
SMA STANDARDS

SMA/BASIC
Language

Spec ification

SMA: 101
April 1986

SPECTRUM sma MANUFACTURERS
ASSOCIATION

SMA:lOl
SMA/BASIC LANGUAGE SPECIFICATION

NOTICE

DRAFT 1. 6

SMA standards are designed to serve the public interest
through eliminating misunderstandings between manufacturers and
purchasers, facilitating interchangeability and improvement of
products, and assisting the purchaser in selecting and obtaining,
with minimum delay, the, proper product for his particular need.
Ex istence of s'uch standards shall not in any respect preclude any
member" or non-tnembe:r' 'of 'SMA from manufactur ing or sell ing products
not conforming 'to" su'chstandards, nor shall the eX,istence of such
standards preclude the~r voluntary use by tho~e other than SMA
members whether, theata'ridard is to be used either domestically or
internc;itionally.

s6me material cont~1ned herein is designated as proprietary
by Pick Systems. Any, use of such material other than in
connection with the use' 6r operation of Pick-based software is not
authorized.

Published by
SPECTRUM MANUFACTURERS ASSOCIATION

9740 Appaloosa Rd., Suite 104
San Diego, CA 92131

©copyright Spectrum Manufacturers Association 1986
cc> copyr ight pick Systems 1986

RELEASB
Spectrum Manufacturers Association

April 1986 RELEASE

SMA/BASIC
SMA:10l
SPECIFICATION DRAFT 1. 6

Foreword: This document provides a set of syntax definitions
for the SMA/BASIC language. This la.nguage, provided by all
Spectrum Manufacturers Association member systems, is the prlmary
tool for defining algorithmic processes in the systems. It
provides means for accessing the file structures, for accepting
input information fr~m the operator or other data systems, and for
preparing printed reports as well as operator CRT screens. The
language is called· SMA/BASIC, hav ing been der i ved from the
original BASIC progr$mming language. Many extensions for handling
the data structures of the SMA system have been added. This
document is intended to serve as a guide to the preparation of
programs that can be moved from one SMA system to another. For
the details on any $pecific system, the user should refer to the
manufacturer's reference manual.

S Manufacturers Association
RELEASE Apr il 1986 RELEASE

SMA:lOl
SMA/BASIC LANGUAGE SPECIFICATION

The SMA Executive Board wishes to
individuals and organizations for their
preparation of this document:

F. Kacerek, Ultimate Corp.
T. Holland, pick Systems
R. Whitaker, Pertec Computer Co.
M. Hannigan, Applied Digital Data

DRAFT 1.6

thank the following
contributions in the

Systems, Inc.
R. Burns, COl Information Systems, Inc.
C.

RELEASE

Wilson, General Automation, Inc •

. j

Spectrum Manufacturers Association
April 1986 RELEASE

1.0
1.1
1.2
1.3

2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

5.0
5.1
5.2
5.3
5.4

RELEASE

SMA/BASIC
SMA:101
SPECIFICATION

CONTENTS

Scope
Implementation Objectives
Inclusions
Exclusions

Definitions
Nomenclature
Abbreviatiol1ls
Arithmetic ~perators
Logical Operators
Relational ¢omparison Operators
String Operator
Post-fix String Extract Operations
Operator Precedence
Format String
Conversion $tring
Heading/Footing String
Pattern Matching String

Expressions.
Definition
Arithmetic Expressions
Relational Expressions
Logical Exp~essions
String Expressions
Format Expressions
Pattern Matching Expression

Statement Syntax Definitions
Definition
Comment Stafement
Variable Replacement Statements

DRAFT 1.6

Variable Setting and Structuring Statements
Then.else.clause Structures
Program Flow Control Statements
Subroutine Control Statements
File Access: Statements
Tape (Removable Media) Statements
Multiuser File and Execution Lock Statements
Terminal Input/Output and Printer Output Statements
Program Termination Statements
Compiler Directives
MiscellaneoUs Statements

Intrinsic F~nctions
Arithmentic and Logical Functions
Character String Functions
Dynamic Arr?y Manipulation Functions
Miscellaneops Functions

1
1
1

2
2
4
4
4
4
4
5
6
8
9
9

10
10
10
10
10
10
10

11
11
11
11
12
13
14
15
16
16
16
17
17
17

18
18
19
19

spectrum Manufacturers Association
April 1986 RELEASE

SMA/BASIC LANGUAGE

I

1.0 Scope

SMA:lOl
SPECIFICATION DRAFT 1. 6

1.1 Implementation Objectives: It is the objective of this
document to provide ~he user with a defined set of'the language to
enable the preparat~on of programs that can be moved from one
system to another with minimum difficulty.

1.2 Inclusions: This document includes all the commonly
available statements with syntactical representations to clearly
define the usage per~itted with each. The common set of intrinsic
functions are also ddcumented in the same context. Although most
of the statements and functions are provided by all the SMA
systems, some implementations may restrict or limit the use of
some due to the conf~gurations of the hardware or other factors.

1.3 Exclusions: In this version of this document, the
syntactical aspects df the language are addressed. There are
related issues of the treatment of certain statements by the "run
time" support in various systems that will be addressed by future
versions of this document.

Spectrum Manufacturers Association
RELEASE April 1986 Page 1

SMA:10l
SMA/BASIC LANGUAGE SPECIFICATION DRAFT 1.6

2.0 Definitions:

2.1 Nomenclature: Within this document capitalized words
represent tokens within the language and must be included as
shown. The use of parentheses «» is explicit in the language
and must be considered part of the statement or function. The use
of double quotes (") or single quotes (') is also explicit in the
language and must be considered part of the expression.

The use of braces ({}) indicates that the included field or string
is optional. The use of ellipsis (•••) means that right-trailing
recursion is acceptable for the foregoing bracketed field or
string. The slash (/) is used to separate items in a list, one of
which must be chosen.

2.2 Abbreviations: The following symbolic identifiers are used
in the syntactical definitions throughout the following sections.

call.arg

char.exp

cmnt

cond .exp

List of variables, expressions or dimensioned
variables that are passed to a Subroutine.

'Expression that evaluates into a character.

Comment.

Conditional expression that evaluates to zero
(FALSE) or non-zero (TRUE).

cond.stmnt Conditional statement followed by then.else.clause
(refer to section 4.5) •

conv.exp Refer to section on Conversion Strings (2.10).

dict.exp Expression that evaluates to a ~ictionary name, the
character string DICT or a null character string.

dyn.arry Dynamic array.

exp Expression.

file.exp Expression that evaluates to a file name.

file.var Variable name assigned when a file is opened.

format.str Refer to section on Format Strings (2.9).

hd.exp Refer to section on Heading/Footing Strings (2.11).

int Integer value (constant, variable or expression).

Spectrum Manufacturers Association
RELEASE April 1986 Page 2

2.2

SMA/BASIC
SMA:10l

LANGUAGE SPECIFICATION DRAFT 1.6

Abbreviations
I .

(eontlnued) :

int.exp

item.exp

mat.var

name

num

num.cnst

num.exp

Expression that evaluates into an integer.

Expression that evaluates to an item identifier.

Dim$nsioned variable (also called a matrix) •

Name of an external subroutine or program.

Numeric value (constant, variable or expression) •

Constant consisting of the digits 0,1,2, ••• 9 with
optional prefix plus or minus sign and an optional
decimal point. Maximum of 14 digits, evaluates to
numeric.

Expression that evaluates to a numeric result.

num.label Num~ric label.

print.list List of expressions, each with optional format
strings, separated by commas which imply tabulation.

sel.var Variable to which a select list is assigned.

stmnt A simple or compound statement on a single line.

stmnt.cmpnd A compound statement consists of two or more simple
statements seperated by semi-colons.

stmnts

str

str.cnst

str.exp

sub.arg

var

var.name

One or more statements, on multiple lines.

String value (constant, variable or expression).

Constant consisting of zero or more printable
characters enclosed in matching single quotes (') or
double quotes ("). Evaluates to a character string.

Expression that evaluates into a character string.

List of local variables or dimensioned variables in
a subroutine whose values are passed from a calling
routine.

Variable.

Name which is assigned as a pseudonym for a value or
another variable in an equate statement (4.4).

specttum Manufacturers Association
RELEASE April 1986 Page 3

SMA: 101 .
SMA/BASIC LANGUAGE SPECIFICATION DRAFT 1.6

/ 2.3 Arithmetic Operators:

+ Arithmetic addition (also unary plus)

Arithmetic subtraction (and unary minus)

/ Arithmetic division, quotient

* Arithmetic multiplication

Arithmetic exponential

I 2.4 Logical Operators:

AND or & Log ical AND operation

OR or ! Logical OR operation

/ 2.5 Relational Comparison Operator~:

LT or < Less than compar:ison

GT or: > Greater: than comparison

LE or <= Less than or equal compar ison

NE or # Not equal compar ison

GE or >= Greater than or equal comparison

EQ or = Equal compar:ison

MATCH{ES} Pattern matching test

~ 2.6 String Operator:

CAT or String concatenation

~2.7 Post-fix String Extract Operations:
(Follows a variable reference.)

[int.exp,int.expj Substring Extraction

<int.exp{,int.exp{,int.exp}}> Dynamic array extraction

Spectrum Manufacturers Association
RELEASE April 1986 Page 4

SMA:IOl
SMA/BASIC LANGUAGE SPECIFICATION DRAFT 1. 6

<.. ~.8 Operator preced~nce:
The various operators are considered to have an order of

precedence for evaluation when an expression is not explicitly
ordered by the use of parentheses. Evaluation begins with those
variables coupled by operators with the highest rank and proceeds
to those with lower rank. Evaluation within an expression of a
set of operations that have the same precedence rank proceeds from
left to right. Expressions inside parentheses are evaluated
before operations outside of the parentheses.

Operator

[J
<>

*
/
+

&

RELEASE

Function Evaluation
Substring Extraction
Dynamic Array Extraction
Exponential
Multiplication
Division
Addition
Subtraction
Format! Mask
Concat~nation
Relational Comparisons
Logical AND
Logical OR

Precedence
o highest
o
o
1
2
2
3
3
4
5
6
7
7 lowest

Spectrum Manufacturers Association
April 1986 Page 5

SMA:10l
SMA/BASIC LANGUAGE SPECIFICATION DRAFT 1.6

2.9 Format String:

The format string provides special control information for
the formatting operation performed upon data specified in a format
expression. The value of a format string has the following
general form:

RELEASE

{j}{n{m}}{z}{,}{c}{$}{ (format.mask)}

j

n

m

Z

,

c

Specifies justification. May specify R for right
justification or L for left justification. The
default justification is left.

Single numeric digit defining the number of
digits to print out following the decimal point. If
n = 0, the decimal point will not be output
following the value.

Scaling factor specified by a single numeric digit
which 'descales' the converted number by the 'mth'
power of 10. Because SMA/BASIC assumes 4 decimal
places (unless otherwise specified by a PRECISION
statement), to descale a number by 10, m should be
set to 5; to descale a number by 100, m should be
set to 6; etc.

Parameter specifying the suppression of value zero.

Parameter for output which inserts commas between
every thousands position of the value.
(European versions may insert decimals rather than
commas.)

The following five symbols are credit indicators
which are parameters of the form:

C

D

Causes the letters CR
values and causes two
positive or zero values.

Causes the
values; two
zero values.

letters DB
blanks to

to follow
blanks to

negative
follow

to follow positive
follow negative or

M Causes a minus sign to follow negative values;
a blank to follow positive or zero values.

Spectrum Manufacturers Association
April 1986 Page 6

SMA:IOl
SMA/BASIC LANGUAGE SPECIFICATION DRAFT 1.6

~.9 Format String (continued):

RELEASE

$

E Causes negative values to be
angle brackets «value»; a
positive or zero values.

enclosed within
blank follows

N Causes the minus sign of negative values to
be suppressed.

Parameter for output which appends a
the leftmost position of the value,
conversion. The printed symbol for
depending on the country of use.

dollar sign to
prior to

$ may differ

format.mask Parameter enclosed in optional
parentheses with values as follows:

jfn specifies that the data is to be filled on a
field of ' n' blanks.

,

*n specifies that the data is to be filled on a
field of ' n' asterisks.

%n specifies that the data is to be filled on a
field of 'n' zeros and to force leading zeros
into a fixed field.

NOTE: Any other character, including parentheses
may be used as a field fill. Mixed mode fields
may be formed by repeating the control characters
-(jf , * , and %).

spectrum Manufacturers Association
April 1986 Page 7

SMA:10l
SMA/BASIC LANGUAGE SPECIFICATION DRAFT 1.6

/ 2 .10 C~nversion Str ing:

The conversion functions (see section 5.4) use a character
string to specify the type of conversion. The conversion is made
assuming conversion codes from the following set:

RELEASE

D Convert date to internal format.

G Extract group of characters.

L Test string length.

MC Mask characters by numeric, alpha, or
upper/lower case.

ML Mask left-justifies decimal data.

MR Mask right-justified decimal data.

MT Convert time to internal format.

MX Convert ASCII to hexadecimal.

P Test pattern match.

R Test numeric range.

T Convert by table translation. The table
file and translation criteria must be
given.

Spectrum Manufacturers Association
April 1986 Page 8

SMA/BASIC LANGUAGE

I

SMA:10l
SPECIFICATION DRAFT 1.6

~2.1l Heading/Footing String:

These strings are used to specify headings and footings for
page orientated outp~t. Note that 'hd.options' must be surrounded
by single quotes, double quotes are not allowed in this context.

{str .exp} {{' hd .options' } {str .exp}} •••

where hd.options are one or more of the following:

/ C

V D

/

L V'

v'P{n}

Center text on the line.

Current date.

Carriage return and line feed.

Current page number right justified in field
of n blanks. If n is not specified, it is
assumed to be 4.

Current time and date.

Note that any string enclosed in single quote marks is
considered as a heading option declaration. To present
a single quote within the printed heading, two quotes
must be used to represent it.

Pattern Hatching String:

The pattern mat¢:hing string ·is used to specify the control
information for the pattern matching expr~ssion. The value of the
string consists of one or more of the following:

"string" or 'string' Literal string test.

nN Numeric String Test, n digits.

nA Alphabetic string test, n characters.

nX Any characters test, n characters.

where: n may be zero which implies any number of characters,
including none.

seectlum Manufacturers Association
RELEASE April 1986 Page 9

SMA:lOl
SMA/BASIC LANGUAGE SPECIFICATION

3.0 Expressions:

'3.1 Definition:

DRAFT 1.6

An expression may b~ any constant, variable, string,
function, expression enclosed within parentheses, or a compound
expression. A compound expression is formed by combining two or
more expressions with appropriate operators (eg. Ifexp op explf).

3.2 Arithmetic Expressions:

Arithmetic expressions are formed by using arithmetic
operators to combine expressions that evaluate to a numeric
result.

3.3 Relational Expressions:

Relational expressions are formed by applying a relational
operator to a pair of arithmetic or string expressions. A
relational expression always evaluates to 1 if the relation is
true, and to zero if the relation is false.

3.4 Logical Expressions:

Logical expressions are formed by applying a logical operator
to a pair of conditional expressions (cond.exp) and evaluates to 1
(TRUE) or zero (FALSE).

3.5 String Expressions:

String expressions are formed by applying string operators to
expressions. The resulting value is a string.

3.6 Format Expression:

Format expressions are formed by combining two expressions
with E£ intervening operator. The value of the left expression
will be formatted according to the rules specified in the right
expression. The value of the expression on the right is called
the format string (refer to section 2.9).

3.7 Pattern Matching Expression:

Pattern matching expressions are a form of relational
expression where the operator is either MATCH or MATCHES. The
string value on the left of the operator is analyzed according to
the pattern matching string value on the right. If the left value
matches the pattern specified, the resulting expression value is 1
(TRUE), otherwi se the resul ting value is zero (FALSE) (refer to
section 2.12).

Spectrum Manufacturers Association
RELEASE April 1986 Page 10

SMA:lOl
SMA/BASIC L NGUAGE SPECIFICATION DRAFT 1. 6

4.0 Statement Synta! Definitions:

~4.l Definition:

The structure of a statement includes an optional label field
and a statement body. The end of a statement is marked by the end
of the line or a semicolon (;). The label field is separated from
the statement body by one or more spaces. The structure may be
expressed as follows:

t/4.3

4.4

/

/{num.label} statement.body

Comment Statement:
I

V* {cmnt}

Variable Replacement Statements:

v'var = exp

... MAT mat.var = exp

""MAT mat.var = MAT mat.var

~/dyn.arry<int.exp{,int.exp{,int.exp}}> = str.exp

Variable Setting and Structuring Statements:

\,;- CLEAR

v1JATA exp{,exp} •••

~U{ATE} var.name TO num/str/CHAR()/var/mat.var(int.exp)
(, var.name TO num/str/CHAR()/var/mat.var(int.exp) l •••

vC~M{MONl var/mat.var{ (int{,int})}
{,var/mat.var{ (int{,int}) }} •••

JoIM mat.var(int{,int}) {,mat.var(int{,int}) l •••

VPRECISION int
where int is a number from 0 to 6 inclusive.

spectrum Manufacturers Association
RELEASE April 1986 Page 11

SMA:IOI
SMA/BASIC LANGUAGE SPECIFICATION

4.5 Then.else.clause Structures:
Many SMA/BASIC statements provide the

different actions based on some condition.
the then.else.clause to direct the flow of

Single line forms:

cond.stmnt THEN stmnt {ELSE stmnt}

cond.stmnt ELSE stmnt

DRAFT 1.6

~bility to perform
These statements use

control.

Multi-line THEN, single line ELSE form:

cond.stmnt THEN
stmnts

END {ELSE stmnt}

Single line THEN, multi-line ELSE form:

cond.stmnt THEN stmnt {ELSE
stmnts

END}

Multi-line THEN, multi-line ELSE form:

cond.stmnt THEN
stmnts

END {ELSE
stmnts

END}

Multi-line ELSE form:

cond.stmnt ELSE
stmnts

END

Spectrum Manufacturers Association
RELEASE April 1986 Page 12

SMA/BASIC
SMA:101

LANGUAGE SPECIFICATION

4.6 Program Flow Co~tro1 Statements:

~GO{TO} num.1abel

~ON int.exp GO{TO} num.1abel{,num.1abel} •••

vI\F cond.exp then.else.clause

/BEGIN CASE
{emnt ••• }

CASE cond.exp
stmnts

{CASE cond.exp
stmnts ... }

END CASE

~FOR var = num.exp TO

DRAFT 1.6

num.exp {STEP num.exp} {WHILE/UNTIL cond.exp}
{ stmnts}

NEXT var

VLOOP {stmnt} WHILE/UNTIL cond.exp DO {stmnt} REPEAT

LOOP
{stmnts}

WHILE/UNTIL cond.exp DO
{ stmnts}

REPEAT

Spectrum Manufacturers Association
RELEASE April 1986 Page 13

SMA: 101
SMA/BASIC LANGUAGE SPECIFICATION DRAFT 1.6

4.7 Subroutine Control Statements:

.; GOSUB num.label

vi ON int.exp GOSUB num.label{,num.label} •••

.; CALL name/@var {(call.arg{,call.arg} .••)}

I
.J
J

SUBROUTINE name {(subroutine.arg{,subroutine.arg} •••)}

RETURN

RETURN TO num.label
Note that this form of RETURN may only be used with
internal subroutines called via a GOSUB and not from
calls made via the CALL statement.

vi EXECUTE str.exp
Note that the str.exp is treated as a TCL statement,
that a DATA statement passes' input' to an EXECUTE
statement, that a select list is returned to the
executing program, and that up to and including 5 levels
of EXECUTE may be used.

spectrum Manufacturers Association
RELEASE April 1986 Page 14

SMA:10l
SMA/BASIC LANGUAGE SPECIFICATION DRAFT 1.6

4.8 File Access Statements:

~' OPEN {dict.exp,} file.exp TO file.var then.else.clause

v: READ var FROM file.var,item.exp then.else.clause
,

~ READU var FROM file.var,item.exp {LOCKED stmnt}
then.else.clau.e .

where LOCKED option specifies an action to take if
the appropriate file group is already locked.

vi READV var FROM file.var,item.exp,int.exp then.else.clause

~ READVU var FROM file.var,item.exp,int.exp {LOCKED stmnt}
then.else.clause

where LOCKED option specifies an action to take if
the appropriate file group is already locked.

~ MATREAD mat.var FROM file.var,item.exp then.else.clause

~ MATREADU mat.var FROM file.var,item.exp {LOCKED stmnt}
then.else.clause

where LOCKED option specifies an action to take if
the appropriate file group is already locked.

~RITE{U} exp ON file.var,item.exp

~ /WRITEV{U} exp ON file.var,item.exp,int.exp

~ MATWRITE{U} mat.var ON file.var,item.exp

~DELETE file.var,item.exp

~. ~~LECT {file.var/exp} {TO sel.var}

~EADNEXT var {,var} {FROM sel.var} then.else.clause

.~ CLEARFILE file.var

vi/RELEASE {file.var,item.exp}

Spectrum Manufacturers Association
RELEASE April 1986 Page 15

SMA:101
SMA/BASIC LANGUAGE SPECIFICATION

4.9 Tape (Removable Media) Statements:

/

I
(
I

READT var then.else.clause

WRITET exp then.else.clause

REWIND then.else.clause

WEOF then.else.clause

DRAFT .1. 6

4.10 Multiuser File and Execution Lock Statements:
Note that at least 64 unique locks are provided (numbered
from ~hrough 64) •

~ / LOCK int.exp {~LSE stmnt}

V UNLOCK int.exp

4.11 Terminal Input/Output and Printer Output Statements:

PROMPT char.exp

INPUT var{,int.exp}{:}

BREAK ON/OFF/exp
where: exp = 0, Break key is off

0, Break key is on
Note that for every break-off that is issued, a
corresponding break-on must be issued.

vi ECHO ON/OFF/exp
where: exp = 0,

0,

vi HEADING hd.exp

J FOOTING hd.exp

l PAGE {exp}

~!PRINTER ON/OFF/CLOSE
;

I

Echo is off
Echo is on

V PRINT {ON int.exp} {print.list {:}}

J CRT {print.list I:}}

Spectrum Manufacturers Association
RELEASE April 1986 Page 16

SMA:101
SMA/BASIC LANGUAGE SPECIFICATION DRAFT 1. 6

4.12 Program Termination Statements:

/ STOP {exp{ ,exp} ••• }

vi ABORT {exp{,exp} ••• }

~AIN str.exp
SMA recommends that the III option not be used in
conjunction with the RUN verb for reliability,
transportability, and data integrity reasons.

~NTER name/@var
Note that the program that is to be entered from an
ENTER statement must be cataloged.

4.13 Compiler Directives:

,/ INCLUDE {file.exp} item.name

/ NULL

/ END

4.14 Miscellaneous Statements:

JSLEEP exp
where exp is either:

RELEASE

a numeric value which specifies the number of
seconds to sleep; or,

a string value which specifies a sleep until the
specified time of the form HH:MM{:SS}.

Spectrum Manufacturers Association
April 1986 Page 17

SMA:101
SMA/BASIC LANGUAGE SPECIFICATION DRAFT 1.6

5.0 Intrinsic Functions:

~ 5.1 Arithmetic and Logical Functions:

ABS (num. exp)

INT (num.exp)

NOT (cond.exp)

NUM (exp)

SQRT (num.exp)

RND (num.exp)

COS (num.exp)

SIN (num.exp)

TAN (num.exp)

LN (num.exp)

EXP (num.exp)

PWR(num.exp,num.exp)
where the first num.exp is raised to the power value
denoted by the second num.exp.

REM(num.exp,num.exp)
where first num.exp is the numerator and second num.exp
is the denominator.

; 5.2 Character String Functions:

ASCII (str .exp)

EBCDIC (str .exp)

CHAR (num. exp)

SEQ (char .exp)

SPACE (num.exp)

Spectrum Manufacturers Association
RELEASE April 1986 Page 18

SMA:10l
SMA/BASIC LANGUAGE SPECIFICATION DRAFT 1.6

(. ~.2 Character String Functions (continued):

STR(str.exp,num.exp)

TRIM (str. exp)

LEN (str .exp)

COUNT(str.exp,char.exp)

DCOUNT(str.exp,char.exp)

FIELD(str.exp,str.exp,num.exp)

COLl ()
COL2 ()

INDEX(str.exp,str.exp,num.exp)

@(int.exp,int.exp) or @(int.exp)
where: -1= Clear screen

-2= Home
-3= Clear to end of screen
-4= Clear to end of line

5.3 Dynamic Array Manipulation Functions:

INSERT(dyn.arry,int.exp,int.exp,int.exp,str.exp)

DELETE(dyn.arry,int.exp,int.exp,int.exp)

EXTRACT(dyn.arry,int.exp,int.exp,int.exp)
or

dyn.arry<int.exp{,int.exp{,int.exp}}>

REPLACE(dyn.arry,int.exp,int.exp,int.exp,str.exp)
or

~yn.arry<int.exp{,int.exp{,int.exp}}> = str.exp

~ LOCATE str.exp IN dyn.arry{<int.exp{,int.exp}>},num.exp
BY str.exp SETTING var then.else.clause

Spectrum Manufacturers Association
RELEASE April 1986 Page 19

SMA:101
SMA/BASIC LANGUAGE SPECIFICATION DRAFT 1.6

5.4 Miscellaneous Functions:

RELEASE

TIME ()

DATE ()

TIMEDATE ()

SYSTEM (int)
where int = 0

1
2
3
4

/ \ C~
7
8

- Returns error code
- Printer ON/OFF
- Page Size
- Page Depth
- Lines Remaining
- LIne Counter

Page Number
- Terminal Type
- Tape Record Length

ICONV(exp,conv.exp)
where the value of the second expression is the
conversion string (see section 2.10) and
specifies the type of input conversion to be
applied to the string value resulting from the
first expression.

