

MB-Guide
to

Basic programming topics

MB-Guide

to

Basic programming topics

(c) Malcolm Bull 1991

by

Malcolm Bull

MALCOLM BULL Training and Consultancy Services

MB-Guide to Basic programming topics

(c) MALCOLM BULL 1991

Malcolm Bull
Training and Consultancy Publications
19 Smith House Lane
BRIGHOUSE
H06 2JY
West Yorkshire
United Kingdom

Telephone: 0484-713577

ISBN: 1 873283 13 8

Edition: 2

No part of this publication may be photocopied, printed or
otherwise reproduced, nor may it be stored in a retrieval
system, nor may it be transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or
otherwise without prior written consent of Malcolm Bull
Training and Consultancy Services. In the event of any
copies being made without such consent or the foregoing
restrictions being otherwise infringed without such consent,
the purchaser shall be liable to pay to Malcolm Bull Training
and Consultancy Services a sum not less than the purchase
price for each copy made.

Whilst every care has been taken in the production of the
materials, MALCOLM BULL assumes no liability with respect to
the document nor to the use of the information presented
therein.

The Pick Operating System is a proprietary software product
of Pick Systems, Irvine, California, USA. This publication
contains material whose use is restricted to authorised users
of the Pick Operating System. Any other use of the
descriptions and information contained herein is improper.

The use of the name PICK and all other trademarks and
registered trademarks is acknowledged and respected.

MB-Guide to Basic programming topics

Introduction

The MB-Guide to Basic programming topics discusses a number
of important topics and presents a number of tips and
techniques concerning the use of the Basic language on the
Pick operating system. This MB-Guide follows on from the
general presentation which is to be found in the MB-Guide to
the Basic Language.

We assume that the reader is familiar with the facilities and
features of the Basic language and that he/she has a
technical knowledge of the operating system.

The material will be of interest to analysts and programmers
who have had some experience in the design and development of
applications for use on the Pick operating system.

You may find the following titles in the MB-Guide series
useful in conjunction with the present volume:

File design
Program design
The Basic symbolic debugger
The Basic language

and you may also find the following MB-Master self-tuition
courses of interest in conjunction with the material
presented in this MB-Guide:

BASIC1: Programming in Basic

BASIC2: Advancing in Basic. Much of the material in
this MB-Guide is drawn from the Student's
Workbook for this course.

BASIC3: Moving to Basic

This MB-Guide is not intended to present a complete
description of the subject but merely to place it in context
and give the reader enough information to use the facilities
and to survive.

Best use can be made of this MB-Guide if it is read in
conjunction with the reference literature which is provided
for your system. You should amend your copy of this guide so
that it accurately reflects the situation and the commands
which are used on the implementation which you are using. By
doing this, your MB-Guide will become a working document
that you can use in your daily work.

I hope that you enjoy reading and using this MB-Guide and
the others in the series, and welcome your comments.

Your suggestions for further topics to be included in future
editions of this MB-Guide are of particular interest.

Introduction / 1

Section

1
1.1
1.2
1.3
1.4
1.5
1.6

2
2.1
2.2
2.3
2.4

3

4

5
5.1

6
6.1
6.2
6.3
6.4

7
7.1
7.2
7.3
7.4
7.5

8
8.1
8.2
8.3

9
9.1
9.2
9.3
9.4
9.5

MB-Guide to Basic programming topics

Program structures
IF structure
GO TO statement
CASE structure
FOR / NEXT structure
loop structure
logical expressions

Data structures
Dimensioned arrays
Dynamic arrays
Dynamic arrays versus dimensioned arrays
Descriptor table

EQUATE statement

EXECUTE statement

Input statements
INPUT @ statement

PRINT and printing
PRINTER ON / OFF / CLOSE statements
PRINT ON statement
HEADING / FOOTING / PAGE statements
• function

File handling
File / item locking
SELECT / READNEXT statements
SELECT statement / SELECT sentence
Several select-variables
Handling backing storage

Subroutines
Passing data to subroutines
COMMON data
A technique for decomposing a basic program

Passing control from one process to another
Passing control: program to program
Passing control: program to TCl
Passing control: program to Proc
Passing control: Proc to program
Timing

Contents / 1

Page

1
1
2
4
5
6

10

11
12
14
15
17

19

20

23
24

26
26
27
28
29

30
31
32
34
35
36

37
38
39
43

44
44
45
46
47
48

MB-Guide to Basic programming topics

Program structures

Throughout the discussion, we shall assume that you are
familiar with the form and function of the Basic program
statements and structures. In this section, we shall look at
the various program structures which the language offers,
looking particularly at those for:

* Selecting the course of action to be taken by the
processing,

* Repeating a section of processing.

We shall look at modular programming and external subroutines
later.

1.1 IF structure

The IF statement is the simplest means of testing a condition
and then taking either of two possible courses of action,
according to whether the condition is true or false.

The following points are of interest:

* The statement may contain one THEN clause or one ELSE
clause, or both a THEN and an ELSE clause.

IF A=B THEN A=O
IF A=B ELSE B=O
IF A=B THEN A=O ELSE B=O

* In either clause, the course of action may be a single
statement or several statements:

IF A=B THEN A=O; B=O; C=O ELSE A=1; B=1

* The statement may be written as a single-line statement:

IF A=B THEN A=O ELSE 8=0

or as a multi-line statement.

IF A=8 THEN
A=O

END ELSE
8=0

END

* The multi-line form is easier to read and to maintain.

* All statements - including disk-file operations - which

Page 1

MB-Guide to Basic programming topics

comprise a THEN and/or ELSE clause can be written as a
multi-line statement. For example:

* The same structure can be used on any Basic statement
which offers the THEN ... ELSE clauses:

OPEN
READ
READV
MATREAD
READNEXT
LOCATE

* When there are multiple conditions, as in statements
such as:

IF A=B AND C=D THEN GOSUB 100

IF A=B OR C=D THEN GOSUB 200

then both conditions are evaluated, even though the
result of the first condition might be sufficient to
pre-empt the outcome (as would be the case if A were not
equal to B in the first example, or if A were equal to B
in the second example). This suggests that it may be
faster to organise these statements in forms such as:

IF A=B THEN IF C=D THEN GOSUB 100

IF A=B THEN

END

IF C=D THEN
GOSUB 100

END

IF A=B THEN
GOSUB 200

END ELSE
IF C=D THEN GOSUB 200

END

These and other fundamental points are summarised in the
MB-Guide to the Basic language.

1.2 GO TO statement

The GO / GO TO / GOTO statement has generally had a rather
bad press. It can, however, justifiably be used in the
situation where an escape route is required. For example, an
error may have been detected in the data or the user may have
indicated that he/she wishes to abandon the process. This
situation is known as an exception condition.

Page 2

MB-Guide to Basic programming topics

If we adhere strictly to structured programming principles,
then, on detection of an exception condition, we should set a
switch and only carry out the processing of subsequent units
(that is subroutines or statements) according to the setting
of this switch. As a result, the coding could become very
messy and the execution time unnecessarily protracted. Such
exceptions may be handled more neatly by jumping out of the
main processing flow, like this:

pass into the unit

then leave the unit If there is
an error

condition
~----------------------------->

for a specific
destination

to the next unit

An exception condition will normally be handled by the use of
a GO TO statement. A GOTO statement is often much easier to
code (and to read) than would be a complicated set of
switches testing whether or not all subsequent processing is
to be carried out or not.

The destination on leaving the unit depends upon the logic of
the program. Processing may pass to some exception-handling
unit within the program, as shown on the left in the diagram
below, or it may return to the start of the program, as shown
on the right.

Unit A
IF exception
else process

I
Unit B

IF exception
else process

I
Unit C

I
Unit 0

IF exception
else process

Unit X
exception

handling

I ---> Unit X

I

1 ---> Unit X

I

I
1 ---> Unit X

I

Page 3

Accept user's I
input

I
Unit B --1--> IF exception Unit A

else process I
I

Unit C --1--> IF exception Unit A
else process I

I
Unit 0 I

I
Unit E --1--> IF exception Unit A

else process 1

MB-Guide to Basic programming topics

At this point, we might also remind ourselves of the
statements:

ON CODE GOTO 100, 200, 300, 445, 123, 345
ON CODE GO 100, 200, 300, 445, 123, 345

and the associated statement:

ON VALUE+l GOSUB 100,200,100,200,300,300,100

These and other fundamental points are summarised in the
MB-Guide to the Basic 7anguage.

1.3 CASE structure

The CASE structure is much more flexible than the equivalent
structure in other languages such as Pascal.

The following points are of interest:

* Any conditional (or logical) expression may be used in
the CASE statement.

* If there are any syntax errors anywhere within the CASE
structure, the compiler may flag these are being on the:

BEGIN CASE

statement. A process of inspection and selectively
commenting out each individual CASE should be used to
locate the error.

* There must be an END CASE for each BEGIN CASE.

* The BEGIN CASE and the END CASE statements should be on
separate lines enclosing the rest of the structure.

* CASE structures may be nested.

* The CASE structure is more flexible than the IF
statement if the number of possible alternatives is
likely to be more than 2 as the program develops.

* The

CASE

statement is always true and is used as a catch-a77 to
trap any situation which fails with all the preceding
CASE statements.

These and other fundamental points are summarised in the
MB-Guide to the Basic 7anguage.

Page 4

MB-Guide to Basic programming topics

1.4 FOR / NEXT structure

The FOR/NEXT structure has the general form:

FOR variab1e=initia1 TO terminal {STEP increment}

NEXT variable

and the extended forms:

FOR var=init TO term {STEP incr} {UNTIL condition}

in which case the loop will abandon when either the value of
var reaches (or exceeds) term or the condition is true.

FOR var=init TO term {STEP incr} {WHILE condition}

in which case the loop will abandon when either the value of
var reaches (or exceeds) term or the condition is false.

The elements in braces may be included or omitted, as
required.

In all cases the NEXT statement has the same form.

The following points are of interest:

* The values for the initial value, for the terminal
value, or for the STEP value may be specified as a
literal or as an arithmetic expression.

* The initial value is evaluated only when the loop is
first entered.

* The terminal value is evaluated before the start of each
iteration.

For this reason, it is possible to construct an
indefinite loop of the form:

FOR X=1 TO X+1 UNTIL RECORO<X>="
PRINT RECORO<X>

NEXT X

with the terminal value (X+1) being pushed ahead of the
current value for X.

* Either the initial, terminal and/or increment values may
be positive/negative integer/fractional numbers.

* An omitted STEP value is assumed to be +1.

