
The Pick Series

Pick ACCESS
A GUIDE TO THE SMAIRETRIEVAL LANGUAGE

O'Reilly & Associates, Inc.

The Pick Series

Pick ACCESS
A GUIDE TO THE SMA/RETRIEV AL LANGUAGE

By Walter Gallant
and the Staff of O'Reilly & Associates, Inc.

O'Reilly & Associates, Inc.

Copyright © 1989 O'Reilly & Associates, Inc.
All Rights Reserved

PICK and the PICK Operating System are registered trademarks of Pick Systems, Inc.

Prime INFORMATION is a trademark of Prime Computer, Inc.

Mentor is a registered trademark of Applied Digital Data Systems, Inc.

uniVerse is a trademark of VMARK SOFTWARE, INC.

REALITY is a registered trademark of McDonnell Douglas.

While every precaution has been taken in the preparation of this book, we assume no
responsibility for errors or omissions. Neither is any liability assumed for damages
resulting from the use of the information contained herein.

First Edition, Nov, 1989

ISBN 0-937175-41-2

..

The Pick Series

COMPLETE, ACCESSIBLE GUIDES TO PICK

The Pick Series offers user-oriented documentation­
helping new users learn about Pick quickly and helping
experienced users find accurate information easily. The
Pick Series is a complete documentation set for all users.
It tackles the Pick system at a level of depth not found
elsewhere. Books in the series are based on a mature
implementation of the Pick operating system (R83)
with notes on SMA standards and specific differences
among major Pick implementations.

TECHNICAL EDITOR

W. Clifton Oliver, CCP

SERIES EDITOR

Dale Dougherty

The Pick Series

The goal of the Pick Series is to provide Pick documentation
that is user-oriented: to help new users learn about Pick
quickly and to help experienced users find accurate informa­
tion easily. These books are written in a conversational tone,
with lots of examples, as if an experienced user were by the
reader's side. The Pick Series offers complete documentation
of the Pick operating system (R83) with notes on SMA
standards and specific differences among major Pick imple­
mentations.

Books in the series include:

• Pick ACCESS: A Guide to the SMA/RETRIEVAL
Language
(Available 12/89, ISBN 0-937175-41-2, $29.95)

• A Guide to the Pick System
(Available 1/90, ISBN 0-937175-43-9, $34.95)

• Pick BASIC: A Reference Guide
(Available 2/90, ISBN 0-937175-42-0, $39.95)

• Master Dictionary Reference Guide: User Account Verbs
(Available 2/90, ISBN 0-937175-44-7, $39.95)

• System Administration: A Guide to Managing the
Pick/SMA Operating System
(Available 3/90, ISBN 0-937175-45-5, $34.95)

• SYSPROG Reference Guide: SYSPROG Account Verbs
(Available 3/90, ISBN 0-937175-46-3, $29.95)

• PROC: A Guide to the PROC Processor
(Available 4/90, ISBN 0-937175-47-1, $21.95)

O'Reilly & Associates, Inc.
632 Petaluma Avenue· Sebastopol, CA 95472·800-338-6887

in CA 800-533-6887· local/overseas + \- 707 -829-0515

CONTENTS

List of Chapters

Preface .. xix

Chapter 1: An Overview of ACCESS .. 1

Chapter 2: ACCESS Syntax ... 11

Chapter 3: Producing Reports with LIST and SORT. 31

Chapter 4: Formatting Reports ... 55

Chapter 5: Using Select-Lists .. 71

Chapter 6: Specialized Processing ... 85

Chapter 7: Forms Generation...................... 107

Chapter 8: Correlatives and Conversions 137

Appendix A: ACCESS Commands .. 193

Appendix B: ACCESS Keywords .. 259

Appendix C: Correlative and Conversion Codes 303

Appendix D: File Dictionary Structures 323

Index I .. 331

Contents I v

CONTENTS

Chapter 1. An Overview of ACCESS ... I

Using ACCESS ... 2

Selecting Data .. 5

Sorting Data .. 6

Formatting a Report. .. 6

Sending a Report to the Printer .. 8

Reviewing the Syntax of a Query .. 8

An Overview of ACCESS Verbs ... 8

Chapter 2. ACCESS Syntax .. II

How Queries Are Processed ... 13

Default ACCESS Processing ... 14

Defining Default Output Specifications IS

Creating an @LPTR Phrase 17

Creating an @ Phrase .. 17

Suppressing Default Output Specifications 18

Entering Literal Values ... 19

Entering Multiple-Line Queries .. 21

U sing Throwaway Connectives ... 21

Using Phrases ... 22

Contents vii

ACCESS Verbs and Keywords .. 24

ACCESS Verbs .. 24

ACCESS Keywords .. 26

Chapter 3. Producing Reports with LIST and SORT 31

The LIST and SORT Verbs .. 31

Using Selection Expressions ... 32

Selecting Items by Item ID ... 32

Selecting Items by Data Attribute 33

Using Relational Operators ... 35

Using Logical Connectives .. 36

String Searching .. 37

Specifying the End of a String ([string) 38

Specifying the Beginning of a String (string]) 39

Specifying a Contained String ([string]) 39

Specifying Wild Characters (1\) 39

Using the Soundex Algorithm .. 39

Using SORT Expressions ... 41

Sorting By Multiple Attributes ... 42

Sorting Data in Multivalued Attributes43

Displaying Selected Attributes .. 45

Displaying Selected Multivalues ... 47

Copying Selected Items with LIST-ITEM 49

The USING Connective ... 50

The WITHIN Connective ... 51

Chapter 4. Formatting Reports .. 55

A Sample Report. .. 56

Creating Headings and Footings .. 56

Defining a Heading ... 58

Defining a Footing ... 60

VIII Pick ACCESS

i
I

$uppressing the Page and Column Headings 61

Calculating Totals ... 62

Formatting the Total Line ... 64

Breaking on Attribute Values ... 65

Including Totals in a Control Break 67

Suppressing Detail Lines ... 68

Special Uses of Formatting Modifiers .. 69

Chapter 5. Using Select-Lists ... 71

Processors that Use Select-Lists .. 73

PICK/BASIC ... 73

ACCESS ... 73

Runoff .. 74

TCL-II Verbs .. 74

Creating Select-Lists ... 74

SELECT Syntax .. 75

Creating a Select-List (SELECT) 75

Listing Items Not Included in a Select-List (NSELECT) 76

Creating a Select-List from Data (FORM-LIST) 77

Saving a Select-List ... 80

Working with Saved Select-Lists ... 81

Retrieving a Saved Select-List.. .. 82

Copying a Saved Select-List.. ... 82

Editing a Saved Select-List.. .. 83

Chapter 6. Specialized Processing ... 85

Printil)g Labels ... 87

!LIST-LABEL and SORT-LABEL Syntax 87

Defining a Label Format.. ... 88

Generating Labels with a Proc ... 91

Contents ix

Generating Statistics on Data .. 91

Counting File Items .. 92

Totalling a Numeric Attribute ... 93

Generating Statistics for a Numeric Attribute 93

Generating File Statistics .. 94

Analyzing Current File Structure 94

Testing Alternate File Structures .. 95

Copying Items to and from Tape ... 97

Copying Items to Tape .. 98

Copying Items from Tape ... 99

Tape Format Verbs vs. the TAPE Modifier 100

Restructuring File Items .. 100

Transferring Items to Tape ... 101

Restructuring Items in a New File 102

What About File Dictionaries? 103

Example .. 103

Chapter 7. Forms Generation ... 107

Forms, Items, Pages, and Subpages .. 108

Forms Generation Verbs .. 109

Generating Forms: an Overview .. 110

Using Print Codes .. 110

Designing a Form .. 113

U sing Modifiers in Forms Generation Statements 1 15

BREAK-ON, TOTAL,
and GRAND-TOTAL Modifiers 115

Including Item IDs .. 116

Defining Headings and Footings 116

The WINDOW Modifier .. 117

Forms Generation Options .. 117

x Pick ACCESS

How IData Appears on Forms .. 118

. Coordinating Justification and Column Width Fields 118

Using Controlling and Dependent Attributes 119

Using the Tfile Correlative .. 120

Including Multivalues on Forms .. 120

Designing Windows ... 121

Single-Depth Windows .. 122

Double-Depth Windows ... 124

Printing Data on First and Last Pages of a Form 126

Numbering Pages on MuItipage Forms 128

Special Features of Forms Generation .. 130

Creating a Background Form .. 130

Aligning the Printer ... 132

Maintaining an Audit TraiL ... 133

Chapter 8. Correlatives and Conversions 137

An Overview .. 138

Correlatives .. 139

Conversions .. 145

How Correlatives and Conversions Are Applied 146

Performing Arithmetic Operations ... 148

Manipulating Numeric Data and Strings (A Code) 148

Using the Stack (F Code) ... 153

Referencing Attributes and Literal Strings 155

Arithmetic Operators .. 155

Relational Operators ... 156

Special Function Codes .. 157

Applying Conversion Codes 157

Deriving Data from Attributes .. 158

Concatenating Data (C Code) ... 159

Contents xi

Extracting Data ... 161

The T Code .. 161

The G Code .. 164

Substituting Data (S Code) ... 166

Testing Data .. 167

The L Code .. 167

The R Code .. 167

The P Code .. 168

Translating Data from Other Files ... 169

Formatting Data ... 176

Formatting Dates (0 Code) ... 177

Formatting Times (MT Code) .. 179

Formatting Decimal Numbers (ML and MR Codes) 180

Using Masked Character Codes (MC Codes) 183

Converting Hexadecimal Numbers
(MCDX and MCXD) ... 185

Converting Hexadecimal and ASCII Strings 185

Advanced Topics .. 186

Using Correlatives as Conversions and Vice Versa 187

Using Special Operands with A and F Codes 187

Applying Conversion Operations Before Correlative
Operations , ... 188

Using Multiple Codes ... 189

Combining Correlatives and Conversions 191

Adjusting Division Operations 191

Appendix A. ACCESS Commands .. 193

CHECK-SUM: Produces check-sum statistics for file items 195

COPY-LIST: Copies a saved select-list.. 197

COUNT: Counts file items ... 198

EDIT-LIST: Edits a select-list.. .. 199

Xll Pick ACCESS

FILE-TEST: Tests item distribution in a file 199
,

FORM-LIST: Selects attribute values from selected file items 201

FORMS: Lists items on forms .. 202

Print Codes ... 204

Forms Generation Modifiers ... 206

BREAK-ON ... 207

HEADING and FOOTING 207

HDR-SUPP .. 207

ID-SUPP ... 207

Forms Generation Options .. 208

The A Option ... 208

The B Option .. 208

The M Option ... 209

The Z Option .. 209

GET-LIST: Retrieves a previously saved select-Iist.. 209

HASH-TEST: Tests effects of different modulos
on item distribution .. 210

1ST AT: Summarizes item distribution in a file 211

LIST: Generates reports from a database 212

LIST-ITEM: Displays all data for items 215

LIST-LABEL: Lists data in label format. 216

NSELECT: Selects items from an active select-list
that aren't in a file ... 218

QSELECT: Selects attribute values from selected file items 219

REFORMAT: Restructures file items .. 219

REPT: Lists multiple items on forms .. 221

Print Codes ... 224

Forms Generation Modifiers ... 226

BREAK-ON ... 226

HEADING and FOOTING 227

HDR-SUPP .. 227

ID-SUPP ... 227

Contents xiii

Fonns Generation Options .. 227

The A Option ... 227

The B Option .. 228

The Z Option .. 229

S-DUMP: Copies sorted items to magnetic tape 229

SAVE-LIST: Saves a select-list. ... 231

SELECT: Selects items for further processing 231

SFORMS: Lists items on fonns in sorted order. 232

Print Codes ... 235

SORT: Generates reports in sorted order from a database 237

SORT-ITEM: Displays sorted items .. 239

SORT-LABEL: Lists data in label fonnat and in sorted order. 240

SREFORMA T: Restructures and sorts items 243

SREPT: Lists multiple items on fonns in sorted order. 245

Print Codes ... 248

SSELECT: Selects and sorts items for further processing 250

STAT: Lists statistics for a specified attribute 251

SUM: Totals the data elements in a numeric attribute 253

T-DUMP: Copies items to magn~tic tape 254

T -LOAD: Restores items from magnetic tape to disk 256

Appendix B. ACCESS Keywords ... 259

= ... 263

... 263

> ... 263

>= ... 263

< ... 263

<= ... 263

A/AN .. 264

AFTER ... 264

AND ... 264

xiv Pick ACCESS

ANy ... 265

ARE .. 265

BEFORE ... 265

BREAK-ON ... 265

By .. 268

BY-DSND ... 270

BY-EXP .. 271

BY-EXP-DSND ... 272

C .. 273

COL-HDR-SUPP .. 273

D .. 274

DATA ... 274

DBL-SPC .. 275

DET-SUPP .. 275

DICT .. 276

EACH ... 277

END-WINDOW ... 277

EQ .. 277

EQUAL ... 278

EVERy ... 278

F ... 278

FILE ... 278

FOOTING ... 278

FOR .. 280

GE .. 281

GRAND-TOTAL ... 281

GT .. 283

H .. 283

HDR-SUPP .. 284

HEADING ... 284

I ... 286

Contents xv

ID-SUPP ... 287

IF ... 288

IN ... 288

ITEMS .. 288

LE .. 289

LIKE .. 289

LPTR .. 290

LT .. 290

MATCHING .. 290

N .. 290

NE .. 291

NO .. 291

NOPAGE .. 291

NOT ... 292

NOT.MATCHING .. 292

0 .. 292

OF .. 292

ONLy ... 292

OR .. 293

P ... 293

SAID ... 293

SPOKEN ... 294

SUPP .. 294

T .. 294

TAPE .. 294

THE .. 294

TOTAL ... 295

USING .. 2%

VERTICALLY .. 297

WINDOW ... 297

WITH .. 298

xvi Pick ACCESS

WITHIN .. 299

WITHOUT .. 301

Y .. 301

Appendix C. Correlative and Conversion Codes 303

A CODE: Algebraic and String Functions 303

Attributes ... 304

Literals ... 304

System Variables ... 304

Functions .. 305

Arithmetic Operators ... 306

Relational Operators .. 306

Precedence of Operations .. 306

C CODE: Concatenation .. 307

D CODE: Date Conversion .. 307

Doing a Group Extraction with the D Code 309

F CODE: Stack Functions .. 309

Attributes ... 310

Literals ... 310

System Variables ... 311

Functions .. 311

Arithmetic Operators ... 312

Relational Operators .. 313

G CODE: Group Extraction .. 313

LCODE: Length Validation .. 313

MC CODES: Character Masks ... 314

Using MC Codes .. 315

ML and MR CODES: Formatting and Scaling Numbers 316

MT CODE: Time Conversion .. 317

MX and MY CODES: Character-to-Hexadecimal Format.. 317

P CODE: Pattern Matching .. 318

Contents XVll

R CODE: Range Validation ... 318

S CODE: Substitution ... 319

T CODE: Text Extraction ... 319

Tfile CODE: File Translation .. 320

Appendix D. File Dictionary Structures 323

File Definition Items ... 324

Attribute Definition Items .. 325

Nonstandard File Dictionaries .. 327

Prime INFORMATION Dictionaries 328

Data Descriptors and I-Descriptors 328

@ID Descriptors ... 329

Index .. 331

XV1ll Pick ACCESS

PREFACE

About This Book

Pick ACCESS is a complete introduction and guide to the Pick/SMA retrieval
language. This retrieval language, used on all Pick and Pick-related systems,
is known by a variety of names: ACCESS (Pick Systems), INFO/ACCESS
(ADDS Mentor), RECALL (Ultimate), ENGLISH (Reality), RETRIEVE
(uniVerse), INFORM (Prime INFORMATION), etc. Although there are
some differences in the ways different manufacturers have implemented
ACCESS on their systems, for the most part the ACCESS processor works in
a similar manner on all Pick systems.

ACCESS is perhaps the most familiar and easy-to-use feature of the Pick
system. It is an integral part of the system, with the power and flexibility to
create custom reports that would otherwise require special programming to
create. ACCESS is easy to use because it allows users to enter
natural-language "sentences" (such as "SORT DATA IN THE CUSTOMERS
FILE BY LAST-NAME") to query the database. It can be used for both
regular periodic reporting as well as for ad hoc reports. No programming
knowledge is necessary in order to use ACCESS.

In this book, whenever we refer to "the Pick operating system" or to "Pick
systems," we do not refer exclusively to the operating system developed and
marketed by Pick Systems, Inc., but rather to Pick systems generally.
Although different manufacturers market versions of the Pick system under
their own trade names, such as Mentor (ADDS), Ultimate, uniVerse
(VMark), etc., they are all versions of what has become known generically as
the Pick system.

Preface: About This Book xix

The Pick system has clearly withstood the test of time. The same cannot be
said for the standard Pick documentation, which many users find difficult to
use, outdated, and inaccessible. This book provides Pick documentation that
is user-oriented: with Pick ACCESS, new users will be able to learn about
ACCESS quickly, and experienced users will find accurate information
easily.

This book aims at completeness. While the information in Pick ACCESS is
fully compatible with the SMA/RETRIEVAL Language Specification
published in January 1988 by SMA, we have tried, in addition, to be as
inclusive as possible. This book is not just about those elements of ACCESS
that are common to all systems; it also takes note of significant differences
found among the different implementations. For example, Chapter 7
discusses forms generation (which is not included in the SMA standards) and
points out the different ways systems such as ADDS Mentor and Ultimate
implement this feature. We also highlight the ways systems such as Prime
INFORMATION and VMark's uniVerse differ from main-line Pick systems.
The reader should not expect, however, to find every detail of every Pick
system completely documented here. For full details about your own system,
you will still need to consult the reference manuals provided by your system
supplier.

Pick ACCESS is the first book in O'Reilly & Associates's user-oriented series
of complete, accessible guides to the Pick system. The Pick Series offers a
complete Pick documentation set for both new and experienced users. It is
based on a mature implementation of the Pick R83 operating system, follows
the SMA standards, and notes specific differences among major Pick
implementations. Forthcoming books in the series will include:

• A Guide to the Pick System.

• Pick BASIC: a Reference Guide.

• System Administration: A Guide to Managing the Pick/SMA
Operating System.

• Master Dictionary Reference Guide: User Account Verbs.

• SYSPROG Reference Guide: SYSPROG Account Verbs.

• PROC: A Guide to the PROC Processor.

xx Pick ACCESS

Summary of Contents

Pick ACCESS has two parts. The first part, in eight chapters, provides a
complete introduction to ACCESS. The first four chapters, written in a
tutorial style and including lots of examples, give the new user a general
overview of query syntax. Subsequent chapters explore some of the more
specialized aspects of ACCESS such as forms generation and the use of
processing codes (correlatives and conversions).

The second part, in four appendixes, contains alphabetic reference guides to
the verbs, keywords, and processing codes used by the ACCESS processor.
Complete syntax for each verb, keyword, and code is given, along with
explanations of all syntactical parameters and options. Appendix D provides
an outline of Pick dictionary structures, summarizing the two main types of
Pick and Pick-related file dictionaries, Pick/SMA, and uniVerse/prime
INFORMATION.

Assumptions

We assume that a Pick system has already been installed on your computer
and that you have some familiarity with the Terminal Control Language
(TCL). We also assume you have a basic understanding of Pick file
structure: that is, that you know about file dictionaries and how they define
the structure of the data in a file. Even if you don't know much about file
dictionaries, however, Pick ACCESS will not be difficult to use to retrieve
data and generate reports from files that have already been set up on your
system. You will find a complete explanation of the structure and functions
of Pick files in A Guide to the Pick System, another book in the Pick series
(see also Appendix D in this book, "File Dictionary Structures").

How to Use This Manual

Pick ACCESS is divided into eight chapters and four appendixes.

Preface: About This Book XXI

Chapter 1, "An Overview of ACCESS," introduces the ACCESS processor
and the fundamental elements of its query language.

Chapter 2, "ACCESS Syntax," is a general description of the syntax of
ACCESS. Each parameter that can be included in an ACCESS query is
presented, accompanied by examples of its use. Also included is an
explanation of how ACCESS processes different types of query, along with a
description of default processing. The chapter ends with brief descriptions
of all ACCESS verbs and keywords.

Chapter 3, "Producing Reports with LIST and SORT," shows how to
produce many different types of report using the LIST and SORT verbs.
Selection expressions, sort expressions, and print limiters are explained in
detail, with many examples.

Chapter 4, "Formatting Reports," shows how to format ACCESS reports
using keywords of different types. Topics include customizing headings and
footings, calculating totals and subtotals, producing control breaks, etc.

Chapter 5, "Using Select-Lists," describes and explains how to generate, use,
save, and retrieve select-lists. Select-lists allow you to identify and select
only those items in a file that you want to process.

Chapter 6, "Specialized Processing," describes and explains how to use
ACCESS verbs that let you process data in specialized ways: creating labels
in block format, generating statistics about data files, copying data to and
from tape, and restructuring data.

Chapter 7, "Forms Generation," describes and explains how to generate
reports to be printed on forms (invoices, checks, order forms, etc.).

Chapter 8, "Correlatives and Conversions," describes and explains in detail
how to use correlative and conversion codes to enhance the processing and
manipulation of data both within a file and among different files. Many
examples of correlatives and conversions are included.

Appendix A, "ACCESS Commands," is a reference guide to all ACCESS
verbs arranged in alphabetical order. Each entry includes a brief explanation
of what the command does, a complete explanation of its syntax, and a
description of how to use the command.

Appendix B, "ACCESS Keywords," is an alphabetic reference guide to all
ACCESS keywords, with examples illustrating how to use them. Also

xxii Pick ACCESS

included are tables listing the keywords according to their different
categories: connectives, relational operators, modifiers, and options.

Appendix C, "Correlative and Conversion Codes," is a reference guide to all
of the ACCESS correlative and conversion codes arranged in alphabetical
order. Each entry includes a brief explanation of what the code does, a
complete explanation of its syntax, and a description of how to use the code.

Appendix D, "File Dictionary Structures," provides a summary of the
dictionary structures of Pick data files. Included are descriptions of the
standard Pick/SMA File and Attribute Definition items, as well as a
description of the type of dictionary items found on Prime INFORMATION
and uniVerse systems.

Conventions

We use the following conventions for indicating command line syntax.

Convention Usage

BOLD CAPS Anything shown in large bold characters must be typed
exactly as shown.

italics

()

[I

{ I

Anything shown in italics is variable information for
which the user provides a specific value.

Parentheses must be typed. It is usually sufficient to
type only the first parenthesis; the second is optional.

Anything shown enclosed in square brackets is optional.
The square brackets themselves are not typed.

A vertical bar separating two or more elements indicates
that anyone of the elements can be typed.

If two or more elements are enclosed within curly braces
and separated by a bar, one of the elements must be
typed.

All punctuation marks included in syntax format lines (e.g., commas,
parentheses, angle brackets, underscores, hyphens) are required in the syntax
unless otherwise indicated. Square brackets are not typed.

Preface: About This Book xxiii

In the following syntax example:

LIST [DICT 1 filename [WITH [EVERY I EACH 1 attribute-name value-list 1 [(P) 1

the only two elements of the line that must be entered are "LIST" and
''filename''. "LIST" must be entered exactly as shown. ''filename'' is a
variable; the user can enter the name of any accessible file. "attribute-name"
and "value-list" are also variables that the user supplies. The vertical bar
indicates that either "EVERY" or "EACH" can be entered; the brackets
indicate that both of these keyboards are optional. If the "P" option is
entered, it must be enclosed within parentheses.

When variables supplied by the user are two or more words long, hyphens
are used instead of blank spaces to separate the words in order to show that
only one element is required. For example, in the command:

LIST filename item-list

the word filename indicates a single element, and the words item and list
joined by a hyphen likewise indicate a single element.

Notation in Examples

In screen examples we use the following conventions:

Convention Usage

BOLD Anything the user types as input is shown in bold
characters.

PLAIN Any output displayed by the system (prompts, responses
to user input, etc.) is shown in plain characters.

< RET URN> Indicates that the RETURN key must be pressed.
;

<CTRL-ChSf> Indicates that a control character is to be typed. To enter
a control character, simultaneously hold down the
CONTROL (CTRL) key and press the specified
character.

Most commands are entered by typing the command line at one of the
prompts and then pressing the RETURN key. This is true whether you are
entering a one-letter Editor command or a lengthy ACCESS statement.

xxiv Pick ACCESS

Therefore, in examples the RETURN key symbol «RETURN» is shown only
in cases where it is needed for clarity.

~ This symbol indicates an important note or caution.

Acknowledgements

We would like to thank everyone at Applied Digital Data Systems, Inc., for
reviewing this material in its earlier life, and for the use of the ADDS Mentor
6000 system on which all of the examples in this book were generated.
Special thanks to Robin White, Dave Yulke, Mike Hannigan, Joe Ferraro,
Cliff Olsen, Linda Lutz, and many technical support people, all of whom
contributed to the book in both large and small ways. Thanks, too, to Charles
Cornell of VMark Software for his help over the years.

Thanks are also due to the O'Reilly & Associates staff who worked on the
book: Julie Buckler and Dale Dougherty who helped to write it, and Michael
Sierra, Laurel Erickson, and Will Hirshowitz who wrestled with Microsoft
Word to produce it. Edie Freedman designed the covers.

We have made every effort to verify all the information in this book. Any
errors that remain are our own.

How to Contact Us

To help us provide you with the best possible documentation, please write
and tell us about any mistakes you find in this book or about how you think it
might be improved.

Our U.S. mailing addresses are:

Ordering

O'Reilly & Associates, Inc.
632 Petaluma Avenue
Sebastopol, CA 95472
(800) 338-6887

Preface: About This Book

Editorial (Walter Gallant)

O'Reilly & Associates, Inc.
90 Sherman Street
Cambridge, MA 02140
(617) 354-5800

xxv

CHAPTER 1

An Overview of ACCESS

ACCESS is a dictionary-driven database processor. It uses a query language
that generates formatted reports from a database. ACCESS queries are made
up of English-like words whose meanings match the functions they perform.
Queries are entered either directly at the TCL prompt or through a proc or
PICK/BASIC application program.

Chapter 1 provides a general introduction to ACCESS. Some examples of
simple ACCESS queries are shown along with the reports they produce on
the screen. You'll see how ACCESS does the following:

• Lists items in a file.

• Uses output specifications to determine what data to print or display in
a report.

• Uses selection expressions to determine what data items are to be
included.

• Uses sort expressions to determine the order in which data is printed
or displayed.

• Uses keywords to format a report in different ways.

Chapter 2 explores in more detail the formal syntax of ACCESS queries.

1: An Overview of ACCESS

Using ACCESS

ACCESS provides great flexibility in extracting information from a database
and in formatting reports. This makes ACCESS a powerful tool for
applications development.

ACCESS queries perform the following operations:

• Report data by displaying the contents of specified attributes.

• Extract data by defining the criteria by which items are selected.

• Format reports by controlling how the data is to be displayed.

The main component of an ACCESS query is an action-oriented verb, such as
LIST, SORT, or COUNT. ACCESS verbs can be used to:

• Display or print file items.

• Sort items according to multiple keys.

• Generate forms.

• Count and produce statistics for selected items.

• Select items for further processing.

• Read and write data to tape.

• Display file hashing statistics.

LIST is a general-purpose verb that lists items in a file. By default, this list is
displayed on the terminal screen. Let's look at an example using a file named
CUSTOMERS. If you type the following statement and press the RETURN
key, a listing such as the one shown in Example 1-1 is produced from the
CUSTOMERS file.

This single-column report shows the item ID for each item in the
CUSTOMERS file. (The item ID is a unique identifier that locates each item
in a file.) Each report can have a heading, which typically contains the page
number, time, and date, along with a footer, which typically displays the
number of items included in the report.

2 Pick ACCESS

>LlST CUSTOMERS

PAGE 1

CUSTOMERS ...

HJENK7129
JBORA5422
JBRow6749
JBUCK6488
BLEAR6803
JMAS06378
AORLA5993
SPIRS5289
MASHX5777
AEDWA5224
JPEER5993
RPIER5539
AJOHN5396
HJOHN7265
HHIGG6849
DEDGE6635
BLAMP6196
AMEAD5619

18 ITEMS LISTED.

10:43:27 01 NOV 1989

Example 1-1.
By default the LIST verb lists item IDs only.

ACCESS queries are usually not this simple. They generally include an
output specification, which is a list of the attributes whose data is to be
included in the report. For example, you could generate a report that
displays the last name, street address, city, and state of all customers in the
CUSTOMERS file. These are attributes (i.e., fields) containing data for
items in the CUSTOMERS file.

The CUSTOMERS dictionary contains Attribute Definition items for
LAST-NAME, STREET, CITY, and STATE. We can specify the names of
these attributes in the query:

>LlST CUSTOMERS LAST-NAME STREET CITY STATE

The report that results is shown in example 1-2.

This report displays all of the items in the CUSTOMERS file, producing a
line of data for each customer. The format of this report is columnar: the

1.' An Overview of ACCESS 3

contents of each attribute are listed vertically, and each customer item is
listed horizontally. As described in Chapter 2, it is also possible to generate
reports in noncolumnar fOID1at.

PAGE 1 10:43:46 01 NOV 1989

CUSTOMERS ... Last Name. Street ••..••.•...••• City •...••.. State

HJENK7129 JENKINS 1222 MAIN STREET INDIANAPOLIS IN
JBOHA5422 BOHANNON 126 TREMONT STREET BOSTON MA
JBROW6749 BROWN 129 BOYLSTON STREET BOSTON MA
JBUCK6498 BUCKLER 26 STONE AVENUE LINCOLN IN
BLEAR6803 LEARY 34 TREMONT STREET BOSTON MA
JMAS06378 MASON 226 ROCK ROAD LINCOLN IN
AORLA5993 ORLANDO 55 VENTURA HIGHWAY VENICE CA
SPIRS5289 PIRS 112 APPLEBEE ROAD WINSTON NC
MASHX5777 ASH 912A E. OAK STREET INDIANAPOLIS IN
AEDWA5224 EDWARDS 51 BLAIR AVENUE SUDBIJRY MA
JPEER5993 PEERCE 89 RIALTO WAY LOS ALTOS CA
RPIER5539 PIERCE 123 W RIDGEWOOD AVE RIDGEWOOD NJ
AJOHN5396 JOHNSON 760 JEFFERSON STREET LOUISVILLE KY
HJOHN7265 JOHNSON 45 50TH STREET OMAHA NB
HHIGG6849 HIGGINS 54 25TH STREET OMAHA NB
DEDGE6635 EDGECOMB 339 BROADWAY MIAMI FL
BLAMP6196 LAMPSON 344 TREMAIN ROAD BOSTON MA
AMEAD5619 MEADE 251 BLOWNEY AVENUE SUDBURY MA

18 ITEMS LISTED.

Example 1-2.
Output specifications determine what data is to be listed in a report.

By default, all ACCESS reports automatically include item IDs. You can,
however, use the ID-SUPP modifier to suppress the inclusion of these
item IDs in a report. There are many other ACCESS modifiers that affect
the processing or format of a report. These modifiers are shown in a table at
the end of Chapter 2. Formatting modifiers are described in Chapter 4.

The rest of this chapter demonstrates the power and flexibility of ACCESS
by expanding the preceding report. All of the syntax elements treated here
are described in detail in Chapter 2.

4 Pick ACCESS

Selecting Data

To generate a report about a subset of the CUSTOMERS (or any other) file,
use a selection expression to define criteria against which all items in the file
will be compared. The report then includes only those items that meet the
selection criteria.

For example, to select only those customers who live in the state of Indiana,
you could add the following selection expression to the preceding ACCESS
query:

WITH STATE = "IN"

This expression compares the data in the attribute STATE to the literal "IN".
"IN" is enclosed in double quotes to indicate that it is a literal value.

The ACCESS query now looks like the one shown in Example 1-3.

>LlST CUSTOMERS WITH STATE = "IN" LAST-NAME STREET
CITY STATE ID-SUPP

PAGE 1 10:44:25 01 NOV 1989

Last Name. Street •••••....••••• City ..••.••. State

JENKINS
BUCKLER
MASON
ASH

1222 MAIN STREET INDIANAPOLIS
26 STONE AVENUE LINCOLN
226 ROCK ROAD LINCOLN
912A E. OAK STREET INDIANAPOLIS

IN
IN
IN
IN

4 ITEMS LISTED.

>

Example 1-3.
A selection expression specifies what criteria must be met

in order for items to be included in a report.

All the items listed in the report contain "IN" as the value of the attribute
STATE.

1: An Overview of ACCESS 5

The following examples illustrate how ACCESS queries closely follow the
patterns of natural-language sentences:

LIST CUSTOMERS WITH LAST-NAME < "MARTIN"
LIST EMPLOYEES WITH SALARY> "25,000"
LIST CUSTOMERS WITH STREET = "56 SPRINGFIELD STREET"
LIST STUDENTS WITH FIRST-NAME LIKE "MARYL YNN"

Sorting Data

The report shown in Example 1-3 lists items in a somewhat random order,
based on where they are located in the file. Let's assume, however, that you
want to display customer names in alphabetical order. To specify the order
of items in a report, you can use a sort expression. A sort expression
specifies which attribute to sort by and whether to sort it in ascending or
descending order. A SORT query consists of a verb with sorting capabilities,
such as the SORT verb, one of the four BY modifiers, and the name of the
attribute whose data will be sorted.

Here are some sample sort queries:

SORT CUSTOMERS BY LAST-NAME
SORT ORDERS BY-DSND AMOUNT
SORT ORDERS WITH AMOUNT> "250" BY AMOUNT
SORT CUSTOMERS BY STATE BY LAST-NAME

The following query sorts customers by their last names.

>SORT CUSTOMERS WITH STATE = "IN" BY LAST-NAME
LAST-NAME STREET CITY STATE ID-SUPP

The resulting report is shown in Example 1-4.

Formatting a Report

As you've seen in the examples so far, an ACCESS report includes the
following default heading:

PAGE n time date

This heading can be seen at the top of Example 1-4.

6 Pick ACCESS

PAGE 1 10:44:56 01 NOV 1989

Last Nam(l. Street.............. City........ State

ASH
BUCKLER
JENKINS
MASON

912A E. OAK STREET INDIANAPOLIS
26 STONE AVENUE LINCOLN
1222 MAIN STREET INDIANAPOLIS
226 ROCK ROAD LINCOLN

4 ITEMS LISTED.

>

Example 1-4.

IN
IN
IN
IN

A sort expression determines the order in which items in a report are to be
listed.

Reports generally also include an end-of-list message in the following
format:

n ITEMS LISTED.

n is the number of items listed in the report. ACCESS queries can, however,
contain specifications for more complex headings, footings, and other
formatting parameters. The query shown in Example 1-5 includes a heading
on each page of the report that reads "INDIANA CUSTOMERS".

>SORT CUSTOMERS WITH STATE = "IN" BY LAST-NAME
LAST-NAME STREET CITY STATE ID-SUPP HEADING
"INDIANA CUSTOMERS"

INDIANA CUSTOMERS
Last Name. Street City State

ASH
BUCKLER
JENKINS
MASON

>

912A E. OAK STREET INDIANAPOLIS
26 STONE AVENUE LINCOLN
1222 MAIN STREET INDIANAPOLIS
226 ROCK ROAD LINCOLN

Example 1-5.

IN
IN
IN
IN

The HEADING modifier lets you customize the report heading.

1: An Overview of ACCESS 7

The default heading is replaced by the new heading. Also, notice that the
usual end-of-list message does not appear when you define a heading.

Sending a Report to the Printer

All the reports we've seen so far have been displayed on the terminal screen.
ACCESS reports can be sent to the printer by including the LPTR modifier
or the P option at the end of a query. P is a parenthetical option, one of
several which can be applied to ACCESS commands. For example:

>SORT CUSTOMERS WITH STATE = "IN" BY LAST-NAME
LAST-NAME STREET CITY STATE ID-SUPP HEADING
"INDIANA CUSTOMERS" (P)

This report is sent to the printer that has been assigned to the user's account.
Because you may be sharing a printer with other users, the report may not be
immediately output on the printer. Instead, it is "spooled" in a print queue,
and the systems will send it to the printer in tum.

Reviewing the Syntax of a Query

Now that we have constructed a more complex ACCESS query, it might be
useful to review the elements that make it up. Example 1-6 shows the query
discussed in the preceding section broken down into its component parts.

The verb is the most important part of an ACCESS query. The verb specifies
the basic operation required to generate a report. The syntax elements that
follow the verb modify this basic operation.

An Overview of ACCESS Verbs

ACCESS verbs are words that specify the operation to be performed on a
database. LIST and SORT are general-purpose verbs. There are a number
of special-purpose verbs as well.

8 Pick ACCESS

SORT CUSTOMERS WITH STATE - "IN"

verb filename selection expression

BY LAST-NAME LAST-NAME STREET CITY STATE

sort expression output specifications

:D-SUPP HEADING "INDIANA CUSTOMERS" IF)

formatting modifier formatting modifier option

Example 1-6. ACCESS Query Syntax.
An ACCESS query is made up of different syntactical elements.

ACCESS verbs fall into six functional groups:

1. Listing and Sorting Verbs. These verbs perform basic listing and
sorting operations on file items. They are described in Chapter 3.

LIST LIST-ITEM
SORT SORT-ITEM

2. Select-List Verbs. These verbs create and manipulate lists of
item IDs from a database. They are described in Chapter 5.

SELECT SAVE-LIST
SSELECT
FORM-LIST
NSELECT
QSELECT

GET-LIST
COPY-LIST
EDIT-LIST
DELETE-LIST

3. Specialized Processing Verbs. LIST-LABEL and SORT-LABEL
create reports in special label format. COUNT, SUM, and STAT
count, total, and average information in a database. REFORMAT and
SREFORMAT also restructure file items. These verbs are described
in Chapter 6.

LIST-LABEL
SORT-LABEL

1: An Overview of ACCESS

COUNT
SUM
STAT

REFORMAT
SREFORMAT

9

4. Tape Verbs. These verbs copy items specified or selected by
ACCESS queries to and from magnetic tape. They are described in
Chapter 6.

T-DUMP T-LOAD S-LOAD

5. File Analysis Verbs. These verbs display information about the use
of file space and about changes in a file's contents. They are described
in Chapter 6.

CHECK-SUM FILE-TEST ISTAT
HASH-TEST

6. Forms Generation. Forms generation allows you to position data
on preprinted or system-generated forms. This function is described
in Chapter 7.

FORMS REPT
SFORMS SREPT

In this chapter, you have seen many of the elements of an ACCESS query.
You should be able to recognize the individual parts of a query by identifying
the keyword that introduces it. In the next chapter we look more closely at
the syntax of ACCESS queries, which will help you to write queries of your
own.

10 Pick ACCESS

CHAPTER 2

ACCESS Syntax

Chapter 2 introduces all the elements of ACCESS query syntax and describes
the default behavior of the ACCESS processor. It explains how to enter
different kinds of literal value (item IDs and other constants), how to enter
queries that take up more than one line on the screen, and how to use certain
syntax elements that make queries easier to use. Chapter 3 shows in more
detail how to use these syntax elements to generate a variety of reports, from
the simple to the more complex.

An ACCESS query can include all or some of the following parameters:

• A verb (required).

• A filename (required).

• A list of item IDs.

• Selection criteria.

• Sort expressions.

• Output specifications.

• Keywords that specify the report format.

• Options specific to the verb.

The verb and the filename are the only mandatory parameters in an ACCESS
query; all other parameters are optional. The verb must be the first
parameter in a command line. The remaining parameters are generally

2: ACCESS Syntax 11

entered in the order specified above, but need not be. Each ACCESS query is
entered at the TCL prompt (>) and is executed by pressing the RETURN key.

The complete syntax for an ACCESS query is as follows:

verb [file-modifiers I filename [items I [selection I [sort I [output I
[modifiers I [(options) I

verb specifies the operation to be performed on a database,
such as displaying a list of item IDs or producing a
report in a complex fonnat. Every ACCESS query
must begin with a verb.

file-modifiers can be either DICT or ONLY. DICT specifies the file
dictionary. If DICT is omitted, the data file is used.
ONL Y suppresses the default output specification and
displays item IDs only.

filename specifies a file accessible from your account. Every
ACCESS query must include a filename.

items can be either an explicit item list or a selection
expression. An item list is one or more item IDs
specifying items to be processed. Enclose each
item 10 in single quotes. A selection expression
specifies one or more conditions an item ID must
meet to be included in the report.

selection specifies the conditions data in an item must meet for
the item to be included in the report. Enclose literal
values in double quotes.

sort specifies by name one or more attributes which
detennine how items are to be sorted in the report. An
ACCESS query can include multiple sort expressions,
and items can be sorted in ascending or descending
order.

output specifies by name the attributes whose data will be
listed in the report. You can also use a phrase for this
parameter if your system supports user-defined
phrases.

12 Pick ACCESS

modifiers

options

Print limiters can be used as output specifications to
determine how multivalued attributes will be
processed, which data from Controlling and
Dependent attributes will be displayed, and which
specific data elements will appear in the report.

are keywords that change the format of a report or
specify special processing of the data (for example,
calculating subtotals and grand totals). Modifiers
immediately precede the name of the attribute they are
to affect.

any set of single-character options that modify the
action of the verb. Precede the options you use with an
open parenthesis; a closing parenthesis is optional.

By default, the results of an ACCESS query are displayed on your terminal
screen. The report can be sent to the printer by using the LPTR modifier or
the P option.

How Queries Are Processed

This section summarizes how the system recognizes and interprets the
different parameters specified in an ACCESS query.

After you enter a query, the system identifies the verb and passes control to
the ACCESS processor. The ACCESS processor identifies the parameters in
a query by looking up in the following order:

1. The filename in the Master Dictionary.

2. All other words to see if they are defined in the Master Dictionary as
connectives, modifiers, or relational operators.

3. The remaining unidentified words to see if they are defined in the file
dictionary as attributes or phrases.

4. The remaining unidentified words to see if they are defined in the
Master Dictionary as synonyms or phrases.

2: ACCESS Syntax 13

The processor treats all remaining words, or all words enclosed in double
quotes or backslashes, as literal values. All words enclosed in single quotes
are assumed to be item IDs.

If a word is not found in the file dictionary or the Master Dictionary. the
following error message is displayed:

[24] THE WORD 'a' CANNOT BE IDENTIFIED

The ACCESS processor then generates the report by:

5. Applying correlatives. These convert data to an intermediate format
used for further processing. Correlatives are fully explained in
Chapter 8.

6. Processing selections, sorts, totals, and control breaks.

7. Processing conversions. These convert data from stored or
intermediate format to the output format used in the report.
Conversions are fully explained in Chapter 8.

Default ACCESS Processing

It is important to understand the default behavior of the ACCESS
processor-in other words, what it normally does for you unless you specify
otherwise.

Table 2-1 summarizes what occurs when any of the parameters in an
ACCESS query are not explicitly specified. It also describes the relationships
that the various parameters have to one another.

14

Table 2-1. ACCESS Query Parameters.

Parameter

filename

items

Default Processing

Unless the DIeT modifier is included, the report is
generated from the data file.

If there is no explicit item list, active select-list, or item
selection expression. all items are processed.
Processing means 1) included in the report,
2) compared against one or more selection
expressions. and 3) sorted.

Pick ACCESS

selection

sort

output

modifiers

options

If there is an explicit item list, the items are processed
in the order specified. Explicit item lists and item
selection expressions take precedence over an active
select-list.

If there is no explicit item list or active select-list, all
items are compared against the selection expressions.

If no sort expression is specified and if the verb has
sorting capabilities, the items are displayed in
ascending order by item 10. If multiple sort
expressions are specified, they are processed from left
to right.

If no output specification is included in the query, the
report for a data file consists of the default output
specifications defined by a sequence of numeric
item IDs. User-defined @ phrases can also specify
default output specifications if your system supports
them.

If no print limiters are specified, all values from
multi valued attributes as well as all data from other
attributes are included in the report.

If no modifiers are included in the query, the report
uses:

no control breaks.
a single space between items.
headings that consist of the page number, time,
date, and an end-of-list message.
no footings.
column headings that are repeated on every page.
item IDs.
the terminal screen as the destination.
the default output specifications.
paging to halt terminal output at the end of each
page.
data from the file on disk.

Defaults for options are specific to the verb.

Defining Default Output Specifications

When creating a file, you will usually identify the attributes whose contents
are to be displayed in reports. It is possible, however, to create default

2: ACCESS Syntax 15

output specifications in the dictionary of the referenced file. These will take
effect only if explicit output specifications are not included in an ACCESS
statement. For example, assume that the default output specifications for the
CUSTOMERS file are defined to include the data for FIRST-NAME,
LAST-NAME, CITY, and STATE. With the new default in effect, entering:

>LlST CUSTOMERS

is equivalent to entering:

>LlST CUSTOMERS FIRST-NAME LAST-NAME CITY STATE

The most common way to define default output specifications is to create a
sequence of numbered Attribute Definition items.

If the file dictionary contains Attribute Definition items with numeric
item IDs, and if they form a consecutive numeric sequence starting with 1,
these items are used as default output attributes. Each item in the sequence
must contain an A code (or S) in line 1.

If an Attribute Definition item in a numeric sequence contains an X instead of
an A in line 1, that attribute will not be displayed as one of the default output
attributes. However, the attributes defined by items that follow this X item in
the numeric sequence will be included in the report. The X item allows you
to preserve the sequence of numeric Attribute Definition items.

One way to create a numeric sequence of default output attributes is to copy
an existing set of Attribute Definition items with the COPY verb. For
example, if the CUSTOMERS dictionary has Attribute Definition items for
FIRST-NAME (Attribute 1), LAST-NAME (Attribute 2), CITY (Attribute
3), and STATE (Attribute 4), you can copy them, giving them the item IDs
"1", "2", "3", and "4". Once this is done, when you enter:

>LlST CUSTOMERS

the data from all four attributes will be displayed by default.

If you want to exclude Attribute 3, CITY, from the sequence of default
output attributes, change the definition code in line 1 of the Attribute
Definition item "3" from "A" to "X". Now only Attributes 1,2, and 4 will be
displayed by default.

16 Pick ACCESS

Creating an @LPTR Phrase

Some systems allow you to create special dictionary items known as phrases.
These phrases can be used to define default output specifications for either
the printer or the terminal screen.

A phrase can include any parameters from an ACCESS query except for a
verb or a filename. The use of phrases is described at the end of this chapter,
in the section, "Using Phrases."

Creating a phrase in the CUSTOMERS dictionary whose item ID is @LPTR
defines the default output specifications for reports sent to the printer. Once
an@LPTR phrase is defined, any ACCESS statement that contains the LPTR
modifier or its equivalent, the P option, and that does not include an output
specification, will print data from the attributes named in the @LPTR
phrase. For example, the following @LPTR phrase specifies customers'
first and last names, city, and state:

@LPTR
001 I
002 FIRST-NAME LAST-NAME
003 CITY STATE

A definition code of "I" defines this file item as a phrase. When the following
query is entered:

>LlST CUSTOMERS LPTR

the results will be the same as:

>LlST CUSTOMERS FIRST-NAME LAST-NAME CITY STATE
LPTR

Creating an @ Phrase

Creating a phrase in the CUSTOMERS dictionary whose item ID is @
defines the default output specifications for reports. If there is also an
@LPTR phrase in the dictionary, the output specifications in the @ phrase
will be used only for reports sent to the terminal screen; the @LPTR phrase
determines what is output to the printer. If there is no @LPTR phrase in the
dictionary, the @ phrase is used for reports sent either to the screen or to the
printer.

2.' ACCESS Syntax 17

For example, you might define the following @ phrase in the CUSTOMERS
dictionary:

@
001 I
002 FIRST-NAME LAST-NAME
003 CITY STATE

In this case, you can produce the default report by entering:

>LlST CUSTOMERS

Example 2-1 shows the resulting report.

BOHANNON BOSTON MA
BMW BOSTON MA
BUCKLER LINCOLN IN
tEARY BOSTON
MASON~I~PLN
ORLANDO
PIRS

Example 2-1.
Using an @ Phrase to specify default output.

Suppressing Default Output Specifications

01 NOV .. 1989

The default output specifications can be suppressed by including the ONLY
modifier in the ACCESS query. In this case, the report includes item IDs

18 Pick ACCESS

only. For example, the following query limits the output from the
CUSTOMERS dictionary to item IDs:

>LIST ONLY DICT CUSTOMERS

Example 2-2 shows a page from the resulting report.

PAGE

CUSTOMERS

ROAD
FIRST-NAME
REPT
CI'1'Y;';ST
pHONE
LA$.T-NAME

LAaEL
sre"SEc

·GROOP
CUSTOMERS
EXTENSION

Example 2-2.
The file modifier ONLY produces a report that lists item IDs.

Entering Literal Values

There are two types of literal value that can be included in an ACCESS
query: item IDs and constants. It is recommended that you enclose
item IDs in single quotes. Single quotes identify the element as an item 10,
no matter where in the ACCESS query it occurs.

For example:

>LlST CUSTOMERS NAME '1' '2' '3'

2: ACCESS Syntax 19

lists items with customer ID numbers 1, 2, and 3, even though the item IDs
do not immediately follow the filename.

The next example:

>LlST CUSTOMERS NAME "1" "2" "3"

produces unexpected results because the numbers enclosed in double quotes
are not recognized as item IDs.

The wayan item ID is specified in a query can affect the amount of
processing required to retrieve the data. For example, the following query
uses the item ID AORLA5593 to locate the group of frames where the item
is stored, then retrieves the item.

>LlST CUSTOMERS 'AORLA5593'

This works much more quickly than the query which follows, which uses the
selection expression "= 'AORLA5593'''. When this query is processed,
every item ID in the CUSTOMERS file is compared to the literal
AORLA5593 until it is found.

>LlST CUSTOMERS = 'AORLA5593'

The second method is probably most useful when you are looking for
item IDs that contain a particular substring, as in the following example:

>LlST CUSTOMERS = 'AORLA],

String searching is explained more fully in Chapter 3.

Constants are used in selection expressions, print limiting expressions, and as
arguments to certain modifiers. They identify specific dates, times, dollar
amounts, customers' last names, etc. Enclose each constant in double quotes
or backslashes (\).

The following query lists all customers whose last name is Buckler:

>LlST CUSTOMERS WITH LAST-NAME "BUCKLER"

If you do not enclose the literal BUCKLER in double quotes, ACCESS treats
it as if it were either an item ID or an output specification, and returns the
following message:

[24] THE WORD "BUCKLER" CANNOT BE IDENTIFIED

20 Pick ACCESS

Entering Multiple-Line Queries

ACCESS queries are sometimes longer than 80 characters and therefore
might not fit on a single line of the terminal screen. You can, however, keep
typing a command line, even though it wraps onto the next line. To make a
long command line easier to read on the screen, you can break the line and
continue typing on the next line. To break a line, press CTRL-_
(underscore), and then press the RETURN key. A colon prompt appears, and
you can continue to type the query.

For example:

>LlST CUSTOMERS WITH LAST-NAME> "MARTIN" AND
:WITH STATE EQ "MI" LAST-NAME FIRST-NAME CITY
:STATE ZIP

Blank spaces are included at the ends of each line to keep AND separate from
WITH, and CITY separate from STATE. A colon (:) is displayed at the
beginning of each continuation line.

Using Throwaway Connectives

The Pick system includes a number of keywords that can be used anywhere in
a query to make it more like a natural-language sentence. These keywords
are called throwaway connectives. Throwaway connectives do not change
the meaning of the ACCESS query and they do not affect the appearance or
content of the resulting report.

Table 2-2 lists some of the system-supplied throwaway connectives.

Table 2-2. System-Supplied Throwaway Connectives.

A
AN
ANY
ARE

2: ACCESS Syntax

DATA
FILE
FOR
IN

ITEMS
OF
OR
THE

21

You can, of course, add your own throwaway connectives to the Master
Dictionary. Simply copy any throwaway connective to the name of a new
throwaway. For example:

>COPY MD A
TO :DISPLAY

creates a new throwaway connective, DISPLAY, that you might use in an
ACCESS query to introduce a list of output specifications.

The following ACCESS queries demonstrate the use of throwaway
connectives:

>LlST ANY CUSTOMERS WITH LAST-NAME = "JOHNSON"
>LlST THE ORDERS FILE
>SORT CUSTOMERS DATA BY CITY

Using Phrases

As was mentioned earlier, some systems (such as uniVerse, Mentor, and
Prime INFORMATION) support user-defined phrases in dictionary items.

A phrase can be made up of any elements of an ACCESS query except for a
verb, a filename, or a parenthetical option. Here are some sample phrases:

WITH AMOUNT> "100"
BY AMOUNT BY OTY
AMOUNT OTY DATE
HEADING "LARGE ORDERS"
WITH AMOUNT> "100" BY AMOUNT BY OTY AMOUNT OTY DATE

HEADING "LARGE ORDERS"

Phrases are especially useful for saving complex or lengthy report
formatting specifications. You can save and reuse phrases by defining them
as items in the file dictionary. For example, you might define the last phrase
in the preceding list as an item in the ORDERS dictionary and call it
LARGE-ORDERS. You could then produce a customized report at any time
by entering:

>SORT ORDERS LARGE-ORDERS

The preceding query produces a report that contains a list of the amounts,
numbers, and dates of all orders larger than $100, sorted in ascending order

22 Pick ACCESS

by amount, then by number. Each page of the report begins with the heading
"LARGE ORDERS".