OCONV(exp,conv.exp)
wher.e the value of the second expression is the
conversion string (see section 2.10) and
specifies the type of output conversion to be
applied to the string value resulting from the
first expression.

Spectrum Manufacturers Association
April 1986 Page 20

SMA STANDARD

Magnetic Media
Interchange

Specification

Sfv1A: 201

March 1987

SPECTRUM sma MANUFACTURERS
ASSOCIATION

SMA:201
MAGNETIC MEDIA INTERCHANGE STANDARD - DRAFT 1.8

NOTICE

SM~ standards are designed to serve the public interest through
eliminating misunderstandings between manufacturers and purchasers,
facilitating interchangeability and improvement of products, and
assisting the purchaser in selecting and obtaining, with minimum
delay, the proper product for his particular need.

Some material contained herein is designated as proprietary by
individual member companies of SMA listed below. Any unauthorized
use of such proprietary information is prohibited.

Copyright Automatic Data Processing, Inc.; Altos Computer; Applied
Digital Data Systems; COl rnformation Systems; CIE Systems, Inc.:
Datamedia Corporation; Fujitsu Microsystems of America; General
Automation, Inc.: I. N. Informatique: McDonnell Douglas Computer
Systems Company: Nixdorf Computer Corporation; Pertec Computer
Corporation: Pick Systems; Prime Computer, Inc.: The U1~imate
Corp.; Wicat Systems.

(c) 1987

Copyright Spectrum Manufacturers Assocation
(c) 1987

RELEASE COpy

Published by
SPECTRUM MANUFACTURERS ASSOCIATION

9740 Appaloosa Rd., Suite 104
San Diego, CA 92131

Spectrum Manufacturers Association
March 1987 RELEASE

SMA:201
MAGNETIC MEDIA INTERCHANGE STANDARD - DRAFT 1.8

Foreword: The purpose of this document is to establish a
standard for interchangeable magnetic media within the Spectrum
Manufacturers Association community. The goal of the standard is to
assure continuing data compatibility between different SMA
implementations which have physically compatible media.
Additionally, it is meant to serve as a description of SMA magnetic
media protocols so that other operating systems may exchange ~ata
with an SMA system through the off-line tape and diskette
mechanisms.

Within this document, it becomes evident that inconsistencies
and incompatibilities exist on both hardware and software levels.
In some of these cases, the standard outlines restrictive
guidelines which should be followed to maximize portability. The
Technical Committee of SMA is agressively pursuing these areas of
deficiency, with the intent of establishing and publishing
standards which ~ill improve the situation in these areas of the
media -interchange.

Change Notice: Draft 1.5 contains changes made to sections 4
through 7 in regards to 1/4" tape cartridge standards. These
changes were approved by the SMA Technical Standards Committee on
August 6, 1986.

Draft 1.7 contains changes made to wording within the changes
made as Draft 1.5. These changes were approved by the SMA
Technical Standards Committee on October 2, 1986. Other changes
were made to sections 3.2, 4.4 (inserted), 4.11 and 4.15.

Draft 1.8 contains a warning added to section 4.16.

RELEASE COPY
Spectrum Manufacturers Association

March 1987 RELEASE

SMA:201
MAGNETIC MEDIA INTERCHANGE STANDARD - DRAFT 1.8

The SMA Executive Board wishes to thank the following
individuals and organizations for their contributions to the
preparation of this document:

D.
I.
J.
D.
C.
C.
T.

RELEASE COPY

Credicott,
Sandler,
Gallant,
Harman,
Saunders,
Wilson,
Steforos,

Nixdorf Computer Software Co.
CIE Systems, Inc.
Prime Computer, Inc.
Systems Management, Inc.
Fujitsu Microsystems Of America, Inc.
General Automation, Inc.
Altos Computer, Inc.

Spectrum Manufacturers Association
March 1987 RELEASE

SMA: 2';1
MAGNETIC MEDIA INTERCHANGE STANDARD - DRAFT 1.8

1.0

2.0

3.0

4.0

5.0

1.1
1.2
1.3
1.4
1.5

2.1
2.2
2.3

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

RELEASE COPY

Introduction
Inclusions
Exclusions
Philosophy
Changeability
Restrictions

Definitions
Scope

CONTENTS

Terms and Phrases
Abbreviations

TCL Tape Handling
Scope
TCL Tape Handling Verbs

T-DUMP Tapes
Scope
File Layout
Multiple Files
Empty Files
Leading Filemarks
Trailing Filemarks
Label Records
Block Size
Attachment Size
Data Format
Data Item Format
Items Larger than 120 Bytes
Pointer-Item Format
Multiple Volumes
Block Padding
Codes

SMA/BASIC Tapes
Scope
File Layout
Multiple Files
Leading Filemarks
Label Records
Block Size
Attachment Size
Data Format
Multiple Volumes
Codes
SMA/BASIC Tape Commands

,

SpecBrum Manufacturers Association
March 1987

1
1
1
2
2

2
2
4

4
4

6
6
6
6
6
6
6
7
7
7
7
8
8
8
8
8

9
9
9
9
9
9

10
10
10
10
10

RELEASE

SMA:201
MAGNETIC MEDIA INTERCHANGE STANDARD - DRAFT 1.8

6.0
6.1
6.2
6.3

7.0
7.1
7.2
7.3
7.4

RELEASE COPY

CONTENTS

Tape Labels
Scope
File Layout
Label Record Format

11
11
11

Hardware Capabilities
Scope
Hardware Standard -
Hardware Standard -
Hardware Standard -

13
1/2 Inch Magnetic Tape 13
1/4 Inch Cartridge Tape 14
5.25 Inch Floppy Diskette 15

Spectrum Manufacturers Association
March 1987 RELEASE

SMA:201
MAGNETIC INTERCHANGE STANDARD - DRAFT 1.8

1.0 Introduction

1.1 Inclusions: On an SMA system, data can be produced in
several ways, which affect the format of the actual data on the
magnetic media. This standard covers the two most common
mechanisms: (I) the TCL nT-DUMP" verb, which is used to dump file
items to a tape; and (2) direct input and output from programs
written in the SMA/BASIC language.

Additionally, the standard includes a list of tape handling TCL
verbs, with a brief functional description of each one.

1.2 Exclusions: Excluded from this version of the standard are
the two other techniques of creating data tapes under an SMA
system. These include: (I) the TCL "SAVE" verbs; and. (2) the
commands which deal wit~ spooler input and output on tape. These
two areas will be covered in future revisions of the standard.

1.3 Philosophy: Because of the wide variety of removable media
utilized on the SMA systems, complete interchange and maximum
functionality cannot always be achieved. As a hypothetical
example, one class of device may support a physical blocksize of
up to 32000 bytes, whereas another may support a maximum of 8000
bytes. In this case, the standard would be compelled to adopt a
blocksize upper limit of 8000, in order to assure that tapes
produced by either system could be processed by the other.

The restrictions, limitations, and recommended operating
procedures set forth in this document have been selected by a
"majority rules" philosophy. That is, when more than one choice
exists within an area that requires a unique standard, the
selection was determined on the basis of maximizing benefit to the
largest number of users and manufacturers. In many cases, the
resulting standard is a "lowest common denominator" within the
community, and may be exceeded by several of the implementations.

It must be emphasized that nothing within this document was
intended to be, or should be construed as, a favorable or
unfavorable comment on the equipment, software, or expertise of
any vendor.

RELEASE COPY
Spectrum Manufacturers Association

March 1987 Page 1

SMA:201
MAGNETIC MEDIA INTERCHANGE STANDARD - DRAFT 1.8

1.4 Changeability: For a number of reasons, this standard must
be considered as a dynamic document, subject to revision and
extension. First of all, there are technical areas upon which a
standard has not yet been agreed, as outlined in the "Exclusions"
paragraph. Secondly, the content of the standard is heavily
influenced by the hardware and software capabilities of the
various manufacturers, both of which are constantly changing.
Thirdly, there is substantial diversity among the tape and
diskette devices regarding the handling of certain conditions,
such as end-of-volume detection. Establishing a common standard
in areas such as these may require operating system modifications
across all vendors.

1.5 Restrictions: Because of the wide variety of removable
media utilized on the SMA systems, complete .interchange is
limited. This'limitation is most pronounced in the ways which the
hardware deals with the end-of-volume situation. As a
consequence, only single-volume media ~ be processed with ~
reliability across different vendor equipment. The long term
solution for this deficiency will most likely require a common
software circumvention within the operating system itself.

In the meantime, to maximize transportability, media should be
constructed in such a fashion that no data file spans across more
than one volume. If the amount of data physically requires \
multiple volumes, then programmer action should be taken to ~
subdivide the data into groups such that each group can be
contained on a separate volume as an integral file.

2.0 Definitions

2.1 Scope: This chapter provides definitions of the terms,
phrases, and notational abbreviations that are used within this
document. Some of these definitions carry a broader scope in the
context of this standard than they usually imply, and are
therefore included.

2.2 Terms and Phrases:

Attachment size: When a magnetic media device is attached
(made available) to a process, the logical blocksize is
either specified in the command or implied by a default
value. The value remains constant until it is
explicitly changed or until the device is detached from
the process. All data blocks (excluding any label
records) will be written at this logical blocksize.
Whenever possible, the physical blocksize should be the
same as the logical blocksize.

RELEASE COPY
Spectrum Manufacturers Association

March 1987 Page 2

I SMA: 201
MAGNETIC MEPIAINTERCHANGE STANDARD - DRAFT 1.8

2.2 Terms and Phrases (continued):

EOF: Acronym for "end of file".

Interchangeable magnetic media: This term refers to a data
recording capability, utilizing magnetic technology, in
which the component actually storing the data can easily
be dismounted from one computer system and mounted on
another. Within this standard, the term refers
specifically to tape and floppy diskette facilities.

System delimiters: SMA systems utilize certain hexadecimal
characters as delimiters within the file system. The
name, acronym, hexadecimal value, and usage are
summarized below:

Segment Mark

Attribute Mark

Value Mark

Sub-Value Mark

Buffer Mark

SM X'FF'

AM X, FE'

VM X'FD'

SVM X'FC'

BM X'FB'

Delimits items (records)

Delimits attributes
(fields) within an item
(record)

Delimits multiple values
within an attribute
(field)

Delimits multiple
sub-values within a value

Buffer control

Tape: Within the context of this standard, the term "tape"

TCL:

refers to any of the commercially available magnetic
media which is interchangeable. Specifically, it
includes not only conventional 1/2" ree1-to-ree1 tape
facilities, but also includes 1/4" cartridge tape and
floppy diskette technology.

Acronym for "terminal control language".

RELEASE COPY
Spectrum Manufacturers Association

March 1987 Page 3

SMA:201
MAGNETIC MEDIA INTERCHANGE STANDARD - DRAFT 1.8

2.3 Abbreviations:

Within this standard, the following abbreviations are used in
describing the syntax of tape handling commands:

blocksize Tape attachment size, in bytes

file.name Source (T-DUMP) or destination (T-LOAD) file

item.list List of item identifiers

mod. list List of modifiers for special functions

records Number of records

sel.list List of selection criteria

seq.list List of parameters to specify sort sequence

3.0 TCL Tape Handling

3.1 Scope: This chapter lists the tape handling verbs which are
available within TCL, illustrates the format of the command, and
gives a brief overview of the function performed. This information
is provided for guidance purposes only, and is not intended.as a
complete syntactical or functional description~ Detailed
information regarding . these verbs should be obtained from the
relevant vendor documentation.

3.2 TCL Tape Handling Verbs:

S-DUMP filename {item.list} {seq.list} {sel.list} {mod. list}
{HEADER "text"} {(options)}

Copies selected file items to tape, in
sorted sequence.

T-ATT {blocksize}

Attaches a tape drive and establishes the
blocksize.

T-BCK {records}

RELEASE COPY

Backspaces tape by number of records. If
records is not specified, the tape is moved
back to the last previous filemark, or
beginning of tape, if there are no
filemarks. If records is specified, the
tape will stop if it encounters a filemark
or the beginning of tape. See Section 7.0
for restrictions on use of this verb.

Spectrum Manufacturers Association
March 1987 Page 4.

SMA:20l
MAGNETIC MEDIA INTERCHANGE STANDARD - DRAFT 1.8

3.2 TCL Tape Handling Verbs (continued):

T-DET

Detaches a tape drive from a process.

T-DUMP filename {item.list} {sel.list} {mod. list}
{HEADER "text"} {(options)}

Copies selected file items to tape.

T-EOD

Moves tape forward to end of data.

T-FWD {records}

Moves tape forward by the number of records.
If records is not specified, the tape is
moved forward to the next subsequent
filemark, or to the end of tape if there are
no filemarks •. If records is specified, the
tape will stop if it encounters a filemark.

T-LOAD filename {item.list} {sel.list} {mod. list}
{(options)}

T-RDLBL

Loads selected items from tape into disk
file.

Reads and displays label information.

T-READ {(options)}

Reads and displays tape data record(s).

T-REW

Rewinds tape to load point.

T-WEOF

Writes a filemark on tape.

T-WTLBL {text}

RELEASE COPY

Writes a tape label.

Spectrum Manufacturers Association
March 1987 Page 5

SMA:201
MAGNETIC MEDIA INTERCHANGE STANDARD - DRAFT 1.8

4.0 T-DUMP Tapes

4.1 Scope: The TCL verbs T-DUMP, S-DUMP, and T-LOAD provide a
means of transporting selected file items from one system to
another. This section describes the format of tapes produced by
the T-DUMP verb and its companion S-DUMP for sorted output, and
identifies the conventions to be followed which will maximize the
portability across the various implementations. Other than
appearing in sorted sequence, the data on an S~DUMP tape is
identical to the T-DUMP version. Thus, all references to T-DUMP
apply to S-DUMP, except for issues of item sequence.

4.2 File Layout: A T-DUMP file consists of a label record,
zero o~ more data items, an end-of-file code, and a terminating
filemark. The filemark implies the end of file condition,
indicating that no more records are associated with this logical
data file.

<Label record>

<Data item(s}>

<EOF code>

<Filemark>

4.3 Multiple Files: A tape may contain one or more logical data
files, each of which follows the structure defined in the
preceding paragraph. That is, each logical file consists of a
label record, data record(s}, its EOF marker, and a terminating
filemark.

4.4 Empty Files: Files which contain no data shall be written in
the follow structure:

<Label Record>

<EOF Code>

<Filemark>

4.5 Leading Filemarks: Leading filemarks on the tape are not
supported in the T-DUMP format. A label record is expected to be
the first block on the tape.

4.6 Trailing Filemarks: Two consecutive filemarks serve as an
indication that no more files are recorded on the media.

4.7 Label Records: Label records are normally created by the
T-DUMP process, and read by the T-LOAD process. The size and
content of the label is described in section 6, Tape Labels, and
in section 7, Hardware Capabilities, within this standard.

RELEASE COPY
spectrum Manufacturers Association

March 1987 Page 6

SMA:201
MAGNETIC MEDIA INTERCHANGE STANDARD - DRAFT 1.8

4.8 Block Size: The TCL command "T-ATT" sets the atta6hment
blocksize. All data records are normally written with both
physical and logical blocksize equal to the attachment blocksize.
Label records are normally written with both physical and logical
blocksize equal to 80 bytes. Certain exceptions are made for the
characteristics of various devices and are detailed in section 7,
Hardware Capabilities, within this standard.

4.9 Attachment Size: Although a wide range of physical
blocksizes are possible on the various devices, the following
sizes should be used for maximum portability:

1/2-inch tape

1/4-inch" tape

Floppy diskette

4000 bytes

8192 bytes

500 bytes

4.10 Data Format: The format of the data records on aT-DUMP
tape consist of file items, placed end to end, spanned across
physical blocks as necessary. Unless the output was created with
the S-DUMP verb or via a select list, the items are recorded in
the same hashing sequence in which they are contained in the
original source file. Special codes are used to represent the
logical end of file condition. If the last data block in a file is
not completely full, it is padded with a "fill" character.

4.11 Data Item Format: Generally speaking, a single item on the
tape consists of the item-id terminated by an attribute mark
(X'FE'), the datafield attributes of the item (including any
attribute marks, value marks, and subvalue marks), followed by a
buffer mark (X'FB') which ends the individual item. Graphically,
this can be illustrated:

<item.id> Item id
Format: variable length character string

X'FE' Attribute mark, terminates item id

<Attribute(s» Data fields within item

X'FB'

RELEASE COPY

Format: Each attribute is a variable length
character string terminated by its own
attribute mark, with any value or subvalue
marks left in their original position

Buffer mark, terminates item
The X'FB' immediately trails the
terminating attribute mark of the last
attribute in the item. Sequences of
X'FEFB' cannot be embedded within items.

Spectrum Manufacturers Association
March 1987 Page 7

SMA:201
MAGNETIC MEDIA INTERCHANGE STANDARD - DRAFT 1.8

4.12 Items Larger than 120 Bytes: The format described above is
modified slightly for items whose overall length (including
item-id and all system delimiters) is greater than 120 bytes. In
this case, a special two-byte buffer control code is inserted into
the data after every 120 bytes of data. The buffer control code
consists of a segment mark (X'FF') and a buffer mark (X'FB'). The
interrupted data resumes immediately behind the two control bytes.

4.13 Pointer-Item Format: Transmitting pointer-type items via
magnetic media may cause unpredictable results across SMA
implementations, and should be avoided. A reliable standard for
this area is yet to be determined.

4.l~ Multiple Volumes: Because of the high diversity with which
tape drives and disk drives detect and handle the end-of-volume
condition, no single logical file should span across more than one
volume when transportability is needed. If the amount of data
requires more than one volume, it is advisable to subdivide the
data into groups such that each group can be contained on a
separate volume as an integral file.

4.15 Block Padding: As described in the paragraph on blocksizes,
all physical records are written on the tape at a fixed length.
Any unused buffer space behind the EOF code up to the atta6hment
size will be filled with a buffer mark (X'FB').

On some systems, the double buffering routines
will cause an additional block to be written
containing the EOF code. This block is padded
buffer mark character (X'FB').

in the tape drivers
following the one

completely with the

4.16 Codes: Special codes are utilized in the T-DUMP tape
format. Summarized below, they are:

L Identifies label record
Format: segment mark (X'FF') and the character 'L'

x Identifies logical end of file (EOF Code)
Format: segment mark (X'FF') and the character 'X,

X'FFFB' Buffer control (after every 120 bytes)
Format: segment mark (X'FF') and buffer mark (X'FB')

X'FEFB' Item terminator.
Format: attribute mark (X'FE') and bufter mark
(X'FB'). Following buffer marks (X'FB') fill to
attachment size.

Warning: These codes cannot be, embedded within data on T-DUMP
format tapes. It is especially important to note that the X'FEFB'
sequence implies that X'FB' codes should not be stored as data
where they can occur as the first character of an attribute.

RELEASE COPY
Spectrum Manufacturers Association

March 1987 Page 8

SMA:2~1
MAGNETIC MEDIA ·INTERCHANGE STANDARD - DRAFT 1.8

5.0 SMA/BASIC Tapes

5.1 Scope: The SMA/BASIC programming language provides for
input and output on a sequential magnetic media. This standard
describes the conventions which, if followed, will maximize the
portability of data between different vendor implementations.

5.2 File Layout: An SMA/BASIC file consists of zero, one, or
more data records followed by a filemark. The filemark implies
the end-of-file condition, indicating that no more records are
associated with this logical data file.

<Data record(s»

<Filemark>

5.3 Multiple Files: A tape may contain one or more logical data
files, stacked one behind another. There is no inherent coding
within the files to identify them from each other~ the programs
which read the data files must process them in the same order in
which they were created. Each individual file must follow the
structure defined in the· preceding paragraph. That is, each
logical file consists of data records (zero, one, or more)
terminated by a filemark.

5.4 Leading Filemarks: A leadingfilemark at the immediate
beginning of the tape will imply that the first file on the tape
contains no data records.

5.5 Label Records: A standard for the writing of labels under
SMA/BASIC is yet to be determined. However, SMA/BASIC will
automatically bypass any existing SMA label records when a tape is
read.

5.6 Block Size: The TCL command nT-ATT" sets the attachment
.blocksize. All data records are normally written with both
physical and logical blocksize equal to the attachment blocksize.
Label records are normally written with both physical and logical
blocksize equal to 80 bytes. Certain exceptions are made for the
characteristics of various devices and are detailed in section 7,
Hardware Capabilities, within this standard.

RELEASE COPY
Spectrum Manufacturers Association

March 1987 Page 9

SMA:201
MAGNETIC MEDIA INTERCHANGE STANDARD - DRAFT 1.8

5.7 Attachment Size: Although a wide range of physical
blocksizes are possible on the various devices, the following
sizes should be used for maximum portability:

1/2-inch tape 4000 bytes

1/4-inch tape 8192 bytes

Floppy diskette 500 bytes

5.8 Data Format: The expression referenced in the SMA/BASIC
"WRITET" statement is written on tape in an individual block
padded on the right with spaces up to the attachment blocksize. A
null or oversized block invokes the "ELSE" clause, and is not
written to the tape. The content of the data itself is determined
exclusively by the logic of the SMA/BASIC program which generates
the tape.

5.9 Multiple Volumes: Because of the high diversity with which
tape drives and disk drives detect and handle the end-of-volume
condition, no single logical file should span across more than one
volume when transportability is needed. If the amount of data
requires more than one volume, it is advisable to subdivide the
data into groups such that each group can be contained on a
separate volume as an integral file.

5.10 Codes: The data in an SMA/BASIC tape file is scanned for
only one special character or code, the segment mark (X'FF'). The
label record is identified by a segment mark (X'FF') followed by
the character 'L'. The content of the data itself is determined
exclusively by the logic of the SMA/BASIC program which generated
the tape. However, any data following an imbedded segment mark
(X'FF') in the data block is truncated during a read operation.

5.11 SMA/BASIC
available in
manipulation of
syntactical and

Tape Commands: There are four statements
the SMA/BASIC programming language for the

tape files. Refer to the SMA/BASIC standard for
usage rules.

WRITET Write tape

READT

WEOF

REWIND

RELEASE COPY

Read tape

Write end of file (filemark)

Rewind tape

Spectrum Manufacturers Association
March 1987 Page 10

SMA:201
MAGNETIC ME~IA INTERCHANGE STANDARD - DRAFT 1.8

6.0 Tape Labels

6.1 Scope: This section describes the content and format of SMA
tape labels.

6.2 File Layout:
data block in a
follows the label.

When present, tape labels precede the first
file. No filemark automatically precedes or
Thus, the structure of a labeled file is:

<Label record>

<Data block(s»

<Filemark>

6.3 Label Record Format: Label records are always considered to
have a logical blocksize of 80 bytes. The physical blocksize and
layout of the label with that physical block are detailed in
section 7, Hardware Capabilities. The contents and format of the
label block is indicated below. A single blank separates each
field, except that two blanks separate the date and time fields.

Element

L

bbbb

<time>

<date>

Contents

Label record code
Format: segment mark X'FF' and character 'L'
Positions: 1-2

Block size
Format: 4 hexadecimal characters
positions: 4-7

System time when created Format: HH:MM:SS
Positions: 9-16

System date when created
Format: dd mon yyyy
Posi tions: 19-29

<labeltext> Label text

rr

RELEASE COPY

Format: content depends on usage (see below)
Positions: 31-76

Reel number (beginning with 01)
Format: attribute mark X'FE' followed by 2 digits
positions: 78-80

spectrum Manufacturers Association
March 1987 Page 11

SMA:201
MAGNETIC MEDIA INTERCHANGE STANDARD - DRAFT 1.8

6.3 Label Record Format (continued):

The format and content of the <labe1text> element within the
label record depends on whether the label was created by the
"T-DUMP" or "T-WTLBL" command. Label records written by the
spooler use a <labe1text> element with a special format and
content.

T-DUMP: When the label is created by the T-DUMP command, the
<labe1text> field in bytes 31 through 76 is formatted as follows:

<filename> Name of source file' from T-DUMP

<heading>

Format: variable length character string, ending
with a blank
Positions: 31-variab1e

Quoted information in HEADER option of T-DUMP
Format: variable length character string
Positions: ends in byte 76

T-WTLBL: When the label is created by the T-WTLBL command, the
<labe1text> field in bytes 31 through 76 is formatted as follows: ~

<text>

RELEASE COPY

Optional text following T-WTLBL command
Format: variable length character string·
Positions: 31-variable

Spectrum Manufacturers Association
March 1987 Page 12

SMA:201
MAGNETIC MEDIA INTERCHANGE STANDARD - DRAFT 1.8

7.0 Hardware Capabilities

7.1 Scope: This section identifies the media capabilities of
the various magnetic devices supported under SMA implementations.
Only those gross categories allowing off-line interchanges are
considered: tape, cartridge tape, and floppy diskette. Details
pertaining to the specific device usage on a given implementation
should be obtained directly from the manufacturer.

