy, or another process may have already read this frame into core. But the buffer
freed by a write is always marked available in the Buffer Map (by zeroing the frame
number), a.nd this table is always searched before using the available buffer.

2.4.2 AUTOMATIC FRAME WRITES

Whenever the monitor completes a search for disc roadblocks for an available disc
drive and fails to find any, it next looks for a buffer with write-required, non­
core locked status. It searches the Buffer Map beginning with the least recently
used buffer and starts a write/verify operation for the first buffer found for an
available disc drive. The monitor sets the buffer's core locked flag and clears the
write-required flag, but does not set the I/O-busy flag in this case. This means
that processes may read and write data into and out of the buffer after the write/
verify operation is initiated, but if the data in the buffer changes, the firmware
will set the write-required flag again. When the write/verify operation is complete,
the monitor clears the buffer's core locked status and searches for another process
requiring disc I/O. The monitor thus ensures system efficiency by continually pro­
viding available buffers.

2.5 PROCESSES

The Reality CPU is designed as an interactive system capable of communicating with
several users simultaneously. A user communicates with the system via a terminal,
and associated with each terminal is a process. A process can be defined as a con­
tinuing operation on a set of functional elements (areas of virtual space). The
number of processes in a Reality system is a function of its configuration. Each
process, except the monitor process, is associated with a Process Identification
Block (PIB) in core, and a Primary Control Block (PCB) and other elements in virtual
space.

2-5

2.5.1 PROCESS IDENTIFICATION BLOCK

Process Identification Blocks (PIBs) are used in handljng the I/O operations asso­
ciated with each process, and in scheduling activation and deactivation of the
processes. Each PIB is 64 bytes long and is formatted as shown in Figure 2-3.

Byte
o
1
2
3
4

31
32

NOTE

The infopmation in Figure 2-3 is intended to give a bettep undepstanding
of the opepation of ReaZity systems. It is not intended to be used as an
intepface specification.

PIB Bit
I-----,~--.:o

Status
Bytes

1
ACTIVE
SLEEP
DIOBLK/
--
--
OBYTEBLK/
IBYTEBLK/
--

INDEBUG

Set when process may be activated
Zeroed to sleep until time in bytes 12-15
Zeroed by firmware on frame fault

Zero during terminal output
Zero during terminal input

Set to echo terminal input
Set when process is executing from TCB
Set by firmware on program trap

Trap number

Terminal
I/O Buffer

yte address of last character in terminal I/O buffer

umber of bytes in terminal I/O buffer minus one

63 TI-. __ ---IT

Figure 2-3. PIB Format

2-6

,

2.5.2 PRH1ARY CONTROL BLOCK

For each process there is a frame called the Primary Control Block (PCB). The
PCB contains the accumulator, addre~;s registers, subroutine return stack and string
scan control characters associated with the process. Figure 2-4 describes elements
of the PCB which are accessed by th(: firmware. Figure 2-5 shows the entire PCB
layout. Figure 2-6 shows the Secondary Control Block (SCB) layout.

BYTES

o

1

3-5

6-7

8-X'OB'

X'QC'-X'OP'

X'lOO'-X'17F'

X' 182' -X' 183'

X' 184 '-X' lAP'

DESCRIPTION

This byte contains the condition code resulting
fr'Jm a previous arithmetic instruction execution.

These bytes are used for controlling the Move
and Scan through Delimiter instructions.

These bytes are used for controlling the DEBUG
trace mode of operation.

These bytes contain the double-word accumulator
extension. The accumulator extension contains
the most significant portion of a product
after a multiply operation. It contains the
remainder after a divide operation.

These bytes contain the double-word accumulator.

These bytes contain the 16 address registers.
See the description of the address registers
below.

These bytes contain the pointer to the current
top of the subroutine stack.

These bytes contain the subroutine return
stack. Each entry is four bytes long: the
first two bytes contain the FlO and the
1 ast two contain the displacement of the
address one before that where program exe­
cution is to resume upon returning from the
subroutine.

Figure 2-4. PCB Elements Accessed by Firmware

2-7

PRIMARY CONTROL BLOCK
•

Addressing register RO set to PCB. Areas bordered by hea
reserved for future system software use.

000

010

020

030

040

050

060

070

080

090

OAO

OBO

OCO

000

OEO

OFO

100

110

120

130

140

150

160

170

180

190

lAO

1 BO

lCO

1 DO

1 EO

1 FO

o 2 3 4 5 6 7

fW///#~ PRMPC r sco SCl 1 SC2 InmUG8YTE I RN ICTR

AF LG-Z F LG. S8Q-S835, DAFO-DAF9, MISC. 81TS

CHO I CHl CH2 I CH3 CH4 I CH8 CH9 I SCP

02 D3

RECORD FRMN

BASE MODULO SEPAR

MBASE MMOD MSEP

OVRFLW CMODE
j;0

fNHfBITH I ACFSAV RCDCTR MODEID2 WMODE

CTRO CTRl CTR2 CTR3

CTR8 CTR9 CTR10 CTR11

REJCTR REJO IBSIZE OBSIZE

" HSENO ISBEG

OSBEG

" TSEND

" UPOEND BMSBEG

ROWA ROOSP ROFLGS I ROFIO

R2 (SCB)

R4 (IS)

R6 (lR)

R8 (BMS)

Rl0 (lB)

R12 (CS)

R14

~~//# RSCWA FIJtTN-S~ENTRY #bsp

ENTRY #4 ENTRY #5

ENTRY #8 ENTRY #9

AFBEG

>~ CSENO

':. IBEND OBBEG

IRBEG

>~ SYSRl (FPY)

Figure 2-S. Primary Control Block

2-9

vy lines are accessed by hardware. Sha~ed areas are

8
-'

9
1

A
1

B C I D E F

D1 DO

TAPSTW I MISC. BITS

HR
j4

H9 T5 T6 T7

D4 D5

FRMP NNC.F I NPCF SIZE

DBASE DMOD DSEP

EBASE EMOD ESEP

SBASE SMOD SSEP

RMODE MODEID3 XMODE USER

CTR4 CTR5 CTR6 CTR7

CTR12 CTR13 CTR14 CTR15

HSBEG ~

ISEND

OSEND TSBEG ~

UPDBEG

BMSEND

R1

R3 (HS)

R5 (OS)

R7 (UPD)

R9 (AF)

R11 (OB)

R13 (TS)

R15

ENTRY #2 ENTRY #3

ENTRY #6 ENTRY #7

ENTRY #10 ENTRY #11

AFEND CSBEG ~

I IBBEG
,

OBEND

IREND SYSRO (FPX) P

CHARGE UNITS - BYTECTR

SECONDARY CONTROL BLOCK

Addressing register R2 set to SCB.

000

010

020

030

040

050

060

070

080

090

OAO

OBO

OCO

000

OEO

OFO

100

110

120

130

140

150

160

170

180

190

lAO

1 BO

lCO

1 DO

lEO

1 FO

o 3 4 2
I I

(SCRATCH) I BSPCH Cl

ABIT-ZBIT, NUMFlG 1, NUMFlG 2, ACTBIT

CTR22 CTR23

CTR30 CTR31

CTR38 CTR39

PFllE NEXT

FP3

~ 09

SYSR2

P
,~ S3

S6

1
SRl

SR4

SR9

SR12

,

SR17

SR20

~

~ SR25

SR28

'I='
,~ STKEND

lOCKSR

~ W'~ ~////h

~ FOOTCTR I
PBUF

POBSIZE PPAGSIZE L
PAGNUM

SCB PCB+l.

7 5 6
I I

C2 C3

CTR16 CTR17

CTR24 CTR25

CTR32 CTR33

CTR40 CTR41

FP1

I

REJl

Sl

S4

S9

SR2

SR7

SR10

SR15

SR18

SR23

SR26

PQCUR

STKBEG

~~
PAGFOOT

PliNCTR PPAGNUM

PAGHEAD

Figure 2-6. Secondary Control Block

2-11

8 9 A
I

B c D E F

C4 C5 C6 C7

CTR18 CTR19 CTR20 CTR21

CTR26 CTR27 CTR28 CTR29

CTR34 CTR35 CTR36 CTR37

CTR42 FP5

FP2

)6 D7 D8 ~

REJ2 FP4

NXTITM SO >

S2 P

S5

S7 S8 ~

SRO P

SR3

SR5 SR6 ~

SR8 P

SRll

SR13 SR14 "
SR16

SR19

SR21 SR22 ;:;

SR24 i"

SR27

SR29 POBEG P

POEND P

SR35

PO-REG BDESCTBL ~

-;~ ~ ~~//@,/ff//hl w~~ w///////ij0

PBUFBEG

PBUFEND OVRFLCTR

TOBSIZE TPAGSIZE TLiNCTR TPAGNUM

LlNCTR PAGSIZE PAGSKIP LFDLY

2.6 FRAME FORMATS AND LINKAGES

2.6.1 FRAME FORMATS

The Reality system provides two types of frame formats: linked and unlinked.

Unlinked formats contain 512 data bytes (see Figure 2-7). For unlinked frames,
the displacement portion of an address is relative to byte 0 of the frame. Dis­
placements outside the range 0 through 511 are not valid for frames in the unlinked
format.

o 511

~_0 ____________________ UN __ L_I_N_KE __ O ________________________________ 51_1~

PHYSICAL LOCATIONS
OF BYTES

LOGICAL NUMBERING
OF BYTES

(
~----------~~~--~~ LINK

AREA
LINKED

NOTE: E'OR LINKED FRAMES, THE PHYSICAL BYTE
IS 11 PLUS THE LOGICAL BYTE NUMBER.

L...... __________________ ~~ _________________________ __J

Figure 2-7. Unlinked Vs. Linked Frame Formats

Lin}~ed frames contain 500 data bytes, numbered 1 to 500. For linked frames, the
displacement of an address is relative to byte 11 of the frame. However, a dis­
placement of ze~o is a r~ference to byte 511 of the frame previous to the current
frame. Displacements for linked frames may be positive or negative so long as the
displacement references a logically linked frame. The link field is described in
Figure 2-8.

2-13

o 1 2

NNCF

3 4

FRMN
(Next FID)

5 6 7 8

FRMP
(previous FID)

9 10 11

NPCF

12 ...

Data
Section

500 bytes)

LINKED FRAME FORMAT

BYTES

o

1 NNCF

2-5

6-9

(
FRMP 1 BACKWARD
LINK

10 NPCF

11

12-511

DES r.RI PT ION

Unused and reserved.

This byte contains a count of the number of next contig­
uous frames which follow this frame. A zero in this
byte indicates that this frame is the last frame in a
contiguously linked set of frames.

This field contains the frame number of the frame that
logically follows this frame. If byte 1 contains other
than zero, this will be the next higher numbered frame.
If byte 1 contains a zero this may be any frame number.
A zero in this field indicates that this is the last
frame of a linked set.

This field is similar to bytes 2 through 5 except that
it contains the number of the frame preceding this
frame •

This byte is similar to byte 1 except that it contains
a count of the number of previous contiguous frames
preceding this frame.

Unused and reserved.

Data section.

Figure 2-8. Linked Frame Format

2.6.2 LINKED SETS OF FRAMES

A series of frames may be linked together to hold data structures that will not
fit in a single frame. Such a linked set may contain contiguous frames, singly
liaked frames, or combinations. Figure 2-9 shows some examples.

2-14

.. .,

A. A SERIES OF SINGLY LINKED FRAMES

NNCF 26
FRMN 1004
FRMP 1002
NPCF = 3

Ilo:on;£nMJ1o~. ~
B. A SET OF 30 CONTINGUOUSLY LINKED FRAMES

NOTE

If all NNCF·and NPCF fields in these frames were zero~ this would
be a singly linked list of frames lJhich happened to have consec­
utive FID' s.

lloo(f1Jofio~o(f))t.fhl05m9000 U 29001)
6 CONTIGUOUS F~S SINGLE 54

LINK CONTIGUOUS
FRAMES

C. TWO CONTIGU~US LINKED SETS THEMSELVES LINKED WITH A SINGLE LINK.
TIIIS IS TYP:!:CAL OF 'LOGON WORKSPACE ..

PHYSICAL
#'5

! 11 12

REGISTER POINTS TO PHYSICAL

11 ~~TE 6~i 511 0 11 12

#'S

61 511 o

1 50 500 !-----t ... ·FHY:}5J 1

FRAME 3070 FRAME 1296

REG points to logical byte 50 of frame 3070.
minus SOO points to byte 50 of frame 2000.

61

50

REG plus 500 points to byte 50 of frame 1296.---------~

511

500

D. DISPLACEMENTS OFF OF A REGISTER WHICH POINTS INTO A SET OF
LINKED FRANES

Figure 2-9. Examples of Linked Sets of Frames

2-15

LOGICAL
#'8

2. 7 ADDRESS REGISTERS

All references to data, except immediate data, are made indirectly through an
address register. There are 16 address registers in each PCB. Each address
register contain 8 bytes as described in Figure 2-10.

Address
Register
Format

0-1

2-3

4

5-7

o 1 2 3 4 5 6 7

(CORE ADDRESSIDISPLACEMENT I LINK FID

DESCRIPTION

These bytes contain the 16 bit main storage address of the
referenced data. If the address is less than X' 800 I, the
address register is "detached."

These bytes contain the displacement of the referenced data
relati ve to the first data byte of the frame. The displace­
ment is a 16-bit signed number. Negative values are
represented in twos complement form. These bytes are
meaningful only when the register is detached. (See the
sec~ion ADDRESS REGISTER ATTACHMENT.)

Zero in bit zero of this byte indicates that the register
references data in linked format. If bit zero is a one,
the register references the data in unlinked format.

One in bit one indicates that frame attachment is in
progress. Bit one can only be set during the execution of
instructions that increment addresses with data movement.

Bit 7 is used as an extension of the word address to
indicate a main memory bank.

These bytes contain the virtual storage frame number of
the byte being referenced.

Figure 2-10. Address Register Format

ADDRESS REGISTER ZERO

Register zero is used in a special way. This register always points to the PCB.
Register zero is attached when the process is activated. The displacement field
of this register is always effectively zero.

ADDRESS REGISTER ONE

When a process is not active, address register one contains the FID and displacement
(minus one) for the next instruction to be executed. When the process is activated,
the buffer address of the program frame (as determined from the buffer map) is added
to t':.e displacement from register one. This value is placed into a hardware instruc­
t~.on counter. The register is then converted to the attached form with the buffer

2-16

address set to byte zero of the program frame. This allows register one to be used
to reference data in the program frame. When the process is deactivated, the main
storage location from the instruction counter is converted to the corresponding FID
and displacement and the register is detached with these values placed into it.

2.7.1 ADDRESS REGISTER ATTACHMENT

When setting up an address register, the first two bytes of the register must
be set to zero. Bytes 2 through 7 are set to contain a virtual frame number and
displacement. A register in this format is said to be detached. When a subse­
quent instruction uses the detached register for a data reference, an attempt is
made to convert the address register to the attached format. The attaching attempt
is automatic and procedes as follows. The buffer map is searched to determine if
the referenced frame is located in main storage. If the frame is in main storage,
the location of the required byte is computed by adding the buffer address from the
map to the displacement from the address register. The address is then placed into
bytes 0 and 1 of the address register, thus forming the attached format. Once the
register is attached, instruction execution takes place.

If the referenced frame is not in main storage, the frame number is placed into
bytes 12 through 15 of the PIB. Byte 0, bit 2 of the PIB is set to 0, thus road­
blocking the process. Next, all of the address registers in the PCB are converted
to detached format and a fault interrupt to the monitor is taken.

Figure 2-11 summarizes the attachment/detachment process.

A/R is Attached
when:

o 1

o 0 I
Word

-I Address

(1) ~ instruction
that references
data via the A/R
is executed.

(2) Execution of
INC r
DEC r
instructions.

(3) Execution of
FAR r,n
instruction.

2 3 4 5 6

DISP Flags F I

- - Flags F I

7

A/R is Detached
when:

D

1 D

(1) Process is deac-
ti vated due to:
terminal I/O;
disk I/O (frame
fault); peripheral
I/O; timer run-out;
moni tor call.

(2) A SIR is moved to
the A/R.

(3) Execution of
INCr,t
DEC r,t

if a frame bound­
ary is crossed.

Figure 2-11. Attachnent & Detachment of Address Registers

2-17

2.7.2 CAUTIONS INVOLVING REGISTER ATTACHMENT

Address registers can be set up explicitly by setting their fields appropriately; a
more conventional way is to move a S/R into it. Consider the. following:

FRMIOO ADDR 0, X'lOO' DEFINE A LITERAL S/R
REFERENCING FRAME X'IOO'

and

MOV FRMlOO , Rl5

ZERO
ZERO
MOV

Rl5WA
Rl5DSP
=DX'80000100',Rl5FID

It is important to note that, in the first sequence, the address register is auto­
matically set to the "detached" format when the "mv" instruction executes; in the
second sequence, the address register is explicitly set to the "detached" format by
the "ZERO Rl5WA" instruction. The word-address of an A/R must be zeroed before
other segments of the A/R are modified.

2.7.3 ATTACHMENT AND DETACHMENT OF ADDRESS REGISTERS

All instructions that reference data force "attachment" of the A/R(s) used in the
reference. Other instructions do not do this; for example, the "increment A/R by
tally" instruction will not cause a "detached" A/R to attach before execution.

This point may lead to programming errors; consider the following sequence:

LI
L2
L3

BCU AM, R6,NXT
INC R6, SIZE
MOV R6, SR4

R6 "ATTACHED' AT THIS POINT
R6 MAY "DETACH" DUE TO THIS INSTRUCTION
SAVE R6

The instruction at L2 may force R6 to "detach" (if the contents of SIZE are such
that the resultant address is beyond the limits of the current frame); storing R6
in SR4 will then cause SR4 to have a large positive displacement, and a FID equal
to that in R6 at the time of execution of the instruction at LI. Subsequently, a
register comparison instruction of the form:

BE Rl5,SR4,L20

may execute incorrectly due to the fact that if the FID's of Rl5 and SR4 are unequal
at the time of execution, it is assumed that the two frames are continguously linked
(see Section 3.14). Therefore, it is best to force "attachement" of R6 before L3; a
convenient way of doing so is to execute the instruction:

L3A FAR R6,O

though any data reference instruction would serve as well.

2-18

2.8 THE MONITOR

The monitor is a program that is an integral part of the Reality system. Its
function is to initiat~ the transmission of information between core storage and
virtual storage and to schedule each of the processes.

2.8. 1 MONITOR FUNCTIONAL ELEMENTS

The monitor process is the only one not associated wlth a PIB. The PCB for the
monitor is located in low core.

Besides the functional elements described in Section 2.5.2, the monitor PCB con­
tains such information as the system time and date, pointers for peripheral devices
zero through fifteen, and the bootstrap software.

ffilen the system is operating in monitor mode, address registers are not checked for
attachment. Instead, all data references are assumed by the firmware to be refer­
ences to absolute core addresses.

2.8.2 PROCESS SCHEDULING

The monitor maintains a queue of processes currently in the system, arranged in
increasing order of expected total processing time. The position of a process in
the queue determines its priority for activation--the process at the head of the
queue has the highest priority. The process with the highest priority without
any roadblocks is alwa~'s the next one to be activated.

Expected total processing time for a process, at any given instant, is based on the
amount of CPU processing and number of disc reads already done by that process.
Interactive processes are favored by increasing their priority. As a process out­
puts characters to the terminal, it migrates up the priority queue. When a process
receives terminal input, it is moved to the head of the queue, for immediate activa­
tion. As a process consumes system resources (CPU time and disc reads), it
migrates down the priority queue.

The effect of each system resource on a process's priority is controlled by a
weighting factor. When the number of units of a resource consumed reaches the
weighting factor, the process is moved up or down in the priority queue one posi­
tion and the resource unit count is reset to zero. See 'priority scheduling' in
The Programmer's Reference Manual.

One process in the Reality system may be designated the Super High Priority Process
(SHPP) in order to receive special handling in the process scheduling mechanism.
The SHPP has top priority to all system resources, allowing it to run without
interference from other process. This is implemented for BISYNC communictions.
The following rules are applied to the SHPP:

• The SHPP is reactivated when its CPU processing time quantum is used up •

• Frame faults for the SHPP are processed as soon as the necessary disc is
available.

2-19

Disc interrupts which signal completion of a disc read for the SHPP cause
the SHPP to be activated immediately.

Interrupts from devices with addresses in the range X'lO'-X'13' which
are for the SHPP cause the SHPP to be activated immediately.

voluntary RQM's by the SHPP allow two other processes to run before the
SHPP is activated again.

2.9 PERIPHERAL I/O

Communication between the CPU and peripheral devices is made through controllers.
Each controller has a unique device address in the Reality system. Device
addresses 0 through 15 are used for non-virtual storage devices such as tape drives
and line printers, addresses 16 through 23 are used for virtual storage devices
(disc drives), and addresses 24 through 27 are used for the process terminals.

I/O instructions other than those for terminal I/O must specify a device address
and an order code. The meaning of each of the eight possible order codes is ex­
plained in Figure 2-12 . External interrupts cause the monitor to perform certain
processing; during ttll.S time, further external interrupts are inhibited.

2.10 PROGRAM TRAPS

Certain error conditions cause the CPU to execute a t~ap to the DEBUG state;
processing of the current program will be aborted, and a message indicating the
nature of the trap, and the location at which it occurred, will be displayed. The
table below shows these error conditions:

Message

ILLEGAL OPCODE

RTN S TACK EMPTY

RTN STACK FULL

REFERENCING FRAME ZERO

CROSSING FRAME LIMI~

Description

An illegal (undefined) operation code
has been executed.
A RTN (return) instruction was executed
when the return-stack was empty
(RSCWA equals X'0184').
A BSL or BSLI (subroutine call)
instruction was executed when the
return-stack was full (RSCWS equals
X'OlBO'); the return-stack has been
reset to an "empty" condition before
the trap.
An address register has a FID of zero.

An address register in the "unlinked"
format 1) has been incremented or
decremented off the boundary of a frame,
or 2) has been used in a relative address
computation that causes the generated
relative address to cross a frame
boundary.

2-20

Message

FORWARD LINK ZERO

BACKWARD LINK ZERO

PRIVILEGED OPCODE

REFERENCING ILLEGAL FRAME

RTN STACK FORMAT ERR

DIVIDE OVERFLOW

REFERENCING ILLEGAL DEVICE

UN NO RMAL I ZED

Description

An address register in the "linked"
format has benn incremented past the
last frame in the linked frame set.
An address register in the "linked"
fprmat h~s been decremented prior to
the first frame in the linked frame
set.
A Privileged operation code (one
executable only in the Monitor mode
of operation), has been found while
executing in the Virtual mode.
An address register has a FID outside
the allowable disc configuration.
The Return-stack pointer is illegal
either less than X'Ol84', or greater
than X'OIBO'. The return-stack has
been reset to an "empty" condition.
An overflow condition occurred on a
divide operation.
A device has been referenced outside
the allowable system configuration.
A storage register with an unnormalized
displacement was referenced.

*A register number will be printed out.

2-21

ORDER NUMBER

o

1

2

3

4

5

6

7

OPERATION

Data Trcmsfer

Status/Function

Block Input/INT

Arm Interrupt

Disconne-.::t

Disarm Interrupt

Block Output/INT

Unassigned

DESCRIPTION

A data byte will be transferred between the
addressed device and the processor. Direc­
tion of the transfer will depend on
whether the instruction is an input or an
output.

A status byte will be input from the
addressed device or a function byte will be
output to the addressed device, depending
on whether the instruction is an input or an
output.

The addressed device will start a concur­
rent block input to memory and will generate
an external interrupt at the conclusion of
the transfer unless the interrupt has been
subsequently disarmed. This order should
be sent by an output instruction.

Permits the addressed device to make an
external interrupt request upon the satis­
faction of an interrupt condition. This
order should be sent by an output instruc­
tion.

The block transfer in progress by the
addressed device is stopped and an end
of block interrupt will occur unless the
interrupt has been disarmed. This order
should be sent by an output instruction.

Inhibits the addressed device from marking
an external interrupt request under any
condition. This order should be sent by
an output instruction.

The addressed device will start a concurrent
block output from memory and will generate
an external interrupt at the conclusion
of the transfer unless the interrupt has
been subsequently disarmed. This order
should be sent by an output instruction.

This order, if assigned, may perform any
required function as interpreted by the
individual interface. If a byte transfer
is desired the order may be sent by an
input or an output instruction.

Figure 2-12. Order Codes"

2-22

SEcrION 3

REALITY ASSEMBLY LANGUAGE (REAL)

The Reality Assembler Language (REAL) translates source statements into Reality
CPU machine language equivalents. The source program, or "mode", is an item in any
file defined on the data base. The mode is assembled in place; that is, at the con­
clusion of the assembly process, the item contains both the original source state­
ments as well as the generated object code. The same mode can then be used to
generate a formatted listing (using the MLIST verb) or can be loaded for execution
(using the MLOAD verb).

3. 1 SOURCE LANGUAGE

The source language accepted by the REAL assembler is a sequence of symbolic state­
ments, one statement per source-item line. Each statement consists of a label
field, an operation (or opcode) field, an operand field, and a comment field.

3.1.1 LABEL FIELD

The label field begins in column one of the source statement, and is terminated
by the first blank or comma; there is no limit on its length. If the character
"*,, appears in the first column, the entire statement is treated as a comment, and
is ignored by the assembler. The reserved characters * + - I = are the only ones
that may not appear in the label field. An entry in this field is optional for all
except a few opcodes. A label may not begin with a numeric character.

3.1.2 OPERATION FIELD

The operation field begins following the label field and consists of a legal REAL
opcode. Opcodes are pre-defined in the permanent opcode symbol file OSYM and con­
sist of one or more alpha characters. Opcodes may be mnemonics for Reality machine
language instructions (e.g., B for BRANCH); macros, which may assemble into sever­
al Reality machine language instructions (e.g., MBD for MOVE BINARY to DECIMAL);
or assembler pseudo-ops (e.g., ORG for ORIGIN).

3.1.3 OPERAND FIELD

Operand field entries are optional, and vary in number according to the needs of
the associated REAL opcode. Entries are separated by commas and cannot contain
embedded blanks (except for character string literals enclosed by single quotes) .
The operand field is terminated by the first blank encountered. The characters
+ - I * have special meaning in this field.

3.1.4 OPERAND FIELD EXPRESSIONS

Entries in the operand field may be a symbol or a constant. A symbol is a string
of characters that is either defined by a single label-field entry in the mode, or

3-1

f-
"~
Ci
!:
!~
:

P
R

O
C

C
j(i

 1

~)
C~

2

00
1

7F
FO

O
IF

5
(~
CI
 1

(:
 (I

 :~:

SO
U

R
C

E

o
o

V
 LIN

E

0
0

5

N
U

M
B

E
R

(;

~)
/~

.

0
0

7

00
1

lC
3F

(,

(i
::

!

0
0

3

le
D

:3

0
0

9

0
1

0

M
 2

2C
~

01
1

T

AC

2
(:

1
2

I!

A
I)

2
(}

1:
3

L
O

C
A

T
IO

N

1.
)1

4
C

O
U

N
TE

R

.-
.

,1

,
-

~
·
)
l
:
!

/
.-

."

,
lJ

 J.
 1

;1

()
1

7
(H

)S

=:
2E

5E
C

'
1

01
8

00
8

62
08

C
O

~

0
1

0

on
E

C
~
=
~
~
-

' .
. 1

.
.
.
.
.
'

_
',

.
•

:.
-
.

.a:
.. "

-
,_

I
t_

. 1
_,

el
L:

:}
(J

et
E

Ht
:.
!l
~:
S~
~~

02
1

01
1

E2
C:

5C
A

()

22

()
14

A

(J
5(

)5
1 1

02

3
01

7
0

2
4

~

()
lA

F

C
;i

)7
5

(i
1

4

O
lE

5C

OC

02
5

02
0

F
0

5
1

7
0

1
4

()2

(:,

{)
24

A

C
i5

14
2

0
2

7

02
7

A
05

04
0

Ci
2r

3
02

A

le
0

3

02
9

02
e

A
05

14
0

03
0

02
1

02
F

90
92

08
02

03

2
03

3
03

3
17

47

03
4

03
5

E
06

2C
4

03
5

03
8

A
05

25
9

03
6

03
B

E2

C
A

C
7

(

F
;
A
~
3
E

1
!
6
:
4
7
:
0
~

O
~

~
F
R

19
77

Ff
::
i~
ME

50
 I-

F
R

A
M

E

ST
A

T
E

M
E

N
T

+
F
~
~
M
=

S
f)

1
+O

RG

.: ...
*T

E
::;

T

*
1
1
~
1
A
F
:
7
7

*
0

3

*
0

0

*S
M

IT
H

,.,
 /

LA
B

E
L

P
U

W

+.1
.:':

"
.~

· .
...

 :,
r·
~A
\/

/
~.

t
n
T
'
-
'
~
"

,.
.

.
,

! [
~I
 ~
::
Ft
Lt
i

'-{
r.:' ... '

*
+

B
:

!C
O

M
PA

RE

!C
OM

PA
RE

~
~

[E
FM

2,

P
F

O
C

-!

E:
A;

-·i

~
3
R
2
4
 [!

:::
F:

I)E

:=
-r

2,
 ::

:F
~2
,'
"-
T

::
;:
=~
2 ·

4
F

! [
~

r:
~E
;=
[~

'~
'

Y
 '
-l

'r
'

.'
.i

..
..

1
"

'-
i-

,-
/O

P
C

O
D

E

F
IE

L
D

~~

..., ~ <D

w
 I
.

t-
tt

ll

~~

....
....

..
::J

<D

\Q

~

U
l i !<

*T
H

!S

SU
ER

O
U

TI
N

E
D

IS
PL

A
Y

S
AL

L
FO

UR

PR
OC

BU

FF
ER

S,

AN
D

'.
""

'~
'-

.. ~
~~
--

.-"

,~
 . .
,.
~,
 ..

...
...

...
 ,.
f~
~~
r,

r'
l-

r'
"
'T

'-
-'

c:

:'·
-·

'-·
· .

...
 T
'-
Ik
!'
~
~

C
O

M
M

EN
T

F
IE

L
D

rr

l
i\

iJ
...

;.i
 ~

_.
!-

!
;

;:
..

:.

!_
.t

_:
~ ..

 ;
-~
=.
!,
-"
!

J.:
;!_

-:-
I

J
.
-
l;

'
j

_
1

:,,
~

t:
..

~:

:
!_

!·
:·

l
!

..
'_

 ~'
.~

.:
.

~.
~

I t
··_J

 I
T

O
B

JE
C

T

M
O

l)
::;

C
[1

P
B
U
F
B
E
G
,
~
1
2

R
1
2
,
X
~
C
O
/

LA
D

R
12

,P
E

U
FE

E
G

:::

:::
IF

..E

T
 4

L

t:
i[

i
FJ
E~
L!
FE
~E
Ci
 '!

IE
;

P.
 I

.B
 F

RO
M

~
B
U
F
B
E
G

TO

S
~
!

FO
LL

OW
ED

BY

S.

 I
.B

.
SC

AN

TO

8M

AT

EN
D

OF

P.
 I

.E
.

~=
:7
C:
F\
=:

T
hE

LE

::..
JC

; T
h

__ !:
","

F'F

, I
 :·

::
~F
 .. ··~/

I :
··
~[
=·
:_
:T

;:
'!

 ~
=-

==
-=

'

IB

!S
 C

UR
RE

NT

PO
IN

TE
R

IN

A
C
T
I
V
~

IN
PU

T
BU

FF
ER

C

O
D

E
ET

C;
:;;

E
er

R
.::

IN

ri

SI

Z
E

O

F
P

.
!.

 E
:.

I:
~
IT

!:
;!

 Z
 E

ei

F
~:

;.

I.

 E
;.

G
EN

ER
A

TE
D

S

TO
E

E

er
R

';:
)

80
50

0
oj

" .-\
.. ,

-.. "
 ..

 ".
.:

It
 ..
 J.C

.t. .
... t

)

E;
LE

..

i.
,r

,-
r'

ll

T
!:

l
i

•

T
O

,T
4,

80
50

0
B

R
IF

IE

IS

IN

P.

 I
.B

.
T

O
,
T

 4,
 ::

;0
50

0,
 :3

 _
_

_
_

_
_

_
 0P

E
R

A
N

D

F
IE

L
D

S

DE
C

C
TR

9,
T4

D

E
C

eT

R
'?

'
Z

 EF~
r:
t

C:
TF
~:
::

IN
D

IC
A

TE

TH
AT

PO

IN
TE

R
IS

NO

T
IN

P.

 I
.B

.
B

 _
!~
;0
:§
:O
O

M
A

C
R

O

E
X

P
A

N
S

IO
N

O

F
A

B
O

V
E

L

IN
E

+

b
:-

!:
:O

b
O

O

ZE
RO

C

TR
9

IN
D

IC
A

TE

NO

PO
IN

TE
R

IN

S

.I
.B

.

IF
 S

TA
CK

A

CT
IV

E1

EX
CH

AN
GE

IS

,
U

PD
.

BB
Z

S
F

L
G

,S
10

00

CM
NT

*

18

AN
D

UP
D

W
IL

L
BE

EX

CH
AN

GE
D

AG
AI

N
LA

TE
R

X
R
F
~

I ~
:;
,

LI
Fr

[r
LA

[r

I :
=;E

;E
C,

 1
I!:

;
::
;T
Ct
r=
~E

C:
TR

 1
 (i

LA
D

!=
;T

r<
E:

EC
i,

lI
F

:[
i

CO
M

M
EN

T
L

IN
E

II

CA
LC

U
LA

TE

PO
SI

T
IO

N

OF

PO
IN

TE
R

IN
TO

D
IT

T
O

FO

R
~
P
.
O
.
B
.

t

r·

,-
.

I.
'

r
II

I_

ta

~~

Il

.. ~

The mode will not load correctly if its size exceeds 512 bytes, or if a FRAME
statement is not the first statement assembled in the mode. In either case, a
message will be returned indicating the error.

The "N" option may be used with the MLOAD verb to load code into the TS workspace
but suppress the normal copy from there to the specified frame. This may be help­
ful in checking the size or checksum.

3.5 VERIFYING A LOADED PROGRAM MODE

After assembling and loading a program, the TCL-II verb MVERIFY is used to check
the assembled program against the loaded program.

Examples:

[217] MODE 'EXAMPL1' VERIFIED FRAME 34 SIZE = 477 CHECKSUM C3A2

014 OC 18

[218] MODE 'EXAMPL2' FRAME = 35 HAS 1 MIS-MATCHES

The first example verifies, but the second does not. In example two, the system
informs the user that one byte at byte address 14 should have a value of OC, not 18.

An "A" option is available, and will cause a columnar listing of all bytes which
mismatch. Each value in the source program which mismatches will be listed,
followed by the value in the executable frame.

Example:

LOC
014

SB AB
OC 18

LOC
015

5B AB
13 17

LOC
016

SB
OE

AB

OD
LOC SB AB
017 3A 3C

[218] MODE 'EXAMPLE3' PRAME = 35 HAS 78 MIS-MATCHES

The "E" option, useful when verifying several programs (items) with the same
MVERIFY command, causes a message to be printed only if a program does not verify,
and suppresses output otherwise.

The "P" option causes all messages from MVERIFY to be routed to the line printer
(spooler) •

3-5

3.6 TeL-II CROSS REFERENCE CAPABILITY

3.6.1 CROSS-INDEX VERB

The TCL-II CROSS-INDEX verb first clears the CSYM file then updates it item by
item with the external references of each item. Each attribute in the CSYM item
records references of a particular type, such as bit, character, half-tally, etc.
The CROSS-INDEX verb requires the following format:

CROSS-INDEX file-name item-list {(options)}

Example:

Would cross index all items of the MODES file.

An example of what a portion of the CSYM file might look like after using the
CROSS-INDEX verb is shown in Figure 3-2. Notice that t.he item called SYSTEM-SUBS-l
has one external reference to B14, two external references to BKBIT, etc.

3.6.2 X-REF VERB

The TCL-II X-REF verb uses the CSYM file as updated by the CROSS-INDEX verb for
input. X-REF then updates the XSYM file in the opposite order of the CSYM file.
The X-REF verb requires the following format:

X-REF file-name item-list {(options)}

Example:

Would cross reference all items of the CSYM file. An example of what a portion of
the XSYM file might look like after using the X-REF verb is shown in Figure 3-3.
Notice that the item called T5 was externally re ferenc(~d by WP3, WRAPUP-II, etc.

The SORT verb may be used after performing X-REF to produce a sorted output.

Example:

Would produce an alphabetical non-columnar listing on the line printer. REFERENCES
and NONCOL are attribute definitions in the XSYM dictionary.

3-6

\
\

5
Y

 S
 T

 F
 t..

 -
~
 U

 A
~
 -

T

o 0
 1

R

 1
 4

0

1
1

R
 ~
lO

t
 1

 R
 K

 e
 T T

O
?

 1
 f\!

 t
~

A
 I
T

O
 2

 1
 f\H

 1M
 R

 T
 T

t\

?
1

M
 II

 M
 F
 L

 G
 1

t)

 1
)

N
 1I

 M
 F
 L

 G
 2

0
1

1
R

 '1
 B

 T
 T

O
?

0
0

2

0
0

3

H
I

0
1

]H
U

O

?l
H

5
01

0

0
4

C

T
R

!
0

1
1

R
la

o
sp

01

1R
ta

W
A

O

tJ
R

t5
D

S
P

O

"
R

1
5

W
A

nl

JR
S

C
W

A

01
1T

O

O
tl

T
U

0

2
1

T
5

o
~

0
0

5

01

n
2

]o
a

O
tl

O
S

O

?l
R

n
F

ID

O
lJ

R
1

4
F

IO

n
~

O
O
~

FP
O

08

1F
P

Y

0
1

0

0
7

0

0
8

IR

?-

2J
IR

0

3
1

1
5

O
~
l
Q
S

(
\
~
]
P
O

O
U

R
I

O
~
l
R
1
t
'

IR
1R

1S

2
5

0

0
9

P

r:
R

lF

O
?

0
1

0

AM

02
1S

M

n
7
1
S
V
~

O
~
]
V
M

O
?

W
R

A
P

U
P

-I
I

00
1

O
A

F9

0
3

JS
V

S
P

R
IV

l
01

O

O
?

C
H
~

"
,

0
0

3

A
CF

0
1
]
t
~
H
J
R
I
T
H

01

0
0

4

R
~
W
A

0
1

)S
fP

A
R

rl

]S
J
Z

F

l
~
J
T
O

1
2

1
T

?
O
~
'
T
4

O
U

'T
5

O
?
l
~
M
O
D
E

1
2

O
O
~

R
A
S
~

o?
,r

,o

o
?
]n

3

O
S]

FP
M

N

O~
]

IR
F

IO

O
?
'
M
R
A
~
~

n
~
l
O
V
R
F
l
W

01
1R

E
C

O
R

O

10

O
O

h
0

0
7

R
~
S
R
f
G

O
t
l
R
M
S
~
N
n

O
I]

S
p

a

0
6

,
~0

8
>
<
~

(l
) 0 H
I @

to
(

'"%
j

3:

1-
'.

'"%
j

<Q

C

.....

Ii

~

(l
)

(l
)

w

:J::
I

I

~

IV
 .

CD

Ii

(
)

~ U
l

U
l ,

0
0

8

8
M
~

1
~
]
C
S

tt
J
IR

4
~
l
R
1

O
ll

R
t4

H

)]
R

\C
;

'
C
;
l
T
~

?n
]I

IP
D

O

S
0

0
9

A

TT
SP

C

on
 O

R
t

o
t]

 O
E

C
IN

H
IA

·O

ll
 G

FE
M

SG

('t
11

 G
II

N
Ln

C
K

0

1
]

P
R

IV
T

S
T

?
(I

ll
 R

O
Ll

t.J
K

O

?1
 R

DR
F=

:C

0
1

]
R

EL
C

H
N

01

1
R

E
T

IX
lJ

O

J
01

0
A
~

3
0

1
S

M

Ot
J

w
 , "

TS

0
0

1

W
P

3J
 ~
R
A
P
I
I
P
-
I
I
l
 S
V
S
T
F
.
M
-
S
I
t
F
~
S
-
I
1
 C

O
M

31
 C

nM
al

 T
6

P
E

T
t'

I-
J

~
V
S
P
R
I
V
1

O
O

t
S

V
S

T
E

M
-S

tl
R

S
-I

II
l
L
O
G
O
f
\
'
l
l
t
4
R
~
P
I
J
P
-
T
I
l

A
R
~
,
-
,

R
O

L
IN

K

00
1

r.n
pY

-I
V

1G
FM

T
1J

W
R

A
P

U
P

-I
Il

 A
R
S
L
2
J
C
A
T
A
L
o
r
:
'
o
n
l
l
~
p
7

U
l

IlJ
 ~ ~

CD

0 H
1 ><

'"%
j

U
l

1-"

to
(

<Q

3:

C

Ii

'"%
j

CD

.....