When creating a phrase, there is no need to break the lines in any particular
way, except for readability. Nor is it necessary to use CTRL-_ (underscore)
to break the lines. The dictionary item for LARGE-ORDERS might look
like this:

LARGE-ORDERS
001 I
002 WITH AMOUNT> "100"
003 BY AMOUNT BY QTY
004 AMOUNT QTY DATE
005 HEADING "LARGE ORDERS"

The I code in line I is required to identify the item as a phrase.

The following rules apply when creating phrases:

• Carriage returns that are used to break phrases into multiple lines are
automatically converted to blank spaces except when text is enclosed in
quotes or backslashes (\). This might occur, for example, if a phrase
includes header text extending over two or more lines. Also, if a line
begins with a colon, the carriage return at the end of the preceding line
is not converted to a space.

• Any line that begins with an exclamation point is treated as a comment
and ignored during processing. If you put an exclamation point at the
beginning of line I (that is, before the I code), the entire phrase will be
ignored.

• A null phrase (i.e., a phrase containing no words apart from
comments) is ignored.

One or more phrase names can themselves be included in a phrase definition.
This allows a phrase to "call" and expand other phrases.

W Avoid creating loops! Do not include a phrase name that
calls another phrase that refers back to itself.

Phrases can also be defined in the Master Dictionary. If user-defined phrases
are located in the Master Dictionary, you can include them in any ACCESS
query you enter. For example, you could create a phrase called
CALCULATIONS that displays a listing of only those dictionary items

2: ACCESS Syntax 23

containing an A or F code in lines 7 or 8. This phrase could be used when
querying any file dictionary you have access to.

ACCESS Verbs and Keywords

The following two sections contain summaries of all ACCESS verbs and
keywords that are contained in the Master Dictionary. All SMA standard
verbs and keywords are included, as well as several others that are available
on some systems but not on others. Non-SMA standard verbs and keywords
are marked with an asterisk.

ACCESS Verbs

Table 2-3 summarizes the function of each ACCESS verb.

24

Verb

CHECK-SUM

COPY-LIST

COUNT

DELETE-LIST

EDIT-LIST

FILE-TEST

FORM-LIST

Table 2-3. ACCESS Verbs.

Descrip.tion

Provides statistical infonnation about items and files.

Copies a previously saved select-list to the tenninal,
a printer, another saved select-list, or a file.

Counts the number of items in a file that meet the
specified criteria.

Deletes a previously saved select-list.

Invokes the Editor to change the contents of a saved
select-list.

Provides file hashing statistics that can be used to
evaluate the efficiency of file storage. FILE-TEST
includes the functions of both the 1ST AT and
HASH-TEST verbs, which it supersedes.

Creates a select-list that consists of the data in a file
rather than its item IDs.

Pick ACCESS

Verb

*FORMS

GET-LIST

*HASH-TEST

*ISTAT

LIST

LIST-ITEM

LIST-LABEL

*NSELECT

*QSELECT

REFORMAT

*REPT

S-DUMP

SAVE-LIST

SELECT

*SFORMS

SORT

SORT-ITEM

2: ACCESS Syntax

Description

Prints items on forms. Not supported on all
systems.

Retrieves a previously saved select-list for
processing by a subsequent command.

Provides information about how file items hash into
groups specified by a given modulo. This helps you
select the best modulo for a file when reallocating
disk space.

Provides file hashing statistics that can be used to
evaluate the efficiency of file storage.

Lists the items in a file that meet the specified criteria.
Many different types of report can be generated
using the modifiers and options available with LIST.

Displays items, listing data for each attribute.

Prints items in a label format.

Creates a select-list of items found in an active
select-list but not found in the specified file. Not
supported on all systems.

A synonym for FORM-LIST.

Creates a second file or tape using output from an
ACCESS report.

Prints multiple items on forms. Not supported on all
systems.

Copies items that meet the specified criteria to
magnetic tape in sorted order.

Saves a select-list under a specified name.

Creates a select-list of item IDs. This list of items
can then be submitted for further processing by other
verbs.

Prints items in sorted order on forms. Not supported
on all systems.

Lists the items in a file that meet the specified criteria
in sorted order. The SORT verb provides the same
tlexibility in generating reports as the LIST verb.

Displays a sorted list of items, listing data for each
attribute. See LIST-ITEM.

25

Verb

SORT-LABEL

SREFORMAT

*SREPT

SSELECT

STAT

SUM

T-DUMP

T-LOAD

Description

Creates and sorts labels from items that meet the
specified criteria. See LIST-LABEL.

Creates a second file or tape in sorted order using
output from an ACCESS report. See REFORMAT.

Prints multiple items in sorted order on forms. Not
supported on all systems.

Creates a select-list that consists of sorted item IDs
that meet the specified criteria. This list of items can
then be submitted for further processing by other
verbs. See SELECT.

Provides a count, average, and total of the numeric
data for a specified attribute.

Totals the numeric data for a specified attribute.

Saves items that meet the specified criteria to
magnetic tape.

Restores items that meet the specified criteria from
magnetic tape.

ACCESS Keywords

There are many keywords (also called connectives or modifiers) that can be
included to expand ACCESS queries. A few have already been introduced in
Chapter 1 (for example, BY, HEADING, ID-SUPP, and WITH).

Keywords can be used to:

26

Specify a comparison between attributes or between an attribute and a
constant using relational operators such as GREATER THAN,
EQUAL TO, and LESS THAN.

• Sort items in ascending or descending order according to data in one
or more attributes.

• Format reports according to your own specifications for headings,
footings, line spacing, and more.

• Retrieve and display items from magnetic tape.

Pick ACCESS

• Print items on the line printer.

• Make a query more like a natural-language sentence.

In order to use a keyword in an ACCESS query, there must be a
corresponding entry for that keyword in the Master Dictionary. Table 2-4
lists the ACCESS keywords. Some keywords have an equivalent
parenthetical option.

Table 2-4. ACCESS Keywords.

Keyword Option Description

A,AN

AFfER

AND

ANY

ARE

BEFORE

BREAK-ON

BY

BY-DSND

BY-EXP

BY-EXP-DSND

COL-HDR-SUPP

DATA

DBL-SPC

DET-SUPP

DICT

2: ACCESS Syntax

Makes a query more English-like.

Greater Than.

Joins selection expressions.

Makes a query more English-like.

Makes a query more English-like.

Less Than.

Specifies breakpoints in a report.

Sorts the specified attribute in ascending
order.

Sorts the specified attribute in descending
order.

Separates items with multi valued attributes
into multiple items and sorts in ascending
order.

Separates items with multi valued attributes
into multiple items and sorts in descending
order.

(C) Suppresses time and date heading, column
headings, and end-of-list message.

Makes a query more English-like.

Double-spaces items in the report.

(D) Suppresses detail output when used with
TOTAL or BREAK-ON modifiers.

Specifies the file dictionary.

27

28

Keyword

EACH

*END-WINDOW

EQ

EVERY

FILE

FOOTING

FOR

GE

GRAND-TOTAL

GT

HDR-SUPP

HEADING

IO-SUPP

IF

IN

ITEMS

LE

*LIKE

LPTR

*MATCHING

LT

Option

(F)

Description

Selects an item only if each value in a
multi valued attribute meets the specified
condition. Used with WITH connective.

Terminates a WINDOW phrase (see
WINDOW).

Equal To.

Selects an item only if every value in a
multivalued attribute meets the specified
condition. Used with WITH connective.

Starts a new page for each item when used
with the LIST-ITEM, and SORT-ITEM
verbs.

Makes a query more English-like.

Defines footer for report page.

Makes a query more English-like.

Greater Than or Equal To.

Prints the specified text on the grand total
line.

Greater Than.

(H) Suppresses default heading.

(I)

(P)

Overrides default heading.

Suppresses item 10 display.

Begins a selection expression.

Makes a query more English-like.

Makes a query more English-like.

Less Than or Equal To.

Retrieves data that is phonetically similar to
the specified criteria. On some systems this
function is performed by the SAID or
SPOKEN keywords.

Sends output to printer.

Finds data that matches a specified constant
or string.

Less Than.

Pick ACCESS

Keyword Option

NE

NO

*NOT.MATCHING

NOPAGE (N)

NOT

OF

ONLY

OR

*SAID

*SPOKEN

SUPP (H)

TAPE

THE

TOTAL

USING

*WINDOW

WITH

*WITHIN

WITHOUT

(Y)

2: ACCESS Syntax

Description

Not Equal To.

Not Equal To.

Finds data that does not match a specified
constant or string.

Suppresses page pause.

Not Equal To.

Makes a query more English-like.

Suppresses the default output specification
and displays only item IDs.

Joins selection expressions.

Retrieves data that is phonetically similar to
the specified criteria. See also the LIKE
keyword.

Retrieves data that is phonetically similar to
the specified criteria. See also the LIKE
keyword.

Suppresses default heading.

Obtains data from magnetic tape.

Makes a query more English-like.

Calculates and displays totals for the data in
an attribute.

Specifies the file to be used to interpret a file.

Defines a window for printing multivalues on
forms.

Begins a selection expression.

Retrieves and lists subitems of a specified
item.

Equivalent to WITH NO and WITH NOT.

Prints translation of A-correlative DICT
entries.

29

CHAPTER 3

Producing Reports
with LIST and SORT

This chapter uses two multipurpose ACCESS verbs, LIST and SORT, to
illustrate the full range of reports you can generate. Specifically, this chapter
covers:

• Selection expressions.

• Sort expressions.

• Which attributes to display or print in the report (output
specifications).

• Which multivalues to display or print in the report (print limiters).

In addition, this chapter discusses some special connectives that can be
included in ACCESS queries.

The LIST and SORT Verbs

LIST and SORT are two general-purpose ACCESS verbs. LIST displays or
prints items contained in either a dictionary or a data file and gives you great
flexibility in generating reports from these entries. SORT has all the

3: Producing Reports with LIST and SORT 31

capabilities of LIST but includes the added ability to list items in sorted
order.

The LIST verb can specify:

I. Which items to select for inclusion in the report. This is done by
explicitly specifying items by their item IDs or by using a selection
expression to select only those items that match the specified criteria.
These two approaches can also be combined to specify a subset of items
and then test them against selection criteria.

2. How to sort the items. Items can be sorted in ascending or descending
order, based on data referenced by any attribute name.

3. Which attributes to display in the report. An item might have 10 or 12
attributes, but a report might only list the contents of two of them. By
default, LIST displays no attributes, only item IDs.

4. How multivalued attributes are treated. A report can display all values
from multivalued attributes or only those values that meet the specified
condition.

You can also define report headings, footings, and vertical spacing, calculate
subtotals and totals for the data in various attributes, and more. These
formatting parameters are described in Chapter 4.

U sing Selection Expressions

In Chapter 2 we learned how to select items to include in a report by
specifying an item list in the query. In an item list each item is explicitly
specified.

You can also select items for inclusion in a report by using a selection
expression.

Selecting Items by Item ID

There are two kinds of selection expression. One kind is used to select items
by specifying the conditions an item ID must meet in order for the item to be

32 Pick ACCESS

included in the repo11. That's the kind of selection expression we'll look at in
this section. The other kind selects items by specifying what conditions data
in the file must meet in order for the item to be included; this is discussed in
the following section. A selection expression that is used to select item IDs
compares each item-ID in the file to the criteria specified in the expression.

You can use relational operators (such as Less Than) to compare the
item IDs to a constant. You can also use pattern matching.

In the ORDERS file, for example, sequentially issued order numbers are
used as item IDs. To list just the order numbers higher than 10110, enter:

>LlST ORDERS> "10110"

The preceding example uses the relational operator" > " (Greater Than) to
select only those item IDs with numbers above 1 0 11 O.

Selecting Items by Data Attribute

A selection expression can also be used to specify the conditions that data in
an item must meet for the item to be included in a report. Selection
expressions test the data in one or more attributes by comparing it against the
specified criteria.

Selection criteria can be specified as follows:

• Use relational operators (such as Less Than) to compare the data in an
attribute to a constant.

• Use pattern matching to specify a character string that must appear at
the beginning, middle, or end of an attribute's data.

Selection expressions have the following syntax:

WITH [EACH 1 [attribute-name 1 [rel-op 1 value-list [[AND I OR 1
WITH [EACH 1 [attribute-name 1 [rel-op 1 value-list 1 ...

EACH specifies that all values in a multivalued attribute
must meet the specified condition if the item is to be
listed.

attrihute-name is the attribute whose data is compared to the
specified criteria. If no attribute is specified,

3: Producing Reports with LIST and SORT 33

rel-op

value-list

ACCESS compares the item ID to the specified
criteria.

is a relational operator such as Less Than (<). For
a complete list of valid relational operators, see
Table 3-1 later in this chapter.

is one or more constants, enclosed in double quotes.

You can use the AND and OR connectives to create a compound selection
expression by I) specifying more than one selection expression for a single
attribute, or 2) defining one or more selection expressions for additional
attributes. When you use AND or OR in a compound selection expression,
you must repeat the keyword WITH. *

For example, the following query displays the item IDs of customers (items)
from the CUSTOMERS file whose last name is Andrews:

>LlST CUSTOMERS WITH LAST·NAME "ANDREWS"

The next query lists customers whose last name is Andrews and who live in
the city of Newton:

>LlST CUSTOMERS WITH LAST-NAME "ANDREWS" AND
WITH CITY "NEWTON"

The next query uses the OR connective to list all customers whose last name is
Andrews (and who live anywhere) as well as all customers who live in
Newton (no matter what their last name is).

>LlST CUSTOMERS WITH LAST·NAME "ANDREWS" OR WITH
CITY "NEWTON"

The OR connective is optional. If mUltiple selection expressions are included
in a query and the logical operators AND and OR are omitted, OR is
assumed. Thus the preceding query could just as well be entered as follows:

• On some systems it is not necessary to repeat the WITH connective after AND or OR. On
uniVerse and Prime INFORMATION systems, for example, you can enter the preceding
command like this:

>LlST CUSTOMERS WITH LAST-NAME "ANDREWS" AND CITY
"NEWTON"

Try entering compound selection expressions both ways on your system to see which
syntax is supported.

34 Pick ACCESS

>LlST CUSTOMERS WITH LAST-NAME "ANDREWS" WITH
CITY "NEWTON"

The following sections contain detailed information about forming selection
expressions.

Using Relational Operators

Relational operators can be used in selection expressions to compare data to a
constant. If the data is left-justified, as defined by line 9 of the Attribute
Definition item, the data is compared from left to right. Any characters that
are not identical are converted to their numerical ASCII equivalents and
compared. Higher ASCII equivalents are considered "greater."

If the data is right-justified, first a numerical comparison is made.
Nonnumerical characters are then converted to their numerical ASCII
equivalents and compared.

Table 3-1 lists the relational operators that can be used in ACCESS queries.
There are at least two ways to specify each operator.

Table 3-1. Relational Operators.

Operator

=orEQ

or NE or NO [T 1

> or GT or AFTER

< or L T or BEFORE

>= orGE

<= or LE

Function

Equal to.

Not equal to or null.

Greater than.

Less than.

Greater than or equal to.

Less than or equal to.

The following query selects customers whose zip code is a number less than
21300:

>LlST CUSTOMERS WITH ZIP < "21300"

Relational operators can be used with both alphabetic and numeric
characters. For example, the following query selects customers whose last
names alphabetically precede Mansfield:

>LlST CUSTOMERS WITH LAST-NAME < "MANSFIELD"

3: Producing Reports with LIST and SORT 35

If no relational operator is explicitly specified, "Equal To" is assumed. For
example:

>LlST CUSTOMERS WITH CITY "BALTIMORE"

If no attribute is specified, the item ID is assumed. For example:

>LlST ORDERS WITH < "10183"

The preceding query lists all orders whose item IDs are less than 10183.
This is, in fact, the same as selecting specified item IDs, as described earlier
in this chapter. Normally in such instances the WITH connective is omitted.

Using Logical Connectives

There are two logical connectives that can be used in ACCESS queries to
form compound selection expressions: AND and OR. These connectives
correspond to the Boolean operators by the same names. Logical connectives
are useful for defining complex selection expressions.

The AND connective specifies that all of the specified criteria must be met if
an item is to be included in the report. For example, the following query
includes three different selection expressions:

>LlST ORDERS WITH DATE "11/11/87" AND WITH
TOTAL.AMT> "100" AND WITH CUST# > "330"

All three of the following conditions must be met for each order item to be
selected:

1. An order date of November 11, 1987.

2. An order amount of more than $100.00.

3. A customer number higher than 330.

The report will contain the item IDs of only those items in the ORDERS file
that meet all three conditions. An ACCESS query can include up to nine
AND phrases.

The OR connective specifies that at least one of the specified criteria must be
met if an item is to be included in the report. For example:

36

>LlST ORDERS WITH DATE "11/11/87" OR WITH
TOTAL.AMT> "100" OR WITH CUST# > "330"

Pick ACCESS

The preceding query produces a report quite different from the one that uses
the AND connective. It selects all of the following items:

I. All orders taken on November II, 1987.

2. All orders taken on any date for an amount greater than $100.00.

3. All orders taken for all customers whose ID numbers are greater than
330.

If no logical connective is used in a compound selection expression, the
system assumes OR. An ACCESS query can include any number of OR
phrases.

If more than one logical connective is used in a· query, the selection
expressions are evaluated from left to right. For example, let's assume you
want to display the item for a certain customer whose last name is SMITH.
You think the customer lives in Massachusetts or Maine, but you aren't sure.
You also think the name of the town is Rockport. You could enter:

>LlST CUSTOMERS WITH LAST-NAME "SMITH" AND WITH
CITY "ROCKPORT" AND WITH STATE "MA" OR "ME"

This query generates a list of all customers whose last name is SMITH, who
live in a city called Rockport, and who live in Massachusetts or Maine.

String Searching

Instead of using relational operators and constants, you can specify
alphanumeric character strings as part of a selection expression in an
ACCESS query. The data for the specified attribute must then contain the
character string if an item is to be included in the report.

For example, the following query displays the last and first names of
customers whose last names begin with the letter J.

>LlST CUSTOMERS WITH LAST-NAME = "J]" LAST-NAME
FIRST-NAME

Example 3-1 shows the resulting report.

3: Producing Reports with LIST and SORT 37

Soundex algorithm differently, and all systems do not support it. We
mention two implementations here. The first, used by ADDS Mentor, uses
the keyword LIKE. The second, used by Prime INFORMATION and
uniVerse, uses the keywords SAID or SPOKEN, which are synonymous.

The LIKE* connective compares the data in a specified attribute to an
alphabetic string. Unlike the string searching feature described in the
preceding section, however, the LIKE connective requires the data to be
merely phonetically similar to the specified string. This type of selection
expression is particularly useful if you aren't quite sure how the data might
be spelled.

For example, the following query searches for customers whose last name is
something like PIERCE.

>lIST CUSTOMERS WITH LAST-NAME LIKE "PIERCE"
LAST-NAME FIRST-NAME

Example 3-2 shows a report that lists three customers: Pirs, Peerce, and
Pierce.

I?AGE 1

CUSTOMERS ••• Last Name. First Name

. SPIF{S5289

JPEER5993
RPIER5539

PIRS
PEERCE
PIERCE

3 ITEMS LISTED.

SANDRA
JAN
lUCK

Example 3-2.
The LIKE connective lets you find data that "sounds like"

the specified string.

* On Prime INFORMA nON and uniVerse systems, the LIKE connective is synonymous
with the MATCHING connective, used for string searching.

40 Pick ACCESS

Only one alphabetic character string can be specified after the LIKE
connective in an ACCESS query.

Using SORT Expressions

The SORT verb and its vanatlOns, including SORT-ITEM and
SORT-LABEL, produce reports in which file items are displayed or printed:

I. In order according to the data specified by any attribute name.

2. In ascending or descending order.

As discussed earlier, LIST generates un sequenced reports, that is, reports in
which the items appear in no particular order. It is extremely useful to be
able to list file items in sorted order. This makes it possible, for example, to
list items in order by customer name, by zip code, or by state. You can also
sort by numeric values such as dollar figures and dates.

To list file items in ascending order, include the word BY followed by the
name of the desired attribute. To list items in descending order, use the
BY-DSND modifier.

The following query lists customers in ascending order by last name
(beginning with A):

>SORT CUSTOMERS BY LAST-NAME
The following query lists customers in descending order by state (beginning
with Z):

>SORT CUSTOMERS BY-DSND STATE
The justification (line 9 in the Attribute Definition item) determines the type
of sort: if the attribute is left-justified (L, T, or U), the sort is alphabetical,
whereas if the attribute is right-justified (R), the sort is numerical if the data
is numerical; nonnumerical characters are sorted according to their ASCII
value.

3: Producing Reports with LIST and SORT 41

Figure 3-1 shows the same set of item IDs sorted in ascending order. The
first list, however, is left-justified; the second is right-justified. Notice the
difference in the sort order.

Left-Justified

1
10
100
101
10101
11
110
111
2
20
200
201
22
220
222

Right-J ustifled

I
2

10
II
20
22

100
101
llO
111
200
201
220
222

10101

Figure 3-1. Sorting Numbers.
The column of left-justified numbers is not sorted numerically, but rather
from left to right. Right-justified numbers are sorted in numerical order.

Sorting By Multiple Attributes

A single ACCESS query can specify that items be sorted according to the data
in several attributes. This allows you to specify primary and secondary sort
keys. Multiple sort expressions are processed from left to right, i.e., in the
order in which they appear in the ACCESS query. For example:

>SORT CUSTOMERS BY STATE BY LAST-NAME BY
FIRST-NAME STATE LAST-NAME FIRST-NAME

The report in Example 3-3 displays all items in the CUSTOMERS file sorted
by state. Within each state grouping, items are sorted by the customers' last
names, and within each last name grouping, items are sorted by first name.

42 Pick ACCESS

PAGE 1 i 10:57:31 .01 NOV 1989

CUSTOMERS ... State Last Name. First Name

AORLA5993 CA ORLANDO AMY
JPEER5993 CA PEERCE JAN
DEDGE6635 FL EDGECOMB DAVID
MASHX5777 IN ASH MARY
JBUCK6488 IN aUCKLER JULIE
HJENK7129 IN JENKINS HAROLD
JMAS06378 IN MASON JULIA
AJOHN5396 KY JOHNSON ANNE
JBOHA5422 MA BOHANNON JOHN
JBROW6749 MA BROWN JAMES
AEDWA5224 MA EDWARDS ANTHONY
BLAMP6196 MA LAMPSON BOB
BLEAR6803 MA LEARY 8ILL
AMEAD5619 MA MEADE ANDREW
HHIGG6849 N8 HIGGINS HENRY
HJOHN7265 NB JOHNSON HENRY
SPIRS5289 NC PIRS SANDRA
RPIER5539 NJ PIERCE RICK

18 ITEMS LISTED.

Example 3-3.
The report is sorted first by STATE, then by LAST-NAME,

then by FIRST-NAME.

Sorting Data in Multivalued Attributes

The BY -EXP and BY -EXP-DSND modifiers sort the data in multivalued
attributes. These modifiers make it possible to produce sorted reports from
files whose items contain more than one value per attribute.

For example, the items in the ORDERS file contain the following
multi valued attributes:

• TITLE • NUMBER

• SHORT.TITLE • PRICE

• BOOKCODE • LINE.AMT

3: Producing Reports with LIST and SORT 43

This is because one order can include more than one title. The BY -EXP and
BY-EXP-DSND modifiers ensure that all data from an order item is included
in a report.

The query shown in Example 3-4 produces a report that sorts items by short
title and includes data from four multi valued attributes. The report breaks
after each short title.

>SORT ORDERS BY-EXP SHORT.TITLE BREAK-ON
SHORT.TITLE BOOKCODE QTY LlNE.AMT

PAGE 10:58:01 01 NOV 1989

ORDERS Short Title Book Code Qty Subtotal

10101 DATABASE NOl 2 $19.90
10102 DATABASE N01 1 $9.95
10103 DATABASE N01 2 $19.90
10104 DATABASE NOI 3 $29.85
10105 DATABASE N01 1 $9.95
10107 DATABASE N01 9 $89.55
10110 DATABASE NOl 12 $119.40
10114 DATABASE N01 5 $49.75
10115 DATABASE NOI $9.95
10118 DATABASE N01 3 $29.85

10102 OPERATING N02 3 $56.25
10104 OpERATING N02 5 $93.75
10106 OPERATING N02 3 $56.25
10107 OPERATING N02 34 $637.50
10108 OPERATING N02 10 $187.50
10110 OPERATING N02 3 $56.25

Example 3-4.
The report is sorted by the multivalues in the attribute SHORT.TITLE.

Each short title appears in the report as a separate item. Notice, for example,
that there are two separate entries for order item 10110. This means that the
customer ordered at least two different books.

44 Pick ACCESS

Displaying Selected Attributes

Part of designing a report is specifying the data to be output. For example,
let's assume you want to generate a report from the ORDERS file such as the
one shown in Example 3-5.

PAGE 1 10:54:53 01 NOV 1989

CUSTOMERS ... Last Name. First Name

HJENK7129 JENKINS HAROLD
JBOHA5422 BOHANNON JOHN
JBROW6749 BROWN JAMES
JBUCK6488 BUCKLER JULIE
BLEAR6803 LEARY BILL
JMAS06378 MASON JULIA
AORLA5993 ORLANDO AMY
SPIRS5289 PIRS SANDRA
MASHX5777 ASH MARY
AEDWA5224 EDWARDS ANTHONY
JPEER5993 PEERCE JAN
RPIER5539 PIERCE RICK
AJOHN5396 JOHNSON ANNE
HJOHN7265 JOHNSON HENRY
HH1GG6849 H!GGINS HENRY
DEDGE6635 EDGECOMB DAVID
BLAMP6196 LAMPSON BOB
AMEAD5619 MEADE ANDREW

18 ITEMS LISTED.

Example 3-5.
Output specifications let you list specific attributes in a report.

The ORDERS dictionary defines twelve different attributes, but the data in
only two of them is pertinent to this report. To produce the report shown,
you would include the names of those two attributes in the query:

>LlST CUSTOMERS LAST-NAME FIRST-NAME

This explicit list of attributes is called an output specification. The report
also includes item IDs, which are always displayed unless they are explicitly
suppressed with the ONL Y modifier.

3.' Producing Reports with LIST and SORT 45

If an output specification is not included in a query, the system produces a
default display. The section, "Default ACCESS Processing," in Chapter 2,
describes this fully.

The report shown in Example 3-5 displays the data in columnar format. Thi~
is the default format for ACCESS reports, unless the sum of the column
widths exceeds the page width as defined by the TERM verb. In this case, the
report lists the data vertically, in noncolumnar format.*

For example, had the columns been too wide for the screen, items in the
preceding report would be displayed as in Example 3-6.

PAGE 1 10:37:11 01 NOV 1989

CUSTOMERS : HJENK7129
Last Name JENKINS
First Name HAROLD

CUSTOMERS : JBOHA5422
Last Name BOHANNON
First Name JOHN

CUSTOMERS : JBROW6749
Last Name BROWN
First Name JAMES

CUSTOMERS : JBUCK6488
Last Name BUCKLER
First Name JULIE

CUSTOMERS : BLEAR6803
Last Name LEARY
First Name BILL

Example 3-6.
If the sum of the column widths is too large for the screen,

data is displayed in a linear format.

* Prime INFORMATION and uniVerse systems have two synonymous keywords, VERT
and VERTICALLY, that override the default columnar fonnat of ACCESS reports. VERT
allows you to force a report to be displayed in a vertical fonnat, even if the sum of the
column widths is less than the screen width.

46 Pick ACCESS

You can calculate the width of any report as follows:

• Add the width of all columns to be displayed. Column width is either
the width defined in line 10 of the Attribute Definition item, or the
length of whatever is used as the column heading (i.e., either the
item ID of the Attribute Definition item or, if present, the column
heading defined in line 3), whichever is greater.

• Add one blank separator between each column in the report.

Displaying Selected Multivalues

You can further limit the data to be output in a report by specifying that only
certain values from multivalued attributes be displayed or printed. Such
specifications are called print limiters. For example, the attribute TITLE in
the ORDERS file is multivalued, since many orders are for more than one
title. A print limiter can be used to print only the titles you specify.

A print limiter expression consists of a relational operator and a constant. If
no operator is included, = (equal to) is assumed. Print limiter expressions
are appended to one of the attributes in the output specification.

The following SORT statement includes the print limiter expression TITLE
= "OPERATING SYSTEM CONCEPTS":

>SORT ORDERS BY DATE DATE CUST.ID TITLE =
"OPERATING SYSTEM CONCEPTS"

Example 3-7 shows the resulting report.

3: Producing Reports with LIST and SORT 47

PAGE 11:42:02 01 NOV 1989

ORDERS Date of Order Customer ID Title ...•..........................

10101 09/06/88 AJOHN5396
10102 09/06/88 BLEAR6803 OPERATING SYSTEM CONCEPTS
10103 09/06/88 AJOHN5396
10104 09/06/88 MASHX5777

OPERATING SYSTEM CONCEPTS
10105 09/07/88 DEDGE6635
10106 09/07/88 AORLA6098 OPERATING SYSTEM CONCEPTS
10107 09/07/88 HJOHN7265

OPERATING SYSTEM CONCEPTS
10108 09/08/88 BLEAR6B03 OPERATING SYSTEM CONCEPTS
10109 09/08/88 MASHX5777
10110 09/09/88 JBOHA5422 OPERATING SYSTEM CONCEPTS
10111 09/09/88 AJOHN5396 OPERATING SYSTEM CONCr.PTS
10112 09/12/88 BLEAR6803

OPERATING SYSTEM CONCEPTS
10113 09/13/88 HJENK7129 OPERATING SYSTEM CONCEPTS
10114 09/13/88 BLEAR6803
10115 09/13/88 DEDGE6635 OPERATING SYSTEM CONCEPTS
10116 09/14/88 JBUCK6488
1011 7 09/14/88 JSWEN5398

Example 3-7.
Print limiters let you specify which multivalues are to be printed.

The syntax of print limiters is similar to that for selection expressions. The
difference is that 1) selection expressions select items, and print limiters
specify which values from multi valued attributes are to be output; and
2) selection expressions generally begin with the WITH connective.

Print limiters can also be used with Controlling and Dependent attributes to
display only data from Dependent attributes that corresponds to the selected
Controlling attributes.

The following query lists all orders, but displays the code and number for
only those orders with a code of "NO 1".

>LlST ORDERS BOOKCODE = "N01" QTV

Example 3-8 shows the resulting report. BOOKCODE is the Controlling
attribute and QTY is the Dependent attribute.

48 Pick ACCESS

PAGE 1 12:08:39 01 NOV 1989

ORDERS Book Code Qty

*
10101 NOl 2
10107 N01 9
10113
10116
10122
10110

N01 12
10104 NOI 3
10119
10102

N01 1
10105 N01 1
10108
10111
10114 NOI 5
10117
10120
10126
10103 N01 2
10106

Example 3-8.
Print limiting to a Controlling attribute also limits printing of data

in a Dependent attribute.

Copying Selected Items with LIST-ITEM

Two ACCESS verbs, LIST-ITEM and SORT-ITEM, deserve a mention in
this chapter. These two verbs copy all the data in specified or selected items.
Data is listed just as it is stored in the file, with each attribute displayed on its
own line. Multivalues are listed on one line, with each value separated by a
value mark and each subvalue by a subvalue mark. LIST-ITEM and
SORT-ITEM, in fact, combine the functions of the COPY processor with the
ability of ACCESS to select specified items.

3: Producing Reports with LIST and SORT 49

Example 3-9 lists the item BLEAR6803 from the CUSTOMERS file.

>LlST-ITEM CUSTOMERS 'BLEAR6803'

PAGE 1

BLEAR6B03
001 BILL
002 LEARY
003 34 TREMONT STREET
004 BOSTON
005 MA
006 6175278890
007 74332
OOB 918-27-3645

>

10:59:15 01 NOV 1989

Example 3-9.
LIST-ITEM lists data in items as it is stored in theftle.

The SORT-ITEM verb works the same way, except it also lists the items in
sorted order by the specified attribute. For example:

>SORT-ITEM CUSTOMERS BY STATE BY LAST-NAME (P)

The preceding query lists all items in the CUSTOMERS file sorted by state,
then by last name, and sends the report to the printer.

The USING Connective

To generate a report from the CUSTOMERS file, the system accesses both
the CUSTOMERS dictionary and the CUSTOMERS data file. The USING
connective makes it possible to generate a report using the Attribute
Definition items in any file. This file need not contain a D-pointer (a File
Definition item) to the data file.

Let's assume that the sample application includes a data file named
CUSTOMERS.INACTIVE that contains information about customers whose
accounts are inactive. Instead of creating a second file dictionary for the
CUSTOMERS.lNACTIVE file, you can use the dictionary of the

50 Pick ACCESS

CUSTOMERS file to access data in CUSTOMERS.INACTIVE since the
structure of both files is the same.

The following query generates a report from the CUSTOMERS.INACTIVE
file, using the structure defined by the CUSTOMERS dictionary:

>LIST CUSTOMERS.lNACTIVE USING DICT CUSTOMERS
FULL·NAME CITY STATE

Example 3-10 shows the resulting report.

PAGE 1 10:53:20 01 NOV 1989

CUSTOMERS. INACTIVE Full Name ..••....• City •••....• State

AMCS!5349
CWILL5386
JCF;OW5329
CGILL5284
Mfl,UST53l7
PL~5244

6 ITEMS LISTED.

>

MCSIMPLE, AMY VENICE
WILLIAMS, CHARLES ARLINGTON
CROWLEY, JOLlA NORTHWOOD
GILLETTE, C'AA.WFORD MYRTLE BEACH
ROST, MURRAY OGUNQUIT
LOMBARD, PETER NEW YORK

Example 3·10.

CA
MA
Nfl'
SC
MA
NY

The USING connective uses a different/He as the dictionary.

The USING connective applies only to situations where files have an identical
or nearly identical structure. The referenced attributes in the
CUSTOMERS.lNACTIVE file are identical to the same attributes in the
CUSTOMERS file. The data stored in the two files, however, is different.

The WITHIN Connective

A file comprises items containing data stored as attributes, values, or
subvalues. In addition to these, you can create subitems in a file that provide
a further description of an existing item. Subitems are useful when you want
to create a hierarchical relationship among items in a file.

3,' Producing Reports with LIST and SORT 51

For example, a file might contain an inventory of parts, some of which you
want to break down into their components. The item servos, for instance,
might comprise subitems for d.c. motor, servo board, and servo housin!?
The item for d.c. motor might break down further into d.c. motor platform
and d.c. motor power unit, and so on. Using the WITHIN connective, a bill
of materials can be generated that shows the primary item and also any items
that are dependent on it.

Subitems are stored in exactly the same way as are regular items. To make a
file item a subitem, its item ID is stored as a value in another attribute in the
file. The attribute that contains the item IDs of subitems can be multivalued.
Each multivalue in this attribute is an item ID for another item stored in the
same file.

In addition, the File Definition item in the dictionary (i.e., the D-pointer to
the data file) must contain a vertical correlative code in line 8. The syntax of
the vertical correlative code is:

v ; ; attribute

where attribute is the number of the attribute that contains the item IDs of
the subitems.

Use the WITHIN connective to retrieve and list subitems of a specified item.
The syntax of the WITHIN connective is:

WITHIN filename item-/O

Only one item ID can be specified in the query.

When the WITHIN connective is used, each subitem found is assigned a level
number. The item ID specified in the query is level 1. If this item ID has
subitems, they are assigned level 2. If level 2's items have subitems, they are
assigned level 3, and so on up to a maximum of 20 levels. When output is
listed, a column called LEVEL will be included that shows the corresponding
levels of the subitems.

In Example 3-11, the multivalued attribute SUB-PROD contains item IDs of
the PRODUCT file. The following statement lists the item "A2000-1234"
and three levels of subitems referenced by it:

52

>LlST WITHIN PRODUCT 'A2000-1234' PROD# DESC VALUE
LOCATION SUB-PROD QOH ID-SUPP

Pick ACCESS

PAGE 1

LEVEL Prod t Description Value.

1

2

3
3
2
2

3
3
4

AZOOO-IZ34 SERVOS

A200l-7811 D.C. MOTOR

A2002-1000 D.C. MoTOR PLATFORM
A2002-1023 D.C. M'rJ.:(POWER UNIT
AZOOl-890d SERVOBOAM
AZ001-9112 SERVOItOUSING

A2002-1032 HOUSING SEALS
A2002-1566 HOUSING PLATES
A2004-1111 HOUSING PACKAGE

0.73 R-'lZ3-8888 A200l"':?,!!ll
A20Ql;"'B9DO
AZ001':!I(:U

0.55 R-17"lOOlA200Z""j.()OO
. AZ002.'"10.23

0.7.3 R-123-8888
Q.73 R-123-1DQ2
0.12 L-44-1QOl
1..09 L-17-189.

1.02 L~09-1889
1. 03 L-1"330!l

12.00 R-12-1212

9 ITEMS LISTED.

>

Example 3-11.
The WITHIN connective lets you list all subitems of an item.

The item specified by the WITHIN connective is listed as Levell. Level 2
lists subitems specified in the Levell item's SUB-PROD attribute. Level 3
lists any subitems specified in the Level 2 item's SUB-PROD attribute. And
one of the Level 3 items even contains a Level 4 subitem.

This chapter described how to specify and select items for inclusion in a
report, and how to specify which data is output in the report. The next
chapter describes how to format reports.

3: Producing Reports with LIST and SORT 53

CHAPTER 4

Formatting Reports

This chapter describes the modifiers that can be used to format, or specify the
appearance of, an ACCESS report. To format a report, you can specify:

• Headings and footings to appear on each page.

• Totals for numeric data in a specified attribute.

• Breaks in the report each time the data in a specified attribute changes.
You can also calculate subtotals for each of these sections.

• Suppression of default column headings, page headings, detail lines,
and the end-of-list message.

• Double spacing of items.

A number of ACCESS verbs create specialized report formats. These verbs
are described in Chapters 6 and 7.

Table 4-1 summarizes the modifiers (and their equivalent parenthetical
options) available for formatting ACCESS reports.

Table 4-1. ACCESS Modifiers.

Modifier Description

BREAK-ON Specifies control breaks in a report.

COL-HDR-SUPP Suppresses the time and date heading. column
headings, and end-of-list message. (C) option.

4: Formatting Reports 55

DBL-SPC

DET-SUPP

FOOTING

GRAND-TOTAL

HDR-SUPP

HEADING

ID-SUPP

SUPP

TOTAL

Double-spaces items in a report.

Suppresses detail output when used with TOTAL or
BREAK-ON modifiers. (D) option.

Defines a footing for each page of a report.

Prints user-specified text on the grand total line.

Suppresses the default heading. (H) option.

Overrides the default heading.

Suppresses the display of item IDs.

Suppresses the default heading. (H) option.

Calculates and displays totals for the specified
attribute.

Some keywords function differently when used in combination with certain
ACCESS verbs. These combinations are summarized at the end of this
chapter.

The rest of this chapter describes how to use most of the modifiers in the
preceding table.

A Sample Report

Example 4-1 shows the first page of output from the following query:

>SORT ORDERS BREAK-ON DATE SHORT.TITLE TOTAL
TOTAL.AMT HEADING" 'F' LIST 'CL'PAGE 'P' " FOOTING
"COMPANY CONFIDENTIAL" GRAND-TOTAL "FINAL
TOTAL"

The report does not suppress item IDs or detail output, and uses single
spacing for multivalued items.

Creating Headings and Footings

Reports created with ACCESS generally include headings. By default, a
heading consisting of the page number and the current system time and date is
printed at the top of every page. The end-of-list message that appears at the

56 Pick ACCESS

end of a report is also considered part of the heading. ACCESS reports do
not by default produce footings (text at the bottom of every page).

ORDERS LIST
PAGE 1
ORDERS Date of Order Short Title Amount ...•

10101 09/06/88 DATABASE $19.90
10102 09/06/88 OPERATING $66.20

DATABASE
10103 09/06/88 DATABASE $19.90
10104 09/06/88 DATABASE $929.42

OPERATING
WRITING
WORD

*** $1035.42

10105 09/07/88 DATABASE $268.81
WRITING
WORD

10106 09/07/88 OPERATING $56.25
10107 09/07/88 DATABASE $727.05

OPERATING

*** $1052.11

... COMPANY CONFIDENTIAL

Example 4-1.
The HEADING and FOOTING modifiers customize the report.

You can specify your own report headings and footings by including the
HEADING and FOOTING modifiers in an ACCESS query. Enclose the
desired heading or footing text in double quotes and enter it immediately
after the appropriate modifier.

For example, the following phrase specifies a heading that reads "JANUARY
SALES" and a footing that reads "PRELIMINARY":

HEADING "JANUARY SALES· FOOTING "PRELIMINARY"

The syntax of the HEADING and FOOTING modifiers is as follows:

HEADING I FOOTING" [text I ['options'l [text I ['options'l ... "

There are a number of additional parameters that can be included in headings
and footings. These are specified with the one- and two-character options
shown in Table 4-2.

4: FomlOtting Reports 57

Table 4-2. HEADING and FOOTING Options.

Option

B

Bn

C

D

F

Fn

L

P

PN

Pn

T

Description

When used with the B option of the BREAK-ON modifier,
inserts the current breakpoint value at this position in the
report heading or footing.

When used with the B option of the BREAK-ON modifier,
inserts the current breakpoint value at this position in the
report heading or footing, left-justified, in a field of n
blanks.

Centers the heading or footing. When used with the L
option, centers the specified line.

Inserts the current date in the heading or footing, using the
form dd mmm yyyy.

Inserts the name of the file being accessed.

Left-justifies the name of the file being accessed in a field of
n blanks.

Starts a new line in the heading or footing. Use this option
to create multiple-line text.

Inserts current page number, right-justified in a field of four
blanks.

Inserts current page number, left-justified.

Inserts current page number, left-justified in a field of n
blanks.

Inserts the current time and date in the heading or footing in
the form hh:mm:ss dd mmm yyyy. The time is shown in
24-hour format.

Prints a single quote in the text of the heading or footing.
These are two single quotes.

Include options within the heading or footing text (i.e., within the double
quotes) and enclose them singly or as a group in single quotes.

Defining a Heading

The report shown in Example 4-2 prints a heading of three lines.

58 Pick ACCESS

11:01:1J 01N()V'1.989
PAGE ·1

CUST_ ••• ,~_ ••

MASHX5777
JBOHA542~

JBROWo14~
JBUCl{o4S:.·
DEDGE6635
1.EDWA5224
llHIGG6849
HJENK7129
1.JQHN5396
H.]()HN72 65
BLAMP6196
BLEAR6803
.:rMAS0637i
AMEAOS61,
AORLA5993
JPEER599~
RPIER$539
SPIRS528'

~SH .
BOHANi.!I()'N .
BROWN
BueKt.ER
EDGECOMB
EDWARDS
HIGGINS
JENKINS
JOHNSON
JOHNSON
LAMPSON
LEARY
MASON
~~

Street

9121. E. OAK STREET
126 TREMONT STREET •. ··:l~Op'l'O)1
129 BOYLSTON
26 p'l'ONE AVENUE
338 BROADWAY MIAMI
51 .B.tAIR AVENUE SUDBURY
5425TH STREET OMAHA
1222 MAIN STREET INDIANAPOLIS
160. J$FfERSON STREET LOUISVILLE
45 50TH STREET OMAHA
344 TREMAIN ROAD
34 TRE~NT STREET
226 ROCK ROAD
251 BLOWNEY AVENUE
55 VENTURA HIGHWAY

. 89 RlALTO WAY
123 W RIDGEWOOD

Example 4·2.

BOSTON
BOSTON

FL
MA
NB
IN
KY
NB
MA
MA

The HEADING modifier reformats the heading of each page of a report.

The report is generated by the following query:

>SORT CUSTOMERS BY LAST-NAME LAST·NAME STREET
CITY STATE HEADING "CUSTOMER LIST 'CLTL'
PAGE 'P' "

The first line is centered and reads "CUSTOMER LIST", the second line
contains the current time and date, and the third line contains the page
number of the report, preceded by the word "PAGE". Note that when you
define a heading, the usual end-of-list message is automatically suppressed.

The L option causes a new line to begin in the heading after:

1. The first (centered) line.

2. The time and date.

3. The page number.

4: Formatting Reports 59

Defining a Footing

Example 4-3 shows a page from a report with the noncentered heading
"CURRENT ORDERS FROM THE ORDERS FILE" and a footing that reads
"COMPANY CONFIDENTIAL".

This report was produced by the following query:

>SORT ORDERS BY DATE DATE TITLE TOTAL.AMT HEADING
"CURRENT ORDERS FROM THE 'F' FILE" FOOTING
"COMPANY CONFIDENTIAL"

The F option inserts the name of the file "ORDERS" into the heading.

CURRENT ORDERS FROM THE ORDERS FILE
ORDERS Date of Order Title •.•.......•.•........•........ Amount •.••

10101 09/06/88 DATABASE MANAGEMENT SYSTEMS $19.90
10102 09/06/88 OPERATING SYSTEM CONCEPTS $66.20

DATABASE MANAGEMENT SYSTEMS
10103 09/06/88 DATABASE MANAGEMENT SYSTEMS $19.90
10104 09/06/88 DATABASE MANAGEMENT SYSTEMS $929.42

OPERATING SYSTEM CONCEPTS
WRITING COMMERCIAL APPLICATIONS
WORD PROCESSING

10105 09/07/88 DATABASE MANAGEMENT SYSTEMS $268.81
WRITING COMMERCIAL APPLICATIONS
WORD PROCESSING

10106 09/07/88 OPERATING SYSTEM CONCEPTS $56.25
10107 09/07/88 DATABASE MANAGEMENT SYSTEMS $727.05

OPERATING SYSTEM CONCEPTS
10108 09/08/88 OPERATING SYSTEM CONCEPTS $236.50

WRITING COMMERCIAL APPLICATIONS
10109 09/08/88 WORD PROCESSING $160.86
10110 09/09/88 OPERATING SYSTEM CONCEPTS $1301.13

WRITING COMMERCIAL APPLICATIONS
COMPANY CONFIDENTIAL

Example 4-3.
Both the HEADING and the FOOTING modifiers are used.

60 Pick ACCESS

Suppressing the Page and Column Headings

The following query produces a report from the CUSTOMERS file and
suppresses the default column headings and the default heading at the top of
each page:

>LlST CUSTOMERS LAST-NAME FIRST-NAME STATE
COL-HDR-SUPP

When the page and column headings are suppressed and no other formatting
(such as a footing) is defined, the report displays data only. The report is
shown in Example 4-4.

HJENK7129 JENKINS HAROLD IN
JBOHA5422 BOHANNON JOHN MA
JBROW6749 BROWN JAMES MA
JBUCK6488 BUCKLER JULIE IN
BLEAR6803 LEARY BILL MA
JMAS06378 MASON JULIA IN
AORLA5993 ORLANDO AMY CA
SPIRS5289 PIRS SANDRA NC
MASHX5777 ASH MARY IN
AEDWA5224 EDWARDS ANTHONY MA
JPEER5993 PEERCE JAN CA
RPIER5S39 PIERCE RICK NJ
AJOHN5396 JOHNSON ANNE KY
HJOHN7265 JOHNSON HENRY NB
HHIGG6849 HIGGINS HENRY NB
DEDGE6635 EDGECOMB DAVID FL
BLAMP6196 LAMPSON BOB MA
AMEAD5619 MEADE ANDREW MA

>

Example 4-4.
The COL-HDR-SUPP modifier suppresses the default column headings

as well as the default page heading.

4: Formatting Reports 61

Calculating Totals

Totals for the data in a specified attribute can be generated at the end of a
report by including the TOTAL modifier in the query. The syntax for the
TOTAL modifier is:

TOTAL attribute [limiters 1

attribute

limiters

is the name of the attribute.

totals only the data that matches the specified criteria.
The criteria are expressed by a relational operator and a
literal value enclosed in double quotes or backslashes.

PAGE 3 1l;.:02tU 01 NOV 1989

ORDERSCustorner ID Title ••..•...........••••.••....... Amount .•..

10101 AJOHN5396

10107 HJOHN7265

10113 HJENK7129

10116 JBUCK6488

l()122 JBUCK64SS

HHlO JSOHA5422

DATABASE MANAGEMENT SYSTEMS

DAtABASE MAN~NT:SYSTEMS
OPERATING St5TEMcONCEPTS

Ot>ERATING SYS'rEMeoNCEPTS
WORD PROCESSING

WORD PROCESSING

WRITING COMMERCIAL APPLICATIONS

OI?ERATING . SYSTEM''QONCEPTS
WRITING COMMERCIAL APPLICATloKS
WORD PROCESSING
DATABASE MANAGEMENT SYSTEMS

Example 4-5.

$19.90

$727.05

$373.74

$45.96

$49.00

$1301.13

$5233.42

The TOTAL modifier totals data in the specified attribute.

At the end of the report, the total appears in the column of the specified
attribute. The total is preceded and followed by a blank line and is identified
by three asterisks in the item ID column.

62 Pick ACCESS

For example, to produce a weekly sales report and total the sales you might
enter:

>LlST ORDERS CUST.lD TITLE TOTAL TOTAL.AMT DBL-SPC

Example 4-5 shows the last page of the report.

The following query totals only sales larger than $250.00:

>LlST ORDERS CUST.lD TITLE TOTAL TOTAL.AMT > "250"
DBL-SPC

Example 4-6 shows the last page of the report.

ORDE;RS Customer 1D Title ...•• ., ••.....•••...••••••.•••• Amount ••••

10101 AJQaN5396)i DATABASe MANA(;£Ml!:NT S'lS,m1S
"

10107 HJOHN7265 DATABASE W\NAGEMENTSYSTEMS
OPERATl~ SYSTEM CONCic~'lii'

IOn6 .m+CK6488
{

10122 JBUlCK6488

10110 JB~5422i·

Example 4-6.
Totalling can be limited to just the data you specify.

$3600.15 is the total figure for all sales larger than $250.00.

Note that data in the TOT AL.AMT column prints only for items that match
the selection criteria.

4: Formatting Reports 63

Formatting the Total Line

The preceding section demonstrated the default appearance of a grand total
line in a report. The GRAND-TOTAL modifier can be used to specify a
different format.

The syntax of the GRAND-TOTAL modifier is:

GRAND-TOTAL" [text 1 [' options' 1 [text 1"

text

options

is the string to appear in place of the three asterisks in the
item ID column of the total line. Enclose this parameter
in double quotes. Text can appear on either side of the
specified options.

are some combination of the following, enclosed in single
quotes:

U Underlines the line above the totalled fields with
equal signs (=).

L Suppresses the blank line that precedes the total
line. This option is ignored if you use the U option.

P Begins a new page for the total line.

options must be specified within single quotes and must be entered
somewhere within the double quotes, whether text is included or not.

Let's assume you want to reformat the total line shown in example 4-6. The
following query identifies the total line with the text "LARGE ORDER
TOTAL:", includes underlining above the total figure, and prints it on a
separate page:

64

>LlST ORDERS CUST.lD TITLE TOTAL TOTAL.AMT > "250"
GRAND-TOTAL "LARGE ORDER TOTAL: 'UP' .. DBL-SPC

Pick ACCESS

Example 4-7 shows the last page of the report.

PAGE 4 11:43:26 01 NOV 1989

ORDERS Customer 10 Title •••••••••••••.•••••••••••••••• Amount

LARGE ORDER TOTAL: $3600.15

23 ITEMS LISTED.

>

Example 4-7.
A customized grand total/ine.

Breaking on Attribute Values

The BREAK-ON modifier divides an ACCESS report into sections,
according to the data in the specified attributes. This modifier causes
ACCESS to create a new section (indicated by three asterisks, or by any other
specified text) whenever the data changes. For example, in a report that lists
company personnel by department, each department might appear in a
separate section.

The point at which a new section begins is called a control break. Up to 15
different control breaks can be specified in a single ACCESS query. The
highest level break is the first one specified.

Totals can also be included at the end of each section in the report. This
feature is described later in this section.

The syntax for the BREAK-ON modifier is:

BREAK-ON attribute [" [text] ['options '] [text]"]

attribute is the attribute on whose changing data a new section
begins. ACCESS determines the change by testing the
first 24 characters of the data, from left to right.

4: Formatting Reports 65

text

options

The specified attribute is automatically included as one of
the columns in the report; it need not be entered
separately as an output specification.

is printed in the attribute column when a control break
occurs. This text replaces the three asterisks that are
output by default. Enclose the specified text in double
quotes.

affect the processing of the control break. These include:

B Inserts data from the attribute specified in the
report heading if the B option was used with the
HEADING modifier. Use this option with only one
BREAK-ON modifier per query.