This chapter also
usage conventions
different systems.

identifies the hardware
which will maximize

characteristics and
portability across

7.2 Hardware Standard - 1/2 Inch Magnetic Tape:

Data width (tracks per byte):
Nine

Recording density (bytes per inch):
1600 (800, 3200, and 6250 are also supported on some
equipment, but not universally)

Data Block Size:
4000 bytes, logical and physical

Label Block Size:
80 bytes, logical and physical

Indicator for beginning of tape:
Reflective marker on front edge of non-recording surface
of tape

Indicator for end of tape:
Reflective marker on back edge of non-recording surface
of tape

Filemark indicator:
ANSI standard tape m~rk written and detected by the
hardware

Applicable ANSI standards:
X3.39-l973

Spectrum Manufacturers Association
RELEASE COpy . March 1987 Page 13

SMA:201
MAGNETIC MEDIA INTERCHANGE STANDARD - DRAFT 1.8

7.3 Hardware Standard - 1/4 Inch Cartridge Tape

Hardware Device Standard:
QIC 24 standard for 9 track tape controllers

Recording directions:
Serpentine, as specified in the QIC 24 standard for 9
track tapes.

Data Block Size:
Physical block size: 512 bytes (QIC 24)
Logical block size: 8192 bytes (16 physical blocks)
Logical data blocks do not include label blocks or
filemark blocks.

Label Block Size:
80 bytes logical, 1 physical 512 byte block where the
first 80 bytes of the physical block is the logical
label record and the remaining bytes are unused.
Logical data blocks do not include label blocks.

Filemark indicator:
QIC 24 standard tape mark. Logical data blocks do not
include filemarks.

TCL Verb Usage Restriction:
The verb "T-BCK" is not supported. The hardware
standards do not support backward movement of the tape
by record or file.

RELEASE COpy
Spectrum Manufacturers Association

March 1987 Page 14

SMA:201
MAGN·ETIC MEDIA INTERCHANGE STANDARD - DRAFT 1.8

7.4 Hardware Standard - 5.25 Inch Floppy Diskette

Format:
IBM PC/XT compatible (512 byte sectors, 9 sectors per
track, double-sided, double-density with 40 tracks per
side, recorded at 48 tracks per inch)

Data Block Size:
500 bytes logical, 512 bytes physical, where the first 4
bytes are reserved for the filemark indicator, and the
next 8 bytes are unused (and reserved), and the
remaining 500 bytes are used for the logical data.

Label Block Size:
80 bytes logical, 512 bytes physical, where the first 4
bytes are reserved for the filemark indicator, the next
8 bytes are unused (and reserved), the next 80 bytes are
the logical label record, and the remaining bytes are
unused.

Filemark indicator:
Charaeter string "EOF" followed by segment mark (X'FF')
in the first four bytes of block (recognized by the
software but not special to the hardware).

RELEASE COPY
Spectrum Manufacturers Association

March 1987 Page 15

SMA:201
MAGNETIC MEDIA INTERCHANGE STANDARD - DRAFT 1.8

RELEASE COpy

This is the last page.

Spectrum Manufacturers Association
March 1987 Page 16

I t;!'J-(

f?f(f4

SMA STANDARD

SMA/D ictionary
and Data Structure

Spec ification

SMA: 301
March 1987

SPECTRUM sma MANUFACTURERS .
ASSOCIATION

SMA:301
SMA/DICTIONARY AND DATA STRUCTURE SPECIFICATION

NOTICE

DRAFT 1.4

SMA standards are designed to serve the public interest through
eliminating misunderstandings between manufacturers and
purchasers, facilitating interchangeabilit~ and improvement of
products, and assisting the purchaser in selecting and obtaining,
with minimum delay, the proper product for his particular need.

Some material contained herein is designated as proprietary by
individual member companies of SMA listed below. Any unauthorized
use of such proprietary information is prohibited.

Copyright Automatic Data Processing, Inc., Altos Computer, Applied
Digital Data Systems, CDI Information Systems, CIE Systems, Inc.,
Datamedia Corporation, Fujitsu Micro Systems of America, General
Automation, Inc., I. N. Informatique, McDonnell Douglas Computer
Systems Company, Nixdorf Computer Corporation, Pertec Computer
Corporation, Pick Systems, Prime Computer, Inc., The Ultimate
Corp., Wicat Systems.

(c) 1987

Copyright Spectrum Manufacturers Association
(c) 1987

Published by
SPECTRUM MANUFACTURERS ASSOCIATION

9740 Appaloosa Rd., Suite 104
Sag Diego, CA 92131

Spectrum Manufacturers Association
March 1987 RELEASE

SMA:301
SMA/DICTIONARY AND DATA STRUCTURE SPECIFICATION DRAFT 1.4

Foreword: This document provides a set of definitions for the
SMA/Dictionary And Data structure. This structure, provided by all
Spectrum Manufacturing Association membersl is the foundation for
representation of all information within SMA systems." The
structure uses a set of definition items to define the various
accounts and data files within the system. This document serves as
a guide to the preparation of SMA/Dictionary And Data Definition
Items that can be moved from one SMA system to another. For
details on any specific system, the user should refer to the
manufacturer's reference manual.

RELEASE COpy
Spectrum Manufacturers Association

March 1987 RELEASE

SMA:30l
SMA/DICTIONARY AND DATA STRUCTURE SPECIFICATION DRAFT 1.4

The SMA Executive Board wishes to thank the following
individules and organzations for their contributions to the
preparation of this document:

D. Harman,
C. Saunders,
K. Hoppe,
I. Sanders,
H. Eggers,
C. Wilson,

Systems Management, Inc.
Fujitsu Microsystems of America, Inc.
Altos Computer Systems
CIE Systems
Mcdonnell Douglas Computer Systems Co.
General Automation, Inc.

RELEASE COPY
Spectrum Manufacturers Association

March 1987 RELEASE

SMA:301
SMA/DICTIONARY AND DATA STRUCTURE SPECIFICATION

1.0

2.0

3.0

4.0

1.1
1.2
1.3

2.1
2.2

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

CONTENTS

Scope
Specification Objectives:
Inclusions:
Exclusions:

Definitions
Names and Symbols:
Structural Terms:

Dictionary And Data Structure
System File Structure:
File Definition Item:
File Synonym Item:
Data Definition Item:
Item Structure:

Processing Codes
Processing Codes Summary:
Arithmetic Processor, A Code:
Concatenation, C Code:
Date Conversion, D Code:
Function Processor, F Code:
Group Extraction, G Code:
Length, L Code:
Mask Character, MC Code:
Mask Decimal, ML and MR Code:
Mast Time Conversion, MT Code:
Mask Hexadecimal Expansion, MX Code:
Mask Hexadecimal Compression, MY Code:
Pattern Matching, P Code:
Range, R Code:
Substitution, S Code:
Text Extraction, T Code:
File Translation, Tfi1e Code:

RELEASE COPY
Spectrum Manufacturers Association

March 1987

DRAFT 1.4

1
1
1
1

2
2
2

4
4
4
7

10
12

13
14
15
18
18
19.
22
23
23
24
25
25
26
26
26
27
27
28

RELEASE

SMA:301
SMA/DICTIONARY AND DATA STRUCTURE SPECIFICATION

RELEASE COPY

THIS PAGE INTENTIONALLY LEFT BLANK

Spectrum Manufacturers Association
March 1987

DRAFT 1.4

RELEASE

SMA:301
SMA/DICTIONARY AND DATA STRUCTURE SPECIFICATION

1.0 Scope

1.1 Specification Objectives:

DRAFT 1.4

It is the objective of this document to provide the user with
a definition of the SMA/Dictionary And Data Structure to enable the
design of data files and the preparation of Data Definition Items
that can be moved from one system to another with maximum
portability.

1.2 Inclusions:
This document includes a definition of the SMA/Data Base

system, File structure, Dictionaries and Data Definition Items,
us·ed by all the SMA systems to define the Data Base.

1.3 Exclusions:
Extensions to the Dictionary or Data structures may have been

implemented by individual SMA manufacturers. This document
excludes any such items which have not been adopted by a majority
of the voting SMA member companies. Also, this document does not
address "controlling-dependent" relationships, which are reserved
for a later edition of the standard. This document does not
include data structure information related to the WITHIN
connective. Although many systems support "user exits", they are
not considered to be within the scope of the SMA Standards.

RELEASE COPY
Spectrum Manufacturers Association

March 1987 Page 1

SMA:301
SMA/DICTIONARY AND DATA STRUCTURE SPECIFICATION DRAFT 1.4

2.0 Definitions

2.1 Names and Symbols:
The names for verbs and reserved words used in this document are
used by all the SMA manufacturers. They can be easily changed for
different languages without affecting the documented functionalityo

The use of quotes (n) and single quotes (') is required in the
forms where shown.

The use of braces ({ }) means that the included string is optionalo

The use of ellipsis (•••) means that the preceding information can
be repeated.

2.2 Structural Terms:

Item-Id - A character string (maximum 48 characters) which
uniquely identifies an item within a file. The item-id
may include any characters except system delimiters,
howeve"r the use of blanks, single quotes, quotes,
commas, and backslash characters may require special
considerations.

Item,Body - The variable length character structure which makes up
the information content of the item. It is composed of
any number of attributes, values, anp subvalues. A
segment mark is used to mark the end of the structure.

IDP -

SM -

AM -

VM -

Indirect Data Pointer: Special type of item body that
locates the data stored separately from the item body.
Used to store non-character structures such as programs,
as well as other extended structures.

Segment Mark: Delimiter character used to mark the end
of an item body. It" is represented graphica~ly by an
underscore. A segment mark may not be included within
data.

Attribute Mark: Delimiter character used to mark the
end of an attribute. It is represented graphically by
an up-arrow. The last AM in an item is implied by the
presenc~ of a segment mark.

Value Mark: Delimiter character used to mark the end of
a value. It is represented graphically by a right
bracket. The last VM in an attribute is implied by an
attribute or segment mark.

RELEASE COPY
Spectrum Manufacturers Association

March 1987 Page 2

SMA:301
SMA/DICTIONARY AND DATA STRUCTURE SPECIFICATION DRAFT 1.4

2.2 Structural Terms (continued):

SVM -

BM -

AMC -

VMC -

SVMC -

Subvalue Mark: Delimiter character used to mark the end
of a subvalue. It is represented graphically by a
backslash. The last SVM in a value is implied by a
value, attribute, or segment mark.

Buffer Mark: Delimiter character used to mark the
beginning or ending of special character strings. It is
represented graphically by a left bracket.

Attribute Mark Count: The positional count, from 1,
that locates a specific attribute within the body of an
item. An AMC value of zero is used to locate the
item-ide

Value Mark Count: The positional count, from 1, that
locates a specific value within a multivalued attribute.

Subvalue Mark Count: The positional count, from 1 that
locates a specificsubvalue within a multisubvalued
structure.

RELEASE COPY
Spectrum Manufacturers Association

March 1987 Page 3

SMA:3e1
SMA/DICTIONARY AND DATA STRUCTURE SPECIFICATION DRAFT 1.4

3.0 Dictionary And Data Structure

3.1 System File Structure:
The SMA systems use the SMA-based file pointer system which

is a hierarchical structure consisting of up to four levels.

The top level, known as level zero, is the System Dictionary file
and contains the File Definition Items for the Master Dictionary
file of each of the Accounts on the system. This file also
contains the File Definition Items for system wide files.

Level one, known as the Master Dictionary (MD) level file for an
account, contains File Definition Items, File Synonym Items, Data
Definition Items, stored procedures, verbs, and vocabulary words
for the SMA/Retrieval language.

Level two, known as a Dictionary Level file, contains the File
Definition Items for data portions of the file and optionally Data
Definition Items.

Level three, known as the data level file, contains data items.
File Definition Items and File Synonym Items, if present, will be
ignored if accessed at the data level.

3.2 File Definition Item:
The File Definition Item is stored in the dictionary that is

associated with the file.

The File Definition Item has the following form.

AMC Description

Item-Id The name by which the file is referenced.

1 Defines the item to be a pointer to a file. It must
contain one of the following forms:

RELEASE COPY

o The file is of standard form containing items
that are saved on a file save operation.

OX The file is the same as a 0 file, except that
the file will not be saved on a file save
operation.

Spectrum Manufacturers Association
March 1987 Page 4

l

SMA:301
SMA/DICTIONARY ANq DATA STRUCTURE SPECIFICATION DRAFT 1.4

3.2 File Definition Item (continued):

AMC Description

1 Forms of File Definition Item type, continued:

2

3

DY The file is the same as a D file, except that
only valid File Definition Items will be
saved on a file save operation: other types
of items will not be saved. Note: File
Definition Items are only valid in file
levels 0, 1, and 2. When the file save
operation encounters any valid File
Definition Item, it proceeds to save the
indicated file.

DC The file is the same as a D file, but the
file may also contain indirect data pointer
items that are saved on a file save
operation.

DCX The file is the same as a DC file, except
that the file will not be saved on a file
save operation.

DCY The file is the same as a DC file, except
that only valid File Definition Items will be
saved on a file save operation: other types
of data will not be saved. Note: File
Definition Items are only valid in file
levels 0, I, and 2. When the file save
operation encounters any valid File
Definition Item, it proceeds to save the
indicated file.

Base •

Modulo

These three attributes define the
physical file structure and must
not be modified by the user.

4 Separation •

5 The access lock codes used for access protection,
represented in a multi-valued list.

6 The update lock codes used for update protection,
represented in a multi-valued list.

RELEASE COPY
Spectrum Manufacturers Association

March 1987 Page 5

SMA:301
SMA/DICTIONARY AND DATA STRUCTURE SPECIFICATION DRAFT 1.4

3.2 File Definition Item (continued):

AMC Description

7 External processing codes used to convert the
item-id between the processing format and the
external format. Multiple processing codes can be
used and are separated by value marks.

8 Reserved.

9 Defines the justification of data in the output
form of the element. This attribute, if included,
must be an "L n , "R n , or nun. The code is used in
formatting the output, and in determining the sort
sequence when sorting the data and is:

L,U

R

Specifies a left-to-right sort,
left-justify, without folding.
cause the field to be overlayed
attribute.

and will
This may
by the next

Specifies a right-justified numeric sort
(including alphanumeric elements) which may
overlay the previous attribute.

Default if not specified is L. File Definition
Items for level one files may contain combinations
and/or additional codes. These codes are used for
other system processors and their meaning is
specified elsewhere. If multiple codes are
present, then only the first code is used for
SMA/Retrieval purposes.

10 Defines the maximum cio1umn width when displaying
the item-ide The modifier ID-SUPP may be used to
su·ppress the ·output of the i tem-id. Defau1 t val ue
is 9.

11 Reserved.

12 Reserved".

13 Reallocation parameter which is of the form:
(new.modulo,new.separation)

where the new.modulo and new. separation will be
used for attributes 3 and 4 upon the file create as
a part of a file restore.

Note that AMC 5-13 are optional.

RELEASE COPY
Spectrum Manufacturers Association

March 1987 Page 6

SMA:3ftJl
SMA/DICTIONARY AND DATA STRUCTURE SPECIFICATION

3.3 File Synonym Item:

DRAFT 1.4

A file may be referenced by the use of a file synonym.
Multiple file synonyms can exist for the same data file and may be
stored in the three dictionary levels.

The File Synonym Item has the following form:

AMC Description

Item-id The name by which th.e file is referenced.

1 The 'Q' indicates that this is a File Synonym Item.

2 The name of the account in which the the file has been
defined. See table below.

3 The name of File Definition Item of the file defined.
See table following AMC 10.

4 Reserved.

5 Reserved.

6 Reserved.

7 External processing codes used to conve~t the item-id
between the processing format and the external format.
Multiple processing codes can be used and are separated
by value marks.

8 Reserved.

RELEASE COpy
Spectrum Manufacturers Association

March 1987 Page 7

SMA:30l
SMA/DICTIONARY AND DATA STRUCTURE SPECIFICATION DRAFT 1.4

3.3 File Synonym Item (continued):

AMC Description

9 Defines the justification of data in the element. This
attribute, if included, must be an "L", "R",or nUn.
The code is used in formatting the output, and in
determining the sort sequence when sorting the data and
is:

10

L,U Specifies a left-to-right sort, and will
left-justify, without folding. This may cause the
field to be overlayed by the next attribute:

R Specifies a right-justified numeric sort
(including alphanumeric elements) which may
overlay the previous attribute.

Default if not specified is L. File Synonym Items for
level one files may contain combinations and/or
additional codes. These codes are used for other
system processors and their meaning is specified
elsewhere. If multiple codes are present, then only
the first code is used for SMA/Retrieval purposesr

Defines the maximum column wid.th when displaying the
item-ide The modifier ID-SUPP may be used to suppress
the output of the item-ide Default value is 9.

Note that AMC 2-10 are optional.

RELEASE COpy
Spectrum Manufacturers Association

March 1987 Page 8

SMA:301
SMA/DICTIONARY AND DATA STRUCTURE SPECIFICATION DRAFT 1.4

3.3 File Synonym Item (continued):

Reference table for attributes 2 and 3 in File Synonym Items:

AMC-2 AMC-3

account file

null file

null null

account null

Description

Form used to reference a file in a specified
account. It may be this account or some
other account.

Form used to reference a file in this account
by another name.

Form used to reference the dictionary of this
file without the use of DICT.

Form used to reference the master dictionary
of another account.

If attributes 7, 9, and 10 exist in the file synonym definition,
they take precedence over those attributes in the File Definition
Item when referencing the file via the file Synonym Item.

RELEASE COPY
Spectrum Manufacturers Association

March 1987 Page 9

SMA:301
SMA/DICTIONARY AND DATA STRUCTURE SPECIFICATION DRAFT 1.4

3.4 Data Definition Item:
Data Definition Items are used to define the data structure

of the associated data file. The item-ids of these items are used
in the SMA/Retrieval Language sentences in selection criteria, sort
criteria, and output criteria.

Data Definition Items have the following structure:
AMC Description

Item-Id The name by which this data definition is
referenced.

1 An 'A', '5', or 'X' identifies the item as a Data
Definition Item.
Note that 'A' and '5' have identical functionality
but may be used by the application designer to
identify primary 'A' or synonym '5' attribute data
definitions. 'x, is used as place holder for a Data
Definition Item in numeric default group of Data
Definition Items. The value of an attribute with a
Data Definition Item containing an 'X, will not be
output. Attribute Data Definition Items with a 'x,
should never be explicitly named in a SMA/Retrieval
language sentence.

2 The numeric value (AMC) ·locating the attribute in
the item which is being defined.

3 Textual data used as a column heading in LIST or
SORT sentences. If null, the item-id is used as the
heading. May contain blanks for formatting. The
reserved character "\" is used to specify a null
heading. Multiple line headings for columnar
listings may be specified by storing multiple
values.

4 Defines the 'controlling-dependent' relationship.

5 Reserved.

6 Reserved.

7 External processing codes used to convert between
the processing format and the external format.
Multiple processing codes can be used and are
separated by value marks.

RELEASE COpy
Spectrum Manufacturers Association

March 1987 Page 10

SMA:301
SMA/DICTIONARY ANO DATA STRUCTURE SPECIFICATION DRAFT 1.4

3.4 Data Definition Item (continued):

AMC Description

8 Internal processing codes used to convert from
internal format to processing format. Multiple
processing codes can be used and are separated by
value marks.

9 Defines the justification of data in the element.
This is a required attribute, and must be an "L",
"R", "T", or "Un. The code is used in formatting
the output, and in determining the sort sequence
when sorting the data and is:

L Specifies a left-to-right sort, and will
left-justify, folding long strings at the end
of the column width defined by attribute 10:

R Specifies a right-justified numeric sort
(including alphanumeric elements);

T Specifies a left-to-right sort, and will
left-justify, folding long strings at blanks:

U Specifies a left-to-right sort, and will
left-justify, without folding.

Default if not specified is L.

10 Defines the maximum column width when displaying
the attribute. A value of zero may be used to
suppress output on detail lines. The default value
is 9.

Note that AMC 2-10 are optional.

RELEASE COpy

,

spectrum Manufacturers Association
March 1987· Page 11

SMA:301
SMA/DICTIONARY AND DATA STRUCTURE SPECIFICATION

3.5 Item Structure:

DRAFT 1.4

An item is said to be made up attributes, each of which may
be made up of values, each of which may be made up of subvalues.

An element refers to the data in an attribute, value, or
subvalue. It may be null, a numeric string, or a character string_

3.5.1 Item-Id:
Each item within a file has associated with it a unique

item-ide This item-id may be referenced as attribute 0 within Data
Definition Items and processing codes.

3.5.2 Attribute:
An attribute is a data element within an item. Attributes

are sequentially numbered starting from one and are delimited by
attribute marks. A given attribute typically contains data with
the same context in all the items in a particular file. The
SMA/Retrieval language assumes that all items participating in a
particular sentence/report contain the same context of data within
any given attribute.

3.5.3 Multi-Valued Attributes:
An attribute containing one or more value marks is said to

contain multi-values, sequentially numbered starting from one.

3.5.4 Multi-Valued Values:
. A value containing one or more subvalue marks is said to

contain multi-subva1ues, with the subvalues sequentially numbered
starting from one.

RELEASE COPY
Spectrum Manufacturers Association

March 1987 Page 12

SMA:3~1
SMA/DICTIONARY AND DATA STRUCTURE SPECIFICATION

4.~ Processing Codes

DRAFT 1.4

The SMA/Dictionary and Data Structure provides a set of
processing codes that can be specified in attribute 7, where they
perform EXTERNAL operations, or in attribute 8, where they perform
INTERNAL operations.

During the processing of a SMA/Retrieval language sentence, the
data in the items can exist in three different forms. The first is
the 'stored' form. Whenever the element is retrieved from an item
it is picked up in the stored form.

The INTERNAL operations, if specified, are applied to the element,
converting it from the 'stored' form to the 'internal' form. The
'internal' form of the Data Definition Item is used whenever it:

1.

2.

3.

is part of a sort.criteria,

is compared to a selection.criteria,

is compared for an output limiter,

4. is used for a TOTAL or GRAND-TOTAL computation,

5. produces a control break,

is printed, except on break lines, 6.

7. is output by reformat or select output.criteria.

The EXTERNAL operations, if specified, are applied to convert an
element between 'internal' form and 'external' form. The
'external' form is used for user input and output. If a Data
Definition Item contains an EXTERNAL operation and it is followed
by selection.criteria in a SMA/Retrieval Language sentence, then
the EXTERNAL operation is applied as an input conversion. The
select.criteria value is converted from 'external' form to
'internal' form. Print.limiters and explosion.limiters are
converted in a similiar manner. This action causes selection,
sorting, and limiting to always operate on the 'internal' form of
the data elements.

input --> EXTERNAL Operation -->-\
I

'external form' 'internal
I

output <----- EXTERNAL <--------/
Operation

form'
I
\---<---

'stored form'
I

INTERNAL <------/
Operation

RELEASE COPY
Spectrum Manufacturers Association

March 1987 Page 13

SMA:3g1
SMA/DICTIONARY AND DATA STRUCTURE SPECIFICATION

4.1 Processing Codes Summary:

CODE DESCRIPTION

DRAFT 1.4

A ALGEBRIAC. Used to evaluate algebriac expressions.

C CONCATENATE. Used to concatenate elements.

D DATE. Used to convert dates.

F FUNCTION. Used to manipulate elements.

G GROUP. Used to extract one or more fields separated by a given
non-system delimiter.

L LENGTH. Used to validate the length of an element.

MC MASK CHARACTER. Used to convert strings to upper or lower case,
or to extract alphabetic or numeric characters from strings.

ML MASK DECIMAL. Used to format and scale numbers, left justified.

MR MASK DECIMAL. Used to format and scale numbers, right justifiedo

MT MASK TIME. Used to convert time.

MX MASK HEXADECIMAL EXPANSION. Used to convert ASCII characters to
their hexadecimal representations.

MY MASK HEXADECIMAL COMPRESSION. Used to convert hexadecimal
characters to their ASCII representation.

P PATTERN MATCH. Used to validate elements against a specified
pattern.

R RANGE. Used to validate elements which fall within the specified
numeric ranges.

S SUBSTITUTION. Used to generate alternative data for the
referenced element.

T TEXT EXTRACTION. Used to extract a fixed field from an element.

Tfile FILE TRANSLATION. Uses the element as an item-id to access
attributes in the specified file.

RELEASE COpy
Spectrum Manufacturers Association

March 1987 Page 14

SMA:301
SMA/DICTIONARY AND DATA STRUCTURE SPECIFICATION

4.2 Algebriac Processor, A CODE:

DRAFT· 1.4

The 'A' code provides functions similar to the 'F' code,
is written in an algebriac form using infix notation. For example,
Al+2 would add the element from attribute 1 to the element of
attribute 2. Evaluation of the expression proceeds from left to
right unless reordered by use of parentheses. The infix operators
have no order of precedence defined. The form is:

A expression {operator expression} •••
where: .

expression = operand {operator operand}

Parenthesis may be used as required to control the order of
expression evaluation. The inner-most parenthesis expression will
be evaluated first. The term "expression-I" is used to refer to
the operand or expression on the left side of an operator, and the
term "expression-2" to the operand or expression on the right side.

The permissible operands are:

amc{R{R}} An Attribute Mark Count specifies the number of the
attribute from which the element is to be retrieved
for use in the operation. If the AM~ is followed by
R, it specifies that the first value of an
attribute is to be used repeatedly when evaluating
with other multi-valued attributes. If a second R
is present, the first subvalue is used repeatedly
for evaluation with other multi-subvalued
attributes.