~

w

(l
)

I IN

:J::
I ~

(l
) Ii
 >< , ~

'"%
j

3.6.3 XREF PROC

The XREF Proc will perform the following functions:

1. Clear the XSYM file.

2. Use the X-REF verb to update the XSYM file.

3. Alphabetically sort the XSYM file and output the results to either
the user's terminal or to the system line printer.

The XREF Proc requires the following format:

XREF file-name item-list {(options)}

Example:

would cross reference a~l items of the CSYM file and would list the results in
alphabetical order on tte line printer.

3. 7 THE REAL INSTRUCTION REPERI'OIRE

In defining the REAL opcodes, the following set of symbolic operands are used.

Symbol Operand

b BIT

c CliARACTER

d DOUBLE-WORD

h HALF-WORD

1 LABEL

m MODE ID

Description

A bit addressed relatively via a base
address register and a bit displacement.

A byte addr~ssed relatively via a base
address register and an 8-bit byte dis­
placement.

A 4-byte field addressed relatively via
a base register and a 16-bit word dis­
placement.

A I-byte field addressed relatively via a
base register and an 8-bit byte dis­
placement.

A label definition local to the current
program frame.

A 16-bit modal identification, comprised
of a 4-bit entry point and a l2-bit frame
number. The implied location is in the
frame defined by the low-order 12 bits of
"m", offset from the frame-beginning by
twice the entry-point value.

3-8

n LITERAL

r ADDRESS-REGISTER

s STORAGE-REGISTER

t WORD

A literal or immediate value. The size of
the assembled literal or value is
dependent on the instruction in which
the lin II is used.

One of the sixteen Reality address
registers (A/R' s) .

A 6-byte field (usually a storage-register,
or SIR) relatively addressed via a base
register and a 16-bit word displacement.

A 2-byte field relatively addressed via a
base register and a 16-bit word displace­
ment.

In the following subsections, the first number in the comment field of each
instruction is the length in bytes of that instruction. The parenthesized foot­
notes are defined in Section 3.7.12.

3.7.1 CHARACl'ER INSTRUCl'IONS (IDVES)

MCC n,c 6 (1) M::lve Character to Character i the byte
n,r 3 (character) defined or addressed by
n,s 6 (l) operand-l is moved to the location addressed
c,c 4 by operand-2.
c,r 3
c,s 6 (1)
r,c 3
r,r 2
r,s 5 (1)
s,c 8 (2)
s,r 5 (3)
s,s 8 (2)

MCI n,r 3 Move Character to Incrementing character;
n,s 9 (1) The byte (character) pointer operand-2 is
c,r 4 incremented by one and the byte defined
c,s 10 (1) or addressed by operand-l is moved to the
r,r 2 location then addressed by operand-2.
r,s 8
s,r 5 (3)

s,s 11 (2)

3-9

MCI

MIC

MIl

MIl

MIl

MIlD

n,r,n
n,r,h
n,r,t
n,r,d

r,c
r,r
r,s
s,c
s,r
s,s

r,r
r,s
s,r
s,s

r,r,n
r,r,h
r,r,t
r,r,d

r,r,r
r,r,s

r,r,n

10
13
13
13

4
2
5

11
8

11

2
8
8

14

5
5
5
5

4
5

3

(4)

(4)

(4)
(4)

(1)
(2)
(3)

(2)

(1)
(3)

(2)

(5)
(5)

(5)
(5)

(3)

(3)

Move Character Incrementing; the byte
(character) pointer operand-2 is incre­
mented by one and the byte defined by
operand-l is moved to the location then
addressed by operand-2. This process
continues until the number of bytes
specified by operand-3 have been moved.
At least one byte is always moved and if
initially operand-3 = 0, 65,536 bytes will
be moved.

Move Incrementing character to Character;
the byte (character) pointer operand-l is
incremented by one and the byte then
addressed by operand-l is moved to the
location addressed by operand-2.

Move Incrementing character to Incrementing
character; both byte pointers are incre­
mented by one and the byte then addressed
by operand-l is moved to the location
addressed by operand-2.

Move Incrementing character to Incrementing
character; both byte pointers are incre­
mented by one and the byte addressed by
operand-l is moved to the location addressed
by operand-2. This process is repeated
until the number of bytes specified by
n,h,t or d have been moved. h,t or dare
not destroyed and if initially zero, no
bytes are moved.

Move Incrementing character to Incrementing
character; both addressing-registers
operand-l and operand-2 are incremented by
one and the byte then addressed by
operand-l is moved to the location
addressed by operand-2. This process is
repeated until the first addressing­
register operand-l matches the byte-pointer
operand-3. If operand-l = operand-3 on
entry no movement takes place.

Both addressing-registers are incremented
by one, and the byte addressed by address­
ing register-l is moved to the location
addressed by addressing-register-2. The
byte moved is then tested under the follow­
ing masking condition where "n" is an 8-bit
mask field:

3-10

SCD r,n 3

MIlT r,r 2

MIIR r,r 2

MEANING

True/False
Match on: X'FF'

X'FE'
X'FD'
X'FC'

SCO
SCl
SC2

1ll:I01234567
I I I I I I I I

I

Bit 0 is a true/false flag; if set, the

I

move stops on a "match" condition (as de­
fined by bits 1 through 7); if zero, the
move stops on a "non-match". Bits I through
7 represent one character each; if any bit
is set, the byte moved is compared to the
character represented by the bit for a
match. Bits I through 4 represent the
special system delimiters SM (X'FF'), AM
(X'FE'), VM (X'FD'), and SVM (X'FC')
respectively. Bits 5, 6, and 7 represent
the contents of the scan character-registers
SCO, SCI, and SC2 respectively. (Thus only
three of the delimiters are variable.)
NOTE: Character-register SCO may not con­
tain the hex patterns X'OO' or X'OI'. None
of the scan characters may contain a system
delimiter.

Scan characters to delimiter(s). The
addressing-register is incremented until a
"match" condition (see MIlD instruction) as
defined by the 8-bit mask field "n" is
found.

This instruction assumes that the lower half
of the accumulator (TO) has an absolute byte
count (up to 65535) defining the number of
bytes to be moved (see MIl opcode). If TO
is zero when the instruction is executed, no
operation is performed. otherwise, the
addressing-registers are incremented by
one, and the byte addressed by addressing­
register-l is moved to the location addressed
by addressing-register-2, and TO is decre­
mented by one. This sequence is repeated
till TO reaches zero.

This instruction assumes that address
register Rl5 is set up to a location equal
to or greater than that of addressing­
register-I. (See MIl opcode). If the
addresses of addressing-register-l and

3-11

xee c,c 8 (2)
c,r 5 (3)
c,S 8 (2)
r,c 5 (1)
r,r 2
r,s 5 (1)
S,c 8 (2)
s,r 5 (3)
s,s 8 (2)

OR c,n 6 (3)
r,n 3
s,n 6 (3)

XOR c,n 6 (3)
r,n 3
s,n 6 (3)

AND c,n 6 (3)
r,n 3
s,n 6 (3)

3.7.2 CHARACTER INSTRUCTIONS (TESTS)

register Rl5 are equal, no operation is
performed. Otherwise, the addressing­
registers are incremented by one, and the
byte addressed by addressing-register-l is
moved to the location addressed by address­
ing-register-2. This sequence is repeated
till the addresses of addressing-register-l
and register Rl5 are equal.

Exchange Character with Character; the byte
(addressed) by operand-l is interchanged
with the byte defined by operand-2.

OR character; the byte (character) addressed
by operand-l is logically or'd with the
8-bit immediate operand-2.

Exclusive OR character; the byte (character)
addressed by operand-l is exclusively or'd
with the 8-bit immediate operand-2.

AND character; the byte (character)
addressed by operand-l is logically and'd
with the 8-bit immediate operand-2.

n,c,l 7 (1) BCE Branch Character Equal; the byte (character)
n, r ,1
c ,n ,1
c,c,l
c,r,l
r,n,l
r,c,l
r,r,l

Beu (see BCE)

BeL (see BCE)

BCLE (see BCE)

4
7 (3)
6
4
4
4
3

defined or addressed by operand-l is com­
pared to the byte defined or addressed by
operand-2. If the two bytes are equal,
instruction execution branches to the loca­
tion as defined by operand-3. Neither
operand-l nor operand-2 are altered. The
arithmetic condition flag (ACF) is set on
c,c,l only.

Branch Character Unequal; branch if
characters are not equal.

Branch Character Low; branch if operand-l
is less than operand-2.

Branch Character Less than or Equal; branch
if operand-l is less than or equal to
operand-2.

3-12

BCH (refer to BCE)

BCHE (refer to BCE)

BCN r,l 5

BCX r,l 5

BCA r,l 5

3.7.3 BIT INSTRUCTIONS

SB b 2

ZB b 2

BBS b ,1 4

BBZ b,l 4

Branch Character High; branch if operand~l
is greater than operand-2.

Branch Character High or Equal; branch if
operand-l is greater than or equal to
operand-2.

Branch if Character is Numeric; branch if
the character addressed by the first
operand is in the range 0-9, inclusive.

Branch if Character is hexadecimal; branch
if the character addressed by the first
operand is in the range 0-9 or A-F,
inclusive.

Branch if Character is Alphabetic; branch
if the character addressed by the first
operand is in the range A-Z, inclusive.

Set Bit; the bit addressed by the operand is
set to an on condition (one).

Zero Bit; the bit addressed by the operand
is set to an off condition (zero).

Branch Bit Set; the bit addressed by
operand-l is tested and if set (one)
instruction execution branches to the
location defined by operand-2.

Branch Bit Zero; the bit addressed by
operand-l is tested and if not set (zero)
instruction execution branches to the
location defined by operand-2.

3.7.4 DATA MOVEMENT AND ARITHMETIC INSTRUCTIONS

All arithmetic is done on two's complement binary integers. All instructions in
this section except the MDV set the arithmetic condition flag (ACF).

MOV n,h 6 (6) MOVe word to word; integer defined or
n,t 4 addressed by integer-l is moved to the
n,d 4 location addressed by operand-2.
h,h 4
h,t 6 (6)
h,d 6 (6)
t,h 6 (6)
t,t 4
t,d 6 (6)
d,h 6 (6)

3-13

TST

INC

DEC

ZERO

ONE

NEG

LOAD

d,t
d,d

6
4

b,b 4

h
t
d

h
t
d
h,n
h,h
h,t
h,d
t,n
t,t
t,d
d,n
d,h
d,t

3
3
3

3
3
3

9
4

9
9
4
4
7
4
7
7

d,d 4

h
t
d
h,n
h,h
h,t
h,d
t,n
t,h

3
3
3
9
4
9
9
4
7

t,t 4
t,d
d,n
d,h
d,t
d,d

h
t
d

h
t
d

h
t
d

n
h
t
d

7
4
7
7
4

3
3
3

3
3
3

3
3
3

3
3
3
3

(6)

(6)

(6)

(6)

(6)
(6)

(6)
(6)

(6)

(6)
(6)

(6)

(6)

(6)
(6)

Test the contents of the operand and set
the arithmetic condition flags.

INCrement by one; the integer defined by
the operand is incremented by one.

INCrement word by word; the integer de­
fined or addressed by operand-2 is added
to the integer stored in the location
addressed by operand-l and the result is
stored in the latter location.

DECrement by one; the integer defined by
the operand is decremented by one.

DECrement word by word; the integer
defined or addressed by operand-2 is
subtracted from the integer stored in
the location addressed by operand-l and
the result is stored in the latter loca­
tion.

ZERO word; a zero is moved to the operand
location defined by operand-I.

Set word ONE; an integer value of one is
moved to the operand location defined by
operand-l.

NEGate word; the integer defined by
operand-l is negated (two's complement).

LOAD to accumulator; the integer addressed
by operand-l is loaded into the 32-bit
accumulator (DO). For half-word and word
operands, the sign bit is extended.

3-14

LOADX

STORE

ADD

SUB

MUL

DIV

n
h
t
d

h
t

d

n
h
t
d

n
h
t
d

n
h
t
d

n
h
t
d

3
3
3
3

3
3
3

3
3
3
3

3
3
3
3

3
3
3
3

3. 7.5 REGISTER INSTRUCTIONS

IDV

XRR

INC

INC

r,r
r,s
s,r
s,s

r,r
r,s
s,r
s,s

r
s

r,n
r,h
r,t
r,d
s,n

2
3
3
4

2
8
8

10

1
3

3
6
3
6
4

(1)
(2)
(1)

LOAD to accumulator; the integer addressed
by operand-l is loaded into the 48-bit
accumulator (FPO), and the sign bit is
extended.

STORE from accumulator; the contents of the
32-bit accumulator (DO) are stored into the
location defined by operand-I. For half­
word and word operands, the high order bits
are lost.

ADD to accumulator; the integer addressed
by operand-l is added to the 32-bit accumu­
lator (DO) with sign extension.

SUB from accumulator; the integer addressed
by operand-l is subtracted from the 32-bit
accumulator (DO) with sign extension.

MULtiply to accumulator; the integer
addressed by operand-l is multiplied by the
contents of the 32-bit accumulator (DO).
The resulting product is stored in the 64-
bit accumulator extension (Dl,DO), as a
63-bit number and a duplicated sign bit.

DIVide into the accumulator; the integer
addressed by operand-l is divided into the
32-bit accumulator (DO). The answer is
stored in DO and the integer remainder is
stored into the accumulator extension (Dl).

MOVe register to register; the address or
storage register operand-l is moved into
the address or storage register operand-2.

eXchange Register with Register; the
address or storage register operand-l is
exchanged with the address or storage
register operand-2.

INCrement register; the address or storage
register operand-l is incremented by one.

INCrement register by count; the address or
storage register operand-l is incremented
by the integer stored at the location
addressed by operand-2.

3-15

DEC

DEC

LAD

SRA

FAR

BE

BU

s,h 7
s,t 4
s,d 7

r
s

r,n
r,h
t,t
r,d

1
3

3
6
3
6

s,n 4
s ,h 7
s,t 4
s,d 7

r,r
r,s
s,r
s,s

r,c
r,h
r,t
r,d

6
3
3
6

3
3
3
3

r,s 3
r,l 3

r,n

r,r,1
r,s,l
s,r,l

3

7
4
4

(7)

(1)

(7)

DECrement register; the address or storage
register operand-l is decremented by one.

DECrement register by count; the address or
storage register operand-l is decremented by
the integer stored at the location addressed
by operand-2.

Load Absolute Difference; the absolute
difference in bytes (characters) between
the byte pointer operand-l and the byte
pointer operand-2 is computed and stored
into the lower half of the accumulator (TO).
Please see special note following Branch
Register Equal/Unequal instructions.

Set Register to Address; the byte pointer
operand-l is set pointing to the first
byte of the functional element at the
location addressed by operand-2.

Flag and Attach Register; the address­
register operand-l is attached. Normally
n=O. If n=4 (or any value with bit 5 set),
Rl5 is set to the first byte (unlinked
format) of the frame.

Branch Register Equal/Unequal; the address
of the byte pointer operand-l is compared
to the address of the byte pointe~ operand-
2. The branch is taken appropriately.
NOTE: if the FID's of the registers are
unequal, it is assumed that the affected
frames are contiguously linked and the
address computation is made on that basis;
therefore the instruction execution may
prove incorrect if one of the registers is
in an unlinked format, and the other is
not. An abort will occur displacement if
a linked format SR is greater than 500.
(This can be remedied by moving it to a
register, forcing attachment, and moving
it back.) This is unnecessary if the SR
and register point into the same contiguous
block.

3-16

--'

. /

BE
BU

s,s,l 6

3.7.6 DATA COMPARISON INSTRUCTIONS

Branch Register Equal/Unequal; the 6-byte
storage register operand-l is arithmetically
compared to the storage register operand-2
and the branch is made accordingly. If the
displacement fields are not normalized, this
may fail. See the forms above.

n,h,l 7 (6) BE Branch word Equal; the integer stored in
n,t,l
n,d,l
h,n,l
h,h,l
h,t,l
h,d,l
t,n,l
t,h,l
t,t,l
t,d,l
d,n,l
d,h, 1
d,t,l
d,d,l

BU (see BE)

BL (see BE)

BLE (see BE)

BEJ d,d,l
BU3 d,d,l
BL3 d,d,l
BLE3 d,d,l

BH (see BE)

BHE (see BE)

BDZ h,h,l
t,n,l
t,t,l
d,n,l
d,d,l

6
6
9
6
9
9
6
9
6
8
6
9
9
6

6
6
6
6

6
6
6
6
6

(6)

(6)
(6)

(6)

(6)

(6)
(6)

the word addressed by operand-l is compared
arithmetically (2's complement) to the
integer stored in the word addressed by
operand-2. If an equal comparison is made,
instruction branches to the location defined
by operand-3.

Branch word Unequal; branch if words are
unequal.

Branch word Low; branch if operand-l is
less than operand-2.

Branch word Low or Equal; branch if operand­
I is less than or equal to operand-2.

These forms of the compare instructions
compare 3 byte fields starting 1 byte after
each register. These allow register FIDS
to be compared without including the flag
byte in the compare.

Branch word High; branch if operand-l is
greater than operand-2.

Branch word High Equal; branch if operand-l
is greater than or equal to operand-2.

Branch on Decrementing word Zero; the word
at the location addressed by operand-l is
decremented by the integer at the location
addressed by operand-2. If the result is
zero, instruction branches to the location
defined by operand-3 .

3-17

BDNZ

BDLZ

BDLEZ

BDZ

BDNZ

BDLZ

BDLEZ

(see BDZ)

(see BDZ)

(see BDZ)

t,l
d,l

t,l
d,l

t,l
d,l

t,l
d,l

6
6

6
6

6
6

6
6

Branch on Decrementing word Not Zero; same
as BDZ but branch on result not zero.

Branch on Decrementing word Less than Zero;
same as BDZ but branch on result less than
zero.

Branch on Decrementing word Less than or
Equal to Zero; same as BDZ but branch on
result less than or equal to zero.

Branch on Decrementing word Zero; same as
BDZ above but decrement by one.

Branch on Decrementing word not Zero; same
as BDNZ above but decrement by one.

Branch on Decrementing word Less than Zero;
same as BDLZ above but decrement by one.

Branch on Decrementing word Less than or
Equal to Zero; same as BDLEZ above but
decrement by one.

All of the above data comparison instructions set the arithmetic condition flags.

3. 7. 7 TRANSLATE INSTRUcrIONS

MBD

MDB

h,r
t,r
d,r
n,h,r
n,t,r
n,d,r

r,t
r,d

10
10
10
14
14
14

3
3

Move Binary word to Decimal characters;
This macro generates a call to the sub­
routine MBDSUB (if "n" is not specified) or
MBDNSUB (if "n" is specified), which con­
verts from a binary integer at the location
addressed by operand-l to a string of deci­
mal ASCII characters, stored beginning from
the location addressed by the byte-pointer
operand-2 plus one.

The following elements are used by the sub­
routine and macro: DO; Dl; D2; T4; T5; Rl4;
Rl5. A minus sign will precede the con­
verted value if it was negative; at the
conclusion of the instruction, the byte
pointer operand-2 addresses the last convert­
ed byte. MBDSUB deletes leading zeros, but
converts at least one character; MBDNSUB
converts at least "n" characters, padded
with leading zeros if necessary.

Move Decimal character to Binary word;
ASCII decimal to binary conversion. The
word at the location addressed by operand-2
is mUltiplied by 10, and a value (as defined
for the MXB instruction) from the byte

3-18

MBX

MBX
MBXN

MXB

h,r
t,r
d,r

n,h,r
n,t,r
n,d,r

r,h
r,t
r,d

3
3
3

6
6
6

3
3
3

(9)

3.7.8 EXECUTION TRANSFER INSTRUCTIONS

B 1 2

addressed by the addressing register is
added to it. The arithmetic condition flags
are not reset, and arithmetic overflow
cannot be detected.

Move Binary word to heXadecimal characters;
Binary to ASCII hex conversion.
This instruction assumes that the least
significant byte of the accumulator (HO) has
a parameter (see MBX/MBXN macro). The four
low order bits contain a digit count,'
specifying the maximum number of ASCII
digits to be converted. As each digit is
converted, the addressing register is incre­
mented by one', and the converted ASCII
character is stored in the location address­
ed by the addressing register. The format
of HO at the conclusion of this instruction
is unpredictable. If the digit count in
HO exceeds the field defined by operand-l,
no operation is performed.

Move Binary word to heXadecimal characters;
This macro expands as a LOAD of the first
operand (MBX) or the first operand +X'80'
(MBXN), and a primitive. The MBX macro,
therefore, causes conversion from binary to
ASCII hex, with only significant digits (to
a maximum of "n ") converted. The MBXN macro
causes conversion as above, but always
converts "nil digits, with leading zeros if
necessary. Tpe addressing register defined
by the third operand is incremented before
each byte converted.

Move heXadecimal characters to Binary word;
ASCII hex to binary conversion.
The field defined by operand-2 is shifted
left 4 bits, and the value defined below,
from the byte addressed by the addressing
register, is added to the field: The 4-bit
value from bits 3-0 of the byte (bits
numbered right to left), plus nine times
bit 6. The arithmetic condition flags are
not reset by this instruction, and arithme­
tic overflow cannot be detected.

Branch;
branch to location defined, in the current
frame, defined by label "1".

3-19

BSL

BSLI

RTN

ENT

ENTI

BSL*

ENT*

1
m

m

h
t
d

h
t
d

2
3

1

1

3

1

4
4
4

4
4

4

(8)

(8)

Branch and Stack Location;
Subroutine call to mode defined by mode-ID
"m" or to local label "1".
The location of the instruction following
the BSL, minus one, is saved in the return
stack, and the next instruction executed is
that defined by the operand. The return
stack level is increased by one; if the call
causes the return stack level to exceed
its maximum value, the stack pointers are
reset to the beginning and a trap to the
DEBUG mode is executed.

Branch and Stack Location Indirect;
Subroutine call indirect; this instruction
assumes that the lower half of the accumu­
lator, TO contains a mode-ID (see BSL*
macro). The 16-bit mode-ID contained in
TO defines the location of the next instruc­
tion that is to be executed, after the
location-l of the instruction following the
Tel is saved in the return stack.

ReTurN i
Return to subroutine called. The last entry
in the return stack defines the location of
the next instruction to be executed; the
return stack level is decremented by one.
If the return 'stack is empty, a trap to the
DEBUG mode is executed.

ExterNal Transfer;
Branch to location de fined by mode- ID"m".

ExterNal Transfer Indirect;
Enter mode indirect: this instruction
assumes that TO contains a 16-bit mode-ID
(see ENT* macro), which defines the next
instruction to be executed.

Branch and Stack Location indirect;
subroutine call to mode defined by the
mode-ID contained in the word addressed by
operand-I. The 16 bit mode-ID is loaded
into the accumulator, and a BSLI instruc­
tion is executed.

ExterNal Transfer indirect; branch to
external location defined by the mode-ID
contained in the word addressed by operand-I.
The 16 bit mode-ID is loaded into the
accumulator, and an ENTI instruction is
executed.

3-20

3.7.9 I/O AND CONTROL INSTRUCTION

101 3

100 3

READ r 2

WRITE r 2

MCAL 3

RQM 3

I/O Instruction Input; this instruction
is used to set up block transfer starting
and ending addresses and start input for
peripheral devices whose device addresses
are in the range ° through X'P' (15). This
instruction causes an MCAL instruction to
entry point 8 in the Monitor. Register r
points to the start of the input buffer;
n l is a 3-bit order code; n 2 is a 4-bit
device address. Refer to Section 2.7 for
details.

I/O instruction Output; as above this
instruction controls output to peripheral
devices.

A byte from the byte-I/O buffer in the PIB
is stored at the location addressed by the
addressing register. If the buffer is empty,
or if there is data in the byte I/O buffer
yet to be output to the byte I/O device, the
process executing the READ instruction will
enter a quiescent state till data from the
byte input device causes are-activation.

The byte addressed by the addressing register
is moved into the byte I/O buffer of the PIB.
If the buffer is empty, the byte is also
output immediately to the byte I/O device.
If the buffer is full, the process executing
the write will enter a quiescent state till
the byte output device has accepted the
data from the buffer, and causes a re­
activation. Execution of this instruction
causes a loss of any input data in the byte
I/O buffer, and inhibits any further data
input from the byte I/O device.

Some standard calls are provided for
functions which can only be performed in
monitor code. These include:
MCAL r,S,ll (corelock)
MCAL r,6,11 (unlock)

Process releases the remainder of its time
quantum to the monitor. Equivalent to:
MCAL 0,0,9.

3-21

NOP 1

3.7.10 ASSEMBLER DlRECl'IVES

1

1

1

1

ADDR

AR

CHR
HTLY
TLY
DTLY
SR

CMNT

DEFM

DEFk

n,n

1
r
n

1
n

r,l
r,n
n,l
n,n

r,l
r,n
n,l
n,n

r,*[string]
n, * [string]

register, or output (OB) from the location
addressed by the addressing register. I/O
pointers must be set up initially with an
100 instruction.

No OPeration is performed by this instruc­
tion.

Defines the local symbol "1"
register in unlinked format.
ment is defined by the first
FID is defined by the second

as a storage
The displace­

operand. The
operand.

Defines the local symbol "1" as an address
register with a value defined by the oper­
and.

Defines the local symbol "1" (if present) as
a character (CHR) half-word (HTLY), word
(TLY), double-word (DTLY) or SIR (SR)
respectively; object code of the appropriate
length and value defined by the operand is
assembled, except for the SR opcode, which
ignores the operand field.

Comment; the contents of this statement are
treated as commentary, and ignored by the
assembler. Note: A label field entry is
allowable.

Defines the local symbol "1" to be of type
m; a mode-ID with entry point defined by
the first operand and FID defined by the
second operand.

Defines the local symbol "1" to be of type
"k" (where k=b,c,d,h,l,s,t), with base
register defined by the first operand and
displacement defined by the second operand.

When the assembler location counter "*" is
used as the second operand, an optional
string can be used, with the following
format:

string = n 2 [in) or string = ±n3

If n 2 is specified after the *, instructions
referencing 1 will obtain a displacement (D
field) appropriate for an operand length of
n2 bits. Values of n2 = 1,8, and 16 are
valid, with a default of n2 = 8.

3-22

Example:

LABELl

Example:

LABEL2

1

1

1

1

ORG 10
DEFT
STORE

ORG

DEFB
SB

DEFk

DEFTU

DEFTL

DEFDL

I, *16
LABELl

1
1,*1+7
LABEL2

1

d
s

d
s

s

If +n is specified after the *h, the
effective displacement will be adjusted
n3 bits, bytes or double-bytes, depending
on whether n 2 = 1,8 or 16.

produces the object code Al0559 correspond­
ing to the instruction:

opcode-l register D L opcode-2

1010 0001 000001011 01 011001 1

with a displacement (D field) of 5 words
relative to the byte addressed by register 1.

produces the object oode 810F corresponding
to the instruction.

opcode register D

1000 0001 000011111

with a displacement of 15 bits relative to
the byte addressed by register 1.

Defines local symbol "1" to be of type "k"
(where k=b,c,d,h,l,s,t) with base register
and displacement defined by the operand.

Defines local symbol "1" to be of type "t"
with base register and displacement defined
by the upper (left-most) tally of the
operand.

Defines local symbol "1" to be of type "t"
with base register and displacement defined
by the lower (right-most) tally of the
operand.

Defines local symbol "1" to be of type "t"
with base register and displacement defined
by the lower double tally of the operand.

3-23

1 EQU

FRAME

ORG

TEXT

c
h
t
d
s
1
n

n

1
n

X' ••• '
e' ... '

3.7.11 ADDRESS REGISTER USAGE

Equates the local label "1" to the symbol or
literal value of the operand.

Must be the first assembled statement in a
mode that is to be loaded; "n" defines the
frame on which the object code is to be
loaded.

Resets the location counter to value defined
by the operand. This statement may have a
label field entry.

Assembles binary equivalent of character
strings (enclosed in quotes and preceded by
a 'e') or hexadecimal values. Any number
and combination of e and X literals sepa­
rated by commas is permitted.

In some, a displacement is added to the contents of the address register to form an
effective address. The length of the operand(s) is (are) encoded in the instruction.

For REAL instructions allowing an address register r in the operand field, the
displacerrent relative to the register and the operand length can be specified
using the following formats:

Displacement Relative Operand
Format to Address Register n Length

Rn o bytes 1 byte

Rn;Bm m bits 1 bit

Rn;Cm m bytes 1 byte
Rn,Hm m bytes

RnjTm 2*m bytes 2 bytes

Rn;Dm 4*m bytes 4 bytes

RmiSm 6*m bytes 6 bytes

3-24

Example:

MCC RO;C15,R15

Example:

SB RS ;BO

Example:

IDV MBASE, RlO; D4

3.7.12 REAL INSTRUCI'ION SIDE EFFECI'S

Move low order byte of the Accumulator to the
byte addressed by Rl5.

Set bit 0 of the byte addressed by RS.

Move double-word MBASE to the double-word
starting 16 bytes past the byte addressed
by RIO.

Many of the REAL opcodes use functional elements not specified as operands for
execution. Those instructions are so footnoted in the previous listing; the fol­
lowing explanation of the various footnotes describes the state of these implied
elements at the conclusion of instruction execution:

(1) Rl5 points to byte addressed by operand-2.

(2) Rl4 points to byte addressed by operand-I, Rl5 points to byte addressed by
operand-2.

(3) Rl5 points to byte addressed by operand-I.

(4) Rl5 points one prior to last byte moved and TO contains nwnber of bytes
moved into last frame.

(5) Contents of TO are unpredictable.

(6) DO contains the integer moved or compared.

(7) SYSRO contains the byte pointer operand-I.

(8) TO contains the 16-bit mode-ID; TI is zero.

(9) HO contains the number of digits converted into the last frame, if its high
order bit (BO) is set; otherwise original value.

3.8 ASSEMBLER TABLES

The REAL Assembler is completely table-driven and is therefore both powerful and
flexible in its definition of mnemonics. In addition, the assembler accesses a
permanent symbol table, which allows the predefinition of a set of symbols used by
all assemblies. Symbols defined in the source mode are placed in a temporary
(local) symbol table, and such entries override corresponding entries in the perma­
nent symbol file. It should be noted that forward references to local symbols that
match entries in the permanent symbol table will, in general, cause assembly errors.
Therefore, such overriding symbol definitions must precede the first reference to
them.

3-25

At the start of the assembly process, the assembler searches the user's Master Dic­
tionary (MiDICT) for the following file definitions:

PSYM Permanent symbol table.

TSYM Temporc.ry symbol table.

OSYM Operation-code symbol table.

The assembly will abort if any of these file-definitions are missing, with a mes­
sage indicating the one that was not found. The temporary symbol table is initial­
ized before the assembly starts. TSYM is a permanently defined file on a user's
account. It can be examined at the conclusion of the assembly. Although TSYM has
a lock to limit its use to one person on an account during an assembly, entries
from one assembly disappear when another starts. TSYM is also used by the FIX-FILE­
ERRORS ve rb .

3.8.1 TSYM/PSYM TABLE ENTRY FORMATS

The item format of the entries in the PSYM and TSYM files is as follows (entries
are in character form):

Item-ID: Symbol-name

Line 1 Symbol-code (single character - see below)

Line 2 Symbol-value (hexadecimal location or displacement)

Line 3 Base-re-gister value (single hexadecimal digit)

SYMBOL-CODES

The symbol-code is a single character code that defines the type of the symbol, it
is used in the operation code lookup to determine legal operands, and to flag un­
defined or multi-defined labels, etc.

Symbol-Code

B

C

D

H

L

M

N

R

S

T

U

Description - Symbol Type

Bit

Character Register

Double-Word (4-byte)

Half-Word (I-byte)

Local Symbol, Defined

fude-ID

Literal Value

Address Register

Storage Register (6 bytes)

Word (2 bytes)

Local Symbol, Undefined

3-26

Unit of Displacement

Bits

Bytes

Words

Bytes

Bytes

Undefined

Bytes

Undefined

Words

Words

Value=O

3.8.2 OSYM TABLE-LOOKUP TECHNIQUE

All REAL mnemonic operation codes are stored in the OSYM file. An entry in this
table may be either (1) the REAL mnemonic for the instruction (basic opcode), or
(2) the REAL mnemonic suffixed by the symbol type-codes of all the operand field
entries. The purpose of the suffixing is (1) to provide for the separate handling
of REAL mnemonics with variable operand field entries; (2) to provide for a check
on the number and type' of operand field entries~ As an example, the basic REAL
mnemonic for "move register to register" is MOV, but it has four different object
code expansions, depenuing on whether the registers involved are address (R) or
storage-type (S). To allow for all cases, there are four entries in the OSYM file:
MOVRR, MOVRS, MOVSR and MOVSS. The assembler will attempt to look up the basic
opcode first, and, if it is not found, a second attempt will be made with the
basic opcode suffixed as described above.

3.8.3 TSYM TABLE ENTRY SETUP

As the assembler goes through the "suffixing" technique described above, it neces­
sarily looks up each non-literal operand in the TSYM and PSYM files, in that order.
If found, the type-code can be suffixed to the basic opcode. If no entry is found
in the TSYM and PSYM files, the assembler then sets up an entry in the TSYM file
with type "U" (undefined), and location zero. This has an important ramification
with regard to literal generation.

3.9 ASSEMBLER OUTPUT

The assembler output consists of (1) macro statement expansions; (2) error messages
and (3) generated object code, all appended to the original source statement.

A user-input source statement is of the format:

Source statement (AM)

On output, the format is as follows:

Source Statement (SVM) location object-code (AM)

where 'location' is a 3-digit hexadecimal field, and the 'object code' is in hexa­
decimal.

Error messages are appended to the source statement as the assembler encounters
errors; the messages a~e appended in the format:

.• (VM) * message •..•

Messages may precede or follow the object code.

Macro expansions resemble source statements in terms of source statement, errors
and object code, and are of the format:

Source statement (VM) macro statement (SVM) location object-code (VM) ... (AM).

Note that regardless of what the assembler appends to the original source statement,

3-27

the delimiters surrounding the entire statement re~ain\unchangedi this ensures
proper source statement input on subsequent assemblies.

3.10 ASSEMBLER ERROR MESSAGES

*UNDEF: symbol l Symbo12 ••••

*MULT-IDEF

*REF: UNDEF

LBL REQD

"OPCD?

*OPRWD REQD

*ILGL OPCD:opcode

*OPRWD RNG

*TRUNC.

*OPRND DEF

Undefined symbols at end of pass 1 (Message
at end-of-mode).

Label-field entry was previously defined.

Reference to undefined symbol.

Required label-field missing.

Opcode-field entry missing.

Required operand-field entry missing.

Either the opcode was illegal, or the
operand types were illegal for the opcode ..

The range of the operand-field entry is
illegal.

Object code truncation may be due to: branch
out-of-rangei TSYM/PSYM table entry error;
specification error in the GEN primitive.

The operand-field entry is improperly
defineq e.g.: non-hexadecimal character
in a hexadecimal string.

The following are errors in the OSYM-table entry specifications.

*FRMT. A-FIELD
*FRMT. B-FIELD

*OPCD TYP!

*MACRO DEF!

Error in A- or B-field specification.

Opcode type not a P/Q/M, or primitive type
was illegal.

Error in the macro specification.

3-28

3.11 REAL INSTRUCTION SUM}ffiRY

ADDR defines address

ADD

AND

AR

B

BBS

BBZ

BCA

BCE

BCH(E)

BCL(E)

BCN

BCU

BCX

BDLEZ

BDLZ

BNDZ

BDZ

BE (3)

BL(r:) (3)

BH(F.)

BSL

BSLI

BU (3)

CHR

CMNT

add to accumulator

and variables

defines address register

branch unconditional

branch on bit set

branch on bit zero

branch on character alphabetic

branch on character equal

branch character high (or equal)

branch character low (or equal)

branch on character numeric

branch on character unequal

branch on hexadecimal character

branch decrementing word < = zero

branch decrementing word < zero

branGh decrementing word not zero

branch decrementing word zero

branch, register/word equal

branch word < (or=)

branch word < (or=)

branch and stack location

branch and stack location indirect

branc~, register/word unequal

define character

comment

3-29

PAGE

3-22

3-15

3-12

3-22

3-19

3-13

3-13

3-13

3-12

3-13

3-12

3-13

3-12

3-13

3-18

3-18

3-18

3-17, 3-18

3-16, 3-17

3-17

3-17

3-20

3-20

3-16, 3-17

3-33

3-22

PAGE

DEC decrement 3-14, 3-16

DEFDL define as lower double tally 3-23

DEFk define as b,c,d,h,l,s, or t 3-22, 3-23

DEFM define as m 3-22

DEFTL define as lower tally 3-23

DEFTU define as upper tally 3-23

DIV divide accumulator 3-15

DTLY define as doubleword 3-22

ENT(I) external transfer (indirect) 3-20

EQU equate 3-24

FAR flag and attach register 3-16

FRAME define frame 3-24

HTLY define as halfword 3-22

IB input byte 3-21

INC increment 3-14, 3-15, 3-16

IOI I/O instruction input 3-21

100 I/O instruction output 3-21

LAD load absolute difference 3-16

LOAD (X) load accumulator 3-14, 3-15

MBD move binary to decimal (n char) 3-18

MBX(N) move binary to hex (n char) 3-19

MCAL monitor call 3-21

MCC move character to character 3-9

MCl move character to incrementing char 3-9, 3-10

MDB move decimal to binary 3-18

3-30

PAGE

MIC move incrementing char to char 3-10
-,

MIl move inc char to inc char 3-10

~UID move inc char to inc char (delimiter) 3-10

MIlR move inc char to inc char (register) 3-11

MIlT move inc char to inc char (word) 3-11

MOV move word to word 3-13, 3-14, 3-15

MUL multiply accumulator 3-15

MXB move hex to binary 3-19

NEG negate 3-14

NOP no op 3-22

OB output byte 3-21

ONE set word equal to one 3-14

OR logical or 3-12

ORG origin 3-24

READ read 3-21

RQM return time quantum 3-21

RTN return 3-20

SB set bit 3-13

SCD scan characters to delimiter 3-11

SR define as storage register 3 22

SRA set register to address 3-16

STORE store accumulator 3-15

SUB subtract from accumulator 3-15

TEXT message 3-24

3-31

PAGE

TLY define as word 3-22

TST test (set condition flags) 3-14

WRITE write 3-21

XCC exchange character with character 3-12

XOR logical exclusive or 3-12

XRR exchange register with register 3-15

ZB zero bit 3-13

ZERO zero ;tord 3-14

3.12 PROGRAMMING CONSIDERATIONS AND CONVENTIONS

3.12.1 REENTRANCY

In practically all cases, the system software is reentrant, that is, the same copy
of the object code may by used simultaneously by more than one process. For this
reason, no storage internal to the program is utilized; instead the storage space
directly associated with a process is used; this is part of the process' primary,
Secondary, Debug (or Tertiary) and Quaternary Control blocks. The Primary Control
Block (PCB) is addressed via address register zero, the SCB via register two. The
Debug Control Block is used solely by the DEBUG processor and should not be used
by any other programs. The Quaternary Control Block has no register addressing it;
it is used by some system software (magnetic tape routines, for example, which
temporarily set up a register pointing to it); its used is reserved for future
software extensions.

A user program may utilize storage internal to the program if it is to be non­
reentrant. Often it will be found that the functional elements defined in the PSYM
will be sufficient.