D Suppresses the break line data if only one new line
was output since the last control break.

L Suppresses the blank line preceding the break line.
This option has no effect when specified with the U
option.

P Starts a new page after each control break.

R Forces all data associated with a control break to
appear on the same page.

U Underlines alI total fields for each control break.

V Inserts the current data for the attribute into the
text on the control break line.

Enclose options in single quotes, along with any accompanying text. options
and text must be enclosed in double quotes.

For example, let's assume you are generating a report about classes of
children in a school. The following query sorts the children's names
alphabetically and divides the report into alphabetical sections by the
teacher's last name. The listing for each teacher begins on a new page:

66 Pick ACCESS

>SORT STUDENTS BY TEACHER BY NAME NAME BREAK-ON
TEACHER" 'P' ..

Example 4-8 shows the first page (section) of the report.

PAGE 1 11:05:32 01 NOV 1989

STUDENTS .. Name Teacher .. .

4504 HARMON, GEORGE JONES
4505 PORTNOY, SYLVIA JONES
4506 RATNER, HEIDI JONES
4503 WATKINS, JOHN JONES
4507 WELCONE, JIM JONES

Example 4-8.
Using the BREAK-ON modifier.

Including Totals in a Control Break

The TOTAL modifier (described earlier in this chapter) can be used in
combination with the BREAK-ON modifier to total the data for a specified
attribute in each section of a report. When the TOTAL modifier and the
BREAK-ON modifier are used together, the following occurs:

1. A subtotal appears in the report for the attribute specified with the
TOTAL modifier each time the value of the attribute specified with the
BREAK-ON modifier changes.

2. A total of all of the subtotals appears at the end of the report.

4: Formatting Reports 67

Example 4-9 shows subtotals for the class dues paid by two classes:

PAGE

>SORT STUDENTS BY TEACHER BY NAME NAME BREAK·ON
TEACHER TOTAL DUES

1 11:05:55 01 NOV 1989

STUDENTS .• Name ••.•..••..••.. Teacher ... Dues .•..

4504 HARMON, GEORGE JONES $5.00
4505 PORTNOY, SYLVIA JONES $2.00
4506 RATNER, HEIDI JONES $9.00
4503 WATKINS, JOHN JONES $4.00
4507 WELCONE, JIM JONES $7.00

*** $27.00

4513 BENNETT, NANCY KUBOVY $3.00
4515 BERMAN, ANGELA KUBOVY $5.00
4514 CURRAN, DIANE KUBOVY $3.00
4516 JOHNSON, MEG KUBOVY $7.00
4517 KESTER, MICHAEL KUBOVY $9.00
4518 TERNY, KEITH KUBOVY $6.00

.** $33.00

Example 4·9.
Using the BREAK-ON and TOTAL modifiers together.

Suppressing Detail Lines

When the TOTAL and BREAK-ON modifiers are used together (or when the
TOTAL modifier is used on its own), the DET-SUPP modifier can be used to
suppress all of the detail lines in the report. In this case, only the subtotal and
total lines are displayed.

68 Pick ACCESS

The following query suppresses the detail lines for the report:

>SORT STUDENTS BY TEACHER BREAK·ON TEACHER
TOTAL DUES DE~SUPP

PAGE 1 11:06:34 01 NOV 1989

STUDENTS .• Teacher .•• Dues

JONES". $27.00

KUBOVY $33.00

MOYERS

$46.00
$106.00

18 ITEMS LISTED.

>

Example 4·10.
The DET-SUPP modifier lists only subtotal and total lines;

other lines are suppressed.

Special Uses of Formatting Modifiers

When used in combination with certain verbs, some of the formatting
modifiers described in this chapter function differently. These differences
occur in the following areas:

• The HDR-SUPP, HEADING, ID-SUPP, and SUPP modifiers work
differently with the T-DUMP and S-DUMP verbs. HDR-SUPP,
SUPP, and HEADING affect the creation of the tape label, and
ID-SUPP suppresses the listing of item IDs on the screen as items are
copied to tape.

• The ID-SUPP modifier works differently with the REFORMAT and
SREFORMAT verbs, determining what the item IDs will be in the
new file.

4: Formatting Reports 69

• When used in forms generation statements, the BREAK-ON, TOTAL,
and GRAND-TOTAL modifiers have a more specialized role. In
addition, the HEADING and FOOTING modifiers function in a more
limited way, and the ID-SUPP modifier is superfluous.

These special functions are described fully in Chapters 6 and 7.

70 Pick ACCESS

CHAPTER 5

Using Select-Lists

The preceding chapters describe how to enter ACCESS queries that define
the contents, scope, and fonnat of a report. This chapter describes a group of
ACCESS verbs that create and manipulate select-lists. Select-lists provide
added flexibility in extracting infonnation from a database and in generating
reports.

A select-list is a list of data elements created by the ACCESS query. These
elements identify file items whose data meets specified criteria. Elements in
the select-list can then be used as input to another process or query, or the
select-list can be saved for use later. For example, you might create a
select-list from the CUSTOMERS file that selects the item-IDs as input to a
PICK/BASIC program. Or you could save the select-lists in the
POINTER·FILE, edit it with the Editor, then reactivate it and use it in
another query.

Why use a select· list when you can just as well use a selection expression to
select items? Because when you are retrieving data, especially from large
files, it can take some time to process a selection expression-much more
time than it takes to retrieve data using a list of specified item IDs. Also,
select-lists can be saved and reused as many times as you like; you don't have
to keep entering the same selection expression again and again to retrieve the
same subset of data.

Creating a select-list can be compared to using a selection expression in a
query that generates a report. In both cases, only those items meeting the
specified criteria are selected. Using a selection expression to generate a

5: Using Select-Lists 71

report, however, is a one-step operation. A select-list, on the other hand,
merely identifies the specified items. How the list will then be used (the
second step) is up to the user.

Select-lists can be used to reference data in any file, not just the file from
which the select-list was generated. For example, you might create a
select-list from the ORDERS file of all customers whose accounts are
overdue by more than $100. You could then use the select-list to access the
CUSTOMERS file to extract these customers' addresses for a mailing.

A select-list is always temporary: that is, it is available only for the execution
of the next command, query, or program. This next operation must
immediately follow the query that created the select-list; if it does not, the
select-list is lost. For example, the following query creates a select-list from
the CUSTOMERS file dictionary; the items in this list are then processed by
the Editor:

>SELECT DICT CUSTOMERS WITH A/AMC = "2"

4 ITEMS SELECTED.
>ED DICT CUSTOMERS
LAST-NAME
TOP

The preceding SELECT statement creates a select-list of all Attribute
Definition items in the CUSTOMERS dictionary that have an attribute
number of 2. The ED verb then invokes the Editor on these items starting
with the first item, LAST-NAME. After the first item is filed (or exited), the
next item in the select-list is automatically displayed, and so on. When the
user has finished editing the items, the select-list is automatically cancelled.

You can make a select-list permanent by explicitly saving it to the
POINTER-FILE with the SAVE-LIST verb. The POINTER-FILE is a
special file in the SYSPROG account that is used to store saved select-lists.
Every account on the system has a Q-pointer to this file, so once a select-list
has been saved, it is accessible to other users and can be retrieved and used at
any time. The GET-LIST, EDIT-LIST, COPY-LIST, and DELETE-LIST
verbs are used to access and manipulate saved select-lists.

It is possible to create a local pointer-file in any account. Saved lists stored in
a local pointer-file are available only to users who have access to files in that
account.

72 Pick ACCESS

To create a local pointer-file in any account, create a file dictionary and
change the D/CODE of the D-pointer in the Master Dictionary from "D" to
"DC". This creates a file that can point to compiled code (such as
PICK/BASIC object code) as well as to select-lists.

Processors That Use Select-Lists

This section summarizes the way that various system processes interact with
select -lists.

PICK/BASIC

Select-lists are available to PICK/BASIC programs via the READNEXT
statement. Such a select-list overrides the first SELECT statement in a
PICK/BASIC program. The select operation can also be initiated by a
PICK/BASIC SELECT statement or an EXECUTE statement in combination
with one of the ACCESS select-list verbs.

ACCESS

An active select-list does not automatically take precedence over parameters
specified in the next query. A select-list is ignored, for instance, if the next
query includes an explicit item-list or an item selection expression. On the
other hand, you can use a selection expression (using WITH) in the
subsequent query to access a subset of the items contained in the active
select -list.

An explicit item list or an item selection expression always takes precedence
over an active select-list. For example,

>SELECT CUSTOMERS WITH LAST-NAME> "NARDONE"

4 ITEMS SELECTED.
>LlST-ITEM CUSTOMERS 'TABB05729' 'GLEB05687'

5: Using Select-Lists 73

Since the LIST-ITEM query includes two explicit item IDs, the select-list is
ignored and a report is generated only for items T ABB05729 and
GLEB05687.

Runoff

The items in a select-list can be inserted into Runoff text via the READNEXT
command.

TeL· II Verbs

TCL-II verbs interact with select-lists just as ACCESS verbs do. For
example, you might use a select-list with the COPY verb to write to tape a
subset of items in a file.

Creating Select-Lists

A number of ACCESS verbs can be used to create select-lists. The two
principal verbs are SELECT and SSELECT. SELECT creates a select-list of
the items that match the specified criteria; the elements in the select-list are
arranged in the order in which the items are currently stored in the file.
SSELECT works the same way except that it sorts the elements by the
specified attribute. SELECT is thus analogous to LIST, and SSELECT to
SORT.

If an output specification is specified, data elements from the output
attributes are used to make up the select-list instead of item IDs. Each value
in a multivalued attribute is stored as a separate element.

Table 5-1 summarizes the ACCESS verbs that create select-lists.

74 Pick ACCESS

Verb

SELECT

SSELECT

FORM-LIST

QSELECT

NSELECT

Table 5-1. Select-List Verbs.

Description

Selects items that meet the specitied criteria.

Selects and sorts items that meet the specified criteria.

Creates a select-list from data in the specified items rather
than from their item IDs.

A synonym for FORM-LIST.

Selects items that are in an active select-list but are not in
the specified file. Not implemented on all systems.

SELECT Syntax

The SELECT verb uses standard ACCESS query syntax:

SELECT [DICT I filename [item-list I [selection I [output I

SSELECT uses the same syntax as SELECT and additionally allows you to
define one or more sort expressions. Without any sort expressions,
SSELECT sorts the selected items in ascending order by item 10.

Creating a Select-List (SELECT)

Let's assume you have an ACCOUNTS file that includes (among others)
attributes for CUST.ID, ORDER. NO, DATE, BALANCE.DUE,
AMT.PAIO, and STATUS. You want to select from the ACCOUNTS file
only those items whose balances are still unpaid. You then want to generate a
report listing all unpaid accounts. This is a two-step process: first you select
the items you want with SELECT, then you generate the report with another
ACCESS verb.

First you want the program to select only those items whose balances are still
unpaid. The STATUS attribute contains "PD" if payment has been received;
if the account has not been paid, STATUS contains no value. Create a
SELECT statement that selects only those items which contain no value in the
attribute STATUS:

5: Using Select-Lists 75

>SELECT ACCOUNTS WITH STATUS =
58 ITEMS SELECTED.
>

The set of quotation marks specifies a null value in the STATUS attribute. A
message indicates that 58 items were selected, and the TCL prompt
reappears. You must now use the select-list in the next command, or you will
lose it! You might enter the following to print out a sorted report:

>SORT ACCOUNTS BY CUST.lD CUST.lD DATE
BALANCE.DUE (P)

Only the items identified by the select-list will be sorted and listed. The
select-list is no longer available and cannot be reused.

If, however, you had saved the select-list immediately after you had created
it, it would be available whenever you wanted to use it. For details about how
to save a select-list. see the section. "Saving a Select-List," later in this
chapter.

Another way to use select-lists is in BASIC programs. You might run a
PICK/BASIC program that uses the select-list in the preceding example to
generate invoices for all unpaid items. Once the items have been selected, the
program can execute a forms generation statement to print the invoices.
Since the select-list of unpaid accounts is active, no further selection
processing is necessary. (Forms generation verbs are discussed in
Chapter 7.)

Listing Items Not Included in a Select-List (NSELECT)

Some systems support the NSELECT verb. NSELECT is used to determine
which elements in an active select-list are not contained in another file.
Creating a select-list with NSELECT is a two-step process: first you use one
of the regular list-creating verbs to select elements from file A, then you use
NSELECT to select only those elements of the active select-list that are not
contained in file B. The second select-list (the one created with NSELECT)
is now the only active one and can be used, for example, to list items in file A
that are not in file B.

76 Pick ACCESS

NSELECT uses the following syntax:

NSELECT filename

The following example first creates a select-list of all of the items in the
ORDERS file, then creates a second select-list from the items on this list that
are not in the ORDERS.PAID file. The result is a list of those items in the
ORDERS file that are currently unpaid:

>SELECT ORDERS

347 ITEMS SELECTED.
>NSELECT ORDERS.PAID

256 ITEMS SELECTED.
>

The unpaid order items can then be listed with the following query:

>LlST ORDERS

NSELECT can be used only when another select-list is currently active.
Thus NSELECT must be used immediately after a select-list has been created
with one of the list-creating verbs or has been made active with GET-LIST.

Creating a Select-List from Data (FORM-LIST)

FORM-LIST (and its synonym QSELECT) creates a select-list containing all
or selected data in the specified file rather than from the item IDs.
FORM-LIST uses the following syntax:

FORM-LIST [DICT I filename items [(attr#) I

You must specify either an explicit item-list or all items in the file (indicated
by an asterisk). If you specify an item, the select-list will comprise all data
from all attributes in that item. Each line of data~that is, each attribute--of
the item specified becomes a separate element in the select-list. If you specify
several items in the FORM-LIST statement, the select-list will comprise all of
the data from all of the items specified, listed in the order of items.

5: Using Select-Lists 77

Each value in a multivalued attribute is stored as a separate element in the
select-list. Example 5-1 shows some items from the ORDERS file that
contain multivalues in Attributes 3 and 4.

PAGE 1

10102
001 BLEAR6803
002 7555
003 N02]NOl
004 3]1

10104
001 MASHX5777
002 7555
003 NOljN02]QR01]QR02
004 3J5J1J34

10105
001 DEDGE6635
002 7556
003 N01]QR01]QR02
004 114]7

13:22:39 01 NOV 1989

Example 5·1.
Items in the ORDERS file have multivalues in Attributes 3 and 4.

Example 5-2 shows a select-list of all the data in Attribute 3, BOOKCODE.
Each multivalue is stored as a separate element.

This select-list can be created by either of the following two queries:

>SELECT ORDERS BOOKCODE
>FORM·LlST ORDERS * (3)

78 Pick ACCESS

BKCODE:
001 QROI
002 N02
003 QROI
004 QR02
005 NOI
006 NOI
007 N02
008 QROl
009 QR02
010 N02
011 NOI
012 NOI
013 N02
014 N02
015 QR02
016 QR02
017 N02
018 NOI
019 NOI
020 QROI

Example 5-2.
The select-list BKCODE lists each multivalue separately.

You can see from the preceding example that using FORM-LIST you can
specify that only data contained in a certain attribute be used in the select-list.
attr# is the number of the desired attribute (you cannot specify an attribute by
its name).

Example 5-3 shows how you might use a select-list to reference a second file.
Let's assume that Attribute 1 in the ORDERS file contains customer IDs that
match the item IDs in the customers file. A FORM-LIST statement first
creates a select-list of customer IDs from the data contained in Attribute 1.
Then a SORT-LABEL statement creates a mailing list from the customers
file of the active customers selected by FORM-LIST, to inform them of
several new books that are available.

5: Using Select-Lists 79

>FORM-LIST ORDERS * (1)

226 ITEMS SELECTED.
>SORT-LABEL CUSTOMERS BY LAST-RAMS FULL-RAMS STREET CITY-ST

ZIP ID-SUPP

?3,4,2,6,20,3,C
?RAME
?ST
?CITY
?ZIP

Example 5-3.
A list of item IDs is formed from the customer IDs stored in Attribute 1 of
the ORDERS file. The list is then used to reference the CUSTOMERSfile.

You can also form a select-list from data in an attribute by specifying the
name of the attribute in the SELECT query. Thus, the select-list created by
the preceding FORM-LIST command could also be created by the following
SELECT query:

>SELECT ORDERS CUST.lD

Saving a Select-List

The SAVE-LIST verb gives a select-list a name and stores it as an item in the
POINTER-FILE. This can be either the system POINTER-FILE (in the
SYSPROG account) or a local pointer-file. If the system POINTER-FILE is
used, the select-list is accessible to all other accounts on the system. A saved

80 Pick ACCESS

select-list can be removed from the POINTER-FILE with the
DELETE-LIST verb.

To save a select-list, enter the SAVE-LIST verb immediately after creating
the list. For example:

>SELECT ORDERS WITH AMOUNT > "25000"

23 ITEMS SELECTED.
>SAVE-LiST LARGE-ORDERS
LIST 'LARGE-ORDERS' SAVED· 1 FRAMES USED.

The system reports the number of frames used to store the
LARGE-ORDERS select-list, in this case, one frame.

~ If a saved select-list of the same name already exists, the
new one overwrites it without asking for confirmation.

Working with Saved Select-Lists

There are several verbs that can be used to work with saved select- lists.
These verbs are summarized in Table 5-2 and described in the sections that
follow.

Table 5-2. Saved Select-List Verbs.

Verb

COPY-LIST

DELETE-LIST

EDIT-LIST

GET-LIST

Description

Copies a saved list to the tenninal screen, the printer,
another saved list, or a file item.

Removes a saved list from the POINTER-FILE.

Invokes the Editor on a saved list.

Retrieves a saved list and makes it available to the
subsequent command, query, or program.

All of these verbs use the following syntax:

verb list-name

list-name is the name assigned to the select-list, when it was saved with the
SAVE-LIST verb.

5: Using Select-Lists 81

Retrieving a Saved Select-List

GET-LIST retrieves a saved select-list and activates it: that is, it makes it
available to a subsequent command, query, or program. You can execute
only one such command on a retrieved select-list, however. If you want to
execute more than one command, you must retrieve the saved list again.

Let's assume that you previously created and saved a select-list called
ORDERS. FEB that identifies all orders taken during the month of February.
The following two commands retrieve the saved list from the
POINTER-FILE and send a report on February orders to the printer:

>GET-LiST ORDERS. FEB

85 ITEMS SELECTED.
>SORT ORDERS BY-DSND TOTAL.AMT REPORT (P)

Copying a Saved Select-List

COPY -LIST is similar to the COPY verb, except that it copies saved
select-lists instead of file items. COPY-LIST can be used to display a saved
list on the terminal screen or send it to the printer, rename a saved list, or
copy a saved list to a file item.

COPY -LIST uses the following subset of the options available with the
COpy verb:

82

Option

D

N

o
P

T

X

Table 5-3. COPY -LIST Options.

Description

Deletes the original saved list after it is copied to another
saved list or to a file item. This option is useful when you
want to rename a saved list.

Disables paging when copying the saved list to the terminal.

Overwrites an existing saved list.

Copies the saved list to the printer.

Copies the saved list to the terminal screen.

Copies the saved list to the printer or terminal screen in
hexadecimal format.

Pick ACCESS

After you enter COPY-LIST, the system displays the prompt:

TO:

Enter the destination as follows:

{ dest-list I [([DICT 1 filename) 1 item-/D}

You can copy the saved list either to another saved list or to a file item.

For example, let's assume there is a saved list on your system called
LARGE-ORDERS. This list was created in 1988. At the beginning of 1989,
you might want to rename this list LARGE-ORDERS-88, as follows:

>COPY-LIST LARGE-ORDERS (D)
TO :LARGE-ORDERS-88

1 LARGE-ORDERS TO LARGE-ORDERS-88

You could then send this list to the printer with the following command:

>COPY-LIST LARGE-ORDERS-88 (P)

U' If the saved list is larger than 32 K, you cannot copy it to a
file item. Instead, you get the following error message:

[196]'/ist' IS TOO LARGE TO BE AN ITEM.

Editing a Saved Select-List

EDIT-LIST invokes the Editor on a saved select-list. You can then make
edits to refine the list (typically, by deleting or adding lines).

Let's assume that you just received overdue payments from three customers.
The following example calls up a saved list named
OVERDUE. CUSTOMERS and uses the editor to delete the item IDs on lines
5,6, and 7:

>EDIT-LIST OVERDUE.CUSTOMERS
OVERDUE.CUSTOMERS
TOP
.G5
005 LERC4MAPLL
.DE 3
.FI
[243] LIST 'OVERDUE.CUSTOMERS' SAVED - 1 FRAMES USED

5: Using Select-Lists 83

CHAPTER 6

Specialized Processing

This chapter describes five groups of ACCESS verbs that process data in
specialized ways:

I . Creating labels.

LIST-LABEL SORT-LABEL

These verbs display file items in label, or block, format. Users can
define the exact placement of these blocks on the screen or page. This
format is especially useful for printing mailing labels.

2. Generating statistics on data in files.

COUNT SUM STAT

These verbs do not format and display the data in file items. Instead,
they return statistics about the data, such as the total for a numeric
attribute in selected items. These verbs allow users to perform simple
analyses on a database.

3. Generating file statistics.

FILE-TEST ISTAT CHECK-SUM
HASH-TEST

Like the verbs in the previous item, these verbs do not format and
display data in file items. They return statistical information about a
file or about specified information in a file. This information includes
a byte count, a bit count, distribution of items in a file, etc.

6: Specialized Processing 85

4. Copying items to and from tape.

T-DUMP S-DUMP T-LOAD

These verbs copy items to and from magnetic tape. They can be used
to create and maintain permanent records of a database and to store
selected data off-line.

5. Restructuring output.

REFORMAT SREFORMAT

These verbs actually alter the structure of file items. They can be used
to copy restructured items to magnetic tape, to another file, or within
the same file. Restructuring items in this way is useful for rearranging
existing files.

Table 6-1 summarizes the ACCESS verbs that do special processing.

86

Table 6-1. Special Processing Verbs.

Verb

LIST-LABEL

SORT-LABEL

COUNT

SUM

STAT

CHECK-SUM

ISTAT

HASH-TEST

T-DUMP

S-DUMP

T-LOAD

REFORMAT

SREFORMAT

Description

Displays items in label fonnat.

Displays items in label fonnat in sorted order.

Counts file items.

Totals the data in a numeric attribute.

Displays statistics about a numeric attribute.

Produces check-sum statistics for file items.

Summarizes item distribution in a file.

Tests effects of different modulos on item
distribution.

Copies items to magnetic tape.

Copies items to magnetic tape in sorted order.

Copies items from magnetic tape to disk.

Restructures items and directs output to magnetic
tape, another file, or within the same file.

Restructures items in sorted order.
REFORMAT.)

(See

Pick ACCESS

Printing Labels

The LIST-LABEL and SORT-LABEL verbs output items in individual
blocks or labels. Labels can be used for mailings or to identify inventory
items. The size of the labels and their position on the page can be set by the
user. This makes it possible to output items on preprinted paper labels of any
size.

Figure 6-1.
The LIST-LABEL verb outputs items onto preprinted labels.

In contrast, the LIST and SORT verbs rely on the Attribute Definition items
in the file dictionary to determine the basic format of a report.

LIST-LABEL and SORT-LABEL Syntax

The syntax for the LIST-LABEL verb is identical to that of the LIST verb.
That is, you can include an explicit item list, selection expressions, output
specifications, modifiers, and options. Note, however, that the
COL-HDR-SUPP and DBL-SPC modifiers work differently for reports in
label format. The COL-HDR-SUPP modifier produces a continuous form
report (one with no page breaks); it also suppresses the default heading on
each page of the report. The DBL-SPC modifier has no effect.

6: Specialized Processing 87

The SORT-LABEL verb has the same syntax as the LIST-LABEL verb, with
the addition of sort expressions. The sorting capability is especially useful
with label formats because it allows you to produce mailing labels in
alphabetical order (for example, by last name) or in numeric order (for
example, by zip code).

Defining a Label Format

After the LIST-LABEL verb is entered, the system displays a question mark
prompt:

>LlST-LABEL CUSTOMERS FULL-NAME STREET CITY-ST
ZIP

?

At this prompt, specify the label format on a single line as follows:

88

count, rows, skip, indent, size, space [, C 1

count

rows

skip

indent

size

space

c

is the number of labels (items) across each page or screen.

is the number of lines printed for each label. Remember
to count the item ID as one line. The item ID is
automatically included in the labels unless you use the
ID-SUPP modifier in the query.

is the number of lines to skip vertically between labels.

is the number of indented spaces from the left margin to
the first column of labels. 0 is a valid response.

is the maximum width for each attribute line (in other
words, the width of each label in columns).

is the number of horizontal spaces between labels.

specifies that null attributes should not be printed.
Otherwise, null attributes appear as all blanks. This
parameter is optional.

Pick ACCESS

The total width specifications cannot exceed the page width (normally 80
characters for terminals, and 80 or 132 characters for printers). Determine
the available width using the following formula:

(count * (size + space) + indent) <= (page width)

page width is the value defined by the TERM verb for the terminal or
printer.

If a value other than zero is specified for the indent parameter, the system
prompts you to define headers for each row in a label:

?

The number of ? prompts corresponds to the value entered earlier for rows.
At each prompt, type the desired header and press the RETURN key. (To
avoid defining a header, simply press the RETURN key.) These headers will
appear at the left margin in the indent area of the listing.

Example 6-1 shows partial output for a roll of mailing labels that has three
labels in each horizontal row. The labels were generated by the following
SORT-LABEL statement:

>SORT·LABEL CUSTOMERS BY LAST·NAME FULL·NAME
STREET CITY·ST ZIP IO·SUPP COL·HOR·SUPP

?3,4,2,8,18,4
?NAME
?ST
?CITY
?ZIP

6: Speciali:ed Processing 89

NAME ASH, MARY BOHANNON, JOHN BROWN,· JAMES
ST 9121'. E. OAK STREET 126 TREMONT STREET 129 BOYLSTON ST
CITY INDIANAPOLIS, IN BOSTON,MA BOSTON,MA
ZIP 98754 21300 21300

NAME BUCKLER, JULIE EDGECOMB, DAVID EDWARDS, ANTHONY
ST 26 STONE AVENUE 338 BROADWAY 51 BLAIR AVENUE
CITY LINCOLN,IN MIAMI,FL SUDBURY,MA
ZIP 02144 39007 01776

NAME HIGGINS, HENRY JENKINS, HAROLD JOHNSON, ANNE
ST 54 25TH STREET 1222 MAIN STREET 760 JEFFERSON ST
CITY OMAHI\,NB INDIANAPOLIS, IN LOUISVILLE,I<Y
ZIP 39977 48865 99475

NAME JOHNSON, HENRY LAMPSON, BOB LEARY, BILL
ST 45 50TH STREET 344 TREMAIN ROAD 34 TREMONT STREET
CITY OMAHA,NB BOSTON,MA BOSTON,MA
ZIP 39977 74332 74332

>

Example 6-1.
Labels generated by the SORT-LABEL verb.

The preceding statement defines a label format that prints three labels across.
Four lines (attributes) are displayed for each label, two vertical lines are
skipped between each row of labels. There is an initial indent of eight spaces,
a maximum of eighteen characters for each attribute, and four horizontal
spaces between each label. The ID-SUPP modifier suppresses the inclusion
of item IDs, and the COL-HDR-SUPP modifier suppresses the default page
headings.

Before you send labels to the printer, you should use the SP-ASSIGN
command to assign the correct forms queue to your account. A form queue
can be a particular printer that's loaded with special paper, such as label
stock.

90 Pick ACCESS

Generating Labels with a Proc

You can greatly simplify the process of generating labels by using a proc that
contains a LIST -LABEL or SORT -LABEL command. Procs let you execute
lengthy ACCESS statements simply by entering one command. They can also
supply responses to prompts, so you don't have to enter all the information
required by the? prompt each time you run off a set of labels.

The labels generated by the SORT-LABEL command discussed in the
previous section can also be generated by the following proc called LABELS:

001 PO
002 HSORT-LABEL CUSTOMERS BY LAST-NAME

FULL-NAME STREET CITY-ST ZIP (IC)
003 STON
004 H3,4,2,8,18,4<
005 HNAME<
006 HST<
007 HCITY<
008 HZIP
009 P

When the SORT-LABEL statement in line 2 is executed, the proc supplies the
label format (line 4) and all necessary responses to the? prompt (lines 5, 6, 7,
and 8). All the user need do is enter the command LABELS to produce the
labels shown in Example 6-1. A more generalized version of this proc might
prompt the user for the filename and generate labels for any file containing
these attributes.

Generating Statistics on Data

The COUNT, SUM, and STAT verbs generate statistics for the data in a file.
These three verbs produce a short summary rather than a formatted listing of
the data stored in the file.

These verbs all permit the use of selection expressions, but none of the
modifiers used to format reports are applicable. Because the COUNT, SUM,
and STAT verbs produce only one or two lines of information, there is no
need to specify a heading, footing, double spacing, or any other formatting
for the report.

6: Specialized Processing 91

The statistics verbs automatically include all data in multivalued attributes in
their calculations.

Counting File Items

The COUNT verb displays the number of file items that meet the specified
conditions. This makes it possible to count the number of items in a file, the
frequency with which a constant occurs in a file, and the number of items that
meet a condition expressed with relational operators. This verb can be useful
for determining how large a report will be, especially when the file itself is
large.

For example, you could count any of the following:

92

• The number of customers in the CUSTOMERS file:

>COUNT CUSTOMERS

543 ITEMS COUNTED

• The number of customers who live in Indiana:

>COUNT CUSTOMERS WITH STATE "IN"

36 ITEMS COUNTED

• The number of orders in the ORDERS file that were placed after
December 31, 1987:

>COUNT ORDERS WITH DATE> "12/31/87"

256 ITEMS COUNTED.

• The number of orders for which at least two copies of one of the titles
ordered were requested (QTY is the attribute in the ORDERS file that
reflects the number of books sold for each title):

>COUNT ORDERS WITH CTY GE "2"

112 ITEMS COUNTED.

Pick ACCESS

Totalling a Numeric Attribute

The SUM verb calculates a total for the data in a specified numeric attribute.
For example, you can generate a total for dollar amounts such as sales figures
or for quantities such as the number of books sold.

Let's assume that a new advertising campaign was initiated on April 13, 1989
and you want to know how many books were sold during the subsequent
three months, as compared to the three months prior to the campaign. The
following two queries provide this information:

>SUM ORDERS OTY WITH DATE GE "04/13/89" AND LE
"07/13/89"

TOTAL OF Oty = 578

>SUM ORDERS OTY WITH DATE GE "01/13/89" AND LE
"04/13/89"

TOTAL OF Oty = 332

Generating Statistics for a Numeric Attribute

The ST AT verb combines the functions of the COUNT and SUM verbs and
also averages the value of a numeric attribute. The result is three values:

1. The total of the data in the numeric attribute.

2. The average value of this data.

3. The number of items selected.

This verb is generally used for analysis rather than reporting.

The following query displays statistics about the sale amounts (AMOUNT)
for the book whose code is NO I:

>ST AT ORDERS TOT AL.AMT WITH BOOKCODE = "N01"

STATISTICS OF Amount :
TOTAL = $2524.00 AVERAGE = $315.0050 COUNT = 8

6: Specialized Processing 93

Generating File Statistics

The FILE-TEST and 1ST A T verbs let you generate statistics on how items
are stored (item distribution in groups). The FILE-TEST and HASH-TEST
verbs also lets you test a file to see what the effect on item distribution would
be if you used different test modulos. FILE-TEST supersedes 1ST A T and
HASH-TEST, two older commands available on most systems. 1ST AT gives
statistics on the file as it is currently set up, HASH-TEST shows how the items
would be reallocated if you used a given modulo for the file. HASH-TEST
perform exactly the same function as 1ST AT but on a "what if' basis,

These three commands are not typically used by end users. They are useful
for system administrators and applications developers when they want
information that will help in reallocating files which have become either too
large or too small for the disk space originally allocated to them.

For purposes of illustration, the results of these commands are shown for the
default Master Dictionary that is created in a new user's account. The
examples are from a system that uses a frame size of 2048 bytes. (Systems
with smaller frame sizes use another parameter, separation, that allows the
number of contiguous frames per group to be set for optimum
performance-another factor in determining the best file size.)

Analyzing Current File Structure

FILE-TEST has the following syntax:

FILE-TEST [DieT 1 filename [items 1 [selection 1 [modifiers 1
[(options) 1

After FILE-TEST is entered, you are prompted to enter either a test modulo,
or (on some systems) a test modulo and separation. If all you want to do is
obtain statistics on the file as it is currently configured, press the RETURN key
at the prompts.

ISTAT uses the same syntax as FILE-TEST. After you enter ISTAT,
however, there are no prompts: the report is displayed or printed
immediately.

94 Pick ACCESS

1ST A T and FILE-TEST with no test parameters produce a summary of the
current item distribution for a file and analyze the structure of groups within
the file. This item distribution summary can help you determine whether the
current file structure is the best one for the file.

Example 6-2 shows the result of the 1ST AT command for the Master
Dictionary of an account.

The histogram shows that items are distributed evenly. The lowest number
of items in a group is 28, the highest is 49. The average number of items per
group is 40. The average item size is 21 bytes, making the average number
of bytes per group 858 bytes. None of the groups require additional
overflow frames.

>ISTAT MD

FILE= MD MODULO= 7
FRAMES BYTES ITMS

1
1
1

1
1
1
7

1006
595
787
898
643
862

1219

45
28
38
42
33
45
49

15:36:03 01 NOV 1989

*»»»»»»»»»»»»»»»»»»»»»»>
*»»»»»»»»»»»»»»
*»»»»»»»»»»»»»»»»»»»
*»»»»»»»»»»»»»»»»»»»»»
*»»»»»»»»»»»»»»»»>
*»»»»»»»»»»»»»»»»»»»»»»>
*»»»»»»»»»»»»»»»»»»»»»»»>

ITEM COUNT~ 280, BYTE COUNT= 6010, AVG.BYTES!ITEM= 21.4
AVG.ITEMS/GROUP= 40.0, STD.DEVIATION= 7.4, AVG.BYTES/GROUP= 858.5

Example 6-2.
ISTAT displays a histogram and statistics illustrating current item

distribution in a file.

Testing Alternate File Structures

HASH-TEST and FILE-TEST with test parameters both produce a listing
similar to that produced by 1ST AT shown above, but allow you to see what
the distribution ofrecords would be, given any modulo. The file's modulo is

6: Specialized Processing 95

not changed by these commands; they simply calculate the statistical
information using the test modulo (or modulo and separation).

Example 6-3 shows the result of the HASH-TEST command run on the same
Master Dictionary shown in the preceding section. A test modulo of 3 has
been used instead of the actual modulo of 7.

>HASH-TEST MD

TEST MODULO:3

FILE= MD MODULO= 3 15:44:46 01 NOV 1989
BYTES ITMS FRAMES

1
2
2
5

1740 78 *»»»»»»»»»»»»»»»»»»»»»»»>!
2005 98 *»»»»»»»»»»»»»»»»»»»»»»»>!
2265 104 *»»»»»»»»»»»»»»»»»»»»»»»>!

ITEM COUNT= 280, BYTE COUNT= 6010, AVG. BYTES/ITEM= 21.4
AVG.ITEMS/GROUP= 93.3, STD.DEVIATION= 13.6, AVG.BYTES/GROUP= 2003.3

Example 6-3.
HASH-TEST produces a report just like the /STAT report, but uses a

hypothetical modulo.

You can see that items are well distributed across 3 groups, with an average
of 93 items in each group; however, the number of bytes in each group is too
large and exceeds one frame.

On the other hand, with a test modulo of 79:

>HASH-TEST MD

TEST MODULO:79

we get the result shown in Example 6-4. Here things are just as bad, but in
the opposite direction: several of the frames are empty, and only four
percent of the space allocated to each group is being used-a very inefficient
use of disk space.

96 Pick ACCESS

FILE= MD MODULO= 79 15:54:46 01 NOV 1989
FRAMES BYTES ITMS

1 119 5 *»»>
1 178 9 *»»»»>
1 34 2 *»
1 119 6 *»»»
1 24 1 *>
1 0 0 *
1 79 4 *»»

1 62 2 *»
1 117 5 *»»>
1 105 6 *»»»
1 36 2 *»

79

ITEM COUNT= 280, BYTE COUNT= 6010, AVG. BYTES/ITEM= 21.4
AVG.ITEMS/GROUP= 3.5, STD.DEVIATION= 2.0, AVG. BYTES/GROUP= 76.0

Example 6·4.
HASH-TEST showing a poor modulo choice.

Copying Items to and from Tape

The T-DUMP and S-DUMP verbs copy file items to magnetic tape. The
T-LOAD verb copies items from magnetic tape back to disk. These verbs
can be used to maintain copies of entire files or selected file items off-line.
All three of these verbs are used with a tape unit that has been previously
attached with the T-ATT verb.

6: Specialized Processing 97

Copying Items to Tape

The T-DUMP and S-DUMP verbs create a tape label, copy items to tape, and
write an end-of-file (EOF) marker on the tape after the operation is
complete. These verbs can copy any file items except File Definition items
(D-pointers).

The T-DUMP verb uses the following syntax:

T-DUMP [file-modifiers 1 filename [items 1 [selection J
[HEADING" text" 1 [modifiers 1 [options 1

The S-DUMP command uses the same syntax as T-DUMP and additionally
allows sort expressions. S-DUMP lets you copy items to magnetic tape in
sorted order.

The text defined by the HEADING modifier is added to the standard tape
label produced during the copy operation. As shown in Table 6-2, there are
only three other formatting modifiers that are applicable to the T-DUMP and
S-DUMP verbs.

Table 6-2. T-DUMP and S-DUMP Modifiers.

Modifier Description

HDR-SUPP Suppresses the creation of a tape label. The H option can
also be used.

HEADING Defines additional text for the tape label.

ID-SUPP Suppresses the listing of item IDs during the copy
operation. The I option can also be used.

SUPP Same as HDR-SUPP

Any other formatting modifiers used with T-DUMP, S-DUMP, or T-LOAD
are ignored.

The statement shown in Example 6-5 copies selected items from the
CUSTOMERS file to magnetic tape in sorted order by last name, and creates
a tape label that reads "CUSTOMERS A-K 03/22/88". The system
automatically lists the item IDs of the copied items on the terminal screen.

98 Pick ACCESS

Copying Items from Tape

The T-LOAD verb copies items back to disk that were previously copied to
magnetic tape with the T-DUMP or S-DUMP verbs. These items can only be
copied to an existing file. If you include a selection expression, T-LOAD
uses the Attribute Definition items of the dictionary of the file you are
loading into, in order to interpret the layout of the items on the tape.

>S-DUMP CUSTOMERS WITH LAST-NAME < "LAMPSON" BY LAST-NAME
HEADING "CUSTOMERS A-It 03/22/88"

BLOCK SIZE: 16896
1 MASHX5777
2 JBOHA5422
3 JBROW6749
4 JBUCK6488
5 DEDGE6635
6 AEDWA5224
7 HHIGG6849
8 HJENK7129
9 AJOHN5396

10 HJOHN7265
10 ITEMS DUMPED.

Example 6-5.
S-DUMP copies specified items to tape in sorted order.

After the copy operation is complete, the tape is once again positioned just
after the end-of-file (EOF) mark.

T-LOAD uses the following syntax:

T-LOAD [file-modifiers 1 filename [items 1 [selection 1 [ID-SUPP 1 [(I) 1
[(0) 1

The I option and the ID-SUPP modifier suppress the listing of item IDs
during the copy operation. The 0 option overwrites the items on disk that
correspond to items copied from tape. If you don't include the 0 option in
the query, the system displays an error message for each file item that
already exists on disk.

6: Specialized Processing 99

The following statement copies from magnetic tape all items from the
ORDERS file whose dates fall in November and December of 1987. This
example also overwrites the corresponding file items on disk and suppresses
the listing of item IDs.

> T-LOAD ORDERS WITH DATE GE "11/01/87" AND LE
"12/31/87" (1,0)

378 ITEMS LOADED.

Tape Format Verbs vs. the TAPE Modifier

The TAPE modifier can be used with verbs such as LIST and SORT to
retrieve and list data from a T-DUMP or S-DUMP tape. Generating reports
with this modifier differs from using the T-LOAD verb in that TAPE does
not copy file items to disk. The TAPE modifier merely specifies that the
currently attached tape should be accessed and that the data on this tape
should be used to produce the report.

The following query generates a report from the CUSTOMERS file as it is
stored on tape:

>LlST CUSTOMERS LAST-NAME FIRST-NAME STREET CITY
STATE ZIP TAPE

Restructuring File Items

The REFORMAT and SREFORMA T verbs restructure file items and direct
the output to magnetic tape, to another file. or to the original file.

Restructuring file items is useful for rearranging data in file items, for
streamlining files by eliminating superfluous data. and for creating
cross-reference files.

REFORMAT and SREFORMAT do not copy raw data to another file or to
tape; they redirect output. This means that any correlatives and conversions
will be applied to the data before it is output. If you do not want correlatives
and conversions applied to the data. i.e., you want stored, raw data. create
synonyms for the Attribute Definition items that point to the data you want to

100 Pick ACCESS

you do not enter a starting serial number, 0 is assumed. If you do not want
the serial number to be printed on the form, replace the x- and y-coordinates
with (-1).

To create an audit trail:

1. Create the audit file before you enter the forms generation statement.
The audit items will be added to this file as the forms are generated.

2. In the forms generation statement, use the @C print code with the
attributes that you want to track. The data for these attributes will be
stored in the audit file, but will not appear on the fomls. Even if you
track more than one attribute, however, the system generates only one
serial number per form.

If you specify x- and y-coordinates with a @C-fomlatted attribute, the
serial number is 1) output at the specified locations on the form in
place of the data, and 2) entered as an item ID in the audit file. To
suppress the display of the serial number on the form and just maintain
it in the audit file, enter "-1" in place of the x- and y-coordinates.

Audit file items have the following format:

Part of Item

Item ID

Attribute I

Attribute 2

Attribute 3

Attribute 4

Attribute 5

Attribute n + 3

Contents

Serial number.

o If this page is not the last page of the form.

If this page is the last page of the form.

A If this page was part of the printer alignment
process.

Current system date in internal format.

Current system time in internal format.

Data for the first @C-formatted attribute in the forms
generation statement.

Data for the second @C-formatted attribute in the
forms generation statement.

Data for the nth @C-formatted attribute in the forms
generation statement.

If a serial number already exists as an item in the audit file, the system
overwrites the old item with the new one. Otherwise, new items are added to
the file.

134 Pick ACCESS

reformat, and leave out the correlatives and conversions. Then use the
synonyms in the REFORMAT or SREFORMA T statement.

To reformat an attribute that uses a correlative to derive its data from
another file, create a synonym for the Attribute Definition item that includes
the correlative (otherwise there will be no data) but does not include any
conversions.

After you enter the REFORMAT or SREFORMA T statement, the system
displays the following prompt:

FILE NAME:

At this point, you can perform one of three different operations:

1. Transfer items to magnetic tape by entering the word TAPE. You
must already have attached the tape unit and set the tape record length
with the T-ATT verb.

2. Transfer items to another file by entering the name of an existing file
as follows:

[DieT 1 filename

3. Transfer items within the same file by pressing the RETURN key.

The following sections contain detailed information about each of these
operations.

Transferring Items to Tape

To copy items to magnetic tape, enter the word TAPE in response to the
FILE NAME: prompt. A tape label that includes the block size, time, date,
and filename is written to the tape, then the data from the specified attributes
is dumped in the order specified by the REFORMAT or SREFORMAT
statement. One tape record is created for each item specified.

Reformatted items are not written to tape in T-DUMP format, so they cannot
be accessed by other ACCESS queries using the TAPE modifier. They can,
however, be read using T-READ or by a PICK/BASIC program.

6: Specialized Processing 101

Nor is it possible to specify your own tape label with the HEADER modifier
as you can when you write items to tape using T-DUMP and S-DUMP. You
can, however, suppress the default tape label with the HDR-SUPP modifier.

Before you write items to tape you should use T-ATT to specify a block size
for tape records proportional to the amount of data you are going to write.
For example, if the data you want to write amounts to less than 100
characters for each item, it makes sense to specify a block size of 512 rather
than a larger block size, such as 16,896.

Restructuring Items in a New File

You can copy all of the data in the original file to the destination file, or you
can specify only those attributes whose data you want copied. This means
that the destination file can contain a subset of the attributes in the original
file.

You can also specify a different order for the attributes in the destination file.
Furthermore, the data in any attribute of the original file can be specified as
the item IDs in the destination file.

Here are two possible reasons for restructuring file items in this way:

I. You no longer need to maintain all of the information in the original
file items on-line. To conserve disk space, you restructure the items
by eliminating the attributes that have become superfluous and thereby
shrink the file. This is much more efficient than individually editing
the file items in the original file with the Editor.

2. You want the attributes in the original data file items to be ordered
differently. The attribute numbers in the file dictionary can be edited
to reflect the new sequence, but changing the order of data in each file
item would be a more involved task. Reordering the data of every file
item can be accomplished with a single REFORMAT statement.

Only the attributes you specify as output in the REFORMAT statement are
included in the destination file. Furthermore, if you include the ID-SUPP
modifier in the statement, the first attribute listed as output becomes the
item ID in the destination file.

102 Pick ACCESS

What About File Dictionaries?

File dictionaries are not affected by the restructuring operations perfonned
on data file items. This means that you must edit the Attribute Definition
items in the file dictionary so that they reflect the new item structure. This
can involve changing:

• The attribute number (AMC) to reflect the new order in which
information is stored in the data file.

• Any correlatives that reference other attributes in the file (for
example, the Tfile correlative).

• The parameters for Controlling and Dependent attributes.

• Any PICK/BASIC programs that access the file (and recompiling
them).

If you are directing restructured items to another file, you must either copy
the corresponding Attribute Definition items from the original file
dictionary to the destination file dictionary with the COpy verb and then edit
them, or you must create new Attribute Definition items. If you do not edit
the affected Attribute Definition items, it will be impossible to properly
access the newly-structured data when you try to generate an ACCESS
report. Editing a file dictionary in this way is illustrated in the next section.

Example

Let's assume that you want to restructure the CUSTOMERS file and use the
customers' social security numbers (currently Attribute 8, SS#) as item IDs
instead of the IO-character customer IDs. You also plan to eliminate
Attribute 9, COUNTY, in each data file item, but retain Attribute 10, SEX.
Finally, you plan to split the CUSTOMERS file into two separate files: one
file called CUSTOMERS.lNDIV for private individuals and the other called
CUSTOMERS.CORP for corporations. You can do this by referencing
Attribute 11, CUST.TYPE, with a selection expression.

6: Specialized Processing 103

Restructure the CUSTOMERS file in this way by doing the following:

• Create two new files with the names CUSTOMERS.lNDTV and
CUSTOMERS.CORP:

>CREATE-FILE CUSTOMERS.INDIV 7 57

[417] FILE 'CUSTOMERS.INDIV' CREATED; BASE 8276,
MODULO 7

>CREATE-FILE CUSTOMERS.CORP 7 57

[417] FILE 'CUSTOMERS.CORP' CREATED; BASE 9485,
MODULO 7

• Transfer restructured data file items to these files with two separate
REFORMAT statements. The attribute CUST.TYPE in the original
CUSTOMERS file is used in a selection expression to separate the data
file items into the two new categories:

104

>REFORMAT CUSTOMERS WITH CUST.TYPE = "I" SS#
LAST-NAME FIRST-NAME STREET CITY STATE ZIP
PHONE SEX IO-SUPP

FILE NAME: CUSTOMERS.INDIV

>REFORMAT CUSTOMERS WITH CUST.TYPE = "C" SS#
LAST-NAME FIRST-NAME STREET CITY STATE ZIP
PHONE SEX IO-SUPP

FILE NAME: CUSTOMERS.CORP

The IO-5UPP modifier is included in these statements. This means
that 5S#, the first attribute in the output specification, becomes the new
item 10 for both of the new files.

The rest of the output specification reflects the new structure of the
data items: the COUNTY attribute is not included, nor is the
CUST.TYPE attribute since it is now superfluous.

Pick ACCESS

• Copy the necessary Attribute Definition items from the CUSTOMERS
dictionary to the two new dictionaries:

>COPY DICT CUSTOMERS 'FIRST-NAME' 'LAST-NAME'
'STREET' 'CITY' 'STATE' 'ZIP' 'PHONE' 'SEX'

TO :(DICT CUSTOMERS.INDIV

>COPY DICT CUSTOMERS 'FIRST-NAME' 'LAST-NAME'
'STREET' 'CITY' 'STATE' 'ZIP' 'PHONE' 'SEX'
TO :(DICT CUSTOMERS.CORP

• Edit these Attribute Definition items so that the attribute numbers
reflect the new item structure.

Table 6-3 compares the old and new attribute numbers.

Table 6-3. Attribute Numbers Before and After Reformatting.

Attribute Name Old Number New Number

FIRST-NAME 2

LAST-NAME 2

STREET 3 3

CITY 4 4

STATE 5 5

ZIP 6 6

PHONE 7 7

SS# 8 Item ID

COUNTY 9 Not used

SEX \0 8

CUST.TYPE 11 Not used

6: Specialized Processing 105

CHAPTER 7

Forms Generation

Queries that generate reports to be printed on forms such as invoices, checks,
order forms, etc., are called forms generation statements. These statements
allow you to create the forms themselves as well as to output data on
preprinted stock. Some versions of the Pick system, such as ADDS Mentor,
provide special ACCESS verbs (FORMS and SFORMS) that allow you to
output data on preprinted forms. Other versions, such as Ultimate, offer the
same capability but include it as extensions to the LIST and SORT verbs.

Pick systems that offer the forms generation capabilities described in this
chapter make use of an enhancement of ACCESS called the English Forms
Generator, also known as EFoG. Although the implementation of EFoG
differs from system to system, the features described in this chapter work
generally as they are documented here.

This chapter contains the following sections:

• Forms, Items, Pages, and Subpages: Defines the relationship
between these elements when generating both single- and multi page
forms.

• Forms Generation Statements: Describes the syntax of forms
generation statements.

• Generating Forms: An Overview: Summarizes the use of print
codes. This section also describes how to output data on simple forms
and how to use modifiers in forms generation statements.

7: Forms Generation 107

• How Data Appears on Forms: Discusses how Attribute Definition
items affect the way data appears on forms. This information helps
avoid unwanted truncation or overlapping.

• Including Multivalued Attributes on Forms: Discusses the
effects of including multivalued attributes in forms generation
statements. Specifically, this section gives instructions on how to
design single- and double-depth windows, how to print data on the first
and last pages of a multipage form, and how to number pages.

• Special Features of Forms Generation: Describes the
procedures for creating a background form, aligning the printer, and
maintaining an audit trail.

Forms, Items, Pages, and Subpages

The relationship between forms, items, pages, and subpages should be
understood before you begin working with forms generation statements. A
typical ACCESS report displays a group of data items in columnar or linear
format. Aform, on the other hand, displays individual items, one per form,
in a custom-designed layout.

A form can be thought of as a template for the format of a single item of data.
For example, you might generate invoices from an ORDERS file, producing
one invoice form for each order item. A forms generation statement allows
you to select the items to be output and to position the data properly on the
invoice forms.

A page is a piece of paper (if the report is sent to the printer) or a screenful of
data (if the report is displayed at the terminal) whose length and width is set
by the TERM verb. The relationship between a page and a form varies,
according to whether the report includes multivalued attributes and whether
more than one item is to be printed or displayed per page.

The FORMS and SFORMS verbs position only one item on each separate
page. If a report includes multi valued attributes, all of the data for an item
might not fit on one page. In this case, data spills onto the next page, creating
a multipage form. Working with multipage forms involves a number of

108 Pick ACCESS

additional considerations. This topic is covered fully in the later section
"Including Multivalued Attributes on Forms."

It is also possible to include more than one item on a page. Multiple items on
a single page are referred to as subpages. Subpages are equal-sized sections
of a page made up of the number of lines you specify. For example, a 60-line
page might have six 1O-line subpages. Each subpage (item) is treated as a
separate form. In this way a single physical page can hold multiple forms.

Subpages are implemented differently on different systems. Some systems,
such as ADDS Mentor, have two ACCESS verbs, REPT and SREPT that
position more than one item on a page. Other systems, such as Ultimate, use
the M option to create subpages. The M option is described in the section,
"Forms Generation Options," later in this chapter.

Forms Generation Verbs

Some systems (ADDS Mentor is one) use special forms generation verbs,
such as FORMS and SFORMS, to create forms generation statements. Other
systems, such as Ultimate, incorporate forms generation syntax into the verbs
LIST and SORT. The syntax is similar (though not identical) for both
implementations.

Table 7-1 summarizes four ACCESS verbs used to position and output data
on forms.

Verb

FORMS

SFORMS

REPT

SREPT

Table 7-1. Forms Generation Verbs.

Description

Outputs items on pages.