N(name) The character N followed by the name of a Data
Definition Item enclosed in parentheses can be used
to specify the element to be used in the operation.
The 'name' must exist in the dictionary being used.
The data element retrieved will be specified via
attribute 2 unless the Data Definition Item
referenced contains a function. If this occurs,
the function will be performed.

literal A alpha-numeric literal string is specified by
being enclosed in either single quotes or double
quotes.

,

RELEASE COPY
Spectrum Manufacturers Association

March 1987 Page 15

SMA:3fJl
SMA/DICTIONARY AND DATA STRUCTURE SPECIFICATION DRAFT 1.4

4.2 Algebriac Processor, A Code (continued):

The following special system counters and values may be used as
operands in an A-code expression. Refer to the section on F-code
for further details. They are:

NI the item counter

NV the value counter

NS the subvalue counter

ND the detail line counter

NB the break level counter

D the system date (in internal format)

T the system time (in internal format)

There are several special functions which may be used as operands
in the A-code expression. They are:

R(exp,exp) The Remainder function takes two expressions as
operands, and returns the remainder of the first
operand divided by the second.

S(exp) The Summation function computes the summed total of
the enclosed expression for all elements of a
multivalued or multisubvalued set.

expl[exp2,exp3] A sub-string of an element is specified.

RELEASE COpy

Exp1 is the element from which the substring is to
be extracted, exp2 is the character in the element
from which to start the extraction, and exp3 is the
number of characters to be extracted.

Spectrum Manufacturers Association
March 1987 Page 16

SMA:301
SMA/DICTIONARY AND DATA STRUCTURE SPECIFICATION DRAFT 1.4

4.2 Algebriac Processor, A Code (continued):

The arithmetic and relational operators all require two operands.
The arithmetic operators are:

+

*

/

. .

adds the two expressions and returns the sum.

subtracts expression-2 from expression-l and
returns the difference.

multiplies'the two expressions and returns the
product.

divides expression-l by expression-2 and returns
the quotient. The quotient is always an integer but
may have implied scaling or a decimal point.

concatenates the second operand onto the end of the
first operand. The operands are considered as
character strings and the result is a character
string.

The relational operators return a one if the relational operation
evaluates as true and a zero if the relational operation evaluates
a false. The relational operators are:

= Expression-l equal to expressfon-2.

Expression-l not equal to expression-2.

< Expression-l less than expression-2.

> Expression-l greater than expression-2.

>= Expression-l greater than or equal to expression-2

<= Expression-l less than or equal to expression-2.

In the absence of parentheses to indicate the order in which
operators are to be applied, operations proceed in straight left to
right sequence, with no precedence among operators.

RELEASE COPY
Spectrum Manufacturers Association

March 1987 Page 17

/1

SMA:301
SMA/DICTIONARY AND DATA STRUCTURE SPECIFICATION DRAFT 1.4

4.3 Concatenation, C bode: J" The 'c' code provides the facility to concatenate attributes
, and/or literals prior to output. The form is:
,

x

C:op{x Op}oee{X}

is the character to be inserted between the
concatenated attributes and/or literals. A
semicolon is a reserved character that means no
separation character is to be used. Any non-numeric
(except system delimiters) is valid, including a
space.

op is the attribute mark count (AMC): or any string
enclosed in single quotes, double quotes, or
backslashes: or an asterisk, which specifies the
last generated value from a previous operation is
to be used.

4.4 Date Conversion, 0 Code:
The '0' code provides for the conver~ion of dates in

internal format to external for output or from external format to
internal format when used with selection.criteria. December 31,
1967 is defined as day zero with positive val·ues following and
negative values earlier. Many of the date conversions will not
operate on input data as they do not uniquely define a month, day,
and year. The form is:

n

x

m

RELEASE COpy

O{n}{xm}{s}

is an option single digit number which specifies
the number of digits to occur in the year on
output. If 'n' is 0, no year will appear in the the
date. The only valid digits for In' are 0,1,2,3, or
4. If tn' is not specified then n = 4 is assumed.

Stands for any single non-numeric character which
specifies delimiter between fields for group
extract. The 'x' cannot be one of the system
delimiter.

is a single digit number that must accompany 'x'
(if 'x' is specified). 'me specifies the number of
fields to skip for group extraction. The group
extraction is done before the conversion is
performed.

Spectrum Manufacturers Association
March 1987 Page 18

SMA:301
SMA/DICTIONARY AND DATA STRUCTURE SPECIFICATION DRAFT 1.4

4.4 Date Conversion, 0 Code (continued):

s is either any non-numeric character that may be
specified to separate the day, month, and year on
output, or special date sub-code. If's' is
specified, the output format will be
MMsDDs{{{{Y}Y}Y}Y}. If's' is not specified, the
date output format will be 00 MMM {{{{Y}Y}Y}Y}. (MM
is a two digit month, MMM is a three character
alpha month abbreviation.) On External to Int~rnal
conversion of a two digit year, the years range
from 1930 through 2029.

The permissible date sub-codes are:

o Day of the month.

I Internal format, Reverse conversion.

J Julian day of year.

M Month numeric.

MA Month alphabetic.

Q Quarter numeric.

W Weekday numeric (Monday=l, Sunday=7).

WA Weekday alphabetic.

Y Year. Default = 4 digits.

4.5 Function Processor, F Code:
The 'F' code processor uses a 15 element post-fix push-down

stack for storing values. An operation specified by anF-code
operates on the last one, two or three entries pushed onto the
stack. Entries are removed from the stack as they are used in the
operation. The results of the operation is pushed onto the stack.
This continues for each operator until the entire F-code is
processed. The final result is then the value on the top of the
stack. The form is:

FS:elm{:elm ••• }

Note that this form of the 'F' code processor differs from
previous implementations in the use of the S to designate standard
form. This standard form includes all ordered binary operations in
classic reverse Polish ordering, including the comparison
operations.

RELEASE COPY
Spectrum Manufacturers Association

March 1987 Page 19

SMA:30l
SMA/DICTIONARY AND DATA STRUCTURE SPECIFICATION DRAFT 1.4

4.5 Function Processor, F Code (continued):

where 'elm' may be any of the following:

LJ amc{R{R}}

J ~

i 0 J
I

~ literal

r
I

I T v

\ NA ~

~ NB

I

J NO

I

J NI

I NL

J
NS

RELEASE COPY

A numeric Attribute Mark Count specifying the element to
be pushed onto the stack. If the AMC is followed by R,
it specifies that the first value of an attribute is to
be used repeatedly when evaluating with a multi-valued
attribute. If the second R is present, it specifies
that the first subvalue of a value is to be used
repeatedly.

A capital 'c' followed by a string, specifies that the
string is to be pushed onto the stack. The string is
ended by the next semicolon.

specifies that the current date is to be pushed onto the
stack (internal format).

The literal string enclosed in either single or double
quotes is pushed onto the top stack entry.

specifies that the current time is to be pushed onto the
stack (internal format).

specifies that the number of attributes in the'item is
to be-pushed onto the stack.

specifies that the current Break level number is to be
pushed on to the stack. 1 = the lowest level break and
255 = the grand-total line.

specifies that the number of items since the BREAK on a
break line is to be pushed onto the stack. If on a
GRAND-TOTAL line, it equals the item count.

specifies the value of the current item counter is to be
pushed onto the stack (number of items listed or
selected).

specifies that the length of the item is to be pushed
onto the stack.

specifies the current subvalue counter, for columnar
listing only, is to be pushed onto the stack.

specifies the current multi-value counter, for columnar
listing only, is to be pushed onto the stack.

Spectrum Manufa~turers Association
March 1987 Page 20

SMA:301
SMA/DICTIONARY AND DATA STRUCTURE SPECIFICATION DRAFT 1.4

4.5 Function Processor, F Code (continued):

where 'elm' may be any of the following:

LPV

*{n}

/

R

+

[]

S

P

RELEASE COPY

specifies the loading of the value from the previous
processing code.

Multiplication of the top two stack entries. If 'n' is
specified, the result is divided by 10 raised to the
power of n.

Divide the second stack entry by the top stack entry and
replace the top stack entry with the quotient.

Divide the second stack entry by the top stack entry and
replace the top stack entry with the remainder

Add the second stack entry to the top stack entry and
replace the top stack entry with the sum.

Subtract the top stack entry from the second stack entry
and replace the top stack entry with the difference.

The top stack entry is concatenated onto the end of the
second stack entry, and the resulting concatenated
siring replaces the the top stack entry.

A subset from the third stack entry is extracted, using
the second stack entry as the starting character
position, and the top stack entry as the number of
characters to be extracted: the result is placed in the
top stack entry.

A total sum of all previous computation is placed on the
top of the stack. The sum operator is used with
multi-valued or multi-subvalued elements to produce a
single value. Multiple S operators may be present
within a function. The domain of a function begins at
either the start of the function or immediately
following the previous S operator. At the conclusion of
the S operator, a single value is present on the stack.

Exchange the top two stack entries.

Duplicates the top stack entry back on to the stack.

Spectrum Manufacturers Association
March 1987 Page 21

J

i

J

SMA:301
SMA/DICTIONARY AND DATA STRUCTURE SPECIFICATION

4.5 Function Processor, F Code (continued):

where 'elm' may be the following:

DRAFT 1.4

(. . .) A standard conversion operator, enclosed in parentheses,
will operate on the top stack entry and the result will
replace the original top stack entry.

The following relational 'elm's operate on the top two stack
entries, and a result of zero or one is placed in the top stack

~ en~_ry, depending on whether the condition is not or is satisfied.

Stacks a one if the two top stack entries are equal, and
a zero is stacked if they are unequal.

J
J

>

<

J]
i

~ [

Stacks a one if the two top stack entries are unequal,
and stacks a zero if they are equal.

Stacks a one if the second stack entry is greater than
the top stack entry, stack zero otherwise.

Stacks a one if the second stack entry is less than the
top stack entry, a zero otherwise.

Stack a one if the second stack entry is greater than or
equal to ·the top stack entry, a zero otherwise.

Stacks a one if the second stack entry is less than or
equal to the top stack entry.

4.6 Group Extraction, G Code:
The 'G' code provides the facility to extract from an element one

or more contiguous fields separated by a given delimiter. The form
is:

m

x

n

RELEASE COPY

G{m}xn

specifies the number of fields to skip. If m is not
specified, zero is assumed, and no fields are skipped.

represents any single non-numeric character, except any
system delimiter, which is the field separator.

is a decimal number which is the number of contiguous
fields to be extracted.

Spectrum Manufacturers Association
March 1987 Page 22

SMA:301
SMA/DICTIONARY AND DATA STRUCTURE SPECIFICATION DRAFT 1.4

4.7 Length, L Code:
The 'L' code validates the length of an element. The form is: j
L

Ln

Ln,m

L{n{,m}}

returns the length of the element.

returns the element if it is less than or equal to In'
characters long, otherwise a null is returned.

returns the element if it is equal to or greater than
In' characters long and less than or equal to am'
characters, otherwise a null is returned.

4.8 Mask Character, MC Code:
The 'MC' code provides the facility to change an element to upper

or lower case, to select out certain classes of characters, or
convert from hexadecimal to decimal and from decimal to hexadecimal.

The forms are: J
MCA

MC/A

MCD{X}

MCL

MCN

MC/N

MCT

MCU

MCX{D}

RELEASE COPY

Extracts all alphabetic characters from an element.

Extracts all non-alphabetic characters from the element.

Converts decimal el:ement to a hexadecimal element.

Converts an element to lower case. Will convert all
upper-case letters to lower-case; has no effect on
lower-case letters or non-alphabetic characters.

Extracts all numeric characters (0-9) from an element.

Extracts all non-numeric characters form an element.

Converts first letter following a non-alphabetic
character to upper-case. The characters up to the next
non-alphabetic character are converted to lower-case.
This process is repeated through-out the entire element.

Converts an element to upper case. Will convert all
lower-case letters to upper-case; has no effect on
upper-case letters or non-alphabetic characters.

Converts hexadecimal element to a decimal element.

Spectrum Manufacturers Association
March 1987 Page 23

/
V

J

SMA:301
/SMA/DICTIONARYAND DATA STRUCTURE SPECIFICATION DRAFT 1.4

J4.9 Mask Decimal, ML And MR Codes:

output
output
output

The 'ML' and 'MR' codes provide the facility to do special
formatting of data elements. The ML code specifies that the
is to be left justified and the MR code specifies that the
is to be right justified. The forms are:

ML{n{m}}{Z}{,}{cr}{$}{(format-string)}
MR{n{m}}{Z}{,}{cr}{$}{(format-string)}

n is a single decimal digit (0-9) which specifies the number
of digits to be printed to the right of the decimal point.
If 'n' is not specified, 0 assumed. If 0 is assumed or
specified, no decimal point is printed.

m is a single digit numeric (0-9) which specifies that the
element is to be divided by that power of ten. The number
'm' is the number of implied digits to the right of the
decimal point. If m) n, then the element will be rounded
to 'n' digits.

Z specifies zero-suppression. An element of 0 (zero) will be
printed as blanks.

, specifies the insertion of a comma every three digits to
the left of the decimal point.

cr specifies the designation of debit/credit symbols as:

C causes negative elements to be followed by the letters

o causes positive elements to be followed by the letters

E causes negative elements to be enclosed inside angle
brackets.

CR.

DB.

M causes negative elements to be followed by a minus sign.

N causes the minus sign on negative elements to be
suppressed.

In the absence of a credit symbol, negative numbers are
presented with a leading minus sign.

$ causes a currency symbol to be appended to the front of the
element before justification.

RELEASE COpy
Spectrum Manufacturers Association

March 1987 Page 24

SMA:301
SMA/DICTIONARY AN~ DATA STRUCTURE SPECIFICATION

4.9 Mask Decimal, ML And MR Codes (continued):

DRAFT 1.4

The format mask specification, which is enclosed in parentheses,
consists of format codes and literal data. The format codes are one of
the characters I, *, or \, optionally followed by a number to specify
that number of repetitions of the characters. The meaning of the
format codes are:

f{n} specifies that the element is to be justified in a
field of 'n' blanks.

*{n} specifies that the element is to be justified in a
field of ' n ' asterisks.

\{n} specifies that the element is to be justified in a
field of ' n ' zeroes.

NOTE: Any other character, including parentheses may be used
as a field fill. Mixed mode fields may be formed by repeating the
control characters (', *, and \).

4.10 Mask Time Conversion, MT Code:
The 'MT' code provides the facility for converting times to

or from internal format. The internal time format is the number of
seconds. The form is:

H

S

MT{H}{S}

is the capital letter H, which specifies 12 hour
format. If 'H' is omitted, 24 hour (international)
format is assumed.

is the capital letter S, which specifies seconds on
on output. If'S' is omitted seconds are not listed
on output.

When the codes MTH or MTHS are used, AM or PM is always displayed
immediately following the 12 hour time.

4.11 Mask Hexadecimal Expansion, MX Code:
The 'MX' code provides the facility to convert an element,

one byte at a time, into the corresponding hexadecimal
representation. Each character will be converted to a 2-byte
hexadecimal number. On input conversion, the element will be V
considered right justified. The form is:

RELEASE COPY

MX

Spectrum Manufacturers Association
March 1987 Page 25

!

SMA:301
SMA/DICTIONARY AND DATA STRUCTURE SPECIFICATION DRAFT 1.4

I 4.12 Mask Hexadecimal Compression, MY Code:
\~ The 'MY' code provides the facility to convert a hex

j

element, two bytes at a time, into the corresponding ASCII
representation. Each character will be converted to a I-byte ASCII
character. The form is:

MY

4.13 Pattern Matching,·P Code:
The 'Pi code validates an element if it matches any of the

specified patterns. If the element does not match any pattern, a
null is returned. The form is:

P(op){;(op)} •••

Any combination of the following forms"is valid within an lOp'.

££ Description

nN The integer number In' followed by the letter 'N',
tests for n numeric characters.

nA The integer number In' followed by the letter 'A',
tests for n alpha characters.

nX' The inte~er number ~n' followed by the letter 'X',
tests for n characters.

'literal' A literal, enclosed in single quotes ('),
tests for the literal string.

I 4.14 Range, R Code:
The 'R' code validates an element which falls within a

V specified range. The form is:

Rn,m{:n,m} •••

n is the starting integer of the range.

m is the ending integer of the range.

If the range specifications are not met, 9ull is returned.

RELEASE COPY
Spectrum Manufacturers Association

March 1987 Page 26

SMA:301
SMA/DICTIONARY AN~ DATA STRUCTURE SPECIFICATION DRAFT 1.4

I

/4 15 Substitution, S Code: J.. The'S' code substitues the element of the reference
attribute with the element of the first specified attribute or a

, literal if the element of the reference attribute is not null or
zero. If the element of the reference attribute is null or zero,
then it will be substitued with the element of the second specified
attribute or a literal. The form is:

opl

op2

S:opl:op2

if the element is not null or zero, then this
attribute or literar-(enclosed in single quotes) is
used for substitution.

if the element is null or zero, then this attribute
or literal (enclosed in single, quotes) is used for
substitution.

Note that an asterisk, which specifies the last generated value
from a previous operation, may be used as either 'opl' or 'op2'.

~I 4.16 Text Extraction, T Code:
The 'T' code extracts a contiguous string of characters from

an element. The form is:

T{m,}n

m is the optional starting column number.

n is the number of characters to be extracted.

The form 'Tm,n' counts columns and extracts characters from left to
right of the element, regardless of the code in attribute 9 of the
Data Definition Item.

The form 'Tn' extracts 'n' characters either from the left or the
right, depending upon on the code in attribute 9 of the Data
Definition Item. If that code is not 'R', then the 'Tn' form
extracts the first 'n' characters of the element. If that code is
'R', then the 'Tn' form extracts the 'n' rightmost characters of
the element.

RELEASE COPY
spec~rum Manufacturers Association

March 1987 Page 27

I

SMA:301
SMA/DICTIONARY AND DATA STRUCTURE SPECIFICATION DRAFT 1.4

File Translation, Tfile Code: J 4.17
The 'Tfile' code provides the facility for converting an

element by translating through a file. The element to be translated
is used as an item-id for retrieving an item from the specified
translation file. The translated element is retrieved from the
specified attribute of the item. The form is:

DICT

file

c

v

C

I

o

x

n

i-amc

o-amc

b-amc

RELEASE COpy

T{DICT }file:c{n}:{i-amc}:{o-amc{:b-amc}}

specifies the use of the dictionary of the file instead of
the data portion of the file.

specifies the name of the file to be used for the
translation.

is the translation sub-code, which is one of the
following:

Conversion item must exist on file, and the specified
attribute must have an element. Aborts with an error
message if translation is impossible.

Convert if possible: use original element if item in
translate file does not exist or has a null conversion ~
attribute. ,.",

Input verify only - functions like 'Vr for input and
like 'C' for output.

Output verify only - functions like IC' for input and
like 'V' for output.

Convert if possible, otherwise return a null element.

is a value mark count. If In' is specified, then only the
element in value n will be returned. If In' is not
specified, then all the values in the element are
concatenated together with blank separators and returned.

is the decimal attribute number for input translation. If
the i-arnc is omitted, no input translation takes place.

is the numeric attribute number for output translation.

if specified, will be used instead of o-amc during the
listing of break-on and total lines.

Spectrum Manufacturers Association
March 1987 Page 28

SMA:301
SMA/DICTIONARY AN~ DATA STRUCTURE SPECIFICATION

RELEASE COpy

THIS IS THE LAST PAGE

Spectrum Manufacturers Association
March 1987

DRAFT 1.4

Page 29

SMA:301
SMA/DICTIONARY AND DATA STRUCTURE SPECIFICATION

RELEASE COPY
Spectrum Manufacturers Association

March 1987

DRAFT 1.4

Page 30

/j?fb M

G)' rft

SMA STANDARD

SMA/RETR lEV AL
Language

Spec ification

SMA: 401

January 1988

SPECTRUM sma MANUFACTURERS
ASSOCIATION

SMA:40l
SMA/RETRIEVAL LANGUAGE SPECIFICATION DRAFT 3.5

NOTICE

SMA standards are designed to serve the public interest through
eliminating misunderstandings between manufacturers and purchasers,
facilitating interchangeability and improvement of products, and
assisting the purchaser in selecting and obtaining, with minimum delay,
the proper product for his particular need.

Some material contained herein is designated as
individual member companies of SMA listed below. Any
of such proprietary information is prohibited.

proprietary by
unauthorized use

Copyright Automatic Data Processing, Inc., Altos Computer, Applied
Digital Data Systems, COl Information Systems, CIE Systems, Inc., Data
Media Corporation, Fujitsu Micro Systems of America, General Automation,
Inc., I. N. Informatique, McDonnell Douglas, Computer Systems Company,
Nixdorf Computer Corporation, Pick Systems, Prime Computer, Inc.,
Scan-Optics Corporation, The Ultimate Corp., Wicat Systems.

RELEASE COpy

(c) 1988

Copyright Spectru~ Manufacturers Association
(c) 1988

Published by
SPECTRUM MANUFACTURERS ASSOCIATION

9740 Appaloosa Rd., Suite 104
San Diego, CA 92131

Spectrum Manufacturers Association
January 1988 RELEASE

SMA:40l
SMA/RETRIEVAL LANGUAGE SPECIFICATION DRAFT 3.5

Foreword: This document provides a set of syntax definitions for
the SMA/RETRIEVAL language. This language, provided by all Spectrum
Manufacturers Association members, is a report generating process which
enables quick and easy preparation of various listings and queries from
the Data Base. The language uses a limited natural language sentence
format for accessing the Data Base. This document is intended to serve
as a guide to the preparation of SMA/RETRIEVAL language sentences. For
details on any specific system, the user should refer to the
manufacturer's reference manual.

RELEASE COPY
Spectrum Manufacturers Association

January 1988 RELEASE

SMA:40l
SMA/RETRIEVAL LANGUAGE SPECIFICATION DRAFT 3.5

The SMA Executive Board wishes to thank the following individ~les
and organizations for their contributions to the preparation of this
document:

D. Harman,
C. Saunders,
K. Hoppe,
I. Sandler,
H. Eggers,
C. Wilson,

Systems Management, Inc.
Fujitsu Microsystems of America, Inc.
Altos Computer Systems
CIE Systems
Mcdonnell Douglas Computer Systems Co.
General Automation, Inc.

RELEASE COPY
Spectrum Manufacturers Association

January 1988 RELEASE

J

J

1.0

2.0

1.1
1.2
1.3

2.1
2.2

SMA:401
SMA/RETRIEVAL LANGUAGE SPECIFICATION

CONTENTS

Scope
Specification Objectives
Inclusions
Exclusions

Definitions
Names and Symbols
Structural Terms

3.0 SMA/Retrieval Language Sentence
3.1 SMA/Retrieval Language General Form
3.2 Verb
3.3 File.Modifier

3.3.1 DICT
3.3.2 ONLY

3.4 File.Name
3.5 USING
3.6 Item.Lists

3.6.1 Exp1icit.Item.List
3.6.2 Imp1icit.Item.List

3.7 Selection.Criteria
3.8 Item-id Selection. Criteria

'3.8.1 ORing Item.ld.Values
3.8.2 ANDing Item.Id.Values

3.9 Data.Definition.ttem Se1ection.Criteria
3.9.1 ORing Data.Definition.ltems
3.9.2 ANDing Data.Definition.ltems

3.10 Value.String Se1ection.Criteria
3.10.1 Relational Connectives
3.10.2 Character String
3.10.3 ORing Value.Strings
3.i0.4 ANDing Value. Strings

3.11 Sort.Criteria
3.11.1 Sort Connectives
3.11.2 Exploding Sort Connectives
3.11.3 Sort Evaluation
3.11.4 Multiple Key Sort

3.12 Output.Criteria
3.12.1 Print.Limiter Criteria
3.12.2 BREAK-ON Connective
3.12.3 Multiple Control Breaks
3.12.4 TOTAL Connective
3.12.5 GRAND-TOTAL Connective

3.13 Modifiers
3.13.1 Heading and Footing Modifiers
3.13.2 Heading and Footing Options

3.14 Options
3.15 Connective Synonyms
3.16 Throw-away Connectives

RELEASE COPY
Spectrum Manufacturers Association

January 1988

DRAFT 3.5

1
1
1

2
2

4
4
4
4
4
4
5
5
5
5
5
6
6
6
7
7
7
7
8
8
9
9
9
9
9

10
10
10
10
11
12
12
13
13
14
14
15
16
16

RELEASE

4.0

SMA:401
SMA/RETRIEVAL LANGUAGE SPECIFICATION

CONTENTS

Verbs
4.1 LIST verb
4.2 SORT verb
4.3 SELECT verb
4.4 SSELECT verb
4.5 COUNT verb
4.6 SUM verb
4.7 STAT verb
4.8 Reformat Verbs

4.8.1 Reformatting to Another File
4.8.2 Reformatting to The Same File
4.8.3 Reformatting to Tape

DRAFT 305

17
17
18
18
19
19
20
20
21
21
21

4.8.4 Reformatting wih an Exploding Sort Connective 21
4.9 Label Verbs
4.10 Item Listing Verbs
4.11 FILE-TEST Verb
4.12 CHECK-SUM verb
4.13 Tape Verbs And The Tape Modifier

4.13.1 Tape Dumping Verbs
4.13.2 T-LOAD verb
4.13.3 Tape Modifier

4.14 List File Handling Verbs
4.14.1 SAVE-LIST verb
4.14.2 GET-LIST verb
4.14.3 DELETE-LIST verb
4.14.4 FORM-LIST verb

RELEASE COPY
Spectrum Manufacturers Association

January 1988

22
24
25
26
27
27
28
28
29
29
29
30
30

RELEASE

J

SMA:401
SMA/RETRIEVAL LANGUAGE SPECIFICATION

1.0 Scope

1.1 Specification Objectives:

DRAFT 3.5

It is the objective of this document to provide the user with a
defined syntax of the SMA/Retrieval Language to enable preparation of
SMA/Retrieval statements that can be moved from one system to another
with maximum portability.

