
M .• •• •... ' __ AYli Malcolm Bull
Training and Consultancy Publications

MB-Guide

to

System
debugger

llJalcolul Bull

MB-Guide
to

the System debugger

MB-Guide

to

the System debugger

(c) Malcolm Bull 1991

by

Malcolm Bull

MALCOLM BULL Training and Consultancy Services

MB-Guide to the system debugger

Introduction

This MB-Guide to the system debugger is produced for those
who need a quick introduction to the features of the spooler
on the Pick operating system.

This MB-Guide contains:

1) A general introduction to the system debugger

2) A description of the individual commands which are
available for use with the debugger

3) A discussion of the use of the debugger in patching
frames to recover from GFEs and other errors.

Throughout any treatment of the interactive system debugger,
the reader should continually be aware of the potentially
catastrophic damage which can be wrought by misuse of the
tool. Whilst it could be said that the system debugger is
the supreme example of a little knowledge being a dangerous
thing, it is nevertheless a valuable tool for the experienced
and competent user.

The guide is suitable for beginners, who need only read the
first few sections (in which we consider the G / OFF / END
and P commands) and who would be overawed by the rest, and
for the technical user and the System Manager, who can use
all the sections. It is not intended for use by Assembly
language programmers; these would require a much more
detailed explanation of the debugging facilities, such as
breakpoints, than is given here.

You may find the following titles in the MB-Guide series
useful in conjunction with the present volume:

Group format errors
The Basic symbolic debugger

This MB-Guide is not intended to present a complete
description of the subject but merely to place it in context
and give the reader enough information to use the facilities
and to survive.

Best use can be made of this MB-Guide if it is read -in
conjunction with the reference literature which is provided
for your system. You should amend your copy of this guide so
that it accurately reflects the situation and the commands
which are used on the implementation which you are using. By
doing this, your MB-Guide will become a working document
that you can use in your daily work.

I hope that you enjoy reading and using this MB-Guide and
the others in the series. A list of the current titles is
given at the end of this guide.

Malcolm Bull

Introduction / 1

MB-Guide to the system debugger

(c) MALCOLM BULL 1991

ISBN: 1 873283 11 3

No part of this publication may be photocopied, printed or
otherwise reproduced, nor may it be stored in a retrieval
system, nor may it be transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or
otherwise without prior written consent of Malcolm Bull
Training and Consultancy Services. In the event of any
copies being made without such consent or the foregoing
restrictions being otherwise infringed without such consent,
the purchaser shall be liable to pay to Malcolm Bull Training
and Consultancy Services a sum not less than the purchase
price for each copy made.

Whilst every care has been taken in the production of the
materials, MALCOLM BULL assumes no liability with respect to
the document nor to the use of the information presented
therein.

The Pick Operating System is a proprietary software product
of Pick Systems, Irvine, California, USA. This publication
contains material whose use is restricted to authorised users
of the Pick Operating System. Any other use of the
descriptions and information contained herein is improper.

Section

2

3

4
4.1
4.2
4.3
4.4
4.5
4.6
4.7

5
5.1
5.2
5.3
5.4
5.5
5.6

6

7

8

9

MB-Guide to the system debugger

Introducing the debugger

End-users and the debugger

Invoking the debugger

Debugger commands - introduction
Debugger commands - general
Interactive system debugger commands - summary
Address
Frames and data
Displacement
Window
Address and window - examples

Inspecting frames of virtual memory
Changing frames of virtual memory
Patching a frame
Patching a frame - some examples
Example 1: clearing a frame
Example 2: clearing the backward/forward links
Example 3: recovering a lost item

Arithmetic and conversion commands

The debug commands

Error messages

Glossary

Contents / 1

Page

3

3
5
6
7
7

1 1
13
13

13
15
17
18
18
19
20

21

23

25

26

MB-Guide to the system debugger

Introducing the debugger

The Basic symbolic debugger and the interactive system
debugger are standard parts of the standard Pick system
software and are provided to enable the programmer and the
System Manager to locate, to identify and possibly to correct
software errors.

Although they may be invoked directly by the user, by
pressing the

<BREAK)

key and by other means which we shall discuss below, the
debuggers are normally only encountered when a software error
occurs.

2 End-users and the debugger

If I'm not a technical user and I just want to use the
system to run programs which have been written by someone
else, how much do I need to know about this debugger?

Very little. The non-technical user need only recognise
that a display such as

*1 123

*
indicates that the Basic symbolic debugger has been invoked
during the execution of a Basic program or subroutine. This
will almost certainly because something has gone wrong with
the program, possibly because the program has not been tested
properly, and a message will probably be displayed saying
what the problem is. Typical messages might look like this:

or

[B17] LINE 234 ARRAY SUBSCRIPT OUT-OF-RANGE
*1234
*

[B12] LINE 76 FILE HAS NOT BEEN OPENED
*176

*
The interactive system debugger will display something like
this:

I 123.45

to indicate that the debugger has been invoked during the
execution of a standard system process - such as LIST or OFF
verbs. Other than recognising these two situations, should
they ever occur, the ordinary end-user need not concern
himself/herself with either of the debuggers.

Page

MB-Guide to the system debugger

If you do accidentally hit the <BREAK> key or either of the
above sequences is displayed for any other reason, then you
should:

1) Make a note of any error messages which might be
displayed,

2) Make a note of what you were doing and what the system
seemed to be doing when the problem occurred,

3) Report the message to your supervisor, to the System
Manager or to the analyst or programmer who is
responsible for the system.

You have now got to decide whether you want to try and
continue, if this is possible, or whether you want to abandon
the process.

You could attempt to continue with the processing from the
point where it was interrupted. To do this

4) type

G

and then press the <RETURN> key to attempt to continue
the processing from the point at which it was
interrupted.

This will almost certainly work in those situations
where you have accidentally pressed the <BREAK> key.