Outputs items on pages in sorted order.

Outputs items on subpages.

Outputs items on subpages in sorted order.

Forms generation verbs use the following general syntax:

verb [DieT 1 filename [items 1 [selection 1 [sort 1 output [print 1
[modifiers J [(options) J

7: Forms Generation 109

Most of these parameters have been described fully in Chapter 2.

The output parameter specifies the attributes whose data is to be output on
the form. Each attribute must be associated with a print code, as described in
the "Using Print Codes" section of this chapter. At least one output
specification must be included in a forms generation statement, which means
that the default output specifications do not apply.

Certain ACCESS modifiers behave somewhat differently when used with
form generation verbs. These modifiers are described in the "Using
Modifiers in Forms Generation Statements" section of this chapter. There
are also special options designed to work with forms generation verbs. They
are described later in this chapter, in the section, "Forms Generation
Options."

Generating Forms: an Overview

Forms generation verbs provide powerful formatting capabilities for
ACCESS reports. These verbs make it possible to design a form and to
specify how data should appear on it. For example, you can design invoices,
checks, and shipping forms.

A form can be created in any of the following three ways: by specifying and
positioning text to create a form template, while simultaneously positioning
data on it; by designing a background form separately and identifying it in
the forms generation statement (background forms are described later in this
chapter); or by using a preprinted paper form and placing data on it.

Using Print Codes

The output specifications in the forms generation statement associate each
attribute with a print code that explicitly positions the data on the form. The
placement of data is specified by x- (column) and y- (row) coordinates. The
upper left comer of the form is the origin of the coordinate system (0,0)­
see Example 7-1.

110 Pick ACCESS

0123456789 ...

o width
x

2
Y 3 ASH, MARY

4 912A E. OAK STREET c
5 n INDIANAPOLIS IN
6 g 98754 t
7 h

8 1. How many differe
9 Please List th

Example 7-1. Positioning Data.
Data is positioned on alorm hy specifying x- and y-coordinates.

The simplest output specification in a forms generation statement takes the
following form:

@(x,y):attribute-name

x is the horizontal position (column) on the page where
the data begins. The leftmost position is column O.

y is the vertical position (row) on the page where the
data begins. The top row is row 0, which is reserved
for the heading.

attrihute-name is the name of the attribute whose data is printed at
the specified position.

This specification simply defines a position on the form where the data for a
given attribute will be output. For example, the specification
@(2,5):LAST-NAME outputs a last name on a form, beginning at column 2
on row 5 (see Example 7-1).

7: Forms Generation 111

More complex output specifications can be defined with special print codes
that take the following form:

code: attribute-name [1 ,n 1

In addition, a character string that prints in a specified location on the form
can be defined with the following syntax:

code: "string ..

The parameters for both syntaxes are shown below:

code is the @ code associated with the attribute. The
available print codes are shown in Table 7-2.

attribute-name is the name of the attribute whose data is printed at
the specified position.

string is a character string that is printed at the specified
position.

n prints only the first n characters of the data for this
attribute.

The system does not check whether output data exceeds the page width set by
the TERM verb. The system uses the specified attribute's justification
(line 9) in combination with the column width (line 10) and the column
position specified by x to set the display width of the data. For more
information about how justification and column width effect the display of
data on forms, see the section, "How Data Appears on Forms," later in this
chapter.

Table 7-2 summarizes the print codes.

112

Table 7-2. Print Codes for Forms Generation Verbs.

Code

@lA) (x,y)

@C(x,y)

Description

Prints the data for an attribute on every page of a form at
the location x, y.

Creates an audit trail for a series of forms. This code can
also be used to serialize the forms. To suppress
serialization numbers on the form (but not in the audit
file), specify (-\) in place of the x- and y-coordinates.

Pick ACCESS

@D(x,y,z) Prints data for multivalued attributes in double-depth
windows. This makes it possible to define two lines of
output at a time. z specifies the bottom-most row of a
window whose top-most row is defined by y. An "S"
must be added to the end of the x parameter for an
attribute to appear on every second output line.

@F(x,y) Prints the data for an attribute on only the first page of a
multi page form.

@L(x,y) Prints the data for an attribute on only the last page of a
multipage form.

@M(x,y,"text") Prints the data on a single-page form. On a multipage
form it prints the specified text on all but the last page of a
multi page form, then prints data on the last page of the
form.

@W(x,y,z) Prints data for multivalued attributes in windows. Z

specifies the bottom-most row of a window whose
top-most row is defined by y.

Designing a Form

As described earlier, the simplest output specification in a forms generation
statement assumes the A print code as the default, and takes the following
form:

@(X,y) : attribute-name

This specification simply defines a coordinate on the form where the data for
a specified attribute will be output. 0,0 is the upper-left comer of the page.
The maximum value for x is the width of the page and the maximum value
for y is the length of the page.

Let's assume you want to generate a questionnaire form for each customer in
the CUSTOMERS file. A one-page questionnaire has already been created
on preprinted stock. The forms generation statement should output each
customer's name and address in the blank space provided at the top of each
page.

The customer's full name is printed on the third line of each form, the street
address on the fourth line, the city and state on the fifth line, and the zip code
on the sixth line. This block of information begins at the fifth column

7: Forms Generation 113

position in each of these four rows; the state and zip code both begin at the
eighteenth column position. This means that there are ten available character
spaces for the city. (These values correspond to the column width defined by
line 10 of the Attribute Definition item CITY.) The default heading is
suppressed, so page numbers, the current time, and the date do not appear on
the forms.

The preprinted stock is loaded into the printer tray and the following
statement is entered:

>SFORMS CUSTOMERS BY LAST-NAME @(5,3):FULL-NAME
@(5,4):STREET @(5,5):CITY @(18,5):STATE @(18,6):ZIP
HDR-SUPP

The SFORMS verb generates the questionnaires in sorted order, by
customers' last names.

Example 7-2 shows how the customer's name and address is output at the top
of the form.

ASH MARY
912A E. OAK STREET
INDIANAPOLIS IN

98754

TechnoBOOKS
28 Wallingford Lane
Markdale, MA
02134
(617) 555-3233

1. How many different titles have you ordered this year?
Please list them below.

2. Have you been satisfied with the services we have provided?
Do you have any suggestions for improvement?

Example 7-2.
The SFORMS verb prints data in the positions specified by print codes.

The forms are printed in sorted order.

114 Pick ACCESS

Later sections of this chapter describe more complex types of forms
generation that involve multi valued attributes, multipage forms, background
forms, and audit trails.

Using Modifiers in Forms Generation Statements

Certain ACCESS modifiers behave differently when used with forms
generation verbs. Table 7-3 summarizes these differences.

Table 7·3. Forms Generation Modifiers.

Modifier Description

BREAK-ON Data line is treated like any output specification for
the purposes of formatted printing.

FOOTING Data cannot be output with x- and y-coordinates in
the rows defined for the footing.

GRAND-TOTAL Data line is treated like any output specification for
the purposes of formatted printing.

HDR-SUPP Data cannot be output with x- and y-coordinates in
rowo.

HEADING Data cannot be output with x- and y-coordinates in
the rows defined for the heading.

ID-SUPP Not necessary in forms generation statements. Item
IDs are not automatically included on forms.

TOTAL Data line is treated like any output specification for
the purposes of formatted printing.

WINDOW A special modifier on Ultimate systems that lists
multivalued attributes on forms.

The following sections discuss these modifiers in more detail.

BREAK·ON, TOTAL, and GRAND·TOTAL Modifiers

Generally, forms will not use the BREAK-ON, TOTAL, and
GRAND-TOTAL modifiers. There are two situations, however, where they
can be useful.

7: Forms Generation 115

First, you can generate a total at the end of a run of forms by totalling the
attributes you want to display or print. The BREAK-ON modifier is not
needed for output. If an audit file is being generated and the C-coded items
have total modifiers on them, the highest-numbered item ID in the audit file
will contain the grand totals.

Second, you can force a control break at specified locations. For example, by
using the NI function in an A or F correlative in an attribute with a
BREAK-ON modifier, you can generate and output a total after every 11

forms.

Including Item IDs

Unlike most other ACCESS verbs, forms generation verbs do not
automatically include item IDs in reports. Therefore you need not use the
ID-SUPP modifier to suppress this display.

If you do want item IDs to appear on fonns, you should create an Attribute
Definition item in the file dictionary for the item ID that specifies 0 as the
attribute number. Include an output specification for this attribute in the
fonns generation statement.

Defining Headings and Footings

The four forms generation verbs automatically produce the standard
ACCESS report heading on every page. This heading contains the current
time, date, and page number. Forms generation verbs do not produce a
default footing.

The HEADING and FOOTING modifiers can be included in a forms
generation statement to define customized headings and footings, just as in
other ACCESS queries. When working with forms, however, keep the
following in mind:

• The system automatically reserves space at the top of every page for
the heading. If you try to output data with x- and y- coordinates in this
reserved space, the system displays an error message.

• If the default heading is used, the system reserves rows 0 and I: the
default heading (time, date, page number) is printed on row 0, and a

116 Pick ACCESS

blank line, which is considered part of the standard heading, is printed
on row 1.

• If the HDR-SUPP modifier is included in the forms generation
statement, the system reserves only row 0 and leaves it blank. If you
define a heading with the HEADING modifier, the system reserves
row 0 plus any additional lines needed for the specified text.

If you define a footing with the FOOTING modifier, the system
reserves the required number of rows at the bottom of the page. Data
cannot be output in this area with x- and y-coordinates.

• The Z option, described later in this chapter, can be used to reset page
numbers for multipage forms.

The WINDOW Modifier

On Ultimate systems, the WINDOW modifier is used to implement the listing
of multivalues on forms. On other systems this feature is handled by the @W
and @D print codes. See the section, "Including Multivalued Attributes on
Forms," later in this chapter.

Forms Generation Options

Table 7-4 summarizes the options available to all four forms generation
verbs.

Table 7-4. Options for Forms Generation Verbs.

Option

A

B

M

Description

Runs a top-of-fonn printer-alignment routine. See the section,
"Aligning the Printer," later in this chapter.

Includes previously-created text or graphics from a
background fonn on every page of a fonn. See the section,
"Creating a Background Fonn," later in this chapter.

Used by some systems (Le., those that do not support the
REPT and SREPT verbs) to specify the size of a subpage.
Subpages allow you to print more than one item per page.

7: Forms Generation 117

When the M option is used, the system prompts you to enter
the number of lines per subpage.

Z When used with the FOOTING modifier, resets the page
number in the footing back to 1 at the beginning of each
multipage form. See the section, "Numbering Pages on
Multipage Forms," later in this chapter.

How Data Appears on Forms

This section contains guidelines to help you avoid unwanted truncation or
overlapping of data on forms.

When you are designing a form, keep the following in mind:

• The limits of a page's usable width and length are defined by the
TERM verb.

• The justification and column width in the Attribute Definition items
for each attribute affect the way data appears on forms.

• Null-value Controlling attributes can affect the appearance of the data.

• Null-value attributes translated from another file with the Tfile
correlative can affect the appearance of the data.

• The system reserves space for the default heading, or for headings and
footings defined as part of the forms generation statement. The use of
headings and footings is described earlier in this chapter.

You can check the positioning of the data on a set of forms by using the A
option, as described in the section, "Aligning the Printer."

Coordinating Justification and Column Width Fields

When you position data on a form with x- and y-coordinates, the system also
uses the justification and maximum column width defined for each attribute
for placement and truncation. Table 7-5 shows how this can affect the
appearance of data on a form.

118 Pick ACCESS

Table 7-5. Justification of Data on Forms.

Justification

L

R

T

Result

Data is left-justified. Output begins at the specified
column number (x) and extends through column (x +
column width). Data that exceeds the length set by the
column width field is truncated at column (x + column
width), the rightmost position.

Data is right-justified. Output begins at the specified
column number (x) and extends through column (x +
column width). Data that exceeds the length set by the
column width field is truncated at column x, the
leftmost position.

Data is left-justified. Output and truncation work the
same way as data whose justification is L, except if
data is output in a window. In this case, data wraps to
the next line on a word boundary.

Using Controlling and Dependent Attributes

If a Controlling attribute has no data, ACCESS ignores any associated
Dependent attributes. This can cause problems in forms generation,
however, by displacing the rest of the data on a form. There are two possible
remedies for this situation. First, you can create synonyms and remove the
controlling and dependent specifications from the Attribute Definition items.
These specifications are not necessary unless you plan to use print limiters in
the forms generation statement.

Another remedy is to place the Controlling and Dependent attributes at the
end of the output specifications for the set of forms. Putting these attributes
at the end prevents them from displacing the rest of the data. This remedy,
however, allows you to include only one set of Controlling and Dependent
attributes in each forms generation statement.

7: Forms Generation 119

Using the Tfile Correlative

If a Tfile correlative returns a null value, the output specification for that
attribute is ignored. This can cause subsequent data to print or display
incorrectly on the form. As a preventive measure, do one of the following
when using the Tfile correlative:

1. Move the Tfile correlative from line 8 to line 7.

2. Use a C or a V action code in the Tfile correlative instead of an X
action code. Both of these action codes prevent a null value from being
returned if the conversion fails.

3. Embed the Tfile correlative within an arithmetic correlative (A or F)
and append a single blank to it. This ensures that the attribute contains
at least one blank and will therefore not be considered null. For
example, if Attribute 3 is used as the data source, the following Tfile
correlative:

TORDERS; X; ; 10

could be replaced by this one:
A; 3(TORDERS ; X; ; 10):""

For more information about the Tfile correlative, see Chapter 8.

Including Multivalues on Forms

Forms that do not contain multi valued attributes are relatively easy to design.
These forms each occupy a single physical page and there is a one-to-one
correspondence between each output specification and the resulting data
element.

Special care must be taken when building a forms generation statement that
prints one or more multi valued attributes on the form. This is because
multivalued attributes have special formatting requirements and sometimes
cause the data to occupy multiple pages on a form.

When working with multivalued attributes, you need to be aware of the
following considerations. First, window specifications (using the @W or
@D print codes) for these attributes must be included in the forms generation
statement so that the data can be properly displayed. Second, you will need to

120 Pick ACCESS

use the @F, @L, and @M print codes to control the display of text and data
on multipage forms. Finally, you can set special page numbering for
multipage forms with the Z option.

As was mentioned earlier, Ultimate systems implement the listing of
multivalues on forms with the WINDOW and END-WINDOW keywords;
the @W and @D print codes are not used. The syntax of WINDOW is:

WINDOW @(x,y,z [{ 1 12} 1) [: "string" : @(n) : "string" ... 11

where x, y, and z specify the left-most column, top row and bottom row of
the window. "1" and "2" specify whether each muItivalue should occupy one
or two lines. A colon indicates concatenation. n specifies the column
position on the current line where string is to be printed or displayed.

A WINDOW phrase in a forms generation statement must always be
followed by the END-WINDOW modifier.

The following sections describe how to treat multivalued attributes when
working with forms.

Designing Windows

Data in multivalued attributes must be output in windows. A window is ar
area on a form whose position and depth you define with print codes or wid
the WINDOW modifier. A single form can contain up to six differen
windows.

A window can contain either one or two lines for each set of associated values
in a multivalued attribute. A one-line window is called a single-depth
window, a two-line window is called a douhle-depth window. Single-depth
windows are defined with the @W print code, double-depth windows are
defined with the @D print code, except on Ultimate systems, where single or
double depth windows are specified by a "1" or a "2" in the WINDOW syntax
line.

7: Forms Generation 121

Order Number: 10110

Customer ID: JBOHA5422

Book Copies Total Price

OPERATING
WRITING
WORD

Date of Order:

3
45

$56.25
$1102.50

$22.98

09/09/88

ORDER REPORT

TechnoBOOKS
28 Wallingford Lane
Markdale, MA
02134
(617) 555-3233

Example 7-3.
First page of a form with single-depth windows.

Single-Depth Windows

A window can contain any number of multivalued attributes. For example,
the following forms generation statement defines a window that contains the
multivalued attributes SHORT.TITLE, QTY, and LINE.AMT:

>FORMS ORDERS @(20,S):ORDER.lD @(20,7):CUST.lD
@W(S,10,12):SHORT.TITLE @W(17,10,12):QTY
@W(22,10,12):LlNE.AMT @(20,1S):DATE HEADING " 'C'
ORDER REPORT"

These specifications define a window that begins in column 5 and row 10, and
extends down the page to row 12, a depth of three lines. This means that if
any of the three referenced attributes contains more than three different
values, the window continues on the next page of the form.

122 Pick ACCESS

Each form also includes the item ID for the ORDERS file on the fifth row of
the form, the customer ID on the seventh row, and the order date on the
fifteenth row. These three attributes all have a single data element per item;
in other words, they are not multi valued.

Example 7-3 shows the first page of a two-page form generated by the
preceding forms generation statement. Example 7-4 shows the second page
of the same form. These forms are generated on preprinted stock that
contains bold literal text and column headings (Order Number, Customer ID,
Date of Order, etc.).

Order Number: 10110

Customer ID: JBOHA5422

Book Copies Total Price

DATABASE 12 $119.40

Date of Order:
09/09/88

ORDER REPORT

TechnoBOOKS
28 Wallingford Lane
Markdale, MA
02134
(617) 555-3233

Example 7-4.
Second page of a form with single-depth windows.

The forms also include a centered heading line that reads "ORDER
REPORT".

Unused portions of a window can be used to contain additional attributes that
are output with some other print code. For example, the following query
prints a single-value attribute, DATE, in the unused right-hand columns of
the preceding window.

7: Forms Generation 123

>FORMS ORDERS @(20,5):ORDER.1D @(20,7):CUST.ID
@W(5,10,12):SHORT.TITLE @W(17,10,12):QTY
@W(22,10,12):LlNE.AMT @(42,10):DATE HEADING " 'c'
ORDER REPORT"

The A print code (remember, the A is optional) causes the date of the order
to be displayed starting at column 42 on the first line of the window. This
data will appear on every page of each form. Example 7-5 shows the first
page of the edited multipage form.

Order Number:
10110

Customer ID:
JBOHA5422

Book Copies Total Price
OPERATING 3 $56.25
WRITING 45 $1102.50
WORD $22.98

ORDER REPORT

Date of Order
09/09/88

TechnoBOOKS
28 Wallingford Lane
Markdale, MA
02134
(617) 555-3233

Example 7-5. Data can overlap unused portions of a window.

If the data for a multivalued attribute exceeds its allotted area in a window
and the attribute's justification is "T", the data wraps to the next line of the
window and pushes the next set of values down to the subsequent line.

Double-Depth Windows

Double-depth windows reserve two lines of the window for each set of values
in a multivalued attribute. For example, since book titles (or any product
description) can be very long, you might want to display the data for QTY

124 Pick ACCESS

and LINE.AMT on one line, and the data for TITLE on the next line. To do
so, use the @D print code to specify a position for each of the multivalued
attributes, and append an "S" to the column position of the data that is to
appear on the second line of each group of two lines (in this case, TITLE).
(On Ultimate systems, specify "2" after the X-, y-, and z-coordinates of the
WINDOW modifier.)

The following query defines a four-line window. Since the data associated
with a set of values takes up two lines, the data for two different titles can be
output on each page.

>FORMS ORDERS @(20,5):ORDER.lD @(20,7):CUST.ID
@D(5,10,13):QTY @D(15,10,13):LlNE.AMT
@D(12S,10,13):TITLE @(42,10):DATE HEADING" 'C'
ORDER REPORT"

Example 7-6 shows the first page of a form generated by the preceding
statement.

ORDER REPORT

Order Number:
10110

Customer ID: JBOHA5422

Copies
3

Book:
4S

Book:

Total Price
$56.25

Date of Order
09/09/88

OPERAT~NG SYSTEM CONCEPTS
$1102.50

WRITING COMMERCIAL APP~ICATIONS

Techno BOOKS
28 Wallingford Lane
Markdale, MA
02134
(617) 555-3233

Example 7-6.
First page of a form with a double-depth window.

7: Forms Generation 125

Printing Data on First and Last Pages of a Form

When a forms generation statement includes data from multivalued
attributes, the forms can occupy more than a single page. In this case, use the
@F,@L, and@Mprintcodes to customize the forms.

If a forms generation statement references one or more multivalued
attributes, the @F code outputs data on only the first page of each multi page
form, and the @L code outputs data on only the last page. The remaining
pages contain a blank space at the position defined for the @F- or
@L-formatted attribute. If each form occupies only a single page (that is, if
the data for the multivalued attributes fits in the defined window space), the
@F and @L codes function just like the @A code, displaying the data at the
specified position on each form. If a form contains no multi valued attributes
(and therefore occupies only one page), the @F and @L codes function like
the@Acode.

126

MARY ASH
912A E. OAK STREET
INDIANAPOLIS IN

Order Number: 10104
Customer ID: MASHX5777

ORDER REPORT

Book Copies Total Price Date of Order

09/06/88 DATABASE 3 $29.85
OPERATING
WRITING

Total
Tax

Final Total

5 $93.75
$24.50

TechnoBOOKS

SEE LAS':' PAGE

28 Wallingford Lane
Markdale, MA
02134
(617) 555-3233

Example 7-7.
First page of a multipage form.

Pick ACCESS

Order Number: 10104
Customer ID: MASHX5777

Book Copies Total Price

WORD 34 $781.32

ORDER REPORT

Date of Order

09/06/88

Total
Tax

$929.42
$46.47

Techno BOOKS
Final Total

$975.89

28 Wallingford Lane
Markdale, MA
02134
(617) 555-3233

Example 7-8.
Last page of a multipage form.

The @M code outputs text on all but the last page of a multipage form, and
then outputs data on the last page. Use the@M code when you want to print a
continuation message (for example, "SEE LAST PAGE") on all but the last
page of a form and then print the data (such as a total) on the final page. Like
@F and@L, the@M code behaves like an@Acodeifaformoccupies only
one page: any text is ignored and the data is printed at the specified position.

The following statement shows the use of the@F, @L, and@M codes:

>FORMS ORDERS @F(5,2):FULL-NAME @F(5,3):STREET
@F(5,4):CITV @F(18,4):STATE @(20,6):ORDER.1D
@(20,7):CUST.1D @W(5,10,12):SHORT.TITLE
@W(17,10,12):QTV @W(22,10,12):LlNE.AMT
@(42,10):DATE @L(20,19):AMOUNT @L(20,20):TAX
@M(20,22,"SEE LAST PAGE"):TOTAL.AMT HEADING" 'c'
ORDER REPORT"

7: Forms Generation 127

Example 7-7 shows the first page of a multi page form created with the
preceding forms generation statement. Example 7-8 shows the second page
of the same form.

Numbering Pages on Multipage Forms

On single-page forms, page numbering is consecutive: the first page (form)
is Page 1, the second is Page 2, and so on. By default, page numbering on
multipage forms works the same way: all pages produced by a forms
generation statement are numbered consecutively. When working with
multipage forms, however, you might prefer to number each form
separately. You can do so by including the Z option in a forms generation
statement.

PAGE

128

JOHN BOHANNON
126 TREMONT STREET
BOSTON MA

Order Number: lalla
Customer ID: cTBOHA5422

Book Copies Total Price

OPERATING 3 $56.25
WRITING
WORD

Total
Tax

Final Total

45 $1102.50
$22.98

SEE LAST PAGE

ORDER REPORT

Date of Order

09/09/88

TechnoBOOKS
28 Wallingford Lane
Markdale, MA
02134
(617) 555-3233

Example 7-9.
The Z option resets the page number to 1 on the first page

of each multipage form.

Pick ACCESS

The Z option causes the system to reset the page number in a footing back to 1
on the first page of each multi page form. The Z option is used in
combination with the FOOTING modifier. For example:

>FORMS ORDERS @F(5,2):FULL-NAME @F(5,3):STREET
@F(5,4):CITY @F(8,4):STATE @(20,6):ORDER.lD
@(20,7):CUST.ID @W(5,10,12):SHORT.TITLE
@W(17,10,12):QTY @W(22,10,12):LlNE.AMT
@(42,10):DATE @L(20,19):TOTAl.AMT @L(20,20):TAX
@M(20,22,"SEE LAST PAGE"):TOTAL.ORDER HEADING ..
'C' ORDER REPORT" FOOTING "PAGE 'P' " (Z)

Order Number: 10110
Customer ID: JBOHA5 4 2 2

Book Copies Total Price

DATABASE 12 $119.40

ORDER REPORT

Date of Order

09/09/88

Total
Tax $1301.13

$65.05

TechnoBOOKS
Final Total

PAGE 2
$1366.18

28 Wallingford Lane
Markdale, MA
02134
(617) 555-3233

Example 7-10.
Last page of a multipage form generated with the Z option

and the FOOTING modifier.

Since the Z option does not affect page numbers in headings, the HDR-SUPP
modifier should also be included in the forms generation statement, or (as in
this case) a heading that does not include a page number should be specified
with the HEADING modifier. This prevents two incompatible page numbers
from appearing on each page of a form.

7: Forms Generation 129

Special Features of Forms Generation

The following sections describe the following advanced or special features
available for generating forms:

• Creating a background form.

• Aligning the printer to check the positioning of the data.

• Maintaining an audit trail of the generated forms.

Creating a Background Form

As was explained earlier, output from forms generation statements can be
printed on preprinted stock. Text can be included in the form itself by using
print codes that specify literal strings.

You can also design a background form that consists of text or graphics (or
both). This background form will be printed on every page of a set of forms
along with the data (and any text) specified by the forms generation
statement. Background forms make it possible to use standard plain paper to
print forms. You can also use printer control characters intended for
specific printers for highlighting, underlining, balding or italicizing, etc.

To use a background form with a set of forms:

1. Create the background form with the Editor. This background form
can be stored as an item in any file. Each line of the item corresponds
to a line on a page of a form. For example, the third line of the
background item is output on the third line of each page of every form.

Remember to coordinate the placement of the background form with
the data and with the headings and footings you plan to use, otherwise
portions of the background form or the data could be overwritten.

2. Include the B option in the forms generation statement.

3. Enter the filename and item ID of the background item when the
system displays the following prompt:

Background File & Item>

130 Pick ACCESS

This infonnation should be entered as follows:

filename item-ID

You can also use a Proc or a PICKIBASIC program to specify a
background fonn.

Example 7-11 shows the format of a background item called
LATE-NOTICE. The rest of this section demonstrates how this background
item can be included on fonns:

001
002

LATE-NOTICE

003 YOUR ACCOUNT IS NOW SERIOUSLY OVERDUE
004 IN THE FOLLOWING AMOUNT:
005
006 **********************************
007
008
009
010 **********************************
011
012 PLEASE REMIT PROMPTLY

Example 7-11.
The item LATE-NOTICE contains a background form.

The first two lines of the background fonn are blank, since, at the very least,
row 0 is reserved for headings. The fifth and eleventh lines are blank to
create white space on the fonns, as are the seventh and ninth lines. The
eighth line will contain the overdue amount.

The following fonns generation statement outputs data on pages that contain
the precedin.g background fonn:

>FORMS CUSTOMERS.OVERDUE @(10,8):AMOUNT-DUE
@(5,20):FULL-NAME @(5,21):STREET @(5,22):CITY
@(15,22):STATE HDR-SUPP (B)

Background File & Item> FORM-BACKGROUNDS LATE-NOTICE

Example 7-12 shows the resulting output.

7: Forms Generation 131

YOUR ACCOUNT IS NOW SERIOUSLY OVERDUE
IN THE FOLLOWING AMOUNT:

$,55.89

TechnoBOOK
28 Wallingford Lane
Markdale, MA
02134

PLEASE REMIT PROMPTLY
(617) 555-3233

EDGECOMB DAVID
338 BROADWAY
MIAMI FL

Example 7-12.
This/orm was generated using the background/orm

shown in Example 7-11.

[Iff Printer control characters included in background text
can cause data to be displaced from the specified
positions. You should test the output with the A option
before generating the entire set of forms. This procedure
is described in the next section.

Aligning the Printer

The A option lets you manually align the printer before printing an entire set
of forms. This is particularly useful when working with a complex forms
generation statement that includes, for example, one or more multivalued
attributes or a background form.

132 Pick ACCESS

The A option causes the data on the first form to be (nondestructively)
converted to Xs. The converted data is then sent to either the printer or the
terminal (depending on whether the forms generation statement includes the
P option). The system then displays the following message:

Align? Y=cr/N>

Inspect the converted data and see whether you need to realign the printer. If
you do, manually set the printer at the top of the next form. When this is
done, press the RETURN key. The converted data will then be reprinted so
you can check it again. If you are satisfied with the converted output and
want to print the set of forms, enter "N" and press the RETURN key.

In order to use the A option, your SP-ASSIGNment must include the C and I
options. The C option breaks up a print job, sending it to the printer in
amounts of 20 frames or less, and the I option specifies that the job be printed
immediately.

Maintaining an Audit Trail

Maintaining an audit trail is often desirable when pnntmg checks or
generating invoices. The @C print code makes it possible to track the forms
created with a forms generation statement by maintaining a separate audit file
that contains information about each form. This is done by assigning a serial
number to each form as it is generated.

An @C print code does two things:

1. Instead of printing the value of the specified attribute on the form at
the location specified by the x- and y-coordinates, it stores the value in
the audit file.

2. It prints the serial number on the form at the location specified by the
x- and .v-coordinates.

These serial numbers uniquely identify each form and make it possible to
track forms individually or as a group. Serial numbers are used as item IDs
for items in the audit file.

When a forms generation statement includes a @C code, the system prompts
for the name of the audit file and the starting serial number. If you do not
enter the name of the audit file, the system will not generate the forms. If

7: Forms Generation 133

you do not enter a starting serial number, 0 is assumed. If you do not want
the serial number to be printed on the form, replace the x- and y-coordinates
with (-I).

To create an audit trail:

I. Create the audit file before you enter the forms generation statement.
The audit items will be added to this file as the forms are generated.

2. In the forms generation statement, use the @C print code with the
attributes that you want to track. The data for these attributes will be
stored in the audit file, but will not appear on the forms. Even if you
track more than one attribute, however, the system generates only one
serial number per form.

If you specify x- and y-coordinates with a @C-formatted attribute, the
serial number is 1) output at the specified locations on the form in
place of the data, and 2) entered as an item ID in the audit file. To
suppress the display of the serial number on the form and just maintain
it in the audit file, enter "-I" in place of the x- and y-coordinates.

Audit file items have the following fom1at:

Part of Item

Item ID

Attribute I

Attribute 2

Attribute 3

Attribute 4

Attribute 5

Attribute n + 3

Contents

Serial number.

o If this page is not the last page of the form.

If this page is the last page of the fornl.

A If this page was part of the printer alignment
process.

Current system date in internal format.

Current system time in internal format.

Data for the first @C-formatted attribute in the forms
generation statement.

Data for the second @C-formatted attribute in the
forms generation statement.

Data for the nth @C-forrnatted attribute in the forms
generation statement.

If a serial number already exists as an item in the audit file, the system
overwrites the old item with the new one. Otherwise, new items are added to
the file.

134 Pick ACCESS

Let's assume you want to print employee checks and create an audit trail of
the weekly payroll. The audit file items must contain the 10 number of the
employee receiving the check (10#) and the amount of the check
(NET-PAY). The checks will be serialized according to the numbers
automatically generated by the system. These serialization numbers will
print on the checks in place of the employee ID#.

You can accomplish all of this with the following forms generation
statement:

>SFORMS EMPLOYEES BY LAST-NAME @C(9,S):ID#
@C(-1):NET-PAY @(S1,S):DATE @(12,10):FULL-NAME
@(48,10):NET-PAY @(3,12):NET-PAY-SPELLED (BP)

Background File & Item>CHECK.FORM

Audit File>PAY.AUDIT

Starting Number>4S00

Notice that the attribute NET-PAY has to be entered twice in the SFORMS
statement. The first print code, @C(-l):NET-PAY, is necessary in order to
include the amount of each check in the audit file; the (-1) prevents the serial
number from being printed a second time on the form. (The serial number
will be printed by the print code @C(9.5):1O#). The second print code,
@(3,12):NET-PAY, is necessary in order to print the check amount on the
form.

The preceding statement prints the checks in ascending order by employees'
last names. The data for two attributes is recorded in the audit file (10# and
NET -PAY), but the serialization number appears on the forms only at the
location specified for 10#.

The printed checks contain the following information:

• The date.

• The employee's full name.

• The amount of net pay (in numeric characters).

• The amount of net pay spelled out with alphabetic characters.

The forms generation statement also includes the B option and specifies a
background fom1 for the checks called CHECK.FORM, and the P option,

7: Forms Generation 135

which sends the checks to the printer. The audit file is called PAY. AUDIT
and the starting serialization number is 4500.

The system then prints the checks and creates the audit file items. A sample
audit file item might look like this:

4504
001 1
002 7438
003 180467
004 133326
005 54789

This PA Y.AUDIT item corresponds to the fifth check printed (#4504). 7438
is the system date and 180467 is the system time, both in internal format.
Line 4 contains the employee's 10# (133326), and line 5 contains the amount
of the check ($547.89).

The" I " in line 1 indicates that this check was the last check generated for this
file item. When a file item generates multi page forms, each page gets a
unique serial number with a corresponding audit file item. For example, if a
file item generated a three-page form, the audit file items for the first two
pages would have a zero in line 1. The third and last audit file item would
have a "I" in line 1.

136 Pick ACCESS

CHAPTER 8

Correlatives
and Conversions

Correlatives and conversions are among the most powerful features of
ACCESS. They are complex, but once you understand the principles of how
they work, you'll find they greatly increase your ability to process and
manipulate data both within a file and among different files. Put very
simply, correlatives and conversions are processing and output specifications
that tell ACCESS what to do with data before listing it in an ACCESS report.

This is a large chapter because of the complexity of the material. The codes
are grouped by function, and are arranged in the following sections:

• An Overview: Summarizes the functions of correlative and
conversion codes.

• Performing Arithmetic Operations: Describes the A (algebraic)
and F (function) codes, which perform arithmetic and other
processing on data contained in or derived from attributes.

• Deriving Data from Attributes: Demonstrates the use of
correlative codes that manipulate data in one or more attributes. The
C (concatenation), G (group extraction), T (text extraction),
S (substitution), L (length), P (pattern matching), and R (range) codes
are covered.

8: Correlatives and Conversions 137

• Translating Data from Another File: Describes the Tfite code,
which is used to retrieve data from another file.

• Formatting Data: Demonstrates the use of several codes that specify
different formats for data before it is output in ACCESS reports. The
D (date, MT (masked time), ML and MR (masked decimal), and
masked character codes are covered.

• Advanced Topics: Explains how and when to place codes in the
conversion position (Attribute 7) and in the correlative position
(Attribute 8); how to use multiple correlative codes in a single
Attribute Definition item; and how to combine correlative and
conversion codes.

Appendix C contains reference pages for each of these codes, arranged
alphabeticall y.

If correlative and conversion codes are new to you, you should first read the
overview section to get a general idea of what they do and how they work.
Then read the next three sections for more details on how to use particular
correlative codes, and read the "Formatting Data" section for details on how
to use conversion codes.

Throughout Chapter 8 you will find examples of how the codes can be used.
If all you want is the syntax for each code, refer to Appendix C.

An Overview

Correlatives and conversions are processing codes which perform special
functions on data that is either stored in a file or output in a report. The first
section of this overview describes what correlatives are and how they work;
some simple examples are included. Next, conversions are explained and
illustrated. The third section describes the difference between the way
ACCESS handles correlatives and the way it handles conversions.

138 Pick ACCESS

Correlatives

Correlatives process data that is stored in file items to derive new data. This
derived data is not stored in a file item but is newly derived each time the
correlative is applied at run time.

For example, a personnel file might store the number of hours each
employee works in one attribute, and each employee's hourly rate in another
attribute. Hours worked and hourly rate is data held by the system as raw
data. Employees' pay, however, need not be stored in the database. Instead,
an arithmetic correlative can be used to derive the amount of each employee's
pay by multiplying hours worked by the hourly rate. The product of the
multiplication is not stored as data in the file but is newly calculated each time
the data is processed. This derived data can either be output in a report or be
used for further processing.

Figure 8-1. A Correlative Processes Stored Data.
The correlative code multiplies Rate by Hours to generate Pay.

Example 8-1 shows what the data derived by this correlative would look like
if it were output in a report.

8: Correlatives and Conversions 139

>LlST PERSONNEL RATE HOURS PAY HDR-SUPP IO-SUPP

Rate. Hours Pay ...•••.

$7.80 34.75 $271.05
$9.45 34.00 $321. 30
$7.60 34.75 $264.10
$6.65 41.75 $277.64
$8.10 36.25 $293.63
$5.95 40.00 $238.00
$8.95 42.00 $375.90
$7.90 38.50 $304.15
$8.30 38.75 $321.63
$8.25 39.00 $321. 75
$7.50 35.50 $266.25
$8.45 41. 00 $346.45

Example 8-1.
PAY is derived/rom the two attributes RATE and HOURS by a correlative.

Arithmetic correlatives such as the one described in the preceding paragraph
can be used to perform many mathematical and relational operations on raw
data. Arithmetic correlatives are described in the section, "Performing
Arithmetic Operations."

Other correlatives can be used to take data from two different attributes and
concatenate them together. For example, in a personnel or customer
database, last names might be stored in Attribute 1 and first names in
Attribute 2. Full names can be derived by a correlative that concatenates
them together, with the last name either first or last (see Figure 8-2).

140 Pick ACCESS

First Name

Name Full Name

Last Name
PIERCE
PIRS JOHNSON

t
RODRIGUEZ

t BOHANNON
PIERCE
PIRS

Derived Data Stored Data Derived Data

Figure 8·2. The C Code Concatenates Stored Data.
The C correlative can concatenate last names and first names in any order.

Example 8-2 shows what the data derived by this correlative would look like
if it were output in a report.

8: Correlatives and Conversions 141

>LlST CUSTOMERS LAST-NAME FIRST-NAME FULL-NAME
NAME HDR-SUPP ID-SUPP

Last Name. First Name Full Name Name

JENKINS HAROLD JENKINS, HAROLD HAROLD JENKINS
BOHANNON JOHN BOHANNON, JOHN JOHN BOHANNON
BROWN JAMES BROWN, JAMES JAMES BROWN
BUCKLER JULIE BUCKLER, JULIE JULIE BUCKLER
LEARY BILL LEARY, BILL BILL LEARY
MASON JULIA MASON, JULIA JULIA MASON
ORLANDO AMY ORLANDO, AMY AMY ORLANDO
PIRS SANDRA PIRS, SANDRA SANDRA PIRS
ASH MARY ASH, MARY MARY ASH
EDWARDS ANTHONY EDWARDS, ANTHONY ANTHONY EDWARDS
PEERCE JAN PEERCE, JAN JAN PEERCE
PIERCE RICK PIERCE, RICK RICK PIERCE
JOHNSON ANNE JOHNSON, ANNE ANNE JOHNSON
JOHNSON HENRY JOHNSON, HENRY HENRY JOHNSON
HIGGINS HENRY HIGGINS, HENRY HENRY HIGGINS
EDGECOMB DAVID EDGECOMB, DAVID DAVID EDGECOMB
MEADE ANDREW MEADE, ANDREW ANDREW MEADE
LAMPSON BOB LAMPSON, BOB BOB LAMPSON

Example 8-2.
Data in FULL-NAME and NAME is derivedfrom the attributes

LAST-NAME and FIRST-NAME.

The stored data is listed first (LAST-NAME, FIRST-NAME), then the
concatenated full name in the same order (FULL-NAME) and in reverse
order (NAME).

The correlative that does this is fully described in the section, "Concatenating
Data (The C Code)."

Yet other correlatives can be used to extract specified portions of data from
an attribute. To reverse the preceding example, if people's full names are
stored in one attribute in the order first-name last-name, a correlative can
extract just the last names. Or both the last and the first names can be
extracted separately, then listed in the order last-name first-name.

142 Pick ACCESS

Stored Data

Name

First Name

Last Name

JOHNSON

·RODRIGUEZ------_

BOHANNON
PIERCE

PIRS

Full Na.me

PIRS,

Derived Data

Figure 8-3. The G Correlative Extracts Data.
The G code can extract last names from full names. Or both first and last

names can be extracted, then a C code can rearrange them in another order.

Example 8-3 shows what the data derived by this correlative would look like
if it were output in a report.

8: Correlatives and Conversions 143

>SORT CUSTOMERS BY LAST-NAME NAME LAST-NAME
FULL-NAME HDR-SUPP ID-SUPP

Name Last Name. Full Name

MARY ASH ASH ASH, MARY
JOHN BOHANNON BOHANNON BOHANNON, JOHN
JAMES BROWN BROWN BROWN, JAMES
JULIE BUCKLER BUCKLER BUCKLER, JULIE
DAVID EDGECOMB EDGECOMB EDGECOMB, DAVID
ANTHONY EDWARDS EDWARDS EDWARDS, ANTHONY
HENRY HIGGINS HIGGINS HIGGINS, HENRY
HAROLD JENKINS JENKINS JENKINS, HAROLD
ANNE JOHNSON JOHNSON JOHNSON, ANNE
HENRY JOHNSON JOHNSON JOHNSON, HENRY
BOB LAMPSON LAMPSON LAMPSON, BOB
BILL LEARY LEARY LEARY, BILL

Example 8-3.
Data in LAST-NAME and FULL-NAME is derived

from the attribute NAME.

The correlatives that perfonn these operations extract the desired data from
the attribute in which it is stored. They are described in the section,
"Extracting Data."

Correlatives can also be used to verify or test data, ensuring that only data
specified by the correlative be selected, processed, or listed in a report. For
example, there are correlatives that test whether data is of a certain length, or
whether data falls within a specified range, or whether data matches a
specified pattern. These correlatives are described in the section, "Verifying
Data."

Finally, there is a very powerful code, Tfile, that makes it possible to access
data stored in other files and use it for processing and output. In effect,
related data stored in different files can be linked together, allowing you to
use data stored in multiple files to produce complex ACCESS reports. The
code that does this is described in the section, "Translating Data from
Another File (Tfile)."

144 Pick ACCESS

Conversions

Conversions change the fonnat of either stored or derived data, converting
it to an external format suitable for listing in ACCESS reports. For instance,
the derived amount of an employee's pay as calculated by the arithmetic
correlative described in the preceding section would be unfonnatted data:

9673279

A conversion code can be applied to this number so that when it is output in a
report, it is fonnatted as a dollar amount rounded off to two decimal places,
complete with a dollar sign:

$967.33

Other conversion codes allow you to output times and dates in a number of
different fonnats. For example. date conversions allow you to specify such
fonnats as 19 JUL 1991, 07/19/91, 07-19-1991; time conversions let you
specify fonnats such as 13:30,0 I :30PM, or 01:30:00.

Still other conversion codes can be used to change lowercase characters to
uppercase and vice versa, to translate decimal numbers and ASCII character
strings to their hexadecimal equivalents (and vice versa), and to extract
certain categories of characters for output, such as all alphabetic or all
numeric characters, from stored data that includes both categories.

Conversions are used not only to convert stored and derived data into
external format; they are also used to convert literals in an ACCESS query
from external format into internal, or stored, fonnat. For instance, if you
entered a query such as the following:

>SORT ACCOUNTS WITH DATE <= "11/14/89"

a conversion code in the Attribute Definition item DATE would convert
11/14/89 into the system's internal date fonnat (in this case, 7989).

Conversion codes accomplish several purposes. Since conversions fonnat
data only when it is output, data can be stored without accompanying
fonnatting characters such as dollar signs, commas, and decimal points, thus
taking up less disk space. Operations such as sorting and comparing take less
time when they are perfonned on unfonnatted data. The external fonnat of
large amounts of data can be changed easily by editing just one conversion
code in the appropriate Attribute Definition item; changes need not be made
to each piece of stored data.

8: Correlatives and Conversions 145

Conversion codes are fully described in the section, "Formatting Data."

How Correlatives and Conversions Are Applied

Codes placed in Attribute 7 of an Attribute Definition item are applied as
conversions, and codes placed in Attribute 8 are applied as correlatives.

The main difference between correlatives and conversions is the way in
which ACCESS applies them. The general rule is: correlatives are applied
before conversions. To be more specific, correlatives are applied to data in
an item immediately after it is read from a file, before it is selected or sorted
(or otherwise processed). Conversions, on the other hand, are applied to
literals in the command line and to data after it is processed, just before it is
output in a report. Figure 8-4 illustrates this sequence of operations.

When an ACCESS statement is executed, raw data is taken from the database
and any correlative code is applied to it. As has already been said, the
information that results is derived data. Derived data is used:

• in selecting.

• in sorting.

• in totalling.

• in producing control breaks.

• in printing (except on break lines).

Once any of the above processing is done, a conversion code can be applied,
producing an external format for the data. The conversion reformats the
data into a form suitable for the ACCESS report, which can either be
displayed on the screen or run off on the printer.

Because correlative and conversion codes are placed in the file dictionary
associated with the data they affect, the stored data is not changed by any of
the preceding operations. In other words, correlative and conversion codes
are newly applied to the data each time an ACCESS report is generated.

146 Pick ACCESS

1
... which can be output
in an ACCESS report ...

ACCESS statement.

Any conversions are
applied to literal
values.

Data in internal
format is then

retrieved ...

... unless any
cnrrelatives are

applied ...

... which produce

JL..-_dt_Ti_Vt_d_da_ta_ ... _-')

. which can be output in
an ACCESS report ..

... or be used for further
processing, such as
selecting, sorting, I totalling, etc... I

~'-- J
... which can be output in

an ACCESS report ...
... unless conversions

are applied ..

J
... which produce data
in output fonnat in an

ACCESS report.

Figure 8-4. When Correlatives and Conversions are Applied.
Correlatives and conversions are applied to data in storedformat

at the time an ACCESS report is generated.

8: Correlatives and Conversions 147

Performing Arithmetic Operations

The two codes that perfonn arithmetic or string processing are the A and F
codes. The A code is the easier of the two to use.

Manipulating Numeric Data and Strings (A Code)

The A code is used to manipulate literals, system variables, and numeric or
string data located in other attributes. It uses the following syntax:

A [; jexpression

An expression can be one or more arithmetic or relational operators which
operate on any of the following operands: attributes specified either by
attribute number (AMC) or by attribute name; literals in single or double
quotes; special system variables; or/unctions. Use parentheses to indicate
the precedence of operations.

A maximum of 20 levels of nesting parentheses are pennitted with the
A code. If parentheses are not used, the order of precedence of operations is
as follows:

1. Multiplication and division.

2. Addition and subtraction.

3. Relational operators.

If two operators have the same precedence, they are applied from left to
right.

The following example demonstrates how to apply a simple A correlative. A
book store's ORDERS file contains the following A correlative to calculate
the total amount of sale for any title ordered:

A ; 2 * N (PRICE)

This correlative multiplies the data stored in Attribute 2 (the number of
copies sold) by the data from the attribute PRICE.

148 Pick ACCESS

Figure 8-5 identifies each element in this correlative code.

multiplication operator ----,1
A;2*N(PRICE)

data stored in ~ L
Attribute 2,

referenced by
attribute number

N precedes an attribute name

Figure 8-5. The A Code.

data from Attribute PRICE,
referenced by name

This A correlative calculates the amount of sale for a book by multiplying
data stored in Attribute 2 (quantity sold) by datafrom the attribute PRICE.

In the example, Attribute 2, QTY, is referenced by its attribute number (2),
but the attribute PRICE is referenced by its attribute name. When
referencing an attribute by its number, or AMC, just the number itself is
needed. When referencing an attribute by its name, however, the name must
be enclosed in parentheses and preceded by the letter "N". ACCESS handles
the data stored in these two attributes differently because of how they are
referenced.

If you specify an attribute by its attribute number, the values in that attribute
position are used just as they are stored. If, however, you specify the
attribute by its attribute name (the item ID of the Attribute Definition item in
the file dictionary), any correlatives are applied before processing.

In the example, Attribute 2 is referenced by its attribute number because the
data is stored in attribute position 2 in the file. The attribute PRICE,
however, is referenced not by its number but by its name, because its data is
not stored in the ORDERS file at all but is derived from the BOOKS file.
Price data is obtained from the BOOKS file using a Tfile correlative. The
Tfile correlative is located in the ORDERS dictionary, in the Attribute
Definition item for PRICE. (Tfile correlatives are described in detail later in
this chapter.)

When attribute names are specified, they must be enclosed in parentheses and
preceded by the letter N, as shown in the example.

8: Correlatives and Conversions 149

The Attribute Definition item for the attribute AMOUNT contains the
following data:

AMOUNT
001 S
0020
003
004
005
006
007 MR2$
008 A ; 2*N(PRICE)
009 R
010 10

The attribute number (line 2) shown for AMOUNT is O. This is because the
data is derived, not stored in the file in a specified attribute position. Since
the Attribute Definition item for AMOUNT does not define a real attribute
(that is, one that contains data stored in the file), it is sometimes referred to as
a dummy attribute. Any number can be used as the attribute number of a
dummy attribute; using high numbers such as 99 or 999 is a frequently seen
convention. Do not, however, use 9999, as this is reserved. (see the section,
"Advanced Topics," later in this chapter)

Constants included in an A correlative must be enclosed in single or double
quotes. For .example, the following A correlative multiplies the data in the
attribute PRICE by the number 2, not by data contained in Attribute 2:

A ; "2" * N (PRICE)

The A correlative in the next example calculates the total sale for an order
(consisting of multiple copies of more than one book):

A ; S (N (AMOUNT))

The S function shown in the preceding correlative sums all of the data in the
specified multivalued attribute (in this case, AMOUNT).

The arithmetic operators that can be used with the A correlative are shown
in Table 8-1.

150 Pick ACCESS

opera~or
+

*

Table 8-1. Arithmetic Operators.

Meaning

Addition.

Subtraction.

Multiplication.

Division (returns an integer).

Concatenation

The relational operators are shown in Table 8-2. You can also use the
boolean operators AND and OR. You cannot use & (and) or! (or).

Operator

>

<

>=

<=

Table 8-2. Relational Operators.

Meaning

Equal to.

Not equal to.

Greater than.

Less than.

Greater than or equal to.

Less than or equal to.

System functions that can be used with the A correlative are shown in Table
8-3.

Table 8-3. System Functions.

Function Operation

R (operandI,operand2) returns the remainder after division.

S (expression) sums multi values.

attribute ['start', 'length'] extracts a substring.

IF ... THEN ... ELSE conditional expression.

The R function returns the remainder after dividing the first operand by the
second operand. operand can be any valid expression.

The S funin sums all multivalues in expm,ion.

8: Correlatives and Conversions 151

Brackets can be used to extract a substring from an attribute. start and length
must be enclosed in quotes. attribute can be identified either by attribute
number or by attribute name. Attribute numbers, literals in single or double
quotes, or expressions can be specified within the brackets. Brackets are part
of the syntax here and must be typed. start is the starting position of the first
character to be extracted, length is the number of characters to be extracted.

For example, the following A correlative returns the fourth and fifth digits
of the attribute named SS-NUM:

A ; N(SS-NUM) ['4' , '2' I
A conditional statement can be included in an A correlative. The syntax is:

IF expression1 THEN expression2 ELSE expression3

This function evaluates expression1 and, if true, then evaluates expression2,
or if false, evaluates expression3.

The following special system functions can be specified in an A (or F)
correlative:

NB

ND

NI

NV

NS

LPV

9998

9999

These special counter operands can be used to count break levels, detail lines,
items, etc. The LPV operator can be used to load the value obtained from a
previous correlative operation into another correlative for further
processing. Since most of the codes that use these special functions are used
as conversions in line 7 rather than as correlatives in line 8, they are
discussed in the section, "Advanced Topics," later in this chapter.

Table 8-4 shows more examples of how the A correlative is used.

A Code

A; 1+2

A; "10"*3

A; S(4+"25")

152

Table 8-4. Using the A-Code.

What it does

Adds Attributes 1 and 2.

Multiplies each value of Attribute 3 by
10.

Adds 25 to each value of Attribute 4, then
sums the multivalues.

Pick ACCESS

A; N(V-AMT)-N(BAL-DUE) Subtracts the value of the attribute
BAL-DUE from the value ofthe attribute
INV-AMT.

A ; N(SS-NUM)['4','2'] Returns the fourth and fifth digits of the
attribute SS-NUM.

Using the Stack (F Code)

The F code performs mathematical and string processing operations on
constants or on data stored in specified attributes. F correlatives are made up
of operands and operators in reverse Polish notation (Lukasiewicz high
Polish) separated by semicolons. Unlike the A code, the F code cannot use
dictionary names to reference attributes.

The F code performs operations on the last one or two entries pushed onto a
stack. The result of the operation is placed at the top of the stack.

Figures 8-6, 8-7, and 8-8 illustrate the way the stack processes elements
pushed onto it by the following F correlative:

F;C3;C4;C5;*;+;C6;-
This simple example uses only constants and operators; it is intended only to
show how stack operations are performed. Each figure shows what happens
when one of the operators is pushed onto the stack.

In Figure 8-6, three elements are placed on the stack. The multiplication
operator acts on the top two elements, placing the result of 20 on top of the
stack. Notice that the result replaces the two operands.