* Ascending and descending movement is achieved with
positive or negative STEP values.

Page 5

MB-Guide to Basic programming topics

* There must be variable on the NEXT statement; although
the compiler does not check that the two are the same!

* You may have loops within loops, provided that the
various loops have different counters.

Loops may be nested to any number of levels, and a
nested loop must be completely contained within the
range of the outer loop, that is, the ranges of the
loops must not cross.

* Intersecting loops are not acceptable.

* It is possible, though bad practice, to change the value
of the counter inside the loop.

* It is possible, though bad practice, to jump into or out
of a loop.

These and other fundamental points are summarised in the
MB-Guide to the Basic 7anguage.

1.5 Loop structure

The LOOP structure offers powerful iteration facilities
representing the design requirements:

* Repeatedly execute a set of statements unti7 a specific
condition is satisfied, or

* Repeatedly execute a set of sta~ements whi7e a specific
condition exists,

and also:

* Test for the condition before entering the iteration, or

* Test for the condition after the iteration.

The general form of the structure is:

LOOP
statement(s)

UNTIL condition DO
statement(s)

REPEAT

LOOP
statement(s)

WHILE condition DO
statement(s)

REPEAT

The action of the statement is:

1) To execute the first set of statement(s), and then

Page 6

MB-Guide to Basic programming topics

2) To test the condition, and if the condition there
obtains, then

3) To execute the second set of statement(s), and then

4) To return to step (1).

Here are some examples:

LOOP
PRINT 'CONTINUE? Y OR N: ':
INPUT RESPONSE, 1

UNTIL RESPONSE='Y' OR RESPONSE='N' DO
PRINT 'ENTER Y TO CONTINUE / N TO STOP

REPEAT

LOOP
PRINT 'ENTER A NUMBER: ':
INPUT NUMBER

WHILE NUMBER MATCH 'lNON' DO
TOTAL = TOTAL + NUMBER

REPEAT

To simplify the coding of the illustrations below, we have
shown only one of UNTIL or WHILE.

Either of the statement(s) blocks may be omitted:

LOOP
UNTIL condition DO

statement(s)
REPEAT

LOOP UNTIL condition DO
statement(s)

REPEAT

both of which afford the test before iteration structure,
and:

LOOP
statement(s)

UNTIL condition DO
REPEAT

LOOP
statement(s)

UNTIL condition DO REPEAT

both of which afford the test after iteration structure.

The condition in the UNTIL or the WHILE clause may be any

Page 7

MB-Guide to Basic programming topics

combination of logical conditions. For example:

UNTIL X>30 OR LIST<X>=" DO
WHILE TOTAL<1000 AND INVAL NE 'END' DO

Some examples are:

COUNTER=l; INITIALISE COUNTER
LOOP

THIS1=RECORD<COUNTER>
UNTIL THIS1=TAG DO

* * PROCESS THIS1

* COUNTER=COUNTER+1
REPEAT

WORD.CTR=l
LOOP
WHILE WORD.CTR<=WORDS DO

WORD=FIELD(SENTENCE,' ',WORD.CTR)

* * PROCESS WORD

* WORD.CTR=WORD.CTR+l
REPEAT

An indefinite LOOP illustrated by the final example above is
not generally available. If required, it can be achieved by a
structure such as:

LOOP

* * MAIN BODY OF LOOP

* REPEAT

LOOP

* * MAIN BODY OF LOOP

* EXIT

* REPEAT

LOOP

* * PROCESSING HERE
* UNTIL 0 DO REPEAT

LOOP

* * PROCESSING HERE

Page 8

MB-Guide to Basic programming topics

* WHILE 1 DO REPEAT

The first two of these structures are available on Ultimate
and Advanced Pick. The EXIT statement, which is used in the
second example, offers an elegant means of leaving the loop
and avoids the use of a GOTO statement to leave the loop.

The third structure works because the value 0 will never be
true, that is, will never reach the value 1; the final
structure works for the same reason, that 1 is always true.
Such a structure avoids the use of a GOTO statement.

The following points are of interest:

* The WHILE and the DO (and the UNTIL and the DO) must
appear on the same line:

LOOP UNTIL condition DO
statement(s)

REPEAT

LOOP statement(s) UNTIL condition DO
statement(s)

REPEAT

UNTIL condition DO

UNTIL condition DO REPEAT

UNTIL condition DO statement(s) REPEAT

LOOP stmt(s) UNTIL condition DO stmt(s) REPEAT

The other parts of the statement may be arranged on the
same line or on separate lines, as illustrated by the
examples.

* Although the entire statement may be entered as a single
line, as illustrated in these latter examples, it is
always clearer to see the action of the statement if you
write the statement as a multi-line structure, as in our
earlier illustrations.

* There is no END statement to mark the end of either set
of statements. The UNTIL (or WHILE) marks the end of
the first set of statements, and the REPEAT statement
marks the end of the second set of statement.

* If you do write the statement on a single line, then
semi-colons are used to separate multiple statements,
like this:

I LOOP A=A+1; PRINT A UNTIL A>10 DO REPEAT

Page 9

MB-Guide to Basic programming topics

I LOOP WHILE A<10 DO A=A+1; PRINT A REPEAT

* There are no semi-colons around the LOOP, the WHILE, the
UNTIL, the DO, or the REPEAT.

* For simple iteration, a LOOP structure such as:

CTR=l
LOOP UNTIL CTR>=10 DO

* PROCESSING HERE
CTR=CTR+1

REPEAT

is less efficient than the equivalent FOR/NEXT loop:

FOR CTR=l TO 10
* PROCESSING HERE

NEXT CTR

These and other fundamental points are summarised in the
MB-Guide to the Basic language.

1.6 Logical expressions

Logical expressions are those which return a value of true
(represented by the numeric value 1) or false (represented by
the numeric value 0), and which are used in contexts such as:

IF logical-expression THEN/ELSE
LOOP ... UNTIL logical-expression DO
LOOP ... WHILE logical-expression DO
FOR ... UNTIL logical-expression
FOR ... WHILE logical-expression
CASE logical-expression

REPEAT
REPEAT

The logical expression may be a conditional test:

IF VALUE > COUNT THEN
IF AGE> 65 AND SEX> 'M' THEN
IF A < B OR C > 0 THEN ...
IF (A > B AND A > C) OR (A < B AND A < C) THEN '.'
IF TOTAL = 0 THEN

Unlike some programming languages which have Boolean (or
logical) variables and Boolean values true and false, Basic
uses 1 and 0 to represent these values. If a variable
contains a value of 1 or 0 then it may appear as the logical
expression:

IF OAP THEN ...

The value of a logical expression can be assigned to a
variable and this variable then used as a logical expression:

Page 10

MB-Guide to Basic programming topics

OAP = (AGE>=65 AND SEX='M') OR (AGE>=60 AND SEX='F')

and may be used in a context such as:

IF OAP THEN ...

This is much better than a sequence such as:

IF (AGE>=65 AND SEX='M') OR (AGE>=60 AND SEX='F') THEN
OAP='Y'

END ELSE
OAP='N'

END

and the corresponding:

IF OAP='Y' THEN ...

The format of logical assignment statements is:

variable = logical expression

and this explains why the Basic compiler accepts a statement
such as:

A = B = C

which is interpreted as:

A = (B=C)

in which the variable A is set to 1 (if the variables Band C
are equal) or 0 (if Band C are not equal).

Care should be taken if a variable - such as OAP in the
previous examples - is used as a logical expression and its
value may possibly be assigned values other than 1 or O. A
value of 0 is interpreted as fa7se, all other numeric values
(positive or negative) are interpreted as true. If a
non-numeric field is used, such as:

IF 'A' THEN ...

a non-fatal error will result and the error message:

[B16J NON-NUMERIC DATA WHEN NUMERIC REQUIRED; ZERO USED!

will be displayed. As a consequence of 0 being used, the
result wi 11 be fa7se.

These and other fundamental points are summarised in the
MB-Guide to the Basic 7anguage.

2 Data structures

We assume that you are familiar with the nature and
organisation of the variables and arrays used in a Basic
program.

Page 11

MB-Guide to Basic programming topics

The following points are of interest:

* There may be up to 3223 variables (including elements of
dimensioned arrays) in anyone program.

* A variable may hold a number or a string.

* A numeric variable may hold any value in the range:

-140,737,488,355,327 to +140,737,488,355,327

* Numbers are normally held with 4 places of decimals, but
you may use a PRECISION statement to specify a precision
of 0, 1, 2, or 3 places of decimals (or greater on some
implementations).

* A string may be up to 32K bytes in size.

* Each variable is identified by name.

* Each element of a dimensioned array is identified by the
name of the array and a subscript specifying the
position within the array.

* A dynamic array is simply a string which contains the
system delimiters (attribute mark, value mark and/or
subvalue mark).

* A file variable (as used in OPEN, SELECT, READ, WRITE
and DELETE statements) cannot be used for any other
purpose.

These and other fundamental points are summarised in the
MB-Guide to the Basic language.

The section below where we discuss the Descriptor Table is
also relevant in this context.

2.1 Dimensioned arrays

Dimensioned arrays are handled as in other programming
languages.

The following points are of interest:

* All dimensioned arrays must be declared in the program
where they are used.

* The DIMENSION (or DIM) statement need not physically
precede uses of the array in the program.

* An array may have one or two subscripts. For example:

DIMENSION SALES(9)
DIMENSION STATISTICS(10,15)

* The number of elements in the DIMENSION statement must
be an integer, as shown above. It cannot be a variable
or an equated symbol:

Page 12

MB-Guide to Basic programming topics

DIMENSION SALES(SALESIZE)

is invalid and would be rejected by the compiler.

* If an array is to be passed as a parameter to a
subroutine, it will be specified on statements of the
form:

CALL SUB003(NAME, MAT SALES)

SUBROUTINE SUB003(NAME, MAT SALES)

The array must also be declared by means of a DIMENSION
statement in the subroutine. The DIMENSION statement
must specify the number of elements as an integer, as
described above.

* If an array is specified on a COMMON statement then the
DIMENSION statement is not required, for example:

COMMON NAME, CODE, SALES(9)

and there should be no DIMENSION declaration for that
array in the program.

* Statements such as:

MAT SALES = 0
MAT NAMES =

are available to assign the same value to all the
elements of an array, or

DIMENSION SALES(9), COPYSALES(9)
MAT COPYSALES = MAT SALES

to copy arrays like to like. A fatal error will result
from this MAT assignment statement if the two arrays had
different numbers of elements.