If you take this last step and this produces yet another
error message or if it does not appear to succeed, then you
should:

5) type

END

and then press the <RETURN> key to abandon the process,
or you could

6) type

OFF

and then press the <RETURN> key to abandon the process
and log off the account.

You should remember that, if you type END or OFF when the
system was in the midd7e of its processing, it may be that
your data has not been processed thoroughly or consistently.
For this reason, you should make a note of the circumstances
in which the process was abandoned, and check the data which
you were processing at that time to ensure that the
processing had completed properly.

You may find it useful to read the section on the General

Page 2

MB-Guide to the system debugger

Debugger Commands below.

3 Invoking the debugger

Under normal circumstances, it is possible to interrupt any
process by pressing the <BREAK> key on the terminal keyboard.
If you interrupt a Basic program whilst it is executing,
then you will get a display something like:

*140

*
showing that you have interrupted the program at line 40 and
you are in the Basic symbolic debugger, as discussed in the
l,fB-GUIDE to the Bas i c symbo lie debugger.

If you interrupt any process other than a Basic program,
such as an Access report or a Basic program compilation, you
will get a display something like:

I 123.45

Showing that the process has stopped at the instruction at
byte 45 (hexadecimal 45 = decimal 69) of frame number 123,
and you are in the interactive system debugger.

The various means of invoking the interactive system
debugger are:

1) By pressing the <BREAK> key.

2) By entering the

DEBUG

command from within the Basic symbolic debugger.

3) On Open Architecture and Advanced Pick, there are
facilities for level-pushing, allowing one process to be
interrupted and another one invoked). This facility
can be invoked by either the <ESC> key or the <BREAK>
key. On such implementations, there are facilities for
specifying which key is to be used to invoke the
debugger and which to invoke the level-pushing. There
is a TCl

DEBUG

statement to invoke an interrupt.

4 Debugger commands - introduction

When either of the Pick debuggers is invoked, the system
will display a

when within the interactive system debugger, or

* when within the Basic symbolic debugger.

Page 3

MB-Guide to the system debugger

at this point, the user may enter anyone of a number of
commands. In this present beginner's guide, we are only
concerned with those which relate to the interactive system
debugger, and for the purposes of this discussion. we shall
group them under the following headings:

1) general commands which are available to all users and
which apply equally to both the Basic symbolic debugger
and the interactive system debugger.

2) commands which are specific to the interactive system
debugger and allow the user to display any parts of
virtual memory.

3) commands which are specific to the interactive system
debugger and allow the user to change any parts of
virtual memory.

This set of commands can be used to patch and/or remove
group format errors.

4) commands which are specific to the interactive system
debugger and assist the programmer in debugging Assembly
language routines.

5) commands which are specific to the interactive system
debugger and are used for decimal/hexadecimal
conversion.

The commands in groups (2). (3) and (4) are only available
to users with SYS2 privileges and can only be issued when the
debugger is available. The interactive system debugger may
be disabled from the SYSPROG account by means of the DB
command described below.

The following commands are discussed below:

<LINE FEED>
<RETURN>
A
ADDD
ADDX
B
C
o
DB
DIVD
DIVX
DTX
E
end<LINE FEED>
end<RETURN>
G
K

L
M
ME
MULD
MULX
N
off<LINE FEED)
off<RETURN>
P
SUBD
SUBX
T
U
X
XTD
Y
Z

Page 4

MB-Guide to the system debugger

4.1 Debugger commands - general

The first group of commands are available with both the
interactive system debugger (at the ! prompt) and the Basic
Symbolic Debugger (at the * prompt).

<RETURN>
used on its own, the <RETURN> key has no effect, except
to repeat the ! or * prompt.

In general, <RETURN> after any of the debug commands which
we discuss in this MB-Guide will process the command but stay
in the debug mode.

<lINE FEED>

P

will leave the debugger and continue the processing, if
possible. This is identical to the G command described
below. The down-arrow cursor control key also has the
same effect.

will switch the terminal print output function ON or
OFF, suppressing the display to the terminal screen, and
will remain in the debugger.

This is useful if you want to stop the display which is
being produced but you do not want to stop the
processing. This will usually speed up the time taken
to execute.

end<RETURN>
END<RETURN>

will terminate the processing and return to TCl, unless
attribute 9 of your account definition item contains the
letter R and thereby prevents you from doing this, in
which case you will be returned to the logon Proc.

end<lINE FEED>
END<lINE FEED>

will terminate the current activity and return the
processing to the calling Proc, if the current activity
was invoked from a Proc, otherwise the processing will
return to TCl.

off<RETURN>
off<lINE FEED>
OFF<RETURN>
OFF<lINE FEED>

G

will terminate the current activity and log off the
account.

will continue the processing, if possible. This is
identical to the <lINE FEED> command described above.
The G command is useful if you are using a terminal with
no <lINE FEED> key.

The interactive system debugger will accept these commands
in upper-case or lower-case, as shown. The Basic symbolic

Page 5

MB-Guide to the system debugger

debugger will only accept commands in upper-case.

4.2 Interactive system debugger commands - summary

The above commands are available with both the interactive
system debugger (at the! prompt) and the Basic symbolic
debugger (at the * prompt).

The following commands are only acceptable to the
interactive system debugger and may only issued by users
whose account has SYS2 privileges and can only be issued when
the debugger is available.

A
will display the address at which the execution was
interrupted. This will normally be the same as the
address on the

! fid.ddd

display.

Caddress;window

Lfid

will display the contents of the virtual memory (the
number of bytes is specified by window) starting at
position specified by address, in character format, and
allow the user to amend the data.

will display the link fields of frame specified by fid.
For example:

!L12345<RETURN> 7: 12346 12344 2

indicating that there are 7 following contiguous frames
starting at forward link 12346, and 2 previous
contiguous frames starting at backward link 12344.

The TCL DUMP command also has options to display the
linkage information:

DUMP 12345 L

will display the linkage details on all the contiguous
frames following frame 12345, and

DUMP 12345 LU

will display the linkage details on all the contiguous
frames preceding frame 12345.