GJ

Figure 8-6. The Multiplication Operator.

8: Correlatives and Conversions 153

In Figure 8-7, the addition operator acts on the two elements in the stack, 3
and 20. The result, 23, is pushed onto the stack.

Figure 8-7. The Addition Operator.
In Figure 8-8, the subtraction operator causes the top element in the stack, 6,
to be subtracted from the second element, 23. At the end of these operations,
the result, 17, is the only element remaining in the stack.

Figure 8-8. The Subtraction Operator.
The F code uses the following syntax:

F [;] element [; element ; ...]
FS [;] element [; element; ...]

Notice that there are two versions of the F code. The earlier version, F,
differs from the FS ("standard") version mainly in the way it handles
relational operators. See the section, "Relational Operators," later in this
chapter.

ACCESS parses the expression from left to right, putting each element on the
stack as an operand until it encounters an operator. The operation is then
performed.

An element can be any of the expressions described in the following sections.
Many of these are the same as those defined for the A correlative in the
preceding section.

154 Pick ACCESS

Referencing Attributes and Literal Strings
I

I

Any of the £ollowing can be operands:

attribute# [R [R 11
"literal"
eliteral

Attributes can be referenced only by attribute number, not by attribute name.
This is different from the A code, where you can use either one. For
example, if the number of items sold are stored in Attribute 5 and unit prices
are stored in Attribute 2, the following F correlative can be used to derive the
total amount of sale:

F;2;5;*

It is not possible to enter this as "F ; N(QTY) ; N(PRICE) ; *". You can,
however, use the following A correlative to perform the same operation:

A ; N(QTY) * N(PRICE)

The optional R specifies that the first value of the attribute be used repeatedly
with multi valued attributes. A second R specifies that the first subvalue be
used repeatedly with other subvalues.

Literal strings can be specified in two ways, either by enclosing them in
single or double quotes, or by preceding them with the letter "C". For
example, either the element" "4" " or the element "C4" pushes the number 4
onto the stack.

Arithmetic Operators

Any of the following arithmetic operators can be used:

+ addition.

subtraction.

* [n] multiplication.

division.

Arithmetic operators affect the top two elements in the stack. The operands
are popped and the result is pushed on to stack as the new first element. -
(minus) suttracts the top element from the second element. / (slash) divides

I

8: Correlatives and Conversions 155

the second element by the top element. The n after the multiplication
operator divides the result by 10 raised to the nth power.

Table 8-5 compares the use of arithmetic operators for the A and F codes.

Table 8-5. Arithmetic Operators for A and F Codes.

Operation A Code F Code

20X4 A;"20"*"4" F;C20;C4;* or F;"20";"4";*

20-4 A;"20"-"411 F;C20;C4;- or F;"20";"4";-

20/4 A;"20"/"4" F;C20;C4;/ or F;"20";"4";/

Relational Operators

The following relational operators can be included in an F code:

equal to.

not equal to.

> greater than.

< less than.

greater than or eq ual to.

less than or equal to.

You can also use the boolean operators & (and) and ! (or). You cannot use
the words AND or OR. Relational operators affect the top two elements in
the stack. These operators return to the top of the stack a result of 1 if the
condition is satisfied or 0 if the condition is not satisfied.

The following operators are handled differently depending on whether your
system supports the F or the FS version of the F code:

< less than.

> greater than.

less than or equal to.

greater than or equal to.

The F version compares the top element of the stack to the second element. If
the top element is less than (or greater than, etc.) the second element, the
condition is TRUE and a 1 is pushed onto the stack. The FS version, on the
other hand, compares the second element to the top element. In this case, if

156 Pick ACCESS

the second e.ement is less than (or greater than, etc.) the top element, the
condition is TRUE and a 1 is pushed onto the stack.

Special Function Codes

The following special function codes can be included in an F code:

Code

P

R

S

[1

Table 8-6. Special Function Codes.

Description

(underscore) Exchanges the first and second elements in the
stack.

Concatenates the first element in the stack to the end of the
second element.

Duplicates the first element by pushing it onto the stack.

Divides the first element in the stack by the second element,
putting the remainder on top.

Sums multi values of the first element of the stack.

Extracts a substring by operating on the top three elements in
the stack, where:

Top length

2 start

3 string

The third element on the stack is the string to be operated on.
The second element is the character position at which the
string starts. The top element is the length or the number of
characters to extract. The result is placed on top of the stack.

(conversion) applies a conversion on the first element in the stack.

The section, "Advanced Topics," at the end of this chapter lists the other
system variables that can be used with the F code.

I

Applying :onversion Codes

A conversion code specified in parentheses will be applied to the top element
in the stack. For example, the following F correlative divides data values

8: cOrrelati+s and Conversions 157

stored in Attribute 6 by the constant 2, then applies an MR conversion code to
format the result:

F ; 6 ; C2 ; / ; (MR2)

The next example uses date conversions to return the number of years'
difference between today's date and dates on file (in other words, each date
on file is subtracted from today's date):

F ; D ; (DY) ; 3 ; (DY) ; -

The system variable "D" provides today's date in internal format; the date
conversion "DY" is applied to it, pushing the current year onto the stack.
Next, a date stored in Attribute 3 is pushed onto the stack and the DY
conversion is applied to it. The subtraction operator is then applied,
subtracting the referenced year (the top element) from the current year (the
second element).

Deriving Data from Attributes

There are several codes that derive information from data stored in other
attributes. These codes do the following:

• Concatenate data from two or more attributes (C).

• Extract delimited fields (G).

• Extract a specified number of characters (T).

• Substitute a string or the data in an attribute for another attribute (S).

Other codes can be used to test data and return only those elements that:

• Meet the specified length in characters (L).

Match the specified pattern of alphabetic, numeric, and special
characters (P).

• Fall within a specified range of values (R).

The following sections contain examples of these codes.

158 Pick ACCESS

concate1ating Data (C Code)

The C code oncatenates the data in two or more attributes. Literals can also
be included in the concatenation.

For example, in the CUSTOMERS file, LAST-NAME is Attribute 2 and
FIRST-NAME is Attribute 1. The Attribute Definition item FULL-NAME
defines a new attribute that concatenates the last and first names (in that
order). This is done by including the following C correlative in line 8 of the
Attribute Definition item FULL-NAME:

C2;', '; 1

"C2;', '; I" concatenates data contained in Attribute 2 with data contained in
Attribute I, separating the two elements with a comma followed by one
space. If a customer's last name is Morris and first name is Steven, the
correlative produces the following result:

MORAIS, STEVEN

On the other hand, the following C code:

C1 2

would produce the following result:

STEVEN MORRIS

In the preceding example, a space is entered between the two expressions as a
separator

The syntax of the C code is:

Cexpression 1 ch expression2 [ch expression3 ...]

expression can be any attribute number, any literal string enclosed in single
or double quotes or backslashes, or an asterisk. An asterisk specifies the
result generated by a previous conversion or correlative operation. ch can be
any nonnumeric character with the exception of the semicolon (;), which
specifies thft no separation character is to be used. No spaces should be
included between expression and ch.

In the next example, a C correlative builds a part number from the three
pieces of data contained in Attributes 3, 2, and 4 of an inventory file. Each
part specification begins with the literal string "AZ" and uses hyphens as
separation characters.

8: correlatives and Conversions 159

I

Here is the Attribute Definition item for PART#:
0001 A
00020
0003 Part No.
0004
0005
0006
0007
0008 C'AZ';3-2-4
0009
0010 13

The literal string "AZ" is enclosed in quotes. The semicolon specifies that no
space (or other separator) is to be used between the literal expression and the
data of Attribute 3. Values from Attribute 3, Attribute 2, and Attribute 4 are
then specified, to be separated from each other by hyphens.

Here are lines 2, 3, and 4 of the item SERVO in the PARTS file:
00235
003250
004 1002

When the C correlative is applied to the data in this item and output in a
report, it looks like this:

PARTS ••••• Part No

SERVO AZ250-35-1002

END OF LIST

>

Example 8-4.
A C correlative creates the part number

from the literal string 'AZ' and three attributes.

~ Any Attribute Definition item containing a C correlative
should specify an attribute number of zero in Attribute 2.
If any other attribute number is used and that attribute
contains a null value, the concatenation will not be
performed.

160 Pick ACCESS

The following table shows more examples of how the C correlative can be
used. The i~em referenced contains the following data:

001 KANE
002 MIKE
003514
004 MANAGER
005 COMMUNICATIONS
006 NIL
007 NIB
008 M3270

A 0 indicates a space character.

Code

C1 ,2
C1 ;' ,0'; 2
C" EXTO";3
C1 ; \ , "\ ; 4 ; , OF ' ; 5 "

Extracting Data

Result

KANE,MIKE
KANE, MIKE
EXT 514
KANE, "MANAGER OF COMMUNICATIONS"

Two codes that extract data from an attribute are the T code (text extraction)
and the G code (group extraction). The T code extracts a specified number
of characters. The G code extracts groups of characters that are separated by
delimiters.

The T Code

The following example illustrates the use of the T code. The BOOKS file
contains the full title of each available book in the attribute TITLE. Titles
can be up to 20 characters long. Since an abbreviated form of each book title
needs to be included in certain ACCESS reports, the T code is used to extract
the first eight characters from attribute TITLE.

The syntax of the T code is as follows:

T [start, 1 #chars

8: Correlatives and Conversions 161

where start is the starting position where the extraction is to begin, and where
#chars is the number of characters to extract. If start is not specified,
j.ustification determines whether the count is from left to right (L
justification) or from right to left (R justification). If start is specified,
characters are extracted from left to right.

Thus, the Attribute Definition item for SHORT-TITLE in the BOOKS file
contains the following data:

SHORT-TITLE
001 S
0022
003
004
005
006
007
008 T8
009 L
0108

SHORT-TITLE is defined as a synonym for Attribute 2, TITLE, from which
the T correlative extracts the first eight characters. For example, if the full
titles were:

DATABASE MANAGEMENT SYSTEMS
OPERATING SYSTEM CONCEPTS
WORD PROCESSING
WRITING COMMERCIAL APPLICATIONS

the short titles would be:

DATABASE
OPERATIN
WORD PRO
WRITING

In the next example, Attribute 3 contains a person's complete phone number,
including a 3-digit extension, stored in the format:

718-538-9000X512

The following Attribute Synonym Definition item could be used to extract
just the extension number "512":

162 Pick ACCESS

E1TENS'ON
001 S
0023
003 I

004
005
006
007
008 T3
009 R
0103

Extraction occurs from right to left because no starting position is specified
and the justification is "R". Similarly, to extract the area code "718", use the
same T correlative of "T3" and specify left justification in line 9.

Yet another Attribute Synonym Definition item, named MAIN-PHONE,
could be used to extract the main number (538-9000) without the area code
or extension:

MAIN-PHONE
001 S
0022
003
004
005
006
007
008 T5, 8
009 R
0108

In this case, the extraction begins at the fifth character and takes the next
eight characters, moving left to right. Because the starting position of the
extraction is specified, the extraction occurs from left to right, regardless of
the justification specified in line 9.

Table 8-7 shows more examples of how the T correlative can be used. A 0
represents a space.

Table 8-7. Using The T Code

Stored Value Justification T Correlative Output

ABCDfF L T3 ABC

ABCD~F R T3 DEF

8: Correlatives and Conversions 163

HELLOOOUTOTHERE L T3,5 LLOO

HELLOOOUTOTHERE R T3,5 LLOO

123SMITHOOCR L T4,7 SMITH

848JOHNSONDB L T4,7 JOHNSON

123SMITHOOCR L T3 123

848JOHNSONDB L T3 848

123SMITHOOCR R T2 CR

848JOHNSONDB R T2 DB

The G Code

The G code extracts groups of characters that are separated by delimiters.
Since words are separated by spaces, the G code can be used to extract words
from a sentence.

The syntax for the G code is as follows:

G [skip 1 delimiter #fields

where skip is the number of fields to skip, delimiter is the character used to
separate fields, and #fields is the number of contiguous fields to extract.
delimiter can be any single nonnumeric character except a system delimiter
(segment mark, attribute mark, value mark, subvalue mark, or start buffer
mark).

When you create an Attribute Definition item with a G code that is to extract
data from an attribute that already exists, the attribute number (line 2) of the
new Attribute Definition item should be the same as that of the existing
attribute.

Continuing the example in the preceding section, you could use a G code
instead of a T code to derive the short title from the BOOKS file. The G code
"G 1" extracts the first word from the attribute TITLE. The space between
"G" and" I " specifies the space character as the delimiter. "1" specifies that
only the first field is to be extracted.

"G 1" produces the following data:

164

DATABASE
OPERATING

Pick ACCESS

WORD
WRITI~G

Another example: Attribute 2 in a personnel database contains a department
ID and a job ID delimited by a slash (/). The data is stored in the following
format:

30/110

The G correlative in the following Attribute Definition item extracts just the
department ID:

DEPT.ID
001 S
0022
003 Dept ID
004
005
006
007
008 G/1
009 L
0103

"Gil" extracts only one field, the first one; the delimiter is defined as a slash
(/). Since the number of fields to skip before extraction is not specified
before the delimiter, a default of zero is assumed. "G 1/1" would specify that
the first field should be skipped and only one field, the second one, should be
extracted.

In an attribute with several fields separated by asterisks, "G 1 *3" would
specify that the first field should be skipped and the next three fields (2, 3,
and 4) should be extracted.

Table 8-8 shows some more examples of how the G correlative works. The
stored data for all these examples is "10/20/30/40".

Table 8-8. Using The G Code
If the G Correlative is ...

Gil
G/2

GIll

GI/2

G2/I

G4/l

8: Correlatives and Conversions

Then Data Extracted is ...

10

10/20

20

20/30

30

<null>

165

Substituting Data (S Code)

The S code substitutes for the value of an attribute either the data in another
attribute or a specified character string. The attribute whose data is to be
replaced is the one referenced by the attribute number in line 2 of the
Attribute Definition item containing the S code.

If a value in the referenced attribute is null or zero, the first element
specified in the S code is substituted. If a value in the referenced attribute is
not null or zero, then the second element specified by the S code is
substituted.

The syntax of the S code is as follows:

S ; element1 ; element2

element can be either an attribute number or a literal string. Literal strings
must be enclosed in single quotes. If the value in the referenced attribute is
not null or zero, then elementi is substituted for the value. If the value of the
referenced attribute is null or zero, then element2 is substituted for it. To
retain the original value of the referenced attribute (the attribute specified on
line 2), use an asterisk (*) in place of elementi or element2.

For example, the Attribute Definition item for Attribute 6, PAYMENT, in
the OVERDUE.ORDERS file contains the following correlative:

S; 3; 'NONE'

This correlative specifies that if the value in Attribute 6 is null or zero, the
string "NONE" is substituted. If the value in Attribute 6 is not zero, then the
data in Attribute 3, CHECK-AMOUNT, is substituted.

The S correlative thus makes it possible to bypass the original (out-of-date)
data in the PAYMENT attribute.

Use the S code along with the F correlative to test for zero and then take
different actions according to what kind of data it encounters. For example,
F; I(S;*; 'NORMAL VALUE') specifies that if a value in Attribute 1 is zero,
the string "NORMAL VALUE" will be used; otherwise the original contents
of Attribute 1 is to be used.

166 Pick ACCESS

Testing fata
I

The L (length), P (pattern), and R (range) codes test data before including it
in an ACCESS report. This section summarizes the operations performed by
these three codes.

The L Code

The L code verifies data based on its length and produces no output if the test
fails. For example, assume that the (unformatted) price of a book in the
BOOKS file must be at least one character and no greater than three
characters in length. The following L correlative verifies the data in the
attribute PRICE before including it in a report:

L1 ,3

One (1) specifies that the value must contain at least one character, 3 specifies
that the value should be no longer than three characters.

The syntax of the L code is as follows:

L [n [,mll

where n specifies a maximum length of n characters and n,m specifies a
range of from n to m characters. Data either exceeding n characters or
falling outside the range of n-m produces a null value. If n is zero, or if L is
used without any parameters, the length of the value is returned.

The R Code

The R code specifies a single numeric range or multiple numeric ranges
within which the data must fall. The syntax of the R code is as follows:

R n , m [; n , m ; ... 1

where n is the lower bound and m is the upper bound.

If multiple ranges are specified, the data which falls within any of these
ranges is included in the ACCESS report. Ranges should be specified in .

8: cOrrelatlreS and Conversions 167

I

ascending order. For example, the correlative R3,5;9,14;16,30 includes data
that falls within the ranges 3-5, 9-14, or 16-30.

The P Code

The P code compares data to a specified pattern of numeric, alphabetic,
alphanumeric, or literal characters. Patterns must be enclosed in parentheses
and can be specified as shown in Table 8-9.

For example, the following P correlative ensures that only Social Security
numbers will be included in ACCESS reports:

P (3N-2N-4N)

The preceding P code tests for strings of exactly three numbers, then a
hyphen, then exactly two numbers, then a hyphen, then exactly four
numbers.

The syntax of the P code is as follows:

P (pattern) [; (pattern) ... 1

pattern can be specified using any of the specifications in Table 8-9.

Table 8-9. Pattern Matching Specifications.

Pattern

nA

nN

nX

'string'

Description

An integer followed by the letter A, which tests for n
alphabetic characters.

An integer followed by the letter N, which tests for n
numeric characters.

An integer followed by the letter X, which tests for n
alphanumeric characters.

A literal string, which tests for that literal string. The string
must be enclosed in single quotes. Single-character
delimiters need not be treated as literal strings-that is, they
need not be enclosed in quotation marks.

A semicolon can be used to test for more than one pattern. For example, if
you wanted to test for telephone numbers of 7, 10, and 11 digits, you could
use the following P correlative:

P (3N-4N) ; (3N-3N-4N) ; (1 N-3N-3N-4N)

168 Pick ACCESS

Table 8-10 shpws some examples of the P code.

Table 8-10. Using the P Code.

If pattern is ...

'617'-3N-4N

2N/2N/2N

2N:2N:2N

5A5X

'10'3N

then output is •..

Any phone number with a 617 area code.

Any field that resembles a date in external fonnat.

Any field that resembles the time in external fonnat.

A string comprised of five alphabetic characters
followed by five alphanumeric characters. (For
example, a Customer-ID might be made up of the
first letter of the customer's first name, the first four
letters of the last name, and the first five characters of
the street address.)

Any five-digit order-ID that begins with "10".

Translating Data from Other Files

The Tfile code makes it possible to access data in other files. This powerful
code eliminates the need for duplicating data in related files.

The Tfile code in the source file references data in another file, the target
file. The source file must include keys to the target file-that is, data which
is identical to the item IDs of the target file. These keys can be contained in
one of the attributes of the source file, or they can be built from data stored in
two or more attributes. These keys allow the source file to access any of the
data in the target file. (See Figure 8-9.)

8: Correlatives and Conversions 169

Altr.l
Cust.ID

Source
(ORDERS file)

AJOHN5396
BLEAR6803

MASHX5777

DEDGE6635

AORLA5993
H,)OHN7265

Target
(CUSTOMERS file)

Item ID
CUSTOMERS

AEDWA5224
AJOHN5396
AMCSIS349
AMEAD5619
AORLA5993
BLAMP6196
BLEAR6803
DEDGE6635
HHIGG6849

Figure 8·9. The Source File and the Target File.
Attribute 1 in the source file contains the keys to the items in the target file.

The Tfile code is placed in its own Attribute Definition item in the source
file. This Attribute Definition item is created as a synonym for the Attribute
Definition item (also in the source file) that defines the attribute mentioned in
the preceding paragraph-the one that contains the item IDs of the target file.
This is done by assigning an A or an S (synonym) code in Attribute 1 and by

170 Pick ACCESS

assigning an attribute number which is the same as the number of the
attribute c01taining the target file's item IDs.

The Tfile code itself specifies (1) the name of the target file, (2) the number
of the attribute in the target file from which data is to be translated, and (3)
what action is to be taken if there is no data in that attribute.

Here is an example of how Tfile correlatives can be used. A book store stores
book orders in an ORDERS file and stores its book inventory in a BOOKS
file. Each order in ORDERS includes book titles and prices for each book
order, but titles and prices are not stored in ORDERS. Instead, using Tfile
correlatives, the orders file "looks up" the titles and prices in BOOKS and
uses them in ORDERS file reports. In this arrangement, ORDERS is the
source file and BOOKS is the target file.

Example 8-5 shows some of the data stored in the ORDERS file.

PAGE 1

OROERS Qty Book Code

10101
10102

10103
10104

10105

10106
10107

10108

10109
10110

2 NOl
3 N02
1 NOl
2 NOl
13 NOl
1> N02
t QROl

34 OR02
l. NOl
14 QROl
7 QR02
3 N02
9NOl

314 N02
lb NOZ

;Z OROl
!7 QR02
3 N02

415 QROI

1 OR02
i

11:15:13 01 NOV 1989

Example 8·5.
Data in attribute BOOKCODE references the item IDs of the BOOKS file.

8: Correlatives and Conversions 171

The preceding report was generated by the following query:

>SORT ORDERS QTY BOOKCODE

The item IDs in BOOKS are unique codes (such as standard ISBN numbers)
that identify each book. Attribute 1, BOOKCODE, of the ORDERS file
contains the BOOKS item IDs, which identify by code number each book
ordered. This attribute contains the keys that are used to access data in the
BOOKS file. /

Example 8-6 displays some sample output from the BOOKS file.

>SORT BOOKS AUTHOR TITLE PRICE

PAGE 1 11:15:28 01 NOV 1989

BOOKS .. Author Title ...•......•......••......•.••. Price .•.

NOl
N02
QROl
QR02

STRANG DATABASE MANAGEMENT SYSTEMS
JACKSON OPERATING SYSTEM CONCEPTS
O'REILLY WRITING COMMERCIAL APPLICATIONS
BALLARD WORD PROCESSING

4 ITEMS LISTED.

>

Example 8-6.
Some of the contents of the BOOKS file.

$9.95
$18.75
$24.50
522.98

Using Tfile correlatives, you can link the data contained in the BOOKS file to
the data contained in the ORDERS file, thus avoiding unnecessary duplication
of data. The ORDERS file requires only one set of data to access the BOOKS
file, namely the unique book code numbers which are the item IDs of
BOOKS. These numbers are stored as Attribute 1, BOOKCODE, in the
ORDERS file.

172 Pick ACCESS

The Attribute Definition item for TITLE in the ORDERS file contains the
following data:

TITLE
001 S
0021
003 Title
004
005
006
007
008 TBOOKS ; C ; ; 2
009 T
01035

This Attribute Definition item is a synonym for the Attribute Definition item
BOOKCODE in the source file ORDERS. It uses a definition code of S and
an attribute number of I, the same number used for the attribute
BOOKCODE. The Tfile correlative accesses data stored in Attribute 2,
TITLE, in the target file BOOKS.

Figure 8-10 identifies each of the elements in the Tfile correlative.

null (input AMC not used _____ ---,
for ACCESS reports) I

TBOOK-CATALOG;X;;2

filename of ~ C specifies Attribute 2
the target file in target file

returns a null value if
translation is unslJccessful

Figure 8-10. The Tfile Correlative.
This Tfile correlative accesses the data in Attribute 2 of the targetfile.

When a Tfile correlative is to be used by ACCESS, its syntax is:

Tfilename ; code; ; attribute [; break 1

8: Correlatives and Conversions 173

where filename is the name of the target file, code specifies the action to be
taken if no data is found, attribute is the number of the attribute in the target
file that contains the data to be translated, and break is the optional number of
the attribute in the target file to be translated for BREAK-ON and TOTAL
lines. Two semicolons must separate code from attribute. These semicolons
actually specify a null value for an input attribute. Input attributes are not
used by ACCESS.

The Tfile code must include an action code. Action codes specify what action
is to be taken if there is no data in the target file or if the item specified by the
key does not exist in the target file.

The action code "X" shown in the preceding example specifies that if no value
exists in Attribute 2 in the BOOKS file, or if the item specified by the item ID
does not exist in the target file, a null value is displayed in the title column of
the ACCESS report.

Table 8-11 shows the complete list of Tfile action codes with a description of
what happens if the file translation can't take place.

Table 8·11. Tfile Action Codes.

Code Description

C Returns the item ID.

Verifies input only. Functions like V for input and like C for
output.

o Verifies output only. Functions like C for input and like V for
output.

V Returns the following error message:

[708] item-ID cannot be converted

and suppresses the entire print line for that item.

X Returns a null value.

To continue the example, the ORDERS file uses another Tfile correlative to
translate book prices from the BOOKS file. The correlative that retrieves
book prices is just like the one used to retrieve titles, except that instead of the
attribute TITLE, Attribute 3, PRICE, in the BOOKS file is referenced. The
Attribute Definition item for PRICE in the ORDERS file dictionary contains
the following data:

174 Pick ACCESS

PRICE
001 S
0021
003 Price
004
005
006
007 MR2$
008 TBOOKS ; X; ; 3
009 R
0108

This Attribute Definition item is created as another synonym for Attribute 1,
BOOKCODE. This time, however, the Tfile correlative references
Attribute 3, PRICE, in the BOOKS file. Also, since this attribute contains
numeric values, it is right-justified.

Yet a third Tfile correlative is used to obtain the unit price from Attribute 3,
PRICE, of BOOKS. This Tfile correlative is embedded in an F correlative
that multiplies the unit price by the data in Attribute 2, QTY, of ORDERS to
arrive at the total amount for each line item. The Attribute Definition item
for LINE.AMT in the ORDERS file dictionary contains the following data:

LlNE.AMT
001 S
002 a
003 Item Amount
004
005
006
007 MR2$
008 F ; 1 ; (TBOOKS ; X ; ; 3) ; 2 ; *
009 R
010 10

With these three Tfile correlatives in place, it is now possible to replace the
data in the attribute BOOKCODE with the titles and prices that are stored in
the BOOKS file. Compare the orders report shown in Example 8-7 with the
one shown in Example 8-5.

8: Correlatives and Conversions 175

>SORT ORDERS aTY TITLE PRICE L1NE.AMT

PAGE 1 11:15:44 01 NOV 1989

ORDERS Qty Title Price ... Item Amount

10101
10102

10103
10104

10105

10106
10107

10108

10109
10110

2 DATABASE MANAGEMENT SYSTEMS $9.95
3 OPERATING SYSTEM CONCEPTS $18.75
1 DATABASE MANAGEMENT SYSTEMS $9.95
2 DATABASE MANAGEMENT SYSTEMS $9.95
3 DATABASE MANAGEMENT SYSTEMS $9.95
5 OPERATING SYSTEM CONCEPTS $18.75
1 WRITING COMMERCIAL APPLICATIONS $24.50

34 WORD PROCESSING $22.98
1 DATABASE MANAGEMENT SYSTEMS $9.95
4 WRITING COMMERCIAL APPLICATIONS $24.50
7 WORD PROCESSING $22.98
3 OPERATING SYSTEM CONCEPTS S18.75
9 DATABASE MANAGEMENT SYSTEMS S9.95

34 OPERATING SYSTEM CONCEPTS $18.75
10 OPERATING SYSTEM CONCEPTS $18.75

2 WRITING COMMERCIAL APPLICATIONS $24.50
7 WORD PROCESSING S22.98
3 OPERATING SYSTEM CONCEPTS S18.75

45 WRITING COMMERCIAL APPLICATIONS $24.50
1 WORD PROCESSING $22.98

Example 8-7.
Data in TITLE, PRICE, and LINE.AMT is derived

from the BOOKS file.

$19.90
$56.25

$9.95
$19.90
$29.85
$93.75
$24.50

$781.32
$9.95

$98.00
S160.86

$56.25
$89.55

S637.50
$187.50

$49.00
$160.86

$56.25
$1102.50

$22.98

Multiple Tfile correlatives can be included in an Attribute Definition item.
This allows data to be retrieved from a target file that is at more than one
remove from the source file. For more information about multiple Tfile
correlatives, see the section, "Using Multiple Correlatives," later in this
chapter.

Formatting Data

Conversion codes are used to achieve consistency in the storage and output of
data. They allow certain types of data to be stored in an internal format that
can be easily and efficiently manipulated during operations such as selecting

176 Pick ACCESS

and sorting. Conversions can then convert data into an external format
suitable for ACCESS reports.

Conversion codes are also applied to literal values in ACCESS queries. The
literal value is converted into its internal equivalent before the data is
processed. Thus, even though a date is stored in internal format as "7555",
you can access it with a query such as:

>LlST ORDERS WITH DATE = "9/6/SS"

because the literal "9/6/88" will be converted into internal format by the
conversion code.

Specifically, conversions can be used to format:

• Dates (D).

• Times (MT).

• Decimal numbers (ML and MR).

Conversions can also be used to perform the following operations:

• Lowercase/uppercase data conversion (MCL, MCU).

• Alphabetic/numeric character extraction (MCA, MCN).

• Decimallhexadecimal number translation (MCDX and MCXD).

• Hexadecimal/ASCII character string translation (MX and MY).

The following sections describe how to use each of these conversion codes.

Formatting Dates (D Code)

The D code converts dates to stored format and upon output to one of many
different external formats. Dates are stored internally as the number of days
from the zero date, December 31, 1967 (for example, September 4, 1978, is
stored as 3900).

The syntax of the D code is:

D [year 1 [{ separator I subcode } 1

where year specifies the number of digits used to represent the year,
separator is any nonnumeric char.acter that separates the day, month, and

8: Correlatives and Conversions 177

year, and subcode is a special code that specifies one of several date fonnats.
Table 8-12 lists and summarizes the date subcodes.

Subcode

D

Table 8-12. Date Subcodes.

Description

lists only the number of the day.

lists date in internal format (reverse conversion). Date must
be stored in one of the possible external formats.

J lists only the Julian day of the year.

M lists only the number of the month.

MA lists only the name of the month.

Q lists only the number of the quarter.

W lists only the number of the day of the week (Sunday is 7).

WA lists only the name of the day of the week.

Y lists only the number of the year.

If either a nonnumeric separator or a subcode is specified, dates appear in the
fonnat 12/12/1967. If neither is specified, the fonnat is 12 DEC 1967.

For example, the conversion code in line 7 of the Attribute Definition item
DATE in the ORDERS dictionary is:

02/

This conversion code specifies two digits to represent the year and the slash
character (I) to separate the day, month, and year. For example, if the date
in internal fonnat is 8601 and the conversion "D2f' is applied, the external
fonnat is:

07/19/91

Table 8-13 shows some sample uses of the D code.

Table 8-13. Date Formats.

Conversion Output

D 19 JUL 1991

DO 19 JUL

D/ 07/19/1991

D2/ 07/19/91

178 Pick ACCESS

D- 07-19-1991

DY 1991

IlJ 3

00 19

OM 7

DMA JULY

Formatting Times (MT Code)

The MT code converts times to stored format and upon output to 12-hour or
24-hour format. Like dates, times are stored in an internal format that is
efficient for storage and processing. The Pick system stores times as the
number of seconds after midnight (for example, 19800 is 5:30 AM).

The syntax of the MT code is as follows:

MT[H)[S]

H specifies 12-hour format with AM or PM appended. When specifying
12-hour format, input should be entered with AM or PM immediately
following; if they are not specified, AM is assumed. If H is not specified,
24-hour format is assumed.

S specifies that seconds are to be included.

Table 8-14 shows some sample uses of the MT code.

Table 8-14. Time Formats.

Input Value MT Cony Stored Value Output

11 Mf 39600 11:00

11 M1H 39600 l1:00AM

11 MTS 39600 11:00:00

11 MTHS 39600 11:00:00AM

11:15AM MT 40500 11:15

11:15AM M1H 40500 11:15AM

1l:15PM MT 40500 11:15

8: Correlatives and Conversions 179

Input Value

1l:15PM

IPM

IPM

13

13

MT Conv

MTH

Mf

MTH

Mf

MTH

Mf

MTH

Stored Value Output

83700 11:15PM

3600 01:00

3600 01:00AM

3600 01:00

46800 01:00PM

46800 13:00

46800 01:00PM

Formatting Decimal Numbers (ML and MR Codes)

The ML and MR codes allow special processing and formatting of numbers
and dollar amounts. ML left-justifies the data within the masking field, MR
right-justifies the data. Note that the justification within the masking field is
distinct from the column justification specified by line 9 of an Attribute
Definition item.

The ML and MR codes provide capabilities such as:

• Placement of commas to indicate thousands, millions, etc.

• Placing the decimal point properly and rounding off the result.

• Adding a dollar sign at the beginning of the number.

• Adding the letters "eR" (credit) after negative numbers and the letters
"DB" (debit) after positive numbers.

For example, Figure 8-11 shows the elements in the conversion code MR24$.
"R" right-justifies the column of figures within the masked field, "2"
specifies that two digits are to be printed after the decimal point, and "4"
moves the decimal point four places to the left. Since only two decimal places
are to be displayed on output, the amounts are rounded off. A dollar sign is
added immediately in front of each amount.

180 Pick ACCESS

MR24$

two d;,it, follow ~ II doll" ,;'" P'_os the amoo",
the decimal point

scaling by 10 4 , result is
rounded to 2 decimal places

Figure 8-11. The MR Code.
The MR Code converts decimal numbers to output format.

When MR24$ is applied to an attribute containing the unformatted dollar
amounts, they are listed in ACCESS reports in the following output format:

Stored External
Format Format

7270492 $727.05

375026 $37.50

13011344 $1301.13

489975 $49.00

3737373 $373.74

9294239 $929.42

459626 $45.96

199041 $19.90

2688098 $268.81

2365033 $236.50

1960013 $196.00

1125024 $112.50

497488 $49.75

8: Correlatives and Conversions 181

The ML and MR codes use the following syntax:

M { L I R } [n [m 11 [z 1 [, 1 [option 1 [$ 1 [(format-mask) 1

n specifies the number of digits to be printed to the right of the
decimal point. If n is omitted or is zero, no decimal point is
printed.

m specifies that the decimal point is to be moved m places to the
left on output. If m is not specified, m = n is assumed.

Z indicates that a data value of zero is to be output as null.

specifies that commas are to be inserted every three digits to the
left of the decimal point.

$ places a dollar sign immediately in front of the first digit of the
number.

Table 8-15 lists the options available with the ML and MR codes.

Option

C

D

E

M

N

Table 8-15. ML and MR Code Options.

Description

adds the letters "CR" after negative values.

adds the letters "DB" after positive values.

encloses negative numbers in angle brackets (< >).

adds a minus sign (-) after negative values.

suppresses the minus sign on negative numbers.

Table 8-16 lists the format codes available with the ML and MR codes.

Code

$

#n

*n

182

Table 8-16. ML and MR Format Mask Codes.

Description

places a dollar sign at the beginning of the output field rather
than immediately in front of the number.

specifies that data is to be justified in a column of n blanks.
If n is not specified, only one column is displayed.

specifies that data is to be justified in a column of n
asterisks. n n is not specified, only one column is
displayed.

Pick ACCESS

%n specifies that data is to be justified in a column of n zeros. If
n is not specified, only one column is displayed.

Literal strings enclosed in parentheses can also be included in the format
mask. The text is printed as specified, with the number being processed
right- or left-justified.

Table 8-17 contains some sample ML and MR codes.

Table 8-17. Some Decimal Number Formats.

Data Code Output

5824 MR2 58.24

5824 MR20 5824.00

5824 MR2$ $58.24

5824 MR20$ $58.240B

-5824 MR2E <58.24>

7270492 MR24$ $727.05

7270492 MR2,$ $72,704.92

5824133 MR2,$(*14) ****$58,241.33

5824133 ML(###-##-###) 582-41-33

5824133 MR(###-##-###) 58-24-133

Using Masked Character Codes (MC Codes)

Most of the character masking codes extract certain classes of characters
from a string. Alphabetic, nonalphabetic, numeric, or nonnumeric
characters can be extracted. Spaces are treated as non-alphanumeric
characters. Other Me codes convert uppercase data to lowercase and vice
versa.

Table 8-18 lists the Masked Character codes.

8:' Correlatives and Conversions 183

Code

MCA

MC/A

MCD[X]

MCL

MCN

MC/N

MCP

MCf

MCU

MCXfD]

Table 8-18. Masked Character Codes.

Description

extracts all alphabetic characters, both uppercase and
lowercase. Nonalphabetic characters, including
spaces, are not printed.

extracts all nonalphabetic characters, including
spaces. Alphabetic characters are not printed.

converts numeric data from decimal format to its
hexadecimal equivalent.

converts all uppercase letters to lowercase. Does not
affect lowercase letters or nonalphabetic characters.

extracts all numeric characters. Nonnumeric
characters, including spaces, are not printed.

extracts all nonnumeric characters, including spaces.
Numeric characters are not printed.

converts non printable characters to dots and drops
the high-order bit of all characters above character
127.

converts the fIrst character of each word to uppercase
and all other characters to lowercase. Does not affect
non alphabetic characters. A word begins after any
nonalphabetic character except a single or double
quote.

converts all lowercase letters to uppercase. Does not
affect uppercase letters or nonalphabetic characters.

converts numeric data from hexadecimal format to its
decimal equivalent.

Table 8-19 shows some examples of the use of these codes. A space is
represented by a O.

184

Table 8-19. Masked Character Examples.

Data

*Boston, 0 MA 0002134

*Boston,OMA0002134

*Boston, 0 MA 0002134

Code

MCA

MC/A

MCL

Output

BostonMA

*,00002134

*boston,Oma0002134

Pick ACCESS

*Boston,OMA 0002134

*Boston,OMA0002134

*Boston,OMA0002134

*Boston,OMA 0002134

MCN

MC/N

MCf

MCV

02134

* Boston ,OMAOO

*Boston,OMa0002134

*BOSTON,OMAOO02134

Converting Hexadecimal Numbers (MCDX and MCXD)

The MCDX and MCXD codes convert data from hexadecimal to decimal or
decimal to hexadecimal equivalents. When specified in line 7 as a
conversion, MCXD applies a decimal-to-hexadecimal conversion and MCDX
applies a hexadecimal-to-decimal conversion. When specified in line 8 as a
correlative, each code applies an inverse conversion. In this case, MCXD
produces a decimal equivalent and MCDX produces a hexadecimal
equivalent.

The examples in Table 8-20 assume that both codes are placed in line 7 to
translate ASCII character codes to decimal or hexadecimal equivalents.

Table 8-20. The MCDX and MCXD Codes.

ASCII MCDX MCXD
Character (Decimal) (Hexadecimal)

A 65 41

B 66 42

M 77 4D

N 78 4E

Y 89 59

Z 90 5A

Converting Hexadecimal and ASCII Strings

The MX code converts a character string to its hexadecimal ASCII
equivalent; the MY code converts a hexadecimal string to its alphanumeric
equivalent.

8: Correlatives and Conversions 185

The MX code converts each character to a two byte hexadecimal number.
This code is useful for finding nonprintable characters in strings of data.

Table 8-21 shows some examples of the MX and MY conversions. In the first
example, the string begins with a CTRL-A, which is converted to its ASCII
equivalent (01).

Table. 8-21. The MX and MY Codes.

Stored Data Code Result of Conversion

CfRL-AABC MX 01414243

CfRL-\ MX FC

CTRL-] MX FD

CTRL-/\ MX FE

JOHN MX 4A4F484E

john MX 6A6F686E

414243 MY ABC

4A4F484E MY JOHN

FC MY CfRL-\

Advanced Topics

The following sections describe three specialized uses of correlatives and
conversions:

• Putting codes normally used as correlatives in line 7 (instead of line 8),
and putting codes normally used as conversions in line 8 (instead of
line 7).

• Using multiple correlatives and conversions in an Attribute Definition
item.

• Combining correlatives and conversions in line 8 of an Attribute
Definition item.

186 Pick ACCESS

Using Correlatives as Conversions and Vice Versa

As was mentioned earlier in this chapter, codes placed in line 8 of an
Attribute Definition item are correlatives, and codes placed in line 7 are
conversions. Most of the codes discussed earlier in this chapter are used
primarily as one or the other; for example, the D code and the masking codes
(MR, ML, MX, etc.) are normally used as conversions, and the A and F codes
are normally used as correlatives.

There are three main exceptions to this general practice: when using counter
operands, when applying a conversion to the data before a correlative
operation is carried out, and when applying a conversion to the data, or to a
portion of the data, part of the way through the application of the correlative.

Using Special Operands with A and F Codes

When the special operands NB (number breaks), ND (number detail lines),
or NI (number items) are used, or when the LPV (load previous value)
operator is used with the A or the F codes, they can sometimes be used as
conversions and placed in line 7. The LPV operator loads the value obtained
from a previous correlative operation.

Table 8-22 shows the special operands that can be used with both the A and
the F codes.

Operand

NB

ND

NI

NY

NS

Table 8·22. Special Operands.

Description

Break-level counter. Used only as a conversion in line 7.

Detail line counter. Used only as a conversion in line 7.

Item counter. Can be used either as a correlative in line 8
or as a conversion in line 7.

Value counter. Used only as a correlative in line 8.

Subvalue counter. Used only as a correlative in line 8.

The NB operand works only with ACCESS statements that contain the
BREAK-ON modifier. NB returns the current break level. The lowest
break level has a value of 1, a grand-total line has a value of 255.

8: Correlatives and Conversions 187

The ND operand returns the number of detail lines since the last control
break. On a detail line it has a value of 1, on a grand-total line it has the value
of the item counter. ND can be used to calculate averages in conjunction with
control breaks.

The NI operand returns the number of items selected or listed.

NV and NS return the number of values or subvalues (respectively)
contained in the item being processed. NV and NS are for columnar listing
only.

The LPV (Load Previous Value) operator takes the result of a previous
correlative operation and uses it for further processing. The code with the
LPV operator is specified in line 7, and the correlative that generates the
"previous value" is specified in line 8. The previous value becomes an
operand in an A code and an element in an F code; it must be the first element
specified in an F code, otherwise strange results may be obtained.

In the following example, the F code in line 8 first multiplies the contents of
Attribute 2 by the contents of Attribute 3. Then the F code in line 7 divides
the result by 100.

007 F ; LPV ; "100" ; /
008 F; 2; 3; *

Applying Conversion Operations Before Correlative Operations

If you want to apply a code that is normally used as a conversion to the data
before a correlative operation is carried out, place the conversion code in
line 8 before the correlative code. Separate the codes with a value mark
(CTRL-D. This way the correlative will be applied to formatted, not raw,
data.

For example. a D code could first convert a date to external format. Then a
G correlative could extract one or more fields from within the delimiters
defined for the date by the D conversion.

188 Pick ACCESS

Using Multiple Codes

Two or more codes can be entered on the same line of an Attribute Definition
item in one of two ways:

1. The codes can be separated with value marks (CTRL-D.

2. One code can be embedded within another code.

For example, multiple file translation correlatives make it possible to
retrieve data from target files that are at two. or more removes from the
source file. Thus, the data for the attribute BAL.DUE in the ORDERS file
can be obtained from the OVERDUE.ORDERS file by creating the following
synonym for Attribute 3, CUST.m, in the ORDERS file:

BAL.DUE
001 S
0023
003 Balance Due
004
005
006
007
008 TCUSTOMERS; X;; 12] TOVERDUE.ORDERS ; X;; 6
009 R
0108

The two Tfile correlatives in the preceding example reference:

• Attribute 12, BAL.DUE, of the CUSTOMERS file.

• Attribute 6, BAL.DUE, of the OVERDUE. ORDERS file.

The Attribute Definition item for Attribute 12, BAL.DUE, in the
CUSTOMERS file must itself contain a Tfile correlative that points to
Attribute 6, BAL.DUE, in the OVERDUE.ORDERS file:

8: Correlatives and Conversions 189

BAL.DUE
001 S
00212
003 Balance Due
004
005
006
007
008 TOVERDUE.ORDERS ; X ; ; 6
009 R
0108

This link enables the data in Attribute 6 of the OVERDUE. ORDERS file to
be accessed from the ORDERS file via the two file translation correlatives
(that is, through the CUSTOMERS file).

The following Attribute Definition item contains a Tfile correlative
embedded in an F correlative:

TAX
001 S
0020
003 Tax
004
005
006
007 MR22
008 F ; 1 ; (TBOOKS ; X ; ; 3) ; 2 ; * ; C5 ; * ; S
009 R
0108

The embedded Tfile correlative is enclosed in a set of parentheses.

In the preceding example, the F correlative uses Attribute 1, BOOKCODE,
in the ORDERS file to reference the item IDs in the BOOKS file. The Tfile
correlative translates data from Attribute 3, PRICE, of the BOOKS file.
PRICE is then multiplied by the data in Attribute 2, QTY, of the ORDERS
file, and the result is then multiplied by 5 to obtain the 5% sales tax. The S
function sums the data in the multivalued attribute TAX. Finally, a masked
decimal conversion (line 7) is applied to the result, which places the decimal
point properly.

190 Pick ACCESS

Combining Correlatives and Conversions

Under certain circumstances, codes normally used as conversions can be
incorporated into a correlative in line 8 of an Attribute Definition item.
These conversion codes are often MR or ML conversions used to format
decimal numbers.

There are two main reasons for applying a conversion within a correlative:

• Ensuring that a division operation produces a correct result.

• Formatting data part of the way through the application of a
correlative code. This technique is often used to convert data to output
format before continuing with a series of arithmetic operations.

The following sections illustrate these two scenarios.

Adjusting Division Operations

When division is performed with the A or F correlatives, the result is always
an integer. Remainders are suppressed. Therefore, to ensure that a result is
returned with a remainder, scale the dividend by a multiple of 10 before
dividing it, then apply a masked decimal code to insert the decimal point
properly.

In the following example, the A correlative first divides the contents of
Attribute 4 by 8. The MR2 conversion then forn1ats the result:

007 MR2
OOS A ; (4 * "100") / "S"

8: Correlatives and Conversions 191

APPENDIXES

APPENDIX A

ACCESS Commands

Appendix A is a reference guide to all ACCESS verbs arranged in
alphabetical order. Each entry comprises a brief explanation of what the
command does, a complete explanation of its syntax, and a description of
how to use the command. Commands not included in the SMA standards
are marked with an asterisk.

CHECK-SUM: Produces check-sum statistics for file items.

The CHECK-SUM verb provides statistical information on all or
specified items in a file. This information includes the total number of
bytes, the average number of bytes, the number of items check-summed,
the check-sum, and the bit count. Check-sums are useful for determining
whether data in a file has been changed.

CHECK-SUM [DICT I filename [items I [selection I
[attribute-name I [(options) I

DICT

filename

items

specifies the file dictionary.

is the name of the file.

is the list of item IDs or an item selection
expression. If you do not specify items, all items
are check-summed.

Appendix A: ACCESS Commands 195

CHECK-SUM

selection specifies one or more conditions data in an item
must meet to be included. For a complete
description of selection expression syntax, see the
LIST verb.

attribute-name specifies one particular attribute. If you do not
specify an attribute, the item IDs are check­
summed.

options include one or more single-character codes that
specify the report format and direct or modify
output. They must be enclosed in parentheses,
can be entered in any order, and need not be
separated by spaces or any delimiters such as
commas. For complete information about using
these parenthetical options, see Appendix B,
"ACCESS Keywords."

To use check-sums, run CHECK-SUM on all files or portions of files to be
verified, and keep a copy of the output statistics. Whenever
CHECK-SUM is subsequently run, compare the new check-sum to the old
one. If the check-sums are identical, the items have not changed.
Remember to rerun the CHECK-SUM verb whenever the file is changed
in any way.

The check-sum is calculated by multiplying the binary value of each
character by its positional value. The product has a high probability of
being unique for any given character string. The check-sum is the
arithmetic total, minus overflow, of all bytes in the selected items.

When you run CHECK-SUM, its output is displayed in the following
format:

BYTE STATISTICS FOR filename I attribute
TOTAL = bytes AVERAGE = avg-bytes ITEMS = items CKSUM = cksum BITS = count

The CHECKSUM display provides the following information based on
the items processed:

196

filename I attribute The name of the file or attribute for which the
statistics are produced.

bytes The total number of bytes for the element
stored in the attribute or item.

Pick ACCESS

CHECK-SUM

avg-bytes

count

cksum

The average number of bytes.

The number of items check-summed.

The check-sum.

count The bit count for the elements stored in the
attribute or item.

COpy -LIST: Copies a saved select-list.

The COPY-LIST verb copies a select-list that was previously saved with
the SAVE-LIST verb. You can copy the select-list to the terminal screen,
to another select-list in the POINTER-FILE, or to an item in a file.
COPY-LIST can also be used to copy select-lists from other accounts.

COPY-LIST list-name [account 1 [(options) 1

list-name is the name of the select-list.

account is the name of the account containing the
select-list.

options modify the copy operation. The available options are:

D Copies the select-list to another select-list or to a file item and
then deletes the original select-list. This option can be used
to change a select-list's name.

N Disables paging when copying the select-list to the terminal.

o Overwrites a select-list if it already exists.

P Copies the select-list to the printer.

T Copies the select-list to the screen.

X Copies the select-list to the printer or terminal in
hexadecimal format.

To print the copied select-list, use the P option; to display it on the
terminal screen, use the T option. If neither option is specified, the
system prompts you as follows:

TO:

Appendix A: ACCESS Commands 197

COPY-LIST

Press the RETURN key to copy the select-list to the screen. To copy the
select-list to another select-list or to an item in a file, respond to the
destination prompt using the following syntax:

{ dest-list I [(filename)] item-ID}

dest-list

filename

item-ID

is the name of the select-list to which the
select-list will be copied.

is the name of the file. Each element in the
select-list will be stored as a separate attribute in
the file item. The file must already exist.

is the name of the new item that will contain the
copied select-list.

[(ff' If the saved list is larger than 32K, you cannot copy it
to a file item. In this case the following message is
displayed:

IA96] 'list' IS TOO LARGE TO BE AN ITEM.

COUNT: Counts file items.

The COUNT verb counts the number of items in a file that meet specified
conditions. This verb summarizes the frequency with which a specific
data element occurs in a database. For example, you might want to count
the number of customers who live in a certain city.

198

COUNT I DICT] filename I items 1 I selection 1 [(options) 1

DIeT

filename

items

selection

specifies the file dictionary.

is the name of the file.

is the list of individual item IDs or an item
selection expression. Enclose each item ID in
single quotes.

specifies one or more conditions that data in an
item must meet to be selected. For a complete
description of selection expression syntax, see the
LIST verb.

Pick ACCESS

COUNT

options include one or more single-character codes that
specify the report format and direct or modify
output. They must be enclosed in parentheses,
can be entered in any order, and need not be
separated by spaces or any delimiters such as
commas. For complete information about using
these parenthetical options, see Appendix B,
"ACCESS Keywords."

W Do not confuse the COUNT verb with the
PICKIBASIC COUNT function.

EDIT -LIST: Edits a select-list.

The EDIT-LIST verb invokes the Editor on a select-list that was
previously saved with the SAVE-LIST verb. The select-list must be
smaller than 32K.

EDIT·LlST list-name

list-name is the name of the select-list.

Each element in a select-list appears as a line in the Editor.

FILE-TEST: Tests item distribution in a file.

Use FILE-TEST to summarize the distribution of items in a file and to
experiment with different modulos. FILE-TEST is an SMA standard
verb that combines the functions of the HASH-TEST and 1ST AT verbs.
FILE-TEST can be used to analyze the structure of groups within a file
and produce a file-hashing histogram that is helpful for determining
whether the current file structure is the best one. By testing different
modulos you can summarize what the item distribution in a file would be
if its modulo were changed.

FILE-TEST [DieT I filename [items I [selection I [modifiers I
[(options) I

DICT specifies the file dictionary.

Appendix A: ACCESS Commands 199

FILE-TEST

filename

items

selection

modifiers

options

is the name of the file.

is the list of individual item IDs or an item
selection expression. Enclose each item 10 in
single quotes.

specifies one or more conditions that data in an
item must meet to be included in the report. For a
complete description of selection expression
syntax, see the LIST verb.

include one or more keywords that specify the
report format. These parameters affect headers,
footers, spacing, totalling column figures,
control breaks, and more. For complete
information about using these keywords, see
Chapter 4, "Formatting Reports," and Appendix
B, "ACCESS Keywords."

include one or more single-character codes that
specify the report format and direct or modify
output. They must be enclosed in parentheses,
can be entered in any order, and need not be
separated by spaces or any delimiters such as
commas. For complete information about using
these parenthetical options, see Appendix B,
"ACCESS Keywords."

After you enter FILE-TEST, you are prompted to enter either a test
modulo or a test modulo and separation. If you press the RETURN key at
the prompt, the current modulo (or modulo and separation) are used.

If you enter a test parameter, FILE-TEST first analyzes what the
structure of groups within a file would be, then produces a hypothetical
file-hashing histogram that is helpful for determining whether the current
file structure is the best one. The file against which you run FILE-TEST
remains unchanged.

If you do not enter a test parameter, FILE-TEST analyzes the current
structure of the file.

200 Pick ACCESS

FORM·LIST

FORM-LIST: Selects attribute values from selected file items.

The FORM-LIST verb creates a temporary select-list containing all
values either in a specified attribute or in all attributes from all or selected
file items. Each attribute value becomes an element in the select-list. A
subsequent command can then use the data in the select-list to reference
item IDs in another file.