1.2 Inclusions:
This document includes all the commonly available verbs with

syntactical representation to clearly define the results produced by
each.

1.3 Bxclusions:
Extensions to the SMA/Retrieval language have been implemented or

proposed by several SMA members. This document excludes any such items
which have not been adopted by the majority of the SMA member companies.

For further details on any differences between manufacturer's systems,
see the manufacturers documentation.

RELEASE COPY
Spectrum Manufacturers Association

January 1988 Page 1

SMA:401
SMA/RETRIEVAL LANGUAGE SPECIFICATION DRAFT 3.5

2.0 Definitions

2.1 Names and Symbols:
The names for verbs and predefined words used in this document are

used by all the SMA manufacturers. They can be easily changed for
different languages without affecting the documented functionality_

The use of quotes (n) and single quotes (') is required in the forms
shown below.

The use of braces ({ }) means the included string is optional.

The use of ellipsis (•••) means the preceding information can be
repeated.

2.2 Structural Terms:

Item-Id - A character string (maximum 48 characters) which uniquely
identifies an item within a file. The item-id may include
any characters except system delimiters. The use of blanks,
single quotes, quotes, commas, and backslash characters may
require special considerations.

Item Body - The variable length character structure which makes up the
information content of the item. It is composed of any
number of attributes, values, and subvalues.

SM -

AM -

VM -

Segment Mark: Delimiter character used to mark the end of a
data structure.

Attribute Mark: Delimiter character used to mark the end of
an attribute. The last AM in an item is implied by the
presence of a segment mark.

Value Mark: Delimiter character used to mark the end of a
value. The last VM in an attribute is implied by an
attribute or segment mark.

RELEASE COPY
Spectrum Manufacturers Association

January 1988 Page 2

SMA:40l
SMA/RETRIEVAL LANGUAGE SPECIFICATION DRAFT 3.5

2.2 Structural Terms (continued):

SVM -

AMC -

VMC -

SVMC -

BM -

Sub-value Mark: Delimiter character used to mark the end of
a subvalue. The last SVM in a value is implied by a value,
attribute, or segment mark.

Attribute Mark Count: The positional count, from 1, that
locates a specific attribute within the body of an item. An
AMC value of zero is used to locate the item-ide

Value Mark Count: The positional count, from 1, that locates
a specific value within a multivalued attribute.

Sub-value Mark Count: The positional count, from 1 that
locates a specific subvalue within a multisubvalued
structure.

Buffer Mark: Delimiter character used to mark the beginning
or ending of special character strings.

RELEASE COPY
Spectrum Manufacturers Association

January 1988 Page 3

SMA:401
SMA/RETRIEVAL LANGUAGE SPECIFICATION

3.0 SMA/Retrieval Language Sentence

3.1 SMA/Retrieval Language Sentence General Form:

DRAFT 3.5

The SMA/Retrieval Language invokes processing of data from a file
according to specified criteria by the use of a single sentence.

The general form of the sentence takes u~ one logical line.

verb {file.modifiers} file.name
{item.list/item.id.selection.criteria}
{USING {DICT} file.name}
{data.definition.item.selection.criteria}
{sort.criteria}
{output.criteria}
{modifiers} {(option, •••)}

Only the verb and file name are mandatory. Blanks are used as separators
between the parts of the sentence.

The SMA/Retrieval Language comes with a standard set of verbs,
modifiers, and relational operaters. These words are defined as items in
the user's Master Dictionary (MD). The user may define any number of
synonyms for these words, and remove the supplied entries, thereby
creating his own semantics for the language. Thus the SMA/Retrieval
language can be tailored to fit any language.

3.2 Verb: \
A verb specifies what processing will be performed on the file. The ~

verb must be the first word in the sentence.

3.3 File.Modifier:
Certain modifiers are valid as modifiers of the file name, and if

present, must precede the file name.

3.3.1 DICT:
The file modifier DICT stipulates that the dictionary section of

the named file contains the data to be operated on.

3.3.2 ONLY:
The file modifier ONLY stipulates that only the item-ids of the

items shall be output, suppressing any existing "default"
output.criteria.

3.4 File.Name:
The file name stipulates the file to be operated on by the verb.

It also implies the dictionary to be used as the source of
data.definition.items, unless the USING clause appears later in the
statement.

RELEASE COPY
Spectrum Manufacturers Association

January 1988 Page 4

SMA:401
SMA/RETRIEVAL LANGUAGE SPECIFICATION

3.5 USING:

DRAFT 3.5

The USING'connective stipulates that the--fo~lowing named file is to
be used as the source of data.definition.items during processing instead
of the dictionary of the file to be processed. If the modifier "DICT"
pre'cedes the file.name then the dictionary of the file is to be used,
otherwise the data portion of the file is to be used as the source.

3.6 Item.Lists
Either an Explicit or an Implicit item list is used for retrieving

items from a data file for processing. If no explicit list of item-ids
is specified, and an implicit.list is not active, all items in the file
will be used by the verb. Only those items within the list, that are
present in the file, will be used by the verb.

3.6.1 Explicit.Item.List:
The explicit. item. list is a list of item-ids, each of which is

surrounded by single quotes (I), to be operated on by the particular
verb.

If present, an explicit list takes precedence over an implicit list, and
causes the implicit list to be ignored.

3.6.2 Implicit.Item.List
An implicit.item.list is a list which has been activated by a

previous command such as SELECT or GET-LIST.

3.7 Selection.Criteria:
Items may be stipulated as members of the set output by the

inclusion of the selection.criteria in the command.

A selection criterion may be either an item.id.selection.criteria or a
data.definition.item.selection.criteria.

A selection criterion is made up of a relational operator and a
value. string.

RELEASE COPY
Spectrum Manufacturers Association

January 1988 Page 5

SMA:401
SMA/RETRIEVAL LANGUAGE SPECIFICATION DRAFT 3.5

3.8 Item-id Selection.Criteria: - .J
Seiection.criteria are placed on The- item-id by following the

file.name with one or more relational.connective and character. string
pairs, ANDed together as desired. There must be at least one
relational.connective in the sequence of pairs, otherwise the collection
of IItem-id' and "character.string" elements will be treated as a list
of explicit Item-ids.

Any Iltem-id l or "Character.string" elements not preceeded by a
relational.connective will be taken to be "equal"tests.

The forms IItem-id' and Character.string" have the same status in the
list immediately following the file.name and preceeding the first
data.definition.item and are called Item.id.values.

The Item-id selection.criteria form is:

relational.connective item.id.value
{{AND/OR} {relational.connective} item.id.value} •••

where:
item.id.value is

IItem-id'
or

"Character. string"

An item must pass the item-id selection.criteria before any other .J
criteria are considered. Therefore, item-id selection.criteria are
implicitly ANDed with all other selection.criteria, and an explicit AND
is illegal after item-id selection.criteria.

3.8.1 ORing Item.ld.Values:
Several item.id.values in succession are taken to be ORed with

implicit equal relational.connectives: that is, ,if an item-id matches
any of the item.id.~alues, the it&m passes this criterion.

3.8.2 ANDing Item.ld.Values:
The AND evaluation connective may be placed between item.id.values.

In this case, an item-id must pass all the tests stipulated by the
relational.connective-item.id.value pairs for the item to pass this
criterion. Note that use of the implicit equal relational.connective
will define a criterion that can not be passed by any item-id, as an
item-id can not be "equal" to two different values.

RELEASE COPY
Spectrum Manufacturers Association

January 1988 Page 6

SMA:401
SMA/RETRIEVAL LANGUAGE SPECIFICATION

3.9 Data.Definition.Item Selection.Criteria:

DRAFT 3.5

Items may be-" s~lected based on the generated contents of stipulated
data.definition.items.

Stipulation of data.definition.item selection criteria requires the use
of the WITH, connective.

The form of the data.definition.item selection criterion is

WITH {EACH} {NO} data.definition.item.name
{value.string.criteria} {{AND/OR} WITH {EACH} {NO}
data.definition.item.name {value.string.criteria}} •••

The WITH connective may be associated with the EACH and/or with the NO
modifier. The effect of the inclusion of the EACH modifier is that each
multi-value of the attribute stipulated by the data definition item must
pass the value. string criterion. The effect of the NO modifier is to
pass data.definition.items whose value is null 'if there is no
value.string.criterion, or to pass those data.definition.items which do
!!£! pass the value. string criteria if one is present.

A command may contain at least 9 ORed data group selections.

3.9.1 ORing Data.Definition.Items:
A sequence of data.definition.item selection criteria will be

implicitly ORed together if they are not explicitly ANDed together. If
an item passes anyone of ORed data.definition.item selection criteria
it will be accepted.

3.9.2 ANDing Data.Definition.Items:
Inserting an AND between the end of a data.definition.item

selection criterion and the beginning of another has the effect of
ANDing the criteria together. Any number of data.definition.item
selection criteria may be ANDed together to form a group. An item must

" pass all of the ANDed cr i teria in order to be accepted.

There may be as many as 9 of these groups of more than one
data.definition.item selection criteria which have been ANDed together.
These groups are implicitly ORed together.

3.10 Value.String.Criteria:
The form of a value.string.criterion is:

{relational.connective} "Character.string" {{AND/OR}
{relational.connective} "Character.string"} •••

If there is no relational.connective preceeding a "Character.string",
then the test defaults to "equal". A data value will pass an ORed group
of value. string criteria if it passes anyone. A data value will pass
an ANDed group of value.string criteria if it passes all entries in the
group. The logic of evaluations with NOT follows as with the NOT
evaluation for Item-id Selection Criteria, that is, the AND connective
must be used to exclude more than one value.

RELEASE COPY
Spectrum Manufacturers Association

January 1988 Page 7

SMA:401
SMA/RETRIEVAL LANGUAGE SPECIFICATION

3.10.1 Relational Connectives:
The allowable relational.connectives are:

mnemonic sImbol meaning:

EO - equal

NE i not equal

LT < less than

LE <-or-< less than or

GT) greater than

GE)-or=> greater than

DRAFT 3.5

equal

or equal

The lack of a relational.connective defaults to the EO (=)
relational.connective. Either the mnemonic or symbol may be used.

3.10.2 Character String:
A character. string is a sequence of characters enclosed in quotes

(") .
Selecting part of a value.string can be performed by including any or
all of the three following reserved characters in the character. string.

character

[

]

meaning:

accept any leading
characters or nulls.

accept any trailing
characters or nulls.

accept any single character.

To use "[" in this special way it must be the first character in the
character.string. To use "]" in this special way it must be the last
character in the character. string.

The character "~n may occur anywhere in the string, and any number of
times. Each case of "~" will match any single character in that
location in the string.

These special "wild card" character meanings are not evaluated on
elements that have EXTERNAL Operations defined, which are used as input
conversions (see SMA:301).

RELEASE COpy
Spectrum Manufacturers Association

January 1988 Page 8

J

J

SMA:401
SMA/RETRIEVAL LANGUAGE SPECIFICATION

3.10.3 ORing Value.Strings:

DRAFT 3.5

Several value.strings in succession are taken to be ORed: that is,
if anyone matches the referenced data from the item, the item passes
this criterion.

3.10.4 ANDing Value.Strings:
The AND evaluation connective may be placed between value.strings.

In this case, the referenced data must pass each of the tests stipulated
by the relational connective-value string pair.

3.11 Sort.Criteria:
A sort criterion clause is made up of a sort activation connective

and an associated data.definition.item specifier. The sort criterion
applies to the sorting verbs: SORT, SSELECT, SREFORMAT, S-DUMP,
SORT-ITEM, and SORT-LABEL.

If a sort.criteria is not specified on a sorting verb, the output of the
command will be in the ascending order sorted sequence of the item-ids.
Justification is determined by the File Definition Item (see SMA:301).

3.11.1 Sort Connectives:
The sort connectives for single-valued attributes are of the form:

BY element - ascending order

BY-DSND element - descending order

where "element" is a data.definition.item.

3.11.2 Exploding Sort Connectives:
The sort connectives for exploding multi-valued attributes, where

each value is treated as an independent item by the sort.criteria, are
of the form:

BY-EXP element {explosion.limiter} - ascending order

BY-EXP-DSND element {explosion. limiter} - descending order

where "element" is a data.definition.item and explosion.limiter is of
value.string.critera form (see section 3.l0).

RELEASE COPY
Spectrum Manufacturers Association

January 1988 Page 9

SMA:401
SMA/RETRIEVAL LANGUAGE SPECIFICATION

3.11.3 Sort Evaluation:

DRAFT 3.5

The evaluation of a sort sequence criterion may be either
alphabetic or numeric. It is considered alphabetic and left adjusted if
the justification is not explictly declared to be 'right adjusted'. It
will be evaluated from left to right.

The sort sequence is considered numeric if the justification is declared
to be 'right adjusted'. The data will be evaluated in terms of numeric
magnitude, including the sign. If value. string is alphanumeric, the
numeric portions are sorted right-to-left, and the non-numeric portion
is sorted left-to-right.

3.11.4 Multiple Key Sort:
Any number of sort criteria may be included in a statement. Each

will contribute to the value used for sort purposes, with the first
being used as the highest order sort value, and continues, in order,
toward the end of the command, with the item-id always being used as the
lowest-order sort value.

3.12 Output.Criteria:
Any data.definition.item not preceded by a selection connective or

a sort connective is an output criterion.

The form of the output.criteria is:

{TOTAL} data.definition.item {print.limiter}

or

BREAK-ON data.definition.item {break.option.strin~}

The effect of an output.criteria is to emit the value.string generated
by the data.definition.item into the output stream generated by the
command.

If no output.criteria is specified and a set of default
data.definition.items exist, they will be used for the output criteria.
Default data.definition.items are those whose item. ids are sequential
integers beginning with 1.

3.12.1 Print.Limiter Criteria:
Print. limiters are used with output.criteria to select certain

values from multi-valued attributes for output. Output of values is
limited to those values that meet specified criteria. Dependent values
in associative data sets will be suppressed if the value they depend on
is not output. A print.limiter criteria is of the same form as a
value.string.criteria (see section 3.10).

RELEASE COPY
Spectrum Manufacturers Association

January 1988 Page 10

SMA:401
SMA/RETRIEVAL LANGUAGE SPECIFICATION DRAFT 3.5

3.12.2 BREAK-ON Connective:
The output.criteria may be preceded by the BREAK-ON connective.

This causes the stipulated output.criteria values in successive items to
be monitored for change. When an item is encountered which contains a
different value from the previous item, a control break is said to have
occurred. When a control break is detected, then special actions are
taken to indicate the detection in the output, including the inclusion
of the break.option.string.

The form of the break.option.string is:

"{{text}{'options'}} ••• "

The permissible BREAK-ON options are:

RELEASE COPY

Options Meaning

B BREAK. Insert the value of the
data.definition.item in the page heading.

D DATA. Suppresses the break line entirely if
there was only one detail line since the
last control-break occurred.

L LINE. Suppresses the blank line before the
break data line. This option is ignored when
the 'u' option (below) is used.

N Reset the page number to one on this break.

P PAGE. Cause a page break after this break
line has been output.

R ROLLOVER. Inhibit page break until all data
associated with this break has been output.

U UNDERLINE. Causes the underlining of all
specified TOTAL fields.

spectrum Manufacturers Association
January 1988 Page 11

SMA:401
SMA/RETRIEVAL LANGUAGE SPECIFICATION

3.12.2 BREAK-ON Connective (continued):

DRAFT 3.5

V VALUE. Causes the value of the control break
to be inserted at this point in the BREAK-ON
line.

, , Two successive single quotes are used to
insert a single quote mark in the text.

The control break process prints the leading and trailing text, if any,
and the value of the data before the break if the V option is specified.

If there is neither text nor a V option specified, the default output is
three asterisks (***).

3.12.3 Multiple Control Breaks:
Control breaks are hierarchically ordered, with the first control

break criteria as the highest break level, and continuing toward the end
of the command.

The use of control breaks assumes a sort sequence based on the
data.definition.items specified as control breaks and in the same
hierarchy.

There are at least 15 control break levels.

3.12.4 TOTAL Connective: \
If an output.criteria is preceded by the TOTAL connective, then the ~

data elements are summ'ed for the specified items to be output.

There is one running total kept for each control break
output. criteria, and one for the complete operation.

Totals are output for each output.criteria preceded by a TOTAL
connective, at each control break and at the end of the output.

Non-numeric data is taken to be zero for the totaling process.

RELEASE COpy
Spectrum Manufacturers Association

January 1988 Page 12

SMA:401
SMA/RETRIEVAL LANGUAGE SPECIFICATION DRAFT 3.5

3.12.5 GRAND-TOTAL Modifier:
The GRAND-TOTAL modifier may be used with the TOTALs and/or

BREAK-ONs to specify special formatting on the grand-total line.

The GRAND-TOTAL connective form is:

GRAND-TOTAL {"text{'options'}text"}

where text is output at the completion of the command, and the 'options'
enclosed in single quotes specify the following:

Option

L

P

U

, ,

Meaning

Line suppress. Suppress the line before the
grand-total line.

Page break. Force a page break before the
grand-total line is displayed.

Underline. Display a line of equal-signs (=)
in the totaled output.criteria column before
displaying the grand-total line.

Two successive single quotes are used to
insert a single quote mark in the text.

The grand-total literal string will be displayed, left-justified,
starting in the first column.

3.13 Modifiers:
Modifiers change the form of the output format. Note that several

of the modifie~s can alternatively be specified as Options.

The admissible modifiers are:

RELEASE COpy

Mnemonic Meaning

COL-HDR-SUPP

DBL-SPC

DET-SUPP

HDR-SUPP

Suppress the default heading,
the column headings, and
the end-of-file message.

Place a blank line between
items.

Suppress detail lines.

Suppress the default heading and the
end-of-file message. The column
headings are not suppressed.

Spect~um Manufacturers Association
Janua~y 1988 Page 13

SMA:401
SMA/RETRIEVAL LANGUAGE SPECIFICATION

3.13 Modifiers (continued):

DRAFT 3.5

HEADING

ID-SUPP

Provide page heading format.

Suppress output of default item-id
column.

FOOTING

LPTR

NOPAGE

TAPE

Provide page footing format.

Send the output to the spooler.

Do not pause at the bottom of
each page when displaying to a
terminal.

Acquire data from a T-DUMP tape.

3.13.1 Heading and Footing Modifiers:
The HEADING and FOOTING modifiers must be followed by a string

surrounded by quotes ("), of the form:

"{{text}{'options'}} ••• "

Each group of options must be surrounded by single quotes ('). The
effect is the text associated with the HEADING modifier will appear as
the heading on each page of output, as operated on by the options, and
the text associated with the FOOTING modifier will appear as the footing. .~
on each page of output, as operated on by the options. ~

3.13.2 Heading and Footing Options:
The allowable options for the HEADING and FOOTING modifiers are:

RELEASE COpy

Option

B

c

D

Meaning

Break. Insert the value c~using the
control break if the "B n option has
been specified in a BREAK-ON
connective literal.

Center. Causes the HEADING or
FOOTING line to be centered on the
output page.

Date. Insert the current date, dd
mmm yyyy, in the heading at this
point.

Spectrum Manufacturers Association
January 1988 Page 14

L

SMA:401
SMA/RETRIEVAL LANGUAGE SPECIFICATION DRAFT 3.5

3.13.2 Heading and Footing Options (continued):

F File name. Insert the name of the
file being LISTed or SORTed.

L New line. Specifies a new line in
the HEADING or FOOTING.

\
~'

P Page number. Insert the current page
number, right justified, in a field
of four blanks.

T

I I

3.14 Options:

Time and Date. Insert the time and
date, hh:mm:ss dd mmm yyyy.

Two successive single quotes are
used to insert a single quote mark
in the heading text.string.

The options must be last in the sentence, are enclosed in
parentheses, and may be separated 'by commas. The right (closing)
parentheses is optional.

The allowable options are:

Option

B

Meaning

Suppress initial terminal
line-feed prior to output.

C Refer to Modifier COL-HDR-SUPP

RELEASE COPY

D Refer to Modifier DET-SUPP

H Refer to Modifier HDR-SUPP

I Refer to Modifier ID-SUPP

N Refer to Modifier NOPAGE

P Refer to Modifier LPTR

Spectrum Manufacturers Association
January 1988 Page

\ !
\ ,"
V'

15

SMA:401
SMA/RETRIEVAL LANGUAGE SPECIFICATION DRAFT 3.5

3.15 Connective Synonyms: \
A set of common synonyms are provided for the various connectives ~

in the language as follows:

Synonym

&
EVERY
IF
WITH.OUT
AFTER
BEFORE
NOT
SUPP
HEADER
CAPTION

3.16 Throw-away Connectives:

Standard Connective

AND
EACH
WITH
WITH NO
GT
LT
NO
HDR-SUPP
HEADING
GRAND-TOTAL

A set of common words are included that are not used by the
language but may be included by the user to make the sentence more
readable, which are as follows:

Throw-aways

RELEASE COPY

!
A
AN
ARE
DATA
FILE
FOR
IN
ITEMS
OF
OR
THE

Spectrum Manufacturers Association
January 1988 Page 16

4.0 Verbs

SMA:401
SMA/RETRIEVAL LANGUAGE SPECIFICATION

4.1 LIST verb:

DRAFT 3.5

The SMA/Retrieval language verb, LIST, is used to generate a
formatted output of selected items and attributes of a specified file.

The LIST verb has the following form:

LIST {file.modifiers} file.name
{item.list / item.id.selection.criteria}
{USING {DICT} file.name}
{data.definition.item.selection.criteria}
{output.criteria{print.limiters}}
{modifiers}{(option, •••)}

See the appropriate sections for further details on each part of the
sentence.

In the absence of an active item list, the output sequence of the LIST
verb will be unordered. With an active item list, either explicit or
implicit, the output sequence will be in the order given by the list.

4.2 SORT Verb
The SMA/Retrieval language verb, SORT, is used to generate a

sorted and formatted output of selected items and attributes of a
specified file.

The SORT verb has the following form:

SORT {file.modifiers} file.name
{item.list / item.id.selection.criteria}
{USING {DICT} file.name}
{data.definition.item.selection.criteria}
{sort.criteria}
{output.criteria{print.limiters}}
{modifiers}{(option, •••)}

See the appropriate sections for further details on each part of the
sentence.

RELEASE COPY
Spectrum Manufacturers Association

January 1988 Page 17

SMA:40l
SMA/RETRIEVAL LANGUAGE SPECIFICATION

4.3 SELECT verb:

DRAFT 3.5

The SMA/Retrieval language verb, SELECT, creates a temporary
implicit-list of the selected elements for later usage.

The SELECT verb has the following form:

SELECT {file.modifiers} file.name
{item.list / item.id.selection.criteria}
{USING {DICT} file.name}
{data.definition.item.selection.criteria}
{output.criteria}

If there are no output.criteria specified, the item-ids are stored in a
temporary implicit-list for use by the next verb as an implied
'item.list'. If the next verb is a SAVE-LIST verb, then the temporary
implicit-list is saved. (See the section on SAVE-LIST).

If output.criteria are specified, the value of the specified
attribute(s) will be saved in the implicit-list. Each value of a
multi-valued attribute is treated as if it were in a single-valued
attribute. The item-ids will not be saved in the select-list when
output.criteria are specified.

The output from the SELECT verb is a temporary implicit-list and a
message specifying the number·of elements selected.

J

4.4 SSELECT verb: \
The SMA/Retrieval language verb, SSELECT, creates a sorted ~

temporary implicit-list of the selected elements from a file, for later
usage.

The SSELECT verb has the following form:

SSELECT {file.modifiers} file.name
{item.list / item.id.selection.criterial
{USING {DICT} file.name}
{data.definition.item.selection.criteria}
{sort.criteria}
{output.criteria}

The output of the SSELECT verb is the same as the SELECT verb, with the
exception of the order.

RELEASE COPY
Spectrum Manufacturers Association

January 1988 Page 18

SMA:401
SMA/RETRIEVAL LANGUAGE SPECIFICATION

4.5 COUNT Verb:

DRAFT 3.5

The SMA/Retrieval language verb, COUNT, will count the number of
items in a file meeting the criteria as specified by the combination of
item.list and/or selection.criteria.

The COUNT verb has the following form:

COUNT {file.modifiers} file.name
{item.list / item.id.selection.criteria}
{USING {DICT} file.name}
{data.definition.item.selection.criteria}
{(option, •••)}

A message is displayed showing the number of those items meeting the
specifications of the item. list and/or the selection.criteria if
present. If neither are specified, then the number displayed is the
number of items in the specified file.

4.6 SUM Verb:
The SMA/Retrieval language verb, SUM, will generate the sum of the

data elements of the items specified by the selection.criteria.

The SUM verb has the following form:

SUM {file.modifiers} file.name
{item.list / item.id.selection.criteria}
{USING {DICT} file. name}
{data.definition.item.selection.criteria}
data.definition.item
{(option, •••)}

The output produced by the SUM verb includes the output title for the
data.definition.item and the computed total.