Xaddress;window
will display the contents of the virtual memory (the
number of bytes is specified by window) starting at
position specified by address, in hexadecimal format,
and allow the user to amend the data.

In addition to the Caddress;window command (to display

Page 6

MB-Guide to the system debugger

the data in character format) and the Xaddress;window
command (to display the data in hexadecimal format),
there is an Iaddress;window command (to display the data
as an integer number). In general the C and X forms
are easier to use and we shall not consider the I form
here.

4.3 Address

Interactive system debugger commands such as

Caddress;window
Xaddress;window

require you to specify the location of a part of the virtual
memory (disk) storage which is to be inspected and/or
changed.

On such commands, the location of the data within virtual
memory - its address - is specified by means of two pieces of
data: the frame identifier (the FlO), and the displacement.

The FlO of the frame may be expressed as a decimal number:

4660

to identify frame 4660 of the virtual memory storage, or as a
hexadecimal number:

.1234

referring to frame 4660 (hexadecimal 1234 = decimal 4660).
The preceding full stop indicates that the following address
is to be specified as a hexadecimal number.

4.4 Frames and data

In order to understand the concept of addresses and
displacement, let us look at the way in which data is held on
disk.

If we were to inspect the contents of a typical frame of
virtual memory storage, we might find that it looks like

FlO: 10136 : 0 10502 47771 0 (2798 : 0 2906 BA9B 0)

1 :OAKAI5ALS/15/77A5000A25A2000A8340A_00602200ASETTEE:
51 :, BROWN, OAK A36]20]10 AON/l/43]LS/4/65]ON/ll/70Al00:

101 :OA30 A2000]1000 A8320]8321]8312 A _00384444 ASETTEE, BL:
151 :ACK, ASHAADN/6/81Al000A30Al000A8320A _00511200 ADESK:
201 :, GREY, ASHAI6]32ALS/17/1]LS/17/2A5600A30Al000]300:
251 :O]2000 A8320]8302 A_003C4500 ACHAIR, RED, LAMINATE AI8:
301 :ALN/3/29A2500A60Al000A8345A_00409000ASIOEBOARD, YE:
351 :LLOW, ASHA99ADN/14/70AI3000AI5Al000A8345A_00415656:
401 :ASETTEE, BLUE-GREEN, MAPLEA6AON/56/40Al000A30A2000:
451 :A8306 A_00361234 ACHAIR, AUBERGINE, MAHOGANy A7 A DN/5/:

Page 7

MB-Guide to the system debugger

This display was produced on a PC implementation of Pick R83
version 3.1, and shows that the frames here are 512 bytes in
length (12 bytes for the control information which we discuss
in a moment plus 500 bytes for the data). On some systems,
the frames are 1024 bytes long (24 control bytes plus 1000
data bytes), on others they are 2048 bytes long (40 control
bytes plus 2000 data bytes).

By inspection, this frame would seem to be somewhere in the
middle of the group since the data starts with what looks
like the end of one record, and it ends with what appears to
be the first part of another record. The numbers 1 to 451
show the position of the first character on that line within
the data area of the frame. Thus, the letter 0 of OAK is in
byte 1 of the data area, the character A (immediately before
the 8306) is in byte 451 of the data area, and the final /
character is in byte 500 of the data area. Strictly
speaking, we should add 12 to these figures to allow for the
12 control bytes at the front of the frame.

As this illustrates, each frame of disk space consists of

* the control or linkage bytes. These are first 12 bytes
of each frame and enable that frame to be associated with
its overflow frames.

In this instance, the actual linkage bytes are not
displayed, but their contents are shown on the first
line:

FlO: 10136 : 0 10502 47771 0 (2798 o 2906 BA9B 0)

This tells us that

+ this shows the contents of frame 10136 (or frame 2798
in the hexadecimal notation);

+ that the data in this frame is continued from that in
frame 47771 (BA9B). This information is known as the
backward link;

+ that this data in this frame overflows into frame
10502 (2906). This information is known as the
forward link.

These are the first 12 bytes (of a 512-byte frame), the
first 24 bytes (of a 1024-byte frame), and so on.

* the data items.

The general format of a physical item is:

where ecce is the four-byte item length count, iii is the
item-id, ddd. eee, fff and so on are the data attributes
of the item and the character shown here as is the
end-of-item indicator.

Page 8

MB-Guide to the system debugger

In this illustration, familiarity with the data contents
allows us to identify that the section

101 :OA30 A2000]1000 A8320]8321]8312 A_00384444 A SETTEE, BL:
151 :ACK, ASHAADN/8/81A1000A30A1000A8320A_00511200ADESK:

contains the physical item

00384444'SETTEE, BLACK, ASHAADN/6/81A1000'30A1000A8320A_

The item length counter (0038 in this instance) is
maintained by the operating system whenever the item is
written to disk and tells the operating system the exact
physical length of this item. The item length counter is
held as a hexadecimal number (0038 hexadecimal is the
equivalent of decimal 56, in this instance). This field
gives the total length of

+ all the data attributes and field separators, plus

+ the item-id, plus

+ the end-of-item marker, plus

+ the four-byte count field itself.

The data in this particular example indicates that

+ the item-id is 4444

+ attribute 1 contains SETTEE, BLACK, ASH
+ attribute 2 is null
+ attribute 3 contains DN/6/81
+ attribute 4 contains 1000
+ attribute 5 contains 30
+ attribute 6 contains 1000
+ attribute 7 contains 8320

* the end-of-data marker. This is a final marker
indicating that there is no further data belonging to
this group.

This is one of the system separator characters. On most
implementations, as in the illustration shown below, this
is the segment mark (character 255), on other
implementations, it may be the attribute mark (character
254).