* There are no facilities - such as matrix arithmetic,
matrix inversion, matrix input or matrix output - for
manipulating the contents of a dynamic array.

* Any element of a dimensioned array may contain a numeric
value or a string. If the string is a dynamic array,
then the individual attributes of the dynamic array may
be handled by references of the form:

SALES(1)<2,3,4>

which identifies the fourth subvalue of the third value
of the second attribute of the dynamic array string held
in element 1 of the dimensioned array.

You may even take a substring of this by means of the
extreme notation:

Page 13

MB-Guide to Basic programming topics

SALES(1)<2,3,4>[5,6]

to return characters 5 to 10 of the data.

2.2 Dynamic arrays

As a data structure, the dynamic array offers great
programming capabilities.

A dynamic array is simply a string containing the system
delimiters:

* The attribute mark, ASCII character 254, and/or

* The value mark, ASCII character 253, and/or

* The subvalue mark, ASCII character 252.

Thus, the structure of a dynamic array is identical to that
of a normal Pick item as it is held on a file.

A dynamic array may have zero, 1 or more attributes; any
attribute may have zero, 1 or more values; any value may have
zero, 1 or more subvalues.

A number of standard functions are supplied for use with
dynamic arrays:

EXTRACT
INSERT and the modified form INS
REPLACE
DELETE and the modified form DEL

The following points are of interest:

* A dynamic array is held in an ordinary variable.

* Unlike a dimensioned array, a dynamic array is not
declared explicitly. Only the way in which it is used
determine whether or not it is to be regarded as a
dynamic array.

* A dynamic array may be initialised by a statement such
as:

DAR RAY = "
* A dynamic array may have any number of attributes,

values and/or subvalues up to a total length of 32K
characters.

* Elements may be inserted, changed and/or deleted from a
dynamic array. The standard functions add or remove the
necessary separator characters.

* References such as REC<l> or REC<l,2,3> can be used in
exactly the same context as ordinary variables except:

they cannot be used in INPUT statements. Thus, the

Page 14

MB-Guide to Basic programming topics

statement:

INPUT REC<1,2,3>

is invalid and would be rejected by the compiler.

they cannot be used in EQU statements. Thus, the
statement:

EQU NAME TO REC<7)

would be rejected by the compiler.

they cannot be used to return values from external
subroutines. Thus, the statement:

CALL SUBR001(RATE,RECORD<3»

would not work as expected if the subroutine changed
the contents of the second argument. The reference
RECORD<3> would, however, work correctly if this
were only used to pass data into the subroutine.

These and other fundamental points are summarised in the
MB-Guide to the Basic language.

2.3 Dynamic arrays versus dimensioned arrays

The following points may influence the decision as to whether
to use dynamic arrays or a dimensioned array in your program
design:

* When you are using dimensioned arrays to process records
which have a large number of attributes, you may be
hindered by fact that the maximum number of program
variables (including those variables held in COMMON and
elements of dimensioned arrays) is 3223.

* Each dynamic array is a simple variable and may be up to
32K bytes in length.

* You may append an unlimited number of attributes to the
array. A dimensioned array is is static in size.

* You may insert new elements within the dynamic array.

* You may remove elements from dynamic array (and close up
the gap).

It is messy to insert new values within a dimensioned
array (shifting all the following elements up one
position) and to remove values from a dimensioned array
(shifting all the following elements down one position).

This and the previous points are ideally employed when a
dynamic array is to be used to build up and maintain a
list of data for use by the program.

Care should be taken if this dynamic array list of data

Page 15

MB-Guide to Basic programming topics

consist of elements (such as other dynamic arrays and
records) which themselves contain more than one
attribute.

* The LOCATE function or the LOCATE statement enable you
to locate and sort the elements of a dynamic array.

* MATREAD and MATWRITE statements must use the raw data
from the disk (which is physically held as a dynamic
array) and use this to build a dimensioned array. For
this reason, these statements are slower than the
corresponding READ and WRITE statements which handle
dynamic arrays.

* After a READ statement, the DCOUNT may be used to
determine how many attributes there are in the dynamic
array read from the file. Most implementations do not
have any facility for finding out the number of
attributes read into a dimensioned array.

* The individual elements of a dimensioned array are
accessed must faster than those of a dynamic array.

This is because each element of a dimensioned array has
a calculable start address; to find, say, element 66 of
a dimensioned array, the run-time processor uses the
fact that this is located 650 bytes (that is, 65 times
the length of each element) from the start of the array.
To find attribute 66 of a dynamic array, the run-time
processor has to scan the entire string looking for the
65th and 66th attribute mark. The time difference is
typically a factor of 10 or more.

* The use of the EQUATE statement to name each individual
element of a dimensioned array makes it much easier to
read and understand the program coding than with a
dynamic array reference.

Thus, in a sequence such as:

DIM RECORD(20)
EQUATE NAME TO RECORD(l), ADDRESS TO RECORD(7)

statements such as:

INPUT NAME
PRINT ADDRESS

are easier to read than statements such as:

PRINT DA.RECORD(l>
PRINT DA.RECORD<7>

* You cannot INPUT data directly into a dynamic array, you
can INPUT directly into a dimensioned array:

INPUT RECORD(l) is valid
but

INPUT DA.RECORD<l> is not valid

Page 16

MB-Guide to Basic programming topics

These and other fundamental points are summarised in the
MB-Guide to the Basic language.

2.4 Descriptor table

The descriptor table is a list of all the variables which are
used by a Basic program or a subroutine. It is produced by
the compiler and used by the run-time interpreter to handle
the variables. For each variable named in the program or
subroutine (both those in COMMON and the local variables) and
for each element of a dimensioned array, there is an entry in
the descriptor table.

The maximum size of the descriptor table is 3223. This
explains the restriction on the number of variables (and
dimensioned array elements) which can be used in a program.

Each entry in the descriptor table is (normally) 10 bytes
long. The first byte indicates the nature of the variable:

1) Unassigned: byte 1 contains hexadecimal 00.
2) Numeric: byte 1 contains 01.
3) String - direct: byte 1 contains 02.
4) String - indirect: byte 1 contains 82.
5) File variable: byte 1 contains 04.
6) Subroutine variable: byte 1 contains 40.

The remaining bytes, 2 to 10, contain data:

1) Unassigned: zeroes.

2) Numeric: held as a six-byte binary number.

3) String - direct: up to seven bytes of data. Eight bytes
on Ultimate implementations.

4) String - indirect: a six-byte pointer to the location of
the actual string in memory. We discuss this below.

5) File variable: the base FlO (four bytes), the MOD (two
bytes) and the SEP (two bytes) of the file.

6) Subroutine variable: a six-byte pointer to a catalogued
subroutine, as used in a context such as CALL .ROUTINE

Within the table, COMMON variables usually appear first,
followed by local variables, followed by dimensioned arrays.
The organisation of the descriptor table can be seen by
specifying the M (map) option on the BASIC command. These
and several other features of the way in which data is
organised within the program are illustrated by the following
program:

COMMON NAME, CALC, DATE
EQU DROP TO CHAR(10), AST TO '*'
EQU FLAG TO SWITCH
DIMENSION ARRAY(20), STORE(5)

Page 17

MB-Guide to Basic programming topics

TOTAL=O
DIMENSION COPY(20)
FOR X=1 TO 20

TOTAL=TOTAL+X
ARRAY(X)=TOTAL

NEXT X
CALL SUB001(TOTAL,FLAG,VALUE)
PRINT DROP: AST,SWITCH,VALUE
END

If we compile this program with a command such as:

BASIC filename programname (M

the following map would be displayed:

C030
110
070

NAME
ARRAY
X

C040
310
080

CALC
STORE
VALUE

C050
360
100

The following points are of interest:

DATE
COPY
SWITCH

100
060

FLAG
TOTAL

* The names (or symbols) appear in the descriptor table in
the sequence in which they are used (or declared) in the
program.

* The number indicates the position (or the address) of
that variable (or symbol) within the descriptor table;

* The addresses start at 030;

* A C before the address indicates that this is a COMMON
variable;

* COMMON variables come first;

* The arrays come last;

* Each element of the array occupies entry in the
description table. Thus, ARRAY runs from 110 to 300,
that is 20 places in the table.

If a string is seven bytes or less in length, then it is held
explicitly as a type (3) variable in the descriptor table.
But if the string increases in length, it is held in one of a
series of buffers and the address of the buffer is held in
the descriptor table as a type (4) variable. The buffers can
have lengths of 50 bytes, 100 bytes, 150 bytes, 250 bytes,
500 bytes and so on. As the string increases in length, it
is moved to the next larger buffer, but as it decreases in
length it is not relocated. When a string is moved to a
larger buffer, the previous buffer is released. If a new
buffer is required, and there is not sufficient storage space
available, then a process known as garbage co77ection is
carried out and the buffers are reorganised to provide
sufficient space for the new buffer requirements. If this

Page 18

MB-Guide to Basic programming topics

does not yield the required space, then the program will
abort with a message such as:

[B28] LINE n OF program NOT ENOUGH WORK SPACE.

This explains two important points:

* The reason why some string operations, such as
concatenation, are so expensive on time.

* A cause of the NOT ENOUGH WORK SPACE message when using
very large strings such as data records and lists.

3 EQUATE statement

The EQUATE statement (and its abbreviation EQU) has several
forms. Let's look at these in turn.

The first form:

EQUATE MESSAGEOl TO 'Enter YES or NO'

will result in all references to the name MESSAGE01 being
replaced by the character string at compilation time.
MESSAGE01 can be regarded as a constant (in the manner of
constants in languages such as Pascal), and cannot be used on
the receiving end of an assignment statement in that program.

The string or value to be assigned to the symbol MESSAGE01
must be a specific string and may not contain (or imply) an
expression which can only be evaluated at execution-time.
Thus, statements such as:

EQUATE INCREMENT TO 24

are valid, but statements such as:

EQUATE PRICE TO 30*100
EQUATE VALUE TO PRICE*QTY
EQUATE NAME TO TITLE:' ':SURNAME
EQUATE DROP TO CHAR(10):@(-3)

are invalid and would be rejected by the compiler.

A seeming exception to this is presented by statements of the
second form:

EQUATE AMARK TO CHAR(254)

which will result in all references to the name AMARK being
replaced by the actual character at compi7ation time. As
with the previous form, AMARK is regarded as a constant and
cannot be used on the receiving end of an assignment
statement in that program.