RELEASE COpy
Spectrum Manufacturers Association

January 1988 Page 19

SMA:401
SMA/RETRIEVAL LANGUAGE SPECIFICATION DRAFT 3.5

4.7 STAT Verb:
The SMA/Retrieval language verb, STAT, generates a set of

statistics for data elements in the items of a file.

The STAT verb has the following form:

STAT {file.modifiers} file.name
{item.list / item.id.selection.criteria}
{USING {DICT} file.name}
{data.definition.item.selection.criteria}
data.definition.item
{(option, •••)}

The output of the STAT verb includes the output title for the
data.definition.item, the generated sum of all data elements, the
average of the data elements (total divided by count), and the number
of items used in the generation of the statistics.

4.8 Reformat Verbs:
The SMA/Retrieval Language verbs, REFORMAT and SREFORMAT, are

equivalent to the LIST and SORT verbs, except that the output is
directed to another file or to tape, instead of a terminal or printer.

The REFORMAT and SREFORMAT verbs have the following forms:

REFORMAT

SREFORMAT

{file.modifiers} file.name
{item.list / item.id.selection.criteria}
{USING {DICT} file.name}
{data.definition.item.selection.criteria}
{output.criteria{print.limiters}}
{modifiers}{{option, •••)}

•••• and ••••

{file.modifiers} file.name
{item.list / item.id.selection.criteria}
{USING {DICT} file.name}
{data.definition.item.selection.criteria}
{sort.criteria}
{output.criteria{print.limiters}}
{modifiers}{(option, •••)}

After the REFORMAT or SREFORMAT sentence is entered, the system will
prompt for:

FILE NAME:

The name of the file where the output is to be stored, or the word
'TAPE' if the output is to go to tape, must be entered.

RELEASE COpy
Spectrum Manufacturers Association

January 1988 Page 20

J

J

SMA:40l
SMA/RETRIEVAL LANGUAGE SPECIFICATION

4.8.1 Reformatting To Another File:

DRAFT 3.5

When reformatting into another file, the first value specified in
the output.criteria is used as the item-id for the item, and the
remaining values in the output.criteria are attributes in the item.
Each item selected becomes an item in the new file.

4.8.2 Reformatting To The Same File:
When reformatting to the same file, the first value specified in

the output.critera is used as th~item-id for the item, and the
remaining values in the output.criteria are attributes in the item.
Each item selected becomes an additional item in the file. On a
REFORMAT of a file onto itself, an implicit or explicit item list must
be defined: otherwise, an infinite loop in which items are added to the
file may occur.

4.8.3 Reformatting To Tape:
When reformatting a file to tape, the values specified in the

output.criteria are concatenated together to form one tape record for
each item that is selected. The record output is either truncated or
padded at the end with nulls (hex '00's) to obtain a record the same
length as specified by the last T-ATT verb.

~ tape label which contains the file name, tape record length (in hex),
the time and date, is written on the tape first, unless the HDR-SUPP or
COL-HDR-SUPP modifiers or the options H or C are specified. Two
End-Of-File marks (EOF's) terminate the file on tape. The item-id's
will be displayed as the items are dumped unless the ID-SUPP modifier
or the I option is specified.

4.8.4 Reformatting with an Exploding Sort Connective:
If an Exploding Sort Connective is used for the first

data.definition.item specified in the output.criteria, then an item is
created in the new file for each exploded entry. The remaining
output.criteria attributes are repeated for each exploded entry.

RELEASE COPY
Spectrum Manufacturers Association

January 1988 Page 21

SMA:40l
SMA/RETRIEVAL LANGUAGE SPECIFICATION

4.9 Label Verbs:

DRAFT 3.5

The SMA/Retrieval Language verbs, LIST-LABEL and SORT-LABEL, are
used for printing mailing labels or other special purpose listings.

Functionally, the LIST-LABEL and SORT-LABEL verbs are almost identical
to the LIST and SORT verbs, except that the data associated with each
item is grouped into a block by the LIST-LABEL and SORT-LABEL verbs,
and several blocks can be placed across each page of a listing.

The LIST-LABEL and SORT-LABEL verbs have the following forms:

LIST-LABEL {file.modifiers} file.name
{item.list / item.id.selection.criteria}
{USING {DICT} file.name}
{data.definition.item.selection.criteria}
{output.criteria{print.limiters}}
{modifiers}{(option, •••)}

•••• and ••••

SORT-LABEL {file.modifiers} file.name
{item.list / item.id.selection.criteria}
{USING {DICT} file.name}
{data.definition.item.selection.criteria}
{sort.criteria}
{output.criteria{print.limiters}}
{modifiers}{(option, •••)}

After the sentence is entered, an additional set of parameters is
prompted for with a question mark (?) until a null line of data ([CR])
is entered. The first additional parameter must be entered and has the
following format:

?count,row,skip,indent,size,space{,C}

These parameters determine the arrangement of attribute values into
blocks and are entered in the following format:

Parameters

count

rows

skip

RELEASE COPY

Meaning

The number of items (labels) across
each page.

The number of lines printed for each
label (height of each label, in ••• rows)

The number of lines to skip between
labels (vertical spacing between
labels, in rows)

Spectrum Manufacturers Association
January 1988 Page 22

~.

SMA:40l
SMA/RETRIEVAL LANGUAGE SPECIFICATION DRAFT 3.5

4.9 Label Verbs (continued):

Parameters

indent

size

$pace

C

Meaning

The number of spaces to indent the
the data from the left margin.

The maximum width permitted for the
data associated with each attribute
name (width of each label, in
columns)

The number of horizontal spaces
between labels in columns

Optional: if present, specifies that
null attributes are not to be
printed. If the C is not specified,
null values will be printed as all
blanks.

The values must conform to the following range:

(count * size) + «count-I) * space) + indent <= (page width)

where 'page width' is the number defined for the output device
(terminal or spooler).

Otherwise the system will respond with an error message indicating that
an invalid numeric parameter was entered.

The normal non-columnar list heading (page number, time and date) will
print on the top of each page unless suppressed by the COL-HDR-SUPP
modifier or (C) option. If headings are suppressed, pagination and all
top-of-forms are suppressed, then a continuous forms structure without
page breaks is produced.

A set of row header data lines will be requested, immediately following
the first parameter request, if the 'indent' parameter is non-zero. The
parameter 'rows' specifies how many row headers will be requested
because one row header is printed for each row of the label. The row
headers will be printed in the 'indent' area of the left-hand margin.
Null headers may be specified by entering null lines ([CR]) to the
header data requests.

RELEASE COPY
Spectrum Manufacturers Association

January 1988 Page 23

SMA:401
SMA/RETRIEVAL LANGUAGE SPECIFICATION DRAFT 3.5

4.10 Item Listing Verbs: ~
The SMA/Retrieval language verbs, LIST-ITEM and SORT-ITEM, copy a

complete item to the terminal or spooler.

The LIST-ITEM and SORT-ITEM verbs have the following forms:

LIST-ITEM

SORT-ITEM

{file. modifiers} file.name
{item.list / item.id.selection.criteria}
{USING {DICT} file.name}
{data.definition.item.selection.criteri~}
{modifiers}{(option, •••)}

•••• and ••••

{file.modifiers} file.name
{item.list / item.id.selection.criteria}
{USING {DICT} file.name}
{data.definition.item.selection.criteria}
{sort.criteria}
{modifiers}{(option, •••)}

The data from each attribute in the item, with a three digit number in
the left margin, is copied to the terminal or spooler.

The permissible LIST-ITEM and SORT-ITEM verb options are:

Option

F

N

P

S

Meaning

Causes a Form-Feed for each item. Starts a new
page for each item.

Inhibits the pause at the end of each page
when the output is to the terminal (NOPAGE).

Sends the output to the spooler (LPTR).

Suppresses the three digit line number in the
left margin.

The equivalent modifiers for the options are shown in parentheses
above.

RELEASE COPY
Spectrum Manufacturers Association

January 1988 Page 24

SMA:401
SMA/RETRIEVAL LANGUAGE SPECIFICATION

4.11 FILE-TEST Verb:

DRAFT 3.5

The SMA/Retrieval language verb, FILE-TEST, provides a means of
generating statistics for a specified file, or testing a new
configuration for a specified file.

The FILE-TEST verb has the following form:

FILE-TEST {file.modifiers} file.name
{item.list / item.id.selection.criteria}
{USING {DICT} file.name}
{data.definition.item.selection.criteria}
{modifiers}{(option, •••)}

where 'file.name' is the name of the file for which statistics are to
be generated.

After the FILE-TEST sentence has been entered, the system may prompt
for one or more parameters which may be used to define an alternate
configuration for the file. If a null return is supplied to the
prompt, then the current file configuration parameters will be used.

The statistics that are generated for the selected items will include:
the count of items, the total number of bytes in all the items, and the
average number of bytes per item. In addition there may be statistics
relevant to the structure of the specified file. This structural
information may be presented in different ways, as in the case of a
hashing structure with the histogram, the average number of items per
group and standard deviation, and the average number of bytes per
group.

If no 'item.list' or 'select.criteria' are specified, then all the
items in the file will be used for generating the statistics.

The option (S) causes the detail information to be suppressed, and only
the statistical data to be printed.

RELEASE COpy
Spectrum Manufacturers Association

January 1988 Page 25

SMA:401
SMA/RETRIEVAL LANGUAGE SPECIFICATION DRAFT 3.5

4.12 CHECK-SUM Verb:
The CHECK-SUM verb generates a checksum fQr file items.

The CHECK-SUM verb has the following form:

CHECK-SUM {file.modifiers} file.name
{item.list / item.id.selection.criteria}
{USING {DICT} file.name}
{data.definition.item.selection.criteria}
{data.definition.item}
{(option, •••)}

The checksum is calculated as an arithmetic total, disregarding
overflow, of all the bytes in the selected data elements. If a
data.definition.item is specified, then only the values of the
specified data elements will be used in the calculation.

The result is presented in a message indicating the number of items
checked and the checksum calculated.

RELEASE COPY
Spectrum Manufacturers Association

January 1988 Page 26

J

SMA:401
SMA/RETRIEVAL LANGUAGE SPECIFICATION

4.13 Tape Verbs And The Tape Modifier:

DRAFT 3.5

The SMA/Retrieval language verbs, T-DUMP and T-LOAD, provide the
facility to write the items of a specified file to tape, or to load
items into a specified file from a previously generated T-DUMP tape.
The TAPE modifier may be used with other SMA/Retrieval language verbs
to access data from a T-DUMP tape.

4.13.1 Tape Dumping Verbs:
The T-DUMP verb will dump the specified items from a specified

file to tape. The S-DUMP verb will also dump specified items from a
file to tape, except that the items will be sorted before they are
dumped. The tape drive must be first attached to the users account via
the T-ATT command. The T-ATT command is also used to set the record
length to be used by the T-DUMP or S-DUMP verb.

The T-DUMP and S-DUMP verbs has the following form:

T-DUMP

and

S-DUMP

{file.modifiers} file.name
{item.list / item.id.selection.criteria}
{USING {DICT} file.name}
{data.definition.item.selection.criteria}
{HEADING "text"}
{modifiers}{(option, •••)}

{file. modifiers} file.name
{item.list / item.id.selection.criteria}
{USING {DICT} file.name}
{data.definition.item.selection.criteria}
{HEADING "text"}
{sort.criteria}
{modifiers}{(option, •••)}

T-DUMP and S-DUMP cause a standard tape label to be written on the
tape. If the optional HEADING modifier and 'text' are specified, the
'text' is added to the label. See SMA:201 the SMA/Data Interchange
Standard.

If the optional file.modifier 'DIeT' is specified, the dictionary
section of the specified file will be dumped with the exception of File
Definition Items. A File Mark indicator is written on the tape at the
end of the dump.

The HDR-SUPP modifier or (H) option may be used to suppress the writing
of the tape label.

The ID-SUPP modifier or (I) option may be used to suppress the listing
of item-ids that are dumped.

A message is displayed when the dump is finished indicating the number
of specified items dumped to tape.

RELEASE COpy
Spectrum Manufacturers Association

January 1988 Page 27

SMA:40l
SMA/RETRIEVAL LANGUAGE SPECIFICATION DRAFT 3.5

4.13.2 T-LOAD Verb: ~
The T-LOAD verb loads the specified items into a specified file.

The tape must be attached before the T-LOAD verb is used.

The T-LOAD verb has the following form:

T-LOAD {file.modifiers} file.name
{item.list / item.id.selection.criteria}
{USING {DICT} file.name}
{data.definition.item.selection.criteria}
{modifiers}{(option, •••)}

The T-LOAD verb will read the SMA standard tape label if present and
setup the tape record length from the label. If the tape is unlabeled
or has a non-standard label, the record length must be set using the
T-ATT verb.

The items, as restricted by the item. list or the selection.criteria,
are loaded into the specified file if they do not exist in the file.
The (0) option will permit the overwriting of items that exist in the
file. If the item exists in the file and the (0) option was not
specified, a message is displayed indicating the item-id of the item
that exists on the file.

Any items existing in the file and not existing on the tape will be
maintained.

Specifying the ID-SUPP modifier or the (I) option will suppress the
listing of the item-ids during the loading of the specified file.

A message which indicates the number of items loaded will be displayed
when the specified file has been loaded.

4.13.3 TAPE Modifier:
The TAPE modifier can be used to read data from a T-DUMP tape

rather than the data portion of the specified file. The TAPE modifier
can only be used with the verbs: LIST, LIST-LABEL, LIST-ITEM, SUM,
STAT, FILE-TEST, or COUNT. The dictionary of the specified file will be
used for the specified dictionary.definition.items.

RELEASE COPY
Spectrum Man"ufacturers Association

January 1988 Page 28

SMA:401
SMA/RETRIEVAL LANGUAGE SPECIFICATION ,

4.14 List File Handling Verbs:

DRAFT 3.5

The SMA/Retrieval language provides a set of verbs for the saving,
editing, copying, retrieving, forming, and deleting selected
item. lists.

4.14.1 SAVE-LIST Verb:
The verb, SAVE-LIST, makes a stored item.list from a temporary

implicit-list produced by the SELECT, SSELECT, and FORM-LIST verbs.

The SAVE-LIST verb has the following form:

SAVE-LIST {{DICT} file.name} list.name

The SAVE-LIST verb saves the temporary implicit-list and adds or
updates the pointer to· the list in the file POINTER-FILE, if file.name
is not specified, with an item-id of list.name.

If file.name is specified, the list's pointer will be added or updated
in the specified file. The file definition item of the specified file
must declare that the file can hold indirect data pointers.

An existing stored list with the same name will be overlaid by the
newly stored list.

The SAVE-LIST verb displays a message showing the list.name and the
number of frames used to store the list.

The SAVE-LIST verb must be issued immediately after the creation of a
temporary implicit-list in order to create a stored list.

4.14.2 GET-LIST Verb:
The verb, GET-LIST, retrieves a previously stored list and forms a

temporary implicit-list.

The GET-LIST verb has the following form:

GET-LIST {{DIeT} file.name} list.name

The list.name specifies which stored list is to be retrieved. If
file.name is specified, the list is retrieved from the specified file.
The POINTER-FILE is used if file.name is not specified.

If the specified item 'list.name' does not exist, a message indi~ating
such is produced. If the item is found, a message is displayed showing
the number of entries in the list and the temporary implicit-list is
available for use.

RELEASE COPY
Spectrum Manufacturers Association

January 1988 Page 29

SMA:401
SMA/RETRIEVAL LANGUAGE SPECIFICATION

4.14.3 DELETE-LIST Verb:

DRAFT 3.5

The verb, DELETE-LIST, deletes a stored item.list.

The DELETE-LIST verb has the following form:

DELETE-LIST {{DICT} file.name} list.name

The list.name specifies the stored list to be deleted. If the item does
not exist, a message indicating such is produced.

If the item is found, a message is displayed stating that the list was
deleted.

The POINTER-FILE is used if file.name is not specified.

4.14.4 FORM-LIST Verb:
The verb, FORM-LIST, will generate a temporary implicit-list from

attribute(s) within an item or items in a file.

The FORM-LIST verb has the following form:

FORM-LIST {DICT} file.name {item.list} {en)}
o

where the data is taken from the item(s) in the specified file. The
item.list can be implicit, explicit, or an asterisk (*1 specifying all
items. All data from the items are stored in a temporary implicit-list . ~
unless the optional (n) specification is used: in which case, only data
from the n-th attribute of each item is used. Multi-values or
sub-values are stored as separate elements in the implicit-list.

A message indicating the number of list entries formed is displayed at
the conclusion of the process.

RELEASE COPY
Spectrum Manufacturers Association

January 1988 Page 30

SMA:401
SMA/RETRIEVAL LANGUAGE SPECIFICATION

RELEASE COPY

THIS IS THE LAST PAGE

Spectrum Manufacturers Association
January 1988

DRAFT 3.5

Page 31

J

J

SMA STANDARD

SMA/PRoe
Language

Spec ification

SMA: 501
March 1987

SPECTRUM sma MANUFACTURERS
ASSOCIATION

SMA:S0l
SMA/PROC LANGUAGE SPECIFICATION DRAFT 2.5

NOTICE

SMA standards are designed to serve the public interest through
eliminating misunderstandings between manufacturers and
purchasers, facilitating interchangeability and improvement of
products, and assisting the purchaser in selecting and obtaining,
with minimum delay, the proper product for his particular need.

Some material contained herein is designated as proprietary by
individual member companies of SMA listed below. Any unauthorized
use of such proprietary information is prohibited.

. .
Copyright Automatic Data Processing, Inc., Altos Computer, Applied
Digital Data Systems, CDI Information Systems, CIE Systems, Inc.,
Datamedia Corporation, Fujitsu Micro Systems of America, General
Automation, Inc., I. N. Informatique, McDonnell Douglas Computer
Systems Company, Nixdorf Computer Corporation, Per tee Computer
Corporation, Pick Systems, Prime Computer, Inc., The Ultimate
Corp., Wicat Systems.

(c) 1987

Copyright Spectrum Manufacturers Association
(c) 1987

RELEASE COPY

Published by
SPECTRUM MANUFACTURERS ASSOCIATION

9740 Appaloosa Rd., Suite 104
San Diego, CA 92131

Spectrum Manufacturers Association
March 1987

SMA:501
SMA/PROC LANGUAGE SPECIFICATION DRAFT 2.5

Foreword: This document provides a set of syntax definitions
for the SMA/PROC language. This language, provided by most
Spectrum Manufacturers Association member systems, is used
primarily for job control. It provides a method of linking
individual jobs together as a stored procedure. This document is
intended to serve as a guide to the preparation of PROCs that can
be moved from one SMA system to another. For the details on any
specific system, the user should refer to the manufacturer's
reference manual.

RELEASE COPY
Spectrum Manufacturers Association

March 1987

SMA:50l
SMA/PROC LANGUAGE SPECIFICATION DRAFT 2.5

The SMA Executive Board wishes to thank the following
individuls and organizations for their contributions in the
preparation of this document:

I. Sandler,
H. Eggers,
J. Timmons,
C. Wilson,
C. Saunders,

CIE Systems
Mcdonnell Douglas Computer Systems Co.
Laguna Software & Consulting, Inc.
General Automation, Inc.
Fujitsu Microsystems of America, Inc.

RELEASE COPY
Spectrum Manufacturers Association

March 1987

1.0
1.1
1.2
1.3

2.0
2.1
2.2

3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.0
4.1
4.2
4.3
4.4
4.5
4~6

4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28

SMA:501
SMA/PROC LANGUAGE SPECIFICATION

CONTENTS

Scope
Implementation Objectives
Inclusions
Exclusions

Definitions
Nomenclature
Structural Terms

Overview
Concepts
Execution
Structure
PROC Buffers
Parameter Manipulation
Active Buffer Pointer
Parameter Pointers

Statement Syntax Definitions
A Move Parameter

DRAFT 2.5

B Backup The Current Input Pointer
BO Backup The Current Output Pointer
C Comment
D Display Buffers
F Forward The'Current Input Pointer
G Go To A Specific Label
H Hold Text In Output Buffer
IF Conditional Test
IH Hold Text In Input Buffer
IP Input Data To Primary Input Buffer
IS Input Data To Secondary Input Buffer
IT Input Tape Label To Primary Input Buffer
o Output Text To Screen
P Perform Current Command
RI Reset Input Buffer
RO Reset Output Buffer
S Set position Of Input Pointer
SP Select Primary Input Buffer
SS Select Secondary Input Buffer
STON Stack On
STOFF Stack Off
T Formatted Terminal Output
X Exit From The PROC
(Transfer Control Jump
[Transfer Control Subroutine
+n Add To Current Parameter
-n Subtract From Current Parameter

RELEASE COPY
Spectrum Manufacturers Association

March 1987

1
1
1

2
2

4
4
4
4
5
5
5

6
7
7
7
7
8
8
8
9

10
11
11
11
11
12
13
13
13
13
13
13
13
14
14
15
15
15
15

SMA:501
SMA/PROC LANGUAGE SPECIFICATION DRAFT 2.5

RELEASE COPY

THIS PAGE INTENTIONALLY "LEFT BLANK

Spectrum Manufacturers Association
March 1987

SMA:501
SMA/PROC LANGUAGE SPECIFICATION

1.0 Scope

DRAFT 2.5

1.1 Implementation Objectives: It is the objective of this
document to provide the user with a defined set of the language to
enable the preparation of stored procedures that can be moved from
one system to another with maximum portability.

1.2 Inclusions: This document includes all the commonly
available statements with syntactical representations to clearly
define the usage permitted with each. It also includes sufficient
"run time" considerations to meet its objective of inter-machine
portability.

1.3 Exclusions: In this version of this document, the
syntactical aspects of the language are addr&ssed, together with
some common "run time" considerations. There are issues of the
treatment of certain statements by the "run time" support in
various systems that will be addressed by future versions of this
document. Although many systems support 'user' exits in the
language, they are not considered in the scope of this
specification.

RELEASE COpy
Spectrum Manufacturers Association

March 1987 Page 1

SMA:501
SMA/PROC LANGUAGE SPECIFICATION DRAFT 2.5

2.0 Definitions:

2.1 Nomenclature: Within this document, capitalized words
represent tokens within the language and must be included as
shown. The use of parentheses and bracket~ are explicit within
the language, and must be considered part of the statement. The
use of double quotes or single quotes is also specific in the
language, and must be considered part of the statement.

2.2 Structural Terms:

Item-Id - A character string (maximum 48 characters) which
uniquely identifies an item within a file. The item-id
may include any characters except system delimiters,
however the use of blanks, single quotes, quotes,
commas, and backslash characters may require special
considerations.

Item Body - The variable length character structure which makes up
the information content of the item. It is composed of
any number of attributes, values, and subvalues. A
segment mark is used to mark the end of the structure.

lOP -

SM -

AM -

VM -

Indirect Data Pointer: Special type of item body that
locates the data stored separately from the item body.
Used to store non-character structures such as programs,
as well as other extended structures.

Segment Mark: Delimiter character used to mark the end
of an item body. It is represented graphically by an
underscore. A segment mark may not be included within
data.

Attribute Mark: Delimiter character used to mark the
end of an attribute. It is represented graphically by
an up-arrow. The last AM in an item is implied by the
presence of a segment mark.

Value Mark: Delimiter character used to mark the end of
a value. It is represented graphically by a right
bracket. The last VM in an attribute is implied by an
attribute or segment mark.

RELEASE COPY
Spectrum Manufacturers Association

March 1987 Page 2

SMA:501
SMA/PROC LANGUAGE SPECIFICATION DRAFT 2.5

2.2 Structural Terms (continued):

SVM -

8M -

AMC -

VMC -

SVMC -

Subvalue Mark: Delimiter character used to mark the end
of a subvalue. It is represented graphically by a
backslash. The last SVM in a value is implied by a
value, attribute, or segment mark.

Buffer Mark: Delimiter character used to mark the
beginning or ending of special character strings. It is
represerited graphically by a left bracket.

Attribute Mark Count: The positional count, from I,
that locates a specific attribute within the body of an
item. An AMC value of zero is used to locate the
item-ide

Value Mark Count: The positional count, from 1, that
locates a specific value within a multivalued attribute.

Subvalue Mark Count: The positional count, from 1 that
locates a specific subvalue within a multisubvalued
structure.

RELEASE COpy
spectrum Manufacturers Association

March 1987 Page 3

SMA:501
SMA/PROC LANGUAGE SPECIFICATION

3.0 Overview:

3.1 Concepts:

DRAFT 2.5

PROC provides the applications programmer a means to catalog
a sequence of operations which can be invoked from the terminal by
a one word command. Any operation that can be executed by the
Terminal Control Language (TCL) can be performed in a PROC.

3.2 Execution:
A PROC stored as an item in the user's master dictionary is

executed by typing in at the keyboard the name of the PROC,
followed by any parameters, followed by a carriage-return.

3.3 Structure:
A PROC is stored as an item in a file. The first attribute

of the PROC is always the two character literal "PQ". All
subsequent lines of the PROC contain PROC statements which serve
to generate TCL commands, pass parameters to other processes,
control branching within the PROC, or manipulate the buffers used
by the PROC processor. PROC statements consist of an optional
unsigned integer label (used to uniquely identify its associated
command for purposes of branching or looping within the PROC)
followed by a space, and a one or two character command, together
with optional arguments. PROC statements are executed
interpretively by the PROC processor. Once a PROC, is invoked, it
remains in control until it is exited, even though it may
temporarily' relinquish control to another processor to execute a
specific command.

Only one PROC statement may be defined per line. Although the IF
statements appear to allow more than one, the additional
statements are part of the IF structure. A PROC statement, which
does not have a label, must not contain leading spaces.