If we were to look at the last frame of the group, like this:

Page 9

1
51

101
151
201
251
301
351
401
451

MB-Guide to the system debugger

FlO: 23981 : 0 0 18131 0 (50AO : 0 0 4603 0)

:A_00684200 ASETTEE, GOLD, ASH A66]10 AXN/19/36]LS/6/6:
:Al000A30Al000]2000]3000]4000A8343]8345A_004C8117AS:
: IOEBOARO, GREY, OAK AO]OAMN/5/66]LN/91/55 A13000A15 A

:

:1000A8300]8339 A_005B2936 ASETTEE, GREY, OAK A36]20]1:
:OAON/l/2]LS/4/1]ON/l1/1 A700 A30 A2000]1000 A8344]8316:
:]8338A_003D1000 ADESK, GREEN-BLUE, ASH A8 AMN/17/81 A5:
:600A30 A2000 A8346 A · ·
·

we would observe several points:

* this is frame 23981 and it is a continuation of the
data in frame 18131 (as shown by the backward link),
but the data is not continued into any further frames
(the forward link is zero).

* the final item in the file is 0030 (hexadecimal
bytes) in length with the item id 1000, and the data
contents are

* of the two final _ characters, the first is the
end-of-item marker, and the second is the
end-of-group marker.

* the rest of the frame (shown here as dots) is of no
concern to our file and ;s just what happened to be
in this frame when it was last used prior to being
seized for use as overflow for our file.

FlO: 12345: 0 0 0 0 3039 : 0 0 0 0)

1
51

101
161
201
251
301
351
401
451

:00301000 AOESK, GREEN-BLUE, ASHA8ALS/17/81A5600A30A:
:2000A8205 A_003C2000 ASETTEE, YELLOW, OAK A18 AON/1/69:
:A10000A30A1000A8176A_00303000ASIOEBOARO, BLUE, ASH:
:A58AHN/5/56A13000A15A2000A8178A_003A4000AOESK, BLA:
:CK, MAPLEA68ALS/7/87A5600A30A1000A8173A_003B5000AS:
:ETTEE, ORANGE, ASHA24AON/19/3Al000A30Al000A8180A __ :
· . · .. . · ·
·

The locations of various pieces of data in this particular
instance are as follows:

* the four-byte count field 0030 of the first item starts
in the very first data byte at displacement 12 (that is,
the displacement is 1+12-1 = 12).

Page 10

MB-Guide to the system debugger

We use the number 12 because the first twelve bytes of
each frame are used for the control and linkage
information, to show how this frame is associated with
any other frames in that group of the file. The actual
frame comprises 512 bytes, these 12 control bytes and
then 500 bytes for data. Those systems which use
1024-byte frame, 24 bytes are used for control purposes,
leaving 1000 for data; some implementations use a
2048-byte frame with 48 bytes for control information and
48 bytes for data. In this situation, you would use 24
or 48, respectively, where we use 12 in our calculations
here.

* the four-bytes count field 003C of the second item starts
at displacement 73 (that is, 62+12-1)

* the end-of-data marker after the very last item starts at
displacement 311 (that is, 300+12-1)

4.5 Displacement

Having specified the FlO of the frame, the position within
the frame of the data which we are interested in is specified
by means of the displacement. Thus, the first byte in frame
4660 has a displacement of 0 and is identified by the address

4660,0

When calculating the displacement, you should remember that
the first 12 (or 24 or 48) bytes of the frame which are used
to held the linkage information; these must be included in
the displacement count, even if they are not shown on the
display produced by the TCL DUMP command. Thus, if you wish
to patch the first bytes of data in a 512-byte frame, this
will have a displacement of 12 (not 0 and not 1):

4660,12

If you wish to specify the displacement in hexadecimal, then
you will use the full stop instead of the comma:

4660.B

or the equivalent forms

.1234.B
or

.1234,12

Since you will frequently use the TCL DUMP command to locate
the data which you want to inspect, you should be aware of
the manner in which the DUMP output is displayed. It may be
as shown above, where the control/linkage bytes are not shown
and the numbering starts at 1. Some other displays formats
are:

1) showing the linkage bytes and numbering the bytes from O.

Page 11

MB-Guide to the system debugger

000 ..•......... 002AS100 AMICHAEL SMITH A34 HIGH STAANYT
050 ON A_0027Bl00 AMARY BROWN A12 MAIN RDABEATON A ??????
100 ??
150 ??
200 ??
250 ??
300 ??
350 ??
400 ??
450 ??
500 ????????????

In this case, the displacement is derived directly from the
display. Thus the 0 of ANY TON has a displacement of 50.

2) not showing the linkage bytes and numbering the data bytes
from O.

000 002AS100 AMICHAEL SMITH A34 HIGH STAANYTON A 0027Bl00
050 AMARY BROWN A12 MAIN RDABEATON A ??????????????????
100 ??
150 ??
200 ??
250 ??
300 ??
350 ??
400 ??
450 ??

In this case, the displacement is derived by adding 11 (that
is, adding 12 and subtracting 1) to the number shown on the
display. Thus the A immediately before MARY BROWN has a
displacement of 61 (50 plus 11).

3) showing the linkage bytes and numbering the bytes from 1.

001 0029S100 AMICHAEL SMITH A34 HIGH STAANYT
051 ON A0026B100 AMARY BROWN A12 MAIN RDABEATON AA ????????
101 ??
151 ??
201 ??
251 ??
301 ??
351 ??
401 ??
451 ??
501 ????????????

In this case, the displacement is derived by subtracting 1
from the number shown on the display. Thus the a of ANYTON
has a displacement of 50 (51 minus 1), and the A immediately
before MARY BROWN has a displacement of 61 (62 minus 1).

Page 12

MB-Guide to the system debugger

If the frame-size on your implementation is larger, or the
display numbering differs, then you must amend your
calculations accordingly.

4.6 Window

A third piece of information which may be required is the
window. This is simply the length of the data which is to be
displayed or changed.