FORM·LlST [DieT 1 filename [items 1 [(attr#) 1

DICT

filename

items

attr#

specifies the file dictionary.

is the name of the file.

is a list of individual item IDs or an item
selection expression. Enclose each item 10 in
single quotes. Use an asterisk (*) to select all
items in filename.

is the attribute number (AMC) of the attribute
whose data elements will be placed in the
select-list. If attr# is not specified, FORM-LIST
selects all the attributes.

FORM-LIST creates a select-list containing data elements from the items
specified in items. The items referenced by the select-list will be
processed by the next verb you execute. For instance, you might use
FORM-LIST to create a select-list of customer IDs that are stored in
Attribute 4 of the ORDERS file, in order to reference names and
addresses in the CUSTOMERS file.

IIff> Only the statement immediately following the
FORM-LIST statement will have access to the
select-list. In other words, you must use the select-list
immediately, or you lose it!

To permanently save the select-list, use the SAVE-LIST verb. Once a
select-list is saved, you can retrieve it at any time with the GET-LIST
verb.

A select-list can reference data in any file, not just the file specified in the
original FORM-LIST statement. If two files have similar items with the
same item IDs, you can create a select-list from one file, then use it to
operate on items from the other file.

Appendix A: ACCESS Commands 201

FORMS

'FORMS: Lists items on fonns.

Not included in the SMA standards. FORMS is a fonns generation verb
and is not available on all systems. The FORMS verb prints file items on
such fonns as invoices, checks, and order fonns. Using FORMS allows
you to explicitly position data either on the tenninal or on a printer page
according to x- (column) and y- (row) coordinates. FORMS prints one
item per fonn.

Ultimate systems use a modified version of the FORMS verb syntax. The
FORMS verb itself is not supported by Ultimate; instead, a forms
generation expression can be included in the LIST verb syntax. Fonns
generation expressions have essentially the same syntax as they do in the
FORMS verb, except that the verb used is LIST instead of FORMS. Other
differences in usage are noted in the following pages.

202

FORMS [DieT 1 filename [Items 1 [selection 1 output [modifiers 1
[(options) 1

DICT specifies the file dictionary.

filename

items

selection

output

is the name of the file.

is the list of individual item IDs or an item
selection expression. Enclose each item ID in
single quotes.

specifies one or more conditions that data in an
item must meet to be listed on a fonn. For a
complete description of selection expression
syntax, see the LIST verb.

is the list of attributes to be output on the fonn.
Each attribute specified to be output must be
associated with a print code. All forms
generation statements must contain at least one
print code. Print codes are described below in the
section "Print Codes."

Print limiter output specifications specify which
values from multivalued attributes are to be
included in the report. Use relational operators
and values immediately following the name of the

Pick ACCESS

modifiers

options

FORMS

multivalued attribute. Enclose values in double
quotes or backslashes.

include one or more keywords that modify the
appearance of the form. These parameters affect
headings, footings, and more. For complete
information about modifiers, see Chapter 4,
"Formatting Reports," and Appendix B,
"ACCESS Keywords."

The following modifiers behave somewhat
differently when used with forms generation
verbs: BREAK-ON, FOOTING, HDR-SUPP,
HEADING, and ID-SUPP. These modifiers are
described in the section "Forms Generation
Modifiers. "

include one or more single-character codes that
specify the report format and direct or modify
output. They must be enclosed in parentheses,
can be entered in any order, and need not be
separated by spaces or any delimiters such as
commas. For complete information about using
these parenthetical options, see Appendix B,
"ACCESS Keywords."

In addition to the standard ACCESS options, the
following options are also available:

A allows you to check printer alignment.

B prints a prestored "background" form
along with the data specified in the FORMS
statement.

M specifies the number of lines to be listed for
each subpage. Not available on all systems.

Z on multi page forms, resets footing page
number to one.

These nonstandard options are described in the
section "Forms Generation Options."

Appendix A: ACCESS Commands 203

FORMS

FORMS applies the format specified in the command line to the output
specifications. FORMS prints one item per form; a form can be either
single-page or multipage. Data can be printed anywhere on a page, and
can be printed on just one page or on every page of a form. In addition to
specifying how the data is to be printed on a form, FORMS can be used to
specify the layout of the form itself.

The @W and @D print codes (described in the next section, "Print
Codes") make it possible to define vertical windows in which the data for
multivalued attributes can be output. If the data in a multivalued attribute
does not fit in a window, the remaining data is printed on the next page. A
form can contain up to six separate windows.

Ultimate systems do not support the @W and@D codes. Their functions
are implemented by the WINDOW keyword. See Chapter 7 for more
information.

The SFORMS verb prints items or forms in sorted order. The REPT and
SREPT verbs can be used to print more than one item on a page. On
systems that do not support REPT and SREPT, the M option can be used
to specify the number of items to be printed per page.

Print Codes

Each attribute name included on a form must be associated with a print
code as follows:

@code (x,y [,z 1) : attribute-name [1 ,n 1
To define a character string that prints in a specified location on the form,
use the following syntax:

204

@code (x,y [,z 1) : "string" [1,n 1

code

x

is the print code associated with the attribute. The
available print codes are shown in table A-I.

is the horizontal position (column) on the page
where the data begins. The leftmost position is
column O.

Pick ACCESS

FORMS

y is the vertical position (row) on the page where
the data begins. The top row is row 0, which is
reserved for the heading.

z is extra data required by the @D and @W print
codes.

attribute-name is the name of the attribute whose data is printed
at the specified position.

string is a character string that is printed at the specified
position.

n prints only the first n characters of the data for
this attribute.

Table A-I summarizes the available print codes.

Print Code

@[A](x,y)

@C(X,y)

Table A-I. Print Codes.

Description

Prints the data for an attribute on every page of a
multipage form. The "A" is optional.

Creates an audit trail for a series of forms. The @C
code can also be used to serialize the forms. To
suppress serialization numbers on the form (but not in
the audit file), specify (-I) in place of the x and y
coordinates. (You must use either the x-y coordinates
or -1 with the @C code.)

When you use the @C print code, the system prompts
for the audit file and starting number:

AUDIT FILE>

Enter the name of an existing file that will be used to
track each form that is generated.

STARTING NUMBER>
Enter the starting serialization number for the forms.
This number will appear on the form at the position
specified for the @C-formatted attribute. The
information on each form will be stored as an item in
the audit file.

See Chapter 7, "Forms Generation," for more
information about audit trails.

Appendix A: ACCESS Verhs 205

FORMS

@D(x,y,z) Not available on all systems. The @D print code
prints data for multivalued attributes in double-depth
windows. This makes it possible to define two lines
of output at a time. z specifies the bottommost row of
a window whose topmost row is defined by y. See
also the WINDOW keyword.

You must add an S to the end of the x parameter for
an attribute to appear on every second output line.

@F(x,y) Prints the data for an attribute on only the first page of
a multipage form.

@L(x,y) Prints the data for an attribute on only the last page of
a multi page form.

@M(x,y,"text") Prints the specified text on all but the last page of a
multipage form. The data for the attribute prints on
the last page of the form. On a single-page form, the
data for the attribute is printed.

@W(x,y,z) Not available on all systems. The @W print code
prints data for multivalued attributes in windows. x
specifies the columns where attribute values are to
start being printed. z specifies the bottommost row of
a window whose topmost row is defined by y. See
also the WINDOW keyword.

The system does not check whether output data exceeds the page width set
by the TERM verb. The justification (V (fYP) of the specified attribute in
combination with the maximum number of characters (V /MAX) and the
column position (specified by x) determine the width of the data displayed
on the form.

For complete information about using print codes, see Chapter 7, "Forms
Generation.

Forms Generation Modifiers

When used with forms generation verbs, the following modifiers behave
somewhat differently than they do with other ACCESS verbs. For more
information about how these modifiers work with forms generation
verbs, see Chapter 7, "Forms Generation."

206 Pick ACCESS

FORMS

BREAK-ON

The data line for the BREAK-ON modifier is treated like any other output
specification when it is printed.

Generally, fonns generation verbs will not use the BREAK-ON, TOTAL,
and GRAND-TOTAL modifiers.

HEADING and FOOTING

Headings and footings cannot be output on a fonn using x-y coordinates;
they are output in separate reserved areas. Conversely, data specified by
the output parameter cannot be placed in the areas reserved for headings
and footings. By default, row 0 is reserved for headings and row 1 is
reserved for a blank line that separates the heading from the report. If a
multiple-line heading is specified for either headings or footings, the
system reserves the number of lines needed for the text. The blank line is
replaced by the specified multiple-line heading.

HDR-SUPP

Fonns generation verbs automatically suppress column headings, but they
still generate the one-line heading that lists the time, date, and page
number. HDR-SUPP suppresses this one-line heading.

ID-SUPP

Fonns generation verbs automatically suppress item IDs, so this modifier
is unnecessary in a fonns generation statement. If you want to include
item IDs on a fonn, create an item in the dictionary that has an attribute
number (AMC) of O. Then include an output specification referring to
this item in the fonns generation statement.

Appendix A: ACCESS Commands 207

FORMS

Forms Generation Options

The following nonstandard options can be specified with FORMS: A, B,
M and Z.

The A Option

The A option is used to verify the page layout before the actual fonns are
generated. The A option runs a printer-alignment routine. This routine
prints the first form on the terminal screen or printer, showing text
(except for headings and footings) as Xs. This option can be used only if
the current SP-ASSIGN statement includes the C and the I options.

The following prompt appears if the A option is included in the forms
generation statement:

Align? Y=cr/N>

Before you respond to this prompt, manually set the printer at the top of
the fonn. Then press the RETURN key to display or print the data as Xs.
Repeat this process as many times as you need to until you get the XS to
print where you want them. Then enter "N" at the prompt to print the
fonns themselves.

The B Option

B prints a background fonn composed of previously created text or
graphics. It is printed on every page of a fonn. To use the B option, you
must already have created a background form (background fonns are
created with the Editor). This background fonn can be used to print
forms on standard paper instead of on preprinted forms. Background
forms also make it possible to use printer control characters (for
underlining, etc.) that apply to specific printers.

Design a background form so that it is not overwritten by the reserved
heading rows 0 and 1, and does not overwrite the data placed on the fonn
with print codes.

208 Pick ACCESS

FORMS

The following prompt appears if the B option is included in the forms
generation statement:

Background File & Item:

Enter the name of the background file item using the following format:

[DieT] filename item-ID

The M Option

On systems that do not have the REPT and SREPT verbs, the M option is
used to specify the number of lines each subpage should include. After
FORMS with the M option is entered, the system prompts for subpage
size:

Subpage size>

Enter the number of lines each subpage should contain. For example, to
define 6 subpages on each page of 62 lines (2 lines are reserved for the
heading), enter 10. Each subpage extends the full width of the page.

The system does not split items; if an entire subpage will not fit at the
bottom of a page, the system prints the subpage on the next page.

See the REPT verb and Chapter 7 for information about subpages.

The Z Option

Z is used with the FOOTING modifier. It resets the page number in the
footing back to 1 at the beginning of each mUltipage form. Use the
HDR-SUPP modifier with the Z option to prevent an incompatible (not
reset) page number from appearing in the heading.

GET ·LIST: Retrieves a previously saved select-list.

The GET-LIST verb retrieves a select-list that was previously saved with
the SAVE-LIST verb. After retrieval you can execute a single command

Appendix A: ACCESS Commands 209

GET-LIST

on the specified select-list. To execute more than one command, you must
retrieve the select-list again.

GET-LIST [[DICT 1 filename] list-name

DICT is the file dictionary.

filename

list-name

is the file where the select-list is stored.

is the rmme of the select-list that you want to
retrieve.

You can retrieve any select-list created from another account if it was
saved in the system-level POINTER-FILE.

~HASH -TEST: Tests effects of different modulos on item distribution.

Not included in the SMA standards. Use HASH-TEST to experiment with
different modulos and to produce a summary of what the item distribution
in a file would be'if its modulo were changed. This command can be used
to determine what modulo would produce the best item distribution for a
file. HASH-TEST has been superseded by the FILE-TEST verb.

210

HASH-TEST [DICT] filename [items] [selection] [modifiers]
[(options)]

DICT specifies the file dictionary.

filename

items

selection

modifiers

is the name of the file.

is the list of individual item IDs or an item
selection expression. Enclose each item 10 in
single quotes.

specifies one or more conditions that data in an
item must meet to be included in the report. For a
complete description of selection expression
syntax, see the LIST verb.

include one or more keywords that specify the
report format. These parameters affect headers,
footers, spacing, totalling column figures,
control breaks, and more. For complete

Pick ACCESS

options

HASH-TEST

information about using these keywords, see
Chapter 4, "Formatting Reports," and Appendix
B, "ACCESS Keywords."

include one or more single-character codes that
specify the report format and direct or modify
output. They must be enclosed in parentheses,
can be entered in any order, and need not be
separated by spaces or any delimiters such as
commas. For complete information about using
these parenthetical options, see Appendix B,
"ACCESS Keywords."

HASH-TEST first analyzes what the structure of groups within a file
would be, then produces a hypothetical file-hashing histogram that is
helpful for determining whether the current file structure is the best one.
The file against which you run HASH-TEST remains unchanged.

Once you have determined what the new modulo for the file should be,
you can reallocate the file by entering the new modulo in Attribute 13 of
the File Definition item. The file will be reallocated automatically after
the next file-save and file-restore.

[ff' To reallocate a data file, change Attribute 13 in the
D-pointer located in the file dictionary. To reallocate
a file dictionary, change Attribute 13 in the D-pointer
located in the Master Dictionary of the account. To
reallocate an account's Master Dictionary, change
Attribute 13 in the SYSTEM Dictionary.

*IST A T: Summarizes item distribution in a file.

Not included in the SMA standards. The 1ST A T verb summarizes the
distribution of items in a file. 1ST A T analyzes the structure of groups
within a file and produces a file-hashing histogram that is helpful for
determining whether the current file structure is the best one. 1ST AThas
been superseded by the FILE-TEST verb.

Appendix A: ACCESS Verbs 211

ISTAT

ISTAT [DieT 1 filename [items] [selection 1 [modifiers 1
[(options) 1

DICT specifies the file dictionary.

filename

items

selection

modifiers

options

is the name of the file.

is the list of individual item IDs or an item
selection expression. Enclose each item ID in
single quotes.

specifies one or more conditions that data in an
item must meet to be included in the report. For a
complete description of selection expression
syntax, see the LIST verb.

include one or more keywords that specify the
report format. These parameters affect headers,
footers, spacing, totalling column figures,
control breaks, and more. For complete
information about using these keywords, see
Chapter 4, "Formatting Reports," and Appendix
B, "ACCESS Keywords."

include one or more single-character codes that
specify the report format and direct or modify
output. They must be enclosed in parentheses,
can be entered in any order, and need not be
separated by spaces or any delimiters such as
commas. For complete information about using
these parenthetical options, see Appendix B,
"ACCESS Keywords."

LIST: Generates reports from a database.

The LIST verb produces a formatted report which can be displayed on the
screen or sent to the printer. These reports can display items from either
the data file or the file dictionary. LIST is one of the most frequent! y used
ACCESS verbs.

212 Pick ACCESS

LIST

LIST [file-modifiers 1 filename [items 1 [selection 1 [output 1
[modifiers 1 [(options) 1

file-modifiers can be DICT or ONLY. DICT specifies the file
dictionary. ONLY suppresses the default output
specification and displays item IDs only.

filename is the name of the file.

items is the list of individual item IDs or an item
selection expression. Enclose each item ID in
single quotes.

selection specifies one or more conditions that data in an
item must meet to be included in the report.
selection has this syntax:

WITH [EACH 1 attribute-name [[rel-op 1
value-list] [{ AND I OR } WITH [EACH 1
attribute-name [[rel-op 1 value-list 1]

EACH specifies that all values in a
multivalued attribute must meet
the specified condition if the
item is to be included in the
report.

attribute-name is the name of the attribute
whose data values are to be
compared to the specified con­
dition.

rel-op can be any relational operator.
For a complete list of relational
operators, see Chapter 4,
"Formatting Reports."

value-list can be either one or more data
values, or a constant. Values
should be enclosed in double
quotes.

ANDIOR specifies a compound expres-
sion.

Appendix A: ACCESS Verbs 213

LIST

output

modifiers

options

is a list of the names of one or more attributes
whose data is to be included in the report. output
can also be a user-defined phrase that contains any
ACCESS parameters except a verb or a filename.

Print limiting output specifications specify which
values from multivalued attributes are to be listed
in the report. Use relational operators and values
immediately following the name of the
multivalued attribute. Enclose values in double
quotes or backslashes.

include one or more keywords that specify the
report format. These parameters affect headers,
footers, spacing, totalling column figures,
control breaks, and more. For complete
information about using these keywords, see
Chapter 4, "Formatting Reports," and Appendix
B, "ACCESS Keywords."

include one or more single-character codes that
specify the report format and direct or modify
output. They must be enclosed in parentheses,
can be entered in any order, and need not be
separated by spaces or any delimiters such as
commas. For complete information about using
these parenthetical options, see Appendix B,
"ACCESS Keywords."

LIST displays information in either columnar or noncolumnar format. In
addition, unless you use the ID-SUPP modifier, this command
automatically displays item IDs as the first column in the display.

SORT is another of the most frequently used ACCESS verbs. SORT
generates reports similar to those produced by LIST , and also sorts items
in alphabetical or numeric order.

214 Pick ACCESS

LIST-ITEM

LIST -ITEM: Displays all data for items.

The LIST-ITEM verb displays all attribute values for specified file items.
This verb is useful for producing a simple listing of data or dictionary
items. LIST-ITEM combines the function of the COPY processor with
the ability of ACCESS to select specified items.

LIST-ITEM [DieT 1 filename [items 1 [selection 1 [modifiers 1
[(options) 1

DICT

filename

items

selection

modifiers

options

specifies the file dictionary.

is the name of the file.

is the list of individual item IDs or an item
selection expression. Enclose each item ID in
single quotes.

specifies one or more conditions that data in an
item must meet to be included in the report. For a
complete description of selection expression
syntax, see the LIST verb.

include one or more keywords that specify the
report format. These parameters affect headers,
footers, spacing, and more. For complete
information about using these keywords, see
Chapter 4, "Formatting Reports," and Appendix
B, "ACCESS Keywords."

include one or more single-character codes that
specify the report format and direct or modify
output. They must be enclosed in parentheses,
can be entered in any order, and need not be
separated by spaces or any delimiters such as
commas. For complete information about using
these parenthetical options, see Appendix B,
"ACCESS Keywords."

If no items are specified or selected, all items in the file are listed. By
default, LIST-ITEM displays items on the screen. The display includes
line numbers for each attribute, unless the S option is used.

\ppendix A: ACCESS Verbs 215

LIST·LABEL

,1ST -LABEL: Lists data in label format.

The LIST-LABEL verb allows you to specify a format for specialized
block listings such as mailing labels. LIST-LABEL can be used to define
how many blocks (or items) are displayed across each page or screen and
how many rows (or attributes) are displayed for each block.
LIST-LABEL also defines the number of vertical lines and horizontal
spaces between blocks, the amount of indent from the left margin of the
page or screen, and the maximum width of a row.

216

LIST-LABEL [DieT I filename [items I [selection I [output I
[modifiers I [(options) I

DICT

filename

items

selection

output

options

specifies the file dictionary.

is the name of the file.

is the list of individual item IDs or an item
selection expression. Enclose each item 10 in
single quotes.

specifies one or more conditions that data in an
item must meet to be included. For a complete
description of selection expression syntax, see the
LIST verb.

is the list of attributes to be included in the labels.
output can also be a user-defined phrase that
contains any ACCESS parameters except a verb
or a filename.

Print limiting output specifications specify which
values from multi valued attributes are to be
included. Use relational operators and values
immediately following the name of the
multivalued attribute. Enclose values in double
quotes or backslashes.

include one or more single-character codes that
specify the report format and direct or modify
output. They must be enclosed in parentheses,
can be entered in any order, and need not be
separated by spaces or any delimiters such as

Pick ACCESS

LIST-LABEL

commas. For complete information about using
these parenthetical options, see Appendix B,
"ACCESS Keywords."

After LIST-LABEL is entered, the system displays the following prompt:

?

You can now determine the format of the label. Enter a response in the
following format:

count, rows, skip, indent, size, space [,C 1

count

rows

skip

indent

size

space

C

is the number of labels (items) across each page
or screen.

is the number of lines printed for each label.
Remember to count the item ID as one line. The
item ID is automatically included in the labels
unless you use the ID-SUPP modifier or the I
option in the query.

is the number of lines to skip vertically between
labels.

is the number of indented spaces from the left
margin to the label. Zero (0) is a valid response.

is the maximum width for the data contained in
each attribute (in other words, the width of each
label in columns).

is the number of horizontal spaces between labels.

specifies that null attributes should not be printed.
Otherwise, null attributes appear as all blanks.
This parameter is optional.

The size parameter cannot exceed the page width (80 characters for
terminals, and 80/132 characters for printers). Calculate label width as
follows:

(count * (size + space) + indent) <= (current page width)

where current paRe width is the value defined by the TERM or
SET -TERM verbs for the terminal or printer.

Appendix A: ACCESS Verhs 217

LIST-LABEL

If a value other than zero is specified for the indent parameter, the system
prompts you to defme headers for each row in a label:

?

The number of ? prompts corresponds to the value entered earlier for
rows. At each? prompt, enter the desired header. To avoid defining a
header, simply press the RETURN key. Defined headers will appear at the
left margin in the indent area of the listing.

*NSELECf: Selects items from an active select-list that aren't in a file.

Not included in the SMA standards. The NSELECT verb creates a new
select-list containing only those items in the current select-list that are not
in the file specified by the NSELECT statement. In order to use
NSELECT, you must have just created or retrieved a select-list with one
of the following verbs: SELECT, SSELECT, QSELECT, FORM-LIST,
or GET-LIST.

NSELECT filename

filename is the name of the file against which the current
select-list is compared.

NSELECT creates a new select-list containing item IDs of only those
items in the previous select-list that are not also in filename. The items
referenced by the new select-list will be processed by the next verb you
execute.

~ Only the statement immediately following the
NSELECT statement will have access to the select-list.
In other words, you must use the select-list
immediately, or you lose it!

To permanently save the select-list, use the SAVE-LIST verb. Once a
select-list is saved, you can retrieve it at any time with the GET-LIST
verb.

A select-list can reference data in any file, not just the file specified in the
original SELECT statement. If two files have similar items with the same
item IDs, you can create a select-list from one file, then use it to operate
on items from the other file.

218 Pick ACCESS

NSELECT

Obviously, there is no point in referencing the file specified by the
NSELECT statement since NSELECT has just removed from the active
select-list all item IDs contained in that file.

*QSELECT: Selects attribute values from selected file items.

Not included in the SMA standards. This verb is a synonym for the
FORM-LIST verb.

REFORMAT: Restructures file items.

The REFORMAT verb restructures file items and sends output to a file or
to magnetic tape.

REFORMAT [file-modifiers 1 filename [items 1 [selection 1 [output 1
[modifiers 1 [(options) 1

file-modifiers can be DICT or ONLY. DICT specifies the file
dictionary. ONLY suppresses the default output
specification and lists item IDs only.

filename is the name of the file.

items is the list of individual item IDs or an item
selection expression. Enclose each item ID in
single quotes.

selection specifies one or more conditions that data in an
item must meet to be transferred. For a complete
description of selection expression syntax, see the
LIST verb.

output is the list of attribute-names whose values are to
be transferred. If you do not include this
parameter, REFORMAT transfers only
item IDs. You can also specify a phrase.

Print limiting output specifications specify which
values from multivalued attributes are to be
transferred. Use relational operators and values

Appendix A: ACCESS Commands 219

REFORMAT

modifiers

options

immediately following the name of the
multivalued attribute.

include one or more keywords that specify the
report format. These parameters affect headers,
footers, spacing, and more. For complete
information about using these keywords, see
Chapter 4, "Formatting Reports," and Appendix
B, "ACCESS Keywords."

include one or more single-character codes that
specify the report format and direct or modify
output. They must be enclosed in parentheses,
can be entered in any order, and need not be
separated by spaces or any delimiters such as
commas. For complete information about using
these parenthetical options, see Appendix B,
"ACCESS Keywords."

The contents of any attribute in the original file can be made the item IDs
for the items in the restructured destination file. This is useful for
creating a new file that consists of a subset of the attributes in an existing
file. The values that are to be made into item IDs must be unique,
however; a null or any other set of identical values will become the
item 10 of one item, and the data in those items will be stored as
multi values in the item in the destination file.

After REFORMAT is entered with accompanying parameters, the system
displays the following prompt:

FILE NAME:

At this point you can perform one of three different operations:

220

1. Transfer items to magnetic tape. To do so, enter the word TAPE at
the prompt. You must have already attached the tape unit and set
the tape record length with T-ATT. Each item is written to tape as
a separate physical tape record (or block). If an item is larger than
the tape's block size, the next tape record is used.

2. Transfer items to another file. To do so, enter the name of an
existing file as follows:

[DieT I filename

Pick ACCESS

REFORMAT

The system copies the selected or specified items to the destination
filename.

If you specify attributes for output and include the ID-SUPP
modifier in the ACCESS query, the values in the first attribute of
the output specification become the item IDs for the items copied
to the destination file. The second attribute listed in the output
specification becomes Attribute 1 in the destination file, the third
attribute becomes Attribute 2, etc. The destination file can thus
consist of a subset of the attributes defined for the original file.

If you restructure files in this way and you want to generate reports
from the destination file, you could copy the Attribute Definition
items from the dictionary of the original file to the dictionary of the
destination file and then edit the attribute numbers to reflect the
new item structure.

3. Transfer items within the same file. To do so, press the RETURN
key without entering a response.

IG? Use REFORMAT with care! Most ACCESS verbs
generate reports without altering the actual data stored
in a database. REFORMAT, however, is an exception,
since it can create new file items and alter existing file
items.

*REPT: Lists multiple items on forms.

Not included in the SMA standards. REPT is a forms generation verb and
is not available on all systems. The REPT verb, like the FORMS verb,
prints file items on such forms as invoices, checks, and order forms.
Unlike the FORMS and SFORMS verbs, which list one item per page,
REPT (and SREPT) can list multiple items as subpages on a single page.
Using REPT allows you to explicitly position data either on the terminal
or on a printer page according to x- (column) and y- (row) coordinates.

Ultimate systems do not have the REPT and SREPT verbs. Instead,
subpages are implemented with the M option used with LIST or SORT in
conjunction with a forms generation expression. See the FORMS and

Appendix A: ACCESS Commands 221

REPT

SFORMS verbs, and Chapter 7, "Forms Generation," for more
information about the M option.

222

REPT [DieT 1 filename [items 1 [selection 1 output [modifiers 1
[(options) 1

DICT specifies the file dictionary.

filename

items

selection

output

modifiers

is the name of the file.

is the list of individual item IDs or an item
selection expression. Enclose each item 10 in
single quotes.

specifies one or more conditions that data in an
item must meet to be listed on a form. For a
complete description of selection expression
syntax, see the LIST verb.

is the list of attributes to be output on the form.
Each attribute specified to be output must be
associated with a print code. All forms
generation statements must contain at least one
print code. Print codes are described below in the
section "Print Codes."

Print limiting output specifications specify which
values from multivalued attributes are to be
included in the report. Use relational operators
and values immediately following the name of the
multi valued attribute. Enclose values in double
quotes or backslashes.

include one or more keywords that modify the
appearance of the form. These parameters affect
headings, footings, and more. For complete
information about modifiers, see Chapter 4,
"Formatting Reports," and Appendix B,
"ACCESS Keywords."

The following modifiers behave somewhat
differently when used with forms generation
verbs: BREAK-ON, FOOTING, HOR-SUPP,
HEADING, and ID-SUPP. These modifiers are

Pick ACCESS

options

REPT

described in the section "Forms Generation
Modifiers."

include one or more single-character codes that
specify the report format and direct or modify
output. They must be enclosed in parentheses,
can be entered in any order, and need not be
separated by spaces or any delimiters such as
commas. For complete information about using
these parenthetical options, see Appendix B,
"ACCESS Keywords."

In addition to the standard ACCESS options, the
following options are also available:

A allows you to check printer alignment.

B prints a prestored "background" form
along with the data specified in the REPT
statement.

Z on multi page forms, resets footing page
number to one.

These nonstandard options are described in the
section "Forms Generation Options."

After REPT is entered, the system prompts for subpage size:

Subpage size>

Enter the number of lines each subpage should contain. For example, to
define 6 subpages on each page of 62 lines (2 lines are reserved for the
heading), enter 10. Each subpage extends the full width of the page.

The system does not split items; if an entire subpage will not fit at the
bottom of a page, the system prints the subpage on the next page.

REPT applies the format specified in the command line to the output
specifications. REPT prints one item per form; a form can be either
single-page or multipage. Data can be printed anywhere on a page, and
can be printed on just one page or on every page of a form. In addition to
specifying how the data is to be printed on a form, REPT can be used to
specify the layout of the form itself.

Appendix A: ACCESS Commands 223

REPT

The @W and @D print codes (described in the next section, "Print
Codes") enable you to define vertical windows in which the data for
multivalued attributes can be output. If the data in a multivalued attribute
does not fit in a window, the remaining data is printed on the next page. A
form can contain up to six separate windows.

Ultimate systems do not support the @W and @D codes. Their functions
are implemented by the WINDOW keyword. See Chapter 7 for more
information.

As was mentioned earlier, the FORMS and SFORMS verbs print one item
per page. REPT and SREPT can be used to print more than one item on a
page.

Print Codes

Each attribute name included on a form must be associated with a print
code as follows:

@code (X,Y [,z 1) : attribute-name [1 ,n]

To define a character string that prints in a specified location on the form,
use the following syntax:

@code (x,y [,Z 1) : "string" [1,n]

code is the print code associated with the attribute. The
available print codes are shown in Table A-2.

x is the horizontal position (column) on the page
where the data begins. The leftmost position is
column O.

y is the vertical position (row) on the page where
the data begins. The top row is row 0, which is
reserved for the heading.

z is extra data required by the @W and @D print
codes.

attribute-name is the name of the attribute whose data is printed
at the specified position.

224 Pick ACCESS

string

n

REPT

is a character string that is printed at the specified
position.

prints only the first n characters of the data for
this attribute.

The following table summarizes the available print codes.

Print Code

@[A](x,y)

@C(x,y)

@D(x,y,z)

Table A-2. Print Codes.

Description

Prints the data for an attribute on every page of a
multipage form. The "A" is optional.

Creates an audit trail for a series of forms. The @C
code can also be used to serialize the forms. To
suppress serialization numbers on the form (but not in
the audit file), specify (-\) in place of the x- and y­
coordinates. (You must use either the x-y coordinates
or -\ with the@C code.)

When you use the @C print code, the system prompts
for the audit file and starting number:

Audit File>
Enter the name of an existing file that will be used to
track each form that is generated.

Starting Number>
Enter the starting serialization number for the forms.
This number will appear on the form at the position
specified for the @C-formatted attribute. The
information on each form will also be stored as an
item in the audit file.

See Chapter 7, "Forms Generation," for more
information about audit trails.

Not available on all systems. The @D print code
prints data for multi valued attributes in double-depth
windows so you can define two lines of output at a
time. z specifies the bottommost row of a window
whose topmost row is defined by y. See also the
WINDOW keyword.

You must add an S to the end of the x parameter for
an attribute to appear on every second output line.

Appendix A: ACCESS Verbs 225

REPT

@F(x,y) Prints the data for an attribute on only the fIrst page of
a multipage form.

@L(x,y) Prints the data for an attribute on only the last page of
a multipage form.

@M(x,y,"text") Prints the specified text on all but the last page of a
multipage form. The data for the attribute prints on
the last page of the form. On a single-page format
form, the data for the attribute is printed.

@W(x,y,z) Not available on all systems. The @W print code
prints data for multivalued attributes in windows. x
specifIes the columns where the attribute values are to
start being printed. z specifIes the bottommost row of
a window whose topmost row is defIned by y. See
also the WINDOW keyword.

The system does not check whether output data exceeds the page width set
by the TERM verb. The justification (V fTYP) of the specified attribute in
combination with the maximum number of characters (V /MAX) and the
column position (specified by x) determine the width of the data displayed
on the form.

For complete information about using print codes, see Chapter 7, "Forms
Generation. "

Forms Generation Modifiers

When used with forms generation verbs, the following modifiers behave
somewhat differently than they do with other ACCESS verbs. For more
information about how these modifiers work with forms generation
verbs, see Chapter 7, "Forms Generation."

BREAK-ON

The data line for the BREAK-ON modifier is treated like any other output
specification when it is printed.

Generally, forms generation verbs will not use the BREAK-ON, TOTAL,
and GRAND-TOTAL modifiers.

226 Pick ACCESS

REPT

HEADING and FOOTING

Headings and footings cannot output on a form using x-y coordinates;
they are output in separate reserved areas. Conversely, data specified by
the output parameter cannot be placed in the areas reserved for headings
and footings. By default, row 0 is reserved for headings and row I is
reserved for a blank line that separates the heading from the report. If a
multiple-line heading is specified for either headings or footings, the
system reserves the number of lines needed for the text. The blank line is
replaced by the specified multiple-line heading.

HDR-SUPP

Forms generation verbs automatically suppress column headings, but they
still generate the one-line heading that lists the time, date, and page
number. HDR-SUPP suppresses this one-line heading.

ID-SUPP

Forms generation verbs automatically suppress item IDs, so this modifier
is unnecessary in a forms generation statement. If you want to include
item IDs on a form, create an item in the dictionary that has an attribute
number (AMC) of O. Then include an output specification referring to
this item in the forms generation statement.

Forms Generation Options

The following nonstandard options can be specified with REPT: A, B,
andZ.

The A Option

The A option is used to verify the page layout before the actual forms are
generated. The "A" option runs a printer-alignment routine. This routine

Appendix A: ACCESS Commands 227

REPT

prints the first form on the terminal screen or printer, showing text
(except for headings and footings) as Xs. This option can be used only if
the current SP-ASSIGN statement includes the C and the I options. (See
the SP-ASSIGN verb for more details.)

The following prompt appears if the A option is included in the forms
generation statement:

Align? Y=cr/N>

Before you respond to this prompt, manually set the printer at the top of
the form. Then press the RETURN key to display or print the data as Xs.
Repeat this process as many times as you need until you get the Xs to print
where you want them. Then enter "N" at the prompt to print the forms
themselves.

The B Option

B prints a background form composed of previously created text or
graphics. It is printed on every page of a form. To use the B option, you
must already have created a background form (background forms are
created with the Editor). This background form can be used to print
fom1s on standard paper instead of on preprinted forms. Background
forms also make it possible to use printer control characters (for
underlining, etc.) that apply to specific printers.

Design a background form so that it is not overwritten by the reserved
heading rows 0 and 1, and does not overwrite the data placed on the form
with print codes.

The following prompt appears if the B option is included in the forms
generation statement:

Background File & Item:

Enter the name of the background file item using the following format:

[DieT I filename item-ID

228 Pick ACCESS

REPT

The Z Option

Z is used with the FOOTING modifier. It resets the page number in the
footing back to 1 at the beginning of each multipage form. Use the
HDR-SUPP modifier with the Z option to prevent an incompatible (not
reset) page number from appearing in the heading.

S-DUMP: Copies sorted items to magnetic tape.

The S-DUMP verb transfers a copy of all or selected file items in sorted
order to magnetic tape. This verb also creates a tape label and writes an
End-Of-File (EOF) mark on the tape after the transfer is complete.

S-DUMP [DieT I filename [items I [selection I [sort I
[HEADING" text" I [modifiers I [(options) I

DIeT

filename

items

selection

sort

text

modifiers

specifies the file dictionary. When copying
dictionary items, S-DUMP does not copy any File
Definition items to tape.

is the name of the file.

is the list of individual item IDs or an item
selection expression. Enclose each item ID in
single quotes.

specifies one or more conditions that data in an
item must meet to be copied. For a complete
description of selection expression syntax, see the
LIST verb.

specifies which attributes to sort by and whether
to sort items in ascending or descending order.
See the SORT verb for a complete list of the
modifiers used to define sort expressions.

is added to the standard tape label via the
HEADING modifier.

include one or more keywords that specify the
report format. These parameters affect headers,

Appendix A: ACCESS Commands 229

S-DUMP

options

footers, spacing, totalling column figures,
control breaks, and more. For complete
information about using these keywords, see
Chapter 4, "Formatting Reports."

The following modifiers operate differently with
T-DUMP:

HDR-SUPP suppresses the creation of a tape
label.

ID-SUPP suppresses listing of item IDs
during the copy-to-tape operation.

include one or more single-character codes that
specify the report format and direct or modify
output. They must be enclosed in parentheses,
can be entered in any order, and need not be
separated by spaces or any delimiters such as
commas. For complete information about using
these parenthetical options, see Appendix B,
"ACCESS Keywords."

Before using S-DUMP, use T-ATT to attach the tape unit and set the tape
record length. You can select a block length, or you can accept the system
default block length of 4000 bytes for 1/2-inch tape or 16,896 bytes for
1/4-inch cartridge tape. In addition, the logical tape unit should already
have been selected with the T -SELECT verb.

If the tape's write protection is on or if no write ring is present, the
following message is displayed:

WRITE PROTECTED
CONTINUE/QUIT (C/Q)?

Remove the write protection or install a write ring, then enter "c" to
continue, or enter "Q" to quit.

S-DUMP automatically writes a label to the tape in the following format:

[DieT] filename

You can add text to this label with the text parameter, or you can suppress
the tape label completely by including the HDR-SUPP keyword in the
S-DUMP command line.

230 Pick ACCESS

S-DUMP

For information about reading a tape created with S-DUMP, see the
T -LOAD verb.

SAVE·LIST: Saves a select-list.

The SAVE-LIST verb names and saves a select-list that was created with
one of the following verbs: SELECT, SSELECT, NSELECT,
QSELECT, and FORM-LIST. Once the select-list has been saved, it can
be retrieved at any time with the GET -LIST verb and used again.
SAVE-LIST must be entered immediately after you create a select-list.

SAVE-LIST list-name

list-name specifies the name of the saved select-list.

If you have previously saved a select-list with the same name, the system
overwrites the old select-list with the new one without asking for
confirmation.

If a select-list is saved to the system POINTER-FILE (in the SYSPROG
account), it can be retlieved for use by any user from any account.

SELECT: Selects items for further processing.

The SELECT verb creates a temporary select-list of file items to be
processed by the next TCL or ACCESS statement, or by other processors
such as the Editor, PICK/BASIC, or PROC. Creating a select-list is a
useful way to define and operate on a subset of items in a database.

SELECT [DICT 1 filename [items 1 [selection 1 [output 1

DICT

filename

items

specifies the file dictionary.

is the name of the file.

is a list of individual item IDs or an item
selection expression. Enclose each item 10 in
single quotes. If you do not specify items,
SELECT selects all items in filename.

Appendix A: ACCESS Commands 231

SELECT

selection

output

specifies one or more conditions that data in an
item must meet to be included in the select-list.
For a complete description of selection
expression syntax, see the LIST verb.

is the name of one or more attributes whose
values are to be selected. Each value becomes a
separate element in the select-list. If output is
specified, no item IDs will be selected.

SELECT creates a temporary select-list containing item IDs or data
values of items specified by items or the selection expression. The items
referenced by the select-list will be processed by the next verb you
execute. For instance, before invoking the Editor you might create a
select-list as a way of specifying which items you want to edit.

((ff' Only the statement immediately following the
SELECT statement will have access to the select-list.
In other words, you must use the select-list
immediately, or you lose it!

To permanently save the select-list, use the SAVE-LIST verb. Once a
select-list is saved, you can retrieve it at any time with the GET-LIST
verb.

A select -list can reference data in any file, not just the file specified in the
original SELECT statement. If two files have similar items with the same
item IDs, you can create a select-list from one file, then use it to operate
on items from the other file.

*SFORMS: Lists items on fOnTIS in sorted order.

Not included in the SMA standards. SFORMS is a forms generation verb
and is not available on all systems. The SFORMS verb prints file items in
sorted order on such forms as invoices, checks, and order forms. Using
SFORMS allows you to explicitly position data either on the terminal or
on a printer page according to x- (column) and y- (row) coordinates.
SFORMS prints one item per form.

232 Pick ACCESS

SFORMS

Ultimate systems use a modified expression of the SFORMS verb syntax.
The SFORMS verb itself is not supported by Ultimate; instead, aforms
generation expression can be included in the SORT verb syntax. Forms
generation expressions have essentially the same syntax as they do in the
SFORMS verb, except that the verb used is SORT instead of FORMS.
Other differences in usage are noted in the following pages.

SFORMS [DieT 1 filename [items 1 [selection 1 [sort 1 output
[modifiers 1 [(options) 1

DICT

filename

item-list

selection

sort

output

specifies the file dictionary.

is the name of the file.

is the list of individual item IDs or an item
selection expression. Enclose each item 10 in
single quotes.

specifies one or more conditions that data in an
item must meet to be listed on a form. For a
complete description of selection expression
syntax, see the LIST verb.

specifies which attributes to sort and whether to
sort them in descending or ascending order. See
the SORT verb for a description of the four sort
modifiers.

is the list of attributes to be output on the form.
Each attribute specified to be output must be
associated with a print code. All forms
generation statements must contain at least one
print code. Print codes are described below in the
section "Print Codes."

Print limiter output specifications specify which
values from multivalued attributes are to be
included in the report. Use relational operators
and values immediately following the name of the
multivalued attribute. Enclose values in double
quotes or backslashes.

Appendix A: ACCESS Commands 233

SFORMS

modifiers

options

234

include one or more keywords that modify the
appearance of the form. These parameters affect
headings, footings, and more. For complete
information about modifiers, see Chapter 4,
"Formatting Reports," and Appendix B,
"ACCESS Keywords."

The following modifiers behave somewhat
differently when used with forms generation
verbs: BREAK-ON, FOOTING, HDR-SUPP,
HEADING, and ID-SUPP. These modifiers are
described in the "Forms Generation Modifiers"
section of the FORMS verb.

include one or more single-character codes that
specify the report format and direct or modify
output. They must be enclosed in parentheses,
can be entered in any order, and need not be
separated by spaces or any delimiters such as
commas. For complete informatIon about using
these parenthetical options, see Appendix B,
"ACCESS Keywords."

In addition to the standard ACCESS options, the
following options are also available:

A allows you to check printer alignment.

B prints a prestored "background" form
along with the data specified in the
SFORMS statement.

M specifies the number of lines to be listed for
each subpage. Not available on all systems.

Z on multi page forms, resets footing page
number to one.

These nonstandard options are fully described in
the "Forms Generation Options" section of the
FORMS verb.

Pick ACCESS

SFORMS

SFORMS applies the format specified in the command line to the output
specifications. SFORMS prints one item per form; a form can be either
single-page or multipage. Data can be printed anywhere on a page, and
can be printed on just one page or on every page of a form. In addition to
specifying how the data is to be printed on a form, SFORMS can be used
to specify the layout of the form itself.

The @W and @D print codes (described in the next section, "Print
Codes") make it possible to define vertical windows in which the data for
multivalued attributes can be output. If the data in a multivalued attribute
does not fit in a window, the remaining data is printed on the next page. A
form can contain up to six separate windows.

Ultimate systems use a modified version of the FORMS verb syntax. The
FORMS verb itself is not supported by Ultimate; instead, a forms
generation expression can be included in the LIST verb syntax. Forms
generation expressions have essentially the same syntax as they do in the
FORMS verb, except that the verb used is LIST instead of FORMS. Other
differences in usage are noted in the following pages.

The REPT and SREPT verbs can be used to print more than one item on a
page.

Print Codes

Each attribute name included on a form must be associated with a print
code as follows:

@code (X,Y [,z 1) : attribute-name [1 ,n 1

To define a character string that prints in a specified location on the form,
use the following syntax:

@code(X,Y [,z 1) : "string" [1 ,n 1

code

x

is the print code associated with the attribute. The
available print codes are shown in Table A-3.

is the horizontal position (column) on the page
where the data begins. The leftmost position is
column O.

Appendix A: ACCESS Commands 235

SFORMS

y is the vertical position (row) on the page where
the data begins. The top row is row 0, which is
reserved for the heading.

z is extra data required by the @D and @W print
codes.

attribute-name is the name of the attribute whose data is printed
at the specified position.

string is a character string that is printed at the specified
position.

n prints only the first n characters of the data for
this attribute.

Table A-3 summarizes the available print codes.

Print Code

@[A](x,y)

@C(x,y)

@D(x,y,z)

@F(x,y)

@L(x,y)

236

Table A-3. Print Codes

Description

Prints the data for an attribute on every page of a
multipage form. The "An is optional.

Creates an audit trail for a series of forms. The @C
code can also be used to serialize the forms. To
suppress serialization numbers on the form (but not in
the audit file), specify (-I) in place of the x and y
coordinates. (You must use either the x-y coordinates
or-l with the@Ccode.)

Not available on all systems. the @D print code
prints data for multivalued attributes in double-depth
windows. This makes it possible to define two lines
of output at a time. z specifies the bottom-most row
of a window whose top-most row is defined by y.

See also the WINDOW keyword.

You must add an S to the end of the x parameter for
an attribute to appear on every second output line.

Prints the data for an attribute on only the first page of
a multi page form.

Prints the data for an attribute on only the last page of
a multipage form.

Pick ACCESS

SFORMS

@M(x,y,"text") Prints the specified text on all but the last page of a
multi page fonn. The data for the attribute prints on
the last page of the fonn. On a single-page fonn, the
data for the attribute is printed.

@W(x,y,z) Not available on all systems. The @W print code
prints data for multivalued attributes in windows. x
specifies the columns where attribute values are to
start being printed. z specifies the bottom-most row
of a window whose top-most row is defined by y.
See also the WINDOW keyword.

For complete information about using print codes, see the FORMS verb
and Chapter 7, "Forms Generation."

SORT: Generates reports in sorted order from a database.

The SORT verb produces a sorted and formatted report which can be
displayed on the screen or sent to the printer. SORT produces a display
almost identical to that of the LIST command, except in sorted order.

SORT [file-modifiers 1 filename [items 1 [selection 1 [sort 1 [output 1
[modifiers 1 [(options)]

file-modifiers can be DICT or ONLY. DICT specifies the file
dictionary. ONLY suppresses the default output
specification and displays item IDs only.

filename is the name of the file.

items is the list of individual item IDs or an item
selection expression. Enclose each item 10 in
single quotes. The system sorts these items in the
order that you specify with sort.

selection specifies one or more conditions that data in an
item must meet to be included in the report. For a
complete description of selection expression
syntax, see the LIST verb.

sort specifies which attributes to sort by and whether
to sort items in ascending or descending order.

Appendix A: ACCESS Commands 237

SORT

output

modifiers

options

238

You can use the following modifiers in a sort
expression:

BY

BY-DSND

BY-EXP

sorts items in ascending order
by the specified attribute.

sorts items in descending order
by the specified attribute.

sorts a multivalued attribute in
ascending order and produces a
separate line for each value.

BY-EXP-DSND sorts a multivalued attribute in
descending order and produces
a separate line for each value.

If more than one sort expression is specified in a
SORT command line, the system sorts these
attributes from left to right (the leftmost sort
expression is the most significant).

is a list of the names of one or more attributes
whose data is to be included in the report. output
can also be a user-defined phrase that contains any
ACCESS parameters except a verb or filename.

Print limiting output specifications specify which
values from multivalued attributes are to be listed
in the report. Use relational operators and values
immediately following the name of the
multi valued attribute. Enclose values in double
quotes or backslashes.

include one or more keywords that specify the
format of the report. These parameters affect
headers, footers, spacing, totalling column
figures, control breaks, and more. For complete
information about using these keywords, see
Chapter 4, "Formatting Reports," and Appendix
B, "ACCESS Keywords."

include one or more single-character codes that
specify the report format and direct or modify

Pick ACCESS

SORT

output. They must be enclosed in parentheses,
can be entered in any order, and need not be
separated by spaces or any delimiters such as
commas. For complete information about using
these parenthetical options, see Appendix B,
"ACCESS Keywords."

SORT ·ITEM: Displays sorted items.

The SORT-ITEM verb displays all data elements for a list of sorted items.
This verb is useful for producing a sorted listing of data or dictionary
items, arranged according to the data elements of a specified attribute. It
is also useful for displaying programs and Procs. SORT-ITEM combines
the functions of the COPY processor with the ability of ACCESS to select
specified items.

SORT -ITEM [DieT 1 filename [items 1 [selection 1 [sort 1
[modifiers 1 [(options) 1

DICT

filename

items

selection

sort

modifiers

specifies the file dictionary.

is the name of the file.

is the list of individual item IDs or an item
selection expression. Enclose each item 10 in
single quotes.

specifies one or more conditions that data in an
item must meet to be included in the report. For a
complete description of selection expression
syntax, see the LIST verb.

specifies which attributes to sort by and whether
to sort items in ascending or descending order.
See the SORT verb for a complete list of the
modifiers used to define sort expressions.

include one or more keywords that specify the
report format. These parameters affect headers,
footers, spacing, and more. For complete
information about using these keywords, see

Appendix A: ACCESS Verbs 239

SORT-ITEM

options

Chapter 4, "Fonnatting Reports," and Appendix
B, "ACCESS Keywords."

include one or more single-character codes that
specify the report fonnat and direct or modify
output. They must be enclosed in parentheses,
can be entered in any order, and need not be
separated by spaces or any delimiters such as
commas. For complete infonnation about using
these parenthetical options, see Appendix B,
"ACCESS Keywords."

If no items are specified or selected, all items in the file are listed. By
default, the SORT-ITEM verb sorts and displays items on the screen. The
display includes line numbers for each attribute, unless the S option is
used.

SORT -LABEL: Lists data in label format and in sorted order.

The SORT-LABEL verb allows you to specify a fonnat for specialized
block listings such as mailing labels, and to display or print them in sorted
order. SORT-LABEL can be used to define how many blocks (or items)
are displayed across each page or screen and how many rows (or
attributes) are displayed for each block. SORT-LABEL also defines the
number of vertical lines and horizontal spaces between blocks, the amount
of indent from the left margin of the page or screen, and the maximum
width of a row.

240

SORT -LABEL [DieT I filename [items I [selection I [sort I
[output I [modifiers I [(options) I

DIeT

filename

items

specifies the file dictionary.

is the name of the file.

is the list of individual item IDs or an item
selection expression. Enclose each item 10 in
single quotes. If items is not specified, the
SORT-LABEL sorts all items in filename in the
order that you specify with sort.

Pick ACCESS

selection

sort

output

modifiers

options

SORT-LABEL

specifies one or more conditions that data in an
item must meet to be included. For a complete
description of selection expression syntax, see the
LIST verb.

specifies which attributes to sort by and whether
to sort items in ascending or descending order.
See the SORT verb for a complete list of the
modifiers used to define sort expressions.

is a list of attributes to be included in the labels.
output can also be a user-defined phrase that
contains any ACCESS parameters except a verb
or filename.

Print limiting output specifications specify which
values from multivalued attributes are to be
included. Use relational operators and values
immediately following the name of the
multivalued attribute. Enclose values in double
quotes or backslashes.

include one or more keywords that specify the
report format. These parameters affect headers,
footers, spacing, totalling column figures, control
breaks, and more. For complete information
about using these keywords, see Chapter 4,
"Formatting Reports," and Appendix B,
"ACCESS Keywords."

Use the COL-HDR-SUPP modifier or the C
option to suppress the header (page number, time,
and date) at the top of each page of the report.
This modifier also suppresses pagination and all
top-of-forms, thus producing a continuous forms
format without page breaks.

include one or more single-character codes that
specify the report format and direct or modify
output. They must be enclosed in parentheses,
can be entered in any order, and need not be
separated by spaces or any delimiters such as

Appendix A: ACCESS Verbs 241

SORT-LABEL

commas. For complete information about using
these parenthetical options, see Appendix B,
"ACCESS Keywords."

After SORT-LABEL is entered, the system displays the following
prompt:

?

You can now determine the format of the label. Enter a response in the
following format:

count, rows, skip, indent, size, space [,C I

count

row

skip

indent

size

space

C

is the number of labels (items) across each page
or screen.

is the number of lines printed for each label.
Remember to count the item ID as one line. The
item ID is automatically included in the labels
unless you use the ID-SUPP modifier in the
query.

is the number of lines to skip vertically between
labels.

is the number of indented spaces from the left
margin to the label. Zero (O) is a valid response.

is the maximum width for the data contained in
each attribute (in other words, the width of each
label in columns).

is the number of horizontal spaces between labels.

specifies that null attributes should not be printed.
Otherwise, null attributes appear as all blanks.
This parameter is optional.

The size parameter cannot exceed the page width (80 characters for
terminals, and 80/132 characters for printers). Calculate label width as
follows:

(count * (size + space) + indent) <= (current page width)

where current page width is the value defined by the TERM or
SET-TERM verbs for the terminal or printer.