The EQUATE statement is evaluated once only - at compilation
time - and these two forms are preferable to assigning the
values to variables by means of the equivalent assignment
statements:

Page 19

MB-Guide to Basic programming topics

MESSAGE01 = 'Enter YES or NO'
INCREMENT = 24
AMARK = CHAR(254)

which would be less efficient at execution time because:

* The assignment statement itself must be executed every
time the program is executed.

* All references to the variables MESSAGE01, INCREMENT and
AMARK require the execution time processor to locate the
variables and retrieve the contents each time those
variables are used.

The third form:

EQUATE COST TO PRICE

allocates the names COST and PRICE to the same variable. In
practice, this statement is of doubtful value since the use
of two names for the same variable may confuse the reader.
It would be much better to use the Editor to change all
occurrences of the one name to the other.

The fourth form:

EQUATE DESCRIPTION TO STOCK(1)

is a convenient device for documentation purposes since it
allows a meaningful name to be given to specific elements of
a dimensioned array. If the array is to be used in MATREAD /
MATWRITE statements, then the individual elements of the
array can be assigned the names of the separate fields of the
item, thus making the program easier to read.

4 EXECUTE statement

The format of the EXECUTE statement varies widely on the
various implementations:

* Advanced Pick offers TCl as an alternative to EXECUTE.

* McDonnell Douglas offers PERFORM as an alternative to
EXECUTE, or vice versa.

* The EXECUTE statement of Ultimate implementations is
vastly different from that of the other versions,
although it is understood that this will change in later
releases.

Consult the reference manual for your implementation and make
a note of the following points:

Page 20

MB-Guide to Basic programming topics

The form of the statement

How to capture the output from the TCl command

How to suppress the displayed output from the command

How to pass data to the TCl command

How to test for successful completion of the command

The following points are of interest:

* When an EXECUTE statement is carried out, the effect is
the same as logging on to the account as a temporary
user and issuing a TCl command to perform the required
statement, and then logging the temporary user off the
account when the action is complete. This means that,
for each EXECUTE statement, the operating system must

Page 21

MB-Guide to Basic programming topics

allocate a new set of workspace, use it and then
deallocate it.

This is an expensive process. Wherever possible, is it
more efficient to use the

CHAIN

statement or, if the program is suitably constructed,
one of the:

CAll
ENTER

statements instead of EXECUTE.

* Since a process which is invoked by an EXECUTE statement
is carried out at a different processing level from the
program which issued the statement, several differences
and consequent difficulties arise. Typical of these
are:

+ File I item locks are not applicable when a
transfer is made to a Basic program.

+ A Basic program which is invoked by an EXECUTE
statement will have different COMMON areas from the
program which invoked it.

+ In an invoked Basic program, any PROCREAD statement
will take the ELSE clause.

+ Data is most successfully passed back from an
invoked Basic program back to the invoking program
by means of a work-file.

+ An invoked EDIT command will have different TB
tab-stops and pre-stored commands from another
invoked EDIT command and these will also be
different from those of an EDIT command which has
been invoked at TCl.

* If you are capturing the output from an EXECUTE
statement, this may be too large to accept into a Basic
variable if it is the result of, say, a large Access
report.

* Any stacked data will be submitted to
command (whether it is needed or not)
available for subsequent processing.
example:

DATA 'ABC'
EXECUTE 'WHO'
INPUT CODE

the EXECUTEd
and will not be
Thus, in the

the stacked data value ABC will be lost and cannot be
accessed by the INPUT CODE statement.

Page 22

MB-Guide to Basic programming topics

5 Input statements

Depending upon which version of the operating system you are
using, you will have a range of statements for accepting
input data from the user as the program executes:

These include the INPUT statement, the INPUT. statement
(described below) and possibly also the statement:

IN VALUE
which will accept a single character from the keyboard
and puts it ASCII decimal equivalent into the variable
called VALUE.

This statement will accept any keyboard character,
including the function keys, <BACK SPACE> and the
<CURSOR CONTROL> arrow keys.

There is also an equivalent:

OUT VALUE
which will convert the decimal number in VALUE to the
equivalent ASCII character and display this on the
screen.

CALL GETBUF(RESPONSE,SIZE,TYPE,HOLD)
which will:

+ Move the cursor backwards from the current position
a distance equivalent to the length of the data
currently held in the variable RESPONSE.

+ Accept data from the user, as specified by SIZE
(the maximum length of the input data), TYPE (a
code specifying the format of the input data) and
HOLD (0 if the cursor is to be held in position
after the input, otherwise 1).

The source subroutine (held as item GETBUF on file
BP) may be amended to accept other data patterns,
but the current standard values for TYPE are:

o alphanumeric characters only;
1 numbers and numeric symbols (including +

- $, .)
2 numbers only.

If any invalid data is entered, conflicting with
the specified TYPE, the terminal will beep and
ignore the character.

+ Put the user's response into the variable RESPONSE.

These and other fundamental points are summarised in the
MB-Guide to the Basic language.

Page 23

MB-Guide to Basic programming topics

5.1 INPUT. statement

The INPUT. statement is one of a group of statements which
offer very powerful facilities for data input on some
implementations.

When you use the INPUT 0 and associated statements,

* The program will position the cursor before accepting the
input data.

* The program will display a default value according to a
format-mask in the field where the data are to be input.

* The program will accept the user's input data value.

* The user may overwrite the default value, take the
default value, or enter any of a set of specia7 action
codes.

* The program will redisplay the input value according to
the format-mask.

* The program will display and control the erasure of
messages at the foot of the screen.

Look at this sequence:

TAX=O
INPUT O(5,5):TAX "R12"

This will:

* Move the cursor to position (5,5).

* Display the current contents of the variable TAX (this is
o in this particular sequence) according to the mask
"R12", that is right-justified in a field of width 12.

* Accept a value for the variable TAX and allowing the user
to type over the displayed value.

* Redisplay the input value according to the mask "R12".

* Interpret a null response as indicating that the previous
contents of TAX are to be retained. Thus, the contents
of TAX before the statement is executed can be thought of
as a defau7t value.

There are several statements to support the INPUT. facility.

INPUTERR statement
This controls the displaying and erasure of
error-messages at the foot of the screen. For example:

INPUTERR "VALUE MUST BE LESS THAN 100"
When this statement is encountered it will:

* Clear the bottom line of the screen, if there is

Page 24

•

MB-Guide to Basic programming topics

already an INPUTERR error-message there.

* Display the text.

VALUE MUST BE LESS THAN 100

* Set an internal system flag to indicate that an
error-message is present at the foot of the screen,
indicating that this is to be cleared prior to
subsequent INPUTERR error-messages.

Note that - despite the format - there is no
error-condition associated with this statement. The
INPUTERR statement is executed when it is encountered,
exactly like a PRINT statement.

INPUTNULL statement
this statement allows the programmer to specify a
character which is to be used to represent a truly null
value. This statement is required since a null response
at an INPUT. statement will assume the default value.
For example:

INPUTNULL "*"
This statement is not executed immediately, but must be
issued prior to any INPUT. statements to indicate that,
if the user enters a response of * to subsequent INPUT.
statements, then this is to be interpreted as null. Any
single character may be specified, and this
null-indicator will stay in operation until changed by a
subsequent INPUTNULL statement.

INPUTTRAP statement
This statement allows a set of special operations codes
to be established according to certain single-character
input by the user. Some examples of this statement are:

INPUTTRAP "?/.<>" GO 10,20,30,40,50
INPUTTRAP "?/.<>" GOSUB 10,20,30,40,50

Such statements are not executed immediately, but must be
issued prior to INPUT. statements to indicate that, in this
example, a response of anyone of the specific characters?
or ? or . or < or > to subsequent INPUT. statements will
cause the system to branch to the statements 10, 20, 30, 40
and 50 respectively.

This is a useful device which allows the analyst to design
systems with conventions such as:

? means display a help message.
/ means cancel the operation.

means abandon the job.

and so on.

means return to the last input stage.
means skip to the next input stage.

There may be any number of characters and a matching set of

Page 25

MB-Guide to Basic programming topics

destinations, and these INPUTTRAPs will stay in operation
until changed by a subsequent INPUTTRAP statement.

6 PRINT and printing

All output which the user visualises as being sent to the
printer is, in fact, intercepted and handled by the spooler.
The spooler is discussed in detail in the MB-Guide to the
spooler.

In this section, we assume that you are familiar with the
fundamental features of the Basic PRINT / CRT / DISPLAY
statement:

PRINT

CRT

is used to output to the screen or to the spooler (if a
PRINTER ON statement has been executed or the program
has been invoked by the (P option).

PRINT output can be controlled by the PAGE / HEADING /
FOOTING statements.

is used to output to the screen, regardless of whether
or not a PRINTER ON statement has been executed. This
statement does not affect the PAGE I HEADING I FOOTING
controls.

DISPLAY
is offered instead of CRT on Ultimate implementations.

OUT VALUE
which will convert the decimal number in VALUE to the
equivalent ASCII character and display this on the
screen.

These and other fundamental points are summarised in the
MB-Guide to the Basic language.

6.1 PRINTER ON I OFF / CLOSE statements

When the execution of a Basic program begins, any PRINT
statements will normally send their output to the screen. To
direct output to the printer (the spooler) you will use the:

PRINTER ON

statement. When this statement has been executed, all
subsequent PRINT statements will send their output to the
printer, or more correctly, to the spooler.

After you have done this, you may want to switch the PRINT
output back to the screen, for example, to ask your users for
some more information. You will do this by means of the
statement:

PRINTER OFF

The use of the CRT statement, as discussed below, will

Page 26

MB-Guide to Basic programming topics

obviate the need to switch the PRINTER OFF and ON in such
circumstances.

When the program execution has finished, then your report
(currently being held by the spooler) will be printed as soon
as the printer is free.

If you wish to cause your output to be printed BEFORE the end
of your job - you may want to inspect some printed output
before proceeding - then you will use the:

PRINTER CLOSE

statement. This closes the output file and sends the report
to the printer immediately it is free.

If you have a program which is to produce all its output on
the printer, you can do this much more simply by executing
the program with the command:

RUN MYPROGS ADV003 (P)

The (P) has the effect of issuing a PRINTER ON statement
before the program execution starts. In this situation, you
will not need PRINTER ON statements in your program. Any
PRINTER OFF or PRINTER ON statements will have their normal
effect.

In general, all the forms of the PRINT statement which we
have discussed - except those using the. function and
certain special print characters - will have the same effect
on the terminal screen and on the printer.

If your system is to use any non-standard output devices,
such as bar-code encoder, plotter, or telex, then these will
be driven by data sent from such PRINT statements or by the
OUT statement.