This can be expressed as a decimal number:

10

or as a hexadecimal number

.A

4.7 Address and window - examples

Here are some further examples of FlO, displacement and
window specifications:

75169,0;12
to display the 12 bytes start starting at the first
byte of frame 75169

61986,374;.58
to display the 88 bytes start starting at the 375th
byte of frame 61986

33397.1AE;73
to display the 73 bytes start starting at the 431st
byte of frame 33397

67918.C2;.11A
to display the 282 bytes start starting at the 195th
byte of frame 67918

.8447,339;82
to display the 82 bytes start starting at the 340th
byte of frame 33863

.3E12,40; .50
to display the 93 bytes start starting at the 41st byte
of frame 15890

.E5BE.8;500
to display the 500 bytes start starting at the 9th byte
of frame 58814

.1 OE5F. 158; .2B
to display the 43 bytes start starting at the 345th
byte of frame 69215

5 Inspecting frames of virtual memory

The C, I and X commands of the interactive system debugger
are used to display and/or change the contents of any part of

Page 13

MB-Guide to the system debugger

the disk storage.

These commands will include the address (the location) of
the first character of the data to be displayed and the
window (the length) of the string of data to be displayed.

Caddress;window
will display the contents of the virtual memory (the
number of bytes is specified by window) starting at
position specified by address, in character format, and
allow the user to amend the data.

For example, the command

C1234,56;10

will display the 10 bytes starting at byte 56 of frame
1234, outputting the data in character format. Not
graphic characters will be shown as full stops.

Xaddress;window
will display the contents of the virtual memory (the
number of bytes is specified by window) starting at
position specified by address, in hexadecimal format,
and allow the user to amend the data.

For example, the command

X1234,56;10

will display the 10 bytes starting at byte 56 of frame
1234, outputting the data in hexadecimal format.

The format of the address and the window are discussed
above. If the window specification is omitted, then the size
of the last window specification will be assumed.

In each case, the debugger will display the current contents
of the specified window of the frame in the required format,
and then invite the user to enter the new contents of that
window. For example, if we issue any of the above commands,
the sequence might look like this:

!C12345,56;10 44-7FF'9CO=

!X12345,56;10 .34342D374646FE394330=

showing the contents of the 10 bytes in character format and
hexadecimal format, respectively.

At this point, there are several possible courses of action.
You may abandon the process, look at a further window or
change the data in the window. Your choice is one of the
following commands:

<RETURN>
will leave the data unchanged and return to the
prompt.

Page 14

MB-Guide to the system debugger

<LINE FEED>
will leave the data unchanged and pass on to display
the data in the next window.

<CTRL>N
will leave the data unchanged and then pass on to the
next window, displaying the address and the data there.
The letters EOF indicate that the end of the frame has
been reached.

<CTRL>P
will leave the data unchanged and then pass on to the
previous window, displaying the address and the data
there. The letters EOF indicate that the start of the
frame has been reached.

C<LINE FEED>
C<RETURN>

will redisplay the window in character format.

I<LINE FEED>
I<RETURN>

will redisplay the last two bytes of the window as a
decimal number.

X<LINE FEED>
X<RETURN>

will redisplay the window in hexadecimal format.

In the following section, we see how to change the data in
the window.

5.1 Changing frames of virtual memory

When the Caddress;window or Xaddress;window command has been
issued and the appropriate data displayed, the debugger will
give the user an opportunity to change that data:

C1234,56;7 12 .. 34A=

showing that the seven bytes starting at the 57th byte of
frame 1234 currently contain the characters

12 .. 34A

If the contents of the window are to be changed,

AND THIS SHOULD ONLY BE DONE BY AN
EXPERIENCED PICK USER AND WITH FULL
AWARENESS OF THE POTENTIALLY DISASTROUS
CONSEQUENCES OF MAKING A MISTAKE,

then the replacement data may be now be entered. The
replacement data may be expressed in any of the following
forms:

'ccccc<RETURN>

Page 15

MB-Guide to the system debugger

will replace the data in the window by the characters
ccccc. The apostrophe indicates that character data
follows .

. xxxxxxxx<RETURN>
will replace the data in the window by the hexadecimal
string xxxxxxxx - there must be an even number of
hexadecimal digits. The full stop indicates that
hexadecimal data follows.

Less likely, are the these responses:

O<RETURN>
will replace the data in the window by a string of null
characters (hexadecimal 00).

The fact that only the number 0 need be entered,
thereby setting the entire contents of the window to
nulls, makes this a most dangerous feature of the system
debugger, and one that should only be used by technical
users who really know what they are doing.

n<RETURN>
will replace the data in the window by the integer
value n. Since it is most unlikely that anyone (except
an Assembly language programmer) would know the integer
equivalent of any particular string, this form is rarely
used.

If the replacement data consists entirely of the normal
keyboard characters, then this may be conveniently expressed
as characters by means of the

'cccccccccc

specification.

If the correct data, which is to be entered, contains any
special characters, such as

field-separators,
attribute marks,
value marks,
subvalue marks,
segment marks,
the end-of-item marker, or the
end-of-data marker,

then the replacement data is most conveniently expressed in
hexadecimal notation by means of the

.xxxxxxxxxx

specification. The hexadecimal equivalents of the various
characters can be found in a table of ASCII characters.

In all cases (except for the single 0 specification), the
new entire string of data is used irrespective of the length
of the string specified by the window. Thus, if the new

Page 16

MB-Guide to the system debugger

string is shorter than the original string which was
specified by the window, then the additional characters will
be unchanged, and if the new string is 70nger than the
original string, then the extra characters outside the window
will be replaced.

Below, we discuss some applications of this technique in
patching a frame.

5.2 Patching a frame

In the MB-Gujde to Group Format Errors, we see that a final
- and most desperate - means of recovering data which has
been lost as a result of a group format error is to use the
interactive system debugger to patch the offending frame,
replacing the actual incorrect bytes by correct data.

We include this technique here to illustrate an application
of the interactive system debugger.

In order to patch a frame you must know:

* the exact location of the incorrect data. This is the
address of the data.

* the length of the incorrect data. This is the window.