In some cases it may be required to set up a program to be executable by only one
process at a time; that is, the code is "locked" while a process is using it, and
any other process attempting to execute the same code waits for the first process
to "unlock" it. The following sequence is typical:

ORG 0
TEXT X'Ol' INITIAL CONDITION FOR LOCK BYTE (NarE USAGE
CMNT OF STORAGE INTERNAL TO PROGRAM)

LOCK MCC X'OO',R2 SET "LOCKED" CODE AT R2
XCC R2,Rl EXCHANGE BYTES AT R2 AND Rl
BCE R2,X'Ol',CONTINUE OK TO CONTINUE; PROGRAM LOCKED
RQM WAIT (RELEASE QUANTUM)
B LOCK TRY AGAIN

UNLOCK MCC X'Ol' ,Rl UNLOCK PROGRAM

3-32

3.12.2 WORK-SPACES OR BUFFERS

There is a set of work-spaces, or buffer areas, that is predefined and available
to each process. If the system conventions with regard to these buffers are
maintained, they should prove adequate for the majority of assembly programming.
There are three "linked" buffers, or work-spaces, of equal size, symbolically
called the IS, the OS, and the HS. These are at least 3000 bytes in length each;
more space for each area can be assigned to a process at LOGON time. There are
five other work-spaces, the BMS, CS, AF, IB and the OB, which may vary between 50
and 140 bytes in length and are all in one frame. There is the TS, a one-frame
unlinked work-space of 512 bytes, and the PReC work-space, 2000 bytes in length,
which is used normally by the PReC processor alone; finally, there are four addi­
tional frames (CPB+28 through PCB+31) that are unused by the system, subroutines,
through they are used by some of the processors.

Each work-space is defined by a beginning pointer and an ending pointer, both of
which are storage registers (S/R's). When the process is at the TCL level, all
these pointers have been set to an initial condition. At other levels of process­
ing, the beginning pointers should normally be maintained; the ending pointers may
be moved by system or ~ser routines. The address registers (AIR's) that are named
after these work-spaces (IS,OS,AF,etc.) need not necessarily be maintained within
their associated work-spaces; however, specific system routines may reset the
A/R to its associated work-space. The table below discusses these points for each
work-space. Note that, conventionally, a buffer beginning pointer addresses one
byte before the actual location where the data starts. This is because data is
usually moved into a buffer using one of the "moving incrementing" type of instruc­
tions, which increment the AIR before the data movement.

Work­
Space

BMS

AF

CS

IB

Location
(Offset
From PCB)

4
(disp.=O)

4
(disp.=50)

4
(disp.=lOO)

4
(disp.=200)

Linked?

50 No

50 No

100 No

<140 No

3-33

Remarks

Normally contains an item-ID when
communicating with the disc file I/O
routines. Typically, the item-ID is
copied to the BMS area, starting at
BMSBEG+ 1. BMSBEG may be moved to
point within any scratch area. BMSEND
normally points to the last byte of the
item-IDe BMS (AIR) is freely usable
except when explicitly or implicitly
calling a disc file I/O routine.

This work-space is not used by any
system subroutine, although the AF
A/R is used as a scratch register.

As above.

Is used by the terminal input routines
to read data. IBBEG may be moved to
point within any scratch area before
use. IBEND conventionally points to
the logical end of data. IB AIR is

Work­
Space

OB

TS

PROC

HS

IS
OS

Location
(Offset
From PCB)

4 140
(disp.=201
+ IBSIZE)

5 511

6-9 2000

10-15

16-21
22-27

3000+

3000+

Linked?

No

No

Yes

Yes

Yes

3-34

Remarks

freely usable except when explicitly
or implicitly calling a terminal input
routine.

Is used by the terminal output routines
to write data. OBBEG & OBEND should
not be altered; they always point to
the beginning and end of the as area.
OB AIR conventionally points one
before the next available location in
the OB buffer.

Used for conversions.

Used exclusively by the PROC
processor for working storage. User­
exits from Proc's may change pointers
in this area.

Used as a means of passing messages to
the WRAPUP processor at the conclusion
of a TCL statement. May be used as a
scratch area if there is no conflict
with the WRAPUP history-string formats.
HSBEG should not be altered;
HSEND conventionally points one byte
before the next available location
in the buffer (initial condition is
HSBEG=HSEND) .

These work-spaces are used inter­
changeably by some system routines
since they are of the same size (and
are equal in size to the HS). Specific
usage is noted under the various
system routines.

ISBEG and OSBEG should not be altered,
but may be interchanged if necessary.

Initial condition is that ISEND and
OSEND point 3000 bytes past ISBEG and
OSBEG respectively (not at the true
end if additional work-space is assign­
ed at LOGON time) .

IS and OS AIR's are freely usable
except when calling system subroutines
that use them.

-,

Location
Work- (Offset
Space From PCB) Size Linked? Remarks

28-31 Used for compilation and execution
of the RPG programs I and by the
DATA/BASIC Debugger.

3.12.3 DEFINING A SEPARATE BUFFER AREA

If it is required to define a buffer area that is unique to a process, the unused
frames PCB+28 through PCB+3l may be used. The following sequence of instructions
is one way of setting up an AIR to a scratch buffer:

MOV
ZERO
ZERO
INC

RO,Rl5
R3WA
R3DSP
R3FID,29

SET R3 "DETAQiED"
INITIALIZE DISPLACEMENT FIELD
SET Rl5 to PCB+29

Register 3 can now be used to reference buffer areas, or functional elements that
are addressed relative to R3. None of the system subroutines use R3, so that a
program has to set up R3 only once in the above manner. However, exit to TeL via
WRAPUP will reset R3 to PCB+3.

3.12.4 USAGE OF XMODE

In several cases, the multiple-byte move instructions can be used (say, when
building a table) even when it is not known whether there is enough room in the
current linked frame set to hold the data. Normally, if the end of a linked frame
set is reached, DEBUG is entered with a "forward link zero" abort condition.
However, the tally XMODE may be set up to contain a mode-ID of a user-written sub­
routine that will gain control under such a condition. This subroutine can then
process the end-of-frame condition, and, by executing a 'RTN' instruction, normal
processing will continue. Instructions that can be handled by this scheme are:
INC register; MCI; MIC; MIl; MIlD; MIlT; SCD; MIIR. Care should be taken in the
case of MIIR to save register Rl5 in the subroutine.

Example:

MOV
MIl
ZERO

XXX,XMODE
Rl2, Rl3 ,SR4
XMJDE

SET UP XIDDE FOR NEXT INSTRUCTION
COpy FROM Rl2 TO Rl3, TILL Rl2=SR4

3-35

Example: (continued)

!XXX EQU *
MOV Rl5, SR20
SRA Rl5, ACF
BCE X' aD' , Rl5 ,OK
MOV o ,XMODE
ENT 5,DBl
CMNT

*
OK MOV 500, Rl3DSP

CMNT

ENTRY POINT FOR SUBROUTINE
SAVE Rl5
SET TO SAVE REGISTER NUMBER
ENSURE TRAP WAS DOE TO Rl3
PREVENT DEBUG RE-ENTRY
NO! : REENTER DEBUG TO PRINT
"FORWARD LINK ZERO" MESSAGE

RESET DISPLACEMENT FIELD OF Rl3, SINCE
FIRMWARE HAS LEFT IT IN A STRANGE STATE.

* HANDLE END-OF-FRAME CONDITION HERE

MOV
BSL

MOV
RTN

Rl3FID, RECORD
ATTOVF

SR20 ,R1S

3.12.5 INITIAL CONDITIONS

SET UP INTERFACE FOR ATTOVF
GET ANOTHER FRAME FROM OVERFLOW

RESTORE Rl5
RETURN TO CONTINUE EXECUTION OF MIl
INSTRUCTION.

At any level in the system, the following elements are assumed to be set up; they
should not be altered by any programs:

MBASE
MMOD
MSEP ~l

Contain base-FID, modulo and separation of
the M/DICT associated with the process.

3.12.6 SPECIAL PSYM ELEMENTS

Certain elements have a "global" significance to the, system in addition to those
described above; they are:

Functional

Arithrretic
flags:

ZROBIT
NEGBIT
OVFBIT

HO through

Element

condition

H7

Description

These are altered by any arithmetic instruction,
as well as the branch instructions that compare
two relatively addressed fields.

Set if result of operation is zero (equal).
Set if result of operation is negative.
Set if arithmetic overflow resulted.

Overlays accumulator and extension; H7 is
high-order byte of Dl; HO is low-order byte
of DO.

3-36

Functional Element

INHIBIT

OVRFLCTR

RSCWA

SYSPRIVl

SYSPRIV2

TO through T3

XMODE

WMODE

USER

Description

If set, the "BREAK" key on the terminal is
inhibited; used by processes that should not
be interrupted.

See WRAPUP for usage.

Return-stack current word address; contains
address one byte past current entry in stack;
stack is null if RSCWA=X'184'.

If set indicates system privileges, level one.

If set in addition to SYSPRIV1, indicates
system privileges, level two.

Overlays accumulator and extension.

This tally may be set up to a mode-ID of a
subroutine that is to gain control when a
"forward link zero" condition occurs.

If WMODE is non-zero on any entry to WRAPUP,
a BSL* through WMODE will be executed at the
termination of history-string processing,
before 1) the print-spool-files are closed,
and 2) the overflow chain is released. The
BSL* instruction will be executed whether
RMODE is zero or not. This feature may be
used by processors that require special
WRAPUP proc~ssing.

Tally 'USER' in the PCB has global significance:

Tally=O

Tally=-l

Tally==l

Tally==2

Indicates not logged on.

Indicates the spooler
process.

Indicates the file restore
process.

Indicates a process which
must go to LOGOFF after
WRAPUP processing.

Other values indicate normal logged
on processes.

3-37

,,-. '

",... '

SECTION 4

THE INTERACTIVE DEBUGGER (DEBUG)

.ttIIfI' The Interactive Debugger (DEBUG) provides a means for monitoring and controlling
program execution. For all Reality users, DEBUG has the ability to turn the print
off at the terminal, and to terminate program execution.

The use of the extended facilities of DEBUG (other than turning the terminal print­
ing on and off, and terminating program execution) require system privileges level
two. If the user has such privileges, he may control program execution by the in­
sertion of break-points in the program, and by executing specific DEBUG commands.
The user may also trace execution by displaying data at specific locations. DEBUG
additionally allows the user to display data throughout the virtual memory of the
system.

Thus (for users with system privileges level two) DEBUG is ideally suited for the
checkout phase of assembly language programming.

4.1 ENTERING DEBUG

DEBUG is entered voluntarily by depressing the BREAK key on the terminal (INT key
on some terminals). DEBUG will then display the location of the execution inter­
ruption point, followed by the DEBUG prompt character; the DEBUG prompt character
is the exclamation mark (!).

DEBUG is entered involuntarily when a hardware trap condition occurs. In this case,
DEBUG will display a message indicating the nature of the error causing the trap
(see Section 4.6), followed by the location at which the trap occurred, followed
by the DEBUG prompt character (!).

When the DEBUG prompt character is displayed, the user enters an appropriate DEBUG
Control Command or DEBUG Data Display Command.

4.2 THE DEBUG CONTROL C0MMANDS

4.2.1 CONTROL COMMAND SYNTAX

Prior to describing the actual DEBUG Control Commands, it is necessary to define
the terms "address" and "indirect-address".

ADDRESS

An "address" references a byte in virtual memory. An "address" consists of a frame­
ID (FID) and an offset byte displacement within the frame. The FID and/or displace­
ment may be either in decimal or hexadecimal. The general forms of an "address"
are shown below ("f" represents the FID value, and "d" represents the displacement
value) •

Address Description

f,d FID in decimal; displacement in decimal.

4-1

Address pescription

f.d FID in decimal; displacement in hexadicimal.

. f,d FID in hexadecimal; displacement in decimal .

. f.d FID in hexadecimal; displacement in hexadecimal .

• d Displacement in hexadecimal •

,d Displacement in decimal.

If the FID value is omitted, then the PCB FID is used as a default value. The dis­
placement must be in the range 0 2 d < 512.

As a general example, the following "addresses" are equivalent:

l2.3C
12,60
.C.3C
.C,60

INDIRECT-ADDRESS

An "indirect-address" references a byte in the virtual
Address Register which therefore indirectly references
Registers zero and one cannot be used in this manner.
ification takes the following forms.

memory by specifying an
a particular byte. Address
The "indirect-address" spec-

Indirect Address

Rr

R.r

Description

Specifies Address Register "r" (where "r" is a
decimal value in the range 0 < r < 15).

Specifies Address Register "r" (where "r" is a
hexadecimal value in the range 0 < r < F).

Note that "indirect-addresses" have an implied displacement within the FID that
the Address Register is pointing to; this displacement depends on whether the re­
gister is in the "linked" or the "unlinked" format (see Section 2) •

4.2.2 DEBUG CONTROL TABLES

DEBUG maintains three tables which may be manipulated by the DEBUG commands: the
Break Table, the Trace Table, and the Indirect Trace Table. If there are entries
in the Break Table, the address of every instruction is compared with the address
in the Break Table and a break occurs if there is a match. If there are entries
in the Trace or Indirect Trace Tables, then the data pointed at by the entries are
printed whenever a break message is printed (see Section 4.4). Up to four entries
can be placed in each of these tables.

4-2

, • 2 • 3 CONTROL COMMANDS

the following is a list of the DEBUG COntrol Commands. Users without system pri­
i7ileges level two may onl:r use the P, G, END, and OFF commands.

General Form

A address

B address

D

En

END

G

or
line-feed

G address

H

K address

L

M

Nn

OFF

P

Description

Displays the address of an element.

This command adds the "address" to the Break Table.

This command displays the Break Table and Trace Table.

This command sets the Execution Counter to "n",
where "n" is a positive integer < 250. Setting
the Execution Counter causes a break to occur
after the execution of every "n" instruction.
The command "E 0" or simply "E" turns off the
Execution Counter.

This command terminates execution and returns
to TeL. "END (carriage-return)" re-initializes
the break and trace tables, whereas "END (line­
feed)" preserves the tables.

This command causes resumption of process execu­
tion from the point of interruption. G cannot
be used if a process ABORT condition caused the
entry to DEBUG.

This command causes resumption of execution at
the specified "address".

"HUSHES" terminal output (this is an on/off toggle).

This command "kills" the break-point (i.e., de­
letes "address" from Break Table). "K" alone
kills all break-points~

Display frame links.

Each entry of an M command switches (toggles)
"Modal-Break" status ON and OFF. When "Modal­
Break" status is ON, a break in execution will
occur upon all intermodal transfers (i.e., BSL
or ENT instructions; see Section 3.7.8). The
message "ON" is displayed when the M command
switches "Model-Break" on; the message "OFF"
is displayed when "Modal-Break" is switched off.

This command sets the Break-Point Counter to
"n" (i.e., inhibits traps until "n" breaks have
occurred). "N" is equivalent to "N a".
This command logs the user off of the system.

Each entry of a P command switches (toggles)
from print suppression to print non-suppression.
The message OFF is displayed if output is cur­
rently suppressed. The message ON is displayed
if output is resumed.

4-3

General Form

T

T format address; window

T format/symbol; window

Description

Each entry of a T command switches (toggles)
suppression of display of entries in the trace
tables.

This command adds the "address" to the Trace
Table with the given display format and window,
if present. Default display is hexadecimal, 4
bytes. No negative displacement for windows is
allowed.

This command adds the address referenced by the
"symbol" to the Trace Table with the specified
or default format and window. Default format and
window depends on "symbol" type.

T format indirect-address; This command adds the "indirect-address" to the
window Indirect Trace Table with the specified or de­

fault format and window.

T format * symbol; window This command adds the address referenced in­
directly by the "symbol" (A/R or SIR) to the In­
direct Trace Table with the specified or default
format and window.

U address This command deletes 'the "address" from the Trace
Table.

U indirect-address This command deletes the "indirect-address"
from the Indirect Trace Table.

U

/,¢

This commands deletes all addresses and indirect­
addresses from the trace tables.

Symbolic displays of elements.

4.3 THE DEBUG DATA DISPLAY COMMANDS

4.3.1 WINDOWS

Before describing the Data Display commands, it is necessary to define the concept
known as a "window."

A "window" specifies the number of bytes to display (m), and optionally the nega­
tive displacement (n) f~'om the "address" or "indirect-address" from which to start
the display. If n is not specified, it is assumed to be zero. The general forms
of the "window" are shown below.

Window Description

;m Number of bytes in decimal.

4-4

Window Description

i .m Number of bytes in hexadecimal.

in,m Displacement in decimali number of bytes in decimal.

in.m Displacement in decimali number of bytes in hexadecimal.

i • n,m Displacement in hexadecimali number of bytes in decimal.

; .n.m Displacement in hexadecimali number of bytes in hexadecimal.

The default "window" is 0,4 (no negative displacement, display four bytes).
f

4.3.2 DATA DISPLAY COMMANDS

The following is a list of the DEBUG Data Display commands.

General Form

Caddressiwindow

Cindirect-address;window

xaddressiwindow

Xindirect-address;window

Iaddressiwindow

Iindirect-addressiwindow

Format/symbol;window

Format*symbol;window

A

A/symbol

A*symbol

L fid

Description

These commands display specified data in
character format.

These commands display specified data
in hexadecimal format.

These commands display specified data
in integer format. ("window" must be ,::,6)

This command displays data referenced by
"symbol" in given or default format and
window size.

This command displays data referenced
indirectly by "symbol" in given or de­
fault format and window size.

This command displays the address at
which program execution was interrupted.

This command displays the address refe­
renced by "symbol".

This command displays the address refe­
renced indirectly by "symbol".

This command displays the link fields of
frame "fid".

4-5

General Form

L*symbol

Description

This command displays the link fields
of the fram~ referenced indirectly by
"symbol".

Immediately after the data at the specified address has been displayed, DEBUG
prompts with an equal s~gn (=). The user then enters either a Data Replacement
Specification or a Special Control Character.

4.3.3 DATA REPLACEMENT SPECIFICATIONS

Displayed data may be altered (replaced) by entering the new data in one of the
following forms (after DEBUG prompts with an equal sign).

General Form

.xxxxxx •..

'cccccc ...

n

Description

Replaces data with hexadecimal string "xxxxxx". The
string should contain an even number of hexadecimal
digits, and may be up to 80 digits in length.

Replaces data with character string "cccccc". The
string may be up to 80 characters in length.

Replaces data with integer value "n".

In the case of a hexadecimal or character string replacement, the data actually
replaced may extend beyond the currently defined "window".

A Special Control Character (see Section 4.3.4) must be entered immediately fol­
lowing a Data Replacement Specification.

4.3.4 SPECIAL CONTROL CHARACTERS

The user may enter a Special Control Character in response to the DEBUG equal sign
prompt character. In addition, the user must terminate a Data Replacement Speci­
fication (see Section 4.3.3) with a Special Control Character.

The Special Control Characters are listed below.

Control Character

Carriage Return

Line Feed

Control-N

Description

Terminates display mode; DEBUG will prompt with an
exclamation mark (!).

Displays data in the next "window" (Le. I the pre­
viously specified "address" or "indirect-address"
is updated according to the currently specified
"window"). The data is displayed on the same line.

Displays data in the next "window", preceded by the
address being displayed (in the format "f.d", where
f is in decimal and d is in hexadecimal) •

4-6

Control Character

Control-P

Description

Displays data in the previous "window" preceded
by the address being displayed (in the format
"f.d") .

On a display using the "indirect-address" specification, the Line Feed or Control-N
will cause an automatic crossing of linked frame boundaries if the register being
used in the display is in the "linked" format.

Generally speaking, Control-N displays the set of bytes the same size as and imme­
diately following the current display, and Control-P displays the immediately pre­
ceding set, with each skipping first to the next line and preceding the display of
these bytes with their address (Line-Feed functions the same as Control-N, without
skipping a line or displaying an address). Exceptions occur only in the case of
the specification in the initial display of a negative displacement window, i.e.,
a window of the form:

:Windowl, Window2

Where windowl is positive.

In these cases, the address of the beginning of the next byte-set display is deter­
mined by the formulas:

For Control-N and Line-Feed:

ADDR OF DISPLAY = ADDR OF CURRENT DISPLAY + SIZE WINDOW - DSPLC WINDOW

For Control-P:

ADDR OF DISPLAY ADDR OF CURRENT DISPLAY - SIZE WINDOW - DSPLC WINDOW

The user may describe a sequence by careful specification of size and displacement
windows. A few examples follow.

Display a data list of DTLYS from right to left, i.e., by diminishing addresses,
first displaying the DTLY at address 200.100. The easiest way is to simply use
Control-P with a non-negative displacement window:

!X200.l00;DO .C1Fl043F=
200.FC .07510254=
200.Fa .A10551FO=

(Control-P)
(Control-P)
(etc.)

Another way of reading right to left, using Control-N, is accomplished by specify­
ing the value of the displacement window (:window) to be twice that of the value
of the size window (.window2 (= 4 lfor DTLYS»:

!200.l08;8.4 .C1FI043F=
200.FC .07510254=
200.Fa .AI0551FO=

(Control-N)
(Control-N)
(etc.)

(display DTLY at 200.100)

To display an address over and over, as when monitoring changes at a certain ad­
ress, the Line-Feed fnnction may be used, specifying a displacement window equal
in value to the size window. For example:

4-7

!I5l0.l02;2,2 5000= 5000= 5000= 5001= 5001= 5002=
(Line-Feed display of tally at 510.100)

A somewhat more tricky example: suppose one has sorted a list of five-letter words
beginning at the 100th data byte of linked frame 510 and wishes to check it for
correct order by comparing items 0 and 1, 1 and 2, 2 and 3, and so forth. This may
be done, using Control-N, by specifying a size window twice the value of the dis­
placement window:

!C5l0.106;6,12 APPLECHAIR=
+510.111 CHAIRCHOIR=
+510.117 CHOIRFUNNY=
+510.l1D FUNNYHELLO=

(Control-N)
(Control-N)
(Control-N)
(etc.)

4.4 THE FORMATTED TRACE

The TRACE facility also allows formatting. This enables the user to specify a for­
mat and one window only (the size window) for each item traced. The display of each
item will then reflect its specified format and byte size. Forward or backward dis­
placements will be ignored. Note, however, that the default format and window of
an indirect trace is hex display of 4 bytes, not the preceding window.

Examples:

!TX200.100;4+

!T/CHl+ 736.21

!T*R15;TO+

!T*SR4+ 737.EO

!D
BRK TBL: O. O.
TRC TBL: 200.100

*TRC TBL: R 15.

O. O.
736.21

* 737.EO

4.5 SYMBOLIC REFERENCES

(Will trace location 200.100 with 4 bytes displayed in
hex - the '+' prompt from DEBUG indicates entry into
the table.)

(Trace of symbol CHI - format = C, display size = 1
character - prompt 736.21 = display address of CHI.)

(Indirect trace R15 - format = I, window size = 2 bytes.)

(Indirect trace SR4 - format X, display size = 4 bytes -
default trace format and window is hex with 4 bytes,
not previous format and window.)

O.
O.

O.
O.

(Display of above entries in trace tables - 736.21 =
display address of CHI, * 737.EO means the address
pointed to by the S/R at 737.EO (i.e., SR4) will be
displayed.)

Symbolic reference to system-defined or user-defined data items is possible with
the use of the SET-SYM and SET-SYM2 verbs. These TCL-II verbs are issued to specify
tables for symbolic operands to be referenced by DEBUG. Entries in these tables
must be in the format used in the Asserr~ler PSYM and TSYM files.

SET-SYM assigns one symbol table; SET-SYM2 assigns another. Typically, SET-SYM is

4-8

used to reference standard system-defined elements, and SET-SYM2 is used to reference
user-defined elements. For example:

DEBUG always looks for a symbolic operand first in the table set up by SET-SYM2.
If this table in not assigned, or if the symbol is not found, it then looks in the
table set up by SET-SYM.

4.5.1 SYMBOLIC OPERATORS

The symbolic operators '/' and '*' respectively indicate that a symbolic or indirect
symbolic operand is to follow. They may be preceded by any format specification
(X.I.C) or followed by a window specification (:windowl.window2 or :symbolic window)
which will override the listed default display values. DEBUG will display only
those symbols from the Symbol Table which would be accepted by the Assembler as
legal in a normal assembly.

4.5.2 DISPLAY FEATURES

Symbolic operands for djsplay may be any properly defined bit, character, half-word,
word, double-word, triple-word, storage register, or address register within the
assigned Symbol Table. Normal display features are as follows:

Type 0 f Symbo 1 Format of Display # of Bytes Displayed

HTLY Integer (I) 1
TLY Integer 2
CHR Character (C) 1
DTLY Integer 4
FTLY Hex (x) 6
SIR Hex 6
A/R Hex 8
SIR (INDIRECT) Previous format Previous window
A/R (INDIRECT) Previous format Previous window

These values are default values and are superceded whenever a specific format or
window size is entered as part of a command.

Examples:

!/CTRS 31=

!lRlS 708.CA

!X/DO 008C008C=

(Symbol = CTRS, format = I, display
size = 2 bytes.)

.OOOOOOCA800002C4=

(70B.CA is the address pointed to by Rl5-
see 'the address function' - format = X,
window size = 8 bytes. These are the ~~n­
tents of Rl5.)

(Actual stored contents of accumulator -
format = X (as specified), display size = 4
bytes.)

4-9

Examples: (Continued)

!*Rl5 708.CA .2D2F2A2F=

!C*Rl5;0,4 708.CA -/*/-

(Indirect display - contents at 708.CA -
format = X (prev. format). Window size =
4 bytes (prev. window).)

(Format = C, window = 4 bytes with no
negative displacement)

A '+' indicates an address of a symbolic operand defined within a linked frame
where 11 (hex 'B') has been added to the displacement to produce a display address
starting from byte 1 of the frame.

4.5.3 SYMBOLIC WINDOWS

The symbolic window provides a useful means of referencing data pointed to by an
AIR or SiR. It also enables the user to specify a forward reference from the
address pointed to and carries an implicit oefault format specification.

Examples:

!*R9;DO 708.32 17301644=

!*R3;T2 705.4 12593=

!*SR6;Cl +32075.l3A ,=

!X/SR4;TO .Ol2F=

!/CTR4;S2 .009900010035=

4.6 THE ADDRESS FUNCTION

(Specifies the double-tally pointed to
by R9)

(Specifies second tally after the tally
pointed to by R3)

(Gives the character HTLY immediately after
the one pointed to by SR6 - implicit format = C)

(Gives the displacement (in hex) of SR4)

(Implicit format = X, size = 6 bytes)

The address function is evoked by preceding a symbolic operator by the command 'A'.
An indirect symbolic operator preceded by the command 'A' yields the address
pointed to by the speci fied AIR or SiR.

The command 'A' alone, not followed by any operators, will yield the interrupt
address from which execution was halted when the DEBUGGER was invoked. If the
DEBUGGER was not entered due to an error trap condition, this address is also the
address from which execution will continue if a 'G' command without a specified
address is given. Some examples of the use of the 'A' function follow:

! A/CTRS 512. 9A

!A*SRl +534.2F

!A*SRl;4.0 +534.2B

(Display address of symbol CTRS)

(Adjusted byte address on ~inked frame pointed
to by SiR SRl)

(Address of DTLY preceding address pointed to
by SIR SRl)

4-10

!A 6.94

\

(Address from which execution interrupted
when DEBUG entered. Execution will continue
from this address also.)

4.7 THE LINKS FUNCTION

This facility enables the user to display the forward and backward links of a
specified frame as well as the number of next contiguous frames (NNCF) and number
of previous contiguous frames (NPCF). The links of a frame pointed to be an AIR or
SiR may also be obtained by an indirect symbolic links specification. The format
of display is:

NNCF : FORWARD LINK BACKWARD LINK NPCF

Examples:

4.8

4.8.1

!L727 4 728 726 1 (Links for frame 727 - 4 contiguous linked
frames follow beginning at frame 728.
1 contiguous linked frame precedes frame 726.)

! L*IRBEG 14891. 0 14893 o : 0

! L.IF 28 68944000

BIT DATA

SYMBOLIC BITS

(SIR IRBEG points to frame 14891 -
frame 14891 has no immediately contiguous
links. Forward link is 14891. No backward
link.)

-179407469 : -112
(These are the 'links' of frame 31 which is
not a linked frame. No test is made to de­
termine if a frame is linked or not before
play. If NNCF = 28 or 29 then the frame is
probably not linked.)

Symbolically defined bits may also be displayed, providing they are defined within
a 32-byte displacement range of their reference base register. Among the display
functions are:

Control-N

Line-Feed

Control-P

4.8.2 BIT ADDRESSES

Skip to next line, display bit address and value of next bit.

Display bit value on same line.

Skip to next line, display bit address and value of previous
bit.

The address function may also be used for bit operands. A bit address has the
-..-' form:

4-11

(+) FID. DSP :BIT

where BIT is the bit displacement of the byte display address.

Examples:

!/ABIT 0=

!/RMBIT 1=

512.13:7 0=
512.13:6 1=

(Control-N)

(Control-P)

!A/LPBIT 512.19:5

4.8.3 REPLACING BIT DATA

(ABIT is not set.)

(RMBIT is set.)

(Display RMBIT again.)

(LPBIT is the 5th bit off address .19 of the
PCB.)

Bit data values are changed by placing the desired value for the bit (0 or 1)
after the '=' prompt. Up to 10 values in succession may be altered by placing a
string of l's and O's after the prompt.

Examples:

!/OVFBIT 1=0
!/OVFBIT 0=

! /DBIT 0=111111
!/DBIT 1= 1= 1= 1= 1= 1=

4.8.4 BIT WINDOWS

(Reset Overflow flag.)
(Display of new OVFBIT value.)

(Set bits DBIT = IBIT.)
(Display new values of DBIT - IBIT using
Line-Feed function.)

An alternative means of bit display and modification is the bit window. This is
a symbolic window using the character 'B'. followed by a decimal bit displacement,
as follows:

!*Rl5;B6 5l6.CA:6 1= (6th bit off address pointed to by 15)

!200.l00;BO 200.100:0 1= (Leading bit of address 200.100)

!A*Rl5iBI00 516.06:4

4.9 BREAK MESSAGES

DEBUG causes an execution break to occur when the BREAK key on the terminal is
depressed. DEBUG also has the facility to break on intermodal transfers (i.e.,
BSL or ENT instructions; see Section 3.7.8); the M command acts as an alternate
action switch, to change this feature from ON to OFF. A break can also be initiat­
ed with the E command, causing a break after the execution of a specified number
of instructions. The following messages are output when a break in execution
occurs.

4-12

Message

B f.d

E f.d

I f.d

M f.d

R f.d

Condition

Break-point address encountered.
match.)

(Break Table

Execution runout (specified number of instructions
have been executed).

Interrupt (Break key depressed).

Modal break (Inter-frame branch; ENT or BSL
instruction encountered).

Return (RTN) instruction encountered.

where "f" is the decimal FID and "d" the hexadecimal displacement, repre­
senting the location of the execution interruption point.

The Execution Break and Address Break facilities are mutually exclusive. When the
Execution Counter is positive, Break Table entries are ignored. However, the Break
Table of the Execution Break facility can be used with the Modal Break facility.

4.10 EXAMPLES

4.10.1 SIMPLE EXAMPLE

The following example illustrates a simple DEBUG interaction. The features
illustrated here may be used by all Reality users.

SYSTEM-MODES. . . . • • . •. FRAME

WSPACES
EDIT-I
PQUEUE/1200
WRAPUP-II
I 6.1A3
!P CR OFF
!G CR

I 3. FE
!P CR ON
!G CR

DB3
DB4
TAPEIQ-rr
DBS
I 6.137
!END CR

FRAME 172
FRAME 013
FRAME 164

FRAME 018
FRAME 019
FRAME 036

4-13

ENGLISH LIST statement

Listing output from
system.

BREAK key depressed.
Interrupt message.
Turns Print off.
Go (resumes execution without
printing) .
BREAK key depressed.
Interrupt message.
Turn Print back on.
Go (resumes execution with
printing) .

Listing output resumes.

BREAK key depressed.
Interrupt message.
Terminates LIST execution.

TCL prompt.

4.10.2 EXTENDED EXAMPLE

The following example illustrates use of the extended DEBUG facilities. These
facilities can be used only by users with system privileges level two.

: ____ ---BREAK key depressed.
I 6.87
! .lE1327101881= I .!i:'I .. I.IJII·---[)isplay and change data.
200.18 .CDEF3456789 ~--------------------------v~splay next window
200.lE .012COOOOO (no change).
200.18 ange data in
200.24 .0004000AO character form.

~---Set Modal Trace on.
~------------· -----------------------------Set delay counter.
~ __ ---Trace location .40 in PCB.
~---Trace Register four.

---Go.
·!JI statement.

R 5. 49--RTN instruction encountered.
512.40 .000002060000· Data from direct trace.
R 4. : 528. = .004154545249 - Data from indirect trace.

M 7.3 ~---Modal break. -
512.40 = .000002060000
R 4. : 528. = .004154545249

R 5.78
512.40 = .000020920000
R 4. : 528. = .004154545249

M 10.1
512.40 = .000020920000
R 4. : 528. = .004154545249

M 8.1
512.40 = .000020920000
R 4. : 528. = .004154545249

R 10.32
512.40 = .000020920000
R 4. : 528. = .004154545249 I.':. . Display Break and Trace Table
BRK TBL: O. O. o. O.-.------------------------~ entries.
TRC TBL: 512.40 O. O. 0.. ~Break Table entries.

*TRC TBL: R 4. O. O. 0.4 Trace Table entries.
1 "'Indirect Trace Table entries.

rminate Execution.
: ____ ------___ Back to TCL.

4-14

SECTION 5

SYSTEM SUBROUTINES

The following subroutines are from a computer printout. The subroutines are listed
alphabetically.

DOCUMENTATION CONVENTIONS

IN THE SYSTEM SOFTWARE OOCUMENTATTON, EACM ROUTINE IS LISTED
ALONG WITH ITS ENTRY POINT (AS WOULD BE USEO IN A DEFM
STATEMENT), IF THE ENTRY POINT IS INCLUDED IN THE STANDARD
PSYM FILE, IT IS FOLLOwED AY AN ASTERISK (*). UNLESS
OT~ERW15E SPECIFIED, ROUTINES ARE MEANT TO BE CALLED AS
SU8ROUTINES, USING A BSL INSTRUCTION, AND THEY RETURN TO TME
CALLING PROGRAM VIA A RTN INSTRUCTION.

T~E FUNCTIONAL DESCRIPTION SECTION FOR EACH ROUTINE BRIEFLY
DESCRIBES THE ACTION TAKEN. THE INPUT INTERFACE. OUTPUT
INTERFACE, AND ELEMENt USAGE SECTIONS DESCRIBE THE
FUNCTIONAL ELEMENTS USED BY THE ROUTINE. THE SINGLE LETTER
FOLLOWING AN ELEMENT NAME DESCRIBES ITS TYPE: 8=8IT,
C=CHARACTER, H=HALF TALLY, T=TALLY (WORD), D.DOUBLE TALLY,
F=TRIPLE TALLY, R=ADDRESS REGISTER, S.STORAGE REGISTER.
EVEN IF NOT SPECIFIED, THE FOLLOWING ELEMENTS MAY BE
DESTROYED BY ANY ROUTINE' THE ONLY WAY TO BE SURE IS 'TO
INSPECT THE CODE:

BITS r ARITHMETIC CONDITION FLAGS.
SBbO, S861

TALLIES : T4, T5

DOUBLE TAl.LIES : ACCUMULATOR AND EXTENSION (OQ,
OJ), 02

REGISTERS : R14, R15

STORAGE REGISTERS I SYSRO, SYSRt, SYSR2

IF NO DESCRIPTION FOLLOWS AN ELEMENT NAME. IT INDICATES THAT
THE ELE~ENT IS USED AS A SCRATCH ELEMENT.

THE SYSTEM DELIMITERS ARE SYMOLICALLY REFERRED TO AS
FOLLOWS:

HEX. VALUE NAME AND DESCRIPTION

FF
FE

SM
AM

DOCUMENTATION CONVENTIONS

FD
FC
FB

V~

SVM
SB

SEGMENT MARK
ATTRIBUTE MARK

VALUE MARl<
SECONDARY VALUE MARK
START BUFFER

5-1

BCKSP

BCKSP Cl0.TAPEIO-I)

FUNCTJON4L DESCRIPTION

THIS ROUTINE BACK-SPACES THE TAPE BY ONE RECORD. IT CALLS
INtT AND TPSTAT. AND REQUIRES FOUR ADDITIONAL LEVELS Of
SUBROUTINE LINKAGE.

BLOCK-SUB

BLOCK-SUB (2.BLOCK-LETTERS)

FUNCTIONAL DESCRIPTION

THIS ROUTINE PRINTS BLOCK LETTERS ON THE TERMINAL OR LINE
PRINTER. IT IS USED. FOR INSTANCE, BY THE TCL VERBS
"BLOCK-TERM" AND "BLOCK.PRINT", FOR ~ORE INFORMATION, SEE
THE DISCUSSION OF THESE VERBS IN THE SYSTEM COMMANDS
DOCUMENTATION.

INPUT INTERFACE

IS

ZFLG

OSSIZE

08

SBO

AFBEG
BMS8EG
HSENO

LISTFLAG

B

T

P01NTS ONE BEFORE THE FIRST CHARACTER TO
BE OUTPUT, THE END OF DATA IS MARKED 8Y
THE CHARACTER PAIR SM Z (NO SPACE AFTER
THE SM), IF ANY ELEMENT IN THE DATA
STRING CONTAINS A SM. IT ~ST BE
TERMINATED BV A 58 (SEE MDlB
DOCUMENTATION, "EDITING FEATURES")

IF SET, OUTPUT IS DIRECTED TO THE
TERMINAL, OTHERWISE OUTPUT IS PASSED TO
THE SPOOLER FOR LINE PRINTER LISTING OR
OTHER USE

CONTAINS THE MAXIMUM NUMBER OF
CHARACTERS ON EACH OUTPUT LINE

R =OBBEG

8 IF SET, NO TEST FOR TERMINAL OR PRINTER
OUTPUT IS MADE, TERMINAL OR PRINTER
CHARACTERISTICS ARE NOT lNITIALIZEO, THE
OUTPUT OEVICE IS NOT ADVANCED TO
TOP-OF-FOR~, AND THE HEADING IS NOT SET
NULL, ALL THESE ACTIONS TAKE PLACE IF
seo IS RESET

s +
S + POINT TO SCRATCH AREAS
S +

8 +

5-2

FRMTFLG 8 +
NOBLNK B +

-<filii"
LFDLY T + AS REQUIRED BY WRTLIN
PAGSIZE i" +
PAGSKIP T +
PAGFRMT B +

OUTPUT INTERFACE

OFJ R .089ES

PAGINATE B -I

PAGHEAD S POINTS TO A NULL PAGE HEADING (8M) AT
totSENO IF 580-0

ELEMENT USAGE

BITS C +
seo e +
SCl e +
se2 e +
REJCTR T +
Ct T +
erR16 T +
CTRIl 1 +
CTRI8 T +
CTR19 T +
00 0 +
Dl 0 +
BASE 0 +
MODULO T + UTILITY
SEPAR T +
IR R +
UPD R +
8MS R +
AF R +
08 R +
CS R +
T5 R •
R1S R +
SR4 5 +
•
SR22 S +

eTR1 T USED 8Y CVOIR

R14 R USED BY RETIX

T7 T + USED BY WRTLIN
SYSRI S +

5-3

SUBROUTINE USAGE

RETIX, GeMS IF THE SYSTEM FILE "BLOCK-CONVERT" IS
FOUND' CVDIR, WRTLIN. NEWPAGE IF REQUIRED' PRNTHDR
IF SBO=Oi PCLOSEALL AND SETLPTR IF S80=0 AND lFLG-O,
SETTERM IF S80=1 OR ZFlGm1

SIX ADDIT10NAL LEVELS OF SUBROUTINE LINKAGE REQUIRED IF
"BLOCK-CONVERT" IS A 'Q".CODE ITEM IN THE MASTER
DICTIONARY, OTHERWISE FIVE LEVELS REQUIRED

ERROR CONDITIONS

BLOC~.SUB EXITS TO WRAPUP (MD995 OR MD99) UNDER THE
FOLLO~ING CONDITIONSI

ERROR NUMltER

520

521

522

523

524

525

ERROR TYPE

NULL INPUT DATA

TOO MANY CHARACTERS (MORE THAN NINE) IN
A WORD TO BLOCK

BLOCK-CONVERT FILE MISSING OR IMPROPERLY
DEFINED IN THE MASTER DICTIONARY

BLOCK OUTPUT WOULD EXCEEO PAGE WIDTH

AN INPUT CHARACTER IS NOT IN THE
BLOCK-CONVERT FILE

AN INPUT CHARACTER IS IMPROPERLY
FORMATT~~ IN THE BLOCK-CONVERT FILE

CONV (O,CONV1*
CONVEXIT (l,CONV)

FUNCTIONAL DESCRIPTION

THESE ENTRY POINTS ARE USED TO CALL THE ENTIRE CONVERSION
PROCESSOR AS A SUBROUTINE, WHICH WILL PERFORM ANY AND ALL
VALID CONVERSIONS SPECIFIED IN THE CONVERSION STRING. OTHER
ENTRY POINTS MAY 8E USED TO PERfORM CERTAIN SPECIFIC
CONVERSIONS. MULTIlPlE CONVERSION CODES ARE SEPARATEO 8Y
VM'S IN THE CONVERSION STRING. CONVERSION IS CALLED BY THE
ENGLISH PRE-PROCESSOR TO PERFORM CONVERSIONS ON "INPUT" DATA
(IN SELECTION CRITERIA), AND BY THE LIST/SORT PROCESSOR TO
PERFORM "OUTPUT" CONVERSION.