3.4 PROC Buffers:
The PROC processor uses four buffers, two for input and two

for output. These are known as the Primary Input Buffer,
Secondary Input Buffer, Primary Output Buffer and Secondary Output
Buffer respectively.

The Primary Input Buffer initially contains the data which invoked
the PROC.

The Secondary Input Buffer is a volatile temporary workspace,
usually used for temporary storage of input data. It is used to
receive the error message number or numbers resulting from the
prior TCL command.

RELEASE COPY
Spectrum Manufacturers Association

March 1987 Page 4

SMA:50l
SMA/PROC LANGUAGE SPECIFICATION

3.4 PROC Buffers (continued):

DRAFT 2.5

The Primary Output Buffer is initally empty. It stores the
command which is normally passed to the TCL processor for
execution.

The Secondary qutput Buffer (Stack) is initially empty. It stores
any parameter strings required by the command stored in the
Primary Output Buffer. Each request for terminal input by the
invoked TCL command is satisfied by the parameter set from the
Secondary Output Buffer. .In the event that the called process
requires more parameter strings than are present in this buffer,
the data is requested from the terminal from that point onwards.
Note that each parameter string in the Secondary Output Buffer
must be explicitly terminated, with the exception of the last
string, where the terminator is assumed if it does not explicitly
exist.

3.5 Parameter Manipulation:
Moving data between the various PROC buffers is done in terms

of "parameters". A parameter is defined as a string of characters
(residing in one of the buffers), which is surrounded by blanks,
single quotes, or double quotes. Missing parameters are either
beyond the buffer or ar~ represented by a backslash.

3.6 Active Buffer Pointer:
Two pointers are maintained that identify which buffer is

active, the primary or the secondary. The active buffer pointer
for the input buffers is initially set to the primary input buffer
and the active buffer pointer for the output buffers is also
initially set to the primary output buffer.

3.7 Parameter Pointers:
To keep track of the parameters in the buffers, there is an

input pointer and an output pointer which maintain the current
position in the currently active buffers. The parameter pointers
are initially set to the first parameter in each of the two
buffers.

RELEASE COpy
Spectrum Manufacturers Association

March 1987 Page 5

SMA:501
SMA/PROC LANGUAGE SPECIFICATION DRAFT 2.5

4.0 Statement Syntax Definitions:

4.1 A

RELEASE COPY

Move Parameter: The general form of this command
moves one parameter from the current input buffer to
the current output buffer, starting at the current
pointer positions of those buffers. This command may
use one or more of the following optional parameters:

A{s}{n}{,m}

"s" is a surround character which can be any
non-alphabetic, non-numeric character. Surround
characters only apply to the primary output buffer.
They are ignored when transferring parameters to the
secondary output buffer. If no surround character is
specified when transferring a string to the primary
output buffer, a space is used as the default surround
character.

Multiple elements within a parameter may be
constructed by separating the elements with
semi-colons. Upon recognition of the semi-colon, the
pr~vious element will be completed by the designated
surround character and the following element will be
opened by the surround character.

Frequently used versions of this parameter are:

AI will surrouDd the data with single quotes (I)
when it moves it to the primary output buffer.

A" will surround the data with double quotes (")
when it moves it to the primary output buffer.

A\ will use no surround characters when it moves
the data to the primary output buffer.

"n" and "m" must be unsigned integers, and have
different meanings, depending on whether or not they
appear singly or together.

An will select the current input buffer and
reposition the input buffer pointer to the start
of parameter "n" prior to transfering the
parameter.

Spectrum Manufacturers Association
March 1987 Page 6

4.1 A

4.2 B

4.3 BO

4.4 C

4.5 o

SMA:501
SMA/PROC LANGUAGE SPECIFICATION

Move Parameter (continued):

DRAFT 2.5

A,m will move "m" characters (or until the end of
input buffer is reached if that is less) from
the input buffer to the output buffer. This
will result in more than one parameter being
moved if "m" is larger than the length of the
parameter currently located by the pointer.

An,m will move "m" characters from the input buffer
to the output buffer starting at parameter Un".

A(n,m) will move "m" characters from the input buffer
to the output buffer starting at character Un".
Thus A(I,9999) will transfer the entire input
buffer to the output buffer (assuming there are
9999 or less characters in the input buffer).

After execution both the input and output pointers are
left pointing one character after the last character
transferred.

Backup The Current Input Pointer: This command will
backup the current input buffer pointer to the start
of the previous parameter unless it is already at the
start of the buffer when it will have no effect.

Backup The Current Output Pointer: This command will
backup the current output pointer to the start of the
previous parameter unless it is already at the start
of the buffer when it will have no effect.

Comment: Any text following this command is treated
as a comment and is ignored by the PROC processor.

Display Buffers: The general form of this command
displays on the terminal parameters from the current
input buffer, without affecting the position of any of
the buffer pointers. This command may take one or
more of the following options:

D{n}{,m}{+}

_Un" and "m" must be unsigned integers, and have
different meanings, depending on whether or not they
appear singly or together. If the "0" command is
terminated with a plus sign, no carriage-return/line­
feed is output afte~ the display.

o will display the current parameter.

RELEASE COPY
Spectrum ManUfacturers Association

March 1987 Page 7

4.5 D

4.6 F

4.7 G

4.8 H

SMA:50l
SMA/PROC LANGUAGE SPECIFICATION

Display Buffers (continued):

DRAFT 2.5

Dn will display parameter "n" of the current input
buffer rather than the current input parameter.
The case of n=0 is a special case which displays
the entire input buffer.

D,m will display "m" characters, starting at the
current input buffer position. This may result
in more than one parameter being displayed.

Dn,m will display "m" characters, starting at
parameter "n" of the input buffer.

D(n,m) will display "m" characters, sta~tjng at column
"n" of the input buffer. Thus D(l,9999) will
display the entire input buffer (assuming there
are 9999 or less characters in the input
buffer).

Forward The Current Input Pointer: This command will
move the current input buffer pointer forward to the
start of the next parameter unless it is already at
the end of the buffer when it will have no effect.

Go To A Specific Label~ This command will transfer
control within the PROC to the line with the specified
integer label. The general form of this command is:

G label
GO label
G An
GO An

The form "G An" or "GO An" may be used to go to a
label supplied as a parameter in the primary input
buffer. If the label supplied does not exist in the
PROC, then execution will continue with the line
following the Go command.

Place Text In Output Buffer: This command will cause·
the text immediately following the "H" (including any
blanks) to be copied to the current output buffer,
starting at the position pointed to by the output
pointer for that buffer. Note that each parameter
string in the Secondary Output Buffer must be
explicitly terminated with a less than «) character,
with the e~ception of the last where the terminator is
assumed. The use of two less than characters, as
termination, provides for line continuation of the
secondary buffer.

RELEASE COPY
Spe~trum Manufacturers Association

March 1987 Page 8

4.9 IF

SMA:501
SMA/PROC LANGUAGE SPECIFICATION DRAFT 2.5

Conditional Test: This command provides a method of
testing and validating parameters in the current input
buffer.

The following variants of this command refer to the
forms of the "A" command documented in section 4.1.
Note that only those forms of the "A" command which
determine the position of the input buffer pointer
(A{n}{,m}) are acceptable here, and that the input
pointer is not changed by the "IF" command.

There are five distinct forms of this statement:

4.9.1 IF Conditional Test - Form 1:

IF A{n}{,m} PROC.cmd
IF #A{n}{,m} PROC.cmd

This form will test if there are any characters in the
string specified by A{n}{,m}, and execute PROC.cmd if
the test is satisfied.

Note that missing parameters, which are represented by
a backslash,' will test true.

4.9.2 IF Conditional Test - Form 2:

RELEASE COpy

IF A{n}{,m} operator string PROC.cmd

This form will test the string specified by A{n}{,m}
against the specified string of characters, and execute
PROC.cmd if the test is satisfied.

Valid operators are:

= Test for equal values
Test for unequal values
< Test if parameter is less than string
[Test if parameter is less than or equals string
> Test if parameter is greater than string
] Test if parameter is greater or equals string

Note that the above tests are on a character by
character basis only. Thus numeric strings with
leading zeros will not test the same as numerics
without the leading zeroes.

Spectrum Manufacturers Association
March 1987 Page 9

SMA:501
SMA/PROC LANGUAGE SPECIFICATION DRAFT 2.5

4.9.3 IF Conditional Test - Form 3:

IF A{n}{,m} operator (format.string) PROC.cmd

This form will test the string specified by A{n}{,m}
against the specified format. string, and execute
correct format.

The format.string can be any combination of:

nN - test for "n" numeric characters
nA - test for "n" alphabetic characters
nX - test for "n" characters

any other characters found in the string will be
assumed to be literals and will be tested for as such.
If "n" is zero, all characters which satisfy the test
will be skipped. Literals appearing in any of the
forms listed above may be enclosed in single quotes to
insure they will be processed as literals.

4.9.4 IF Conditional Test - Form 4:

IF E PROC.cmd
IF "#E PROC.cmd
IF E=value PROC.cmd
IF E#value PROC.cmd

This form will test the error message number returned
by the immediately previous operation and execute
PROC.cmd if the test is satisfied.

4.9.5 IF Conditional Test Form 5:

4.10 IH

RELEASE COpy

IF S PROC.cmd
IF #S PROC.cmd

This form will test if a select list is currently
active and execute PROC.cmd if the test is satisfied.

Place Text In Input Buffer: This command causes the line
of text immediately following the "IH" (including any
blanks) to replace the current parameter in the current
input buffer. The input buffer pointer continues to point
to the beginning of the replaced string after execution of
the command. The form "IH\" replaces the current
parameter with a backslash which is used, by convention,
to indicate a missing parameter.

Spectrum Manufacturers Association
March 1987 Page 10

4.11 IP

4.12 IS

4.13 IT

4.14 0

SMA:501
SMA/PROC LANGUAGE SPECIFICATION DRAFT 2.5

Input Data To Primary Input Buffer: This command causes
the PROC processor to prompt for input at the terminal.
Data entered by the user replaces the current parameter of
the primary input buffer. If the pointer is at the end ,of
the input buffer, the data is appended to the buffer.
After execution of this command, the pointer points to the
start of the newly entered parameter. The general form of
the command is:

IP{B}{p}

The "B" option with this command converts embedded spaces
in the input data into backslashes (\).

The "ph option, if used, changes the default prompt
character of ~olon (:) to the character specified.

Input Data To Secondary Input Buffer: This command causes
the PROC processor to prompt for input at the terminal.
This buffer is affected by many operations and must be
used carefully. The general form of this command is:

IS{p}

The "ph option, .if used, changes the default prompt
character of colon (:) to the character specified.

Input Tape Label to Primary Input Buffer: This command
causes the PROC processor to read the tape label from the
attached tape and copy the label into the cleared primary
input buffer. The general form of this command is:

IT

If no tape label exists, then both input buffers are
cleared as with the "RI" command.

Output Text To Scree~: The string of characters
immediately following the command are output to the
terminal followed by a carriage-return and line-feed. The
carriage-return and line-feed are suppressed if the last
character of the string is a plus sign (+).

RELEASE COPY
Spectrum Manufacturers Association

March 1987 Page 11

4.15 P

SMA:5fl11
SMA/PROC LANGUAGE SPECIFICATION DRAFT 2.5

Perform Current Command: This command executes the
current contents of the primary output buffer as though it
had been entered at the terminal. After execution PROC
regains control at the statement immediately following the
"PH command. If the command being executed requires
further operator input, it will obtain it from the
secondary output buffer, and only prompt for input at the
terminal if ·the secondary output buffer has been
exhausted. Excess parameters in the secondary output
buffer are discarded. This command has the following
general form:

P{H} {p} {W} {x}

H 'will hush all output to the terminal for the command
being executed.

P will display the current contents of the PROC output
buffers before executing the command.

W will display the current contents of the PROC output
buffers and wait for input. If the letter "S" is
entered, the current command is skipped. If the letter
"X" is entered PROC execution is aborted. A carriage
return or the letter Ny" input will cause execution to'\
continue normally. ~

X will cause the system to not return to the PROC after.
it has processed the specified command.

Note: The "PH command causes the input buffer pointer to be
positioned at the start of the primary input buffer. The
secondary input buffer will contain error message numbers
output by the processed command. The output buffers will
be initialized.

If the command in the output buffer is a PROC, then the
newly activated PROC will be entered with the primary
input containing the character string from the output
buffer of the PROC that issued the "PH command. All other
buffers are initialized. Control will NOT return to the
original PROC.

RELEASE COPY
spectrum Manufacturers Association

March 1987 Page 12

4.16 RI

4.17 RO

4.18 S

SMA:S01
SMA/PROC LANGUAGE SPECIFICATION DRAFT2.S

Reset Input Buffer: This command resets both the primary
and secondary input buffers to an empty or null condition.

The general form of the command is:

RI{n}

• "n", if specified, will reset the primary input buffer so
that only parameters 1 through "n" remain.

After executing this command, the primary input buffer is
always selected as the current input buffer.

Reset Output Buffer: This command resets both the primary
and secondary output buffers to an empty or null
condition. After executing this command the primary
output buffer is always selected as the current output
buffer.

Set Position Of Input Pointer: This command selects the
primary input buffer as the current input buffer and
positions the input pointer at the start of the specified
parameter in the current input buffer. The general form
of the command is:

S{n}

"ri" positions the pointer at the start of the "n"th
parameter. Thus both "50" and "51" position the pointer
at the start of the buffer. If there is no "n"th
parameter, sufficient backslash placeholders are created
to position the pointer correctly.

4.19 SP Select Primary Input Buffer: This command makes the
primary input buffer the active input buffer, and sets the
input parameter pointer to the start of the buffer.

4.20 SS Select Secondary Input Buffer: This command makes the
secondary input buffer the active input buffer, and sets
the input parameter pointer to the start of the buffer.

4.21 STON Stack On: Select the secondary output buffer (the stack)
as the active output buffer. "ST ON" is also accepted as
this command.

4.22 STOFF Stack Off: Select the primary output buffer as the active
output buffer. "ST OFF" is also accepted as this command.

RELEASE COPY
Spectrum Manufacturers Association

March 1987 Page 13

4.23 T

4.24 X

SMA:s0l
SMA/PROC LANGUAGE SPECIFICATION DRAFT 2.5

Formatted Terminal Output: This command is used to output
strings of data at specific positions on the terminal. It
is followed by a variable number of parameters separated
by commas. The general form of the command is:

T parameter {,parameter} •••

Each parameter can be anyone of the following:

text A literal string enclosed in single or double
quotes.

B Causes the bell to be sounded on the terminal.

C Clears the terminal's screen •

. In Causes the system to output the character whose
value is given by the decimal· number immediately
following the "I".

Xn Causes the system to output the character whose
value is given by the hexadecimal number
immediately following the "X".

(x,y) Causes the terminal to position its cursor at
column "x" of row "y" on the scieen us~ng the
systemwide standard cursor routine.

(-v) Causes the terminal to perform specific
operations as defined in SMA:10l (SMA/BASIC
Language Specification).

Exit From The PROC: This command causes the current
PROC to be terminated. If it was called by a prior
PROC as a subroutine, control is returned to the
calling PROC, otherwise PROC is terminated and control
returns to TCL. If the "X" is followed by a character
string, that string is displayed on the terminal wh~n
the command is executed.

RELEASE COPY
Spectrum Manufacturers Association

March 1987 Page 14

4.25

4.26 [

4.27 +n

4.28 -n

SMA:50l
SMA/PROC LANGUAGE SPECIFICATION DRAFT 2.5

Transfer Control Jump: This command transfers control
to a different PROC. The general form of the command
is:

({DICT} filename {item-id}){label}

where: If the optional "item-id" is not specified, it
is taken to be the current parameter in the input
buffer. If the optional "label" is specified, then
execution begins at that line within the new PROC. If
the "label" is not found within the destination PROC,
then an error message is presented and control
returned to TCL.

NOTE that transferring control does not affect the
contents of any of the input or output buffers.

Transfer Control Subroutine: This command is very
similar to a transfer control jump. It differs in
that when the called PROC is exited, control returns
to the next line of the calling PROC. The general
form of the command is:

[{{DICT} filename {item-id}}]{label}

where: If the optional lIitem-id"is not specified, it
is taken to be the current- parameter in the input
buffer. If the optional "lab,l" is specified, then
execution begins at that line within the new PROC. If
the "label" is not found within the destination PROC,
then an error message is presented and control
returned to TCL.

Add To Current Parameter: This command adds the
integer Un" to the current value of the current input
parameter. This command only works if the current
input parameter contains an integer value, and only
gives the correct result if the result of the addition
does not generate a number containing more characters
than the original value.

Subtract From Current Parameter: This command
subtracts the integer "nil from the current value of
the current input parameter. This command only works
if the current input parameter contains an integer
value, and only gives the correct result if the result
of the subtraction does not generate a number
containing more characters than the original value.

RELEASE COPY
Spectrum Manufacturers Association

March 1987 Page 15

SMA:501
SMA/PROC LANGUAGE SPECIFICATION

THIS IS THE LAST PAGE

DRAFT 2.5

RELEASE COPY
Spectrum Manufacturers Association

Marc.h 1987 Page 16

SMA STANDARD

RUNOFF
Language

Spec ification

SMA: 601
January 1988

SPECTRUM sma MANUFACTURERS
ASSOCIATION

SMA:60l
RUNOFF LANGUAGE SPECIFICATION - DRAFT 2.0

NOTICE

SMA standards are designed to serve the public interest
through eliminating misunderstandings between manufacturers
and purchasers, facilitating interchangeability and
improvement of products, and assisting the purchaser in
selecting and obtaining, with minimum delay, the proper
product for his particular need.

Some material contained herein is designated as
proprietary by individual member companies of SMA listed
below. Any unauthorized use of such proprietary information
is prohibited.

Copyright Automatic Data Processing, Inc.: Altos
Computer: Applied Digital Data Systems: CDI Information
Systems: CIE Systems, Inc.: Data Media Corporation: Fujitsu
Microsystems of America: General Automation, Inc.: I. N.
Informatigue: McDonnell Douglas, Computer Systems Company;
Nixdorf Computer Corporation: Pick Systems: Prime Computer,
Inc.: Scan-Optics Corporation; The Ultimate Corp.; Wicat
Systems.

(c) 1987

Copyright Spectrum Manufacturers Assocation
(c) 1987

RELEASE COPY

Published by
SPECTRUM MANUFACTURERS ASSOCIATION

9740 Appaloosa Rd., Suite 104
San Diego, CA 92131

Spectrum Manufacturers Association
January 1988 RELEASE

SMA:60l
RUNOFF LANGUAGE SPECIFICATION - DRAFT 2.0

roreword: This document establishes a standard for the
use of the RUNOFF language and processor to prepare textual
material on-line. The RUNOFF language, provided by Spectrum
Manufacturers Association member systems, is used primarily
for generating form letters and text documentation. This
document is meant to serve as a guide to the prepartion of
RUNOFF items that can be moved from one SMA system to
another. For details on any specific system, the user should
refer to the manufacturer's reference manual.

RELEASE COpy
Spectrum Manufacturers Association

January 1988 RELEASE

SMA:601
RUNOFF LANGUAGE SPECIFICATION - DRAFT 2.0

The SMA Executive Board wishes to thank the following
individuals and organizations for their contributions to the
preparation of this document:

C. Saunders,
J. Timmons,
J. Treankler,

Fujitsu Microsystems Of America, Inc.
D~ta Cache, Inc.
JET Software, Inc.

RELEASE COPY
Spectrum Manufacturers Association

January 1988 RELEASE

SMA:601
RUNOFF LANGUAGE SPECIFICATION - DRAFT 2.0

1.0

2.0

3.0

4.0

5.0

1.1
1.2

2.1

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

RELEASE COPY

Scope
Inclusions
Exclusions

Definitions
Nomenclature

Overview
Concepts

CONTENTS

RUNOFF Item Structure
Process Initiation
Execution

Processing Mechanisms
Footing and Heading Tags
Index Table
TOC Table
Current Line Counter
Current Page Counter
Line Spacing Counter
SectiQns Counter
Indent
Left Margin
Paragraph Indent
Temporary Indent
Text Breaks
Paragraph Breaks
Page Breaks
Boldface Mode
Box Mode
Capitalize Sentence Mode
Fill Mode
Highlight Mode
Justify Mode
Lower Case Mode
Underline Mode
Upper Case Mode
Initial Conditions

Command Definitions
Comment
Begin Page
Box
Break
Capitalize Sentences
Center
Chain
Chapter

Spectrum Manufacturers Association
January 1988

1
1

1

2
2
2
3

5
5
5
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
8
8
8
8
8

9
9
9
9
9
9

10
10

RELEASE

6.0

5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.·32
5.33
5.34
5.35
5.36
5.37
5.38
5.39
5.40
5.41
5.42
5.43
5.44
5.45

6.1
6.2
6.3
6.4
6.5
6.6
6.7

RELEASE COPY

SMA:601
RUNOFF LANGUAGE SPECIFICATION - D.RAFT 2.0

Contents
CRT
End Case
Fill
Footing
Heading
Hi1ite
Indent
Indent Margin
Index
Input
Justify
Left Margin
Line Length
Lower Case
LP'rR

CONTENTS

No Capitalize Sentences
Nofi11
Nojustify
Noparagraph
Page Number
Paper Length
Paragraph
Pfi1e
Print
Print Index
Read
Readnext
Save Index
Section
Set Tabs
Skip
Space
Spacing
Standard
Test Page
Upper Case

Embedded Subcommands
Boldface
Underline
Upper Case
Lower Case
Literal Lead:"in
Left Tab
Right Tab

Spectrum Manufacturers Association
January 1988

10
10
10
11
11
11
12
12
12
12
13
13
13
13
13
13
14
14
14
14
14
14
15
15
15
15
15
15
16
16
16
16
16
16
17
17
17

18
18
18
18
18
19
19

RELEASE

. .J

SMA:601
RUNOFF LANGUAGE SPECIFICATION - DRAFT 2.0

1.0 Scope

1.1 Inclusions: This document includes all commands and
features common to all SMA systems with syntactic respresentations
to clearly define the usage permitted with each. It also includes
sufficient "run time" considerations to meet the objective of
inter-system portability.

1.2 Exclusions: Excluded from this standard are
support of statements during the run time process by
system processors, such as the output spooler and CRT
Also excluded is any discussion of how RUNOFF source
created.

2.0 Definitions

issues of
other SMA

handlers.
items are

2.1 Nomenclature: Within this document,
represent tokens within the RUNOFF language and
as shown. RUNOFF commands will be recognized
case. For example, both ".NCS" and ".ncs"
Capitalize Sentence mode.

capitalized words
must be included

without regard to
will turn off the

Terms in lower case refer to parameters which must be supplied as
part of the RUNOFF command •.

The use of quotes (") and single quotes (') is required in the
forms shown below.

The use of braces ({ }) means the included string is optional.

The use of ellipsis (•••) means the preceding information can be
repeated.

The term "printed" refers to output to the specified device which
may be a terminal, an auxilary device connected to the terminal,
the system spooler or to the tape device.

RELEASE COPY
Spectrum Manufacturers Association

January 1988 Page 1

SMA:60l
RUNOFF LANGUAGE SPECIFICATION - DRAFT 2_0

3.0 Overview

3.1 Concepts: RUNOFF provides users the means to output text
documents that have been prepared on a SMA computer system. Tbe
text can be entered via any other process, for example the
SMA/EDITOR. As noted before, the entry of text is not discussed in
this document, as RUNOFF is a text output formatter. It takes
text items with RUNOFF commands embedded within the text and
generates output. Features of RUNOFF allow the generation of "form
letters with data inserted by RUNOFF from an application database
as well as the creation of books and pamphlets, with indexes and
tables of contents maintained and printed automatically.

3.2 RUNOFF Item Structure: Input to the RUNOFF processor is
contained in standard SMA items. All attributes within the item
are considered to be text, except attributes that begin with a
period (.) which are RUNOFF command lines. RUNOFF command lines
contain one or more RUNOFF commands, each command prefaced with a
period. Some RUNOFF commands also use the following text line for
special situations, such as headings and footings.

3.3 Process Initiation: The RUNOFF Processor is invoked from TCL
with the following statement:

RUNOFF {DICT} filename {itemlist} {(options)} ~

where the valid options are:

n Any positive integer number which
of times to repetitively print
printed in boldface mode.

specifies the number
character(s) which are

C Suppresses linking to other items via the CHAIN and READ
commands.

I Outputs each source item name before generating text
output.

J Suppress functioning of the highlighting mode.

N Suppresses the pause at end of page when output is
directed to the terminal.

P Directs output to the system spooler.

S Suppress functioning of the Boldface and Underline
modes.

U Specifies that all lower case characters will
converted to upper case during printing.

RELEASE COPY
Spectrum Manufacturers Association

January 1988 Page

be

2

.~
SMA:60l

RUNOFF LANGUAGE SPECIFICATION - ORAFT 2.0

The Nitemlist" specification
which is made up of sou~ce
blanks. The item id(s) do
single quotes.

designates an explicit itemlist,
RUNOFF item IO(s) separated with

not have to be enclosed in quotes or

If there is no explicit itemlist, there must be an implicit
itemlist, generated by a previous SELECT, SSELECT, FORM-LIST, or
GET-LIST verb. See the SMA/Retrieval Language Specification for
information on these verbs.