* the contents of the incorrect data. This enables you
to confirm that you have displayed (and will be
changing) the string which you want to change.

* the exact contents of the correct data. You should
write down the exact characters which you want to put
into the frame.

Armed with this information, you are now ready to patch the
frame. The steps to be taken are as follows:

1) use the Tel DUMP command to print a copy of the data
contents of the frame before you start to make any
changes. For example, the command

DUMP 12345 XP

will print the contents of frame 12345 in character and
also in hexadecimal format. The hexadecimal format will
show any characters will cannot be printed.

2) enter the interactive system debugger by hitting the
<BREAK> key.

You can do this from any terminal and at any point in
your processing: in the middle of a process or,
preferably, at Tel.

3) when you get the ! prompt character, enter your
specifications in the form

f,d;w

Page 17

MB-Guide to the system debugger

where f is the FlO of the frame which is to be patched;
dis the displacement of the first byte in the string
which is to be changed; w is the window (the length of
the data string to be changed).

Pay particular to the punctuation here: a comma follows
the FlO and a semi-colon follows the displacement. An
invalid command will be rejected by the interactive
system debugger.

4) the debugger will then display the w characters
starting at byte displacement d. Confirm that this is
the offending string.

If this is the wrong string, hit <RETURN> and try again
from step (3).

5) Enter the correct data as a series of pairs of
hexadecimal characters (preceded by a full stop) or as a
series of display characters (preceded by an
apostrophe). For example:

.FF
or

'0030

6) When you are satisfied that you have entered the
correct data, hit the <RETURN> key.

7) Abandon the interactive system debugger by entering

END

followed by the <RETURN> key.

8) DUMP a copy of the frame after you have made the
changes and confirm that the action has taken place
successfully.

5.3 Patching a frame - some examples

In this section, we present some examples of the use which
the experienced technical user is likely to make of the
interactive system debugger.

We would again stress the care which should be taken when
patching any frames.

5.4 Example 1: clearing a frame

Let us suppose that we wish to set an end-of-data marker in
the first data byte of this frame:

Page 18

MB-Guide to the system debugger

FIO: 12345: 0 0 0 0 (3039 : 0 0 0 0)

1
51

101
151
201
251
301
351
401
451

:00301000 ADESK, GREEN-BLUE, ASHA8ALS/17/81A5600A30A:
:2000 A8205 A_003C2000 ASETTEE, YELLOW, OAK A18ADN/1/69:
:A10000A30A1000A8176A_00303000ASIDEBOARO, BLUE, ASH:
:A58AMN/5/56A13000A15A2000A8178A_003A4000ADESK, BLA:
:CK, MAPLEA68ALS/7/87A5600A30A1000A8173A_003B5000AS:
:ETTEE, ORANGE, ASHA24ADN/19/3A1000A30A1000A8180A __ :
· . · .. .
· . · .. . ·
·

This will effectively cancel this and the remaining frames in
the group. The first part of the dialogue with the debugger
might look like this:

!C12345,12;1 0=

the interactive system debugger indicating that this byte
currently contains a zero. To change this to an end-of-data
marker (hexadecimal FF in this instance), I should enter the

to indicate that I am specifying the data as a set of
hexadecimal digits, followed by

FF

(the hexadecimal equivalent of the end-of-data marker), and
finally I should hit the <RETURN> key. The display might
look like

!C12345,12;1 O=.FF<RETURN>

If you feel that you will be likely to need to practise this
technique, then it is a good plan to create a dummy file and
a large dummy item with recognisable data and use this to
patch parts of the data of the item. This will be perfectly
safe, provided that you do not alter the item-length counter
or the final end-of-item marker. When you have practised
sufficiently, you should delete the file.

5.5 Example 2: clearing the backward/forward links

Let us suppose that some problem has occurred with the result
that the forward and backward link of this frame have become
corrupted:

Page 19

MB-Guide to the system debugger

FlO 1234 : 0 -382533399 1023469895 0 (402 : 0 3300E9 E947 0)

1
51

101
151
201
251
301
351
401
451

:00301000~OESK, GREEN-BLUE, ASH~8~LS/17/81~5600~30A:

:2000~8205~ _003C2000~SETTEE, YELLOW, OAK~18ADN/1/69:
:Al0000A30~1000A8176~_00303000ASIDEBOARO, BLUE, ASH:
:~58~MN/5/56A13000A15A2000A8178A_003A4000ADESK, BLA:
:CK, MAPLEA68ALS/7/87A5600A30~1000A8173A_003B5000AS:
:ETTEE, ORANGE, ASHA24ADN/19/3Al000A30A1000A8180A __ :
· · . · .. . · . · ·

To overcome the problem, we must reset the entire
control/linkage bytes to O. The 12 control/linkage bytes
start at displacement 0, so we could do this by means of the
sequence

X1234,O;12

We use the X command since the C would show the data in
character format and, in this instance, most of these would
be non-printable characters. The debugger's response would
be

. 2600E93300E93DOOE94700E9=

and we could set this entire string to null by entering

O<RETURN>

So the entire sequence would look like this on the screen:

!X1234,O;12 .2600E93300E93DOOE94700E9=0

5.6 Example 3: recovering a lost item

As our third example, let us suppose that we have
inadvertently deleted item 5000 of a file. But, since the
item lay at the end of its group, it is still visible when we
dump the appropriate frame:

FlO: 12345: 0 0 0 0 (3039 : 0 0 0 0)

1
51

101
151
201
251
301
351
401
451

:00301000 AOESK, GREEN-BLUE, ASHA8ALS/17/81A5600A30A:
:2000~8205A_003C2000~SETTEE, YELLOW, OAK~18ADN/1/69:
:~10000~30~1000A8176A_00303000ASIDEBOARO, BLUE, ASH:
:A58~MN/5/56A13000~15A2000A8178A_003A4000ADESK, BLA:
:CK, MAPLE~68ALS/7/87~5600A30A1000A8173A __ 03B5000AS:
:ETTEE, ORANGE, ASH~24ADN/19/3Al000A30A1000~8180A __ :
· . · .. . · ·
·

Page 20

MB-Guide to the system debugger

It is only the end-of-group marker - that is the second
character in this sequence:

which prevents us from accessing the following item, 5000.
By inspection, we see that the four-byte item-length counter
for item 5000 should be

003B

so by replacing the end-of-group marker by a 0, we can
re-instate item 5000.