CONV IS THE USUAL MODe-ID USEO TO INVOKE CONVERSION
PROCESSING. CONVEXIT IS THE ENTRY POINT TO WHICH ANY PART
OF THE CONVERSION PROCESSOR RETURNS IN ORDER TO CHECK IF
MORE CONVERSION IS REQUIRED (FURTHER VM'S AND CONVERSION
CODES IN THE CONVERSION STRING'.

5-4

INPUT INTERFACE

TSBES

IS

MFLG

CON'l, CONVEX IT

S

R

POINTS ONE BEFORE THE VALUE TO BE
CONVERTED' THE VALUE IS CONVERTED "IN
PLACE-, AND THE BUFFER IS USED FOR
SCRATCH SPACE' THEREFORE IT MUST 8E
LARGE ENOUGHTO CONTAIN THE CONVERTED
VALUE, THE VALUE TO BE CONVERTED IS
TERMINATED BY ANY OF THE STANOARD SYSTEM
DELIMI~ER$ (SM, AM~ '1M, OR SVM)

POINTS TO THE FIRST CHARACTER OF THE
CONVERSION CODE SPECIFICATION STRING FOR
CONV, FOR CONVEXIT, POINTS AT LEAST ONE
BEFORE THE NEXT CONVERSION CODE [AFTER A
VM) OR AM AT THE END OF THE STRING, OR
TO THE AM, THE CODE STRING MUST END WITH
AN AM, INITIAL· SEMICOLONS el) ARE
IGNORED

SET IF 'INPUT" CONVERSION IS TO BE
PERFORMED, RESET FOR 'OUTPUT" CONVERSION

DFLG B + AS REQUIRED BY TRANSLATE [SEE TRANSLATE
OAFI B + DOCUMENTATION)

XFLG B AS REQUt~ED BY CFUNC (SEE CFUNC
DOCUMENTATION)

OUTPUT INTERFACE

TSBEG

TS
TSEND

IS

s POINTS ONE BEFORE THE CONVERTED VALUE

R + POINT TO THE LAST CHARACTER OF THE
S + CONVERTED VALUE' A SM IS ALSO PLACEO ONE

PAST THIS LOCATION' TS-TSEND=TSBEG IF A
NULL VALUE IS RETURNED

R POINTS TO THE AM TERMINATING THE
CONVERSION CODECS)

5-5

ELEMENT USAGE

ELEMENT CONVERSIONS WHERE USED

OFLG 8 F.T
XFLG B F
GMBIT 8 F
WMBIT B F
5810 8 ALL
58t2 8 ALL
DAFt B T
D~Fq B T
SC2 C C,D,F,T
T3 T F.MO
T4 T O.F.MO,MT
T5 T O.F.MO,MT
T6 T o.F,M
T7 T F.Mo
CTRl T e.F,S,T
CTRl2 T F
eTR1! T F
CTR20 T ALL
eTR21 T D,MO,T

CONV, CONVEX IT

CTR2? T 0
CTR23 T o,MO
CTR28 T T
01 0 e,F.MT,T
D2 0 0, F • 1140, ton
03 0 MT
07 0 F
08 0 F
09 0 F
FPO F F,MO
FP1 F F,Mo
FP2 , F,MO
FP3 F F
FP4 F F
FP5 F F
FP)(F F,MD,T
(SYSRO)
FPY F F,MO
BASE 0 T
MODULO T T
SEPAR T T
RECORD 0 T
SIZE T T
NNCF H T
FRMN !) T
FRMP 0 T
NPCF H T

5-6

XMODE T C.F.MT.T
IR R T
8MS R T
Rl4 R n.F.MD,MP.MT,M~.T

R15 R ALL
5VSRt 5 T
SY5R2 S T
54 5 T
S5 S F
S6 S C,T
S7 S ALL
SRO S C.F
SRl S F
SR4 S C,T

SUBROUTINE USAGE

CONV, CONVEXIT

CVXIS FOR ·U· CONVERSIONS, GCORR FOR "G" CONVERSIONS'
TRANSLATE FOR "T" CONVERSIONS, PACKUN FOR "Mp·
CONVERSIONS, CONCATENATE FOR "C" CONVERSIONS'
ADDITIONAL SUBROUTINES AS USED BY ROUTINES LISTED UNDER
"EXITS" BELOW. AND BY USER.WRITTEN ROUTINES

THE NUMBER OF ADDITONAL LEVELS OF SUBROUTINE LINKAGE
REQUIRED DEPENDS ON THE CONVERSIONS PERFORMED • SEE T~E
DOCUMENTATION FOR THE VARIOUS CONVERSION ROUTINES FOR
MORE SPECIFIC INFORMATION' NOTE THAT FOR "F"
CONVERSIONS, CFUNC MAY CALL CONV RECURSIVELY

USER CONVERSION PROCESSING

THE CONVERSION PROCESSOR WILL PASS CONTROL TO A
USER-WRITTEN ROUTINE IF A "UXXXX" CODE IS FOUND IN THE
CONVERSION STRING. WHERE ·XXXX" IS THE HEXADECIMAL
MODE-ID OF THE USER ROUTINE. THIS ROUTINE CAN THEN
PERFORM SPECIAL CONVERSION 8EFORE RETURNING. THE INPUT
INTERFACE FOR THE USER ROUTINE WILL BE IDENTICAL TO
THAT DESCRIBED IN THE PRECEDING SECTION, AFTER
PERFORMING THE CONVERSION THE USER ROUTINE SHOULD SET
UP THE OUTPUT INTERFACE ELEMENTS TO BE COMPATIBLE WITH
CONVEXIT. AND THEN EXIT VIA AN EXTERNAL BRANCH TO THAT
POINT TO CONTINUE THE CONVERSION PROCESS IF MULTIPLE
CONVERSIONS ARE SPECIFIED. ALTERNATELY, A RTN MAY BE
EXECUTED IF .THIS IS NOT NEEDED. OR TO PREVENT FURT~ER
CONVERSIONS FROM BEING PERFORMED. ELEMENTS USED BY THE
REGULAR CONVERSION ROUTINES MAY SAFELY BE USED BY USER
ROUTINES, HOWEVER. IF ADDITIONAL ELEMENTS ARE NEEDED,
A COMPLETE KNOWLEDGE OF THE PROCESSOR THAT CALLED CON V
(LIST. SELECTION, ETC.) WILL BE NECESSARY.

5-7

EXITS

TO IOATE FOR "0" CONVERSIONS ON INPUT (~FLG.1)' TO
OOATE FOR "0" CONVERSIONS ON OUTPUT, TO ICONVMO OR
OCONVMD FOR "MO" CONVERSION ON INPUT OR OUTPUT, TO
CFUNC FOR "F" CONVERSIONS, TO TIMECONV FOR "MT"
CONVERSIONS, TO HEXCONV FOR "MX" CONVERSIONS, ALL
THESE ROUTINES. HOWEVER, RETURN TO CONVEXIT

FOR OUTPUi CONVERSION, A NULL VALUE RETURNED CAUSES AN

CONV, CONVEXIT

IMMEDIATE END OF CONVERSION PROCESSING.

ERROR CONDITIONS

CONV EXITS TO WRAPUP AFT~R SETTING RMODE TO ZERO UNDER
THE FOLLOWING CONOITIONSI

705

706

707

ILLEGAL CONVERSION CODE

ILLEGAL "T" CONVERSIONI FORMAT
INCORRECT, FILENAME CANNOT BE FOUND,
ETC.

nL/to CANNOT BE FOUND
CONVERSION FILE

FOR A "T"

WRAPUP IS ALSO ENTERED WITHOUT SETYING RMODE TO ZERO
UNDER THE FOLLOwING ERROR CONOITIONSI

708

CREAD

VALUE CANNOT BE CONVERTED BY A "T"
CONVERSION

INVALID FORMAT FOR INPUT DATA CONVERSION

CREAD (2,CARDIO)

FUNCTIONAL DESCRIPTION

THIS ROUTINE EITHER READS A CARD AND RETURNS THE CARD READER
STATUS AFTER THE READ OR IT JUST RETURNS iHE STATUS IF IT
CANNOT READ A CARD. CARDS ARE READ IN EBCDIC AND ARE NOT
CONVERTED BY THIS ROUTINE.

5-8

INPUT INTERFACE

R2 R

OBBEG S

OUTPUT INTERFACE

CFLG B

R

Rl5

ELEMENT USAGE

T3 T

SUBROUTINE USAGE

NONE

ERROR CONDITIONS

POINTS TO A SCRATCH BYTE' NORMALLY R2
ALWAYS POINTS TO eYTE ZERO OF THE
PROCESS'S SCB

POINTS ANYW~FRE WITHIN THE FRAME THAT
THE CARD IS TO BE READ INTO, NORMALLY
PCB+4

SET IF AN ATTEMPT WAS MADE TO READ A
CAROl RESET IF NO CARD WAS READ

UNCKANGED, BUT THE BYTE ADDRESSED
CONTAINS THE STATUS OF THE CARD READER

'OINTS TO THE FIRST BYTE OF THE CARD
~EAb~ 80 BYTES FROM THE END OF THE FRAME
POINTED TO BY DB BEG

USED AS A COUNTER FOR STATUS TIMEOUT
AFTER A READ

NONE, EXCEPT CARD READER ERRORS RETURNED AS STATUS'

CREAD

THE MEANING OF THE STATUS BITS IS AS FOLLOWS'

BIT

3

4

5

EXPLANATION OF SET CONDITION

UNUSED BY THE CONTROLLER, AND ALWAYS
ZERO

CARD READER MECHANICAL ERROR (PICK
FAILURE, CARD MOTION ERROR, ETC.)

EBCDIC ERROR DETECTED (E.G., AN INVALID
PUNCH COMBINATION)' THIS IS NOT AN ERROR
IF CFLG IS ZERO, HOWEVER

INPUT HOPPER EMPTY

5-9

7

CVSUBS

(ALWAYS RESET BY CREAD. ANO USED ONLY
FOR BYTE 1/0)

CARD READER RfADV

IF THESE arTS ARE ALL SET. CARD READER
PowER IS OFF

STRING TO SIX-BYTE RINARY CONVERSION

FUNCTIONAL DESCRIPTION

THESE ROUTINES CONVERT A STRTNG OF ASCII DECIMAL OR
HEXADECIMAL CHARACTERS TO TMEIR BINARY EQUIVALENT,
CONVERSION CONTINUES UNTIL AN ILLEGAL (NON-OECIMAL OR
NON-HEXADECIMALl CHAR4CTER IS ENCOUNTERED.

ON ENTRY, THE APPROPRIATE REGISTFR (SEE TABLE) POINTS ONE
PRIOR TO THE FIRST CHARACTER OF THE STRING' THIS CHARACTER
MUST BE A PLUS SIGN, MINUS SIGN, OR NUMERIC (O.q FOR DECIMAL
ROUTINES, O.q AND A-F FOR HEXADECIMAL ROUTINES). ON RETUR~,
THE CONVERTED BINARY NUMBER IS IN THE ACCUMULATOR (AND IN
SOME CASES, IN CTR1)' THE REGISTER POINTS TO THE ILLEGAL
CHARACTER CAUSING THE CONVERSION TO TERMINATE. NOTE THAT
THE REGISTER WILL ALWAYS BE INCREMENTED BY ONE EVEN IN THE
CASE OF A NULL STRING (NO LFGAL CHARACTERS). ALSO.
ARITHMETIC OVERFLOW DUE TO TOO MANY DIGITS IN THE CHARACTER
STRING CANNOT 8E DETECTED.

INPUT INTERFACE

ENTRY POINT RE~ISTER CONVERSION

CVORtS
CVOIS
CVOOS
CVOIR
CVOI8
CVXRt5
CVXIS
CVXOS
CVXIR
CVXIB

(4,SYSTEM-SUBS-I).
(S.SYSTEM-SUBS-I'*
(&,SYSTE~-SUBS-I)*
(9,SYSTEM-SUBS-I)*
Cll,SYSTEM-SUSS-I'*
(3,SYSTE~.SUBS-I'*
(7,SYSTEM-SUBS-I)*
(8,SYSTEM·SUBS-Y)*
(to.SYSTEM.SUBS-I).
Ct2,SYSTEM.SUBS-I'*

R15
IS (1(4)
OS (RSl
IR (R&)
18 (RIO)
HIS
IS (R4)
OS (RS)
IR (R&)
18 (RlO)

OECIMAL
DECIMAL
DECIMAL
DECIMAL
DECIMAL
HEXADECIMAL
HEXADECIMAL
HEXADECIMAL
MEXAOECIMAL
HEXADECIMAL

OUTPUT INTERFACE

FPO F

CUB T

CONTAINS THE CONVERTEO VALUE OF THE
STRING IF LEGAL CHARACTERS ARE FOUND.
OTHERWISE ZERO

aDO (EXCEPT FOR CVDRt5 AND CVXRlS. WHICH

5-10

CVSUBS

NUMBIT

ELEMENT USAGE

DO NOT USE THIS ELEMENT)

SET IF CONVERSION COMPLETED AND THE
STRING IS TERMINATED BY A SYSTEM
DELIMITER

T3 T

SUBROUTINE USAGE

CVD~15 OR CVXRt5 USED BY THE OTHER ROUTINES

ONE ADDITIONAL LEVEL OF SUBROUTINE LINKAGE REQUIRED,
EXCEPT FOR CVDRtS AND CVXRtS

DLINtT

DLINIT (2,WSPACES-II)*

FUNCTIONAL DESCRIPTION

OLINtT IS USED TO OBTAIN A BLOCK OF CONTIGUOUS OVERFLOW
SPACE FOR A FILE. AFTER CHECKING THE INPUT PARAMETERS AND
OBTAINING THE NECESSARY NUMBER OF FRAMES, IF AVAILABLE, IT
ENTERS OLtNIT! TO INITIALIZE THE FRAMES (SEE OLINITI
DOCUMENTATION). IF NOT ENOUGH SPACE IS AVAILABLE FOR THE
FILE, DLIN!T CALLS NOSPACE TO FINO OUT IF PROCESSING SHOULD
BE ABORTED (SEE NOSPACE DOCUMENTATION).

INPUT INTERFACE

MODULO
SEPAR

T + CONTAIN THE MODULO AND SEPARATION
T + PARAMETERS FOR THE FILE. IF MODULO IS

INITIALLY LESS THAN OR EQUAL TO ZERO, IT
IS SET TO ELEVEN, IF SEPAR IS INITIALLY
LESS THAN OR EQUAL TO ZERO, IT IS SET TO
ONE, AND IF INITIALLY GREATER THAN 127
IT IS SET TO 127

OUTPUT INTERFACE

BASE o CONTAINS THE BEGINNING FlO OF 4
CONTIGUOUS SlOCK OF SIZE MODULO*SEPAR IF
THE SPACE IS AVAILABLE, OTHERWISE
UNCHANGEO

5-11

OVRFLW 0 =8ASE IF THE REQUESTED SPACE IS
AVAILABLE. OTHERWISE =0

RMBIT B SET IF THE REQUESTED SPACE IS OBTAINED.
OTHERwISE UNCHANGED

ELEt-iENT IJSAGE

Rt4 R +
R15 R + USED BY GETBLI<
DO 0 +

SUBROUTINE USAGE

OLINIT

GETBLI<. NOSPACE IF THE REQUESTED SPACE IS UNAVAILABLE

THREE ADDITIONAL LEVELS OF SUBROUTINE LINKAGE REQUIRED

EXITS

TO DLINITt IF THE REQUESTED SPACE IS OBTAINED. TO
NSPCQ (WRAPUP) FROM NOSPACE IF THE SPACE IS UNAVAILABLE
AND PROCESSING IS ABORTED BY THE USER

DLINITl

OLINITl (O.WSPACES-II)

FUNCTIONAL DESCR!PTtON

OLINITt INITIALIZES THE LINK FIELDS O~ A FILE AS SPECIFIED
8Y ITS BASE. MODULO. AND SEPARATION PARAMETERS. AND SETS
EACH GROUP EMPTY 8Y ADDING AN AM AT THE BEGINNING rIN THE
FIRST DATA BYTE).

INPUT INTERFACE

BASE
MODULO
SEPAR

o + CONTAIN THE BASE; MODULO, AND SEPARATIO
T + OF THE FILE. NOTE - ONE FRAME IS LINKED
T + EVEN IF ~ODULO IS LESS THAN OR EQUAL TO

ZERO

5-12

OUTPUT INTERFACE

Rt4 R POINTS TO THE FIRST O~TA BYTE IN THE
FIRST FRAME OF THE LAST GROUP IN THE
FILE (SET BY LINK)

POINTS TO THE LAST BYTE OF THE LAST
FRAME OF THE LAST GROUP IN THE FILE (SET R15 R

BY LINI<)

RECORD 0 =ONE GREATER THAN THE FlO OF THE LAST
FRAME OF THE LAST GROUP IN THE FILE

NNCF H =SEPAR-l

FRAMES ARE INITIALIZED AS DESCRIAED ABOVE

ELE~H.IT USAGE

eTRl T UTILITY

FRMN D +
FRMP 0 + USED BY LINK
NPCF H +

SUBROUTINE USAGE

OLINIT!

L.INt<

ONE ADDITIONAL L.EVEL OF SUBROUTINE LINKAGE REQUIRED

ECONV, ACONV

ECONV (O.EBCOIC).
ACONV (2,£8COIC)

FUNCTIONAL OESCR1PTION

THESE ROUTINES TRANSL.ATE A CHARACTER FROM EBCDIC OR ASCII TO
ASCII OR ERC~IC. ECONV OPERATES ON EBCDIC INPUT, AND DOES
NOT TRANSLATE CHARACTERS WITHOUT ASCII EQUIVALENTS. THESE
CHARACTERS ARE RETURNED UNTRANSLATEO. ACONV OPERATES ON
ASCII INPUT, AND ALWAYS ZEROES THE HIGH-ORDER BIT OF THE
CHARACTER BEFOQE TRANSLATION.

5-13

INPUT INTERFACE

IS R

nUTPUT TNTERFACE

1[4

ELEMENT USAGE

POINTS TO TMf CMARACTER TO RE TRANSLATED

UNCMANGED. BliT POINTS TO TME TIUNSLATEO
VALUE

DO 0 + UTILITY
R15 R +

SUBROUTINE USAGE

NONE

ENGLISM INTERFACE

ENGLISM INTFRFACE

SUMMARY

IT IS POSSIBLE TO INTERFACE wTTM TME ENGLISH PROCESSOR AT
SEVERAL LEVELS. A TYPICAL LIST OR SORT STATEMENT PASSES
THROUGH THE PREPROCESSOR AND SELECTION PROCESSOR BEFORE
ENTERING THE LIST PROCESSOR. ALL STlTEMfNTS MUST PASS
THROUGH THE FIRST TWO STAGES. BUT CONTROL CAN BE TRANSFERRED
TO USER-WRITTEN PROGRAMS FROM TMAT POINT ONW_RD.

GENERAL CONVENTIONS

TME ENGLISH PROCESSORS USE A COMPILED STRING THAT IS STORED
IN THE IS WORK SPACE. STRING ELEMENTS ARE SEPARATED BY
SM'S. THERE IS ONE FILE-OEFINJNG ELEMENT IN EACH STRING,
ONE ELEMENT FOR EACM ATTRIBUTE SPECIFIED IN THE ORIGINAL
STATEMENT. AND SPECIAL ELEMENTS PERTAINING TO SELECTION
CRITERIA, SORT-KEYS, ETC. THE FORMATS OF VARIOUS STRING
ELEMENTS ARE AS FOLLOWS:

FILE DEFINING ElEME~T, AT ISBEG+ll

SM D FILE-NAME AM BASE VM MODULO VM SEPAR AM CONV AM
CORREl AM TYPE AM JUST AM SM

ATTRIBUTE DEFINING ELEMENT:

SM C ATTRIBUTE-NAME AM AMC AM CONV AM CORREl AM
TYPE AM JUST AM SM

5-14

C = A - REGULAR OR 02 ATTRIBUTE
Q - D1 ATTRtBUTE
BX. SORT.ay, SORT-SY-OSND, ETC.' "X n IS FROM

ATTRIRUTE ONE OF THE CONNECTIVE

EXPLICIT ITEM-IO'S:

SM I ITEM-IO SM

END-Of-STRING ELEMENT I

Stor, Z

ENGLISH INTERFACE

THE SELECTION PROCESSOR

THIS PERFORMS THE ACTUAL RETRIEVA.L OF ITEMS WHICH PASS THE
SELECTION CRITERtA. IF SPECIFIED. EVERY TI~E AN ITEM IS
RETRIEVED, THE PROCESSOR AT THE NEXT LEVEL IS ENTERED WITH
8IT RMBIT SET, A fINAL ENTRY WITH RMBIT ZERO IS ALSO MADE
AFTER ALL ITEMS HAVE BEEN RETRIEVED. IF A SORTED RETRIEVAL
IS REQUIRED, THE SELECTION PROCESSOR PASSES ITEMS TO THE
GOSORT MODE, WHICH BUILDS UP THE SORT.~EYS PREPARATORY TO
SORTING THEM. AFTER SORTING, GOSORT THEN RETRIEVES THE
ITEMS AGAIN, IN THE REQIJESTED SORTED SEQUENCE.

A USER PROGRAM MAY GET CONTROL DIRECTLY FRO~ THE SELECTION
PROCESSOR (OR GOSORT IF A SORTEO RETRIEVAL IS REQUIRED)'
THE FORMATS OF THE VfRBS ARE:

LINE NUMBER

1
2
3
4

NON-SORTED

PA
35
XXXX

SORTED

PA
35
76
XX)(X

WHERE ·XXXX· REPRESENTS THE MODe-IO OF THE USER PROGRAM.
NOTE THAT IN THIS METHOD OF INTERFACE, ONLY ITEM RETRIEVAL
HAS TAKEN PLACE, NONE OF THE CONVERSION AND CORRELATIVE
PROCESSING HAS BEEN DONE. FOR FUNCTIONAL ELEMENT INTERFACE,
THE COLUMN HEADED "SELECTION PROCESSOR" IN THE TABLE SHO~N
LATER MUST BE USED.

EXIT CONVENTIONI ON ALL aUT THE LAST ENTRY. THE USER
ROUTINE SHOULD EXIT INDIRECTLY VIA RMODE (USING AN ENT*
RMODE INSTRUCTION), ON THE LAST ENTRY, THE ROUTINE SHOULO
EXIT TO ONE O~ THE WRAPUP ENTRY POINTS. PROCESSING MAY BE
ABORTED AT ANY TIME BY SETTING RMOOE TO ZERO AND ENTERING
WRAPUP. BIT SBO MUST ALSO BE SET ON THE FIRST ENTRY.

5-15

SPECIAL EXIT FROM THE LIST PROCESSOR

A USER PROGRAM MAV ALSO GAIN CONTROL IN PLACE OF THE NORMAL
LIST FORMATTER, TO PERFORM SPECIAL FORMATTING. THE
ADVANTAGE HERE IS THAT ALL CONVERStONS~ CORRELATIVES. ETC.,
HAVE BEEN PROCESSED, AND THE RESULTANT OUTPUT OAT A HAS BEEN

ENGLISH I~TERFACE

STORED IN THE HISTORY STRING (HS AREA). THE FORMATS OF THE
VERBS THEN AREI

LINE NUMBER

1
2
3
4

NON-SORTED

PA
35
40
XXXX

SORTED

PA
35
4E
xxxx

WHERE "XXXX" IS THE MODE-ID OF THE USER PROGRA~.

OUTPUT DATA IS STORED IN THE HS AREA; DATA FRO~ EACH
ATTRIBUTE IS STORED IN THE STRING, 'DELIMITED BY AM'S'
MULTIPLE VALUES A~D SUB_MULTIPLE-VALUES ARE DELIMITED WITHIN
AN ELEMENT BY VM'S AND SVM'S, RESPECTIVELY. SINCE THE HS
MAY CONTAIN OATA OTHER THAN THE RETRIEVED ITEM, THE USER
PROGRAM SHOULD SCAN FROM HSBfG, LOOKING FOR A SEGMENT
PRECEDED BY AN "X", ALL SEGMENTS EXCEPT THE FIRST ARE
PRECEDED BY A SM. THE FORMAT 151

X ITEM-ID AM VALUE ONE AM ••• AM VALUE N AM SM Z

THE PROGRAM MUST REseT THE HISTORY STRING POINTER HSENO AS
ITEMS ARE TAKEN OUT OF THE STRING. IN SPECIAL CASES, DATA
MAY NOT BE USED UNTIL, SAY, FOUR ITEMS ARE RETRIEVED, IN
WHICH CASE HSEND IS RESET ON EVERY FOURTH ENTRY ONLY. HSEND
MUST BE REseT TO POINT ONE 8YTE BEFORE THE NEXT AVAILABLE
SPOT IN THE HS WORK SPACE. NORMALLY ONE BEFORE THE FIRST "X"
COOE FOUNO.

THE EXIT CONVENTION FOR THE LIST PROCESSOR IS THE SAME ~S
FOR THE SELECTION PROCESSOR (SEE ABOVE).

EXAMPLE: THE FOLLOWING PROGRAM IS AN EXAMPLE OF ONE WHICH
PRINTS ITEM-IO'S (ONLY) FOUR AT A TIME ACROSS THE PAGE.

001
OO?
003
004 * FIRST
005
006

FRAME 504
ZR SB30
B8S SBt,NOTF

TIME SETUP
MOV 4.CTR3~
S8 SAt

5-16

INTERNAL FLAG
NOT FIRST TIME

ENGLISH INTERF~CE

001 * 008 NOTF BBl RMBIT,PRINTIT LAST ENTRY
OOq 8DNZ CTR32.RETURN NOT YET 4 ITEMS OBTAINED
010 MOV 4.CTR32 RESET
011 PRINTIT MOV HSBEG,R14
(\12 LOOP INC R14
013 BCE C'X',R14,STOREIT FOUNO AN ITEM
014 aCE C'l',R14.ENOHS END OF HS STRING
015 SCANSM seD R14,X'CO' SCAN TO NEXT SM
Olb B LOOP
017 STOREIT BBS SB30,COPY1T NO FIRST 10 FOUND
018 S8 SB30 FLAG FIRST 10 FOUND
01Q MOV R14,SR28 SAVE LOCATION OF FIRST
020 CMNT * "X"
021 COPYIT MIlO R14,OB.X'AO' COpy ITEM-IO TO OB
022 MCC C' , ,OB OVERWRITE AM
023 INC OB.5 INDEX
024 B SCANSM
025 ENDHS eSL WRTLtN PRINT A LINE
02& MOV SR28,HSENo RESTORE HS TO FIRST
027 CMNT * "X" CODE
028 DEC HSENo BACK UP ONE BYTE
02q Bez RMBIT,QUrT
030 RETURN ENT. RMOoE RETURN TO SELECTION
031 CMNT * PROCESSOR
032 QUIT ENT MOqqq TERMINATE PROCESSING
033 END

ELEMENT USAGE

THE FOLLOWING TABLE SUMMARIZES THE FUNCTIONAL ELEMENT USAGE
BY THE SELECTION ANO LIST PROCESSORS. ONLY THE MOST
IMPORTANT USAGE IS OESCRIBEO. ELEMENTS THAT HAVE VARIOUS
USAGES ARE LABELED "SCRATCH." A " " (BLANK) INDICATES THAT
THE PROCESSOR DOES NOT USE THE ELEMENT. SINCE THE LIST
PROCESSOR IS CALLED BY THE SELECTION PROCESSOR, ANY ELEMENT
USED FOR "MEMORY" PURPOSES (NOT TO BE USED BY OTHERS) IN THE
FORMER IS INDICATED BY A ~LANK USAGE IN THE LATTER COLUMN.

IN GENERAL, USER ROUTtNES MAY FREELY USE THE FOLLOWING
ELEMENTS:

8ITS : 9820 UPWARDS
TALLIES I CTR30 UPWARDS
DOUBLE TALLIES: 03-08
SIR'S I SR20 UPWARDS

5-17

SBO AND SBl HAVE A SPECIAL CONNOTATIONI THEY ARE ZEROED BY
THE SELECTION PROCESSOR WHEN IT IS FIRST ENTERED, AND NOT
ALTERED T~EREAFTER. THEY ARE CONVENTIONALLY USED AS
FIRST-TIME SWITCHES FOR THE NEXT TWO LfVELS OF PROCESSING.
SBO IS SET BY THE LIST PROCESSOR WHEN IT IS FIRST ENTERED.
ANO USER PROGRAMS THAT GAIN CONTROL DIRECTLY FROM SELECTION
SHOULD 00 THE SAME. SRt MAY BE USED AS A FIRST-ENTRY SWITCH
BY USE~ PROGRAMS THAT GAIN CONT~OL FROM THE LIST PROCESSOR.

BITS

AFLG
BFLG
CFLG
OFLG
EFLG
FFLG
GFLG
HFLG
IFLG

JFLG

KFLG
LFLG
t.lFLG

NFLG
OFLG

PFLG
QFLG
RFLG

SFLG

TFLG
UFLG
VFLG

ENGLISH INTERFACE

wFLG
XFLG
YFLG
IFLG

S80

S81

SELECTION PROCESSOR LIST PROCESSOR

SCRATCH
FIRST ENTRY FLAG
SCRATCH
SCRATCH
RESERVED
RESERVED
RESERVED
RESERVEO
EXPLICIT ITE~·IO'S
SPECIFIED
RESERVED

BY.EXP FLAG
SCRATCH
CONV INTERFAce,
ZERO
SCRATCH
SELECTION TEST ON
ITEM-IO
SCRArCH
SCRATCH
FULL-FILE-RETRIEVAL
FLAG
SELECTION ON VALUES
(WITH)
SCRATCH
SCRATCH
RESERVED

SCRATCH
SCRATCH
RESERVED
LEFT-JUSTIFIED
ITEM-IO
UNAVAILABLE

UNAVAILABLE

5-18

NON-COLUMNAR LIST FLAG

SCRATCH
DUMMY CONTROL.BREA~
CONTROL-BREAK FLAG
SCRATCH
RESERVED
RESERVED

02 ATTRIBUTE IN
PROCESS
BY-EXP FLAG
LEFT-JUSTIFIED FIELD
ZERO

SCRATCH

SCRATCH
SCRATCH

PRINT LIMITER FLAG
RESERVED
SCRATCH

RESERVED
RESERVED
RESERVED

FIRST ENTRY FLAG.
lEVEL ONE
FIRST ENTRY FLAG.
lEVEL TWO

SB2
TMROUGH
S817
VOSIT

COLHDRSUPP
D8LSPC
I'fORSUPP
IDSUPP
DETSUPP
LPBIT
TAPEFLG
CRRIT
PAGFRMT
RM8IT

WMBIT
GMBIT
SK8IT
DAFt
OAFS

TALLIES

C1.C3-C7
C2
CTR1-CTR4
CTRS

CTRb
CTR?

eTR8
CTR9
CTRtO
CTR11
CTR1C!

CTRt3
CTR14
CTRtS
CTRlb
CTRt7
CTRl8
CTR19
CTR20-CTR23
CTR24
CTR25
CTR2b
CTR27
CTRl8
CTR29

SC~ATCM OR RESERVED SCRATCM OR RESEVED

SET FOR WR.PUP
INTERFACE
SET IF THE CORRE­
SPONDING CONNECTIVE
WAS FOUND IN THE
INPUT STATEMENT

SET ON EXIT IF AN
ITEM WAS RETRIEVED'
7.E~O ON FINAL EXIT
FUNC INTERFACE
FUNC INTERFACE
SCRATCM
RESERVED
SET IF ACCESSING A
DICTIONARY

FUNC INTERFACE
FUNC INTERFACE
SCRATCH

SELECTION PROCESSOR LIST PROCESSOR

SCRATCH
CONTENTS OF MODEID2
SCRATCH
SCRATCH

RESERVED
RESERVED

RESERVED
RESERVED
RESERVED
RESERVED
FUNC INTERFACE

FUNC INTERFACE
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
CONV INTERFACE
RESERVED
RESERVED
RESERVED
RESERVEO
RESERVED
RESERVED

5-19

SCRATCH

SCRATCH
AMC OF THE CURRENT
ELEMENT IN THE IS
SCRATCH
AMC CORRESPONDING
TO IR
SCRATCH
SCRATCH
SCRATCM
SCRATCH
CURRENT SUe-VALUE
COUNT
CURRENT VALUE COUNT
SCRATCM
ITEM SIZE
SCfUTCM
RESERVED
SCRATCH
SEQUENCE NO FOR 8Y-EXP
CONV INTERFACE
SCRATCH
SCRATCH
SCRATCH
CURRENT MAX-LENGTH
SCRATCH
RESERVED

OTHER STOFUGE

09

07
FPt-FP5
RMODE

SIZE
SBASE
SMOD
SSEP
DBASE
DMOD
OSEP

SIR'S

SI

52-S9
SRO

ENGLISH

SRt

SR2
SR3
SR4

SR5

SR7
SRS-SR12
SRt3

INTERFACE

SR11l-SR19
PAGHEAD

PAGFOOT

AIR'S

AF
8MS

SELECTION PROCESSOR LIST PROCESSOR

COUNT OF RETRIEVED
ITEMS
FUNC INTERFACE FUNC INTERFACE
FU~C INTERFACE FUNC INTERFACE
RETURN MODE-ID
(MO!)
ITEM-SIZE SCRATCH
FILE 8ASE. MonULO.
AND SEPARATION

DICTIONARY BASE,
MODULO. AND
SEPARATION

SELECTION PROCESSOR LIST PROCESSOR

POINTS TO THE NEXT
EXPLICIT ITEM-IO
SCRATCH SCRATCH
POINTS ONE BEFORE

THE ITEM COUNT FIELD
POINTS TO THE CURRENT CORRELATIVE
CORRELATIVE FtELD FIELD
SCRATCH SCRATCH
RESERVED SCRATCH
POINTS TO THE LAST
AM OF THE ITEM
RESERVED

POINTS TO THE
CONVERSION FIELD
RESERVED
RESERVED
GOSORT ONLYJ NEXT
SORT-KEY
RESERVED
HEADING IN THE HS
IF HEADING WAS
SPECIFIED
FOOTJNG IN THE HS
IF FOOTING WAS
SPECIFIED

POINTS TO THE NEXT
SEGMENT IN THE IS
CURRENT CONVERSION
FtELD
SCRATCH
RESERVED
RESERVED

RESERVED
GENERATED HEADING IN
THE HS

GENERATED FOOTING IN
THE HS, IF PRESENT

SELECTION PROCESSOR LIST PROCESSOR

SCRATCH
~ITHIN THE 8MS
AREA

5-20

SCRATCH
SCRATCH

"

CS
IS
08
IS
as
TS
UPO
IR

SCRATCH
SCRATCH
OUTPUT nATA LINE

COMPILED STRING COMPILEO STRING
SCRATCH

WITHIN THE TS AREA WITHIN THE TS AREA
WITHIN THE HS AREA

WITHIN THE ITEM WITHIN THE ITEM

WORK SPACE
USAGE SELECTION PROCESSOR LIST PROCESSOR

SCRATCH AF
~MS

CS
IB
08
IS
as
HS

TS

CONTAINS THE TTEM-IO

OUTPUT LINE
COMPILED STRING

SCRATCH
HEADING DATA HEADING DATAl

ATTRIBUTE DATA FOR
SPECIAL FXITS

SCRATCH CURRENT VALUE IN
PROCESS

ADDITIONAL NOTES

1. IF A FULL-FILE-RETRIEVAL IS SPECIFIED, THE
ADDITIONAL INTERNAL ELEMENTS AS USEO BY GETITM
WILL BE USEO. IF EXPLICIT ITEM-IO'S ARE
SPECIFIED,RETIX IS USED FOR RETRIEVAL OF EACH
ITEM.

2. MOST ELEMENTS USED BY THE CONV AND FUNC PROCESSORS
HAVE BEEN SHOWN IN THE TABLE; BOTH MAY BE CALLED
EITHER BY THE SELECTION PROCESSOR OR THE LIST
PROCESSOR.

3. SINCE THE ISTAT AND SUM/STAT PROCESSORS ARE
INOEP£NOENTLY DRIVEN BY THE SELECTION PROCESSOR,
THE ELEMENT USAGE OF THESE PROCESSORS IS NOT
SHOWN.

4. THE SECTION OF THE IS AND OS USED BY THE SELECTION
AND LIST PROCESSORS IS OELIMITEDBY ISENO AND
OSENO RESPECTIVELY. THE SUFFER SPACE BEYOND THESE
POINTERS IS AVAILABLE FOR USF. BY OTHER PROGRAMS.

RATCH PROCESSOR INTERFACE

T~E BATCH PROCESSOR USES A BATCH-STRING WHICH DEFINES THE
~ETHOD OF UPDATING ONE OR MORE ITEMS IN ONE OR MORE FILES
USING A SINGLE LINE OF INPUT DATA. THE UPDATED ITEMS ARE
BUILT AS DISC-UPDATE STRINGS IN T~E HISTORY STRING AREA (SEE
~RAPUP DOCUMENTATION FOR FORMAT).

5-21

A USER ROUTINE CAN BE DEFINED IN THE BATCH-STRING, THE
FUNCTIONAL ELEMENTS USED BY BATCH ARE DESCRIBED IN THE

ENr,LISH INTERFACE

FOLlO~ING TABLES'
FOLLOWING ENTRIES:

THE COLUMN HEADEO "lEVEL" HAS THE

o

F

A

BLANK

THE ELEMENT IS USED IN THE DESCRIBED FASHION
THROUGHOUT THE BATCH PROCESSING

THE ELEMENT IS REDEFINED EVERY TIME A
fILE-DEFINING ELEMENT IS FOUND

THE ELEMENT IS REDEFINED FOR EVERY ATTRIBUTE

THE ELEMENT IS USED AS SCRATCH, OR
RESERVED FOR FUTIIRE USAGE

IS

AS FAR AS USER PROGRA~S ARE CONCERNED, THEREFORE, ALL
ELEMENTS DEFINED AT THE "A" LEVEL CAN ALSO BE CONSIDERED
SCRATCH.

EXIT CONVENTION: THE USER ROUTINE MUST RETURN TO THE BATCH
PROCESSOR VIA A BRANCH INSTRUCTION TO O.BATCH5.