The CRT statement has exactly the same syntax as the PRINT
statement. The differences are:

+ CRT always sends output to the screen, irrespective of
whether a PRINTER ON statement has been issued or not.

+ CRT does not increment the line-counter details which are
used to monitor the page-depth when the HEADING and
FOOTING statements have been issued.

6.2 PRINT ON statement

The PRINT ON statement enables output to be sent to any
number of separate spooler files during the execution of a
program.

This allows you to generate several reports at the same time,
in the same program, and then print them off separately. For
example, an account update program might produce separate
reports to:

Page 27

MB-Guide to Basic programming topics

* Print the transactions.

* Print the customers' statements.

* Print the management summary.

* Print the name and address labels for the statements.

And each of these might be produced on different stationery.
We could achieve this by statements such as:

PRINT ON 1 DATE, CODE, VOUCH.NO, AMOUNT
PRINT ON 2 VOUCH.NO, VOUCH.DETAIL, AMOUNT, NEW.BALANCE
PRINT ON 3 CODE, NAME, NEW.BALANCE
PRINT ON 4 NAME
PRINT ON 4 STREET
PRINT ON 4 TOWN

At the end of job, all the separate spool files will be
closed and then output in numerical order, or to separate
spooler queues if you have used the SP-ASSIGN verb with
parameters such as:

SP-ASSIGN F1 R4

which will assign all the PRINT ON 4 output to form-queue 1.

6.3 HEADING / FOOTING / PAGE statements

The HEADING / FOOTING / PAGE statements can be used to
advantage when producing a siimple paginated report on the
screen or the printer.

When a HEADING or a FOOTING statement is first executed, the
run-time processor starts up a line count routine. Each
subsequent PRINT statement (not PRINT statements which end
with a colon nor CRT statements nor DISPLAY statements) will
add 1 to this line count. When the line count reaches the
page depth limit as shown by the terminal characteristics for
the current output device (terminal or printer), then a page
skip routine will be triggered:

* any footing will be output;

* if the output is to the terminal, then the output will
halt until the user hits any key (or terminates the
process by entering <CTRL> X);

* a skip is made to a new page (this will clear the
terminal screen or skip to a new page on the printer);

* any heading will be output.

* the line count will be reset.

The PAGE statement forces this page skip routine.

The following points are of interest:

Page 28

MB-Guide to Basic programming topics

* The execution of a HEADING statement will generate a
skip to a new page.

* A FOOTING statement has no immediate effect on the
execution, other than to set the text to be used in
subsequent footings and to trigger the line count
routine.

* The simple:

HEADING

statement will clear the screen.

* On some implementations, the statement:

HEADING nn

will cancel the current HEADING specification, on others
it will simply change the heading text to null.

* If the HEADING / FOOTING is changed during the execution
of a program, the new specifications will only become
effective when the next page skip is made.

* During testing, it is convenient to use a HEADING
statement to paginate the output and (at the pause at
the foot of each page) to allow the user to terminate
the process by entering (CTRL> X.

* Care should be taken when using the HEADING/FOOTING
statements other than in the production of simple
reports. For example, you might use these statements to
produce a report and then later in the same program use
PRINT and INPUT statements for conversational data; all
the PRINT statements will contribute to the line count
and after, say, 23 PRINT/INPUT sequences, the program
will pause (thinking that it has reached the foot of a
page) until the user hits any key for it to continue.

* If you mix HEADING/FOOTING statements with PRINT ON for
several output queues, the results will be
unpredictable.

* The PAGE statement has no effect if there is no HEADING
/ FOOTING in operation.

6.4 0 function

The @ function is used for cursor-positioning when outputting
to the screen and is commonly used in PRINT (or CRT or
DISPLAY) statements:

PRINT @(0,5):
PRINT @(COL,ROW):MSGl
PRINT @(12,ROW):TEXT1:@(40):TEXT2
PRINT @(50):'?????':

It cannot be used in output to the printer.

Page 29

MB-Guide to Basic programming topics

Since it is simply a function which returns a value (the
value being an escape sequence to trigger terminal display
effects), the function can also be used to advantage in
building strings which represent a screen image:

SCREEN = @(-1) : @(0,15)
SCREEN = SCREEN: @(0,2)
SCREEN = SCREEN: @(0,3)

TITLE
'Name: '
'Department: '

and then issuing a statement such as:

PRINT SCREEN

to display the entire screen. This is more efficient than
having a series of PRINT statements each printing a line of
the screen image.

It can also be used in a context such as:

ERROR. lINE = @(O,23) : @(-4) : 'Error: '

PRINT ERROR.lINE : 'Number must be an integer':

The action of the @ function is normally achieved by means of
a file (typically called CURSOR). This holds, for each type
of terminal, a string of characters which move the cursor and
produce other effects on that particular terminal. This
information is used at run-time, thereby enabling a compiled
program to be used for any terminal.

7 File handling

File handling offers few surprises to anyone who is familiar
with the fundamental Basic statements.

The file must first be opened by a statement of the form:

OPEN filename TO file-variable THEN/ELSE
OPEN 'DICT',filename TO file-variable THEN/ELSE
OPEN 'DICT filename' TO file-variable THEN/ELSE

The action of this statement is to find the base FlO, the
modulo and the separation of the file. This information is
then placed in the file-variable. The contents of the
file-variable cannot be used for any purposes other than in
the statements shown below. It is convenient to think of
filename as holding the external name of the file (as it will
be used in TCl commands and Access sentences) and the
fi7e-variab7e as being the internal name of the file (as it
will be used in this Basic program).

The TO fi7e-variable element (and the file-variab7e, element
of the statements shown below) is optional, and if this is
omitted, then a default file-variable will be used. Only one
such default file-variable is available. It is recommended
that a file-variable is always specified.

If the item contents are to be read/written as a dynamic

Page 30

MB-Guide to Basic programming topics

array, then the READ and WRITE statements will be:

READ dyn-rec FROM file-variable, item-id THEN/ELSE
WRITE dyn-rec ON file-variable, item-id

If the item contents are to be read/written as a dimensioned
array, then the READ and WRITE statements will be:

MATREAD dim-rec FROM file-variable, item-id THEN/ELSE
MATWRITE dim-rec ON file-variable, item-id

If a single attribute is to be read/written, then the READ
and WRITE statements will be:

READV variable FROM file-variable, item-id, attr THEN/ELSE
WRITEV expression ON file-variable, item-id, attr

To delete a record, the statement is simply:

DELETE file-variable, item-id

There is no CLOSE statement on generic Pick, although
Ultimate and Advanced Pick have a statement

CLOSE file-variable

which prevents any further READ / WRITE / DELETE statements
being executed for the file.

7.1 Fi le / item locking

According to the implementation which is being used, it may
be possible to lock a single item (or the group which
contains a specific item). When an item (or group) has been
locked by one user, any other user who attempts to access
that item (or group) will not be allowed to proceed until the
first user has written the item back to the file and/or
released the lock.

The item (or group) is locked by means of one of the
statements:

READU dynarr FROM ...
MATREADU dimarr FROM
READVU variable FROM ...

is executed. The U at the end of the keyword indicates that
the read is to be executed and the item (or group) locked for
Update.

The lock on that item (or group) will be released only when
that user executes a WRITE statement for that item, or when
the user issues a:

RELEASE file-variable, item-id

statement.

If it is required to update that item on the file and still

Page 31

MB-Guide to Basic programming topics

retain the lock, then the format of the WRITE statement will
be:

WRITEU dynarr ON file-variable, item-id
MATWRITEU dimarr ON file-variable, item-id
WRITEVU expression ON file-variable, item-id, attr

There is an extended form of the READ statements to allow the
programmer to specify some action which is to be taken in the
event of an item (or group) being found to be locked:

READU dynarr FROM fvar, id LOCKED/THEN/ELSE
MATREADU dimarr FROM fvar, id LOCKED/THEN/ELSE
READVU variable FROM fvar, id, attr LOCKED/THEN/ELSE

The LOCKED clause is constructed in exactly the same way as
the THEN and the ELSE clauses and, like them, may be a
multi-line structure.

A typical example of this statement might be:

100 READU RECORD FROM STOCK.FV, KEY LOCKED
LOOP

PRINT 'This record is locked. Wait/Abandon? '.
INPUT RESP,l

UNTIL RESP='W' OR RESP='A' DO
IF RESP='W' THEN

SLEEP 10; ** Sleep for 10 seconds
GO 100; ** Try again

END
REPEAT

END THEN
GOSUB 1000; ** PROCESS RECORD

END ELSE
PRINT 'RECORD' :KEY:' NOT FOUND'

END

7.2 SELECT / READNEXT statements

The general form of the Basic SELECT statement is:

SELECT {file-variable} {TO select-variable}

This will prepare to pass all the successive item-ids from
the file which has been opened to the file-variable and make
them available to a READNEXT statement of the form:

READNEXT key-variable {,position} {FROM select-variable}
THEN/ELSE

via the select-variable.

The position parameter is used when the select-list was
produced outside the program by means of a sentence such as:

SSELECT STOCK BY-EXP LOCATION

Page 32

MB-Guide to Basic programming topics

and represents the multi-value position of the various
LOCATION fields in this instance.

The elements enclosed in braces {} are optional.

Note that there is no SSELECT statement in Basic, nor is
there any facility for specifying selection criteria on the
SELECT statement.

Unlike the TCL SELECT command, the Basic SELECT statement
does not collect all the item-ids when it is executed.
Instead, the action of the SELECT statement is to load into
the select-variable, the item-ids of the items in the first
group of the file. As the item-ids from this list are
consumed by the READNEXT statement, the run-time processor
places the item-ids in the next physical group into the
select-variable. This continues until the end of the last
group is reached; the ELSE clause on the READNEXT statement
is then taken. One consequence of this is that, if the
program creates new items on the same file, these too may be
picked up when the SELECT/READNEXT action reaches the groups
where the new items are held.

We illustrate some typical uses of these statements.