242 Pick ACCESS

SORT-LABEL

If a value other than zero is specified for the indent parameter, the system
prompts you to define headers for each row in a label:

?

The number of ? prompts corresponds to the value entered earlier for
rows. At each? prompt, enter the desired header. To avoid defining a
header, simply press the RETURN key. Defined headers will appear at the
left margin in the indent area of the listing.

SREFORMAT: Restructures and sorts items.

The SREFORMA T verb restructures and sorts file items and sends output
to a file or to magnetic tape.

SREFORMAT [file-modifiers 1 filename [items 1 [selection 1 [sort 1
[output 1 [modifiers 1 [(options) 1

file-modifiers can be DICT or ONLY. DICT specifies the file
dictionary. ONLY suppresses the default output
specification and displays item IDs only.

filename is the name of the file.

items is the list of individual item IDs or an item
selection expression. Enclose each item 10 in
single quotes.

selection specifies one or more conditions that data in an
item must meet to be transferred. For a complete
description of selection expression syntax, see the
LIST verb.

sort specifies which attributes to sort by and whether
to sort items in ascending or descending order.
See the SORT verb for a complete list of the
modifiers used to define sort expressions.

output is the list of attribute-names whose values are to
be transferred. If you do not include this
parameter, SREFORMA T transfers only
item IDs. You can also specify a phrase.

Appendix A: ACCESS Commands 243

SREFORMAT

modifiers

options

Print limiting output specifications specify which
values from multi valued attributes are to be
transferred. Use relational operators and values
immediately following the name of the
multivalued attribute.

include one or more keywords that specify the
report format. These parameters affect headers,
footers, spacing, and more. For complete
information about using these keywords, see
Chapter 4, "Formatting Reports," and Appendix
B, "ACCESS Keywords."

include one or more single-character codes that
specify the report format and direct or modify
output. They must be enclosed in parentheses,
can be entered in any order, and need not be
separated by spaces or any delimiters such as
commas. For complete information about using
these parenthetical options, see Appendix B,
"ACCESS Keywords."

The contents of any attribute in the original file can be made the item IDs
for the items in the restructured destination file. This is useful for
creating a new file that consists of a subset of the attributes in an existing
file. The values that are to be made into item IDs must be unique,
however; a null or any other set of identical values will become the
item ID of one item, and the data in those items will be stored as
multi values in the item in the destination file.

After SREFORMAT is entered with accompanying parameters, the
system displays the following prompt:

FILE NAME:

At this point you can perform one of three different operations:

244

1. Transfer items to magnetic tape. To do so, enter the word TAPE at
the prompt. You must have already attached the tape unit and set
the tape record length with T-ATT. Each item is written to tape as
a separate physical tape record (or block). If an item is larger than
the tape's block size, the next tape record is used.

Pick ACCESS

SREFORMAT

2. Transfer items to another file. To do so, enter the name of an
existing file as follows:

[DieT 1 filename

The system copies the selected or specified items to the destination
filename.

If you specify attributes for output and include the ID-SUPP
modifier in the ACCESS query, the values in the first attribute of
the output specification become the item IDs for the items copied
to the destination file. The second attribute listed in the output
specification becomes Attribute 1 in the destination file, the third
attribute becomes Attribute 2, etc. The destination file can thus
consist of a subset of the attributes defined for the original file.

If you restructure files in this way and you want to generate reports
from the destination file, you could copy the Attribute Definition
items from the dictionary of the original file to the dictionary of the
destination file and then edit the attribute numbers to reflect the
new item structure.

3. Transfer items within the same file. To do so, press the RETURN
key without entering a response.

W Use SREFORMAT with care! Most ACCESS verbs
generate reports without altering the actual data stored
in a database. SREFORMAT, however, is an
exception, since it can create new file items and alter
existing file items.

*SREPT: Lists mUltiple items on forms in sorted order.

Not included in the SMA standards. SREPT is a forms generation verb
and is not available on all systems. The SREPT verb, like the SFORMS
verb, prints file items on such forms as invoices, checks, and order forms
in sorted order. Unlike the FORMS and SFORMS verbs, which list one
item per page, SREPT (and REPT) can list multiple items as sub pages on a
single page. Using SREPT allows you to explicitly position data either on

Appendix A: ACCESS Commands 245

SREPT

the terminal or on a printer page according to x- (column) and y- (row)
coordinates.

Ultimate systems do not have the REPT and SREPT verbs. Instead,
subpages are implemented with the M option used with LIST or SORT in
conjunction with a forms generation expression. See the FORMS and
SFORMS verbs, and Chapter 7, "Forms Generation," for more
information about the M option.

246

SREPT [DieT 1 filename [items 1 [selection 1 [sort 1 output
[modifiers 1 [(options) 1

DICT

filename

items

selection

sort

output

specifies the file dictionary.

is the name of the file.

is the list of individual item IDs or an item
selection expression. Enclose each item ID in
single quotes.

specifies one or more conditions that data in an
item must meet to be listed on a form. For a
complete description of selection expression
syntax, see the LIST verb.

specifies which attributes to sort and whether to
sort them in descending or ascending order. See
the SORT verb for a description of the four sort
modifiers.

is the list of attributes to be output on the form.
Each attribute specified to be output must be
associated with a print code. All forms
generation statements must contain at least one
print code. Print codes are described in the
section "Print Codes."

Print limiting output specifications specify which
values from multivalued attributes are to be
included in the report. Use relational operators
and values immediately following the name of the
multivalued attribute. Enclose values in double
quotes or backslashes.

Pick ACCESS

modifiers

options

SREPT

include one or more keywords that modify the
appearance of the form. These parameters affect
headings, footings, and more. For complete
information about modifiers, see Chapter 4,
"Formatting Reports," and Appendix B,
"ACCESS Keywords."

The following modifiers behave somewhat
differently when used with forms generation
verbs: BREAK-ON, FOOTING, HDR-SUPP,
HEADING, and ID-SUPP. These modifiers are
described in the "Forms Generation Modifiers"
section of the REPT verb.

include one or more single-character codes that
specify the report format and direct or modify
output. They must be enclosed in parentheses,
can be entered in any order, and need not be
separated by spaces or any delimiters such as
commas. For complete information about using
these parenthetical options, see Appendix B,
"ACCESS Keywords."

In addition to the standard ACCESS options, the
following options are also available:

A allows you to check printer alignment.

B prints a prestored "background" form
along with the data specified in the
SFORMS statement.

Z on multi page forms, resets footing page
number to one.

These nonstandard options are fully described in
the "Forms Generation Options" section of the
REPT verb.

After SREPT is entered, the system prompts for subpage size:

Subpage size>

Appendix A: ACCESS Commands 247

SREPT

Enter the number of lines each subpage should contain. For example, to
define 6 subpages on each page of 62 lines (2 lines are reserved for the
heading), enter 10. Each subpage extends the full width of the page.

The system does not split items; if an entire subpage will not fit at the
bottom of a page, the system prints the subpage on the next page.

SREPT applies the format specified in the command line to the output
specifications. SREPT prints one item per form; a form can be either
single-page or multipage. Data can be printed anywhere on a page, and
can be printed on just one page or on every page of a form. In addition to
specifying how the data is to be printed on a form, SREPT can be used to
specify the layout of the form itself.

The @W and @D print codes (described in the next section, "Print
Codes") can be used to define vertical windows in which the data for
multi valued attributes can be output. If the data for a multivalued
attribute does not fit in a window, the remaining data is printed on the
next page. A form can contain up to six separate windows.

Ultimate systems use a modified version of the FORMS verb syntax. The
FORMS verb itself is not supported by Ultimate; instead, a forms
generation expression can be included in the LIST verb syntax. Forms
generation expressions have essentially the same syntax as they do in the
FORMS verb, except that the verb used is LIST instead of FORMS. Other
differences in usage are noted in the following pages.

As was mentioned earlier, the FORMS and SFORMS verbs print one item
per page in sorted order. REPT and SREPT can be used to print more
than one item on a page.

Print Codes

Each attribute name included on a form must be associated with a print
code as follows:

@code (x,y [,z 1) : attribute-name [1 ,n 1

248 Pick ACCESS

SREPT

To define a character string that prints in a specified location on the form,
use the following syntax:

@code (x,y [,z 1) : "string" [1 ,n 1

code is the print code associated with the attribute. The
available print codes are shown in Table A-4.

x is the horizontal position (column) on the page
where the data begins. The leftmost position is
column O.

y is the vertical position (row) on the page where
the data begins. The top row is row 0, which is
reserved for the heading.

z is extra data required by the @D and @W print
codes.

attribute-name is the name of the attribute whose data is printed
at the specified position.

string is a character string that is printed at the specified
position.

n prints only the first n characters of the data for
this attribute.

Table A-4 summarizes the available print codes.

Print Code

@[Aj(x,y)

@C(x,y)

@D(x,y,z)

Table A-4. Print Codes.

Description

Prints the data for an attribute on every page of a
multipage form. The "A" is optional.

Creates an audit trail for a series of forms. The @C
code can also be used to serialize the forms. To
suppress serialization numbers on the form (but not in
the audit file), specify (-\) in place of the x and y
coordinates. (You must use either the x-y coordinates
or -I with the @C code.)

Not available on all systems. The @D print code
prints data for multivalued attributes in double-depth
windows. This makes it possible to define two lines

Appendix A: ACCESS Verbs 249

SREPT

of output at a time. z specifies the bottommost row of
a window whose top-most row is defined by y. See
also the WINDOW keyword.

You must add an S to the end of the x parameter for
an attribute to appear on every second output line.

@F(x.y) Prints the data for an attribute on only the first page of
a multipage form.

@L(x,y) Prints the data for an attribute on only the last page of
a multipage form.

@M(x,y,"text") Prints the specified text on all but the last page of a
multi page form. The data for the attribute prints on
the last page of the form. On a single-page form, the
data for the attribute is printed.

@W(x.y.z) Not available on all systems. The @W print code
prints data for multi valued attributes in windows. x
specifies the columns where attribute values are to
start being printed. z specifies the bottom-most row
of a window whose topmost row is defined by y. See
also the WINDOW keyword.

For complete information about using print codes, see the REPT verb and
Chapter 7, "Forms Generation."

SSELECT: Selects and sorts items for further processing.

The SSELECT verb creates a temporary select-list of sorted file items to
be processed by the next TCL or ACCESS statement, or by other
processors such as the Editor, PICK/BASIC, or PROC. Creating a
select-list is a useful way to define and operate on a subset of items in a
database.

250

SSELECT [DICT I filename [items I [selection I [sort I [output I

DICT

filename

items

specifies the file dictionary.

is the name of the file.

is a list of individual item IDs or an item
selection expression. Enclose each item 10 in
single quotes. If you do not specify items,
SSELECT selects all items infilename.

Pick ACCESS

selection

sort

output

SSELECT

specifies one or more conditions that data in an
item must meet to be included in the select-list.
For a complete description of selection
expression syntax, see the LIST verb.

specify which attributes to sort by and whether to
sort items in ascending or descending order. See
the SORT verb for a complete list of the
modifiers used to define sort expressions.

is the name of one or more attributes whose
values are to be selected. Each value becomes a
separate element in the select-list. If output is
specified, no item IDs.will be selected.

SSELECT creates a temporary select-list containing sorted item IDs or
data values of items specified by items or the selection expression. The
items referenced by the select-list will be processed by the next verb you
execute. For instance, before invoking the Editor you might create a
select-list as a way of specifying which items you want to edit.

((Y> Only the statement immediately following the
SSELECT statement will have access to the select-list.
In other words, you must use the select-list
immediately, or you lose it!

To permanently save the select-list, use the SAVE-LIST verb. Once a
select-list is saved, you can retrieve it at any time with the GET-LIST
verb.

A select-list can reference data in any file, not just the file specified in the
original SSELECT statement. If two files have similar items with the
same item IDs, you can create a select-list from one file, then use it to
operate on items from the other file.

ST AT: Lists statistics for a specified attribute.

The STAT verb totals the numeric elements contained in a specified
attribute of a file. It also counts the number of items selected and averages
the data contained in the attribute.

Appendix A: ACCESS Commands 251

STAT

STAT [DieT] filename [items 1 [selection 1 [attribute-name 1
[modifiers 1 [(options) 1

DICT

filename

items

selection

specifies the file dictionary.

is the name of the file.

is the list of individual item IDs or an item
selection expression. Enclose each item ID in
single quotes.

specifies one or more conditions that data in an
item must meet to be included in the total. For a
complete description of selection expression
syntax, see the LIST verb.

attribute-name is the attribute that you want to total. If you do
not specify an attribute, the item IDs are totalled.

modifiers include one or more keywords that specify the
report format. These parameters affect headers,
footers, spacing, totalling column figures,
control breaks, and more. For complete
information about using these keywords, see
Chapter 4, "Formatting Reports," and Appendix
8, "ACCESS Keywords."

options include one or more single-character codes that
specify the report format and direct or modify
output. They must be enclosed in parentheses,
can be entered in any order, and need not be
separated by spaces or any delimiters such as
commas. For complete information about using
these parenthetical options, see Appendix B,
"ACCESS Keywords."

The output of the STAT command is displayed in the following format:

252

STATISTICS OF attribute
TOTAL = tot AVERAGE = avg COUNT = ct
WHERE

attribute is the name of the attribute for which the statistics
are produced.

Pick ACCESS

tot

avg

ct

STAT

is the total of the data values in the attribute.

is the total of the data values divided by the count.

is the number of items selected.

SUM: Totals the data elements in a numeric attribute.

The SUM verb totals the data elements in a numeric attribute.

SUM [DieT 1 filename [items 1 [selection] [attribute-name]
[modifiers 1 [(options)]

DICT

filename

items

selection

specifies the file dictionary.

is the name of the file.

is the list of individual item IDs or an item
selection expression. Enclose each item 10 in
single quotes.

specifies one or more conditions that data in an
item must meet to be included in the sum. For a
complete description of selection expression
syntax, see the LIST verb.

attribute-name is the attribute that you want to sum. If you do
not specify an attribute, the item IDs are
summed.

mod!fiers include one or more keywords that specify the
report format. These parameters affect headers,
footers, spacing, totalling column figures,
control breaks, and more. For complete
information about using these keywords, see
Chapter 4, "Formatting Reports," and Appendix
B, "ACCESS Keywords."

options include one or more single-character codes that
specify the report format and direct or modify
output. They must be enclosed in parentheses,
can be entered in any order, and need not be
separated by spaces or any delimiters such as

Appendix A: ACCESS Verbs 253

SUM

commas. For complete information about using
these parenthetical options, see Appendix B,
"ACCESS Keywords."

-DUMP: Copies items to magnetic tape.

The T -DUMP verb transfers a copy of all or selected file items in random
order to magnetic tape. This verb also creates a tape label and writes an
End-Of-File (EOF) mark on the tape after the transfer is complete.

254

T-DUMP [DieT 1 filename [items 1 [selection 1 [HEADING "text "1
[modifiers 1 [(options) 1

DICT

filename

items

selection

text

modifiers

specifies the file dictionary. When copying
dictionary items, T-DUMP does not copy any File
Definition items to tape.

is the name of the file.

is the list of individual item IDs or an item
selection expression. Enclose each item ID in
single quotes.

specifies one or more conditions that data in an
item must meet to be copied. For a complete
description of selection expression syntax, see the
LIST verb.

is added to the standard tape label via the
HEADING modifier.

include one or more keywords that specify the
report format. These parameters affect headers,
footers, spacing, totalling column figures,
control breaks, and more. For complete
information about using these keywords, see
Chapter 4, "Formatting Reports," and Appendix
B, "ACCESS Keywords."

The following modifiers operate differently with
T-DUMP:

ickACCESS

options

T-DUMP

HDR-SUPP suppresses the creation of a tape
label.

ID-SUPP suppresses listing of item IDs
during the copy-to-tape operation.

include one or more single-character codes that
specify the report format and direct or modify
output. They must be enclosed in parentheses,
can be entered in any order, and need not be
separated by spaces or any delimiters such as
commas. For complete information about using
these parenthetical options, see Appendix B,
"ACCESS Keywords."

Before using T-DUMP, use T-ATT to attach the tape unit and set the tape
record length. You can select a block length, or you can accept the system
default block length of 4000 bytes for 1/2-inch tape or 16,896 bytes for
1/4-inch cartridge tape. In addition, the logical tape unit should already
have been selected with the T -SELECT verb.

If the tape's write protection is on or if no write ring is present, the
following message is displayed:

WRITE PROTECTED
CONTINUE/QUIT (C/Q)?

Remove the write protection or install a write ring, then enter "c" to
continue, or enter "Q" to quit.

T-DUMP automatically writes a label to the tape in the following format:

[DieT 1 filename

You can add text to this label with the text parameter, or you can suppress
the tape label completely by including the HDR-SUPP keyword in the
T-DUMP command line.

For information about reading a tape created with T-DUMP, see the
T-LOAD verb.

Appendix A: ACCESS Verbs 255

T-LOAD

T -LOAD: Restores items from magnetic tape to disk.

The T-LOAD verb restores file items that were previously copied to tape
with either the T-DUMP or S-DUMP verbs. These file items can be
copied only to an existing file.

T-LOAD [DieT 1 filename [items 1 [selection 1 [modifiers 1
[(options) 1

DICT specifies the file dictionary.

filename

items

selection

modifiers

options

is the name of the file.

is the list of individual item IDs or an item
selection expression. Enclose each item ID in
single quotes.

specifies one or more conditions that data in an
item must meet to be restored. For a complete
description of selection expression syntax, see the
LIST verb.

include one or more keywords that specify the
report format. These parameters affect headers,
footers, spacing, totalling column figures,
control breaks, and more. For complete
information about using these keywords, see
Chapter 4, "Formatting Reports," and Appendix
B, "ACCESS Keywords."

include one or more single-character codes that
specify the report format and direct or modify
output. They must be enclosed in parentheses,
can be entered in any order, and need not be
separated by spaces or any delimiters such as
commas. For complete information about using
these parenthetical options, see Appendix B,
"ACCESS Keywords."

Before using T -LOAD, attach the tape unit and set the tape record length
by entering T -A IT. You can select a block length, or you can accept the
system default block length of 4000 bytes for 1/2-inch tape or 16,896

256 Pick ACCESS

T-LOAD

bytes for l/4-inch cartridge tape. In addition, the logical tape unit should
already have been selected with the T-SELECT verb.

When the restore operation is complete, the tape is positioned at the
End-Of-File (EOF) mark.

T-LOAD will not restore any items from tape that already exist in the file.
Use the 0 option if you want to overwrite existing items.

You can retrieve and list data from tape without restoring it by using the
TAPE modifier with ACCESS verbs such as LIST and LIST-ITEM. For
more information about the TAPE modifier, see Chapter 4, "Formatting
Reports," and Appendix B, "ACCESS Keywords.".

For information about copying items to magnetic tape, see the T-DUMP
and S-DUMP verbs.

Appendix A: ACCESS Commands 257

APPENDIX B

ACCESS Keywords

Appendix B contains an alphabetic quick reference of all ACCESS keywords,
with examples illustrating how to use them. Also included are tables listing
the keywords according to their different categories: connectives, relational
operators, modifiers, and options. Keywords that are not included in the
SMA standards are marked with an asterisk.

Table 1: Connectives.

Selection connectives select items that meet certain conditions:

*LIKE

*MATCHING

*SAID

*SPOKEN

USING
*WITHIN

Select items that "sound like" a specified constant. Not
implemented on all systems. (On Prime INFORMATION
and uniVerse systems, LIKE is synonymous with
MATCHING.)
Select items whose data matches a specified constant. Not
implemented on all systems.
Select items that "sound like" a specified constant. Not
implemented on all systems.
Select items that "sound like" a specified constant. Not
implemented on all systems.
Use a different file as dictionary.
List subitems.

Appendix B: ACCESS Keywords 259

Logical connectives select items that meet multiple conditions:

All conditions must be met. AND, &

OR, ! One or more conditions must be met (default).

Throwaway connectives make an ACCESS sentence sound more like an
English-language sentence:

A DATA ITEMS
AN
ANY
ARE

FILE
FOR
IN

OF
OR
THE

Table 2: Relational Operators.

Relational operators compare an attribute with a constant or with another
attribute:

EQ, =
NE, #
LT, <, BEFORE
GT, >, AFTER
LE, <=, =<
GE, >=, =>
NO, NOT

Equal to (default)

Not equal to

Less than

Greater than

Less than or equal to

Greater than or equal to

Null

Table 3: Modifiers.

File modifiers modify the filename and must precede it in the ACCESS
query.

DIeT
ONLY

260

Select items from the file dictionary.

List item IDs only.

Pick ACCESS

Selection expression modifiers specify the conditions that must be met in
order for items to be selected:

EACH

EVERY

IF

TAPE
WITH

WITH NO

WITHOUT

All values in a multivalued attribute must meet criteria for the
item to be selected.
All values in a multivalued attribute must meet criteria for the
item to be selected.
Values in an attribute must meet specified criteria for the item
to be selected.
Select items from a tape.
Values in an attribute must meet specified criteria for the item
to be selected.
If values in an attribute do not meet specified criteria, the
item is selected.
If values in an attlibute do not meet specified criteria, the
item is selected.

Sort expression modifiers specify the sort order in SORT statements:

BY Sort in ascending order.
BY -DSND Sort in descending order.
BY -EXP Sort multivalues in ascending order.
BY -EXP-DSND Sort multivalues in descending order.

Output modifiers modify the ACCESS report:

BREAK-ON Break output when a specified attlibute's value changes.
CAPTION Print text for total line
COL-HDR-SUPP Suppress default column headings, page headings, and

end-of-list message.
DBL-SPC
DET-SUPP
FOOTING
GRAND-TOTAL
HEADING
HDR-SUPP
ID-SUPP
LPTR
NOPAGE
SUPP
TOTAL

Double-space items.
Suppress detail lines.
Print a specified footing.
Print text for Total line.
Print a specified heading.
Suppress the page heading and end-of-list message.
Suppress item IDs.
Direct output to printer.
Suppress pagination for tenninal output.
Suppress the page heading and end-of-list message.
Sum values for a specified attribute.

Appendix B: ACCESS Keywords 261

Table 4: Options.

Options must be enclosed in parentheses, can be entered in any order, and
need not be separated by spaces or delimiters:

262

B
C

D
*F
H
I

N
*0

P
*T
*y

Suppress initial tenninalline feed before output.

Suppress default column headings, page headings, and end-of-list message.

Suppress detail lines. With COPY-LIST, delete original select-list.

Generate fonn feed.
Suppress page heading and end-of-list message.
Suppress item IDs.
Suppress pagination for tenninal output.
Overwrite item (t-load).

Direct output to printer.

Direct output to tenninal (default).

Print translation of A-correlative DICT entries.

Pick ACCESS

=

=

Synonym for "Equal To." See EQ for description.

Synonym for "Not Equal To." See NE for description.

>

Synonym for "Greater Than." See GT for description.

>=

Synonym for "Greater Than or Equal To." See GE for description.

<

Synonym for "Less Than." See LT for description.

<=

Synonym for "Less Than or Equal To." See LE for description.

Appendix B: ACCESS Keywords 263

A/AN

A/AN

A and AN are throwaway connectives that can be used in an ACCESS
query to make it sound more like an English-language sentence. They
have no effect.

Example:

The following two statements produce the same report:

>SORT ORDERS WITH A TOTAL.AMT > "100"
>SORT ORDERS WITH TOT AL.AMT > "100"

The A connective is ignored in the first statement.

AFTER

AND

Synonym for "Greater Than." See GT for description.

AND is a logical connective used to specify multiple selection expressions.
AND specifies that all conditions must be met for an item to be selected.

AND takes precedence over the OR connective when both appear in the
same query. A maximum of nine AND clauses can be included in a single
ACCESS query.

OR is assumed when a logical connective is not explicitly entered between
two selection expressions.

Example:

The following example lists all McCoys who live in Berkeley:

264

>LlST CUSTOMERS WITH LAST-NAME = "MCCOY" AND
CITY = "BERKELEY" LAST-NAME FIRST-NAME

Pick ACCESS

ANY

ARE

ANY

ANY is a throwaway connective that can be used in an ACCESS query to
make it sound more like an English-language sentence. It has no effect.

Example:

The following two statements produce the same report:

>LlST ANY ORDERS WITH TOTAL.AMT < "100" AND> "25"
>LlST ORDERS WITH TOTAL.AMT < "100" AND> "25"

The ANY connective is ignored in the first statement.

ARE is a throwaway connective that can be used in an ACCESS query to
make it sound more like an English-language sentence. It has no effect.

Example:

The following two statements produce the same report:

>LlST CUSTOMERS IF ORDERS ARE> "200"
>LlST CUSTOMERS IF ORDERS> "200"

The ARE connective is ignored in the first statement.

BEFORE

Synonym for "Less Than." See LT for description.

BREAK-ON

BREAK-ON is an output modifier used with LIST and SORT verbs that
specifies which attribute is to be used to create breaks within a report. A
control break (indicated by three asterisks or by user-specified text)
occurs when the data for the specified attribute changes.

The BREAK-ON modifier is often used with the TOTAL modifier to
calculate subtotals for numeric data. Normally the data is sorted by the

Appendix B: ACCESS Keywords 265

BREAK-ON

same attribute as the one specified by BREAK-ON so that the same set of
data is processed and displayed together.

To set control breaks for a multi valued attribute, use the BY -EXP or
BY-EXP-DSND modifiers to display individual detail lines for each
value.

The syntax for the BREAK-ON modifier is:

BREAK-ON attribute [.. [text] ['options'] [text]"]

attribute

text

is the attribute whose changing data causes a
break. ACCESS evaluates the first 24 characters
of the data, from left to right. The break is
displayed in this attribute's column.

is printed on the break line. This text replaces the
three asterisks that are output by default. Enclose
the text in double quotes.

options affect the processing of the break. Options must be enclosed in
single quotes. They include:

B

D

L

P

R

U

266

(Break.) B includes the value of the attribute
causing the break in the heading or footing. It
must be used in conjunction with the B option of
the HEADING or FOOTING modifiers.

(Data.) D suppresses printing of the break line if
there is only one line of detail for a section, but
leaves a blank line between items.

(Line.) L suppresses the blank line preceding the
break line. The L option has no effect when
specified with the U option.

(Page.) P begins a new page after every control
break.

(Rollover.) R forces all data associated with a
control break to appear on the same page.

(Underline.) U underlines all totals for each
control break.

Pick ACCESS

v

BREAK-ON

(Value.) V inserts the current data for the
attribute into the text on the break line.

(Two single quotes.) "inserts one single quote in
text.

In the ACCESS query, the break attribute should be entered immediately
after the BREAK-ON modifier and its accompanying parameters.

The attribute specified by the BREAK-ON modifier is automatically
included in the output specifications for the report, so it does not need to
be specified separately in the ACCESS query.

To suppress the printing of the BREAK-ON attribute, place a " \ " in
Attribute 3 and a "0" in Attribute 10 of the Attribute Definition item (in
the file dictionary) that defines the BREAK-ON attribute.

Appendix B: ACCESS Keywords 267

BREAK-ON

Example:

The following example sorts orders by last name and breaks the display at
the occurrence of each new name:

>SORT ORDERS BY LAST-NAME BREAK-ON LAST-NAME
.. 'L' .. TOTAL.AMT

'PAGE 2 15:46:36 01 NOV 1989

BY

ORDERS .•.• LAST-NAME •.• TOTAL.AMT.

10113 JENKINS $357.00

10101 JOHNSON $18.00
10107 JOHNSON $799.00
10111 JOHNSON $126.00

10102 LEARY $ 72.00
10108 LEARY $252.00
10112 LEARY $231.00
10114 LEARY $47.00

10106 ORLANDO $63.00

The L option suppressed the printing of the blank line before the break
line.

BY is a modifier that sorts items in ascending order by comparing the
ASCII values of data in the specified attribute. The designated attribute is
called a sort-key. Multiple BY clauses can be included in an ACCESS
query to specify primary and secondary sort-keys. The sort-keys are
processed from left to right.

268 Pick ACCESS

BY

The syntax for the BY modifier is:

BY attribute [BY attribute ... 1

If BY is used with a multivalued attribute, only the first value will be
sorted. To sort the individual values in a multi valued attribute, use the
BY-EXP modifier.

Example:

The following example sorts customers by last name and first name.
LAST-NAME is the primary sort-key and FIRST-NAME is the
secondary sort-key:

>SORT CUSTOMERS BY LAST-NAME BY FIRST-NAME
LAST-NAME FIRST-NAME

PAGE 1 10:58:13 01 NOV 1989

CUSTOMERS. Last-Name First-Name

MASHX5777 ASH MARY
JBOHA5422 BOHANNON JOHN
JBUCK6488 BUCKLER JULIE
DEDGE6635 EDGECOMB DAVID
HJENK7129 JENKINS HAROLD
AJOHN5396 JOHNSON ALICE
HJOHN7265 JOHNSON HENRY
BLEAR6803 LEARY BILL
AORLA5993 ORLANDO AMY
JPEER5993 PEERCE JAN
SPIRS5289 PIRS SANDRA

11 ITEMS LISTED.

>

The lohnsons were sorted first by last name, then by first name.

Appendix B: ACCESS Keywords 269

BY-DSND

BY-DSND

BY -DSND is a modifier that sorts items in descending order. The
designated attribute is called a sort-key. Multiple BY-DSND clauses can
be included in an ACCESS query to specify primary and secondary
sort-keys. The sort-keys are processed from left to right.

The syntax for the BY-DSND modifier is:

BY-DSND attribute [BY-DSND attribute ... 1

If BY-DSND is used with a multivalued attribute, only the first value is
sorted. To sort all the values in a multivalued attribute, use the
BY-EXP-DSND modifier.

Example:

The following example sorts orders in descending order by amount:

>SORT ORDERS BY-DSND TOTAL.AMT TOTAL.AMT DATE

PAGE 1 11:14:03 01 NOV 1989

ORDERS AMOUNT DATE•

10110 $1088.00 25 DEC 1987
10104 $827.00 27 MAR 1988
10107 $761. 00 17 MAR 1988
10113 $340.00 02 JUN 1988
10108 $240.00 30 MAY 1988
10105 $229.00 17 MAR 1988
10112 $220.00 22 MAR 1988
10120 $160.00 04 SEP 1988
10109 $140.00 22 OCT 1987
10111 $120.00 29 SEP 1988
10115 $109.00 11 JUL 1988
10102 $69.00 09 APR 1988
10106 $60.00 16 APR 1988
10121 $60.00 19 MAY 1988
10114 $45.00 13 DEC 1987
10116 $40.00 28 SEP 1989
10119 $40.00 23 JUN 1987
10122 $40.00 19 OCT 1987
10123 $40.00 01 AUG 1989
10124 $40.00 24 JUN 1987

270 Pick ACCESS

BY-EXP

BY-EXP

BY-EXP is a modifier that first separates values in a multivalued attribute
and then sorts them in ascending order. EXP stands for exploded,
meaning that each value in the multivalued attribute is sorted separately.

The syntax for the BY-EXP modifier is:

BY-EXP attribute [BY-EXP attribute ...]

Example:

The following example sorts orders by last name, then sorts the
multi valued item TITLE. The BREAK-ON modifier separates the report
by LAST-NAME:

>SORT ORDERS BY LAST-NAME BY-EXP TITLE
BREAK-ON LAST-NAME TITLE

PAGE 13:56:41 01 NOV 1989

ORDERS LAST-NAME ... TITLE ...•••....•....•.••...•......•

10122

10105
10115
10115
10105
10105

10113
10113

10101
10107

BUCKLER

u*

EDGECOMB
EDGECOMB
EDGECOMB
EDGECOMB
EDGECOMB

JENKINS
JENKINS

JOHNSON
JOHNSON

WRITING COMMERCIAL APPLICATIONS

DATABASE MANAGEMENT SYSTEMS
DATABASE MANAGEMENT SYSTEMS
OPERATING SYSTEM CONCEPTS
WORD PROCESSING
WRITING COMMERCIAL APPLICATIONS

OPERATING SYSTEM CONCEPTS
WORD PROCESSING

DATABASE MANAGEMENT SYSTEMS
DATABASE MANAGEMENT SYSTEMS

If the BY modifier had been used in place of BY-EXP, TITLE would
have been sorted by the first title of each order only. The remaining titles
would not have been sorted.

Appendix B: ACCESS Keywords 271

BY-EXP-DSND

~Y-EXP-DSND

BY-EXP-DSND is a modifier that first separates the values in a
multivalued attribute and then sorts them in descending order. EXP
stands for exploded, meaning that each value in the multivalued attribute
is sorted separately.

The syntax for the BY-EXP-DSND modifier is:

BY-EXP-DSND attribute [BY-EXP-DSND attribute ... 1

Example:

The following example sorts orders by last name, then sorts the
multi valued item PRICE in descending order. The BREAK-ON modifier
separates the report by LAST -NAME:

>SORT ORDERS BY LAST-NAME BY-EXP-DSND PRICE
BREAK-ON LAST-NAME SHORT.TITLE

PAGE 2 14:17:26 01 NOV 1989

ORDERS. . .. LAST-NAME... SHORT TITLE.......................... PRICE ...

10122

10105
10105
10115
10105
10115

10113
10113

10107
10111

272

BUCKLER

**"

EDGECOMB
EDGECOMB
EDGECOMB
EDGECOMB
EDGECOMB

JENKINS
JENKINS

JOHNSON
JOHNSON

WRITING

WRITING
WORD
OPERATING
DATABASE
DATABASE

WORD
OPERATING

OPERATING
OPERATING

$24.50

$24.50
$22.98
$18.75
$9.95
$9.95

$22.98
$18.75

$18.75
$18.75

Pick ACCESS

C

BY -EXP-DSND

If the BY-DSND modifier had been used in place of BY-EXP-DSND,
PRICE would have been sorted by the price of the first title of each order
only. The remaining titles would not have been sorted.

C is an option that suppresses the printing of the default page heading
(page, time, and date), column headings, and end-of-list message
(COL-HDR-SUPP).

Example:

The following example suppresses the printing of the default headings:

>SORT CUSTOMERS BY STATE STATE (C)

AORLA5993 CA
JPEER5993 CA
DEDGE6635 FL
HJENK7129 IN
JBUCK6488 IN
MASl-!X5777 IN
AJOHN5396 KY
BLEAR6803 MA
JBOHA5422 MA
HJOHN7265 NB
SPIRS5289 NC

>

COL-HDR-SUPP

COL-HDR-SUPP is an output modifier that suppresses the printing ofthe
default page heading (page, time and date), column headings, and
end-of-list message.

The C option can be used in place of COL-HDR-SUPP.

Appendix B: ACCESS Keywords 273

D

COL-HDR-SUPP

Example:

The following example suppresses the printing of the default headings:

>SORT CUSTOMERS BY STATE STATE COL-HDR-SUPP

AORLA5993 CA
JPEER5993 CA
DEDGE6635 FL
HJENK7129 IN
JBUCK6488 IN
MASRX5777 IN
AJOHN5396 ICY
8LEAR6803 MA
JaOHA5422 MA
HJOHN7265 Nfl
SPIRS5289 NC

>

D is an option that suppresses detail lines in ACCESS statements
(DET -SUPP).

~ When the D option is used with the COPY-LIST verb,
it deletes the source select-list after copying it.

DATA

DATA is a throwaway connective that can be used in an ACCESS query to
make it sound more like an English-language sentence. It has no effect.

Example:

The following two statements produce the same report:

>LlST DATA ORDERS
>LlST ORDERS

The DATA connective is ignored in the first statement.

274 Pick ACCESS

DBL-SPC

DBL-SPC

DBL-SPC is an output modifier that double-spaces between items in a
report. Values in multivalued attributes are single-spaced.

Example:

The following example generates a report with a space between each item:

>SORT ORDERS BY DATE WITH DATE < "12/31/87" TITLE
DATE DBL-SPC

PAGE 1

ORDERS ...• TITLE •..•......•..••.....••....•••.

10119

10124

10122

10109

10114

10110

OPERATING SYSTEM CONCEPTS

OPERATING SYSTEM CONCEPTS

WRITING COMMERCIAL APPLICATIONS

WORD PROCESSING

DATABASE MANAGEMENT SYSTEMS

OPERATING SYSTEM CONCEPTS
WRITING COMMERCIAL APPLICATIONS
WORD PROCESSING
DATABASE MANAGEMENT SYSTEMS

6 ITEMS LISTED.

>

DET-SUPP

11:46:26 01 NOV 1989

DATE ...•...

23 JUN 1987

24 JON 1987

19 OCT 1987

22 OCT 1987

13 DEC 19B7

25 DEC 1987

DET -SUPP is an output modifier that suppresses detail lines when it is
used in a query that contains the BREAK-ON or TOTAL modifiers. Only
break lines are displayed.

The D option can be used in place of DET-SUPP.

Appendix B: ACCESS Keywords 275

DET-SUPP

Example:

The following example suppresses detail lines:

>SORT ORDERS BY-EXP TITLE BREAK-ON TITLE TOTAL
TOTAL.AMT DET-SUPP

PAGE 1 11:49:22 01 NOV 1989

ORDERS TITLE•.........•............ AMOUNT

DATABASE MANAGEMENT SYSTEMS $3146.00

OPERATING SYSTEM CONCEPTS $3914.00

WORD PROCESSING $2724.00

WRITING COMMERCIAL APPLICATIONS

$2844.00

$12628.00

35 ITEMS LISTED.

>

All orders are sorted by title and the amount is then totalled for each title,
but the report only prints the name of each title once, along with the total
amount. Detail lines for each title ordered are not printed.

DIeT

DICT is a file modifier that generates a report from the file dictionary
rather than the data file. DICT must be specified immediately before the
filename in an ACCESS query.

276 Pick ACCESS

DIeT

Example:

The following example lists all Attribute Definition items with an
attribute number of 3:

>LIST DICT CUSTOMERS WITH A/AMC = "3"

EACH

EACH is a selection modifier that selects an item only if every value in a
multivalued attribute meets the specified condition. EACH must be
specified immediately after the WITH modifier.

Synonym: EVERY

Example:

The following example lists only those items for which all values in the
multivalued attribute LINE.AMT are greater than or equal to 100:

>LlST ORDERS WITH EACH LlNE.AMT GE "100"

*END-WINDOW

EQ

Not implemented on all systems. Ultimate uses the END-WINDOW
modifier to end a phrase that defines a window for printing multivalues
on forms. WINDOW phrases are used in conjunction with forms
generation expressions. A WINDOW phrase must always be followed by
the END-WINDOW modifier. See the WINDOW modifier for more
information.

EQ is the relational operator EQUAL TO, used in selection expressions to
compare data in an attribute to a constant.

Synonyms: EQUAL, =

Appendix B: ACCESS Keywords 277

EQ

Example:

The following example lists all customers whose last name is Johnson:

>LlST CUSTOMERS WITH LAST-NAME EQ "JOHNSON"

EQUAL

Synonym for "Equal To." See EQ for description.

EVERY

*F

FILE

Synonym for EACH. See EACH for description.

F is an option that generates a form-feed for each item. Used only with
the LIST-ITEM, and SORT-ITEM verbs.

FILE is a throwaway connective that can be used in an ACCESS query to
make it sound more like an English-language sentence. It has no effect.

Example:

The following two statements produce the same report:

>SORT THE CUSTOMERS FILE BY LAST-NAME
>SORT CUSTOMERS BY LAST-NAME

Both the connectives THE and FILE are ignored in the first statement.

FOOTING

FOOTING is an output modifier that defines a footing for the bottom of
each page of a report.

The syntax for the FOOTING modifier is:

278 Pick ACCESS

FOOTING

FOOTING"[text] ['options'] [text] [·options·]

text is text that appears in the footing.

options can be interspersed anywhere within the text in order to modify'
those parts of the text. They must be enclosed in single quotes. options
include the following:

B [n J

C

D

F[nJ

l[nJ

L

P [n]

PN

T

(Break.) B inserts the value of the attribute
causing a control break. It must be used in
conjunction with the B option of the BREAK-ON
modifier. n inserts the control-break value
left-justified in a field of n blanks.

(Center.) C centers text.

(Date.) D inserts the current date in the format
dd mmm yyyy.

(File.) F inserts the filename. n inserts the
filename left-justified in a field of n blanks.

(Item.) I inserts the item ID. n inserts the item
ID left-justified in a field of n blanks.

(Line-feed.) L inserts a carriage return and a
line-feed.

(Page.) P inserts the page number, right-justified
in a field of four blanks. n inserts the page
number left-justified in a field of n blanks.

PN inserts the page number, left-justified.

(Time.) T inserts the current time and date in the
format hh:mm:ss dd mmm yyyy. The time
appears in 24-hour format.

(Two single quotes.) , , prints a single quote in the
footing text.

Text and options can appear in any order. FOOTING displays the
information in the order specified. Spaces can be used anywhere in the
footing text to make it more legible. The entire string of text and options
must be enclosed in double quotes.

Appendix B: ACCESS Keywords 279

FOOTING

Example:

The following example produces a report from the BOOKS file that
includes a four-line footing:

>SORT BOOKS BY PRICE TITLE PRICE HDR-SUPP
ID-SUPP FOOTING "Current Titles and Prices'CL'====
===
==============='CLL'PAGE:'P'
FILE: 'F' ITEM: 'I'"

TITLE PRICE .. .

DATABASE MANAGEMENT SYSTEMS
OPERATING SYSTEM CONCEPTS
WRITING COMMERCIAL APPLICATIONS
WORD PROCESSING

$9.00
$20.00
$20.00
$20.00

Current Titles and Prices

PAGE: 1 FILE: BOOKS ,ITEM: QR02

OR

The C option centers text, and the L option inserts a line feed. The P
option prints the page number, the F option prints the current filename,
and the I option prints the current item ID.

FOR is a throwaway connective that can be used in an ACCESS query to
make it sound more like an English-language sentence. It has no effect.

280 Pick ACCESS

GE

Example:

The following two statements produce the same report:

>LlST CUSTOMERS FOR STATE
>LlST CUSTOMERS STATE

The FOR connective is ignored in the first statement.

FOR

GE is the relational operator GREATER THAN OR EQUAL TO, used in
selection expressions to compare data in an attribute to a constant.

Synonym: >=

Example:

The following example sorts orders with amounts greater than or equal to
"100":

>SORT ORDERS WITH TOTAL.AMT GE "100" TOTAL.AMT

GRAND-TOTAL

GRAND-TOTAL is an output modifier that specifies text to be printed on
the Grand Total line of a report. The specified text is printed left-justified
in the first column of the report, replacing the three asterisks that
normally appear.

((ff' Text entered for the Grand Total should not exceed the
character-width specification for the first column; it
could overwrite the total figures.

The syntax for the GRAND-TOTAL modifier is:

GRAND-TOTAL" [text] ['options'] [text]"

text is the text to be printed on the Grand Total line of
the report.

Appendix B: ACCESS Keywords 281

G RAND· TOT AL

options must be enclosed in single quotes. They include the following:

L

p

U

(Line.) L suppresses the blank line that precedes
the Grand Total line. This option is ignored if the
U option is used in the same query.

(Page.) P prints Grand Totals on a separate page.

(Underline.) U underlines all totalled attributes
with a row of equal signs.

The entire string of text and options must be enclosed in double quotes.

Example:

The following report includes a Grand Total line that reads "TOTAL
SALES":

>SORT ORDERS BY·EXP TITLE BREAK·ON TITLE TOTAL
TOTAL.AMT GRAND·TOTAL "TOTAL SALES:'U' "

PAGE 3 15:35:18 01 NOV 1989

ORDERS. TI TLE. . . • . • • • • •• AMOUNT •.••

10108 WRITING COMMERCIAL APPLICATIONS
10110 WRITING COMMERCIAL APPLICATIONS
10112 WRITING COMMERCIAL APPLICATIONS
10120 WRITING COMMERCIAL APPLICATIONS
10122 WRITING COMMERCIAL APPLICATIONS
10123 WRITING COMMERCIAL APPLICATIONS

TOTAL SALES:

35 ITEMS LISTED.

>

The U option underlines the totalled attribute.

282

$236.50
$1301.13

$229.25
$196.00

$49.00
$49.00

$3259.11

$14084.67

Pick ACCESS

GT

H

GT

GT is the relational operator GREATER THAN, used in selection
expressions to compare data in an attribute to a constant.

Synonyms: >, AFTER

Example:

The following example sorts orders with amounts greater than" 1 00".

>SORT ORDERS BY TOTAL.AMT WITH TOTAL.AMT GT
"100" TOTAL.AMT

H is an option that suppresses the printing of the default page heading
(page, time, date) and the end-of-list message (HDR-SUPP).

Example:

The following example sorts customers by state and suppresses the default
page heading:

>SORT CUSTOMERS BY STATE STATE (H)

CUSTOMERS. STATE

AORLA5993 CA
JPEER5993 CA
DEDGE6635 FL
HJENK7129 IN
JBUCK6488 IN
MASHX5777 IN
AJOHN5396 KY
BLEAR6803 MA
JBOHA5422 MA
HJOHN7265 NB
SPIRS5289 NC

>

Appendix B: ACCESS Keywords 283

HDR-SUPP

HDR-SUPP

HDR-SUPP is an output modifier that suppresses the printing of the
default page heading (page, time, date) and the end-of-list message. When
used with the T-DUMP, S-DUMP, or T-LOAD verbs, HDR-SUPP
suppresses display of the tape label.

The H option can be used in place ofHDR-SUPP.

Synonym: SUPP

Example:

The following example sorts customers by state and suppresses the default
page heading:

>SORT CUSTOMERS BY STATE STATE HDR-SUPP

CUSTOMERS. STATE

AORLA5993 CA
JPEER5993 CA
DEDGE6635 FL
HJENK7129 IN
JBUCK6488 IN
MASHXS777 IN
AJOHN5396 KY
BLEAR6803 MA

JBOHA5422 MA

HJOHN7265 NB
SPIRS5289 NC

>

HEADING

HEADING is an output modifier that defines a heading to replace the
default heading for the top of each page of a report.

284 Pick ACCESS

HEADING

The syntax for the HEADING modifier is:

HEADING "[text] ['options'] [text] ['options'] ... "

text is text that appears in the heading.

options can be interspersed anywhere within the text to modify those parts
of the text. They must be enclosed in single quotes. options include the
following:

B [n]

C

D

F [n]

I[n]

L

P[n]

PN

T

(Break.) B inserts the value of the attribute
causing a control break. It must be used in
conjunction with the B option of the BREAK-ON
modifier. n inserts the control-break value
left-justified in a field of n blanks.

(Center.) C centers text.

(Date.) D inserts the current date in the format
dd mmm yyyy.

(File.) F inserts the filename. n inserts the
filename left-justified in a field of n blanks.

(Item.) I inserts the item ID. n inserts the item
ID left-justified in a field of n blanks.

(Line-feed.) L inserts a carriage return and a
line-feed.

(Page.) P inserts the page number, right-justified
in a field of four blanks. n inserts the page
number left-justified in a field of n blanks.

PN inserts the page number, left-justified.

(Time.) T inserts the current time and date in the
format hh:mm:ss dd mmm yyyy. The time
appears in 24-hour format.

(Two single quotes.) , , prints a single quote in the
heading text.

Text and options can appear in any order. HEADING displays the
information in the order specified. Spaces can be used anywhere in the

Appendix B: ACCESS Keywords 285

HEADING

heading text to make it more legible. The entire string of text and options
must be enclosed in double quotes.

Example:

The following example produces a report from the BOOKS file that
includes a four-line heading:

>SORT BOOKS BY PRICE TITLE PRICE ID-SUPP HEADING
"Current Titles and Prices'CL'=============
--
============='CL'PAGE: 'P' FILE:
'F' ITEM: 'IL' "

Current Titles and Prices
=============================--=============================--===_._--
PAGE: 1 FILE: BOOK-CATALOG ITEM: .NOl

TITLE•••.••.••••..••.•••• PRICE •..

DATABASE MANAGEMENT SYSTEMS
OPERATING SYSTEM CONCEPTS
WRITING COMMERCIAL APPLICATIONS
WORD PROCESSING

>

$9.95
$18.75
$22.96
$24.50

The C option centers text, and the L option inserts a line feed. The P
option prints the page number, the F option prints the current filename,
and the I option prints the current item ID.

I is an option that suppresses printing of item IDs in a report (lD-SUPP).

286 Pick ACCESS

I

Example:

The following example suppresses the printing of item IDs in a BOOKS
report:

>SORT BOOKS BY TITLE TITLE PRICE (I)

PAGE 12:16:05 01 NOV 1989

TITLE•....•................•.. PRICE ..•

DATABASE MANAGEMENT SYSTEMS
OPERATING SYSTEM CONCEPTS
WORD PROCESSING

$9.95
$18.75
$22.98
$24.50 WRITING COMMERCIAL APPLICATIONS

4 ITEMS LISTED.

>

ID-SUPP

ID-SUPP is an output modifier that suppresses the display of item IDs in a
report. Without this keyword, item IDs automatically appear as the first
column in a report in addition to the attributes explicitly specified in the
ACCESS query.

When used with the T-DUMP, S-DUMP, OR T-LOAD verbs, ID-SUPP
suppresses the listing of item IDs copied to or retrieved from magnetic
tape.

The I option can be used in place of ID-SUPP.

Example:

The following example suppresses the printing of item IDs in a BOOKS
report:

>SORT BOOKS BY TITLE TITLE PRICE ID-SUPP

Appendix B: ACCESS Keywords 287

IF

IN

PAGE 1 12:16:05 01 NOV 1989

TITLE ..•........................... PRICE ..•

DATABASE MANAGEMENT SYSTEMS
OPERATING SYSTEM CONCEPTS

$9.95
$18.75
$22.98
$24.50

WORD PROCESSING
WRITING COMMERCIAL APPLICATIONS

4 ITEMS LISTED.

>

Synonym for WITH. See WITH for description.

IN is a throwaway connective that can be used in an ACCESS query to
make it sound more like an English-language sentence. It has no effect.

Example:

The following two statements produce the same report:

>SORT THE ITEMS IN THE CUSTOMERS FILE BY
LAST-NAME

>SORT CUSTOMERS BY LAST-NAME

The connectives THE, ITEMS, IN, and FILE are ignored in the first
statement.

ITEMS

ITEMS is a throwaway connective that can be used in an ACCESS query
to make it sound more like an English-language sentence. It has no effect.

288 Pick ACCESS

LE

Example:

The following two statements produce the same report:

>SORT THE ITEMS IN THE CUSTOMERS FILE BY
LAST·NAME

>SORT CUSTOMERS BY LAST·NAME

ITEMS

The connectives THE, ITEMS, IN, and FILE are ignored in the first
statement.

LE is the relational operator LESS THAN OR EQUAL TO, used in
selection expressions to compare data in an attribute to a constant.

Synonym: <=

Example:

The following example sorts orders with amounts less than or equal to
"100":

>SORT ORDERS WITH TOTAL.AMT LE "100" TOTAL.AMT

* LIKE

Not implemented on all systems. ADDS Mentor uses the LIKE connective
to select items with a data element that "sounds like" the specified
constant. The LIKE connective converts an alphabetic text string into a
phonetic equivalent based on a Soundex algorithm.

Prime INFORMATION and uniVerse use LIKE to find data that matches
the specified constant. On those systems, LIKE is a synonym of
MATCHING.

Appendix B: ACCESS Keywords 289

LPTR

PTR

r

LPTR is an output modifier that sends a report to the line printer instead
of to the screen.

The P option can be used in place of LPTR.

Example:

The following example sends a report from the ORDERS file to the line
printer:

>SORT ORDERS BY DATE BREAK·ON DATE TOTAL.AMT
LPTR

LT is the relational operator LESS THAN, used in selection expressions
to compare data in an attribute to a constant.

Synonyms: <, BEFORE

Example:

The following example lists customers with a zip code less than "24767":

>LlST CUSTOMERS WITH ZIP LT "24767"

\1ATCHING

Not implemented on all systems. Prime INFORMATION and uniVerse
use MATCHING to find data that matches a specified constant or string.
See Chapter 3 for more information about string searching.

Synonyms: MATCHES, LIKE

N is an option that suppresses automatic paging on the terminal
(NOPAGE).

290 Pick ACCESS

NE

NO

NE

NE is the relational operator NOT EQUAL TO, used in selection
expressions to compare data in an attribute to a constant.

Synonyms: #, NOT, NO

Example:

The following example selects customers who do not live in California:

>SELECT CUSTOMERS WITH STATE NE "CA"

NO is a relational operator that selects items with a null value for a
specified attribute.

Synonym: #, NOT, NE

Example:

The following example lists customers who have no data in the ZIP
attribute:

>LlST CUSTOMERS WITH NO ZIP

NOPAGE

NOPAGE is a modifier that suppresses pagination so that a report scrolls
continuously up the screen.

The N option can be used in place of NOPAGE.

Example:

The following example lists all customers and suppresses pagination:

>LlST CUSTOMERS NOPAGE

Appendix B: ACCESS Keywords 291

NOT

NOT

Synonym for "Not Equal To." See NE for description.