BITS

AFLG
BFLG
CFLG
DFLG
E'FLG
FFLG

GFLG
HFLG
IFlG
JFLG
KFLG
LFLG

MFLG
I\JFLG
OFLG
PFLG

QFLG

LEVEL

o

A
F
o

A
o

F
F

A

F

DESCRIPTION

FIRST-TIME SWITCH FOR BATCH
RESERVED
SCRATCH
D2 ATTRIBUTE IN PROCESS
UPDATES TO BE MERGED WITH THE ITEM
SET WHEN A BV OR BC Sua-ELEMENT
IS FOUND
RESERVED
Dt ATTRIBUTE IN PROCESS
SET WHEN A "SECONDARY" FILE
RESERVED
ITEM IS TO BE VERIFIED AS EXISTING
ITEM IS TO BE VERIFIED AS NOT
EXISTING
SET, CON V INTERFACE
RESERVED
RESERVED
A AV OR RC SUS-ELEMENT REFERENCES
A MULTI-VALUED FIELD
RfSERVEO

5-22

RFLG
SFLG
TFLG
UFLG

VFLG
wFLG
)(FLG
YFLG
IFLG
581-589
OAF10

TALLIES

Cl
C2
C3-C9
CTFU-CTR3
CTR4

CTR5
CTR6
CTR7
CTRS
CTR9
CTRI0
CTR11

CTR12

CTR13

CTR14-CTR19

OTHER
STORAGE

FP1-FP3
FUSE
MODULO
SEPAR
S8ASE
5MOO
SSEP
07
09
RMODE

CHARACTERS

SCP

SCO
SCI
SC2

a

o

o

LEVEL

A

F

F

F

F

LEVEL

o

LEVEL

o

o
o
o

RESERVE!)
SCRATCH
SCRATCH
ITEM IS TO BE DELETED (X ELEMENT
IN THE FILE-DEFINITION)
SCRATCH
SCRATCH
RESERVED
PRIMARY ITEM BEING DELETED
SCRATCH
SCRATCH
SET IF SElECTISSELECT IS DRIVING
fUTCH

DESCRIPTION

SCRATCH
SCRATCH
RESERVED
SCRATCH
01-02 SET NUMBER (FOLLOWS THE 01
OR 02 ELEMENT)
RESERVED
RESERVED
SCRATCH
CURRENT AMC IN PROCESS
RESERVED
RESERVED
VALUE NO. OF "01'1" ATTRIBUTE'
o IF UNSPECIFIED
VALUE NO. OF "0112- ATTRIBUTE'
o IF UNSPECIFIED
VALUE NO. OF "Ot,3" ATTRIBUTE,
o IF UNSPECIFIED
RESERVED

DESCRIPTION

SCRATCH
SCRATCH
SCRATCH
SCRATCH
SCRATCH
SCRATCH
SCRATCH
SCRATCH
SCRATCH
RETURN MODE-IO FOR WRAPUP

DESCRIPTION

CONTAINS A "0" FOR BIDEL, "A"
FOR BIADD
CONTAINS A BLANK
SCRATCH
CONTAINS A COMMA

5-23

AIR'S AND
WORK SPACES

8MS

CS
AF
18
OB
TS
IS

OS
UPD

SIR'S

51-S9
SRO

SRt

5R2
SR3
SR4

SRS

LEVEL

a

o
o

o

LEVEL

o

o

F

ENGLISH INTERFACE

SR6
SR7 0

SRS
SR9 A

SR10 F
SRtl 0

SRt2 0

SRt3
SR14 F

BRtS F

SRt&-SR19

DESCRIPTION

wORK SPACE CONTAINS THE CURRENT
VALUE
SCRATCH' WORK SPACE RESERVED
UNUSEO
INPUT DATA LINE
UNUSED
USED fOR READING INPUT LINES
CONTAINS THE BATCH STRING' IS
POINTS TO THE AM BEFORE THE
NEXT ELEMENT
SCRATCH WORk SPACE
POINTS TO THE HISTORY STRING

DESCRIPTION·

SCRATCH
POINTS ONE BEFORE THE COUNT FIELD
OF THE PRIMARY ITEM ON FILE
POINTS TO THE END OF THE PRIMARY
ITEM ON FILE
SCRATCH
RESERVEO
POINTS TO THE END OF THE CURRENT
ITEM ON FILE
RESERVEO

RESERVED
POINTS TO THE END OF THE as
DELETION TA8LE
RESERVE"
POINTS TO THE LAST BYTE OF VALUE
IN THE BMS AREA

POINTS TO THE END OF THE PRIMARY
UPOATE STRING IF FFLG IS SET
POINTS ONE BEFORE "DU" IN THE
HISTORY STRING' FOR PRIMARY ITEM
UPDATE
RESERVED
POINTS TO THE LOCATION OF THE FILE­
OEFINING ELEMENT IN IS
POINTS TO THE LOCATION OF IB WHEN
THE CURRENT FILE-DEFINING ELEMENT
WAS FOUND
RESERVED

5-24

ALSO NOTE ELEMENTS USED BY THf CONVERSION PROCESSOR

CONVERSION PROCESSOR AND FIJNCTION PROCESSOR INTERFACES

FRWSP

THESE PROCESSORS ARE CALL~D AS SUBROUTINES, AND MAY BE
USED SV USER-WRITTEN ROUTINES. FOR MORE INFORMATION,
SEE THE CONV AND FUNC OOCUMENTATION.

FRWSP Cq,TAPEIO-!l*

FUNCTIONAL DESCRIPTION

THIS ROUTINE IS USED TO FORWARD-SPACE THE TAPE BY ONE
RECORD. IT DOES THIS RY SETTING R15 TO LOCATION XIIFF' IN
THE PCB AND ENTERING TPREADI FOR MORE INFOR~ATION, SEE T~E
TPREAD DOCUMENTATION.

FUNC

FUNC (O,FUNC1)*

FUNCTIONAL DESCRIPTION

THIS ROUTINE IS USED TO PROCfSS flF~ CONVERSIONS ANO
CORRELATIVES, AND IS CALLED MAINLY BY THE ENGLIS~ LIST AND
SORT PROCESSORS. EACH CALL TO FUNC RETURNS ONE VALUE. ON
THE FIRST CALL, TALLIES CTR12 AND CTRt! ARE BOTH SET TO ONE.
WHEN FUNC RETU~NS A VALUE, THE TERMINAL DELIMITER OF THE
RETURNED STRING DETERMINES WHAT ACTION TO TAKE ON SUBSEQUENT
CALLS • A VM INDICATES JNCREMfNT OF CTR13 BEFORE THE NEXT
CALL' A SVM INDICATES INCREMENT OF CTR12J AN AM INDICATES
END OF PROCESSING. FOLLOWING IS A PROGRAMMING EXAMPLE
ILLUSTRATING USE OF THIS ROUTINEs

FCt
FC2

END

•
•
ONE
ONF
BSL
•
•

CTR1~
CTR12
FUNC

STORE VALUE FROM IR
•
•
DEC
BCE
INC
BCE
INC
B
C~NT
EQU

Rt~
AM.R15,END
CTR12
SVM,R15.FC2
CTR13
Fe\

*
*

5-25

SET VALUE * TO ONE
SET SUe.VALUE * TO ONE

\
END OF PROCESSING
INCREMENT sua-VALUE COUNT
GET NEXT sue-VALU!
INCREMENT VALUE COUNT
GET NEXT VALUE AND
RESET SUB-VALUE COUNT
CONTINUE

JNPUT INTERFACE

FUNC

SRt

SRO

SR4

TSBEG

CTRll

CTR1~

DFLG
XFLG

S

S

s

POINTS TO T~E FIRST CHARACTER IN T~E
FUNCTION CODE STRING (NORMALLY "F")

POINTS ONE BEFORE T~E COUNT FIELD OF THE
ITEM aEING PROCESSEO

POINTS TO THE LAST AM OF THE ITEM BEING

PROCESSED

8 POINTS 350 BYTES PRIOR TO THE AREA WHERE
THE RETURNEn VALUE 18 TO BE STORED

o CONT~INS THE "lTEM NUMBER" CURRENTLY
BEING PROCESSED' REQUIRED ONLY FOR "NI"
ELEMENTS IN THE FUNCTION CODE STRING

T CONTAINS THE "VALUE NU~BER" CURRENTLY
BEING PROCESSED. =1 ON INITIAL ENTRY

T CONTAINS THE "Sue-VALUE NUMBER" (02
SUB-VALuE) CURRENTLY BEING PROCESSED, =1
ON INITIAL ENTRY

8 + =0 (USED BY LIST AND SORT PROCESSORS)
8 +

OUTPUT INTERFACE

IR R

R1S

IS

MFLG B

ELEMENT USAGE

5MBIT 8 +
WMBIT 8 +

POINTS ONE BEFORE T~E VALUE RETURNED, AT
TSBEG+350J THE VALUE IS DELIMITED BY AN
AM IF NONE OF THE REFERENCED FIELDS
CONTAINED MULTIPLE OR SUB-MULTIPLE
VALUES, BY A VM IF AT LEAST ONE OF THE
REFERENCED FIELDS CONTAINED A VM ON THIS
ENTRY, AND BY A SVM IF AT LEAST ONE OF
THE REFERENCED FIELDS CONTAINED A SVM ON
THIS ENTRY

POINTS TO A BLANK FOLLOWING THE TERMINAL
OELIMITER OF THE VALUE

POINTS TO THE AM, OR ONE PAST A VM,
TERMINATING THE FUNCTION STRING

-0 IF CONV IS CALLED

5-26

Fur-lC

SC? C +
CTRI T +
T~ T +
Ta T +
T5 T +
07 f) +
D8 0 + UTILTTY
at) I) +
FPO F +
FPl F +
FP2 F +
FP3 F +
FP4 F +
FPS F +
FPX F +
FPY F +

01 I) + USED BY ~R05UB

02 D +

OTHER ELEMENTS AS USED BY CONV FOR SPECIFIED
CONVERSIONS

SUBROUTINE USAGE

EXITS

G~MS

~BDSUB: CVDRIS; evors; CONV FOR EXPLICITLY SPECIFIED
CONVERSIONS IN THE FUNCTION STRING; TWO INTERNAL
SUBROUTINES

AT LEAST FOUR ADDITIONAL LEVELS OF SUBROUTINE LINKAGE
REQUIRED' FOR EXPLICITLY SPECIFIED CONVERSIONS. ONE
LEVEL REOUIREO FOR CONV, WITH ADDITIONAL LEVELS AS
REQUIREO BY THE INDIVIDUAL CONVERSIONS

TO MD99a WITH MESSAGE 701 (VALUE IN Cl) AND RMODE ZERO
IF A FORMAT ERROR IS FOUND IN THE FUNCTION STRING

GBMS (3,OISKFIO-II).

FUNCTIONAL DESCRIPTION

GRMS SETS UP THE BASE FlO, MODULO, AND SEPARATION PARAMETERS
OF A FILE FROM ITS FILE DEFINITION ITEM. TYPICALLY THIS
ROUTINE IS CALLED AFTER A CALL TO RETI~ WHICH RETRIEVES THE
FILE-DEFINITION ITEM FROM THE MASTER DICTIONARY.

5-27

THE ROUTINE HANDLES BOTH 'D' AND 'Q' CODE ITEMS, A '0' CODE
ITEM (OR 'OX' OR tOY') IS A OIRfCT FILEwPOINTER, AND HAS THE
RASE FlO, MODULO, AND SEPARATION OF THE FILE IN ATTRIBUTES
2. 3. AND 4. A 'Q' CODE ITEM IS A SYNONYM POINTER TO A FILE
nEFINEO IN ANY ACCOUNT IN THE SYSTEM DICTIONARY. CODES
OTHER THAN '0', 'OX'. 'DY'. OR 'Q' ARE NOT CONSIDERED VALID
FOR FILE-DEFI~ITION ITEMS, AND GBMS ~ILL EXIT WITH RMBIT
ZERO IN THESE CASES.

THIS SUBROUTINE ALSO PERFORMS THF FILE ACCESS-PROTECTION
CHECKS. IT IS ASSUMED THAT REGISTER LOCKSR POINTS TO THE
USER'S LOCK CODES (IN HIS LOGON ENTRY IN THE SYSTEM
nICTIONARY), IF THE FILE HAS A LOCK CODE. A MATCHING LOCK
CODE IS REQUIRED FOR GAMS TO RETURN SUCCESSFULLY. A
NON-MATCH CAUSES AN EXIT TO WRAPUP WITH MESSAGE 210.

INPUT INTERFACE

DAFt

IR

SR4

LOCKSR

8

s

s

IF ZERO. RETRIEVAL LOCK-CODES IN THE
LOGON ENTRY ARE USED FOR LOCK-CODE
COMPARISON' IF SET, UPDATE LOCK CODES
ARE USED

POINTS TO. OR ONE PRIOR TO THE '0' OR
'Q' CODE IN ATTRIBUTE 1 OF THE
FILE-DEFINITION ITEM

POINTS TO THE AM .T THE END OF THE
FILE-OEFINITION ITEM

POINTS ONE PRIOR TO THE USER'S LOCK-CODE
FIELD IN HIS SYSTEM DICTIONARY ENTRY

OUTPUT INTERFACE

GRMS

R~8IT

BASE
MODULO
SEPAR

IR

B SET IF RASE, MODULO, AND SEPARATION ARE
SUCCESSFULLY CONVERTED' ZEROED IF THE
FILE DEFINITION ITEM IS IN BAD FORMAT OR
A 'Q' ITfM IS NOT FOUND

o + CONTAIN THE BASE, MODULO, AND SEPARATION
T + OF THE FILE (IF RMBIT IS SET)
T +

R POINTS TO THE AM FOLLOWING ATTRIBUTE 4
OF THE FILE-OEFINITION ITEM (IF
ATTRIBUTE 1 IS '0'. 'OX'. 'DV', OR 'Q')

THE FOLLOWING ELEMENTS ARE ALTERED ONLY IF THE FILE
ACCESS-PROTECTION TEST FAILS (FILE ACCESS IS DENIED)I

C1

RMODE o =0

5-28

PQFLG B =0

HSEND 5 :HSAEG

ELEMENT USAGE

R14

SYSRO
SYSRt
SYSR2

s

S +

USED IF LOCK CODES ARE PRESENT IN THE
FILE.DEFINITION ITEM

S + LlSED WTTH 'Q' CODE ITEMS
5 +

SUBROUTINE USAGE

CVORtS, GMMBMS ANO RETIX FOR 'Q' CODE ITEMS

FIVE ADDt710NAL LEVELS OF SUBROUTINE LINKAGE REQUIRED
FOR 'Q' CODE ITEMS. T~O ADDITIONAL LEVELS REQUIRED FOR
'D' CODE ITE~S

EXITS

r,~MS

TO MOqqS IF LOCK CODE CO~PARTSON TEST FAILS

GOLID

GOLIO (13.SYSTEM-SU8S-II)*

FUNCTIONAL DESCRIPTION

THIS ROUTINE GETS THE BASE. MODULO. AND SEPARATION
PARAMETERS FROM THE OL/ID ITEM TN A DICTIONARY. TYPICAL~Y
GDLIO 15 CALLED IMMEDIATELY AFTER THF DICTIONARY BASE,
MODLILO. AND SEPARATION HAVE SEEN OSTAINEO BY GBMS.

GOLIO RETRIEVES THE OL/tD ITEM FROM THE DICTIONARY, AND THEN
ENTERS GeMS TO PICK UP ITS BASE, MODULO, AND SEPARATION.

INPUT INTERFACE

fHSE
MODULO
Sf PAR

o + CONTAtN THE BASE. MODULO. AND SEPARATION
T + OF THE FILE WHOSE DL/ID ITEM IS TO BE
T + OBTAINED

nUTpUT INTERFACE

RMBIT SET IF THE Dl/ID ITEM IS SUCCESSFULLY
RETRIEVED' ZEROED BY RETIX IF NO OL/ID
ITEM IS FOUND, OR BY GeMS IF THE ITEM IS
IN BAD FORMAT OR A "Q" ITEM IS NOT FOUND

5-29

GOLID

BMSEt-JD
RECORD
NNCF
FRMN
FRMP
NPCF
XMODE
DAFq
SIZE
SR4

I~
R14

RASE
MODULO
SEPAR

8MS
S,(SRt

ELEMENT uSAGE

5 +
0 +
H +
0 +
D + AS SET BY RETJX
H +
T +
B +
T +
S +

R + AS SET
R + FOUNO,

0 + A.S SET
T + FOUNO,
T +

R + :r8MSREG
S +

~y G8MS
OTHERwTSE

8'(GBMS
OTHERW r SE.

IF THE OLIIO ITEM
AS SET BY RETIX

IF THE OLIID ITEM
UNCHANGED

ELEMENTS USED BY G8MS. IF THE Dl/IO ITEM IS FOUND

SUBROUTINE IJSAC;E

IS

IS

RETIX AND ROUTINES CALLED RY IT, ROUTINES CALLED BY
GBMS IF THE Dl/ID ITEM IS FOUND

FIVE ADDITIONAL lEVELS OF SUBROUTINE LINKAGE REQUIRED
IF THE DL/ID ITEM IS A "Q" POINTER, OTHERWISE FOUR
ADDITIONAL LEVELS REQUIRED

GETAC8MS

GETACBMS (1,LOGOFF)~

FUNCTIONAL DESCRIPTIO~

THIS ROllTINE RETRIEVES THE fUSE, MODULO, AND SEPARATION OF
THE SYSTFM ACCOUNT FILE.

INPUT INTERFACE

NONE

5-30

-,,-

OUTPUT INTERFACE

BASE 0 +
MODULO T +
SEPAR T +

RMBIT B

RfJl T

IR

ELEMENT USAGE

SRI S

T& T

8MS

SUBROUTINE USAGE

CONTAIN THE RASE, MODULO, AND SEPARATION
OF THE ACCOIJNT FILE., IF FOUND

SET IF THE ACCOUNT fILE IS FOUND (fROM
RETI~ ANO G8MS)

=331 JF THE ACCOUNT FILE IS NOT FOUNO,
OR IF THE FILE .. DEFINITJON ITEM IN THE
SYSTE~ MASTER DICTIONARY IS IN BAD
FORMAT. OTHERWISE UNCHANGED

POJNTS TO THE AM AFTER ATTRIBUTE 4 OF
THE ACCOUNT FILE.DEFINITION ITEM (FROM
GRMS)

USED TO SAVE BMSBEG

USED TO SAVE USER

USEn IN CALLING RETIX

GMM8MS, RETIX, GRMS

FOUR ADDITIONAL LEVELS OF SURROUTINE LINKAGE REQUIRED

GETBUF

FUNCTIONAL DESCRIPTION

THIS ROUTINE ACCEPTS INPUT OATA FROM THE TERMINAL AND
PERFORMS SOME EDITING ON THE CHARACTERS OBTAINED. IT ALSO
PRINTS AN INITIAL PROMPT CHARACTER AT THE TERMINAL BEFORE
REAOING INPUT. CONTROL IS RETURNED WHEN A NON-EDITING
CONTROL CHARACTER IS INPUT, OR WHEN THE NUMBER OF CHARACTERS
SPECIFIED IN TO HAS BEE~ INPUT AND 8IT TITFLG IS ZERO (SEE
BELOW).

EDITING FEATURES

CONTROL-H

CONTROL.X

LOGICALLY
POINTER,
BSPCH

BACKSPACES THE BUFFER
ECHO~S THE CHARACTER IN

LOGICALLV DELETES THE ENTIRE INPUT
BUFFER, ECHOES A CR/LF, AND PRINTS
THE PROMPT CHARACTER IF BIT FRMTFLG
IS ZERO

5-31

CONTROL-R

RllBOUT

CONTROL-SHIFT-K
CONTROL-SHIFT-L
CONTROL-SHIFT-M
CONTROL-SHIFT.N
Cl'NTROL-SHtFT·O

RETVPES THE INPUT LINE IF BIT
FRMTFLG IS ZERO

IGNOREDJ THE CHAR_CTER IS ECHOED.
RUT IS NOT STORED IN THE RUFFER

+ THfSf. CHARACTERS ARE CONVERTED TO
+ THE INTERNAL DELIMITERS se, SVM,
+ VM, AM, AND SM, RfSPECTIVELY, THEY
+ ECHO AS THE CHARACTE.RS [, /,], t,
+ AND ..

NOTEI EXCfPT FOR SVSTfM OFLtMITER CONVERSION, THE HIGH
ORDER BIT OF EACH CHARACTER INPUT IS ZEROED.

INPUT INTERFACE

FRMTFLG B

GETAUF

TITFLG B

RSPCH C

PRMPC C

TO T

R14

IF SET. CONTROL-X CAUSES BACKSPACES TO
THE BEGINNING OF THE INPUT AREA INSTEAD
OF CR/LF TO A NE~ INPUT LINEr ALSO,

CONTROL-R IS IGNORED

IF SET, CONTROL WILL NOT BE RETURNED
WHEN THE NUMBER OF CHARACTERS SPECIFIED
IN TO H4S BEEN INPUT UNLESS A
NON-EDITING CONTROL CHARACTER IS ENTERED

CONTAINS THE CHARACTER TO BE ECHOED TO
THE TERMINAL WHEN THE BACK SPACE KEY IS
PRESSED

CHARACTER OUTPUT AS A "PROMPT" WHEN
INPUT IS FIRST REQUESTED, AND AFTER
CERTAIN EDITING OPERATIONS

CONTAINS THE MAXIMUM NUMBER OF
CHARACTERS TO BE ACCEPTED

POINTS ONE BYTE BEFORE THE BEGINNING OF
THE INPUT PUFFER AREA

OUTPUT INTERFACF.

RtS

ELEMENT USAGE

R2rCO
00

R POINTS TO THE CONTROL CHARACTER CAUSING
RETURN TO THE CALLING ROUTINE

C + SCRATCH
n +

5-32

SUBROUTINE USAGE

NONE

GETITM

FUNCTIONAL DESCRIPTION

THIS ROUTINE SEQUENTIALLY RETRIEVES ALL ITEMS IN A FILE. IT
IS CALLED REPETITIVELY TO OBTAIN ITEMS ONE AT A TIME UNTIL
ALL ITEMS HAVE BEEN RETRIEVED. THE ORDER IN WHICH THE ITEMS
ARE RETURNED 19 THE SAME AS THE STORAGE SEQUENCE.

IF THE ITEMS RETRIEVED ARE TO BE UPDATED BY THE CALLING
ROUTINE (USING ROUTINE UPDITM), THIS SHOULD BE FLAGGED TO
GETIT~ BY SETTING BIT DAFt. FOR UPDATING. GETITM PERFORMS A
TWO-STAGE RETRIEVAL PROCESS BY FIRST STORING ALL ITEM-IDS
(PER GROUP) IN A TABLE, AND THEN USING THIS TABLE TO
ACTUALLY RETRIEVE THE ITEMS ON EACH CALL. THIS IS NECESSARY
BECAUSE, IF THE CALLING ROUTINE UPDATES AN ITEM, THE DATA
WITHIN THIS GROUP SHIFTS AROUNO' GETITM CANNOT SIMPLY
MAINTAIN A POINTER TO THE NE~T ITEM IN THE GROUP, AS IT DOES
IF THE "UPDATE" OPTION IS NOT FLAGGED.

AN INITIAL ENTRY CONDITION MUST ALSO BE FLAGGED TO GETITM BY
ZEROI~G BIT DAF7 BEFORE THE FIRST CALL. GETITM THEN SETS UP
AND MAINTAINS CERTAIN POINTERS WHICH SHOULD NOT BE ALTERED
BY CALLING ROUTINES UNTIL ALL THE ITEMS IN THE FILE HAVE
BEEN RETRIEVED (OR DAF7 IS ZEROED AGAIN).

NOTE THE FUNCTIONAL EQUIVALENCE OF THE OUTPUT INTERFACE
ELEMENTS WITH THOSE OF RETI~.

INPUT INTERFACE

DAF7 B INITIAL ENTRY FLAG' MUST BE ZEROED ON
THE FIRST CALL TO GETITM

DAFt B IF SET, THE ·UPDATE" OPTION IS IN EFFECT

DBASE D + CONTAIN THE BASE, MODULO, AND SEPARATION
OMOD T • OF THE FILE
DSEP T +

BMSBEG R POINTS ONE PRIOR TO AN AREA WHERE THE
ITEM-IO OF THE ITEM RETRIEVED ON EACH

5-33

GETITM

CALL MAY RE COPIED

OVRFLCTR 0 ~EANJNGFUL ONLY IF DAF1 IS SET' IF
NON-ZERO, THE VALUE IS USED AS THE
STARTING FlO OF THE OVERFLOW SPACE TABLE
WHERE THE LIST OF ITEM-IDS IS STORED' IF
ZERO, GErSpe IS CALLED TO OBTAIN SPACE
FOR THE TABLE

OUTPUT INTERFACE

RMBIT
SIZE
R14
IR
SR4
)(MODE

SRO

8MS

BMSENO

DAF9

ELEMENT IJSAGE

BASE
MODULO
SEPAR
RECORD
NNCF
FRMN
FRMP
NPCF

OVRFLW

GETITM

8 +
T +
R + (SEE RETIX DOCUMENTATION)
R +
S +
T +

s

R

S

8

o +
T +
T +

=Rt4 IF DAFt
GNSEQI

AS SET BY
OTHERWISE AS

cBMS IF !)AFt

=0

IS SET, OTHERWISE AS SET BY

RETIX IF DAFt IS SET,
SET BY GNSECn

IS SET, OTHERWISE UNCHANGED

o + USED BY SETITM AND OTHER SUBROUTINES FOR
H + ACCESSING FILE DATA
o +
o +
H +

USED BY SETSPC IF OAFt IS SET AND
OVRFLCTR IS INITIALLY ZERO

THE FOLLOWING ELEMENTS SHOULD NOT 8E ALTERED BY ANY
OTHER ROUTINE wHILE GETITM IS USEDI

DAFt B + (SEE INPUT INTERFACE)
OAF7 B +

DBASE D CONTAINS THE BEGINNING FlO OF THE
CURRENT GROUP BEING PROCESSED

5-34

DMDD

DSEP

SBASE
SMOO
SSEP

NXTITM

T CONTAINS THE NUMBER OF GROUPS LEFT TO BE
PROCESSED

T (UNCHANGED)

o + CONTAIN THE SAVED VALUES OF DBASE. oMOD,
T + AND DSEP WHEN THE ROUTINE WAS FIRST
T + CALLED

S POINTS ONE BEFORE THE NEXT ITEM-ID IN
T~E PRE-STORED TABLE IF DAF1 IS SET,
OTHERWISE POINTS TO THE LAST AM OF THE
ITEM PREVIOUSLY RETURNED

OVRFLCTQ D CONTAINS THE STARTING FlO OF THE
OVERFLOw SPACE TABLE IF DAFI IS SET.
OTHERWISE UNCHANGED

SUBROUTINE USAGE

RCREC. GNSEQI, GNTBLI (LOCAL), RETIX. AND SETSPC (IF
OVRFLCTR :0) IF OAF1 IS SET

8MSOVF USEO WITH XMODE

FOUR ADDITIONAL LEVELS OF SUBROUTINE LINKAGE REQUIRED

ERROR CONDITIONS

SEE RETIX DOCUMENTATION ("FXITS"), GETITM. HOWEVER,
CONTINUES RETRIEVING ITEMS UNTI~ NO MORE ARE PRESENT
EVEN AFTER THE OCCURANCE OF ERROR~.

GETOPT

GETOPT [15,SYSTEM-SUBS-I).

FUNCTIONAL DESCRIPTION

THIS ROUTINE PROCESSES AN OPTION STRING CONSISTING OF SINGLE
ALPHABETIC CHARACTERS ANDIOR A NUMERIC OPTION, SEPARATED 8Y
COMMAS.

A NUMERIC OPTION CONSISTS OF A STRING OF NUMERIC CHARACTERS
OR A PAIR OF SUCH STRINGS SEPARATED BY A HYPHEN OR PERIOD.
IF A NUMERIC STRING IS IMMEDIATELY PRECEDED BY A PERIOD, IT
IS TREATED AS HEXADECIMAL. IF THE OPTION STRING CONTAINS
MORE THAN ONE NUMERIC OPTION, THE LAST ONE wILL BE USED.

ALPHABETIC OPTIONS SET THE CORRESPONOING BITS ("A" SETS
A8IT, ETC.), BUT THESE 8tTS ARE NOT ZEROED UPON ENTRY.

THE OPTION STRING BEGINS ONE PAST THE ADDRESS POINTED TO BY
~EGISTER 18, AND MUST END WITH A RIGHT PARENTHESIS (")") OR
SM.

5-35

INPUT INTERFACE

IB R POINTS ONE BEFORE THE OPTION STRING

OUTPUT INTERFACE

ABIT 8 +
•
•
•
ZeIT

NUMFLGt

NUMFLG2

Rfo1BIT

04

GETOPT

05

18

ELEMENT USAGE

+
+ SET AS OESCRIBED ABOVE
+

B +

B SET IF t NUMERIC OPTION IS FOUND

B SET IF 2NO NUMERIC OPTION IS FOUND

8 SET IF NO ERRORS ARE FOUND IN THE OPTION
FORMAT. OTHERWISE UNCHANGED

o .VALUE OF THE FIRST NUMBER IN A NUMERIC
OPTION, IF FOUND, OTHERWISE UNCHANGED

o

R

-VALUE OF THE SECOND NUMBER TN A NUMERIC
OPTION, IF FOUND' ~04 IF A NUMERIC
OPTION CONSISTS OF A SINGLE NUMBER,
OTHERWISE UNCHANGED

POINTS TO THE LAST CHARACTER PROCESSED (=-,. OR SM FOR A VALID OPTION STRING)

NONE (EXCEPT 00 AND 01)

SUBROUTINE USAGE

CVOIB IF A OECIMAL NUMERIC OPTION IS FOUND' CVXIB IF A
HEXADECIMAL NUMERIC OPTION IS FOUND

T~O ADDITIONAL LEVELS OF SUBROUTINE LINKAGE REQUIRED

GETOVF, GETSPC, ATTOVF. ATTSPC, GETBLK

GETOVF (t, OF n *
GETSPC (9,OF1)*
ATTOVF (O,OF1)*
ATTSPC ClO,OFll*
GET8LK (5,OF1)*

5-36

.. -,

FUNCTIONAL DESCRIPTION

iHESE ROUTINES OBTAIN OVERFLOW FRAMtS FRO~ THE OVERFLOW
SPACE POOL MAINTAINED 8Y THE SYSTEM. GETelK IS USED TO
OBTAIN A BLOCK OF CONTIGUOU~ SPACE (USED MAINLY BY THE
CREATE-FILE P~OCE8S0R)' THE OTHER ROUTINES OBTAIN A SINGLE
FRAME.

GETOVF AND G!TSPC ZERO ALL THE LINK FIELDS OF T~E FRA~E THEY
RETURN. ATTOVF AND ATT8PC LINK THE FRAME TO THE FRA~E
SPECIFIED IN DOUBLE TALLY RECORDa THE FORWARD LINK FIELD OF
THE FRAME SPECIFIED IN RECORD IS SET TO POI~T TO THE
OVERFLOW FR'~E OBTAINED. THE BACKWARD LINK OF THAT fRAME IS
SET TO THE VALUE OF RECORD. AND THE OTHER LINK FIELDS OF THE
OVERFLOW FRAMt ARE ZEROED. TME LINK FIELDS OF THE FRAME!S)
OBTAINED 8Y GET8lK ARE NOT RESET OR INITIALIZED IN ANY WAY •
THIS IS A FUNCTION OF THE CALLING PROGRAM.

THESE ROUTINE~ CANNOT BE INTERRUPTED UNTIL PROCESSING 18
COMPLETE.

INPUT INTERFACE

DO o

RECORD D

OUTPUT INTERFACE

OVRFLW D

CONTAINS THE NUMBER OF FRAMES NEEDED
(BLOCK SIZE). FOR GETBLK ONLY

CONTAINS THE FlO OF THE FRAME TO WHICH
AN OVERFLOW FRAME IS TO 8E LINKED (FOR
ATTDVF AND ATTspe ONLY)

IF THE NEEDED SPACE IS OBTAINED, T~IS
ELEMENT CONTAINS THE FtD OF THE FRAME
RETURNED (FOR GETOVF, GETSPC. ATTOVF,
AND ATTSPC) OR THE FlO OF THE FIRST
FRAME IN THE SLOCK RETURNED CFO~

GETOVF. GETSPC. ATTOVF. ATTSPC. GETBLK

ELEMENT USAGE

FR"'N o

00 0
01 n
Rtll R
Ilt5 R
SYSRO S

02 0
SYSRt S

+
+
+
+
+

GET8LK), IF THE SP_CE IS UNAVAILABLE,
OVRFLW=O

USED 8Y ATTOVF AND ATT8PC ONLY

UTILITV

+ USED BY SYSGET
+

5-37

SUBROUTINE USA.;E

E"ITS

SYSGET (BUT NOT USED BY THE SINGLE.FR~ME ROUTINES IF •
FRAME IS OBTAINED FROM A MULTIPLE-FRAME BLOCK IN THE
SYSTEM OVERFLOW TABLE), T~REE INTERNAL SUBROUTINES'
NOSPACE CALLED BY GETSPC AND ATTSPt IF NO FRAMES ARE
AVAILABLE

TwO ADDITIONAL LEVELS OF SUBROUTINE LINKAGE REQUIRED BY
GETOVF, ATTOVF, AND GETAL~' THREE LEVELS R!QUIREO BY
GETSPC AND ATTSPC

FOR GETSpe AND ATTSPCI TO NSPca IF NO MORE FRAMES ARE
AVAILA8LE AND PROCESSING IS ABORTED BY TtotE USER. THJS
IS A FUNCTION OF NOSPACE

GETUPO

GETUPO (1,OISKFIO-I)*

FUNCTIONAL DESCRIPTION

GETUPD INITIALIZES THE UPD REGISTER TRIAD TO POINT TO THE
UPO WORK SPACE (FRAME Pce+28).

INPUT I~TERFACE

"'ONE

OUTPUT INTERFACE

UPO
UPOBEG

R + POINT TO THE FtRST DATA BYTE OF THE
S + F~AME 28 FRAMES AFTER THE PROCESS'S pce

UPDEND s

ELEMENT USAGE

NONE

SUBROUTINE USAGE

NONE

GETUPO

GROUP LOCKS

POINTS TO THE LAST BYTE OF THE ABOVE
FRAME

5-38

A TABLE OF FILE GROUPS WHICH ARE LOCKED FOR UPDATE IS KEPT
IN THE SYSTEM. A GROUP IS UNLOCKED WHEN AN ITEM IS UPDATED
IN THAT GROUP BV THE SUBROUTINE UPDITM. THE FILE-SAVE
PROCESSOR LOCKS EACH GROUP wHILE SAVING IT. BASIC AND PROC
'READ FOR UPDATE' COMMANDS USE THESE LOCKS.

GLOCK O.GLOCt<

GUNLOCK t.GLOCK

GUNLOCK.LINE 2.GLOCK

GMMBMS

FUNCTIONAL DESCRIPTION

LOCI< THE GROUP WHOSE STARTING FID
IS IN 'RECORD'.
UNLOCK THE GROUP ~HOSE STARTING
FlO IS IN 'RECORD'.
UNLOCK ALL GROUPS LOCKED BY
THE CALLING PROCESS.

GMMBMS SETS UP POINTERS TO THE SYSTEM DICTIONARY.

INPUT INTERFACE

NONE

OUTPUT INTERFACE

BASE
MODULO
SEPAR

o + CONTAIN THE BASE, MODULO, AND SEPARATION
T + OF THE SYSTEM DICTIONARY
T +

ELEMENT USAGE

NONE

SUBROUTINE USAGE

NONE

GPCBO

FUNCTIONAL DESCRIPTION

GPC80 RETURNS THE FlO OF THE PCB FOR LINE ZERO IN THE
ACCUMULATOR, 00. THE 16 HIGH-ORDER BITS OF 00 ARE SET TO
ZERO. NO OTHER INTERFACE OR ELEMENT USAGE IS ASSOCIATED
WITH THIS ROUTINE.

5-39

ISINIT

ISINIT (2.TCL-INIT1.

FUNCTIONAL DESC~IPTION

lSI NIT SIMPLY INVOKES wSINIT AND HSISOS TO INITIALIZE ALL
THE PROCESS WORK SPACE POINTERS.

INPUT AND OUTPUT INTERFACES

SEE WSINIT AND HSISOS DOCUMENTATION.

ELEMENT USAGE

NONE (EXCEPT 00)

SUBROUTINE USAGE

WSINIT. HSISOS

THREE A001TIONAL LEVELS OF SUBROUTINE LINKAGE REQUIRED

ITPIB, TPIB. 06TP, FOBTP

ITPIB (2,TAPEIO-I'.
TPIS (3,TAPEYO-I).
OBTP (I,TAPEIO-I).

FOBTP (O,TAPETO-I).

FUNCTIONAL DESCRIPTION

THESE ROUTINES ALLOW READING AND WRITING VARIABLE LENGTH
RECORDS, BLOCKED IN FIXEO-LENGHTH RECORDS WHOSE SIZE IS
DETERMINED BY THE "T-ATT eN)" VERB. THE UNBLOCKED DATA IS
PASSED TO THE WRITE ROUTINE (08TP) IN THE DB' IT IS PAsseD
FROM THE READ ROUTINE (IBTP) IN THE lB.

READING A BLOCKED TAPEI AN INITIAL CALL MUST BE MADE TO
ITPIB TO INITIALIZE THE DE-BLOCKING POINTERS, SUBSEQUENTLY,
EACH CALL TO TPIB WILL RETURN ONE TAPE RECORD.

WRITING A BLOCKED TAPE. THE DATA TO BE WRITTEN TO THE TAPE
IS PLACED IN TME 08. AND OBTP IS CALLED TO STORE IT IN THE
BLOCKING AREA. THE INITIAL CALL MUST SET REGISTER OS TO
8YTE ZERO OF TME TAPE BUFFER (FRAME FFFF10), AND SET TALLY
T4 TO THE RECORD SIZE. WHEN THE OUTPUT IS TO BE TERMINATED,
ONE CALL TO FOBTP MUST BE MADE TO CLEAR THE BLOCKING AREA
AND FORCE THE DATA TO BE WRITTEN TO THE TAPE.

THESE ROUTINES USE THE DELIMITER 56 (X'F8') AS THE BLOCK
DELIMITER' THEREFORE. S8'S IN THE DATA TO BE WRITTEN TO
TAPE ARE CONVERTED TO BLAN~S 8EFORE BEING OUTPUT.

5-40

INPUT INTERFACE

IBBES

OBBES

os

08

S

S

R

R

POINTS ONE PRIOR TO THE BUFFER AREA
WHERE OEALOCKEO DATA IS TO BE COPIED,
FOR TPIS

POINTS ONE PRIOR TO THE BUFFER AREA
CONTAINING DATA TO BE BLOCKED, FOR OBTP

POINTS TO THE FIRST 8YTE OF THE TAPE
SUFFER ARE:A (FRAME. FFFFI 0), FOR OBTP

POINTS TO THE LAST BYTE OF DATA, FO~
08TPr A SB IS PLACED ONE PAST THIS

ITPIB, TPIB, OBTP, FOBTP

T4 T

OUTPUT INTERFACE

IB R

IBEND S

OB R

ELEMENT US4GE

eMOOE T
R14 R
R15 R

00 D
01 0
R2rco T
eTR1 T

SYTESRD T

SYSRO S
SVSR1 S

sco C

LOCATION BY THE ROUTINE

CONTAINS THE TAPE BUFFER SIZE IN SYTES,
FOR OBTP

a:lBSEG, FOR TPIS

POINTS TO A SM OVERWRITING THE S8 AT THE
END OF THE INPUT BLOCK, FOR TPIB

.OBBES, FOR OBTP

+
+ UTILITY
+

+
+
+ AS USED BY TPREAD AND TPWRITE
+

USED TO HOLD POSITION IN BLOCKING

+ USEO BY OATP
+

USED 8Y TPIS AND OBTP (CONTAINS A SB ON
EXIT)

ELEMENTS USED BY RDPARITY ANO FRMOMP IF ROPARITV IS
CALLED BY TPREAO

5-41

SUBROUTINE USAGE

TPREAO (FOR ITPI8 AND TPIR) OR TPWRITE (FOR OBTP AND
FOBTP); TWO INTERNAL SURR~UTINE C.LLS FOR OBTP, FOBTP,
AND TPIA

UP TO T~N ADDITIONAL lEVELS OF SUBROUTINE LINKAGE

TTPIB, TPIB, OBTP, FORTP

REQUIREO FOR ITPIB ~ND TPIB (SEE TPREAO DOCUMENTATION)'
FIVE LEVELS REQUIREO BY OaTP AND FOBTP

LINK

LINK (q,OISKFIO-I'*

FUNCTIO~AL DESCRIPTION

THIS ROUTI~E CREATES A LINKED GROUP FROM A BLOCK OF
CONTIGUOUS FRAMES. UP TO 1?7 FRAMES CAN BE SO LINKED. FOR
EACH FRAME IN THE GROUP, THE ~OUTINE SETS UP THE FIELDS
SPECIFYING THE NUMBER OF NEXT CONTIGUOUS FRAMES, THE NEXT OR
FORWARD LINK, THE PREVIOUS OR BACKW4RO LINK, AND THE NUMBER
OF PREVIOUS FRAMES.