1) Example - omitting both the file-variable and the
select-variable and using the defaults:

OPEN 'STOCK' ELSE STOP
SELECT
READNEXT STOCK.ID ELSE STOP
READ STOCK.REC FROM STOCK.ID ELSE STOP

2) Example - using the file-variable:

OPEN 'STOCK' TO STOCK.FV ELSE STOP
SELECT STOCK.FV
READNEXT STOCK.ID ELSE STOP
READ STOCK.REC FROM STOCK.FV,STOCK.ID ELSE STOP

3) Example - using the select-variable:

OPEN 'STOCK' ELSE STOP
SELECT TO STOCK.SV
READNEXT STOCK.ID FROM STOCK.SV ELSE STOP
READ STOCK.REC FROM STOCK.ID ELSE STOP

4) Example - using both the file-variable and the
select-variable:

OPEN 'STOCK' TO STOCK.FV ELSE STOP
SELECT STOCK.FV TO STOCK.SV

Page 33

MB-Guide to Basic programming topics

READNEXT STOCK.ID FROM STOCK.SV ELSE STOP
READ STOCK.REC FROM STOCK.FV,STOCK.ID ELSE STOP

5) Example - using several select-variables:

* OPEN FILES
OPEN 'STOCK' TO STOCK.FV ELSE STOP
OPEN 'INVOICES' TO INVOICE.FV ELSE STOP

* SELECT FILES
SELECT STOCK.FV TO STOCK.SV
SELECT INVOICE.FV TO INVOICE.SV

* MAIN PROCESSING
READNEXT STOCK.ID FROM STOCK.SV ELSE STOP
READ STOCK.REC FROM STOCK.FV,STOCK.ID ELSE STOP
READNEXT INVOICE. KEY FROM INVOICE.SV ELSE STOP
READ INVOICE.REC FROM INVOICE.FV,INVOICE.ID ELSE STOP

7.3 SELECT statement / SELECT sentence

The following point is important:

If there is an external select list produced before entry to
the Basic program, then a SELECT statement in the program
will be ignored and the READNEXT statement will gather the
item-ids which were produced by the TCl SELECT (or SSElECT)
sentence. This means that a program fragment such as:

OPEN 'STOCK' TO STOCK.FV ELSE STOP
SELECT STOCK
DONE=O
lOOP

READNEXT STOCK.ID ELSE DONE=l
UNTIL DONE DO

READ STOCK.REC FROM STOCK.FV,STOCK.ID THEN

can be executed without any preparatory selection at TCl and
will select all the items on the STOCK file. However, if the
program is executed in a TCl sequence such as:

)SSElECT STOCK WITH COLOUR "RED" BY PRICE

210 items selected

)RUN BP UPDATE. STOCK

then only the 210 items selected by the TCl command will be
processed and not all the items on the file. Of course, the
TCl sentence can include any sort specifications and/or sort
criteria and the appropriate item-ids will be submitted in
the appropriate sequence.

Page 34

MB-Guide to Basic programming topics

A similar effect can be achieved by using an EXECUTE
statement to produce the select-list instead of the SELECT
statement, as in this fragment:

OPEN 'STOCK' TO STOCK.FV ELSE STOP
EXECUTE 'SSELECT STOCK WITH COLOUR "RED" BY PRICE'
DONE=O
LOOP

READNEXT STOCK.ID ELSE DONE=1
UNTIL DONE DO

READ STOCK.REC FROM STOCK.FV,STOCK.ID THEN

Such a selected-list can be created by means of any of the
verbs:

SELECT
SSELECT
QSELECT
GET-LIST
FORM-LIST

7.4 Several select-variables

With the Basic SELECT statement, it is possible to have
several select lists active at one time, each with its own
select variable. The EXECUTE statement of Ultimate and the
PERFORM statement of McDonnell Douglas have facilities for
loading the select-list from an EXECUTE (or PERFORM)
statements into a select variable. Generic Pick, however,
does not have such a facility, and it is only possible to use
one such list at a time.

One solution is to build an internal list of the item-ids,
and then use the items from this list for processing by the
program. This is illustrated by the following program which
processes all the items on all the files on an account: the
list of file names is selected and collected into the dynamic
array FILES, and the list of item-ids on each file is
selected and processed directly.

* PROGRAM TO PROCESS ALL ITEMS ON ALL FILES
EXECUTE 'SSELECT MD WITH *A1 "0'"
FILES=' ,
FILE.CNT=O
DONE=O
LOOP

READNEXT FILE ELSE DONE=1
UNTIL DONE DO

FILE.CNT=FILE.CNT+1
FILES<FILE.CNT>=FILE

REPEAT
* FOR EACH FILE

FOR F=1 TO FILE.CNT
FILENAME=FILES<F>
EXECUTE 'SSELECT ':FILENAME
DONE=O
LOOP

Page 35

*

MB-Guide to Basic programming topics

READNEXT ITEMID ELSE DONE=1
UNTIL DONE DO

* PROCESS ITEM 'ITEMID' ON FILE 'FILENAME'

* REPEAT
NEXT F
END

7.5 Handling backing storage

The Basic language has a number of statements which allow you
to process data held on backing storage. The sequence of
operations when using the backing storage with a Basic
program is:

1) Issue the appropriate SET- command to indicate which
device you are using and/or attach the device by means
of the T-ATT command.

2) Indicate the record size which you will be using - by
means of the T-ATT or the T-RDLBL command.

3) Mount the tape or diskette - with a write-permit ring if
you are writing data to the device.

4) Invoke the Basic program.

5) Rewind the device - by means of the REWIND statement in
the program or the TCL T-REW command.

6) Dismount the tape or diskette.

7) Issue a T-DET command to detach the device, releasing it
for other users.

The SET- and T- commands may be invoked from within the Basic
program by means of a series of EXECUTE/PERFORM commands:

EXECUTE 'SET-FLOPPY (AS'
EXECUTE 'T-STATUS' CAPTURING MESSAGE
EXECUTE 'T-ATT'
EXECUTE 'T-REW' or REWIND ELSE

The Basic statements to manipulate the device are:

READT
to read a data record from the device:

READT TRECORD ELSE PRINT 'End of file reached'; STOP

READT TRECORD ELSE PRINT 'TAPE NOT ATTACHED'; STOP

WRITET
to write data to the device:

WRITET OPUTDATA ELSE GO 10

Page 36

MB-Guide to Basic programming topics

REWIND
to rewind the device:

REWIND ELSE PRINT 'TAPE NOT ATTACHED'; STOP

WEOF
to write an end-of-fi1e marker on the device:

WEOF ELSE GO 400

As with all statements which offer a THEN / ELSE clauses, the
THEN statements are processed after a successful operation.
and the ELSE statements will be processed if the device has
not been attached prior to running the program. The READT
statement will also pass to the ELSE condition if the
end-of-fi1e marker is sensed.

The programmer should be completely aware of the format of
the records when using the READT and WRITET statements.

If the program is to handle records which were written by the
system software, then the following points are important:

* The individual items on a T-DUMP file are separated by
ASCII character 251,

* A file-save or account-save cannot successfully be
handled by a Basic program. This is because the
delimiting characters used by these processes have a
special significance to the Basic run-time processor and
cannot be handled by a Basic program.

8 Subroutines

We shall assume that the reader is familiar with the concept
and use of internal subroutines in Basic.

The following points are of interest:

* The subroutines are held within the program unit where
they are used.

* They are reached by a GOSUB statement, and control is
passed back to the main body of the program by a RETURN
statement.

* They are usually isolated from the main body of the
coding, protected by a GO TO statement, a STOP statement
or some other device which will avoid their being
executed other than by means of the GOSUB statement.

* The same variables and variable names are used in the
main body of the program and in the subroutine.

The construction of a program as a set of externa7
subroutines makes the development and testing of the program
much simpler than if it were a single monolithic set of
statements. This is particularly true if the program is very
large and/or there are several programmers working on the

Page 37

MB-Guide to Basic programming topics

development simultaneously.

The following points are of interest:

* The item-id of the subroutine must be the same as that
on the CALL statements which call the subroutine.

* The keyword SUB can be used instead of SUBROUTINE. The
actual name specified on the SUBROUTINE statement is
irrelevant on most implementations. Most programmers
discover this by accident.

* The cataloguing of the subroutine and the main program
varies between implementations:

+ Generic Pick requires the subroutines to be
catalogued; it does not demand that the main
program also be catalogued.

+ Some implementations [McDonnell Douglas] require
the main program and the subroutines to be
catalogued.

+ Some implementations do not require the subroutine
to be catalogued if it is held on the same file as
the calling program.

* If the subroutine has not been catalogued when it should
have been, then a fatal error will result at run-time
and the processing will abandon with the error-message:

[B25] PROGRAM 'xxx' HAS NOT BEEN CATALOGED

* If the number of parameters on the CALL statement is
fewer than on the SUBROUTINE statement, then a fatal
error will result at run-time and the processing will
abandon with the error-message:

[B14] LINE n BAD STACK DESCRIPTOR.

* If the number of parameters on the CALL statement is
greater than on the SUBROUTINE statement, then the
run-time process may accept this without comment; the
superfluous arguments will be ignored.

I have also experienced the run-time error-message:

[B27] LINE n RETURN EXECUTED WITH NO GOSUB

under the same circumstances when the subroutine was
otherwise quite sound.

8.1 Passing data to subroutines

Data may be passed to an external subroutine as a sequence of
parameters (or arguments) in the CALL statement:

CALL SUB001(FILE,ITEM,SWITCH,RECORD)

Page 38

MB-Guide to Basic programming topics

or by means of the COMMON statement.

The following points may influence the decision as to how
data is to be passed.

Data specified in a CALL statement (and in the corresponding
SUBROUTINE statement) is physically copied from the variables
used in the program to those used in the subroutine, and when
the RETURN statement passes control back to the program, the
data is physically copied from the variables used in the
subroutine to those used in the program. This considerably
slows up the processing if large amounts of data are passed
to and from the subroutine. Some actual figures for the
execution of various CALL statements are given in the section
on timing.

Parameters in the CALL are used in situations where:

* The subroutine is to be used in several different and/or
unrelated programs.

* The subroutine is to be used with different parameters
at several places within the same program.

Data is passed by means of the COMMON statement in situations
where:

* There is a considerable amount of data to be passed to
and/or from the subroutine.

* The exact layout of the COMMON block is known and is the
same for all programs and subroutines which will be used
during the execution.

8.2 COMMON data

The COMMON statement allows you to arrange your data so that
the variables are not held within the actual program or
subroutine, but are held in a COMMON area which shared by a
main program and all the external SUBROUTINEs which it calls.
In order to indicate which variables are to be held in this
common area, you will use a statement such as:

COMMON STOCK.F, STOCK.FV, ERROR

in the main program, and a corresponding

COMMON NAME, FVARIABLE, ERROR

in the subroutine.

Now, the first statement of the subroutine will be:

SUBROUTINE OPEN. FILES

without a parameter list, and the CALL statement will be:

CALL OPEN. FILES

Page 39

MB-Guide to Basic programming topics

also without the parameter list.