*NOT.MATCHING

o

OF

Not implemented on all systems. Prime INFORMATION and uniVerse
use NOT. MATCHING to find data that does not matches a specified
constant or string. See Chapter 3 for more information about string
searching.

o is an option used with the T-LOAD verb to overwrite an existing item.

OF is a throwaway connective that can be used in an ACCESS query to
make it sound more like an English-language sentence. It has no effect.

Example:

The following two statements produce the same report:

>SORT ORDERS BY THE DATE BREAK-ON THE DATE
TOTAL OF THE AMOUNT

>SORT ORDERS BY DATE BREAK-ON DATE TOTAL
AMOUNT

The THE and OF connectives are ignored in the first statement.

ONLY

ONLY is a file modifier that suppresses the default output specifications
for a file and displays the item IDs only. It must immediately precede the
filename in an ACCESS query.

292 Pick ACCESS

OR

p

ONLY

Example:

The following example sorts the item IDs in the CUSTOMERS file
dictionary:

>SORT ONLY DICT CUSTOMERS

OR is a logical connective used to join mUltiple selection expressions. OR
specifies that only one of the specified conditions must be met for an item
to be selected.

The AND connective takes precedence over the OR connective when both
appear in the same query. This can be altered by enclosing in parentheses
the selection expression that is to be evaluated first.

OR is assumed when a logical connective is not explicitly entered between
two selection expressions.

Example:

The following example lists all customers in Maine, New Hampshire and
Vermont:

>LlST CUSTOMERS WITH STATE = "ME" OR STATE = "NH"
OR STATE = "VT" STATE

P is an option that sends output to the printer (LPTR).

*SAID

Not implemented on all systems. Prime INFORMATION and uniVerse
use SAID to select items with a data element that "sounds like" the
specified constant. The SAID connective converts an alphabetic text
string into a phonetic equivalent based on a Soundex algorithm.

Appendix B: ACCESS Keywords 293

SAID

Synonyms: SPOKEN,-

*SPOKEN

Not implemented on all systems. Prime INFORMATION and uniVerse
use SPOKEN to select items with a data element that "sounds like" the
specified constant. The SPOKEN connective converts an alphabetic text
string into a phonetic equivalent based on a Soundex algorithm.

Synonyms: SAID,-

supp
Synonym for HDR-SUPP. See HDR-SUPP for description.

*T

T is an option that sends output to the terminal (the default).

TAPE

THE

TAPE is a selection modifier that retrieves and displays items from a
T-DUMP tape. TAPE can be used only with the LIST, LIST-LABEL,
LIST-ITEM, SUM, STAT, ISTAT, HASH-TEST, and COUNT verbs.

Example:

The following example retrieves selected inventory items from magnetic
tape:

>lIST ORDERS WITH DATE < "20 MAR 1986" TOTAL.AMT
TAPE

THE is a throwaway connective that can be used in an ACCESS query to
make it sound more like an English-language sentence. It has no effect.

294 Pick ACCESS

Example:

The following two statements produce the same report:

>SORT THE CUSTOMERS FILE BY THE LAST·NAME
>SORT CUSTOMERS BY LAST·NAME

The connectives THE and FILE are ignored in the first statement.

TOTAL

THE

TOTAL is an output modifier that calculates and displays totals for
numeric attributes. It must be placed immediately before the name of the
attribute to be totalled.

The syntax for the TOTAL modifier is:

TOTAL attribute [limiters 1

attribute

limiters

is the name of the attribute to be totalled.

totals only data matching the specified criterion.
The criterion is expressed by a relational
operator and a constant. The constant should be
enclosed in double quotes or backslashes.

The total appears at the end of the report in the column of the specified
attribute. It is preceded and followed by a blank line.

The total is identified by three asterisks in the item ID column. These can
be replaced with any text by including the GRAND-TOTAL modifier in
the ACCESS query.

When the TOTAL modifier is used with the BREAK-ON modifier, the
report includes a subtotal for each control break as well as a total for the
whole report.

Example:

The following example produces a report that totals the amount for all
orders with an amount less than "100":

Appendix B: ACCESS Keywords 295

TOTAL

>LlST ORDERS WITH AMOUNT < "100" TOTAL AMOUNT

PAGE 1 15:12:49 01 NOV 1989

ORDERS AMOUNT ...•

10116 $40.00
10119 $40.00
10122 $40.00
10101 $18.00
10123 $40.00
10102 $69.00
10114 $45.00
10106 $60.00
10121 $60.00
10124 $40.00

*** $452.00

10 ITEMS LISTED.

>

USING

USING is a connective that generates a report using the Attribute
Definition items in a specified file rather than the data file's own
dictionary.

The syntax for the USING modifier is:

USING [DICT 1 filename

Example:

The following example produces a report from the OLD-CUSTOMERS
file using the Attribute Definition items in the CUSTOMERS dictionary:

>LlST OLD-CUSTOMERS USING DICT CUSTOMERS

296 Pick ACCESS

VERTICALLY

*VERTICALL Y

Not implemented on all systems. Prime INFORMATION and uniVerse
use VERTIC ALL Y to override the default columnar report format,
listing each item's data in a linear format, with data from each attribute
displayed on its own line. Multivalues are listed in columns underneath
their column headings.

Synonym: VERT

*WINDOW

Not implemented on all systems. Ultimate uses the WINDOW modifier to
begin a phrase that defines a window for printing multi values on forms.
WINDOW phrases are used in conjunction with forms generation
expressions.

The syntax for the WINDOW modifier is:

WINDOW @(x,Y,z [{ 1 12} J) [: "string" : @(n) : "string" ... J J

where x, y, and z specify the left-most column, top row, and bottom row
of the window. "1" and "2" specify whether each multivalue should
occupy one or two lines. A colon indicates concatenation. n specifies the
column postiion on the current line where string is to be printed or
displayed.

A WINDOW phrase must always be followed by the END-WINDOW
modifier.

WITH

WITH is a selection modifier that introduces a selection expression.

The syntax for the WITH connective is:

WITH [EACH J attribute-name [[rel-op I value-list I
[{ AND I OR } WITH [EACH I attribute-name [[rel-op I
value-list] ... I

Appendix B: ACCESS Keywords 297

WITH

EACH

attribute-name

rel-op

value-list

AND lOR

specifies that all values in a multi valued attribute
must meet the specified condition if the item is to be
included in the report.

is the name of the attribute whose data values are to
be compared to the specified condition.

can be any relational operator.

can be either one or more data values, or a
constant. Values should be enclosed in double
quotes.

specifies a compound expression. AND requires
that all conditions be met before an item is selected;
OR requires that only one of the conditions be met.

Multiple WITH expressions can be used in an ACCESS query and are
normally read left to right.

Synonym: IF

Example:

The following example lists all customers named Robert Smith:

>lIST CUSTOMERS WITH LAST-NAME "SMITH" AND WITH
FIRST-NAME "ROBERT"

The next example lists all orders with either a part description of
"SERIAL CABLE" or "CABLE - SERIAL":

'WITHIN

>lIST ORDERS WITH DESC = "SERIAL CABLE" OR
"CABLE - SERIAL"

WITHIN is a connective that retrieves subitems from a specified item.

298 Pick ACCESS

WITHIN

A file is comprised of items containing data stored as attributes, values, or
subvalues. In addition, subitems that provide a further description of the
item can also be included in the file. Subitems are stored in exactly the
same way as are regular items. To make a file item a subitem, its item ID
is stored as a value in an attribute containing subitems. Multiple subitems
can be made by storing item IDs as multivalues in the subvalue attribute.

Two conditions must be met in order for the WITHIN connective to
work. First, the item specified by the WITHIN connective must contain a
multivalued attribute whose values are item IDs (the subitems). Second,
in the file dictionary the D-pointer to the data file must contain the
following correlative in Attribute 8:

V;;amc

where ame is the number of the attribute containing the subitems. Both
the item specified by WITHIN and the attribute containing the subitems
must be in the same file.

The syntax for the WITHIN connective is:

WITHIN filename' item-ID '

filename

item-ID

is the name of the file.

is an item that contains an attribute with subitems
to be included in the report. Only one item ID
can be specified per statement. Enclose the item
ID in single quotes.

Each subitem encountered is assigned a level number. The item ID
specified by the WITHIN connective is Levell. If this item has subitems,
they are assigned Level 2. If Level 2's subitems have subitems, they are
assigned Level 3, etc., up to a maximum of 20 levels. Level numbers are
printed in the report in front of the item and its subitems.

Appendix B: ACCESS Keywords 299

WITHIN

Example:

In the following example, the multivalued attribute SUB-PROD contains
item IDs of the PRODUCT file. The following statement lists the item
"A2000-1234" and three levels of subitems referenced by it:

>LlST WITHIN PRODUCT 'A2000-1234' PROD# DESC
VALUE LOCATION SUB-PROD QOH IO-SUPP

E: 1 15:03:25 01 NOV 1989

8L Prod # •... Description Value. Location .. Sub-Prod .. On Hand

A2000-1234 SERVOS 0.73 R-123-8888 A2001-7811 73
A2001-8900
A2001-9112

A2001-7811 D MOTOR 0.55 R-17-1001 A2002-1000 643
A2002-1023

A2002-1000 D MOTOR PLATFORM 0.73 R-123-8888 58
A2002-1023 D MTR POWER UNIT 0.73 R-123-1002 89
A2001-8900 SERVO BOARD 0.12 L-44-1001 329
A2001-9112 SERVO HOUSING 1.09 L-17-189 A2002-1032 107

A2002-1566
A2002-1032 HOUSING SEALS 1.02 L-09-1889 768
A2002-1566 HOUSING PLATES 1.03 L-1-3309 A2004-1111 355
A2004-1111 HOUSING PACKAGE 12.00 R-12-1212 455

TEMS LISTED.

The item specified by the WITHIN connective is listed as LEVEL 1.
LEVEL 2 lists subitems specified in the Levell item's SUB-PROD
attribute. LEVEL 3 lists any subitems specified in the Level 2 item's
SUB-PROD attribute. And one of the Level 3 items even contains a Level
4 subitem.

300 Pick ACCESS

WITHOUT

WITHOUT

*y

Synonym for WITH NO. See WITH and NO for description.

Y is an option that displays translation of A-correlative DIeT entries.
This is useful as a debugging tool.

Appendix B: ACCESS Keywords 301

APPENDIX C

Correlative and
Conversion Codes

Appendix C is a reference guide to all of the ACCESS correlative and
conversion codes arranged in alphabetical order. Each entry comprises a
brief explanation of what the code does, a complete explanation of its
syntax, and a description of how to use the code. For examples showing
how the codes work, see Chapter 8.

A CODE: Algebraic and String Functions

The A code is used to perform algebraic or string processing. It can be
used to manipulate numeric or string data located in other attributes.

A [;] expression

An expression is one or more arithmetic or relational operators which
operate on any of the following operands: attributes specified either by
attribute number or by attribute name; literals in single or double quotes;
special system variables; or functions. Evaluation of expression is from
left to right; parentheses can be used to indicate the precedence of
operations. All of these expressions are described in more detail in the
following sections.

The A code is an easier-to-use version of the F code.

Appendix C: Correlative and Conversion Codes 303

A CODE

Attributes

An attribute can be identified by its attribute number or by its attribute
name. When an attribute name is specified, correlatives and conversions,
if present, are applied before the data element is used in expression. This
may require that you mask decimals with scaling (see the ML and MR
codes).

attrihute#[R [R]] the attribute number that refers to the position
of data in the file. An optional R code can be
used with multivalued attributes to specify that
the first value of an attribute is to be used
repeatedly in an operation involving other
multi valued attributes. A second R specifies
that the first subvalue is to be used repeatedly
with other multisubvalued attributes.

N(name) an attribute name as defined in the dictionary.
If the name is not found, an error message is
returned.

9998 is the current item count.

9999 is the current item size.

Literals

A literal, either a string or a numeric constant, must be enclosed in single
or double quotes. A numeric value can be any positive or negative
integer, or zero.

System Variables

The following system variables are available as operands 10 any
expression:

D indicates the system date in internal format.

304 Pick ACCESS

A CODE

LPV means load previous value; that is, load the result of the
last correlative or conversion for further processing.

NB is a break level counter, incremented with each break that is
encountered. The lowest-level break is 1; the break that
specifies the grand total is 255.

ND is a detail line counter. This supplies the total number of
detail lines at each breakpoint.

NI is an item counter, incremented for each item in an output
list.

NS is a subvalue counter, incremented for each subvalue of an
attribute.

NV is a value counter, incremented for each value in a
multi valued attribute.

T indicates the system time in internal format.

Functions

R(operandJ ,operand2)

S(expression)

is the remainder after dividing the first operand
by the second operand. An operand can be any
valid expression.

sums all multivalues in expression.

attribute[start,length]
extracts a substring. attribute can be identified by
attribute number or by attribute name. Attribute
numbers, literals in single or double quotes, or
expressions can be specified within the brackets.
Brackets are part of the syntax here and must be
typed. start is the starting position of the first
character to be extracted, length is the number of
characters to be extracted.

Appendix C: Correlative and Conversion Codes 305

A CODE

IF expression] THEN expression2 ELSE expression3
is a conditional statement that evaluates
expression] and, if true, then evaluates
expression2, or if false, evaluates expression3.
This function is not available on all systems, and
is not included in the SMA standards.

Arithmetic Operators

+

*
/

Addition.

Subtraction.

Multiplication.

Division (returns an integer).

Concatenation.

Relational Operators

= Equal to.

Not equal to.

> Greater than.

< Less than.

>= Greater than or equal to.

<= Less than or equal to.

Precedence of Operations

The precedence of operations is as follows:

1. Multiplication and division.

2. Addition and subtraction.

3. Relational operations.

306 Pick ACCESS

A CODE

If two operators have the same precedence, they are evaluated from left to
right. Use parentheses to specify the order for evaluating each operation;
up to 20 nested levels of parentheses are permitted.

C CODE: Concatenation

The C code is used to concatenate attributes or literals, or both.

e expression 1 c expression2 [c expression3 ...]

c

expression

is a character that separates concatenated
elements. Any nonnumeric character except a
semicolon or a system delimiter is a valid
separator, including a blank. A semicolon (;)
indicates that no separator is to be used.

specifies each element to be concatenated. An
expression can be either an attribute number;
any literal string enclosed in single or double
quotes or backslashes; or an asterisk. An asterisk
specifies the result generated by a previous
conversion or correlative operation.

Attributes in expressions can be specified only by attribute number; they
cannot be specified by name.

Any number of expressions and separation characters can be included in
any order.

When the Attribute Definition item containing the C code is set up in the
file dictionary, the attribute number (line 2) should be zero. If any other
attribute number is used and the attribute specified contains a null value,
the concatenation will not be performed.

D CODE: Date Conversion

The D code converts dates to internal format and, upon output, to one of
several different external formats.

Appendix C: Correlative and Conversion Codes 307

D CODE

o [year] [{ separator I subcode }]

year

separator

subcode

is a digit from 0 through 4 that specifies the
number of digits used to represent the year. Zero
signifies that no year is output; 4 is the default.

is any single nonnumeric character that is used to
separate the day, month, and year (if specified) on
output. Usually this separator is a slash (/) or a
hyphen (-).

can be any of the following special date subcodes,
if no separator is specified:

D lists only the number of the day.

I lists date in internal format (reverse
conversion).

J lists the Julian day of the year.

M lists only the number of the month.

MA lists only the name of the month.

Q
w

lists only the number of the quarter.

lists only the number of the day of the week
(Sunday is 7).

W A lists only the name of the day ofthe week.

Y lists only the number of the year.

If subcode is not specified, the date format will be
12 DEC 1967; if subcode is specified, the format
will be 12/12/1967.

Dates are almost always stored in a special internal format that uses less
disk space than conventional date formats and makes it easier to perform
arithmetic operations on this data. The internal representation of a date is
the number of days before or after the zero date, which is December 31,
1967.

Date conversions are almost always located in Attribute 7 of an Attribute
Definition item because it is faster for the system to convert an external
date to an internally stored format once and then compare the stored date
to data contained in other items of the file. It is possible, however, to
specify a date conversion in Attribute 8. This causes slower processing,

308 Pick ACCESS

D CODE

because the internal date of every item searched must be converted to
external format. This is necessary, for example, when the selection
criteria or sort keys do not contain the day, month, and year.

If only two digits of the year are specified, year 30 to 99 are stored as
1930 to 1999, and 00 to 29 are stored as 2000 to 2029.

Doing a Group Extraction with the D Code

You can also specify in the syntax line that the D code first do a group
extraction to obtain the stored date. The syntax line in this case is:

o [year) [em) [subcode)

where c is any single nonnumeric character used as a delimiter to separate
fields (it cannot be a system delimiter), and where m is a single digit that
specifies the number of fields to skip in order to extract the date. m must
be specified if c is specified.

In the following examples, the data is stored as "ABC*8602".

If conversion is ..•

D2*1

D2*1/

F CODE: Stack Functions

Then output is ...

ABC*20 JUL 91

ABC*07/20/91

The F code performs mathematical and string processing operations on
specified attributes or constants. It is made up of operands and operators
in reverse Polish format separated by semicolons.

There are two versions of the F code: F and FS. F is the older version, FS
(S is for "standard") is the newer SMA standard version. The main
difference between the two is in the handling of relational operators.

Appendix C: Correlative and Conversion Codes 309

F CODE

F [; 1 element [; element; ...]
FS [; 1 element [; element ; ... 1

The program processes the F code from left to right, putting each element
on the stack as an operand until it encounters an operator.

The semicolon is used to separate elements. An element can be any of the
following:

• an attribute number.

• a literal.

• a system variable .
• a function.

• an arithmetic operator.
• a relational operator.

Each of these is described in the following sections.

Attributes

An attribute can be referenced only by its attribute number.

attribute#[R [R]] is the attribute number that refers to the
position of data in the file. An optional R code
can be used with multivalued attributes to
specify that the first value of an attribute is to
be used repeatedly in an operation involving
other multi valued attributes. A second R
specifies that the first subvalue is to be used
repeatedly with other multisubvalued
attributes.

Literals

Any literal string must either be enclosed in single or double quotes or be
preceded by a C, thus:

en

310 Pick ACCESS

F CODE

where n is a numeric constant to be pushed onto the stack. If C is used, the
literal string ends at the next semicolon.

System Variables

The following system variables are available as operands in any
expression:

D indicates the system date in internal format.

LPV means load previous value; that is, load the result of the
last correlative or conversion for further processing.

NB is a break level counter, incremented with each break that is
encountered. The lowest-level break is 1; the break that
specifies the grand total is 255.

ND is a detail line counter. This supplies the total number of
detail lines for each breakpoint.

NI is an item counter, incremented for each item in an output
list.

NS is a subvalue counter, incremented for each subvalue of an
attribute.

NV is a value counter, incremented for each value in a
multivalued attribute.

T indicates the system time in internal format.

Functions

(underscore) exchanges the first and second elements in the
stack.

concatenates the first element in the stack to the end of the
second element.

P duplicates the first element and pushes it onto the stack.

Appendix C: Correlative and Conversion Codes 311

F CODE

R divides the first element in the stack by the second element,
putting the remainder on top.

S sums all values in the first element of stack 1.

[] extracts a substring. This function uses the top three
elements in the stack, where:

Top length

2 start

3 string

The third element on the stack is the string to be operated on.
The second element is the character position at which
extraction starts. The first element is the number of
characters to extract. The result is placed on top of the stack.

(conversion code)
applies a conversion on the first element in the stack.

Arithmetic Operators

The following arithmetic operators work on the top two elements in the
stack. The operands are popped and the result is pushed on to the stack as
the first element. Arithmetic operations are carried out on integers only;
any decimal places are disregarded. Nonnumerics are treated as zeros and
no error message is displayed.

312

+ adds the first and second elements in the stack.

subtracts the first element from the second element.

*[n] mUltiplies the first and second elements. The optional n is the
de scaling factor, that is, the result is divided by 10 raised to
the nth power.

/ divides the second element by the first element.

Pick ACCESS

F CODE

Relational Operators

The following operators work on the top two elements in the stack and
return a result of one or zero to the top of the stack, depending on whether
the condition is or is not satisfied:

= Equal to.

Not equal to.

> Greater than.

< Less than.

] Greater than or equal to.

[Less than or equal to.

G CODE: Group Extraction

The G code extracts one or more fields from a delimited character string.

G [skip 1 delimiter #fields

skip

delimiter

#fields

specifies the number of fields to skip. If m is not
specified, zero is assumed and no fields are
skipped.

is the field separator. This delimiter can be any
single nonnumeric character except a minus sign
(-) or a system delimiter (SM, AM, VM, SVM,
or SB).

is a decimal number indicating the number of
contiguous delimited fields to extract. If n = 0, a
null value is returned.

L CODE: Length Validation

The L code tests the length of data to determine whether or not it should
be output. The L code without any parameters returns the length of the
data element.

Appendix C: Correlative and Conversion Codes 313

L CODE

L [n [,m]J

n

n,m

specifies a maximum length of n characters. Data
exceeding this length produces a null value. If n =
0, the length of the value is returned.

specifies a range of n to m characters. Data that
does not fall within this range produces a null
value.

MC CODES: Character Masks

The Masked Character ·conversion codes allow the user to translate data
from one case to another or to extract certain classes of characters.

MCA

MC/A

MCD[X]

MCl

MCN

MC/N

MCP

MCT

314

extracts all alphabetic characters, both upper- and
lowercase. Nonalphabetic characters will not be
printed.

extracts all nonalphabetic characters. Alphabetic
characters will not be printed.

converts numeric data from decimal format to its
hexadecimal equivalent.

converts all uppercase letters to lowercase. Does
not affect lowercase letters or non alphabetic
characters.

extracts all numeric characters. Alphabetic
characters will not be printed.

extracts all nonnumeric characters. Numeric
characters will not be printed.

converts nonprintable characters to dots and
drops the high-order bit of all characters above
character 127.

converts the first character of each word to
uppercase and all other characters to lowercase.
Does not affect nonalphabetic characters. A word

Pick ACCESS

MCU

MCD[D]

MC CODES

begins after any nonalphabetic character except a
single or double quote.

converts all lowercase letters to uppercase. Does
not affect uppercase letters or nonalphabetic
characters.

converts numeric data from hexadecimal format
to its decimal equivalent.

Using MC Codes

If input is ..• and conversion is ... then output is ...

BLEAR34TRE MCA BLEARTRE

BLEAR34TRE MC/A 34

BLEAR34TRE MCL bIear34tre

#$abcI23 MCN 123

#$abcl23 MC/N #$abc

#$abcI23 MCV #$ABCI23

JOHN SMITH MCT John Smith

567 MCX 1383

FB MCX 251 .

33D MCX 829

5332 MCD 14D4

111 MCD 6F

4444 MCD 115C

Appendix C: Correlative and Conversion Codes 315

ML and MR CODES

ML and MR CODES: Formatting and Scaling Numbers

The ML and MR codes allow special processing and fonnatting of
numbers and dollar amounts. ML specifies left justification, MR specifies
right justification.

M { L I R } [n [m 11 [z 1 [, 1 [options 1 [(format-mask)]

n specifies the number of digits to be printed to the right of the
decimal point. If n is omitted or is zero, no decimal point
will be printed.

m specifies that the number is to be divided by that power of 10.
If not specified, m = n is assumed. If m is greater than n, the
number is rounded off to n digits.

Z indicates that a data value of zero is to be output as null.

specifies that commas are to be inserted every three digits to
the left of the decimal point.

options can be any of the following:

$ places a floating dollar sign in front of the number.

C causes negative values to be followed by the letters CR.

o causes positive values to be followed by the letters DB.

E causes negative numbers to be enclosed in angle brackets
(< >).

M causes negative numbers to be followed by a minus sign.

N suppresses the minus sign on negative numbers.

If no letter options are specified, negative numbers are listed with a
leading minus sign.

format-mask can be one of the following three codes:

#n specifies that data is to be justified in a field of n blanks.

* n specifies that data is to be justified in a field of n asterisks.
Any fill character can be used in place of the asterisk.

%n specifies that data is to be justified in a field of n zeros.

316 Pick ACCESS

ML and MR CODES

Literal strings can also be enclosed in parentheses. The text will be
printed as specified, with the number being processed right- or
left -justified.

MT CODE: Time Conversion

The MT code converts time to internal format and, on output, to 12-hour
or 24-hour format. If no options are specified, time is represented in
24-hour format (hh : mm).

MT [H][S 1
H specifies 12-hour format with AM or PM appended. If H is

omitted, 24-hour format is assumed.

S specifies that seconds are to be included. If S is omitted,
seconds are not listed.

Data representing time is usually stored internally as the number of
seconds after midnight.

ICY' The MT code can give unusual results on numbers
greater than 86399, since only those numbers in the
range from 0 (12:00 PM) through 86399 (11 :59 PM)
are valid for time conversions.

MX and MY CODES: Character-to-Hexadecimal Format

The MX code converts a character string to its hexadecimal ASCII
equivalent. The MY code converts a hexadecimal character string to its
alphanumeric equivalent

MX
MY

The MX code converts each character to a two-byte hexadecimal number.
This conversion is useful for finding nonprintable characters in strings of
data.

Appendix C: Correlative and Conversion Codes 317

MX and MY CODES

The MY code converts each two-byte hexadecimal number to a single
ASCII character.

CODE: Pattern Matching

The P code validates data if it matches the specified pattern. If the data
does not match the specified pattern, a null value is returned.

P (pattern) [; (pattern)... 1

pattern can contain any of the following codes:

nA

nN

nX

'xxxx'

is an integer followed by the letter A, which tests
for n alphabetic characters.

is an integer followed by the letter N, which tests
for n numeric characters.

is an integer followed by the letter X, which tests
for n alphanumeric characters.

is a literal string which must match the same
literal string in the data. A literal string must be
enclosed in single quotes. Single-character
delimiters such as hyphens or slashes need not be
enclosed in quotes.

If n is 0, any number of numeric, alphabetic, or alphanumeric characters
will match.

Each pattern to be matched must be enclosed in parentheses.

t CODE: Range Validation

The R code limits returned data to that which falls within specified ranges.

318

R n , m [; n , m ; ... 1

n

m

is the lower bound.

is the upper bound.

Pick ACCESS

RCODE

If you specify a single range, the data returned is that which falls in the
range between nand m (inclusive). If you specify multiple ranges, the
data that falls in any of the ranges is returned. State these ranges in
ascending numerical order: for example, R3,5;9,14;16,30. This returns
data that falls within the ranges 3-5,9-14, or 16-30.

If you specify a range to search for negative numbers, you must state the
negative number first.

If range specifications are not met, a null is returned.

S CODE: Substitution

The S code replaces the value of the referenced attribute (that is, the
attribute referenced in line 2 of the Attribute Definition item) with a value
from another attribute or with a literal string.

S ; element1; element2

element# can be either an attribute number or a literal
string. Literal strings must be enclosed in single
quotes. If the value in the referenced attribute is
not null or zero, then elementI is substituted for
the value. If the value in the referenced attribute
is null or zero, then element2 is substituted for it.

W On ADDS systems the value in the referenced attribute
must be zero in order for the S code to work; if the
value is null, the S code has no effect.

T CODE: Text Extraction

The T code extracts a specified number of characters from a string
beginning at a specified position.

T [start, 1 #chars

start is the leftmost position of the first character to
extract. If start is omitted, 1 is assumed.

Appendix C: Correlative and Conversion Codes 319

T CODE

#chars is the number of characters to extract.

If start is specified, characters will be extracted from left to right. If start
is not specified, the direction is determined by the justification specified in
line 9 in the Attribute Definition item.

Tfile CODE: File Translation

The Tfile code translates data from one file to another file. It uses data
stored in one file to reference the item IDs of another file in order to
retrieve data from the second file. This eliminates the need for
duplicating data in related files.

320

T [DieT 1 filename; code [vmc 1 ; in-attr# ; out-attr# [; br-attr# 1

DICT

filename

code

vmc

specifies the file dictionary from which data is to
be translated.

is the name of the file from which data is to be
translated.

is an action code, which specifies the action to be
taken if the item being looked up does not exist.
This code must be one of the following:

C If conversion is impossible, return the
original data.

I Input verify only. Functions like V for
input and like C for output.

o Output verify only. Functions like C for
input and like V for output.

V Conversion item must exist on file, and the
specified attribute must contain data,
otherwise an error message is returned.

X If conversion is impossible, return a null
value.

is a value mark count indicating the value to be
returned from a multivalued attribute. If vmc is

Pick ACCESS

in-attr#

out-attr#

br-attr#

Tfile CODE

not specified and the attribute is multivalued, all
values are returned with all system delimiters
turned into blanks.

is the number of the attribute for in put
conversion. in-attr# is used only in Pick BASIC
using ICONV. Although in-attr# is not used by
ACCESS, it cannot be left out of the Tfile code. It
can be either null or the same as the out-attr.

is the number of the attribute for output
translation. The data to be translated is retrieved
from the attribute specified by the out-attr#.

is the number of the attribute that is used instead
of out-attr# during the listing at BREAK-ON and
TOTAL time if the translation is in Attribute 7 of
the Attribute Definition item.

The Tfile code in the source file translates data from the target file. The
source file must include an attribute whose data is the same as the item IDs
of the target file. This attribute in the source file contains the keys-the
item IDs of the target file-that allow the source file to access any of the
data in the target file. The Tfile code specifies (1) the name of the target
file, (2) the attribute number of the attribute in the target file from which
data is to be translated, and (3) what action is to be taken if there is no data
value in that attribute.

Appendix C: Correlative and Conversion Codes 321

APPENDIX D

File Dictionary Structures

Appendix D describes the structure of the File Definition items and Attribute
Definition items that are contained in file dictionaries.

A Pick system database file comprises two physical files: a dictionary that
describes the structure of the data and a data file that contains the actual data
stored on disk. In other words, the raw data is kept in one place and the
definition of that data is stored separately in the file dictionary. A piece of
data can be stored in one place, unencumbered by its description. The
dictionary contains this description; it might contain multiple descriptions of
the same piece of data. This arrangement provides great flexibility in setting
up a database, permitting different logical views of the same set of data.

A data file is organized as a collection of variable-length items. An item is
organized as a sequence of variable-length attributes. Each item in the file is
identified by a unique item ID.

Each data file is associated with a file dictionary. The dictionary points to the
data file and defines its structure. Several data files can share one file
dictionary if their data structure is similar.

Some dictionaries do not have an associated data file. These dictionaries are
called single-level files and might contain data rather than dictionary entries.
A single-level file points to itself. It can be referenced either as a dictionary
or as a data file.

Dictionaries contain items just as data files do. Dictionary items are
sometimes called descriptors because they describe the data stored in the data

Appendix D: File Dictionary Structures 323

file. The two main types of descriptor are: File Definition items and
Attribute Definition items. File Definition items are known as D-pointers
because they point to the data file itself. Attribute Definition items either
describe data stored in a particular attribute, or they derive data from
attributes using processing codes (correlatives). Each of these descriptor
types is summarized in the following sections.

File Definition Items

File Definition items are D-pointers that point to the location of a file (any
file). The file can be a single-level file, in which case it has no data-level file
associated with it. Most files, however, have two levels. In this case, the File
Definition item in the Master Dictionary points to a file dictionary which, in
tum, contains a File Definition item that points to a data file.

Item ID. A File Definition item is a pointer to a dictionary or data file. The
item ID is the actual name of the referenced dictionary or data file. If it
points to a data file, then the item ID is the same as the name of the file.

Attributes. File Definition items can have 13 attributes. Attributes 4, 11,
and 12 are reserved and are therefore empty.

324

"I Definition Code. A "D" indicates a File Definition item.

2

3

4

Other file definition codes are also used. "DC" is used for files
whose dictionaries contain items that point to frames containing
BASIC object code and whose data files contain the source code.
DC files are also used for storing select-lists.

Base. The base frame ID indicates the starting location of the
file. This value is assigned automatically by the CREATE-FILE
processor. Do not change this value.

Modulo. The modulo indicates the number of contiguous
groups originally occupied by the file. It is supplied as a
parameter by the user during file creation. Do not change the
modulo in Attribute 3.

Separation. The separation indicates the number of
contiguous frames that are to make up a group. On some
systems it is supplied as a parameter by the user during file

Pick ACCESS

creation. (Systems with larger frame sizes may no longer use
this parameter.) Do not change the separation in Attribute 4.

5 Retrieval Code. A security code that restricts access to a file.
When specified, its value must match any retrieval code in the
Account Definition item for the file to be accessed.

6 Update Code. A security code prevents modification of a file.
When specified, its value must match any update code in the
Account Definition item for the file to be modified.

7 Conversion Code. A conversion specification that will be
applied to the item ID.

8 Reserved.

9 Justification. A code that specifies the justification of the
item ID in a column. "L" and "U" indicate left-justification and
"R" indicates right-justification.

10 Width. A positive integer indicating the maximum column
width of the item ID column. The SMA standard default for
column width is 9.

11 Reserved.

12 Reserved

13 Reallocation. One or two numbers that specify a new modulo,
or modulo and separation, for the file. The parameters will be
used to reallocate the file during a file-restore.

Attribute Definition Items

Attribute Definition items define the format of items in the data file. These
items can be created using the Editor.

Item ID. A logical name used to reference the contents of the attribute in
ACCESS statements.

Attributes. Attribute Definition items can have 10 attributes. Attributes 5
and 6 are reserved and are therefore empty.

Appendix D: File Dictionary Structures 325

326

Definition Code. Anyone of these Definition Codes specify
an Attribute Definition item:

A An Attribute Definition item that references the contents
of an attribute in the data file.

S An Attribute Synonym. Same as "A" for all practical
purposes. (The LISTDICT Proc sorts S after A codes).
Attribute synonyms are usually created as a numerical
sequence of item IDs to define the default output
specifications for ACCESS reports.

I An ACCESS phrase follows in line 2. Not used on all
systems.

X A placeholder item that is skipped when maintaining a
sequence of numeric item IDs to specify the default
output specification for ACCESS reports. Data in the
attribute referenced by an X item is not displayed.

2 Attribute Number. An integer identifying the attribute by its
sequential location. Also called the Attribute Mark Count
(AMC). An attribute number of 0 is used to reference the
item ID. A 0 or any number greater than the number of
attributes that exist in the file can be used to reference data that
is derived or computed rather than actually stored on disk. In
addition, if line I defines a phrase, the phrase itself starts on
line 2.

3

4

Column Heading. An optional name that is used in place of
the item-ID as a column heading in ACCESS reports. The
backs lash (\) is a reserved symbol causing no column heading
to be output. You can use value marks (CTRL-]) to indicate a
line break, making it possible to place a column heading on
mUltiple lines. If the heading is shorter than the column width,
it is padded with dots (...).

Structure. An optional code that defines an associative
structure for two or more multivalued attributes. A structure
code of "C" indicates a Controlling attribute; a structure code of
"D" indicates a Dependent attribute. Dependent attributes can
be listed in an ACCESS report only when the Controlling
attribute appears in the output specification.

Pick ACCESS

5 Reserved.

6 Reserved.

7 Conversion Code. A conversion specification that is to be
applied to the contents of the attribute.

8 Correlative Code. A correlative specification that is to be
applied to the contents of the attribute.

9 Justification. A code that specifies the justification of the
output field in a column. It also affects the sorting of data.

L Left-justified (generally the case for alphabetic data). If
data exceeds the length defined by the maximum column
width, it wraps to the next line, beginning at the first
character over the maximum length. This is the default.

R Right-justified (generally the case for numeric data).

T Left-justified. This type of justification is used for
textual data that might include embedded blank spaces. If
data exceeds the length defined as the maximum column
width (line 10), it wraps to the next line, starting at a
blank space.

U Left-justified. If data exceeds the length defined by the
maximum column width (line 10), it does not wrap, but
overwrites any data in the adjoining column.

10 Column Width. A positive integer indicating the maximum
column width of the column.

Nonstandard File Dictionaries

Some Pick systems use nonstandard file dictionaries. These dictionaries
perform most of the same functions as the Pick/SMA standard dictionaries
do, but their structures are different. Prime INFORMATION and uniVerse
systems both use a different dictionary structure, although they both support
the Pick/SMA standard dictionary format as an alternative. The following
sections describe the make-up of these dictionaries.

Appendix D: File Dictionary Structures 327

Prime INFORMATION Dictionaries

Prime INFORMATION and uniVerse dictionaries contain the following
types of entry:

• Data descriptors, which define the format and location of attributes in
each item of the data file. These perform functions similar to the
standard Pick Attribute Definition items.

• I-descriptors, which define the format and location of an interpretive
attribute whose value is derived from other attributes in the data file or
from attributes located in other data files. They are called
I-descriptors because the attributes defined by them are interpretive.
I-descriptors perform functions similar to those of Pick Attribute
Definition items containing correlative codes.

• @-phrases, which contain user-defined default output specifications.

• User-defined phrases that contain part of an ACCESS sentence (such as
selection expressions, sort expressions, output specifications, etc.­
anything, in fact, except an ACCESS verb).

• X-descriptors, which contain other user-defined information. These
are available only on uniVerse systems.

Data Descriptors and I-Descriptors

Data descriptors define the format of items in the data file. These items can
be created using either the Editor or a data-entry utility such as REVISE
(uniVerse) or ENTROC (Prime INFORMATION).

Field Name. A logical name used to reference the contents of the data
descriptor in ACCESS statements. Equivalent to item ID.

Fields. Data descriptors normally have seven fields (attributes), as follows:

2

328

Type and Description. A "D" in field 1 defines a data
descriptor, an "I" defines an I-descriptor.

Location. Equivalent to the attribute number (AMC). This
number identifies the field by its sequential location. In
I-descriptors, this field contains the expression to be evaluated;

Pick ACCESS

thus Field 2 in I-descriptors is similar to the correlative attribute
(line 8) in Pick Attribute Definition items. I-descriptor
expressions in Field 2 are not limited to correlative codes,
however, but can also include a wide range of subroutines and
predefined functions.

3 Conversion. Equivalent to the conversion attribute (line 7) in
Pick Attribute Definition items. Field 3 contains a conversion
specification that is to be applied to the contents of the field.

4 Column Heading. Equivalent to the column heading attribute
(line 3) in Pick Attribute Definition items. An optional display
name that is used in place of the item ID as a column heading in
ACCESS reports. If it is not specified, the field name is
displayed.

5 Output Format. Equivalent to the justification and column
width attributes (lines 9 and 10) in Pick Attribute Definition
items. This field contains first a number indicating the
maximum width of the display column used in ACCESS reports,
then a letter that specifies the justification of the output field in
the column. Justification can be "L" (left), "T" (left text), or
"R" (right).

6 Single/MuItivalue. An "S" in .Field 6 defines the field as
single-valued; an "M" defines it as multivalued.

7 Association. Contains the name of a phrase that relates two or
more multi valued fields together such that for every value in
one field there is an associated value in the other fields.

@ID Descriptors

Prime INFORMATION and uniVerse dictionaries do not contain D-pointers
to the data file. Instead, they have an @ID descriptor that functions in
similar ways to define the item ID "field" of the data file. When a file is first
created, the only item the file dictionary contains is an @ID item, which is
created automatically. It contains the following default structure, all fields of
which can be modified except for field 2, Location, which must always be
zero, and Field 6, which must always be "S".

Appendix D: File Dictionary Structures 329

@ID. The item ID of the descriptor.

Fields. @ID descriptors, like data and I-descriptors, also have seven fields
(attributes), as follows:

330

1

2

3

4

5

6

7

Type and Description. Contains a "D" and the default
description.

Location. Contains a zero, which defines the location of the
item ID "field."

Conversion. No conversion specified.

Column Heading. Contains the name of the file, which is used
as a default column heading for the item ID column.

Output Format. Contains either IOL or 12L, depending on
the file type. Thus, column widths for the item IDs are either
10 or 12 characters, and the column is left-justified.

Single/Multivalue. Contains an "s" to define a single-value
field. the item ID "field" must be single-valued.

Association. The user can supply the name of a phrase that
relates two or more multivalued fields together such that for
every value in one field there is an associated value in other
fields.

Pick ACCESS

INDEX

SYMBOLS

operator 35. 263
< operator 35,263
= operator 35, 263
1\ (wild character) 39
<= operator 35,263
> operator 35,263
>= operator 35, 263
@ phrase 17-18,328
@ID descriptors 329
@LPTR phrase 17
[(pattern matching) 38
[] (pattern matching) 39
] (pattern matching) 39

A

A (algebraic) code 148-152, 187-
188,303

function codes 151, 152

Index

A connective 21, 27, 264
A option

with forms 117, 132
ACCESS

introduction to 1-10
keywords 27-29
modifiers 27-29
options 27-29
reports 4
verbs 24-26

ACCESS queries
item IDs 19
literal values in 19
multiline 21
processing 13-15

ACCESS syntax 11-24
attribute names 12, 15
DICT modifier 12
file-modifiers 12
filename 12, 14
item IDs 12, 14
modifiers 13, 15
ONLY modifier 12
options 13, 15

331

print limiters 13, 15
selection expressions 12, 15
sort expressions 12, 15
verbs 12

action codes (Tfile) 174
AFfER operator 27,35,264
AMC (attribute mark count) 326
AN connective 21, 27, 264
AND connective 27, 33, 36, 264
ANY connective 21, 27, 265
ARE connective 21, 27, 265
arithmetic

operations 148
operators 150, 155

Attribute Definition items 16, 325
attribute mark count 326
attribute names

in ACCESS syntax 15
attribute numbers 326
attributes 323

averaging 93
Controlling 48, 119,326
Dependent 48, 119,326
multivalued 47-49, 120-129
totalling 93

audit trail 133-136
averages 93

B

B option
with BREAK-ON 66
with forms 117
with headings and footings 58

background forms 130-132
base frame ID 324
BEFORE operator 27,35,265

332

BREAK-ON modifier 27,55,65-69,
70,265

options 66
with forms 115, 116

BY modifier 6,27,41,268
BY-DSND modifier 27,41,270
BY-EXP modifier 27,43-44,271
BY-EXP-DSND modifier 27, 43-44,

272

c

C (concatenation) code 159-160,307
C option 273

with headings and footings 58
characters

formatting 183-185
CHECK-SUM 24, 86, 195
COL-HDR-SUPP modifier 27, 55,

61,273
column headings 326

suppressing 61
column width 325, 327

with forms 118-119
concatenation code 159-160
connectives

AND 33, 36
LIKE 40
logical 36-37
OR 33, 36
SAID 39
SPOKEN 39
throwaway 21, 22
USING 50-51
WITH 33-41

constants
in ACCESS queries 19

Pick ACCESS

control breaks 65-69
Controlling attributes 48,326

with forms 119
conversion codes 325, 327

combining with correlatives 190
definition of 145
introduction to 145-146
processing of 146
with the F correlative 157

COPY-LIST 24,81,82-83,197
options 82

correlative codes 327
combining with conversion codes

190
definition of 139
introduction to 139-144
processing of 146
Tfile 120

correlatives and conversions 137
overview of 138-146

COUNT 24, 86, 92, 198
counter operand 187
CTRL-] 326

o

D-pointers 324
D (date) code 176, 177-179,307
D option 27,274

with BREAK-ON 66
with headings and footings 58

data
extracting 161-165
formatting 176-186
substituting 166
testing 167-168
translating 169-176

Index

DATA connective 21,27,274
data descriptors 328
dates

formatting 177-179
DBL-SPC modifier 27, 56, 275
default output specifications 15-19

overriding 18
definition codes 324, 326
DELETE-LIST 24,81
Dependent attributes 48, 326

with forms 119
descriptors 323
DET-SUPP modifier 27, 56, 68-69,

275
detail lines

suppressing 68-69
DICT modifier 12,27,276
dictionaries 323

structure of 323-330
double-depth windows 124-125

E

EACH modifier 28, 33, 277
EDIT-LIST 24,81,83,199
END-WINDOW modifier 28, 121,

277
EQ operator 28, 35, 277
EQUAL operator 278
EVERY modifier 28,33,278
extracting data 161-165

333

F

F (stack functions) code 152, 187-
188,309

function codes 157
F option 28, 278

with headings and footings 58, 60
FILE connective 21, 28, 278
File Definition items 324
file items

copying from tape to disk 98-100
copying to tape 94-100
counting 92
restructuring 100
transferring to tape 10 1

file translation code (Tfile) 169
FILE-TEST 24, 94-97, 199
files

reallocating 325
single-level 323, 324

FOOTING modifier 28,56,57, 70,
278

with forms 115, 117
footings

defining 60
FOR connective 21, 28, 280
FORM-LIST 24, 75, 77-80, 201
formatting

characters 183-185
data 176-186
dates 177-179
numbers 180
times 179

formatting modifiers
special uses of 69

fomlS 107-136
FORMS 25, 70, 108, 109, 202

definition of 108
designing 113-115

334

multipaged 126-129
pagination 128

forms generation 107-136
overview of 11 0-118
syntax 109

G

G (group extraction) code 161, 164-
165,313

GE operator 28,35,281
GET-LIST 25, 81, 82, 209
GRAND-TOTAL modifier 28, 56,

64,70,281
with forms 115

GT operator 28, 35, 283

H

H option 283
HASH-TEST 25,86,94-97,210
HDR-SUPP modifier 28,56,69,98,

284,294
with forms 115, 117, 129

HEADING modifier 28,56,57,69,
70,98,284

with forms 115, 117
headings

defining 58-59
suppressing 61

headings and footings 56-60
options 57
with forms 116-117

Pick ACCESS

I

I option 286
I-descriptors 328
ID-SUPP modifier 4, 28, 56, 69, 70,

98,287
with forms 115, 116

IF modifier 28, 288
IN connective 21, 28, 288
index operators 187
ISTAT 25,86,94-97,211
items 323

copying from tape to disk 98-100
copying to tape 94-100
counting 92
transferring to tape 10 1

ITEMS connective 21, 28, 288
item IDs 4, 323

in ACCESS syntax 12, 14
on forms 116

J

justification 325, 327
with forms 118-119

K

keywords 26-29

Index

L

L (length) code 167, 313
L option

with BREAK-ON 66
with GRAND-TOTAL 64
with headings and footings 58, 59

labels 87-91
format of 88-90

LE operator 28,35,289
LIKE connective 28, 40, 289
LIST 2, 25, 31-32, 212
LIST-ITEM 25, 49-50, 215
LIST-LABEL 25, 86, 87-91, 216
literals

in ACCESS queries 19
logical connectives 36-37
LPTR modifier 8,28,290
LPVoperand 187-188
L T operator 28, 290

M

M option
with forms 117

magnetic tape
copying items from tape to disk

98-100
copying items to 94-100
transferring items to 10 1

Master Dictionary 13
MATCHING connective 28, 290
MC (masked character) codes 183-

184,185,314
MCDX code 185
MCXD code 185

335

ML (decimal) code 180,316
modifiers 27-29

BY41
BY-DSND41
BY-EXP 43-44
BY-EXP-DSND 43-44
EACH 33
EVERY 33
HDR-SUPP98
HEADING 98
ID-SUPP98
in ACCESS syntax 13, 15
TAPE 100
with forms 110, 115

modulo 324
MR (decimal) code 180, 316
MT (time) code 179,317
multipage forms 126-129
multivalued attributes 47-49

on forms 120-129
MXcode 185-186,317
MY code 185-186,317

N

N option 29, 290
NB operand 187-188
ND operand 187-188
NE operator 29, 35, 291
NIoperand 187-188
NO operator 29, 35, 291
NOPAGE modifier 29,291
NOT MATCHING connective 29,

292
NOT operator 29,35,292
NS operand 187-188
NSELECT 25,75,76-77,218

336

numbers
formatting 180

NVoperand 187-188

o

o option 292
OF connective 21, 29, 292
ONLY modifier 12,18,29,292
operands

counter 187
operators

#35
< 35
<= 35
= 35
>35
>=35
AFTER 35
arithmetic 150, 155
BEFORE 35
EQ 35
GE35
GT35
LE35
LT35
NE35
NO 35
NOT 35
relational 33, 35-36, 150, 156

options
in ACCESS syntax 13, 15
with BREAK-ON 66
with GRAND-TOTAL 64
with headings and footings 57

options (ACCESS) 27-29
C27

Pick ACCESS

D27
F28
H28
128
N29
P 8, 28

OR connective 21, 29,33,36,293
output specifications 3,15,17,45-49

default 16-19

p

P (pattern matching) code 168,318
P option 8, 28, 293

with BREAK-ON 66
with GRAND-TOTAL 64
with headings and footings 58

pages
definition of 108

pagination
of forms 128

pattern matching
[38
[] 39
] 39

pattern matching code (P) 168
phrases 24, 328

@ 17-18,328
@LPTR 17
creating 23
definition of 17

POINTER-FILE 72, 80
print codes 110-113
print limiters 47-49

in ACCESS syntax 13, 15
printer alignment 132

Index

Q

QSELECT 25,75,77-80,219

R

R (range) code 167,318
R option

with BREAK-ON 66
reallocation

of files 325
REFORMAT 25,69,86, 100,219
relational operators 33, 35-36, 150,

156
reports

ACCESS 4
columnar 46
formatting 6, 55-70
noncolumnar 47
printing 8
sorting 6-7
width calculation 47

REPT 25, 70, 109,221
retrieval codes 325

s

S (substitution) code 166,319
S-DUMP 25, 69, 86, 98, 229
SAID connective 29, 39, 293
SAVE-LIST 25, 80, 231
SELECT 25, 75, 231
select-lists 71, 83

337

copying 82-83
creating 74
editing 83
overriding 73
retrieving 82
saving 80-81

selection expressions 5-6, 32
in ACCESS syntax 12, 15

separation 324
SFORMS 25, 70, 108, 109, 114, 232
single-depth windows 121-1 24
single-level files 323, 324
SORT 6, 25, 31-32, 237
SORT-ITEM 25,49-50,239
SORT-LABEL 26,86,87-91, 240
sort expressions 6-7, 41-44

in ACCESS syntax 12, 15
SPOKEN connective 29, 39, 294
SREFORMAT 26, 69, 86, 100, 243
SREPT 26, 70, 109, 245
SSELECT 26, 75, 250
STAT 26,86,93,251
string searching 37-39
subpages

definition of 109
substituting data 166
SUM 26,86,93,253
Supp modifier 29, 56, 69
syntax

ACCESS 11-24

T

T (text extraction) code 161-162,
319

Toption 294
with headings and footings 58

338

T-ATT 102
T-DUMP 26,69,86,98,254
T-LOAD 26, 86,99-100,256
tape

copying items from tape to disk
98-100

copying items to 94-100
transferring items to 101

TAPE modifier 29, 100,294
TCL-II verbs 74
testing data 167-168
Tfile (file translation) code 169-176,

320
action codes 174
with forms 120

THE connective 21, 29, 294
throwaway connectives 21, 22
time (MT) conversion 179
times

formatting 179
TOTAL modifier 29,56,62-65,67,

70,295
with forms 115

totals 62-65, 93
translating data 169-176

u

U option
with BREAK-ON 66
with GRAND-TOTAL 64

update codes 325
USING connective 29, 50-51, 296

Pick ACCESS

v

V option
with BREAK-ON 66

value marks 326
verbs (ACCESS) 24-26

overview of 26
VERTICALLY modifier 297

w

wild character (A) 39
WINDOW modifier 29, 115, 117,

121,297
windows 120

designing 121
double-depth 124-125
single-depth 121-124

WITH connective 5, 29, 33-41, 298
WITHIN connective 29, 51-53, 299
WITHOUT modifier 29, 301

y

Y option 301

z

Z option
with forms 118, 129

Index 339

Pick ACCESS_
.'~A GUIDE TO THE SMAlRETRlEVAL LANGUAGE

Until rww,.you've had to choose between reading Pick books th~t at~.under-
standablebut shallow, and plowing through a difficult documentation set Ner .ta.·

more. Pick ACCESS: A Guide to.theSMAIRETRiEVAL Language, isthe
only book on Pick ACCESS you'll ever need. Pick ACCESS jritroduccs
ACCESS concepts; documents allcommands, features, and functions; and'
includes a thorough description ofcorrelatives and.conversjonsf . ,. '

, ,

The book includes chapters on:

• An overvilw of ACCESS
• 'ACCESs} syntax' .

• Using selection and sort expressions

:,-""

~_Foffilaning reports ..

• Using select-lists
"

io Sp'eyialized'pibcessirig .'
, '_ ";..' , '. ~.

• Forms generation .
. " ."-, ...,."",~. "I' - :.. :', .

". Correlatives 'aNi!:cBnversloh's'

as well as an index and several helpful appendixes.

The goal of the Pick Series is to provide Pick documentation that is user-
oriented: to help new users learn about Pick quickly and to help experienced
users find accurate information easily. The~ick Series tackles almost all ef
the Pick system at a level of depth not found elsewhere, even in the ot~gin~l'
Pick manuals. It offers a complete Pick documentation set for all users, based
on a mature implementation of the Pick operating system (R83), with notes
on SMA standards and specific differences among major Pick imp:lefl.>}enta-
tions. .' . I • .~.

366 pages ISBN 0-937175-41-2

O'Reilly & Associates, Inc.