INPUT INTERFACE

RECORD o

NNCF

OUTPUT INTERFACE

RIa R

R1S R

RECORD 0

NNCF H +
FRMN D +
FRMP 0 +
NPCF H +

CONTAINS THE FIRST FlO OF THE GROUP TO
BE LINKED

CONTAINS ONE LESS THAN THE NUMBER OF
FRAMES IN THE GROUP (MAY BE ZERO, BUT IS
ALWAYS lESS THAN 127)

POINTS ONE PRTOR TO THE FIRST DATA BYTE
OF THE FIRST FRAME IN THE GROUP

POINTS TO THE LAST BYTE OF THE LAST
FRAME IN THE GROUP

CONTAINS THE FlO OF THE LAST FRAME IN
THE GROUP

CONTAIN THE VALUES OF THE LINK FIELDS OF
THE LAST FRAME IN THE GROUP

5-42

ELEMENT USAGE

NONE (8E8IDES R14, R15, AND 00'

SUBROUTINE USAGE

LINK

SIX-eYTE BINARY TO STRING CONVERSION

MBDSIJB CO,SYSTEM-SUBS-!'.
MBONSUB (I,SYSTEM-SUBS-I'.

FUNCTIONAL DESCRIPTION

THESE ROUTINES CONVERT A BINARY NUMBER TO THE EQUIVALENT
STRING OF OECIMAL ASCII CHARACTERS. MBDSUB RETURNS ONLY AS
MANY CHAR_CTERS AS ARE NEEDED TO REPRESENT THE NUMBER,
WHEREAS MBDNSUB ALWAYS RETURNS A SPECIFIED MINIMUM NUM8ER OF
CHARACTERS (PADDING WITH LEADING ZEROES OR BLANKS WHENEVER
NECESSARY). A MINUS PRECEDES THE NU~ERIC STRING IF THE
NUMBER TO BE CONVERTED IS NEGATIVE.

THESE SUBROUTINES ARE IMPLICITLY CALLED 8Y THE ASSEMBLER
INSTRUCTIONS MBO (MOVE BINARY TO DECIMAL) AND MBDN.

FPO IS DESTROYED BY THE CONVERSION PROCESS.

INPUT INTERFACE

FPO F CONTAINS THE NUMBER TO BE CONVERTED

T4 T CONTAINS THE MINIMUM NUMBER OF
CHARACTERS TO BE RETURNED (M80NSUB ONLY)

BKBIT B SET IF LEADING BLANKS WISHED FOR FILL'
ZERO IF ZEROS

R15 R POINTS ONE PRIOR TO THE AREA WHERE THE
CONVERTED STRING IS TO BE STORED CUP TO
~ BYTES REQUIRED)

OUTPUT INTERFACE

Rt5 R POINTS TO THE LAST CONVERTED CHARACTER

T4 T s1 FOR MRDSUB, OTHER~ISE UNCHANGED

ELEMENT USAGE

T5 T

5-43

MBDSUBS

FPY F

R14 R

SUBROUTINE USAGE

NONE

NEWPAGE

FUNCTIONAL DESCRIPTION

THIS ROUTINE IS USED TO . SKIP TO A NEW PAGE ON THE TERMINAL
OR LINE PRINT~R AND PRINT A HEADING. NO ACTION IS
PERFORMED, HOWEVER, IF BIT PAGINATE OR TALLY PAGSIZE IS
ZERO.

INPUT INTERFACE

AS FOR WRTLtN, EXCEPT DB IS FIRST SET EQUAL TO OBBEG BY
THIS ROUTINE

OUTPUT INTERFACE

SAME AS FOR WRTLIN

ELEMENT USAGE

SAME AS FOR WRTLIN

SUBROUTINE USAGE

WRTLIN AND ROUTINES CALLED BY IT, IF PAGINATE IS SET
AND PAGSIZE IS GREATER THAN ZERO

ADDITIONAL SUBROUTINE LIN~AGE REQUIRED ONLY IF WRTLIN
IS CALLED' SEE WRTLIN OOCU~ENTATION FOR THE NUMBER OF
ADDITIONAL LEVELS OF LINKAGE REQUIRED, AND AOO 1

NEXTIR, NEXTOVF

NEXTIR (i,WRAPUP-IIl.
NEXTOVF (3,WRAPUP-II)

5 .. 44

FUNCTIONAL DESCRIPTION

NEXTIR OBTAINS THE FORWARD LINKEO FRA~E OF THE FRAME TO
WHICH REGISTER IR CRb) CURRENTLY POINTS' IF THE FORwARD
LINK IS ZERO. THE ROUTINE ATTEMPTS .TO OBTAIN AN AVAILABLE
FRAME FROM THE SYSTEM OVERFLOW SPACE POOL AND LINK IT UP
APPROPRIATELY (SEE ATTOVF DOCU~fNTATION). IN ADDITION, IF A
FRAME IS OBT~INED, THE IR REGISTER TRIAD IS SET UP 8EFORE
RETUR~, USING ROUTINE RDREC.

NEXTOVF MAY BE USED IN A SPECIAL wAY TO HANDLE
END-OF-LINKED-FRAME CONDITIONS AUTOMATICALLY WHEN USING
REGISTER IR WITH StNGLE~ OR MULTIPLE-8YTE ~OVE OR SCAN
INSTRUCTIONS (MIlD. MIl, OR MCI). TALLY XMODE SHOULD 8E SET
TO THE MODE-IO OF NEXTOVF BEFORE THE INSTRUCTION IS
EXECUTED' IF THE INSTRUCTION CAU~ES IR TO REACH AN
END-OF-LINKED-FRAME CONDITION (FORWARD LINK ZERO), THE
SYSTEM WILL GENERATE A SURROUTINE CALL TO NEXTOVF, WHICH
WILL ATTEMPT TO OBTAIN AND LINK UP AN AVAILABLE FRAME. AND
THEN RESUME EXECUTION OF THE INrERRUPTED INSTRUCTION
(ASSUMING A FRAME WAS GOTTEN). IF THERE ARE NO MORE FRAMES
IN THE OVERFLOW SPACE POOL, NOSPACE IS CALLED. NOTE THAT
THE "INCREMENT REGISTER BY TALLY" INSTRUCTION CANNOT BE
HANDLED IN THIS MANNER.

NEXTOVF IS ALSO USED
NEXTOVF IS ENTERED
CONDITION, A BRANCH

BY UPDITtw1
WITH TS

IS TAKEN
CONDITION

NEXTOVF

WITH REGISTER TS (RI3). IF
AT AN ENO-OF-LINKED-FRAMES
TO A POINT INSIDE UPDITM.

UNDER ANY OTHER (OTHER THAN IR OR TS
ENO-OF-LINKED-FRAME),
DEBUGGER.

IMMEDI~TELY ENTERS THE

INPUT INTERFACE

IR

ACF H

NEXTIR, NEXTOVF

OUTPUT INTERFACE

IR R •
IRBEG S +

IREND S

POINTS INTO THE FRAME WHOSE
FORWARD-LINKED FRAME IS TO BE OBTAINED
(DISPLACEMENT UNIMPORTANT)

FOR NEXTOVF ONLY, MUST CONTAIN X'06' FOR
IR ENO-OF.LtNKED.FRA~E HANDLING (SET

AUTOMATICALLY BY MIlO. MIl, AND Mel
INSTRUCTIONS)

POINT TO THE FIRST DATA BYTE OF THE
FORWARD LINKED FRAME

POINTS TO THE LAST BYTE OF THE FORWARD
LINKED FRAME

5-45

RECORO D CONTAINS THE FlO OF' THE FRAME TO WHICH
IR POINTS

R15 q +
NNCF H +
FRM'l D + AS SET BY ROLTNK FOR THE FlO IN RECORD
FPMP 0 +
NPCF H •
OVRFLW 0 :RECORO TF ATTOVF CALLED, OTHERWISE

UNCHANGED

ELEMENT USAGE

R14 R USED BY RDLINK

ELEMENTS USED BY ATTOVF IF A FRAME IS OBTAINED FROM THE
OVERFLOW SPACE POOL

SUBROUTINE USAGE

EXITS

RDLINK, ATTOVF IF A FRAME MUST BE 08TAIN£O FROM THE
OVERFLOW SPACE POOL' NOSPACE IF ATTOVF CANNOT FINO ANY
MORE FRAMES

THREE ADDITIONAL LEVELS OF SUBROUTINE LINKAGE REQUIRED

NORMALLY RETURNS VIA ROREC' POSSIBLY TO NSPCQ IF
NOSPACE US~O (SEE NOSPACE OOCUMENTATION), TO 5,081 IF
ACF NOT X'O&' OR X'OC' (NEXTOVF ONLY)

NEXTIR, NEXTOVF

PCRLF (7.TERMIO)*
FFDLY (9.TERMIO)*

FUNCTIONAL DESCRIPTION

PCRLF PRINTS A CARRIAGE RETURN AND LINE FEED ON THE TERMINAL
AND ENTERS FFDLY, WHICH PRINTS A SPECIFIED NUMBER OF DELAY
CHARACTERS (X'OO').

INPUT INTERFACE

LFDLY T CONTAINS THE DELAY COUNT (FOR PCRLF
ONLY)

TO or CONTAINS THE DELAY COUNT (FOR FFDLY ,
ONLY)

OUTPUT INTERFACE

NONE

5-46

ELEMENT USAGE

R14 R

SUBROUTINE USAGE

NONE

peRLF, FFOLY

PQ-INSERT

pg-INSERT IS A SUBROUTINE WHICH WILL INSERT SINGLE OR
MULTIPLE FIELDS INTO ANY OF THE PROC BUFFERS.

INPUT INTERFACE I

PBUF POINTS TO FIRST BYTe OF RECEIVING FIELD~ SENDING FIEL
MUST BE TERMINATED BY AN ATTRIBUTE MARK. MULTIPLE
FIELD INSERTS CAN BE ACCOMPLISHED BY SEPARATING
THE SENDING FIELDS WITH BLANKS.

IS POINTS TO ONE BYTE BEFORE SENDING FIELD.
SB2 0 • CAUSES BLAN~S IN SENDING FIELD TO BE REPLACED

BY ATTRIBUTE MARKS IN THE RECEIVING FIELD.
1 • BLANKS ARE LEFT AS BLANKS.

R9 POINTS TO PRoe CONTROL FRAME (MOV pg-REG,R9).

OUTPUT INTERFACES

PBUF POINT TO FIRST BYTE OF RECEIVING FIELD
AND 18 S82. 1.

POINT ONE BYTE BEFORE RECEIVING FIELD IF SB2 • 0

INTERNAL USAGEs

8MS
Rt4
Rt5

PRINT, CRLFPRINT

PRINT Cl1,SYSTEM-SUBS-IVl.
CRLFPRINT (12,SYSTEM-SU8S-IV)*

5-47

FUNCTIONAL DESCRIPTION

THESE ROUTINES SEND A ~ESSAGE TO THE TERMINAL FROM TEXTUAL
DATA IN THE CALLING PROGRAM, CRLFPRINT FIRST PRINTS A
CARRIAGE RETURN AND LINE FEED. THESE ROUTINES ARE NOT
COMPATIBLE WITH CQNVENTIONS REGAROING THE LINE PRINTER, AND
WITH THE PAGINATION ROUTINES. THE MESSAGE SENT IS A STRING
OF CHARACTERS ASSEMBLED IMMEDIATELV FOLLOWING THE SUBROUTINE
CALL IN THE CALLING PROGRAM. THE STRING MUST BE TERMINATED
BY ONE OF THE FOUR DELIMITERS SM, AM. VM, OR SVM. CONTROL
IS RETURNED TO THE INSTRUCTION AR THE LOCATION IMMEDIATELY
FOLLOWI~G THE TERMINAL DELIMITER.

DELIMITER

SM [X'FFI)
AM O(f FE I)

VM OC'FO')

SVM ()(I FC')

INPUT INTERFACE

LFDLV T

ACTION

~ END OF MESSAGE'
+ RETURN

CR/LF PRINTED, AND

CR/LF PRINTED, BUT MESSAGE PROCESSING
CONTINUED

ENO OF MESSAGE' RETURN WITHOUT PRINTING
CR/LF

CONTAINS (IN THE LOW-ORDER BYTE) THE
NUMBER OF ·FILL" CHARACTERS (NULLS) TO
BE ISSUED AFTER A CR/LF ECHO TO THE
TERMINAL' REQUIRED BY PCRLF

TEXT FOLLOWING SUBROUTINE CALL IN CALLING PROGRAM

OUTPUT INTERFACE

NONE

ELEMENT USAGE

PRINT, CRLFPRINT

R14 R + SCRATCH
R15 R +

SUBROUTINE USAGE

PCRLF

ONE ADDITIONAL LEVEL OF SUBROUTINE LINKAGE REQUIRED

5-48

PRIVTST1, PRIVTST2, PRIVTST3

PRIVTSTt (7,SYSTEM-SU8S-III)*
PRIVTST2 (S,SYSTEM-SUBS-III)*

PRIVTST3 C4,SYSTEM-SUBS.III)

FUNCTIONAL DESCRIPTION

THESE ROUTINES CHECK TO SEE IF THE CALLING PROCESS HAS
APPROPRIATE SYSTEM PRIVILEGE LEVELS. IF NOT, BITS PQFLG AND
LISTFLAG AND TALLY RMOOE ARE SET TO ZERO, THE HISTORY STRING
IS SET NULL CHSEND=HSBEG), TALLY REJCTR IS SET TO 82 (AN
ERROR MESSAGE NUMBER), AND AN EXIT IS TAKEN TO MD~~.
OTHERWISE THE ROUTINES RETURN NORMALLY.

ENTRY

PRIVTSTl

PRIVTST2

PRIVTST3

PRNTHOR. NPAGE

BIT TESTED (ERROR IF NOT SET)

SYSPRIVt

SYSPRIV2

RO,S245

PRNTHDR (7.SYSTEM-SUSS-II)*
NPAGE C8,SYSTEM-SUBS-IIl

FUNCTIONAL DESCRIPTION

THESE ARE ENTRY POINTS INTO THE SYSTEM ROUTINE FOR
PAGINATION AND HEADING CONTROL OF OUTPUT (ALSO USED BY
WRTLIN. WT2. AND WRITOS WHEN PAGINATION IS SPECIFIED).
PRNTHOR IS USED TO INITIALIZE BIT PAGINATE TO 1, AND TALLIES
LINCTR AND PAGNUM TO ZERO AND ONE, RESPECTIVELY. PRNTHDR
THEN FALLS IMMEOIATELY INTO NPAGE, WHICH OUTPUTS A HEADER
MESSAGE.

A PAGE HEADING, IF PRESENT, MUST SE STORED IN A SUFFER
DEFINED BY REGISTER PAGHEAD. THE HEADER MESSAGE IS A STRING
OF DATA TERMINATED BY A SM, SYSTEM DELIMITERS IN THE
MESSAGE INVOKE SPECIAL PROCESSING AS FOLLOWS:

SM (X'FF'l

AM OC'FE'l

VM OC'FO')

SVM ()(I FC')

TERMINATES THE HEADER LINE WITH A CRILF

INSERTS THE CURRENT PAGE NU~B£R INTO THE
HEADING

PRINTS ONE LINE OF THE HEADING AND
STARTS A NEW LINE

SINGLY, INSERTS THE CURRENT TIME AND
DATE INTO THE HEADING, BUT TWO SVM'S IN
SUCCESSION INSERT THE DATE ONLY

5-49

sa OC'FB'l INSERTS DATA FROM ONE OF VARIOUS BUFFERS
INTO THE HEADING, IF T~E CHARACTER
FOLLOWING THE S~ IS 'I', DATA IS COPIED
FROM THE AREA BEGINNING ONE BYTE PAST
THE ADDRESS SPECIFIED BY REGISTER
BMSBEGI IF THE. CHARACTE~ IS 'A',
REGISTER AF8EG rs USED' FOR ANY OTHER
CHARACTER. DATA IS COPIED FROM THE AREA
BEGINNING THREE AYTES PAST THE ADDRESS
SPECIFIED BY REGISTER ISBEGI DATA TO BE
COPIED CAN BE TERMINATED BY ANY SYSTEM
DELIMITER

PRNTHDR, NPAGE

CARRIAGE RETURNS, LINE FEEOS. AND FORM FEEDS SHOULD NOT
BE INCLUDED IN HEADER MESSAGES, OR THE AUTOMATIC
PAGINATION WILL NOT WORK PROPERLY.

INPUT INTERFACE

PAGINATE B =1 (NPAGE ONLY' SET AUTOMATICALLY BY
PRNTHDR)

LINCTR

PAGNUM

T

T

CONTAINS THE NUMBER OF THE LINE TO SE
PRINTED ON THE CURRENT PAGE (NPAGE ONLY'
SET TO ZERO AUTOMATICALLY BY PRNTHDR)

CONTAINS THE ClIRRENT PAGE NUMBER (NPAGE
ONLY' SET TO ONE AUTOMATICALLY ~Y
PRNTHDR)

OTHER PARAMETERS AS FOR WT2 (SEE WRTLIN DOCUMENTATION),
EXCEPT FOR PAGINATE AND PAGNUM (SEE ABOVE) AND OB
(INITIALIZED TO OBBEG BY NPAGE)I NOTE THAT THE OUTPUT
BUFFER WHERE THE TRANSLATED HEADI~G MESSAGE IS BUILT
(SPECIFIED BY REGISTER OBBEG) MUST BE AT LEAST TwO
BYTES GREATER THAN THE LONGEST LINE OUTPUT IN THE
TRANSLATED HEADING (NOT NECESSARILY T~E TOTAL HEADING
SIZE, IF THE ORIGINAL HEADING STRING CONTAINS ANY VMS)

OUTPUT INTERFACE

SA~E AS FOR WT2

ELEMENT USAGE

SAME AS FOR WT2

SUBROUTINE USAGE

SAME AS FOR WT2

EXITS

TO WT2

5-50

PROC USER EXITS

PROC USER E~ITS

SUMMARY

A USER-WRITTEN PROGRAM CAN GAIN CONTROL DU~ING EXECUTION OF
A PROC BY USING T~E UXXXX OR PXXXX COMMAND IN THE PROC,
w~ERE "XXXX" IS T~E HEXADECIMAL MODE-tO OF THE USER ROUTINE.
THE ROUTINE CAN PERFORM SPECIAL PROCESSING. AND THEN RETURN
CONTROL TO THE PROC PROCESSOR. NECESSARILY, CERTAIN
ELEMENTS USED BY TME PROC PROCESSOR MUST BE MAINTAINED BY
THE USER PROGRAM, THESE ELEMENTS ARE MARKED WITH AN
ASTERISK IN THE TABLE AELOw.

INPUT INTERFACE

POFLG

*BASE
*MODULO
*SEPAR

PQCUR
IR

*ISBEG

8 SET, INOICATTNG TMAT A PROC IS BEING
EXECUTED

o + CONTAIN THE BASE, MODULO, AND SEPARATION
T + OF THE MASTER DICTIONARY
T +

S

S

POINTS ONE PRIOR TO THE FIRST PROC
STATEMENT, THIS WILL BE WITHIN THE FILE
IN WHICH THE PROC RESIDES

POINTS TO TH~ TERMINAL AM OF THE PROC

S + POINT TO THE AM FOLLOWING THE UXXXX OR
R + PXXXX STATEMENT

S POINTS TO A BUFFER CONTAINING THE
PRIMARY AND SECONDARY INPUT BUFFERS,
FORMAT rs SB ••• PRIMARY INPUT ••• 8M
58 ••• SECONDARY INPUT ••• SM, LOGON
SETS THIS AREA TO ONE FRAME IN LENGTH,

S

WITH ADDITIONAL FRAMES ADOED BY
SUBROUTINE PQNEXTOVF AS THEY ARE
REQUIRED' ADOITIONAL FRAMES ARE RELEASEO
BY LOGOFF

POINTS ONE PRIOR TO TME FIRST CHARACTER
OF THE PRIMARY OUTPUT BUFFER (IN THE

PROt USER EXITS

PROCESS'S IS WORK-SPACE), THIS BUFFER
SHOULD ALWAYS BE TERMINATED WITH A SM

5-51

*STK8EQ S POINTS ONE PRIOR TO THE FIRST CMARACTER
OF THE SECONDARY OUTPUT BUFFER (STACK)'
THIS IS INITIALLY TWO LINKED FRAMES.
THOUGH MORE FRAMES MAY 8E LINKED TO IT
AUTOMATICALLY 8E SUBROUTINE PQNEXTOVF,
ADDITIONAL FRAMES ARE RELEASED BY
LOGOFF' THIS BUFFER SHOULD ALWAYS BE
TERMINATED WITH AS~

18 R IS THE CURRENT INPUT BUFFER POINTER (MAY
POINT WITHIN EITHER THE PRIMARY OR
SECONDARY INPUT BUFFERS)

R9 R + POINT TO THE PRoe CONTROL BLOCK (PCB+6)'
pg-REG S + USER PROGRAMS MAY CHANGE R9. WITH THE

B

*ZFLG 8

C

{S R

UPD R

PROC USER EXITS

OUTPUT INTERFACE

CONSIDERATION THAT ELEMENTS DEFINED
RELATIVE TO IT (SUCH AS pg.eUR-IB) WILL
NOT BE AVAILA8LE

SET IF 18 POINTS INTO THE SECONDARY
INPUT BUFFER, RESET OTHERWISE' THIS BIT
IS DEFINED RELATIVE TO R9. SO R9 MUST BE
SET TO THE PRoe CONTROL BLOCK (PCB+6) IN
ORDER TO REFERENCE THIS BIT

SET IF A ST ON COMMAND IS IN EFFECT

RESET TO IDENTIFY THE PROC PROCESSOR IN
CERTAIN SYSTF.M SUBROUTINES

CONTAINS A BLANK

SFLG ON

POINTS TO THE LAST
BYTE MOVED INTO
THE SECONDARY
OUTPUT SUFFER

POtNTS TO THE LAST

BYTE MOVED INTO
THE PRIMARY OUTPUT
BUFFER

8FLG OFF

POINTS TO THE LAST
BYTE MOVED INTO
THE PRIMARY OUTPUT
BUFFER

POINTS TO THE LAST

BYTE MOVED INTO
THE SECONOARY
OUTPUT eU'f'ER

IR A POINTS TO THE AM PRECEDING TH! NEXT PROC
STATEMENT TO BE EXECUTED, MAY BE ALTER!D
TO CHANGE PAOC EXECUTION

IS A + MAY BE ALTERED AS NEEDED TO ALTER DATA
UPD R + WITHIN THE INPUT AND OUTPUT BUFFERS, BUT
IB R + THE 'ORMATS DESCRIBED MUST 8E MAINTAINED

5-52

PROC BUFFERS EACH MUST Sf TERMINATED WITH A SM, AM'S
MAY SEPARATE PARA~ETERS

SFLG B

PQFLG B

SET IF ·STACK ON" IS IN EFFECT. RESET
OTHERWISE

SET IF SECONDARY INPUT BUFFER IS ACTIVE.
RESET OTHERWISE

SET IF PRoe EXECUTION IS TO CONTINUE.
RESET OTHERWISE

A8YT-ZSIT 8 ZERO

BASE D •
MODULO T •
SEPAR T •
SCO C • SCI C •
SC2 C • SET TO VALUE ON ENTRY
PQBEG S • PQEND S •
PBUFBEG S •
ISBEG S • STKSEG S +

EXIT CONVENTION

THE NORMAL METHOD OF RETURNING CONTROL TO THE PROC PROCESSOR

PROC USER EXITS

IS TO EXECUTE AN EXTERNAL BRANCH INSTRUCTION CENT) TO
2,PROC-I. IF IT IS NECESSARY TO ABORT PROC CONTROL AND EXIT
TO WRAPUP, BIT PQFLG SHOULD .8E RESET BEFORE BRANCHING TO ANY
OF THE WRAPUP ENTRY POINTS (SfE WRAPUP DOCUMENTATION).

NOTE THAT WHEN A PROC EVENTUALLY TRANSFERS CONTROL TO TCL
(VIA THE "PM OPERATOR), CERTAIN ELEMENTS ARE EXPECTED TO BE
IN AN INITIAL CONDITION. THEREFORE, IF A USER ROUTINE USES
THESE ELEMENTS, THEV SHOULD BE RESET BEFORE RETURNING TO THE
PROC, UNLESS THE ELEMENTS ARE DELIBERATELY SET UP AS A MEANS
OF PASSING PARAMETERS TO OTHER PROCESSORS. SPECIFICALLY,
THE BITS AFLG THROUGH ZFLG ARE EXPECTED TO 8E ZERO BY THE
TCl-II AND ENGLISH PROCESSORS. IT IS BEST TO AVOID USAGE OF
THESE BITS IN PROC USER EXITS. ALSO. THE SCAN CHARACTER
REGISTERS SCOt SCt. AND SCi MUST CONTAIN A S8, A BLANK, AND
A BLANK, RESPECTIVELY.

5-53

PQNEXTOVF

SUBROUTINE PQNEXTOVF ~AY BE USED BY USER-WRITTEN PROGRAMS
WHEN ADDING PARAMETERS TO THE PRIMARY OR SECONDARY INPUT
RUFFERS OR THE SECONDARY OUTPUT BUFFER. THIS ROUTINE WILL
AUTOMATICALLY ATTACH ADDITIONAL FRAMES TO THESE BUFFERS AS
REQUIRED. IT SHOULD BE USED BY SETTING XMODE TO ITS
~ODE-ID, AND WILL THEN BE ENTEREO ON A "FORWARD LINK ZERO"
CONDITION ON REGISTER 8 OR 15.

PQNEXTOVF INPUT INTERFACE

RS OR R15 R

R9 R

POINTS TO THE END OF THE FRAME ON WHICH
THE FORWARD LINK ZERO TRAP OCCURS

POINTS TO THE PROC CONTROL BLOCK

PQNEXTOVF OUTPUT INTERFACE

RS OR R15 R UNCHANGED

OTHER ELEMENTS AS FROM ATTOVF, IN PARTICULAR, OVRFLW:O
IF NO FRAME IS AVAILABLE

PRTERR

PRTERR (O,WRAPUP-III).

FUNCTIONAL DESCRIPTION

PRTERR IS USEO TO RETRIEVE ANO PRINT A MESSAGE FROM THE
SYSTEM FILE ERRMSG. A PARAMETER STRING MAY BE PASSED TO THE
ROUTINE, IN WHICH CASE THE PARAMETERS ARE FORMATTED AND
INSERTED ACCORDING TO THE CODES IN THE MESSAGE ITEM.

ITEMS IN THE ERRMSG FILE CONSIST OF AN ARBITRARY NUMBER OF
LINES (WHERE A LINE IS DELIMITEO BY AN AM), wITH EACH LINE
CONTAINING 4 CODE LETTER IN COLUMN ONE, POSSIBLY FOLLOWED BY
A STkING OR NUMERIC PARAMETER (NUMERIC PARAMETERS ENCLOSED
IN PARENTHESES). THE POSSI8LE CODES AND THEIR MEANINGS ARE
LISTED BELOW. (BRACKETS INDICATE OPTIONAL PARAMETERS.'

A [CoEC ••)]

o

E [STRING]

PARAMETER INSERTION CODE, THE NEXT
PARA~ETER FROM THE PARAMETER STRING, IF
ANY, IS PLACED INTO THE OUPUT 8UFFER, IF
"DEC. #" IS SPECIFIED. THE PARAMETER IS
LEFT-JUSTIFIED IN A BLANK FIELD OF THAT
LENGTH

THE SYSTEM DATE IN 00 MMM YYYY FORMAT IS
ADDEO TO THE OUTPUT BUFFER

THE MESSAGE ITEM-IO, SURROUNDED SY
BRACKETS, IS PLACED INTO THE OUTPUT
BUFFER, FOLLOWED 8Y "STRING" IF PRESENT

5-54

H STRING THE CHARACTER STRING IS PLACED IN THE
OUTPUT BUFFER (NO BLANK IS NECESSARY
BETWEEN THE CODE LETTER AND THE
BEGt~NING OF THE STRING)

L ((DEC •• ll THE OUTPUT BUFFER IS PRINTED, AND THE
SPEClFIED NUM~F.R OF LINE FEEDS IS OUTPUT
(ONE IF "OEe. *" IS NOT SPECIFIED)

R [(DEC ••)) LIKE A, ONLY THE PARAMETER IS
RIGHT-JUSTIFIED, IN A FIELD OF "DEC. #"
BLANKS IF ·OEC. *" IS SPECIFIED

PRTERR

S [(DEC. *)] THE POINTER TO THE CURRENT POSITION IN
THE OUTPUT BUFFER IS REPOSITIONED TO THE
SPECIFIED COLUMN (COLUMN ONE IF
"O£C. #" IS NOT PRESENT)

T

)(

THE SYSTEM TIME IN HHIMM.SS IS ADDED TO
THE OUTPUT BUFFER

THE NEXT PARAMETER IS SKIPPEO

INPUT INTERFACE

TS

EBASE
EMOD
ESEP

MBASE
MMOD
MSEP

OBSIZ!

R POINTS ONE PRIOR TO THE MESSAGE ITEM-ID,
WHICH MUST BE TERMINATED 8Y AN A~'
PARAMETERS OPTIONALLY FOLLOW. BEING
DELIMITED BY AM'S' THE PARAMETER STRING
MUST END WITH A SM

o + USED AS THE BASE, MODULO, AND SEPARATION
T + FOR THE MESSAGE FILE IF EBASE IS
T + NON-ZERO, IF EBASE IS ZERO. PRTERR

ATTEMPTS TO seT EBASE, EMOO, AND ESEP TO
THE PARAMETERS FOR THE SYSTEM FILE
ERRMSG, AND EXITS ABNORMALLY IF UNABLE
TO DO SO

o + USED AS THE PARAMETERS FOR THE MASTER
T + DICTIONARY IF NECESSARY TO SET UP fBASE.
T + EMOQ, AND ESEP, BUT PRTERR EXITS

ABNORMALLY IF M8ASE IS ZERO

T CONTAINS THE MAXIMUM NUMBER OF
CHARACTERS TO BE OUTPUT ON A LINE
CNQ~MALLY SET AT LOGON TIME)

5-55

OBBEG
OBEND

S + POINT TO THE BEGINNING ~ND END OF THE
S + OUTPUT BUFFER (NORMALLY SET AT LOGON

TIME)

OTHER ELEMENTS AS REQUIRED BY WRTlIN (SEE WRTLIN
DOCUMENTArION)

OUTPUT INTERFACE

PRTERR

TS

EBlSE
EMOD
ESEP

LINCTR
PAGNUM

ELEME~T USAGE

S860
S861
CTRO
T6
BASE
MODULO
SEPAR
AF
IR
B~S

BMS8EG
DB
R14
SR4

eTR1

SYSRI

INHIBITH

R POINTS TO THE AM AFTER THE MESSAGE
ITEM.IO IF NO PARAMETERS ARE PROCESSEO~
OTHERWISE TO THE AM OR 8M AFTER THE LAST
PARA~ETER PROCESSED

o + CONTAIN THE BASE, MODULO, AND SEPARATION
T + PARAMET~RS FOR THE SYSTEM FILE ERR~SG IF
T + EBASE WAS ORIGINALLY ZERO (AND THE FILE

WAS SUCCESSFULLY RETRIEVED)

T + UPDATED IF aIT PAGINATE IS SET
T +

B +
a +
T +
T +
o +
T +
T + UTILITY
R +
R +
R +
S +
R +
R +
S +

T USED WITH "R" CODE MESSAGES

S USED WITH "S" CODE MESSAGES

H INCREMENTED DURING RETRIEVAL OF FILE
ERRMSG IF EBASE IS ORIGINALLY ZERO, AND
DECREMENTED AFTERWARDS

ALL ELEMENTS USEO BY RETI~, AND BY WRTLIN (UNLESS
PRTERR EXITS ABNORMALLY), AND ELEMENTS USED BY GBMS IF
PRTERR ATTEMPTS RETRIEVAL OF THE SYSTEM FILE ERRMSG

5-56

PRTERR

SUBROUTINE USAGE

EXITS

RETIX, WRTLIN, DECINHIB, DATE (FOR "0" CODE MESSAGES),
TIME (FOR "T" CODE MESSAGES), GBMS (FOR RETRIEVINQ
ERRMSG)

SIX ADDITIONAL LEVELS OF SUBROUTINE LINKAGE REQUIRED IF
GBMS ATTEMPTS RETRIEVAL OF AN ERRMSG FILE WHICH IS A
"Q" CODE ITEM, OTHERWISE FOUR LEVELS REQUIRED

TO 2,ABSL IF E8ASE AND MBASE ARE 80TH ZERO

R.ETA, R.ETA.M, R.ATE. R.ETA.M

R.ETA (l,R.FIO-VI>.
R.ETA.M (~,R.FTO-VI>*

R.ATE (3,H.FIO-IV).
R.ATE.M (4,R.FIO.IV).

FUNCTIONAL DESCRIPTION

THESE ROUTINES PERFORM TRANSLATION OF CHARACTER STRINGS FROM
EBCDIC OR ASCII TO ASCII OR EBCDTC. EBCDIC CHARACTERS WITH
NO ASCII EQUIVALENT ARE TREATED AS BINARY OR PACKED DATA'
R.ETA AND R.ETA.M TRANSLATE THESE CHARACTERS TO VALUES
HAVING THE HIGH-ORDER BIT SET, AND R.ATE AND R.ATE.M
TRANSLATE THESE VALUES TO THE APPROPRIATE EBCDIC CHARACTERS.
R.ETA AND R.ATE OVERLAY THE INPUT STRING WITH THE TRANSLATED
STRING, WHILE THE OTHER TWO ROUTINES STORE THE TRANSLATED
STRING IN A SPECIFIED BUFFER AREA.

INPUT INTERFACE

CTRl T

R8 R

R15 R

CONTAINS THE NUMBER OF CHARACTERS TO 8E
TRANSLATED

POINTS TO THE FIRST CHARACTER OF THE
ASCII STRING BUFFER. FOR "MOVE" ROUTINES
ONLY (R.ETA.M AND R.ATE.M)

POINTS TO TME FIRST CMARACTE~ OF TH!
EBCDIC STRING BUFFER, FO~ NON-"MOVE"
~OUTINES. TMIS IS ALSO THE ASCII STRING
BUFFER

5-57

OUTPUT INTERFACE

CTR1 T =0

R8 R + POINT TO THE LAST CHARACTERS IN THEIR
R15 R + RESPECTIVE BUFFERS' FOR NON."MOVE"

ROUTINES, R8zR15

ELEMENT USAGE

TO T +
R13 R + UTILITV

R.ETA, R.ETA.M r R.ATE. R.ETA.M

R1A R +

SUBROUTINE USAGE

NONE

RDLABEL. RDLAAELY

RDLABEl (2,TAPEIO-II)*
RDLABELY CS,TAPEIO-II)

FUNCTIONAL DESCRIPTION

THESE ROUTINES READ MAGNETIC TAPE LABELS ANO STORE THEM IN
THE QUATERNARY CPNTROL BLOCK (PCB+!). TAPE LABELS HAVE THE
FOLLOWING FORMATa

SM L ••• LABEL DATA ••• VM TIME DATE AM REEL # AM SM

DATA IS STORED IN PCB+! AS FOLLOWSI

HEX BYTE
DISPLACEMENT

197 (BIT 0)

198

19A

19C

ICE

TYPE DESCRIPTION

B

T

T

-
-

"UNLABELED TAPES IN USE" FLAG

REEL NUMBER

RECORD SIZE SAVE AREA

LABEL SAVE BUFFER (44 BYTES)

LABEL READ/WRITE BUFFER (44 BYTES)

5-58

SINCE THE TAPE 110 ROUTINES ARE NON-REENTRANT. INTERN.L
STORAGE IS UTILIZED WHEN AN EOT CONDITION IS HANDLED BY THE
TAPE READ OR WRITE SUBROUTINES. THESE ROUTINES SAVE
REGISTERS R13. RIG, AND R15 IN INTERNAL SAVE AREAS (DEFINED
IN TAPEIO-II). AND SET UP R13 TO DISPLACEMENT X'19&' IN THE
QUATER~ARY CONTROL BLOCK IN ORDER TO ADDRESS ELEMfNTS IN
THAT SLaCK. R13, RtG, AND R15 ARE RESTORED ON EXIT.

RDLABEl MAY BE CALLED ONCE BY ANY PROGRAM TO READ THE LABEL
FROM REEL *1' IF THE TAPE IS LABELED. THE LABEL IS STORED
IN THE SAVE AREA' IF NOT. THE "UNLABELED TAPES IN USE' FLAG
IS SET. RDlABELY IS SIMILAR TO RDlABEL. EXCEPT THAT THE
REEL NUMBER IS SPECIFIED IN TALLY CTR1.

INPUT INTERFACE

CTR! T CONTAINS THE REEL NUMBER, FOR RDLABELY

ROlABEl. ROLABfLY

ONLY

OUTPUT INTERFACE

THE LABEL SAVE AREA IS SET UP AS DESCRIBED

ELEMENT USAGE

R13 R +
RIG R + UTILITY
R15 R +

00 D ~
01 0 + AS USED 8Y TPREAO
R2.CO C +
TG T +

SUBROUTINE USAGE

TPREAD, BCKSP (FOR UNLABELED TAPES), CVDRtS (FOR
LABELED TAPES), CRLFPRINT (FOR ERROR MESSAGES)' ONE
INTERNAL SUBROUTINE

MAXIMUM TEN ADDITIONAL LEVELS OF SUBROUTINE LINKAGE
REQUIRED (SEE TPREAD DOCUMENTATION)

ERROR CONDITIONS

SEE TPREAD DOCUMENTATION

RDLINK. WTLtNK

ROLINK (G,OISKFIO-I)*
WTLINK (b,OISKFIO-Il*

5-59

FUNCTIONAL O!SCRIPTION

THESE ROUTINES READ OR WRITE THE LINK FIELDS FROM OR TO A
FRAME, TO OR FROM THE TALLIES NNCF, FRMN, FRMP, AND NPCF.
THE FlO OF THE FRAME IS SPECIFIED IN RECORD.

INPUT/OUTPUT INTERFACE

RECORD

NNeF

FRto1N

FRto1P

NPCF

R15

ELEMENT USAGE

Rl4

o

H

D

o

H

R

R

SUBROUTINE USAGE

NONE

RDREC

CONTAINS THE FlO OF THE FRAME WHOSE
LINKS ARE TO READ OR WRITTEN

CONTAINS THE NUM8ER OF NEXT CONTIGUOUS
FlUMES

CONTAINS THE FlO OF THE NEXT OR FORWARD
LINKED FRAME

CONTAINS THE FlO O.F THE PREVIOUS OR
BACKWARD lIN~ED FRAME

CONTAtNS THE NUMBER OF PREVIOUS
CONTIGUOUS FRAMES

POINTS TO BYTE ZERO OF THE FRAME

SCRATCH

RDREC C],OI8KFIO-Il*

FUNCTIONAL DESCRIPTION

ROREe IS USED TO SET UP THE REGISTERS IR, IRBEG, AND IREND
TO THE BEGINNING AND ENDING OF THE FRAME AS DEFINED BY THE
TALLY RECORD. THE SUBROUTINE ASSUMES THE FRAME HAS THE
LINKED FORMAT AND THEREFORE. IR AND IRBEG ARE SET POINTING
TO THE ELEVENTH BYTE OF THE FRAME. THAT IS, ONE PRIOR TO THE
FIRST DATA BYTE OF THE FRAME. tREND IS SET UP POINTING TO
THE LAST OR 511TH BYTE OF THE FRAME. AOotTIONALLY THE
SUBROUTINE RDLINK IS ENTERED TO SET UP RI5 POINTING TO THE
LINK PORTION OF THE FRAME AND TO SET UP THE LINK ELEMENTS
NNeF, NPCF, FRMN. AND FRMP.