With one exception, the explicit itemlist over-rides the implicit
itemlist. The exception is when the REAONEXT RUNOFF command is
used. When used, REAONEXT requires both the implicit and explicit
itemlists. Only the first item in the explicit itemlist is used.

3.4 Execution: Execution begins with the first item specified and
continues until all items in the itemlist are output. Within each
item execution begins with the first attribute and continues with
each succeeding attribute until the end of item is reached.

RUNOFF
of the
line.
by the

begins processing each line by testing the first character
line for a period, N.", which identifies a RUNOFF comma~d

Each RUNOFF command on that line is processed as specified
command definitions in chapter 5.

If RUNOFF is in Fill Mode, the text line is parsed into words
(separated by spaces) and these words are placed into a temporary
buffer whose length is defined by the LINE LENGTH command (and, in
the case of a Paragraph Break, by Paragraph Indent.) When RUNOFF
is unable to place a complete word in the buffer, the buffer is
printed and then emptied. Processing continues with the word
which caused the overflow.

If RUNOFF is not in Fill Mode, the source text line is printed as
it appears in the source item.

Before a line is printed, RUNOFF will adjust the line based on the
Box, Highlight and Justify Modes. The line is prefaced with the
number of spaces indicated by a combination of Left Margin,
Temporary Indent, Indent, Offset Indent, and Paragraph Indent. It
is then sent to be printed.

In the special case that nothing has been printed yet, a Page
Break is generated before the line is printed.

After each line is printed, the Line Spacing Counter is checked.
If the Line Spacing Counter is greater than one, additional blank
lines are printed so that the blank lines plus the text line
equals the Line Spacing Counter. The Current Line Counter is
incremented by the amount of the Line Spacing Counter. If the

RELEASE COpy
Spectrum Manufacturers Association

January 1988 Page 3

SMA:601
RUNOFF LANGUAGE SPECIFICATION - DRAFT 2.0

Current Line Counter plus the number of lines to be generated by
the Footing Tag is greater exceeds the Paper Length, a Page Break
is generated.

RELEASE COPY
Spectrum Manufacturers Association

January 1988 Page 4

J

SMA:601
RUNOFr LANGUAGE SPECIFICATION - DRAFT 2.0

4.0 Processing Mechanisms

RUNOFF can manipulate text in a variety of ways. To accomplish
some of·these effects, RUNOFF requires the use of mechanisms to
remember such things as the number of lines already printed on the
current page and whether text should be printed with a justified
right marg~n.

These mechanisms are described below. They can be broken down
into three catagories: A) Tags and Counters, which store user
specified information or accumulated results. B) Output Breaks,
which affect the format of output. C) Modes, which flag whether
RUNOFF is to take specified action automatically and repeatedly.

4.1 Pooting and Heading Tags: The Footing and Heading Commands
use the subsequent line of text, known as the tag line, as what to
print at the top or bottom of each page. The tag line is text
with options embedded within it. Options are specified within
single quotes (') and may be any combination of the following:

C Centers the tag output line between left and right
margins. If the -L- option is being used, then the "C"
option must be repeated for each of the output lines
that is to be centered.

o Prints the current date.
F Prints the source file name.
I Prints the source item ide
L Prints a carriage return and linefeed.
P Prints the current page number right justified .in a

field of four spaces.
T Prints the current time and date.

There may be any number of occurances of options within the tag
line.

In generating the tag lines, RUNOFF uses the margins that are in
effect when the Footing or Heading Command was issued. The tag
line is not affected by subsequent changes to the margins.

4.2 Index Table: The Index Table is built via use of the INDEX
command. It stores, in sorted order, phrases and the pages that
they occur on. The Index Table can be printed with the PRINT
INDEX command and permanently stored using the ·SAVE INDEX command.

4.3 TOC Table: The TOC (for Table of Contents) Table is built via
the use of CHAPTER and SECTION commands. It stores the Sections
Counter, Title and Page Number. This can then be printed with the
CONTENTS command and permanently stored using the SAVE CONTENTS
command.

RELEASE COPY
Spectrum Manufacturers Association

January 1988 Page 5

SMA:601
RUNOFF LANGUAGE SPECIFICATION - DRAFT 2.0

4.4 Current Line Counter: The Current Line Counter keeps track-of
the number of lines printed on the page and is incremented every
time a line is printed.

4.5 Current Page Counter: The Current Page Counter keeps track of
the number of pages printed and is incremented every time a Page
Break occurs.

4.6 Line Spacing Counter: The Line Spacing Counter keeps track of
the number of blank lines between printed lines of text.

4.7 Sections Counter: The Sections Counter keeps track of the
current section number for use by the CHAPTER and SECTION
commands. The Sections Counter is multi-level; level 1 is
commonly known as the chapter number. Subsequent levels enumerate
subsections within the chapter. Used in the SECTION command, the
chapter number, levell, is displayed left of the period.
Subsequent levels are displayed with periods separating them as
diagrammed:

levell.leve12.leve13.leve14.levelS

When the counter for a specified level is incremented, all
subsequent levels are set to zero.

4.8 Indent: Indent is set by the Indent Margin command and
generates a number of spaces to preceed the line when printed. If
Indent is negative, it will subtract spaces from the calculation
of the left margin as defined by Left Margin, Indent, Temporary
Indent, Offset Indent and Paragraph Indent.

4.9 Left Margin: The Left Margin is a counter like the other
indents which generates a number of spaces to preceed the line
when it is printed. Left Margin cannot be negative.

4.10 Paragraph Indent: The Paragraph Indent is set by the
Paragraph Command and generates a number of spaces to preceed the
line when printed. It is only used in the calculation of left
margin on the first line of a paragraph, which is the first line
after a Paragraph Break. If Paragraph Indent is negative, it will
subtract spaces from the calculation.

4.11 Temporary Indent: Temporary Indent is set by the Indent
command and generates a number of spaces to preceed the line when
printed. If Indent is negative, it will subtract spaces from the
calculation of the left margin as defined by Left Margin, Indent,
Temporary Indent, Offset Indent and Paragraph Indent.

Temporary Indent is effective for one line only, and is reset to
zero after it is used.

RELEASE COPY
Spectrum Manufacturers Association

January 1988 Page 6

SMA:601
RUNOFF LANGUAGE SPECIFICATION - DRAFT 2.0

4.12 Text Breaks: Text breaks are caused by RUNOFF commands which
change the mode of formatting. This requires that those words
which are waiting to be output as part of an unfinished line to be
output. Then the mode is changed as specified by the RUNOFF
Command, then formatting and output continues.

4.13 Paragraph Breaks: The beginning of a paragraph can be
indicated in the source text by either an empty line or a line
starting with a blank. In addition, RUNOFF commands can cause, or
specify, the end of a paragraph. A Paragraph Break consists of a
~Text Break, followed by the number of blank lines indicated by the
Line Spacing Counter. The left margin is offset by the number of
spaces indicated by the Paragraph Indent. If the Paragraph Indent
is negative, then the calculatioh of the left margin is
decremented by the the absolute value of Paragraph Indent. In
addition, Line Length is temporarily decremented by the value of
Paragraph Indent.

4.14 Page Breaks: A Page Break can be caused by RUNOFF commands or
when the Current Line Counter plus the number of lines to be
printed in the Footing Tag exceeds the Page Depth. A Text Break
is generated, if needed, and then the Footing Tag is printed. The
page is ejected and the Heading Tag is printed. The Current Page
Counter is incremented. The Current Line Counter is incremented
to the number of lines printed in the Heading Tag.

4.15 Boldface Mode: When in Boldface mode, every character is
overprinted again to emphasis it. The number of overstrikes can
be varied from the default, one, by specifying the number o!
overstrikes as an option in the RUNOFF TCL statement.

4.16 Box Mode: When in Box Mode, output text is bracketed on the
left and right with vertical bars (I). The left and r~ght columns
of the box are defined by the ".BOX" command that turned the Box
Mode command on.

4.17 Capitalize Sentence Mode:
the first character of each word
mark is capitalized.

When in Capitalize Sentence Mode,
following a period or a question

4.18 Fill Mode: When in Fill mode, words are taken from the
source item and placed in a buffer which represents one line of
output. When RUNOFF attempts to put a word in this buffer that
would cause the buffer to be longer then the line width, the
buffer will be output and that word will be placed at the
beginning of the next line buffer.

4.19 Highlight Mode:
printed two columns
character printed is

When in Highlight mode, a character is
to the right of the right margin. The
specified as an argument in the ".HILITE"

RELEASE COpy
Spectrum Manufacturers Association

January 1988 Page 7

SMA:601
RUNOFF LANGUAGE SPECIFICATION - DRAFT 2.0

command.

4.20 Justify Mode: When in Justify mode, each line before it is
output, will be adjusted so that the end of the last word on the
line will end directly at the right margin, or width of the line.
Blanks are inserted randomly between words to accomplish this.
The line immediately preceeding a text break is not justified.

Justify mode wonw implies that Fill mode is also wonw.

4.21 Lower Case Mode: When in Lower Case Mode, RUNOFF will output
all characters in lower case, except as directed by Capitalize
Sentence Mode.

4.22 Underline Mode: When in Underline mode,
character, • ft is printed below every character. If
on, blanks are NOT underlined.

an underline
Fill Mode is

4.23 Upper Case Mode: When in Upper Case Mode, RUNOFF will output
all characters in upper case, except as directed by Capitalize
Sentence Mode.

4.24 Initial Conditions: When RUNOFF is started,
counters and modes are set as followed:

Boldface Mode off
Box Mode off
Capitalize Sentence Mode on
Current Line Counter .0
Current Page Counter .1
Fill Mode on
Footing null
Heading null
Highlight Mode off
Indent 0
Justify Mode on
Left Margin 0
Line Length 70
Line Spacing Counter .1
Lower CaSe Mode off
Paper Length *1
Paragraph Indent 5
Sections Counter 1.0
Tab Stops not set
Temporary Indent 0
Underline Mode off
Upper Case Mode off

*1: Initialized to the Page Depth set by the TERM TCL

RELEASE COPY
Spectrum Manufacturers Association

January 1988

the tags,

command.

Page 8

J

SMA:601
RUNOFF LANGUAGE SPECIFICATION - DRAFT 2.0

l.. 5.0 RUNOFF Command' Definitions

5.1 Comment: The Comment command causes the
ignore any text following the "*".
the user to insert comments about
The format of this command is:

.*{text}

RUNOFF processor to
This can be used by

special conditions.

5.2 Begin Page: The Begin Page command causes a Page Break.
Permissable formats of the command are:

.BP
.BEGIN PAGE

5.3 Box: The Box command causes a Text Break and turns the Box
Mode on or off. To turn box mode on, you must specify:

.BOX leftedge,rightedge

The command to turn Box Mode off is:

.BOX OFF

Turning the Box mode on or off also prints a line of
hyphens (-) between the "leftedge" and "rightedge".

5.4 Break: This command causes a text break.
formats of the command are:

.B
.BREAK

Permissable

5.5 Capitalize Sentence: The Capitalize Sentence command turns
on Capitalize Sentence Mode. Permissable formats of the
command are:

.CS
.CAPITALIZE SENTENCES

5.6 Center: The Center command causes a text break and then
prints text centered between the left and right margins.
Permissable formats of the command are:

.C
.CENTER

Only the next line is centered.

RELEASE COpy
Spectrum Manufacturers Association

January 1988 Page 9

SMA:601
RUNOFF LANGUAGE SPECIFICATION - DRAFT 2.0

5.7 Chain: The Chain command causes the RUNOFF processor to use ~
another, specified, source item for text. The format of
the Chain command is:

.CHAIN {{DICT }filename} itemname

If "filename" is not specified, then the filename is
assumed to be the same file as the current source item.
Control is never returned to the current source item.

5.8 Chapter: The Chapter command causes a page break: prints the
literal "CHAPTER" followed by the current chapter number
(Sections Counter, level 1): increments the chapter
number: skips a line: prints the optional chapter title:
skips a line. The format of the command is:

.CHAPTER {chapteri}{title}

If "chapter#" is specified,
number is reset to "chapter#".
TOC Table.

then the current chapter
An entry is made in the

5.9 Contents: The Contents Command causes a Page Break: prints the
literal:

Table of Contents

centered between left and right margins: skips t~o
lines: prints the TOC Table based on previous CHAPTER
and SECTION commands. The format of the command is:

.CONTENTS

5.10 Crt: The CRT command redirects subsequent output to the
terminal. The format is:

5.11 End Case: The End
Lower Case Modes
the command are:

.CRT

Case command turns the Upper Case and
both to "off". Permissable formats of

.EC
.END CASE

RELEASE COPY
Spectrum Manufacturers Association

January 1988 Page 10

L

SMA:601
RUNOFF LANGUAGE SPECIFICATION - DRAFT"2.0

5.12 Fill: The Fill command sets the Fill Mode on.
formats of the command are:

Permissable

.F
.FILL

If the Fill Mode is currently off, a Text Break is
generated.

5.13 Footing: The Footing command specifies text and information
to be displayed at the bottom of each page. The format
is:

5.14

.FOOTING

The next line of text following the Footing command is
used as the Footing Tag. Heading and Footing Tags can
have data automatically inserted (such as page number)
if the appropriate options are set. See the section on
Heading and Footing Tags.

The Footing Tag takes effect at the next Page Break to
occur, except for the special case of when nothing has
been printed yet. In that case, the Footing Tag takes
effect after the first Page Break.

The Footing Tag is reset to null if the line following
the Footing command is a RUNOFF command line.

Beading: The
information to
The format is:

Heading command
be displayed at

.HEADING

specifies
the top of

text and
eachpa9.e •

The next line of text following the Heading command is
used as the Heading Tag. Heading and Footing Tags can
have data automatically inserted (such as page number)
if the appropriate options are set. See the section on
Heading and Footing Tags.

The Heading Tag takes effect at the next Page Break to
occur.

The Heading Tag is reset to null if the line following
the Heading command is another RUNOFF command line.

RELEASE COpy
Spectrum Manufacturers Association

January 1988 Page 11

SMA:601
RUNOFF LANGUAGE SPECIFICATION - DRAFT 2.0

5.15 Bilite:
off.

The Hilite command turns the Highlight Mode on and
The format of the command to turn the mode on is:

.HILITE character

The "character" specified will be printed in th~ right
margin. To turn the mode off the command is:

.RILITE OFF

5.16 Indent: The Indent Command causes a Text Break and adjusts
the indent from the left margin for the next line only.
The format is:

.1 spaces
.INDENT spaces

The "spaces" can be either a positive or nega~ive number
and may cause the indent to go negative, which would
cause the output of text to start before the left margin
by the absolute value of indent.

5.17 indent Margin: The Indent Margin Command causes a Text Break
and adjusts the indent from the left margin.
Permissable formats of the command are:

.IM spaces
.INDENT MARGIN spaces

The "spaces" can be either a positive or negative number
and may cause the indent to go negative, which would
cause the output of text to start before the left margin
by the absolute value of indent. The specification
"spaces" is cumulative in that it is added to the
current value of indent.

5.18 Index: The Index command places the following term with the
current page number into an index table which can be
printed out later with the "Print Index" command. The
format is:

.INDEX term { term ••• }

If the term contains blanks, it must be enclosed in
double quote marks.

RELEASE COPY
Spectrum Manufacturers Association

January 1988 Page 12

SMA=601
RUNOFF LANGUAGE SPECIFICATION - DRAFT 2.0

5.19 Input: The Input command prompts for -input from the
terminal and uses the response as te~t to be processed.
The format is:

5.20 Juatify: The
Modes on.

.INPUT

Justify command turns the Justify and Fill
Permissable formats of the command are:

.J
.JUSTIFY

If the Fill Mode is currently off, a Text Break is
generated.

5.21 Left Margin: The Left Margin command causes a Text Break and
sets the left margin column. Permissable formats of the
command are:

.LM column
.LEFT MARGIN column

The "column" specification must be a positive whole
number.

5.22 Line Length: The Line Length command causes a Text Break and
sets the width of the output line. The format is:

.LINE LENGTH columns

The "columns" specification must be a positive whole
number.

5.23 Lower Case: The Lower Case command turns the Upper Case Mode
off and the Lower Case Mode on. Permissable formats of
the command are:

.LC
.LOWER CASE

5.24 Line Printer: The Line Printer command directs subsequent
processing to output to the system spooler. The format
is:

.LPTR

Spectrum Manufacturers Association
RELEASE COpy January 1988 Page 13

_": 5.25

SMA:60l
RUNOFF LANGUAGE SPECIFICATION - DRAFT 2.0

No Capitalize Sentence: The No Capitalize Sentence Command
turns the Capitalize Sentence Mode off. Permissable
formats of the command are:

.NCS
.NOCAPITALIZE SENTENCES

":! ::' ;S,e,26,NOfill:
off.

The Nofill command turns the Fill and Justify Modes
Permissable formats of the command are:

::.. ,

,.~ ,. -. ,;
., ~ ; •. r:.

.NF
.NOFILL

If the Fill Mode is currently on, a Text Break will
generated.

be

5.27 Nojustify: The Nojustify command turns the Justify Mode off.

,;: " .. :.~ .. ", .~ ..

Permissable formats of the command are:

.NJ
• NOJUSTIFY

If the Justify Mode is currently on, a Text Break will
be generated.

5.28 Noparagraph: The No Paragraph command disables the processing
of Paragraph breaks. The format is:

• NOPARAGRAPH

5.29 Page Number: The Page Number command sets the current page
number to the specified number. The format is:

.PAGE NUMBER page

The "page" specification must be a positive whole
number.

5.30 Paper Length: The Paper Length Command sets the number of
~;' lines on a page to the specified number. The format is:

.PAPER LENGTH lines

The "lines" specification must be a positive whole
number.

RELEASE COpy
Spectrum Manufacturers Association

January 1988 Page 14

J

SMA:6"1
LANGUAGE SPECIFICATION·-DRAFT 2."

5.31 Paragraph: The Paragraph Command specifies the: number of
spaces that the first line of a paragraph ·is indented.
Permiss,able formats are: ..-

.P spaces
.PARAGRAPH spaces

The ·spaces· specification can be either·' a -positiw or
negative whole number. A negative numb"&r· indicates the
first line of a paragraph begins the absolute value of
"spaces" columns before the left margin.

5.32 Pfile: The PFILE command directs further processing to be
output to the specified spooler print f(l"e. The format
is:

.PFILE file'
~ - ,.. -

.A. ... _

The "filel" specification must be a whole number between
" and 125.

5.33 Print: The Print command prints the following source line on
terminal. The format is:

.PRINT

5.34 Print Index: The Print Index command causes the index table
built via previous Index commands to be printed. The
format is:

,., ,

.PRINT INDEX

5.35 Read: The Read command causes the RUNOFF processor to use
another, specified, source item for text. The format of
the command is: c-"

.READ {{DICT }filename} itemname

If n filename II is' not spec i f ied, then the fi lename is
assumed to be the same file as the current source item.
When the RUNOFF is finished processing the ~read" source
item, ~t continues processing the current source item.

5.36 Readnext: IThe Readnext command extrac~sthe next element
from the implicit itemlist and uses it as source text.
The forma tis:

RELEASE COPY

.READNEXT

spectrum Manufacturers Ass6~ia~ion
January 1988 Page 15

SMA:6ftJl
~RUNOFP LANGUAGE SPECIFICATION - DRAFT 2.0

~5~37 Save~Index:', The Save Index command stores the
built via previous Index commands as an
specified file. The format is:

index table
item in a

" ••. '. r '" '
" ",-' ~

.SAVE INDEX filename

The item id will be the same as the source item ide

5.38 Section: The Section command causes a Text break then the
Sections Counter is displayed and incremented, followed
by the optional text. The Sections Counter, Text and
Page Number are stored in the TOC Table. A Paragraph
Break is then generated. The format is:

5.39 Set

~- , - " -" , "'. -, - -.. '. -. - .- - -- -- ' .. - -, -

.SECTION level {title}

Tabs: The Set Tabs command
which are used with the
subcommands 0 " The forma t is:

defines tabulation columns
"c" and ">" embedded

" , : ,r_~_ :2: :::: • SET TABS col umn { ,column ••• }

5.4ftJ Skip: The Skip command causes a text break and prints a
specified number of blank lines. Permissable formats of
the command are:.

.SK lines
.SKIP lines

The numbe~ of blank lines printed is the specification
"lines" multiplied by the Line Spacing Counter.

5.41 Space: The Space command causes a text break and prints a

5.42

specified number of blank lines. Permissable formats of
the command are:

.SP lines
.SPACE lines

The specification
lirtes generated,
Counter.

"lines" defines the number of blank
independent of the Line Spacing

Spacing: The
spacing and
format is:

Spacing command defines the vertical line
is stored as the Line Spacing Counter. The

.SPACING lines

.:..Spectrum~Manufacturers' Assoc iation
~~RELE~SE COpy January 1988 Page 16

SMA:601
T RUNOFF LANGUAGE SPECIFICATION 'i'DR,AFT, 2.0

5.43 Standard: iThe Standard command initializes various modis to
the default values. The format is:

- ~",. - '-;

• STANDARD

The command performs the
list of commands:

.CAPITALIZE SENTENCES

.FILL

.JUSTIFY
• FOOTING
.HEADING
.LEFT MARGIN 0
.LINE LENGTH 70
.PARAGRAPH 5
.END CASE

same actions as the

, \.'

following

5.44 Test Page: The Test Page command verifies. that the specified
number of lines can be printed on the page. If not, a
Page Break is generated.':" Permissable formats of the
command are:

.TP lines;: n
.TEST PAGE lines

5.45 Opper Case: The Upper Case command turns the Upper Case Mode
on and the Lower Case Mode off. Permissable formats of
the command are:

RELEASE COpy

.OC
.OPPER CASE

~: ~- !:.-, :Dr-; .;- :-,

.~ . ,.,

.., "

'''. ~-, -:. "

s¢ectrum Manufacturers Association
January 1988 ":.., page~?l7

, SMA:6fJl
: . RUNO·BF' LANGUAGE - SPECIFICA'l'~Q~~1;::'", DRAFT· 2.0

-- 6~fJ ·B~beaded0Subco.mands
n.~ ""; f. .:..; . I ~y .) .~.. . ~ .:-: ·~:'l !1 i~\ f: .:.

'" ~;

:;~ . RUNOFF~-pt'ovides .. nt: for a set of special ~ characters, 'or subcommands,
s .~ wn'ich£' canb be} emb.ddedr;..within the sourc·e text to control modes.

6.1 Boldface: The Boldface subcommand turns the Boldface Mode as
• ~ ~ c-..' :,' :. '" ;'" spite i~'ied:::' :.. " ~,,;;~ n :; :)0 !.' •
:;. -:;, i. : .r ~ '= q :~~ :- ~.: ~ r: 3 7": :: ~ ~ ~ .. b ~"'. 9 " - 5": '4

::{<;.-(::~" ;-:0:;; @ :J"' Next"Chara~te.r··~nly.is printed in Boldface Mode.
~'" :::.' ! 1 .:~ f.l e.:; :: q :. ;;:; .:. ::. ;. ~~ :-_~~ ~. :'~"~' i: . ~~ ';~ ..

@A Boldface Mode is turned on.

@\ Boldface Mode is turned off.

6.2 Underline: The Underline subcommand controls the Underline
Mode as specified:

& Next character only is printed in Underline Mode.

&~ Underline Mode is turned on.

&\ Underline Mode is turned off.

6.3 Upper Case: The Upper Case subcommand controls the Upper
Case Mode as specified:

A Next character only is printed in Upper Case Mode.

~~ Upper Case Mode is turned on.

6.4 Lower Case: The Lower Case subcommand controls the Lower
Case Mode as specified:

\ Next character only is printed in Lower Case Mode.

\\ Lower Case Mode is turned on.

6.5 Literal Lead-in: The Literal lead-in subcommand specifies
the next character to be treated as a literal and not to
be considered as an embedded subcommand. The Literal
lead-in subcommand is a "_", underline character.

If the literal character is a space and Justify Mode is
on then RUNOFF will not insert extra blanks at~this
point to create a justified line.

2':::_~Rffl£-\mfM"anu f ac t u re r s Association
;,:~ RELfiSE COpy c'::''J'anuary 1988 18

L

6.6

6.7

SMA:60l
'RUNOF'" LAN~t)AGE' SPECIFICATIONr~ ... ';DR~rT··%.0

I

Left Tab: The Left Tab SubcommaniL ca'u'ses<:<' $P~Cl!S " J;~ be
inserted' into the line so tha't t-henext worcr-'w1Tr~gin

~;t: _ ,in the neltt· specified tabulation column,.::;.tfot,"el;'''C~~;; no
. ~. corresponding 'tabulation column,:, ·,specifJ.ed(l f -:: a;: :.~4.11gle

apace will be inserted.
~ - ~~'~~~rl:; i~~ ~G·~- r~~ __ ~

Right Tab: The Right Tab Subcommand caJ1,s.e~~~}l~ ~ext" word to
be right justified so that it ends in the next specified
tabulation column. ~,- If :)the-r'$·i~ no s,corresponding
tabulation column specified, a single space will be
inserted. :_,C~I ~:>:'." .,.~ ,'? "''£:

... ! .. "::~ ,'" ,.. •.,

'. -?

..
"

I ' I ;

RBLBA'SE COpy
S ectrum Manufacturer.S" A4t.89~i,a:t::ion

January V(}· ... -,' - -.,..

SMA:601
RUNOFF LANGUAGE SPECIFICATION - DRAFT 2.0

This is the last page.

RELEASE COpy
Spectrum Manufacturers Association

January 1988 Page 20