The offending _ character is in position 241 on the DUMP
display. Adding 12 (the length of control/linkage field) and
subtracting 1 (the number of the first data byte), we see
that this has a displacement of 252. So our debug command
would be:

C12345,252;1

The debugger's response would be

=

and we could replace this by a by entering

'O<RETURN>

So the entire sequence would look like this on the screen:

!C12345,252;1 _='0

The item will now be accessible once again. Obviously this
method of recovering a lost item can only be used when

* the item was the last item in its group before it was
deleted (otherwise, all the trailing items would have
been shifted up and overwritten the item when it was
deleted).

* the item did not overflow into another frame (otherwise,
the overflow frames would have been released when the
item was deleted).

6 Arithmetic and conversion commands

There are several Tel commands which can be issued from
within the interactive system debugger. These are provided
as a tool and allow to convert decimal/hexadecimal values
without leaving the debugger.

ADDD decimalnumber1 decimalnumber2
to add together two decimal numbers and display the
result.

ADDX hexnumberl hexnumber2
to add together two hexadecimal numbers and display the

Page 21

MB-Guide to the system debugger

result.

DIVD decimalnumber1 decimalnumber2
to divide one decimal number by another and display two
results: the quotient and the remainder.

DIVX hexnumber1 hexnumber2
to divide one hexadecimal number by another and display
two results: the quotient and the remainder.

DTX decimalnumber
to convert a decimal number to hexadecimal and display
the result.

DTX base decimalnumber
to convert a decimal to any other base and display the
result. If the base is omitted, 16 is assumed.

MULD decimalnumber1 decimalnumber2
to multiply together two decimal numbers and display
the result.

MULX hexnumber1 hexnumber2
to multiply together two hexadecimal numbers and
display the result.

SUBD decimalnumber1 decimalnumber2
to subtract one decimal number from another and display
the difference.

SUBX hexnumber1 hexnumber2
to subtract one hexadecimal number from another and
display the difference.

XTD hex number
to convert a hexadecimal number to decimal and display
the result.

XTD base basenumber
to convert a number from any other base to decimal and
display the result. If the base is omitted, 16 is
assumed.

The following table illustrates some examples of these
commands:

Page 22

MB-Guide to the system debugger

Command Result

ADDD 987 432 1419
ADDX FACE CAFE 1C5CC
DIVD 987 432 2 123
DIVX FACE CAFE 1 2FDO
DTX 98765 181CD
DTX 32 98765 30ED
MULD 987 432 426384
MULX FACE CAFE C6DF6464
SUBD 987 432 555
SUBX FACE CAFE 2FDO
XTD FACE 64206
XTD 32 FACE 502158

7 The debug commands

The primary purpose of the interactive system debugger is
for the identification, location and correction of errors in
Assembly language routines. In this respect, the interactive
system debugger offers similar options to the Basic symbolic
debugger:

* allowing the processing to interrupt when a specified
number of instructions have been executed;

* allowing the processing to interrupt when anyone of up
to four breakpoints is reached.

* allowing the programmer to display specific data
elements and registers.

* allowing the programmer to execute the process step by
step, and to specify the size of the steps.

* allowing the programmer to display the table of
breakpoints and traces.

This area is of interest to Assembler language programmers
and is therefore outside the scope of this present beginner's
guide, but we summarise the available commands here:

B {address}
will set a breakpoint at the address specified.

The K command will kill a breakpoint which has
previously been set by the B command.

B fid.O

D

DB

will set a breakpoint at every entry point in the frame
speci fi ed.

will display the current table of breakpoints and
traces.

Page 23

MB-Guide to the system debugger

This is only available from the SYSPROG account and
switches the interactive system debugger facilities on
and off. When the interactive system debugger is off,
the facilities to display and/or change parts of virtual
memory cannot be used.

E {instructions}

E

will set the number of instructions which are to be
executed between interrupts.

will cancel any previous Einstructions setting.

G {address}
will cause the processing to continue from the address
specified. Address is specified in the format shown
below. If address is omitted, the processing will
continue from the point of interruption.

K {address}
will kill a breakpoint which has previously been set by
the B command.

L {address}
will display the linkage information for the frame
specified by the address.

If the address is omitted, the linkage information for
the current frame - at which the interrupt occurred -
will be displayed.

M {address}
will switch the modal trace on/off. When the modal
trace is active, the processing is interrupted each time
a new frame is entered.

ME {port}
will assign all

N {count}
will continue processing until the specified number of
breakpoints have been passed.

T {address}
will add an entry to the trace table so that the
contents of the data element and its address will be
displayed each time the element changes.

U {address}
will cancel the trace table entry added by the most
recent T command. If the address is omitted, then all
entries will be cancelled.

Y {address}
will add an entry to the V-trace table so that the
contents of the data element and its address will be
displayed each time the element changes.

Z {address}

Page 24

MB-Guide to the system debugger

will cancel the y-trace table entry added by the most
recent Y command .. If the address is omitted, then all
entries will be cancelled.

8 Error messages

All debugger commands must be entered in upper-case, as
indicated here.

The interactive system debugger error messages are fairly
laconic.

BAD CHAR

CMND?

is displayed when the response to a C or X command is
not of the correct format.

is displayed in many situations:

* if the debugger is not available.

* if an invalid command is entered,

* if a command with the wrong format is entered.

ILLGL SYM
if an invalid command is entered.

WINDOW
if an invalid window is specified, or if an invalid
response is given when displaying a window.