INPUT INTERFACE

RECORD ° CONTAINS THE FlO REQUIRED

5-60

OUTPUT INTERF~CE

IR R + POINT ONE PRIOR TO THE FIRST DATA
IRBEG S

IREND S

R15 R
NNCF H
FRMN 0
FRMP 0
NPCF H

ELEMENT USAGE

NONE

SUBROUTINE USAGE

NONE

+ OF THE FRAME

POINTS TO THE LAST DATA BYTE
FRAME

+
+
+ (SEE RDLINK/WTLINK DOCUMENTATION'
+
+

READLIN, REAOLINX, READIB

REAOLIN CO,TERMIO).
READLINX (&,TERMIO)*

READIS (8,TERMI01*

FUNCTIONAL DESCRIPTION

OF

BYTE

THE

THESE ARE THE STANDARD TERMINAL INPUT ROUTINES. ~EGISTER
IBBEG POINTS TO A BUFFER AREA WHERE THE ROUTINE WILL INPUT
THE DATA. INPUT CONTINUES TO THIS AREA UNTIL EITHER A
CARRIAGE RETURN OR LINE FEED IS ENCOUNTERED, OR UNTIL A
NUMBER OF CHARACTERS EQUAL TO THE COUNT STORED IN IBSIZE
HAVE SEEN INPUT. THE CARRIAGE RETURN OR LINE FEED
TERMINATING THE INPUT LINE IS OVERWRITTEN WITH A SEGMENT
MARK (SM), AND REGISTER IBEND POINTS TO THIS CHARACTER ON
RETURN. IF THE INPUT IS TERMINATED BECAUSE THE MAXIMU~
NUMBER OF CHARACTERS HAS BEEN INPUT, A 8M WILL BE ADDED AT
THE END OF THE LINE.

THESE ROUTINES CALL GETBUF TO READ INPUT DATA FROM THE
TERMINAL, AND THEN DETER~INE IF THE LAST CHARACTER WAS A
CARRIAGE RETURN OR LINE FEED. IF THE LAST CHARACTER WAS A
CONTROL CHARACTER (SEE GETBUF OOCUMENTATION). THESE ROUTINES
EITHER ACCEPT OR DELETE THE CHARACTER. DEPENDING ON THE
VALUE OF BITCCDEL, AND CALL GET8UF AGAIN. REAOLIN AND
READLINX ALSO ECHO A CR/LF AT THE END OF THE INPUT LINE.

5-61

THE ENTRIES READLYN ANO REAOTS ALSO PROVIDE THE FACILITY FOR
TAKING INPUT FRO~ A SlACK INSTEAD OF DIRECTLY FROM T~E
TERMINAL (SEe BELOW). THIS FEATURE IS USED, FOR EXAMPLE, BY
THE PROC PROCESSOR TO STORE INPUT LINES WHICH ARE RETURNED
TO REQUESTING PROCESSORS AS IF THEY ORIGINATED AT THE
TERMINAL. IF T~E LAST CHARACTER IN A STACKED LINE IS A "<",
IT IS REPLACED WITH A SM. TERMINAL INPUT RESUMES WHEN THE
STACKED INPUT IS EXHAUSTED. READLINX DOES NOT TEST FOR
STACKED INPUT.

TAB CHARACTERS (CONTROL-I, X'Oq') WILL BE PROCESSED IF BIT
ITABFLG IS SET. THE INPUT TA8 TABLE IS IN THE QUADRENARY
CONTROL BLOCK, STARTING AT PYTE 64. UP TO ELEVEN VALUES MAY
~E STORED IN TALLIES BEGINNING AT THIS LOCATION, WIT~ VALUES
IN INCREASING ORDER OF COLUMN POSITION. VALID TAB VALUES
CAUSE A~ APPORPRIATE NUMBER OF BLANKS TO BE OUTPUT TO THE
TERMINAL IN ORDER TO POSITION THE CURSOR.

READLIN, AEADLINX. READIR

INPUT INTERFACE

ITARFLG B

CCDEL 8

IeBEG s

IB&IZE T

LFDLY T

FRMTFLG 8

TITFLG B

PRMPC c

BSPCH C

IF SET, TAB CHARACTERS ARE PROCESSED
\

IF SET, CONTROL CHARACTERS ARE DELETED
FROM TERMINAL INPUT

POINTS ONE BYTE BEFORE THE BUFFER AREA
WHERE INPUT IS TO BE STORED; THE BUFFER
MUST BE TWO RYTES GREATE~ THAN IBSIZE

CONTAINS THE MAXIMUM NUMBER OF
CHARACTERS ACCEPTED FOR INPUT

CONTAINS (IN THE LOW-O~OER BYTE) TME
NUMBER OF "FILL" CHARACTERS (NULLS) TO
BE ISSUED AfTER A CR/LF ECMO TO THE
TERMINAL (FOR READLIN AND READLINX ONLY)

IF SET, CONTROL-X CAUSES BACKSPACES TO
THE BEGINNING OF THE INPUT AREA INSTEAD
OF CRILF TO A NEW INPUT LINE' ALSO,
CONTROL-R IS IGNORED. REQUIRED BY GETBUF

IF SET, CONTROL WILL NOT BE RETURNED IF
THE MAXIMUM NUMBER OF CHARACTERS IS
INPUT UNLESS A NON-EDITING CONTROL
CMARACTER IS ENTERED (E.G. CARRIAGE
RETURN)' REQUIRED BY GETBUF

TERMINAL PROMPT CHARACTER; REQUIRED BY
GETBUF

CONTAINS THE CHARACTER TO BE ECHOED TO
THE TERMINAL WHEN THE BACK SPACE KEY IS
PRESSEO' REQUfRED BY GETBUF

5-62

STKFLG B

STI<INP S

IF SET, GETIS TESTS FOR "STACKED" INPUT,
TERMIN.L INPUT WILL NOT BE REQUESTED
UNTIL STACKED INPUT IS EXHAUSTED

POINTS TO THE NEXT "STAC~ED" INPUT LINE'
LINES ARE DELIMINATED BY AM'S, WITH A SM

READLIN, READLINX, READIS

OUTPUT INTERFACE

IB

IBEND

ST~FLG

STKtNP

ELEMENT USAGE

R

B

S

C +

INDICATING THF END OF THE STACK

zIBSEG

POINTS TO A SM ONE BYTE PAST THE END
OF INPUT DATA (OVERWRITES THE CR OR LF)

ZEROED If THE END OF STACKED INPUT WAS
REACHED. NOT CHANGED IF INITIALLY ZERO

POINTS TO THE NEXT LINE OF STACKED INPUT
(OR END OF STACK) IF STACKED INPUT IS
BEING PROCESSED

R2.CO
00
R14
R15

° + UTILITY
R +
R +

SYSRO s

SUBROUTINE USAGE

IF NO STACKED
READLINX)

USED IF ITABFLG SET ANO TAB CHARACTERS
PROCESSED

INPUTI GETBUF, PCRLF (EXCEPT FOR

TWO ADDITIONAL LEVELS OF SUBROUTINE LINKAGE REQUIRED IF
TAB CHARACTERS PROCESSED, OTHERWISE ONE LEVEL REQUIRED

ERROR CONDITIONS

IF A STACKED INPUT LINE EXCEEDS IBSIZE, THE LINE IS
TRUNCATED AT ISSIIE, THE REMAINDER OF THE LINE IS
LOST.

RELOVF, RELBLK, RELCHN

RELOVF (2,OF1)*
RELBLK et"OF1)*
RELCHN (3,OFt)*

5-63

FUNCTIONAL DESCRIPTION

THESE ROUTINES ARE USED TO RELEASE FRAMES TO THE OVERFLOW
SPACE POOL. RELOVF IS USED TO RELEASE A SINGLE FRAME,
REL8LK IS USED TO RELEASE A BLOCK OF CONTIGUOUS FRAMES, AND
RELCHN IS USED TO RELEASE A CHAIN OF LINKED FRAMES (WHICH
MAY OR MAY NOT BE CONTIGUOUS). A CALL TO RELCHN SPECIFIES
THE FIRST FlO OF A LINKED SET OF FRAMES. THE ROUTINE WILL
RELEASE ALL FRAMES IN THE CHAIN UNTIL A ZERO FORWARD LINK IS
ENCOUNTERED.

INPUT INTERFACE

OVRFLW o

00 D

OUTPUT INTERFACE

NONE

ELEMENT USAGE

OVRFLW 0
R14 R
R15 R

DO 0
01 0
02 D

SUBROUTINE USAGE

+
+
+

+

CONTAINS THE FlO OF THE FRAME TO BE
RELEASED (FOR RELOVF), OR THE FIRST FlO
OF THE BLOCK OR CHAIN TO BE RELEASED
(FOR RELBLK AND RELCHN, RESPECTIVELY)

CONTAINS THE NUMBER OF FRAMES (8LOCK
SIZE) TO 8E RfLEASED, FOR RELBLK ONLY

UTILITY

+ USED BY SYSREL
+

SYSREL, TWO INTERNAL SU8ROUTINES

RETIX. RETI, RETI~X. RETIXU

RETIX (l,DISKFIO-I)*
RETI CO,DISKFIO-I)*

RETIXX (12,DISKFIO-I)*
RETIXU (It,DISKFIO-I)*

RELOVF, RELBLK, RELCHN

TwO ADDITIONAL LEVELS OF SUBROUTINE LINKA'! REQUIRED

5-64

FUNCTIONAL DESCRIPTION

THESE .RE THE ENTRY POINTS TO TME STANDARD SYSTEM ROUTI~E
FOR RETRIEVING AN ITEM FROM A FILE. THE lTEM-ID IS
EXPLICITLY SPECIFIED TO THE ROUTINE, AS ARE THE FILE
PARAMETERS BASE, MODULO. AND SEPARATION. ADDITIONALLV, TME
NUMBER OF THE FIRST FRAME IN THE GROUP IN WMICH THE ITEM MAY
BE STORED MUST BE SPECIFIED IF THE ENTRY RETJXX IS USED.
THE OTHER ENTRIES PERFORM A "HASMTNG" ALGORITHM TO DETERMINE
THE GROUP (SEE MASH OOCUMENTATYON). TME GROUP IS SEARCHED
SEQUENTIALLY FOR A MATCHING ITEM-rD. IF THE ROUTINE FINDS A
MATCH, IT RETURNS POINTERS TO TME BEGINNING AND END OF THE
ITEM, AND THE ITE~ SIZE (FROM THE ITEM COUNT FIELD). IF
ENTRY RETIXU IS USED. THE GROUP IS LOCKED DURING PROCESSING,
PREVENTING OTHER PROGRAMS FROM ACCESSING (AND POSSIBLY
CHANGING) THE DATA.

THE ITEM-IO IS SPECIFIED IN A BUFFER DEFINED 8Y REGISTER
8MSSEG. IF ENTRY RETI IS USED, REGISTER 8MS MUST POINT TO
THE LAST 8YTE OF THE ITEM-YO. ANO AN AM WILL BE APPENDED TO
IT 8Y THE ROUTINE. FOR ALL OTHER ENTRY POINTS, THE ITEM-IO
MUST ALREADY BE TERMINATED BV AN AM.

INPUT INTERFACE

BMS8EG

8MS

BASE
MODULO
SEPAR

RECORD

S

R

POINTS ONE BYTE BEFORE THE ITEM-IO

POINTS TO THE LAST CHARACTER OF THE
ITEM-IO, FOR RETI AND RETIXX ONLY

D + CONTAIN THE BASE. MODULO, AND SEPARATION
T + OF THE FILE TO BE SEARCHED
T +

D CONTAINS THE BEGINNING FlO OF THE GROUP
TO BE SEARCHED, FOR RETIXX ONLY

OUTPUT INTERFACE

RETIX, RETI. RETIXX. RETIXU

eMS
BMSEND

RECORD

NNCF
FRMN
FRMP
NPCF

R + POINT TO THE LAST CHARACTER OF THE
S + ITEM-IO

o CONTAINS THE BEGINNING FID OF THE GROUP
TO WHICH THE ITEM-IO HASHES (SET IF HASH
IS CALLED)

H +
o + CONTAIN THE LINK FIELDS OF THE FRA~E
o + SPECIFIED IN RECORD I SET BY ROREC
H +

5-65

XMODE

R"'SIT

SIZE

R14

IR

SR4

T

B

T

R

S

110

ITEM FOUNDI

-I

=VALUE OF ITEM
COUNT FIELD

POINTS ONE PRIOR
TO THE ITEM COUNT
FIELD

POINTS TO THE
FIRST H4 OF THE
ITEM

POINTS TO THE
LAST AM OF THE
ITEM

ITEM NOT FOUNDI

-0

=0

POINTS TO THE LAST
AM OF THE LAST ITEM
IN THE GROUP

POINTS TO THE AM
INDICATING END OF
GROUP DATA (:Rt4+1)

=R14

ELEMENT USAGE

NONE (EXCEPT 00. 01. AND R15)

SUBROUTINE USAGE

RDREC (LOCAL), HASH (EXCEPT FOR RETIXX, LOCAL), GLOCK
(RETIXU ONLY), IROVF (FOR IR OVERFLOW SPACE HANDLING
AND ERROR CONDITIONS)

RETIX, RETI, RETIXX, RETIXU

EXITS

THREE ADDITIONAL LEVELS OF SUBROUTINE LIN~AGE REQUIRED
(FOR IROVF AND GLOCK, RDREC AND HASH REQUIRE ONE
LEVEL)

IF THE DATA IN THE GROUP IS BAD. PREMATURE END OF
LINKED FRAMES, OR NON-HEXADECIMAL CHARACTER ENCOUNTERED
IN THE COUNT FIELD. THE MESSAGE

GROUP FORMAT ERROR XXXXXX

IS RETURNED (WHERE XXXXXX IS THE FtD INDICATING WHERE
THE ERROR WAS FOUND). AND THE ROUTINE RETURNS WITH AN
-ITEM NOT FOUND" CONDITION. DATA IS NOT DESTROYED. AND
THE GROUP FORMAT ERROR WILL REMAIN.

5-66

REWIND

FUNCTIONAL DESCRIPTION

THIS ROUTINE REWINDS THE TAPE UNIT. IT CALLS IN IT AND
REQUIRES FOUR ADDITIONAL LEVELS OF SUBROUTINE LINKAGE.

SETPIB

SETPIB (~,LOGON)*

FUNCTIONAL DESCRIPTION

SETPIB SETS R14 POINTING TO THE PI8 OF THE CALLING PROCESS.

INPUT INTERFACE

NONE

OUTPUT I~TERFACE

RiG

ELEMENT USAGE

NONE

SUBROUTINE USAGE

NONE

SETPI8F

POINTS TO THE
PROCESS'S PIe

SETPIBF C3,ABSL1)*

FUNCTIONAL DESCRIPTION

FIRST BYTE OF THE

SETPIBF SETS Rt5 POINTING TO THE PIB ASSOCIATEO WITH LINE
ZERO. NO OTHER INTERFACE OR ELEMENT USAGE IS REQUIRED BY
nus ROUTINE.

SORT

5-67

FUNCTIONAL OESCR1PTION

THIS ROUTINE SORTS AN ARBITRARILY LONG STRING OF KEYS IN
ASCENOI~G SEQUENCE ONLY, THf CAL~ING PROGRAM MUST
COMPLEMENT THE KEYS IF A DESCENOING SORT IS REQUIRED. THE
KEYS ARE SEPARATED BY SM'S WHEN PRESENTED TO SORT. THEY ARE
RETURNED SEPARA1ED BY SB'S. ANY CHARACTER, INCLUDING SYSTEM
OELIMITERS OTHER THAN THE SM ANn SB MAY BE PRESENT WITHIN
THE KEYS.

AN N-wAY POLYPHASE SORT-MERGE SORTING ALGORITHM IS USED.
THE ORIGINAL UNSORTED KEY STRING MAY "GROW" BY A FACTOR OF
lOX, AND A SEPARATE BUFFER IS REQUIRED FOR THF. SORTED KEY
STRING, WHICH IS ABOUT THE SAME LENGTH AS THE UNSORTED KEY
STRING. THE "GROWTH" SPACE IS CONTIGUOUS TO THE END OF THE
ORIGINAL KEY STRING. THE SECOND BUFFER MAY BE SPECIFIED
A~YWHERE. SORT AUTOMATICALLY OBTAINS AND LINKS OVERFLOW
SPACE WHENEVER NEEDED. DUE TO THIS. ONE CAN FOLLOW STANDARD
SYSTEM CONVENTION AND BUILD THE ENTIRE UNSORTED STRING IN AN
OVERFLO~ TABLE WITH OVRFLCTR CONTAINING THE BEGINNING FlO'
THE SETU? IS THENI

START OF
UNSORTED KEYS

E~D OF
UNSORTED KEYS

START OF
SECOND BUFFER

THE SECOND BUFFER POINTER THEN IS MERELY SET AT THE END OF
THE "GROWTH" SPACE. AND SORT IS ALLOWED TO OBTAIN ADDITIONAL
SPACE AS REQUIRED.

ALTERNATELV, THE ENTIRE SET OF BUFFERS MAY BE IN THE IS OR
OS WORKSPACE IF THEY ARE LARGE ENOUGH.

INPUT INTERFACE

SR1 S

SR2 S

SORT

SR3 S

OUTPUT INTERFACE

SRt S

POINTS TO THE SM PRECEDING THE FIRST KEV

POINTS TO THf SM TERMINATING THE LAST
KEY

POINTS TO THE BEGINNING OF THE SECOND
BUFFER

POINTS BEFORE THE S8 PRECEDING THE FIRST
SORTED KEY (fHE EXACT OFFSET VARIES FROM
CASE TO CASEl, THE END OF THE SORTfD
KEYS (SEPARATED BV 58'S) IS MARKED BY A
8M

5-68

ELEMENT USAGE

SBt B +
SC2 C +
XMOOE T +
FPO F +
FPt F +
IS ~ +
as R +
eMS R +
TS R +
CS ~ + UTILITY
R14 R +
R15 R +
51 S +
52 5 +
S3 S +
55 S +
S7 S +
58 S +
Sq S +

SUBROUTINE USAGE

COMP (O.SORT)

GWS USED WITH XMOOE

FOUR ADDITIONAL l~VELS OF SU9ROUTINE lINKAGE R~QUIREO

TCl"!

MOt (O.TCl-I)*
MOtS (2.TCl .. n*

FUNCTIONAL DESCRtPTION (MOt)

MOt IS THE ~ASIC ENTRY POINT (NOT A SUBROUTINE) FOR THE
TERMINAL CONTROL lANGUAGE (TCl) PROCESSOR. ~HEN THI5 ENTRY
POINT IS USEO. TCl CHECKS FOR PROC CONTROL, AND IF SO.
ENTERS THE PROC PROCESSOR. IF A PROC IS NOT IN CONTROL (AND
SIT CHAINFlG IS ZERO), AN INPUT LINE IS OBTAINEO FROM THE
TERMINAL. AND CONTROL PASSES IMMEDIATELY TO MOtS.

INPUT INTERFACE (MOt)

f CHAINFlG B

PQFLG 8

IF SET, TERM!NAl INPUT IS NOT OBTAINED
(AS WHEN CHAINING FROM ONE DATA/BASIC
PROGRAM TO ANOTHER)

SET TO INDICATE PROC CONTROL

.. 5-69

OUTPUT INTERFACE (MO 1)

AFLG B +
• +
• +
• + :::0

AFLG+87 B +
OAFQ B +

ABIT B +
,> +
• + =0

• +
zrq r"'6 B +

Ftt."Ol)E T ::0

PH l-iPC C CONTAINS A CO .. ON f': 'l

sen c CONTAINS A 313 0" F8 'l

SCt C + CONT41N A BLA'JK
SC? C +

YCL""1

riSE ND s ::HSAEG

R ::ISBE:i

ns R ::OSAEG

OTHER ELEMENTS AS SfT BY ~Dla, If E~TEREO

ELEMENY USAGE [MOt)

R 1 'I R

SUBROUTINE USAGE (MD1l

IF PQFLG=O AND CHA INFLG~·O:

WRTLIN, REAOLIN

FOUR ADOITIONAL LEVELS D~ SIJBfHUTINE LINKAGE lJSED

~XITS (M01)

TO 6,PQ~OO IF PQFlGal. OTHER~ISE TO M01R

'5-70

FUNCTIONAL DESCRIPTION t~Dl~)

M01~ IS T~E POINT WHERE TCL ATTfMPTS TO RETRIEVE A VERB
(FIRST SET OF CONTIGIJOUS NO-J .. RLlNK OArii IN THE INPUT BUFFER)
FROM A USER'S MASTER OIrTIO~ARY. ANn VALIOATE IT AS SUCH.
tF NO ERRORS ARE FOUND. THE RFS~ OF THE DATA IN THE INPUT
BUFFER IS EDITED AND COPIED INTr' THE 15 WORK SPACE, AND CONTROL
PASSES TO THE PROCESSOR SPECIFI[D IN TH,~ PRIMARY-MODE-IO ATTRIBUTE
OF THE VERB, OR TO THE PROC PROtFSSOR ll~ THE DATA DEFINES A
PROC (ATTRIRUTE 1='PQI).

OPTION STRINGS, ENCLOSED IN PARENTHfSES. ARE ALSO PROCESSED BY Tel
AT THIS POINT, U"lLESS CI-:ARA::TER SCP:: I 0 I. SEE GETOPT DOCUMENTATION
FOR F lJ R THE R I N FOR MAT ION A ~ 0 U T 0 f' T I 0 hi 5 •

INPUT INTERFACE (MOtB]

IS R

BMSBEG s

POTNTS ONE CHARACrER BEFORE THE INPUT
rH T i\

POI N T 5 TOT H feE G PJ ~ I N G 0 F THE B ~1 S W 0 R K
SPAcE

OUTPUT INTERFACE (MOtA)

Tel-I

CHAINFlG R +:0
DAF8 ~ +

PASE
MODULO
SEPAR

18
rSEND

BMS
6MSENO

IR

RECORD
NNCF
FRMN
FRtiiP
NPCF
SIZE

o +
T + :M8ASE, MMonULO. MSEPAR
T +

R + POINT TO THE 8M AT fHE END OF THE
5 + INPUT LINE

R + POINT TO THf LAST :HARACTER I~ THE VERB
S + NAME (FOR RETIX)

R POINTS TO THE AM ;OLLOWING ATTRIBUTE G
OF THE VER8 ITEM, O~ TO THE END-OF-DATA
AM IN THE tTff-i, OR TO THE n['JII XI\.
ATTRIBUTE O'iE IF TI1:: ITEM DEFINES A PROC

S POINTS TO THE AM Af THE END OF THE VERB
ITEM IN ThE MASTER DICTIONARY, IF FOUND

D ...
H 04!

o it
o + (SEE RET I X r, 0 C U fvl E N T ~ T ! ON)
H ~
T +

5-71

TeL-I

T~E FOLLOWING SPECIFICATIONS ARE MEANINGFUL ONLY IF THE
FIRST TWO INPUT CHARACTERS ARE NOT 'PQ':

SCP

CTRO

MODEJ02

MOOEIO~

SKBIT
IFLG
VFlG

OS

IS
ISBEG

c

T

T

T

B •

CONTAINS THE CHARACTER IMMEDIATELY
FOLLOWING 'P' IN THE VERB DEFINITION, IF
PRESENT, OTHERWISE CONTAINS A BLANK

CONTAINS THE PRIMARY MODE-IO SPECIFIED
IN THE VERB DEFINITION

CONTAINS THf SECONDARY MOOE.IO FROM THE
VERB, IF PRESENT, OTHERWISE 0

CONTAINS THE TERTIARY MOOE-ID FROM THE
VERB, IF PRE Sf NT, OTHERWISE 0

B + =0, IF NO ERRORS ENCOUNTERED (SEE ~ELOW)
B +

R =OSREG

R + P~INT ONE CHARACTER eEFORE THE BEGINNING
S + OF THE EDITED INPUT LINE. CHARACTERS

ARE CDPIEO FQOM THE IB, SURJECT TO THE
FOLLOWING RULES:

1) ALL CONTROL CHARACTERS AND SYSTEM
DELIMITERS (SA, SM, AM, VM, SVM) IN THE
INPUT BUFFER ARE IGNORED EXCEPT WHEN
WITHIN DOUBLE QUOTES ("). CONTROL
CHARACTERS (cX'20') ARE ALSO IGNORED
WHEN WITHIN SINGLE QUOTES (').

21 REDUNDANT BLANKS (T~O OR MO~E BLANKS
IN SE~UENCE) ARE NOT COPIEO, EXCEPT I~
STRINGS ENCLOSED BY SINGLE OR DOUBLE
QUOTE SIGNS.

3) STRINGS ENCLOSED IN SINGLE QUOTE
SIGNS ARE COPIED AS: SM I STQING SB.

4) STRINGS ENCLOSEO IN DOUBLE QUOTE
SIGNS ARE COPIED ASS SM V STRING SB.

5) END OF DATA IS MARKED AS: SM z.

ELEMENT USAGE (MOta)

Rt4 R

R15 R

5-72

XMODE T

REJCTR

00
01

T (USED ON [RROR CONDITIONS)

o + USED BY G~TOPT
D +

SUBROUTINE USAGE (MOIRl

RETIX, CVXIR IF FIPS~ INPUT CHARACTERS NOT 'PQ',
GETOPT IF A LEFT PARENTHESIS IS ENCOUNTERED OUTSIDE
QUOTE MARKS

FOUR ADDITIONAL lEVELS or SUBROUTINE LINKAGE REQUIRED

EXITS (M01S'

Tel-I

TO O,PQ-OO IF FIRST INPUT CHARACTERS ARE 'PO' AND PQFlG
IS ZERO. OR TO 1,PQ-OO IF FIRST INPUT CHARACTERS ARE
'PQ' AND PQFlG IS SET. OTHEREWISE TO THE ENTRY POI~T
SET UP IN CTRO. IF THE VERB IS ~OT FOUND IN THE MASTER
DICTIONARY, OR HAS A BAD FORMAT, CONTROL PASSES TO M099
IN THE WRAPUP PROCESSOR, WHICH PRINTS AN ERROR MESSAGE.

ERROR NUMBER
(IN REJCTR)

2

3

30

ERROR TYPE

UN~VE~ NUM8ER OF 'INGlE OR DOUBLE QUOTE
MARKS IN THE INPUT DATA

VERB CANNOT BE IO~NTIFIEO IN THE M/OICT

VERR FORMiT ERROR (PREMATURE END OF DATA
OR A NON-HEXADFCIMAL CHARACTER PRESENT
IN THE MODE-IO'

TCl-II

FUNCTIONAL DESCRIPTION

M0200 (O,TCl-IIl
MD201 (l,TeL-In

THESE ARE THE ENTRY POINTS (NOT SUBROUTINES) INTO THE Tel-II
PRbcESSOR, USEn WHENEVER A VERB REQUIRES ACCESS TO A FILE,
OR TO ALL OR E~PLICITLY SPECIFIED ITEMS WITHIN A FILE.
MD200 IS ENTERED fROM THE TCl-I PROCESSOR AFTER DECODING THE
VERB (PRIMARY MODE-ID = 21. MD201 IS USED BY Tel-II ITSELF
TO REGAIN CONTRO~ FROM WQAPUP UNDER CERTAIN CONDITIONS (SEE
BELOW). TCL-II EXITS TO THE PROCESSOR WHOSE MODE-ID IS
SPECIFIED IN MobEI02r TYPICALLY PROCESSORS SUCH AS THE
EDITOR, ASSEMBlERi, LOADER, ETC. USE TCL-I I TO FEED THEM THE
SET OF ITEMS WICH WAS SPECIFIED IN THE INPUT DATA.

5-73

ON ENTRV, TCl-II C~ECKS THE VERa DIFINITION FOR A SET OF
OPTION CHARACTERS IN ATTRIBUTE SI VERB OPTIONS ARE SINGLE
CHARACTERS IN ANV SEQUENCE AND COMBINATlON, AND ARE LISTED
BELOW (ALL OTHER CHARACTERS ARE IGNORED).

OPTION

c

E

F

N

p

TCl-II

u

z

MEANING

COpy ~ ITEMS RETRIEVED ARE COPIED TO THE
IS WORKSPACE

EXPAND • ITEMS RETRIEVED ARE EXPANDED
AND COPIED TO THE IS WORK SPACE (SEE
EXPAND DOCUMENTATION)' IGNORED IF THE
"C" OPTION IS NOT PRESENT

FILE ACCESS ONLY. FILE PARAMETERS ARE
SET UP BUT ANY ITE~-LIST IS IGNORED BY
TCL-II, IF THIS OPTION IS PRESENT, ANY
OTHERS ARE IGNORED

NEW ITEM ACCEPTABLE • IF THE ITEM
SPECIFIED IS NOT ON GILE. THE SECONDARV
PROCESSOR STILL GETS CONTROL (THE
EnITOR. FOR EXAMPLE. CAN PROCESS A NEW
ITEM)

PRINT - ON A FULL FILE RETRIEVAL (ALL

ITEMS), THE ITEM-ID OF EACH ITEM IS
PRINTED AS IT IS RfTRIEVED

UPDATING SEQUfNCE FLAGGED • IF ITEMS ARE
TO UPDATED AS RET~IEVED, THIS OPTION IS
MANDATORV

FINAL ENTRY REQUIRED • THE SECONDARV
PROCESSOR WILL BE ENTERED ONCE MORE
AFTEq ALL ITEMS HAVE BEEN RETRIEVED (THE
COpy PROCESSOR. FOR INSTANCE, USES THIS
OPTION TO PRINT A MESSAGE)

T~E INPUT DATA STRING TO TCl-II CONSISTS OF THE FILE-NAME
(OPTIONALLY PRECEDED RY THE MODIFIER "OICT". WHICH SPECIFIES
ACCESS TO THE DICTIONARY OF THE FILE), FOLLOWED 8Y A LIST OF
ITEMS, OR AN ASTERISK (".") SPECIFYING RETRIEVAL OF ALL
ITEMS IN THE FILE.

INPUT INTERFACE

IR R

SR4 S

POINTS TO THE AM BEFORE ATTRIBUTE S OF
THE VERB

POINTS TO THE AM AT THE END OF THE VERB

5-74

MODEID2

BMSBEG

ISBEG

T

S

S

CONTAINS T~F. MODE-IO OF THE PROCESSOR TO
~HIC~ TCL-II TR~NSFERS CONTROL (ASSUMING
~O ERROR CONDITIONS ARE ENCOUNTERED)

POINTS ONE PRIOR TO AN AREA WHERE THE
FILE NAME IS TO 8E COPIED. IF THE "F"
OPTION IS PRESENT. OT~ERWISE ONE PRIOR
TO AN AREA W~ERE ITEM-IDS ARE TO BE
COPIED

POINTS ONE PRIOR TO AN AREA WHERE ITEMS
ARE TO BE COPIED, IF THE "C" OPTION IS
PRESENT

ELEMENTS AS REQUIRED BY GETFILE

OUTPUT INTERFACE

TCl-II

DAFt

DAF2

OAF]

DAF4

DAF~

DAF&

DAF10

DAFt1

B

B

B

B

B

B

B

8

SET IF THE "Un OPTION IS SPECIFIED

SET IF THE pC" OPTION IS SPECIFIED

S~T IF T~E "P" OPTION IS SPECIFIED

SET IF THE fiN" OPTION IS SPECIFIED

SET IF THE "Z" OPTION IS SPECIFIED

SET IF THE "F" OPTION IS SPECIFIED. OR
IF A FULL FILE RETRIEVAL IS SPECIFIED
(NO "F" OPTION)

SET IF MORE THAN ONE ITEM IS SPECIFIED
IN THE INPUT DATA, BUT NOT A FULL FILE
RETRIEVAL ("*")

SET IF THE "E" OPTION IS SPECIFIED

NOTEI THE ABOVE BITS ARE NOT INITIALIZED TO ZERO

DAF8

DAF9

IS

B

B

R I

SET IF ,., FILE DICTIONARY IS BEING
ACCESSED, OTHERWISE RESET (FROM GETFIlE)

:0

POINTS ONE PAST THE
1M THE INPUT STRING
PRESENT. POINTS TO
COPIED ITEM IF
PRESENT, OTHERWISE
INPUT STRING

5-75

END OF THE FILE NAME
IF THE "F" OPTION IS

THE LAST AM IN THE
THE HC" OPTION IS
TO THE END OF THE

ISBEG
BMSBEG

RMBIT

SBASE

TeL-II

S • UNCHANGED
S •

B SET IF THE FILE IS SUCCESSFULLY
RETRIEVEO IF THE "F" OPTION IS PRESENT

D • CONTAIN THE BASE, MODULO, AND SEPARATION

SMOD T + OF THE FILE BEING ACCESSED
SSEP T +

BASE
MODULO
SEPAR

DBASE
DMOO
DSEP

seo

0+ aSBASE, SMOD, SSEP ON THE FIRST EXIT
T • ONLY (FROM M0200)
T •

o + CONTAIN THE BASE, MODULO, AND SEPARATION
T + OF THE DICTIONARY OF THE FILE BEING
T + ACCESSED IF THE "F" OPTION IS PRESENT

C CONTAINS A S8 IF THE LAST ITEM-tO IN THE
INPUT STRING IS ENCLOSED IN QUOTE MARKS,
OTHERWISE CONTAINS A BLANK

THE FOLLOWING SPECIFICATIONS ARE MEANINGFUL ONLY WHEN
THE "F" OPTION IS NOT PRESENTS

SRO S

SIZE T

SR4 S

ISEND S

IR R

RMODE T

XMODE T

VOBIT 8

ELEMENT USAGE

POINTS ONE P~TOR TO THE COUNT FIELD OF
THE RETRIEVED ITEM

CONTAINS THE VALUE OF THE COUNT FIELD OF
TH€ RETRIEVED ITEM

POINTS TO THE LAST AM OF THE RETRIEVED
ITEM

=IS IF THE "C" OPTION IS PRESENT

POINTS TO THE LAST AM OF THE RETRIEVED
ITEM TO BE COPIED, IF THE "e" OPTION IS
PRESENT, OTHERWISE POINTS TO THE AM
FOLLOWING THE ITEM-tO

=MD201 IF ITEMS ARE LEFT TO BE
PROCESSED, OTHERWISEaO

-0 (MD201 ONLY)

5-76

TCL-II

C2 T U~EO FOR ERROR MESSAGES

ELEMENTS USED BY THE VARIOUS SUBROUTINES BELOW

SUBROUTINE USAGE

GETFILE, IF NO 'F' OPTION: GETTTM FOR FULL FILE
RETRIEVAL. RETIX AND ONE INTERNAL SUBROUTINE IF NOT
FULL FILE RETRIEVAL. GETSPC JF MORE THAN ONE ITEM (BUT
NOT ft*") SPECIFtED. EXPAND IF THE "E" OPTION IS
PRESENT. WRTLIN IF THE "P" OPTION IS PRESENT

MD201 ONLY: WSINIT, GNT8LI IF MORE THAN ONE ITEM (BUT
NOT "*") SPECIFIED

MDq~5 AND BMSOVF USED WITH XMODE

SEVEN ADDITIONAL LEVELS OF SUBROUTINE LINKAGE REQUIRED
BY MD20Q, FIVE ADDITIONAL LEVELS REQUIRED BY M0201 FOR
FULL FILE RETRIEVAL, OTHERWISE THREE LEVELS REQUIRED

ERROR CONDITIONS

THE FOLLOWING CONDITIONS .CAUSE AN EXIT TO THE WRAPUP
PROCESSOR WITH THE ERROR NUMBER INDICATEDI

ERROR

13

200

201

202

TCl-II

203

CONDITION

DLIID ITEM NOT FOUND, OR IN 8AD FORMAT

IS WORK . SPACE NOT 8IG ENOUGH WHEN THE
nC" OPTION IS SPECIFIED

\

NO FILE NAM,ESPECIFIED
\

FILE NAME ILLEGAL OR INCORRECTLY DEFINED
IN THE ~/DICT

lTEM NOT ON FILEi ALL MESSAGES OF
TYPE ARE STORED UNTIL ALL ITEMS
BEEN PRoceSSED' ITEMS WHICH ARE ON
ARE STILL PROCESSEO

NO ITEM LIST SPECIFIED
!

!

5-77

THIS
HAVE
FILE

TI~E, OATE, TIMOATE

TI~E (~,SYSTEM.~UAS.II)*
DATE (~,SYSTEM.~UAS.II)*

TIM 0 ATE C 4 , S Y S T f. M·· S U 8 !'; • I. I)oil'

FUNCTIONlL DESCRIPTION

THESE ROUTINES RETURN THE SYST~M TIME ANDIOR THE SYSTEM
DATE, AND STORE IT IN THE 8UFFER AREA SPECIFIED BY PEGISTER
R1S. THE TIME IS RETURNED AS ON ~ 2Q.HOU~ CLOCK.

ENTRY

TI~E

DATE

T IMl.U TE

INPUT INTERFACE

R15

OUTPUT INTERFACE

R1S

R14FIO

ELEMENT USAGE

R

o

00 0 +

BUFFER SIZE
REQUIRED (BYTFS)

12

22

FORMAT

HHIMMISS

DO MMM YVVY

HHIMMISS 00 MMM YVY'

POINTS ONE PRIOR TO THE BUFFER AREA

POINTS TO TH~ LAST BYTE OF THE DATA
STORED. THE BYTE IMMEDIATELY FOLLOWl~G
CONTlIN! • BLANt<

cO COlTE ANO TIMDATE ONLY)

01 0 • USED 9Y TIME AND TIMCATE ONLY
02 0 +
03 D +

SUBROUTINE USAGE

TIME USED BY TIMDATE, MBOSUR USED FY TIME

TWO ADDITIONAL LEVELS OF SUe~OUTINF LINKAGE REQUIRED 8Y

TIME, DATE, TIMDATE

TIMOATE, ONE LEVEL REQUIRED BY TIME. NONE BY DATE

5-78

TPREAO, TPWRIye

TPREAD (&,TAPfIO-I).
TPWRITE (7.TAPfIO~I)*

FUNCTIONAL DE~CRIPTION

TPREAD READS ONE RECO~O fROM THE TAPE INTO THE TAPE BUFFER
(FRAME FFFFI01, THE READ STOPS ErTHER WHEN THE INTER~RECORD
GAP IN THE TA~E IS OETECT~D, OR Ai THE END OF THE BUFFER.

TPWRITE WRITES ONE RECORD FROM THE TAPE BUFFER TO MAGNETIC
TAPE' THE NUMBER OF BYTES WRITTEN IS SET UP BY THE "T-ATT"
VERB.

INPUT INTERF'i~E

ATTACH

R15

BYTESRD

PQFLG
VOBIT
RMODE

B

R

T

8 +

MUST RE SET, INDICATING THAT THE TAPE
UNIT IS ATTACHED

FOR ,(PREAD, POINTS TO THE LAST BYTE
READ

SEt TI) THE NUMBER Of BYTES READ IN 8'1
TPREAO, SET TO THE TAPE RECORD SIZE 8'1
TP.WR I T£

B + SET TO ZERO ON ERROR EXITS (SEE BELOW)
T +

THE TAPE STATUS BITS ARE RESET APPROPRIATELY (SEE
TPSTAT DOCUMENTATION)

ELEMENT USAGE

DO 0
01 0
T4 T
R14 R

R2,CO C

TPREAD. TPWRlfE

+
+ UTILITY
+
+

USED yo IDENTIFV EITHER A READ OPERATION
(BIT lERO SEt) OR WRtTE OPERATION (BIT

ZERO RESET) IN PROGRESS, FOR USE BY
CO~MON ROUTIN!!S

5-79

CTRl T USED IF TPWRITE ENCOUNTERS AN
ENO-OF-TAPE CONDITION

ALL ELEMENTS USED BY FRMOMP IF TMAT ROUTINE IS CALLED
BY ROPARITY (SEE RDPARITY AND FRMDMP DOCUMENTATIO~)

SUBROUTINE USAGE

INITI TPSTAT. REwIND, CRLFPRINT, PCRLF, PRINT (FOR
UNLABELED TAPES), AND THREE INTERNAL SUBROUTINES ON
ENO-OF-TAPE CONDITIONS, AND TPREAD, CVDR1S, BCKSP. AND
ANOTHER INTERNAL SU8ROUTINE ON TPREAD END-OF-TAPE
CONDITIONS ONLY' aCKSP ON PARITY ERROR8, AND ROPARITY
ON TPREAO PARITY ERRORS ONLY AFTER THE NORMAL NUMBER OF
RETRIES (SEE BELOW)

MAXIMUM NINE ADDITIONAL LEVELS OF SUBROUTINE LINKAGE
REQUIRED BY TPREAO (FOR PARITY ERRORS ON READING LABELS
OF TAPE REELS AFTER TME FIRST)' FOUR LEVELS REQUIRED
BY TPWRITE

ERROR CONDITIONS

READ PARITY ERRORI THE READ IS REPEATED TWENTY TIMES.
IF THE PARITY ERROR PERSISTS, ROPARITY IS CALLED

WRITE PARITY ERROR. THE SEQUENCE "BACKSPACE I WRITE
END-OF-FILE MARK I BACKSPACE AND REPEAT WRITE" IS
REPEATED TWENTY TIMES. IF THE PARITY ERROR PERSISTS,
AN EXIT IS TAKEN TO MD99 WITM MESSAGE 98

END OF FILEt AN EXIT IS TAKEN TO M099 WITH MESSAGE 94
ON A READ

TAPE NOT ATTlCMEDI AN EXIT IS TAKEN TO MOQ9 WITH
MESSAGE 9]

TPSTAT, TPINIT

TPSTAT (15,TAPEIO-!'*
TPINIT C12,TAPEIO-I)*

FUNCTIONAL DESCRIPTION

THESE TAPE CONTROL SUBROUTINES ARE USED BY ALL OTHER SYSTEM
TAPE 1/0 ROUTINES. TPINIT OUTPUTS A FUNCTION-CODE OF "1" TO
THE TAPE CONTROLLER, THERf.AY SETTING IT TO AN INITIAL
CONDITION, AND THEN ~ALLS INTO TPSTAT TO GET THE TAPE STATUS
FROM TME CONTROLLER. IT RETURNS IF THE TAPE IS IN A "READY"
STATE. IF THE TAPE IS REWINDING, THE SUBROUTINE WAITS UNTIL
IT IS FINISHED. OTHERWISE, THE STATUS IS TESTED UP TO ONE
HUNDRED TIM!S. IF THE TAPE IS STILL NOT READY, NOTREAOY IS
CALLED.