The COMMON statement must appear before any statements which
use the common variables. As with the parameter list, the
order in which the variables are declared is important, but
not the names.

If you have written programs for any other computer system,
you may have come across the concept of local and global
variables. In the Pick operating system, COMMON variables
are global variables, being available to the main program and
all subroutines (which use a COMMON statement), whereas all
other variables are local variables and only available to the
program in which they are used.

The following diagram depicts the way in which local
variables are used in a Basic program and a subroutine. As
the routine is compiled, the variables are assembled into a
list (called the symbol table) and this list is used to store
the contents of those variables at execution time. The
variables in the list for one routine - the main program or a
subroutine - cannot be accessed from another routine. Thus
the variable FILE is inaccessible to the processing within
the subroutine SUB001 and the contents of the variable CLR
are inaccessible to the processing in the main program.

* Main program FILE
OPEN 'STAFF' TO FILE ELSE STOP
10 INPUT CODE CODE
IF CODE='.' THEN STOP
READ RECORD FROM FILE,CODE THEN RECORD

NAME=RECORD<1>
AGE=RECORD<2> NAME
ADDRESS=RECORD<4>
CALL SUB001(NAME,AGE,ADDRESS) AGE

END
GO 10 ADDRESS
END

SUBROUTINE SUB001(EMP,YEARS,WHERE) EMP
MASK='L£20'
CLR=O(-1) YEARS
PRINT CLR
PRINT 'Employee name' MASK:EMP WHERE
PRINT 'Employee name' MASK:YEARS
PRINT 'Employee address' MASK:WHERE MASK
RETURN
END CLR

When control is passed to the subroutine at the CALL SUB001
statement, the operating system copies the contents of NAME
(from the main program) into the variable EMP (in the
subroutine), AGE into YEARS and ADDRESS into WHERE. When the
RETURN is executed, the data is copied back into NAME, AGE
and ADDRESS.

Page 40

MB-Guide to Basic programming topics

The following diagram depicts the situation when COMMON
variables are used to pass values between the main program
and the subroutine SUB002. In this instance, there are three
COMMON variables which we have numbered [1] to [3]. These
COMMON variables are accessible from the main program - where
they are known as NAME, AGE and ADDRESS, respectively - and
alsG from the subroutine - where they are known as EMP, YEARS
and WHERE. Any data which is placed into NAME in the main
program goes into COMMON variable [1] and any data which is
placed into (or taken from) EMP in the subroutine goes into
(or comes from) COMMON variable [1]. The local variables
FILE, CODE and RECORD are still inaccessible outside the main
program, and MASK and CLR are still inaccessible outside the
subroutine.

[1] * Main program FILE
COMMON NAME, AGE, ADDRESS

[2] OPEN 'STAFF' TO FILE ELSE STOP CODE
10 INPUT CODE

[3] IF CODE='.' THEN STOP RECORD
READ RECORD FROM FILE,CODE THEN

NAME=RECORD<l>
AGE=RECORD<2>
ADDRESS=RECORD<4>
CALL SUB002

END
GO 10
END

SUBROUTINE SUBOO2 MASK
COMMON EMP, YEARS, WHERE
MASK='L£20' CLR
CLR=O(-l)
PRINT CLR
PRINT 'Employee name' MASK:EMP
PRINT 'Employee age' MASK:YEARS
PRINT 'Employee address' MASK:WHERE
RETURN
END

The following points are of interest:

* The variables are identified within the COMMON area by
their position, so the sequence in which the names are
specified on the COMMON statement is important.

Thus, if a program had the statement:

COMMON NAME, DEPT, AGE, TIME, DATE

the name NAME would identify the first variable in the
COMMON area, DEPT the second, AGE the third, and so on.

* The names of the variables in the various routines which
use the COMMON area may be different (since they are
identified only by their position), but it is usual for

Page 41

MB-Guide to Basic programming topics

them to be the same.

* The main program (which is loaded first during
execution) must have the entire set of COMMON variables.
The SUBROUTINEs need only have a subset of the COMMON
variables, starting at the first COMMON variable.

Thus, if a program and its subroutines requires five
COMMON variables, the main program must declare all
these:

COMMON NAME, DEPT, AGE, TIME, DATE

whilst one subroutine may just use:

COMMON NAME, DEPT, AGE

If one of the subroutines only needs to use the TIME and
DATE variables in the COMMON area, then it would be a
mistake (or at best, misleading) for that subroutine to
have a statement of the form:

COMMON TIME, DATE

since this subroutine would identify the first variable
in the COMMON area by the name TIME, whilst the main
program would identify this same variable by the name
NAME. In this situation, there must be three dummy
names given to pad out the TIME and DATE to the correct
position. For example:

COMMON VAR1, VAR2, VAR3, TIME, DATE

* Advanced Pick has a facility for having named COMMON
areas. The COMMON statement then has a form such as:

COMMON /PERSONNEL/ NAME, AGE, DEPT
COMMON /CALENDAR/ TIME, DATE

using the names PERSONNEL and CALENDAR to identify two
COMMON areas.

A subroutine which only needs to use the TIME and the
DATE variables would then include just the statement:

COMMON /CALENDAR/ TIME, DATE

* If a dimensioned array is to be declared as a COMMON
area, then this will appear in a context such as:

COMMON NAME, DEPT, SALES(30)

and will not be declared on a DIMENSION statement.

* A convenient technique is to use a COMMON block of the
form:

COMMON PARAMS(100)

Page 42

MB-Guide to Basic programming topics

and then use the EQUATE statement to assign names to the
individual elements of this array:

EQU NAME TO PARAMS(1)
EQU DEPT TO PARAMS(2)
EQU AGE TO PARAMS(3)
EQU TIME TO PARAMS(4)
EQU DATE TO PARAMS(5)

and so on. Then, a subroutine which only needs to use
the TIME and the DATE variables would include just the
statements:

COMMON PARAMS(100)
EQU TIME TO PARAMS(4)
EQU DATE TO PARAMS(5)

8.3 A technique for decomposing a basic program

It is frequently required to split a large program into a
main program and several external subroutines. If the
program has not been designed wisely, there may be a problem
with passing variables between the various parts of the
program. One solution to this is:

+ Create a file called BSYM if it does not already exist.

+ Compile the program using the M option. This put an
entry on the BSYM file for every variable and label used
in the program:

CLEAR-FILE DATA BSYM
BASIC PROGFILE MAINPROG (M

+ Select all the variable names from the BSYM file and use
this to build a COMMON item on the program file.

SSELECT BSYM >='A' AND <= 'z'
SAVE-LIST X
COPY-LIST X
TO: (PROGFILE COMMON. ITEM

+ Put the word COMMON in front of each of the variable
names in the COMMON item.

EDIT PROGFILE COMMON. ITEM
R999//COMMON /
FI

+ Split the program up into appropriate logical chunks and
establish these as subroutines.

+ Create a new main program which comprises just a
sequence of CALLs to the external subroutines.

+ Use the INCLUDE statement to include the COMMON item
within the main program and each subroutine.

INCLUDE COMMON. ITEM

Page 43

MB-Guide to Basic programming topics

+ Compile and catalog the program and subroutines.

9 Passing control from one process to another

It is frequently required to pass control from one processing
routine to another. In this section, we consider some
techniques for doing this, and we see how data can be carried
across during the transfer of processing.

9.1 Passing control: program to program

It is often required to pass control from one program to
another, not as an external subroutine but to a completely
independent program.

The ways of passing control from one program (we'll call this
the first program) to another program (which we'll call the
second program) include:

* Using the EXECUTE statement in a context such as:

EXECUTE 'RUN PROGFIlE PROGRAM2'
or

CHAIN 'RUN PROGFIlE PROGRAM2'

Data can be passed to the second program by means of
DATA statements, and this can be picked up by means of
INPUT statements in the second program.

*

*

*

*
*

FIRST PROGRAM

DATA 'SMITH' ,32,'YES'
EXECUTE 'RUN PROGFIlE PROGRAM2'

PROGRAM 2

INPUT NAME
INPUT AGE
INPUT YESNO.FlAG

* PROCESSING GOES HERE

* END

When the second program terminates, control will be
returned to the first program if EXECUTE is used, but
control will return to TCl (if appropriate) if CHAIN is
used.

Generic Pick offers no means of passing data back from
the second program to the first when using EXECUTE in
this way.

Another way of passing data from one independent program to
another is by means of the (I option on the RUN command. If

Page 44

MB-Guide to Basic programming topics

a program is executed by means of a command such as:

RUN PROGFIlE PROG001 (I
or

PROG001 (I

(where the second form assumes that the program has been
catalogued), then the descriptor table is not initialised and
the contents will be exactly as they were left by the last
Basic program which was executed.

9.2 Passing control: program to TCl

Any TCl command may be invoked from a program in by means of
the EXECUTE/PERFORM statement. When the processing of the
TCl process terminates, control will be returned to the
program.

PROGRAM

* EXECUTE 'LI STU'

* EXECUTE 'SORT ':FIlE

*

If the TCl process requires data, this may be passed via the
DATA statement.

*

*

PROGRAM

DATA '(COPYSTOCK'
EXECUTE 'COPY STOCK *'

However, if the TCl process is a Proc, it is not normally
possible to pass data in this manner. This is the situation
with the current implementation of the ACCOUNT-SAVE verb
(amongst others); these can be invoked from a program but
conversational responses to the Proc's requests for data
cannot be fed from DATA statements within the Basic program.
The Proc must be rewritten (or some other solution devised)
to accommodate this mode of invoking the process.

When passing data from the TCl command which invoked the
program into the program, Advanced Pick offers the TClREAD
statement. This has the form:

TClREAD variable

Ultimate implementations have the GET statements:

GET (ARG. {N}) v THEN/ELSE
gets argument number n of any arguments specified on the
RUN statement which invoked the program, and puts it
into variable v. The ELSE clause is taken if there is
no argument n.

Page 45

MB-Guide to Basic programming topics

GET (MSG. {N}) v THEN/ELSE
gets element number n of any message numbers and
parameters resulting from the last EXECUTE statement,
and puts it into variable v. The ELSE clause is taken
if there is no element n.

Other implementations can use the solution of executing the
program via a Proc, such as:

I ~~UN PROGFILE PROGRA.33

and then using the PROCREAD statement to pick up the contents
of the Proc input buffer which contains the TCl command which
invoked the Proc which invoked the Basic program.

The SYSTEM function call:

SYSTEM(15)

returns the options on the TCl command (that is, the RUN
command or the catalogued program name) which invoked the
program. Only alphabetic options are returned and these in
ascending order.