Page 25

MB-Guide to the system debugger

9 Glossary

The following terms are used in this MB-Guide:

In this and the other MB-Guides, the keyboard control keys
have been represented by their name enclosed in angle
brackets:

<BREAK>

(CTRL)

<ENTER>

<ESC>

identifies the break key or the equivalent
sequence which interrupts the current process.

identifies the control key.

Certain characters are entered at the keyboard
as a combination of one or more of the above keys
together with other keyboard characters. For
example, the subva1ue-mark (character 252) may be
entered as:

<CTRL> \

that is, by holding down the <CTRL> key and
typing the normal \ character at the same time.
Similarly, the value-mark can be keyed in as the
sequence <CTRL>] and the attribute-mark as the
sequence <CTRL> A

identifies the ENTER key which is used to
transmit each piece of data to the system.

This is generally represented by the <RETURN>
key in the text.

identifies the ESCAPE key.

<LINE FEED> identifies the line-feed key. On some
keyboards, this may be the down-pointing arrow.
The sequence <CTRL> J is equivalent.

<RETURN> identifies the RETURN key which is used to
transmit each piece of data to the system.

On some keyboards, this may be the <ENTER> key
or the down-left-pointing arrow key. The
sequence <CTRL> M is equivalent.

Page 26

MB-Guide to the system debugger

errors

* errors

<BREAK> key 2,
<CTRL> key 26
<ESC> key 26

3, 26

<LINE FEED> key 5, 26
<RETURN> key 5, 26

A command 6
ADDD command 21
Address 7
ADDX command 21
Arithmetic commands 21

B command 23
Backward link 19
BAD CHAR message 25

Index

Basic symbolic debugger 1, 3

C command 6, 14
Change the contents of a frame 15
Clearing a frame 18
Clearing the backward/forward links 19
CMND? message 25
Commands 3, 5, 6

D command 23
Data conversion commands 21
DB command 4, 24
DEBUG Basic statement 3
Debugger commands 3, 5, 6, 23
Displacement 11,13,19
Display the contents of a frame
DIYD command 22
DIYX command 22
DTX command 22
DUMP command 6, 17

E command 24
END command 2, 5
End-users and the debugger
Error messages 25

FID 7
Forward link 19
Frame format 11
Frames 7

G command 2, 5, 24
Glossary 26
Group format errors 4

I command 7
ILLGL SYM message 25

13, 15

Inspect the contents of a frame 13

Page 27

MB-Guide to the system debugger

Invoking the debugger 3

K command 24

L command 6, 24
Linkage information 6

M command
ME command
MULD command
MULX command

N command

OFF command

24
24

22
22

24

2, 5

P command 5
Patching a frame 17,18,19,20
Patching the backward/forward links 19

Recovering a lost item 20

SUBD command 22
SUBX command 22
Switching the debugger on/off 24

T command 24

U command 24
Users and the debugger

Wi ndow 13, 19
WINDOW message 25

X command 6, 14
XTD command 22

Y command 24

Z command 25

Page 28

MB-Guide to the system debugger

MB-Guides

MB-Guides are designed to serve as introductory texts to a
range of fundamental topics within the Pick operating
system. They will be available for the following subjects:

MB-Guide to Access conversions and correlatives
MB-Guide to Access sentences
MB-Guide to Basic programming
MB-Guide to Creating and using Procs
MB-Guide to using the Editors
MB-Guide to File design
MB-Guide to File-save and file-restore
MB-Guide to Files: monitoring and sizing
MB-Guide to Group format errors
MB-GIJide to Operations and systems management
MB-Guide to Pick on the PC
MB-Guide to Program design
MB-Guide to Security
MB-Guide to The Basic symbolic debugger
MB-Guide to The spooler
MB-Guide to The system debugger
MB-Guide to Using backing storage

The format of the MB-Guides is such that they may be easily
updated and amended to reflect the current state of the
operating system. In order that this and the other Mating
MB-Guides continue to meet the needs of the users, we would
appreciate your comments on this guide and your suggestions
for further titles in this series.

MB-Master seTf tuition courses are also available on a wide
range of topics related to the Pick operating system:

Access techniques
Advancing in Basic
Moving to Basic - a conversion course
Pick systems management
Programming in Basic
Starting Access
Starting ACCU!PLOT
Starting CompuSheet+
Starting Jet
Starting Pick
Starting Runoff
Starting SB+
Systems development
Writing Procs

Page 29

MB-Guide beginner's guides

If you have any comments on this MB-Guide or any suggestions
for further title in the series, then please send your
suggestions to:

MALCOLM BULL
MALCOLM BULL TRAINING AND CONSULTANCY SERVICES

19 Smith House Lane
BRIGHOUSE

west Yorkshire
HD6 2JY

Telephone: 0484-713677 Fax: 0484-714112

We are particularly concerned about:

* any additional information which you would like.

* any topics which you feel are superfluous.

* any inaccuracies which you noticed.

* any areas in which the information given in the
MB-Guide did not apply to your implementation. Please
indicate what implementation you were using.

* any other suggestions, observations and comments.

If you do write to us, please give your name and address so
that we can acknowledge your contribution in the next Edition
of this MB-Guide.

MB-Guides

The booklets in the ME-Guide series cover a
range of fundamental topics of interest to
users and those responsible for running Pick
"ystems.

Fnch MB-Guide deals wiLh a specific a>'lp""t. of
the operating system and the booklets
represent an economical introduction to the
various topics and the wholp Bl'ries for'Rls an
integrated presentation of the subject matter.

The booklets are intended to be a working
document and, for this reason, space is
provided for the user's notes, and the reader
i" encouraged to amend the booklet so that it
applies to his/her own system.

It is anticipated that the series of
ME-Guides will he of special interest to new
users, and it should prove useful for software
houses and others who are responsible for the
instruction of their clients and staff in the
fundamental aspects of the Pick operating
"ystem.

Malcolm Bull

Training and Consultancy Publications

s
y

e
r

i
I