5-80

INPUT INTERFACE

ATTACH

R14

B

R

=1, CONVENTIONALLY, THE Tel VERB T-ATT
IS USED TO SET T~IS BIT

POINTS TO HALF-TALLY TAPSTW, TPINIT SETS
THIS REGJSTER AS PART OF THE
INITIALIZATION PROCESS

OUTPUT INTERFACE

REJCTR

PQFLG
VOSIT
RMOOE

T

8 +

SET TO ZERO 8'1 INIT, AND BY TPSTAT AFTER
A "NOT.READY" CONDITION

B + SET TO ZERO JF ATTACH IS ZERO
T . +

TAPE STATUS BITS.

EOF8IT

EOT8IT

NORING

S

B

8

SET IF AN ENO-OF.FILE MARK IS REACHED

SET IF THE TAPE IS AT LOAD POINT. OR AT
THE END-OF-TAPE MARKER

SET. ON A WRITE OPERATION, IF THE WRITE
RING IN THE TAPE IS NOT PRESENT

TPSTAT, TPINIT

PARITY 8 8ET IF A PARITY ERROR IS DETECTED

TPRDY B 8ET IF THE TAPE IS READY

ELEMENT USAGE

T6 T U8ED AS A DELAY COUNTER

R15 UTILITY

SUBROUTINE USAGE

EXITS

NOTREADY IF THE TAPE IS NOT REAOY

THREE AODITIONAL LEVFLS OF SUBROUTINE LINKAGE REQUIRED
(FOR NOTR!AOY)

TO MD99 WITH MESSAGE 93 ("ATTACH THE TAPE UNIT") IF
ATTACH=O

5-81

TSINIT

TSINIT C3.TCL-INIT)*

FUNCTIONAL DESCRIPTION

THIS ROUTINE INITJALIZES THE ~EGrSTER TRIAO ASSOCIATED WITH
THE TS WORK SPACE.

INPUT INTERFACE

NONE

OUTPUT INTERFACE

TS R + POINT TO THE BEGINNING OF THE TS WORK
TSBEG S + SPACE (PtR+S)
(RHI Rl +

TSEND S + POINT TO THE LAST BYTE OF THE TS
(R1t; Rl + SPACE (511 BYTES PAST TSBEG)' NOTE

IS AN UNLINKEO WORK SPACE

THE FIRST BYTE OF THE WORK SPACE IS SET TO X'OO'.

ELEMENT USAGE

NONE (EXCEPT DO'

SUBROUTINE USAGE

ONE INTERNAL SUBROUTINE

ONE ADDITIONAL LEVEL OF SUBROUTINE LINKAGE REQUIRED

UPOITt-1

FUNCTIONAL DESCRIPTION

WORK
THIS

UPDITM PERFORMS UPDATES TO A DISC FILE DEFINED BY ITS BASE
FlO, MODULO, AND SEPARATION. IF THE ITEM IS TO BE DELETEO,
THE ROUTINE COMPRESSfS THE REMATNDER OF THE OATA IN THE
GROUP IN WHICH THE ITEM RESIOES' IF THE ITEM IS TO BE
ADDED, IT IS ADDEO AT THE END OF THE CURRENT DATA IN THE
GROUP' IF THE ITEM IS TO BE REPLACEO, IT IS ~EPLACEO IN
PLACE, SLIDING THE REMAINING ITEMS IN THE GROUP TO THE LEFT
OR RIGHT AS NECESSARY.

5-82

IF THE UPDATE CAUSES THE DATA IN THE GROUP TO REACH THE END
OF THE LINKED FRAMES~ NEXTOVF IS ENTERED TO OBTAIN ANOTHER
FRAME FROM THE OVE~FLoW SPACE POOL AND LINK IT TO T~E
PREVIOUS LINKED SET'! AS MANY FRAMES AS REQUIRED ARE ADDED.
IF THE DELETION OR R~PLACEMENT OF AN ITEM CAUSES AN EMPTY
FRAME AT THE END OF THE LINKED FRAME SET. AND THAT FRAME IS
NOT IN THE "PRIMARY" AREA OF THE GROUP. IT IS RELEASED TO
THE OVERFLOW SPACE POOL.

RETIXU IS USED TO ~ETRIEVE THE ITEM TO 9E UPDATED, LOCKING
THE GROUP.

ONCE THE ITEM IS RETRIEVED, PROCESSING CANNOT BE INTERRUPTED
UNTIL COMPLETED.

INPUT INTERFACE

BMSBEG

TS

CH8

UPOITM

BAae
MODULO
SEPAR

S

R

C

POINTS ONE PRIOR TO THE ITEM-IO OF THE
ITEM TO BE UPDATED' THE ITEM-ID MUST BE
TERMINATED BY AN AM

POINTS ONE PRIOR TO THE ITEM 800Y TO BE
ADDEO OR REPLACED (NO ITEM_IO OR COUNT
FIELD), NOT NEEDED FOR DELETIONS' THE
ITEM BODY MUST 8E TERMINATED BY A SM

CONTAINS THE CHARACTER '0' FOR. ITEM
DELETION, 'ut FOR ITEM ADDITION OR
REPLACEMENT

D • CONTAIN THE BASE, MODULO, AND SEPARATION
T • OF THE FILE BEING UPDATED
T •

OUTPUT INTERFACE

NONE

ELEMENT USAGE

O.,q B •
T3 T +
T4 T •
T5 T •
SIZE T •
03 0 •
04 0 +
OVRFLW 0 •
RECORD D • ~TILITY NNeF H +
FRMN 0 +
FRMP 0 •
NPCF H •

5-83

IR R +
UPO R +
~MS R +
CS R •
R14 R.
R1S R +
SR4 S +

ELEMENTS USED BY THE VARIOUS SUBROUTINES BELOW

SUBROUTI~E USAGE

ROLINK. RDREC. RETIXU, OECINHIB, GUNLOCK. RELCHN
IF OVERFLOW FRAMES RETURNED' ATTSPC IF MORE OVERFLOW
FRAMES NEEOEO. TwO INTERNAL SURROUTINES

NEXTOFV AND ONE LOCAL SUBROUTINE USEO WITH XMODE

FOUR ADDITIONAL LEVELS OF SUBROUTINE LINKAGE REQUIRED

UPDITM

ERROR tONDITIONS

~EOF

1. IF THE GROUP DATA IS BAD (PREMATURE END OF LINKED
FRAMES, OR NON-HEXADECIMAL CHARACTER FOUND IN AN ITEM
COUNT FIELD), IROVF IS ENTERED TO PRINT A WARNING
MESSAGE, AND THE GROUP DATA IS TERMINATED AT THE END OF
THE LAST GOOD ITEM BEFORE PROCESSING CONTINUES

2. IF THE FILE BEING UPDATE IS THE MIOICT
(BAS~.MBASE), AND BIT SYSPRIV1 IS ZERO, PRIVTST2 IS
ENTERED AND NO UPDATE IS PERFORMED

3. IF THE ITEM-ID CONTAINS MORE THAN 50 CHARACTERS, IT
IS TRUNCATED WITHOUT ANY INDICATION

4. IF THE ITEM EXCEEDS THE MAXIMUM SIZE (32267 BYTES,
X'7EOB'), THE ITEM IS TRUNCATED TO THE MAXIMUM SIZE,
AND NO INDICATION IS GIVEN

WEOF Clt.TAPEIO-I).

FUNCTIONAL DESCRIPTION

WEOF WRITES AN END-OF-FILE MARK ON THE TAPE. IF BIT PROTECT
IS SET, IT CALLS NORING REPEATEDLY UNTIL IT IS RESET (OR BIT
ATTACH IS RESET) BEFORE ATTEMPTING A WRITE. WEOF ALSO CALLS
INIT AND TPSTAT. AND REQUIRES FOUR ADDITIONAL LEVELS OF
SUBROUTINE LINKAGE.

5-84

WRAPUP

WRAPUP PROCESSOR

to4"99? (o.wrHPUP.I)*
MDqq3 (?,WRAPUP.Il*
~Dqq4 (4,WRAPUP-I)*
MDQ9S (3,WRAPUP-I)*

MDqq (O,WRAPUP-I).
MOQqq (l,WRAPUP-I)*

FUNCTIONAL DESCRIPTION

THESE ARE THE ENTRV POINTS INTO THE SYSTEM ROUTINE WHICH
"WRAPS Up· THE PROCESSING INITIATED BY A TCl STATEMENT,
PERFORMS DISK UPDATES AND PRINTS MESSAGES AS REQUIRED. AND
REINITIALIZES FUNCTIONAL ELEMENTS FOR PROCESSING ANOTHER TCL
STATEMENT. WRAPUP MAY ALSO BE TREATED AS A SU6ROUTINE BY
SETTING TALLV RMOOE TO THE MODE-IO OF THE ROUTINE TO WHICH
WRAPUP SHOULD RETURN CONTROL AFTER IT IS DONE. NOTE.
HOWEVER, THAT WRAPUP AL~AYS SET THE RETURN STAC~ TO A NULL
OR EMPTY CONDITION BEFORE EXITING.

THE VARIOUS ENTRY POINTS ARE PROVIDFO TO SIMPLIFY THE
INTERFACE REQUIREMENTS WHEN WRAPUP IS USED TO STORE OR PRINT
MESSAGES FRO~ THE ERRMSG FILE, THE FEATURES OF EACH CAN BE
SEEN IN THE FOLLOWING TABLE:

M0993

WRAPUP

MD994

Cl CONTAINS A MESSAGE NUMBER, 09
CONT~INS A NUMERIC PARAMETER, THE VALUE
IN Cl, CONVERTED TO AN ASCII STRING, IS
USED AS THE ITEM-ID OF AN ITEM TO BE
RETRIEVED FROM THE MESSAGE FILE
(NORMALLY ERRMSG)' THE MESSAGE IS SET UP
IN THE HISTORY STRING (SEE BELOW), AND
CONTROL PASSES TO M099

C1 CONTAINS A MESSAGE ~UM8ER' C2
CONTAINS A NUMERIC PARAMETER' THE VALUE
IN Ct, CONVERTED TO AN ~SCII STRING, IS
USED AS THE ITEM~ID OF AN ITEM TO 8E
RETRIEVFO FROM THE MESSAGE FILE
(NORMALLY ERRMSG)' THE MESSAGE IS SET UP
IN THE HISTORY STRING (SEE BELOW), AND
CONTROL PASSES TO M099

Cl CONTAINS A MESSAGE NUMBER: IS POINTS
ONE BEFORE THE BEGINNING OF A STRING
PARAMETER, WHIC~ IS TERMINATED 8Y AN AM
OR SM, THE MESSAGE IS SET UP IN THE
HISTORY STRING AND CONTROL PASSES TO
M099

5-85

MD995 LIKE MD~q4, FXCEPT THE STRING PARAMETER
IS STO~EO AT 8MSBEG+l THROUGH AN AM OR
SM

MESSAGE NUMBERS (WIT~OUT ANY PARAMETERS)
MAY BE STORfD IN REJCTR, REJO, AND REJI
(NO ACTION IS TAKEN IF ZERO), IF RMODE
IS ZERO. MESSAGES ARE PRINTED REGARDLESS
OF THE VALUE OF VOSIT (SEE BELOW), THE
MESSAGES ARE SET UP IN T~E HISTORY
STRING AND CONTROL PASSES TO MOqqq

THE HISTORY STRING IS PROCESSED, AND
PROCESS WORK SPACES ARE REINITIALIZED,
CONTROL PASSES TO TCl IF RMOOe IS ZERO,
OTHERWISE TO THE ROUTINE SPECIFIED BY
RMODE

INPUT INTERFACE

HSBEG
HSENO

S
S

+ POINT ONE BfFORE THE
+ THE END, RESPECTIVELY,

STRING, IF HSBEG=HSEND,
NULL

BEGINNING AND TO
OF THE HISTORY

THE STRING IS

THREE TYPES OF HISTORY STRING ELEMENTS ARE RECOGNIZED
BY WRAPUP' ALL OT~ERS ARE IGNORED. THE TYPE OF
PROCESSING DONE FOR EACH ELEMENT DEPfNDS ON THE SECOND,
AND POSSIBLY THIRD CHARACTER OF THE ELEMENT STRING.
(THE QUOTE MARKS IN THE FOLLOWING EXAMPLES ARE NOT PART
OF THE STRINGS.)

1. OUTPUT MESSAGE

WRAPUP

2.

SM "0· AM MESSAGE-IO AM (PARAMETER AM •••) 8M

WHERE "MESSAGE-ID" IS THE ITEM-tO (NORMALLY A
DECIMAL NUMERIC) OF AN ITEM IN THE MESSAGE FILE

THE PARAMETER STRING IS PASSED TO PRTERR FOR
MESSAGE FORMATTING (SEE PRTERR DOCUMENTATION)

DISK UPDATE/DELETE

SM "DU" AM BASE VM MODULO VM SEPARATION AM ITEM-ID
AM ITEM-SODY AM SM

S~ "DO" AM SASE VM MOOllLO VM SEPARATION AM ITEM-IO
AM 8M

WHER£ "DU" CAUSES THE ITEM IN THE FILE SPECIFIED
BY "BASE", "MODULO·. AND "SEPARATION" TO BE
REPLACE. AND "DO· DELETES IT

5-86

3. (END OF HISTORY STRING)

SM HZ"

CONVENTIONALL~, A PROCESS WISMING TO ADD DATA TO THE
HISTORY STRING BEGINS AT HSENO+l1 AFTER T~E ADDITIONAL
ELEMENTS HAVE AEEN AnDEO. THE STRING 15 TERMINATED
(ONCE AGAIN) BY A S~ AND "IN, AND HSENO IS SET POINTING
TO THIS SM.

wMODE T

RMOOE T

vorUT 8

WRAPUP

IF NON-ZERO, TME VALUE IS USED AS THE
MODE-IO FOR AN INDIRECT SUBROUTINE CALL
(9SLI *, EXECUTED I~MEOIATELV AFTER THE
HISTORY STRING HAS BEEN ~ROCESSEO, AND
BEFORE WOR~ SPACE AND PRINTER
CHARACTERISTICS ARE RESET I THIS ALLOWS
SPEcr4L PROCF.SSING TO BE DONE ON ANY
ENTRY INTO ~RAPUP .

IF NON-ZERO, WRAPUP EXITS TO THE
SPECIFIED MODe-IO INSTEAD OF TO TCL

IF SET, AND RMOOE IS NON-ZERO, MESSAGES
ARE STORED IN THE HISTORY STRING, FOR
OUTPUT ON A LATER ENTRY INTO WRAPUP WITH

RMODE ZERO

REJCTR
REJO
REJl

T + MAY CONTAIN MESSAGE NUMBERS WHICH DO NOT
T + REQUIQE PARAMETERS' REJCTR IS ALWAYS
T + TESTED FIRST, THEN REJO. AND THEN REJ1'

NO ACTION IS TAKEN ON A lERO VALUE' A
VALUE OF 9999 IS USED INTERNALLY BY
WRAPUP TO rOENTIFY WHICH MESSAGES HAVE
8EEN PROCESSEO. AND SHOULD NOT NORMALLY
BE USED AS AN INPUT VALUE FOR REJO OR
REJt

Cl T + (SEE M0992, M0993, M0994. AND MD995
C2 T + ABOVE)
09 0 +

LPBIT 8

OVRFLCTR 0

IF SET, ALL OPEN SPOOL FILES ARE CLOSED

IF NON-ZERO, USED AS THE STARTING FlO OF
A LINKED SET OF OVERFLOW FRAMES WHICH IS
RELEASED TO THE SYSTEM OVERFLOW SPACE
POOL' USED BY SORT, FOR INSTANCE, TO
STORE THE BEGINNING FlO OF A SORTED
TABLE, IN WHICH CASE THE OVERFLOW SPACE
USED BY SORT IS ALWAYS RELEASEO, EVEN IF
PROC!SSING IS ABORTED BY AN "END"
COMMAND FRO~ DEBUG

5-87

USER T

OUTPUT INTERFACE

HSENn 5

VOBIT B
LPAIT B
Wt-10DE T
REJCTR T
REJO T
REJt T

WRAPUP

RETURN STACK

RMOOE T

INIHBITH H

+
+
+
+
+
+

USEO TO CONTROL THE FINAL EXIT FROM
WRAPUP WHEN RMODE=O, SEE "EXITS"

cMSAEG EXCEPT WHEN MESSAGES ARE STORED
INSTEAD OF PRINTED

=0

NULLI RSENOaX'OlAO', RSCWA=X'0184', AND
THE REST OF THE RETURN STACK IS FILLED
WITH X'FF'

SET TO ZERO BY TCLXIT AND NSPCg

=0

ELEMENTS AS INITIALIZED BY WSINIT (AND ISINIT IF
RMOOE=Ol

THE FOLLOWING ELEMENTS ARE SET UP ONLY IF RMODE-OI

XMODE T +-0
OVRFLCTR T +

IBSIZE T -140

ELEMENT USAGE

UPO R

o + BASE
MODULO
SEPAR
CH8

T + USED IN DISK UPDATES
T +
C +

ELEMENTS USED BY THE SUBROUTINES BELOW

SUBROUTINE USAGE

WSINIT, M8DSUB FOR MESSAGE NUMBERS' PRTERR TO PRINT
MESSAGES, CVOIS AND UPOITM TO 00 ~ISK UPDATES'
CRLFPRINT IF A FORMAT ERROR fS FOUND IN A "DO" OR "OU·
HISTORY STRING ELEMENT, PCLOSEALL IF LPSIT=l' IF
RMOOE=OI 15INIT, RESETTER~, RELSP (IF USER-2', RELCHN
elF OVRFLCTR IS NON.ZfRO'

5-88

MAXIMUM OF SEVEN ADDITIONAL LEVELS OF SUBROUTINE
LINKAGE REQUIRED IF RELCHN MUST PRINT AN ERROR MESSAGE,
MAXIMUM OF SIX LEVELS REQUIRED FOR PRTERR, FOUR LEVELS
REQUIRED FOR UPOITM, THREE LEVELS REQUIRFD FOR ISINIT,
TWO LEVELS ALWAYS NEEDED FOR WSINIT

WRAPUP

EXITS

TO THE ENTRY POINT SPECIFIED IN RMODE IF NON-ZERO, TO
LOGOFF IF USER=3 (SET, FOR INSTANCE. BY THE DEBUG "OFF"
COMMAND), TO MDO IF USER=2 (SET BY THE LOGOFF
PROCESSOR), OTHERWISE TO MOl

ERROR CONDITIONS

IF A FORMAT ERROR IS FOUND IN A "00" OR 'DU" HISTORY
STRING ELEMENT. THE MESSAGE

DISK-UPD STRING ERR

IS DISPLAYED. AND PROCESSING CONTINUES WITH THE NEXT
ELEMENT

WRTLIN. WT2. WRITOB

WRTLIN (2,TERMIO)*
wT2 ClO.TERMIO)

WRITOS C3,TERMIO)*

FUNCTIONAL DESCRIPTION

THESE ARE THE STANDARD ROUTINES FOR OUTPUTTING DATA TO THE
TERMINAL OR LINE PRINTER. ENTRY WRTLIN DELETES TRAILING
BLANKS FROM THE DATA AND THEN ENTERS wT2. WT2 ADDS A
TRAILING CARRIAGE RETURN AND LINE FEEO, INCREMENTS LINCTR,
AND ENTERS WRITOS. WHICH OUTPUTS THE DATA.

THE DATA TO BE OUTPUT IS POINTED TO BY OBBEG. AND CONTINUES
THROUGH THE ADDRESS POINTED TO BY OB. OUTPUT IS ROUTED TO
THE TEPMtNAL IF aIT LPBIT IS OFF. OTHERWISE IT IS STORED IN
THE PRINTER SPOOLING AREA. PAGINATION AND PAGE-HEADING
ROUTINES ARE INVOKED AUTOMATICALLY IF aIT PAGINATE IS SET.
IF IT IS SET. THEN WHEN T~E NUMBER o~ LINES OUTPUT IN THE
CURRENT PAGE (IN LINCTRl EXCEEDS THE PAGE SIZE (IN PAGSIZE),
THE FOLLOWING ACTIONS TAKE PLACE: 1) THE NUMBER OF LINES
SPECIFIED IN PAGSKIp ARE SKIPPED, 2) THE PAGE NUMBER IN
PAGNUM IS INCREMENTEp. AND 3) A NEW HEADING IS PRINTED (SEE
PRNTHDR DOCUMENTATION1. A VALUE OF ZERO IN PAGSIZE
SUPPRESSES PAGINATIdN. HOWEVER, REGARDLESS OF THE SETING OF
PAGINATE. I

I

5-89

INPUT INTERFACE

OBBEG S

08 R

LPBIT B

LISTFLAG B

WRTLIN, WT2, WRITOB

NOBLNK B

LFOLY T

PAGINATE B

PFILE T

POINTS ONE BYTE PRtOR TO THE OUTPUT DATA
BUFFER

POINTS TO THE LAST CHARACTER IN THE
BUFFER, THE BUFFER MUST EXTEND AT LEAST
ONE CHARACTER BEYOND THIS LOCATION

IF SET. OUTPUT IS ROUTED TO THE SPOOLER
CNOTEI ROUTINE SETL~TR SHOULD BE USED TO
SET THIS BIT SO PRINTER CHARACTERISTICS
ARE SET UP CORRECTLY)

IF SET, ALL OUTPUT TO THE TERMINAL IS
SUPPRESSED

IF SET, BLANKING OF THE OUTPUT BUFFER IS
SUPPRESSED

LOWER eYTe CONTAINS THE NUMBER OF "FILL"
CMAqACTERS TO BE OUTPUT AFTER A CR/LF

IF SET, PAGINATION AND PAGE-HEAOINGS ARE
INVOKED

CONTAINS THE PRINT FILE NUMBER FOR PPUT,
MEANINGFUL ONLY IF LPBIT IS SET

THE FOLLOWING SPECIFICATIONS ARE MEANINGFUL ONLY IF
PAGINATE IS SETa

PAGHEAD S

PAGSIZE T

PAGSKIP T

PAGNUM T

PAGFRMT 8

POINTS ONE BYTE BEFORE THE
THE PAGE-HEADING MESSAGE'
FIELD OF THIS REGISTER
HEADING IS PRINTED

BEGINNING OF
IF THE FRAt.4E

IS ZERO, NO

CONTAINS THE NUMBER OF PRINTABLE LINES
PER PAGE

CONTAINS THE NUMBER OF LINES TO BE
SKIPPED AT THE BOTTOM OF EACH PAGE

CONTAINS THE CURRENT PAGE NUMBER

IF SET, THE PROCESS PAUSES AT THE END OF
EACH PAGE OF OUTPUT UNTIL SOME TERMINAL
INPUT (EVEN JUST A CARRIAGE RETURN) IS
ENTERED

5-90

LFDLY T

OUTPUT INTERFACE

IF THE UPPER BYTE IS GREATER THAN ONE.
AND OUTPUT IS TO THE TERMINAL. A
FORM-FEED (X'OC') IS OUTPUT .T THE TOP
EACH PAGE. AND THE NUMBER IN THE UPPER
BYTE IS USED AS THE NUMBER OF "FILL"
CHARACTERS OUTPUT AFTER THE FORM.FEED

WRTlIN, WT2, WRITOS

OB R

THE FOLLOWING SPECIFICATIONS ARE MEANINGFUL ONLY IF
PAGINATE IS SET:

LINCTR T + RESET APPROPRIATELY
PAGNUM T +

T7 T CONTAINS THE ORIGINAL VALUE 01" PAGNUM

ELEMENT USAGE

Rl4 R +
Rt5 R + SCRATCH
SYSRt S +

RS R +
RECORD T + USED BY PPUT (WHEN LPBIT IS SET)
OVRFLW T +

SYSR2 S USED IF PAGINATE IS SET AND THE HEADER
MESSAGE CONTATNS A VM

T4 T +
T5 T + USED IF PAGINATE IS SET AND THE HEADER
02 0 + MESSAGE CONTAINS A SVM
03 0 +

ALL ELEMENTS USEO BY ATTOVF (CALLED 8Y PPUT IF MORE
DISK SPACE NEEDED)

SUBROUTINE USAGE

FFOLY, PPUT (IF LPBIT SET), WT2 (IF PAGINATE SET AND
THE HEAOER MESSAGE CONTAINS A VM), TIMOATE (IF PAGINATE
SET AND THE HEADER MESSAGE CONTAINS A SVM), DATE (IF
PAGIN~TE SET AND THE HEADER MESSAGE CONTAINS TWO SVMS
IN SUCCESSION)

FOUR ADDITIONAL LEVELS OF SUBROUTINE LINKAGE REQUIRED
IF LPBIT IS SET, THREE LEVELS REQUIRED FOR TIMDATE,
ONE LEVEL ALWAYS REQUIRED FOR LFDLY

5-91

wSINIT

WSINIT (t,TCl-INIT).

FUNCTIONAL DESCRIPTION

THIS ROUTINE INITIALIZES THE FOLLOWING PROCESS WORK SPACE
POINTER TRIAOSI BMS, BMSBEG, BMSEND' CS, CS~EG, CSENO,
AF, AFBEG, AFENDr TS, TS8EG. TSEND. lB. lBBEG, ISENO, 08,
O~REG, OBENDr ALSO PBUFB£G AND PBUFEND. IN EACH CASE, THE
"REGINNING" STORAGE REGISTER (AND ASSOCIATEO ADDRESS
REGISTER, IF PRESENT) IS SET POINTING TO THE FIQST BYTE OF
THE WOR~ SPACE. AND THE "ENDING" STORAGE REGISTER IS SET
POINTING TO THE LAST DATA 8YTE. ALL wORK SPACES EXCEPT THE
LAST (PROC) ARE CONTAINEO TN ONE FRAMEr PBUFBEG AND PSUFEND
DEFINE A 4-FRAME LINKED wORK SPACE.

WORK SPACE SIZE (RYTES)

B~SBEG-BMSEND 50

AF8EG-AFEND 50

CS8EG-CSEND tOO

I88EG-IBENO CONTENTS OF lBSIZE, MAX. 140

OB8EG-OBEND CONTENTS OF OBSIZE, MAX. 140

TSBEG-TSEND 51\

PBuFBEG-P8UFEND 20000 (4 LINKED FRAMES)

INPUT I~TERFACE

ISSIlE

oaSIlE

T

T

OIlTPuT INTERFACE

SIZE OF IB BUFFER

SIlE OF OB BUFFER

REGISTERS ARE SET UP AS OESCRIBED ABOV~. THE FIRST
BYTE OF EACH WOQK SPACE, EXCEPT THE OB, IS SET TO
X'OO'. THE DB wORK SPACE IS FILLED WITH BLANKS
(X'20'). IBSIZE AND oaSIZE ARE SET TO 140 IF INITIALLY

flS IfH T

GREATER.

5-92

ELEMENT IISlGE

R14 R

R15 R

SUBROUTINE USAGE

TSININIT (lOCAL), AND ON~ INTERNAL SUBROUTINE

TWO ADDITIONAL LEVELS OF SUBROUTINE LINKAGE REQUIRED

WTlABEL

WTlABEl (2,TAPfIO-III)*

FUNCTIONAL DESCRIPTION

THIS ROUTINE MAY BE CALLED ONCE BY ANY ROUTINE TO WRITE A
LABEL AT THE BEGINNING OF A MAGNETIC TAPE FILE. THE LABEL
PASSED AS AN INPUT PARAMETER IS ~RITTEN TO THE TAPE, ALONG
WITH THE CURRENT TIME A~D DATE, REEL NUMBER (ONE), AND THE
TAPE RECORD SIZE. THE LABEL INFORMATION IS ALSO STORED I~
THE LABEL SAVE BUFFER IN THE ~UATERNARY CONTROL BLOCK
(PCB+3l. FOR THE FORMAT OF tHE LABEL DATA ON THE TAPE AND
IN THE SAVE BUFFER, SEE THE RDLABEl DOCUMENTATION.

INPUT INTERFACE

IS

OUTPUT INTERFACE

IS

POINTS ONE HfFORE THE LABEL DATA, WHICH
MUST BE TERMrNATED BV A STANDARD SYSTEM
DELIMITER (SM, AM, VM, SVM, OR 58)' IF
THE LABEL DATA IS GREATER THAN SIXTEEN
CHARACTERS LONG, IT WILL BE TRUNCATED TO
SIXTEEN CHARACTERS

POINTS TO THE DELIMITER TERMINATING THE
LABEL, OR TO SIXTEEN BYTES PAST THE
INPUT POSITION IF NONE IS FOUND

THE LABEL SAVE AREA IS INITIALIZED AS DESCRIBED. AND
THE REEL NUMBER IS SET TO ONE

ELEMENT US~GE

R13 R +
R14 R • UTILITY
R15 R +

02 0 + USED BY TIMDATE
D3 0 +

5-93

SUBROUTINE USAGE

INtTr TIMOATE, TPWRITEr TWO INTERNAL SUBROUTINES

WTLABEL

FIVE ADOITIONAL LEVELS OF SUBROUTINE LINKAGE REQUIRED

wTREC

wTREC (S,OISKFIO-I)

FUNCTIONAL OESCRIPTION

THIS ROUTINE COPIES THE CONTENTS OF THE UPO WORKSPACE (1
FRAME) INTO THE FRAME SPfCtFIEO BY TALLY RECORD.
ADDITIONALLY THE SUBROUTINE WTLINK IS ENTERED TO SET UP R15
POINTING TO THE LINK PORTION OF THE FRAME, AND TO SET UP THE
LINK ELEMENTS NNCF. NPCF, FRMN, AND FRMP.

INPUT INTERFACE

RECORD o

UPDBEG S

OUTPUT INTERFACE

UPO R

Rt4 R

R15 R +
~NCF H +

CONTAINS THE FlO OF THE FRAME INTO WHICH
DATA IS TO BE COPIED

POINTS ONE PRIOR TO THE FIRST DATA BYTE
OF THE UPO WORK SPACE (OR ANY FRAME FROM
WHICH DATA IS TO SE COPIED)

aUP08EG+500

POINTS TO THE LAST BYTE OP THE FRAME
SPECIFIED BY RECORD

FRMN 0 + (SEE RDLINK/WTLINK DOCUMENTATION)
FRMP 0 +
NPCF H +

ELEt.1ENT USAGE

NONE (BESIDES UPD AND R14)

SUBROUTINE USAGE

NONE

5-94

)ClSOS

XISOS (14,OISKFIO-!>.

FUNCTIONAL DESCRIPTION

XISOS SIMPLY EXCHANGES THE CONTENTS OF THE IS/ISBEG/ISENO
ANO OS/OSBEG/OSENO REGISTER TRIADS. REGISTER R14 IS USED
FOR SCRATCH PURPOSES.

5-95

SECTION 6
CHANGES AFFECTING ASSEMBLY CODE

THIS CHAPTER IS CONCERNED wITH THE ASSEMALY LANGUAGE
CHANGES RELEVANT TO ?X LEVEL UPGRADES TO RELEASE 3.0.

OVERVIEW

1) ALL ROUTINES MUST BE REASSEMBLED TO INSURE CORRECT
OPCODES AND REFERENCES TO PSVM ELEMENTS

2) THE FIRST ~ LINES OF ALL ASSEMBLV MODES SHOULD HE OF
THE FORMAT DOCUMENTED BELOW.

3) SYSTEM ROUTINES SHOULD BE REFERENCED RY 3.0 NA~ES.
THESE NAMES HAVE BEEN CHANGED TO MORE ACCURATELY REFLECT THE
FUNCTIONS OF THE SUBROUTINES OR ELEMENTS. IF THIS IS NOT
OESIREABLE. THE USER MAY RECREATE THE OLD NA~ES.

4) CALLS TO THE ROUTINf CVORtS (A~O OTHER CVD ••
ROUTINES) ALWAVS ASSUME THAT THE INPUT REGISTER POINTS ONE
BEFORE THE INPUT DATA. THIS ~AS DONE TO DECREASE THE
CHANCES OF PROGRA~ BUGS.

5) THE RESTRICTIONS ON THE USE OF THE 'BE' AND 'SU'
~NSTRUCTIONS HAVE BEEN GREATLY RFDUCEO. THE FORMS 'BRE' ANQ
'BRU' ARE OBSOLETE.

&) CALLS
INSTEAD OF
INSTRUCTIONS
EASIER.

TO 'MBOSUB CO"IVERT A 6-SVTE NUMBER (00+T2)
A FOUR 8YTE NUMBER (DO). & BVTE LOAD
(I.E. LOA~X ••) ARE PROVIDED TO MAKE THIS

7) OPTION STRING8 J~ INPUT LINES SET BITS A8IT.Z8IT.
AITS AfLG TO ZFLG ARE PROVI~f~ FOR USE OTHER THAN AS
OPTIONS. OPTION PARSING CAN BE INHIBITED IN VERBS 8Y
SETTING SCP = O. SEE SUBROUTINE 'GETOPT'. TEXT CONTAINING
'C' WHICH DOES NOT LOOK LIKE A~ OPTION STRING WILL NOT BE
TREATED AS AN OPTION STRING, ANO THE MESSAGE 'I~VALID OPTION
STRING' HAS BEEN ELIMINATED.

6) PROCESSORS SUCH AS BASIC AND ENGLISH HAVE BEEN
MODIFIED TO AVOIO USING THE fOLLOWING ELEMENTS WHICH ~RE NOW
AVAILABLE FOR USER CODE:

A) SR2() TO SR29
B) CTR30 TO CTR42
C) S8?O TO S832

9) BECAUSE OF UPDATES IN PLACE, THE OUTPUT tNTERFAC! OF
UPOITM HAS BEEN REOUCfD.

10) THE INTERFACE FOR USER EXITS FROM PROC HAS BEEN
EXPANDED. SEE THE SECTION cnNCERNING PROC IN CHAPTER 5.

1t) LOCAL 'BBL' INSTRUCTIONS NOW PLACE A Fro IN THE
RETURN STACK. THE FIRST 2 SVTES OF THE RETURN STACK ARE
ASSU~EO BY THE FIRMWARE AS X'OIBO'.

6-1

,

12) THE RIGHTMOST BIT OF THE LINK FIELD OF REGISTERS lS
USED AS AN EXTENSION OF THE wA FIELD. COMPARES OF FlO'S
WHICH WERE WRITTEN WITH THE ASSUMPTION THAT THE FLAG FIELD
COULD BE INCLUDED IN THE COMPARE ARE NO LONGER VALID. CE.G.
BE R&FIO,RECORO,LABEL). A NEW FORM OF INSTRUCTION (BE3,
BU3, BL3, 8H3) HAS BEEN INTRODUCED TO COMPARE ONLY THE LAST
3 BYTES OF A 4 BYTE FIELD (DOUBLE TALLY).

(E.G. BE3 R&FID,RECORD,LlAEL).

13) THE INTERFACE TO THE TAPE ROUTINES HAS CHANGED TO
ALLOW LARGE TAPE BLOCKS. SEE THE DOCUMfNTATION ON 'TPREAD'
AND 'TPWRITE'.

14) THE ASSEMBLER OUTPUT LISTING INCLUDES A FIELD FOR
DEFINITION LINES THAT SHO~S THE VALUES GENERATED IN THE TSYM
ENTRY FOR THAT DEFINITION.

15) THE LOGICAL COMPARE INSTRUCTIONS NOW ORDER THE
VALUES OF BYTES ASI

00,01,02 ••• 7F.80,81, ••• F£,FF
FORMERLY, THESE WERE ORDERED ASI

80,81 •••• FF,OO,Ol, ••• 1E,7F
THIS AFFECTS THE BCL AND BtH INSTRUCTIONS ONLY.

1&) THE 8ASIC DEBUGGER USES PC8+28.

PSYM ELEMENTS tVITH NEtv NAMES

OLD NAME NEW NAME

CVTNIB CVDIB
CVTNIR CVDIR
CVTNIS CVDIS
CVTNOS CVDOS
CVTHIB CVXIB
CVTHIR CVXIR
CVTHIS CVXIS
CTHOS CVXOS
TILD DECINHIB
GETIB READLIN
GETIBX READLINX
ASEND BDESCTBL
STKEND STKINP
CARRIER BREAKKEY
CVDRlSX CVDRlS
CVTHISX CVXIS
CVTNISX CVDIS
CVXRlSX CVXRlS
IOBIT14 OTABFLG
IOBIT2 PATTACH
IOBIT4 ITABFLG
SMCONV FRMTFLG

6-2

J.,

DELETED PSYM ENTRIES

ARSO
BOIV
CARRIER
eTR
02L
OFREE
OOOOA~
FP10W)
FP2(L)
FP)((TO)
FPV(TO)
GETts
It
1081T2
LOC)(
1004011
M09
NREC
PTRPAG
REG
S50SP
SETPIB
T-LOAD
TCLXIT
TPBIT

NEW PSYM ENTRIES

AFLG
88
CFLG
CVOOS
CVXOS
EFLG
GlCBMS
GlOCKFLG
IFLG
MFLG
NUMFlG2
R2WAOSP
REAOLIN
SFLG
SYSTEM-SUBS-IV
UFLG
YFlG

DELETED OSYM ENTRIES

CHAI~
OEFOX
DEFTH
FTlY
QVp

AS8£G
8MUL
CHARGE-UNITS-EXT
CVOIH -;X
02U
DISKERR
ENOBIT
FPtCL)
FP2(U)
FP)(CTOTl1
FPY(TOTt)
GETIBX
IIBEG
10BIT4
LOG UNLOCK
MDt&
MULFF
OCONVMD
QSTR
REJ~
583&
SMCONV
TlT?Tt
TFREE
TYMO

ATTSPC
89
CVOIB
CVXIA
OAFO
FFLG
GETFILE
1048
JFLG
NFLG
OFLG
RTWAOSP
READLINX
SLEEPSUB
TFLG
VFLG
ZFLG

BIA
OECF
GEFOV
()EFTY
INCF
SVP

6-3

ASEND
ce
CHKSUM
CVFR15
OATEQ
OISP
FPOCTOTt)
FP1(T1T2)
FP3CL)
FPXCTt)
FPY(TtTCD
HEADING
IIENO
ITAPEBIT
MOtO
MOl8
NEt;FPO
OVRFLWQ
R3SAVE
REJ4
5B40
SMOOSEP
T4T5T&
TIL
TYPE

814
BCKSP
CVOIR
CVXIR
DFLG
FLAGS
GETLSPC
H9
KFLG
NUMBIT
PFLG
R8WADSP
RETIXU
SMODSSEP
TPINIT
wFLG

BITNN
OEF.
OEFF
EQU
M80FR

ASTR
C9
CONFIG
CVXR15x
ODUMP
OIVFF
FPOCT2)
FP1(U)
FP3(U)
FPXCT2)
FPYCT2)
ICONVMO
1081T14
LOCI<8ITS
MOI0Fl
M023
N08IT
PSYM
ROUMP
REJ5
SB43
STKINP
T5T&T7
TIL.D
WSINT

B29
BFLG
CVDIS
CVX1S
DMOOOSEP
FRMTFLG
GFlG
HFlG
LFlG
NUMFlGl
ClFLG
REAOIB
RFLG
SlKENO
TPSTAT
XFLG

BSlA
DEFBY
OEF~Y
ESSR
M80NFR