Thus, if the program had been invoked by a command such as:

RUN PROGFILE TEST15 (QWSEDRFPTG12
or

RUN PROGFILE TEST15 (Q,W,S,E,D,R,F,P,T,G,12

then the statement:

PRINT SYSTEM(15)

within the program TEST15 would display:

DEFGPQRSTW

The options would still have their usual effect; in this
instance, 0 would invoke the Basic debugger, P would send the
output to the spooler, and so on.

9.3 Passing control: program to Proc

Control may be passed from a program to a Proc in the same
manner as for any other TCl process. When the processing of
the Proc terminates, control will be returned to the program.

r-,PROORAN
EXECUTE

*
I MYPROC
I PQ

'MYPROC'

Page 46

MB-Guide to Basic programming topics

I g
PROCESSING COMES HERE

However, as mentioned earlier, conversational data cannot be
passed via DATA statements since the Proc input statement(s)
cannot access data from the input stack. A simple way of
passing data into the Proc is via the Proc input buffer on
the command which invokes the Proc:

PROGRAM

* EXECUTE 'MYPROC2 SMITH 32 YES'

*
MYPROC2

PQ
C PROC INPUT BUFFER CONTAINS
C A1 = VERB
C A2 = NAME
C A3 = AGE
C A4 = YES or NO
C

9.4 Passing control: Proc to program

Any process may be invoked from a Proc. A Basic program
would be invoked by means of a Proc sequence such as:

PROC1
PQ
C Preliminary Proc processing here
HRUN PROGFILE PROGRAM3
P
C Follow up processing here

*
PROC2

PQ
C Preliminary Proc processing here
HRUN PROGFILE PROGRAM2
STON
HSMITH<
H32<
HYES<
P
C Follow up processing here

*

Data can be passed to the program via the stack and this will
be picked up in the program by means of INPUT statements,
exactly as we saw earlier.

A better means of passing data from a Proc to a program and
back, is by means of statements of the form:

Page 47

MB-Guide to Basic programming topics

PROCREAD variable THEN/ELSE
and

PROCWRITE variable

statements. When the PROCREAD statement is executed, the
contents of the primary input buffer of the Proc which
invoked the program will be placed in the variable; if the
program was not invoked from a Proc, then the ELSE condition
will be taken. When the PROCWRITE statement is executed, the
contents of the variable will be loaded into the primary
input buffer of the Proc; this will normally be used when the
Proc is to perform further processing when control is
returned after the execution of the Basic program terminates.

9.5 Timing

The question of the speed and relative efficiency of the
various Basic statements is of some importance. The table
below shows some figures based upon a dedicated PC Pick
implementation on an IBM PS/2 with a 286 processor.

In the table below, column 1 specifies the statement, column
2 gives the time (in milliseconds) for one iteration of the
statement within the mUlti-line sequence:

FOR X=l TO 1000
statement

NEXT X

and column 3 gives the time for one iteration of the
statement:

FOR X=l TO 1000; statement; NEXT X

in which the entire loop is written on the same line.

Statement

A=100
A=ARRAY(10)
A=ARRAY(Z) {Z = 10}

GO TO 100
GOSUB 100 and RETURN

A=1+6
A='1'+'6'
A=1*6
A=6*1
A=1/6

A=REPLACE(A,l,O,O,l)
A=REPLACE(A,l,O,O, '1 ')
A=A<l>
A=EXTRACT(A,l,O,O)

PRINT 3
PRINT 3 ON LPTR

Page 48

Multi

0.44
0.51
0.83

0.265
0.55

0.6
1.2
0.835
0.865
1.02

1 .8
1 .53
1.55
1.55

1 .57
1.65

Same

0.425
0.495
0.815

0.255
0.535

0.55
1 . 155
0.82
0.85
1.00

1 .79
1 .51
1.53
1 .53

1 .56
1 .63

MB-Guide to Basic programming topics

A=O(5,5)

A=B:B:B:B {B is 10 characters long}
A=B:B:B:B {B is 20 characters long}
A=B:B:B:B {B is 30 characters long}
A=B:B:B:B {B is 40 characters long}

CALL SUBOO
CALL SUB01(A)
CALL SUB02(A,B)
CALL SUB03(A,B,C)

OPEN 'MD' TO MD ELSE STOP

READ missingrec FROM 'BB' ELSE NULL
READ variable FROM 'EE' ELSE STOP
READ 250byterec FROM 'cc' ELSE STOP
READV VALUE FROM 'AA',l ELSE STOP
READV VALUE FROM 'AA' ,5 ELSE STOP
READV VALUE FROM 'AA' ,30 ELSE STOP
READV VALUE FROM 'AA' ,50 ELSE STOP
WRITE variable ON 'EE'
WRITE 500byterec ON 'AA'
MATWRITE array10 ON 'EE'
MATREAD array10 FROM 'EE' ELSE STOP
READ 500byterec FROM 'DD' ELSE STOP
WRITEV variable ON 'AA',l
WRITEV variable ON 'AA',50

A=SQRT(46)
A=PWR(46,0.5)
A=EXP(LN(46)/2)

1. 69

1. 78
2.085
2.384
2.69

2.9
3.545
4.19
4.84

8.4

2.5
2.95
5.05
3.5
3.9
5.8
7.45
4.3
5.9
6.00
6.75
6.85
9.75

16.15

7.385
16.91
17.55

1 .675

1.77
2.065
2.365
2.675

6.15
6.98
7.77
8.58

N/A

N/A
N/A
N/A
N/A
N/A
N/A
N/A
4.3
5.9
6.00
N/A
N/A
9.75

16.15

7.375
16.91
17.5

It is the relative timings for these various statements (not
the actual time for any particular statement) which are of
interest. Some are intuitively obvious, others less so.

The following points are of interest:

* The single-statement versions are generally faster.
However, notable exceptions to this are the CALL
statements.

* There is an anomalous difference between the timings for
the CALL statements in the two different structures.

* Calling a subroutine with an argument list is affected by
the number of arguments which are passed to and from the
subroutine. This confirms that using COMMON variables is
the best means of passing data to a subroutine.

* Statements which use variables are slower than those which
use literals (or equated constants). Thus,

PRINT 3

executes faster than:

Page 49

MB-Guide to Basic programming topics

PRINT XYZ

if XYZ is a simple variable. If XYZ is equated to a
constant:

EQUATE XYZ TO 3

there is no difference in the timings.

* Output to the spooler is slower than to the screen.

* Statements execute faster if the data is in the correct
form (strings or numbers) for those statements. Thus,

REPLACE(A,l,O,O, '1')

which uses a string, executes faster then:

REPLACE(A,l,O,O,l)

which has to convert the number 1 to the string '1'.
Similarly, the statement:

A = 1 + 6

is faster than:

A = '1' + '6'

* Concatenation is slow and the speed decreases as the
length of the string increases.

* There is no great difference between the various dynamic
array facilities. Compare A=A<l> with the EXTRACT
function, and A<l>=l with the REPLACE function.

* With the READ statement, the record from disk is read
straight into the program where it is processed as a
dynamic array.

* The MATREAD statement takes longer than the other READ
statements because the incoming data record has to be
parsed, each attribute of the dynamic array being
interpreted as an element of the dimensioned array, and
vice versa with the MATWRITE statement.

* Notice the relative speeds of READV versus READ, and of
WRITEV versus WRITE. This is because the WRITEV has first
to read in the original item, replace the attribute and
write the entire record out.

* The assembler code for the REPLACE and the EXTRACT
functions is identical to that for the corresponding A(n>
references, and the timings are therefore the same.

Page 50

MB-Guide to Basic programming topics

• function 29

Backing storage 36
BASIC command 17, 43, 44
Boolean expressions 10
BSYM file 43

CALL statement 13, 49
CASE statement 4
CHAIN statement 22, 44

Index

COMMON data 13, 17, 18, 22, 39, 40, 43, 49
CRT statement 26

Data structures 11
Descriptor table 17, 45
DIMENSION statement 12
Dimensioned arrays 12, 15, 18
Dimensioned arrays versus dynamic arrays 15
DISPLAY statement 26
Dynamic arrays 14, 15

EQUATE statement 19
Exception condition 2
EXECUTE statement 20, 36, 44
EXIT statement 9

File handling 30
File/item locking
FOOTING statement
FOR/NEXT structure
Form-queues 28

22, 31
28

5

GET ARG. statement 45
GET MSG. statement 46
GETBUF subroutine 23
GO / GO TO / GOTO statement 2

Handling backing storage 36
HEADING statement 28

I option on BASIC command 44
IN statement 23
INCLUDE statement 43
Indefinite loop 8
INPUT • statement 24
Input statements 23
INPUT ERR statement 24
INPUTNULL statement 25
INPUTTRAP statement 25
Item locking 31

LOCKED clause on READ statements 32
Locking 31
Logical expressions 10
Loop structure 5, 6

Index / Page 1

MB-Guide to Basic programming topics

M option on BASIC command
Map option on BASIC command
MAT in assignment statement
MAT in SUBROUTINE statement
MATREADU statement 31, 32
MATWRITEU statement 32

Options on TCl commands 46
OUT statement 23, 26

PAGE statement 28

17, 43
17
13
13

Passing control: Proc to program 47
Passing control: program to Proc 46
Passing control: program to program 44
Passing control: program to TCl 45
Passing data to subroutines 38
PRINT and printing 26
PRINT ON statement 27
PRINT statement 26
PRINTER CLOSE statement 27
PRINTER ON / OFF statement 26
Proc to program linkage 46, 47
PROCREAD statement 22, 48
PROCWRITE statement 48
Program structures 1
Program to Proc linkage 46, 47
Program to program linkage 44
Program to TCl linkage 45

READT statement 36
READU / READVU statement 31, 32
RELEASE statement 31
REWIND statement 37

SELECT sentence 34
SELECT statement 34
Several select-variables 35
SUBROUTINE statement 13
Subroutines 37
SYSTEM function 46

TCl options 46
TCl to program linkage 45
TClREAD statement 45
Timing 48

Using backing storage 36

WEOF statement 37
WRITET statement 36
WRITEU / WRITEVU statement 32

[B14] lINE n BAD STACK DESCRIPTOR 38
[B16] NON-NUMERIC DATA WHEN NUMERIC REQUIRED; ZERO USED 11
[B25] PROGRAM 'xxx' HAS NOT BEEN CATALOGED 38
[B27] lINE n RETURN EXECUTED WITH NO GOSUB 38
[B28J lINE n OF program NOT ENOUGH WORK SPACE 19

Index / Page 2

