| Malcolm Bull
| Training and Consultancy Publications
|

© Malcolm Bull

MB-Guide
to

the
Basic
Debugger

Malcolm Bull

MB-Guide
to
Basic symbolic debugger

MB-Guide
to

Basic symbolic debugger

by

Malcolm Bull

(c) Malcolm Bull 1991

MALCOLM BULL Training and Consultancy Services

MB-Guide to the Basic debugger

Introduction

This MB-Guide to the Basic debugger is produced for those who
need a quick introduction to the features of the debugger
which is available for use with Basic programs on the Pick
operating system.

The guide is primarily aimed at the experienced programmer,
although there are parts which might be of interest to the
less technical end-user.

This MB-Guide contains:
1) A general introduction to the Basic debugger

2) A description of the individual commands which are
available for use with the Basic debugger

3) A how-to section describing how to achieve specific
effects with the Basic debugger.

You may find the following titles in the MB-Guide series
useful in conjunction with the present volume:

Program design
Basic programming
The system debugger

This MB-Guide is not intended to present a complete
description of the subject but merely to place it in context
and give the reader enough information to use the facilities
and to survive.

Best use can be made of this MB-Guide if it is read in
conjunction with the reference literature which is provided
for your system. You should amend your copy of this guide so
that it accurately reflects the situation and the commands
which are used on the implementation which you are using. By
doing this, your MB-Guide will become a working document

that you can use in your daily work.

I hope that you enjoy reading and using this MB-Guide and
the others in the series.

Malcolm Bull

Introduction / 1

MB-Guide to the Basic debugger

(c) MALCOLM BULL 1991

Malcolm Bull

Training and Consultancy Publications
19 Smith House Lane

BRIGHOUSE

HD6 2JY

west Yorkshire

0484-713577

ISBN: 1 873283 10 5

No part of this publication may be photocopied, printed or
otherwise reproduced, nor may it be stored in a retrieval
system, nor may it be transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or
otherwise without prior written consent of Malcolm Bull
Training and Consultancy Services. 1In the event of any
copies being made without such consent or the foregoing
restrictions being otherwise infringed without such consent,
the purchaser shall be liable to pay to Malcolm Bull Training
and Consultancy Services a sum not less than the purchase
price for each copy made.

Whilst every care has been taken in the production of the
materials, MALCOLM BULL assumes no liability with respect to
the document nor to the use of the information presented
therein.

The Pick Operating System is a proprietary software product
of Pick Systems, Irvine, California, USA. This publication
contains material whose use is restricted to authorised users
of the Pick Operating System. Any other use of the
descriptions and information contained herein is improper.

The use of the name PICK and all other trademarks and
registered trademarks is acknowledged and respected.

MB-Guide to the Basic debugger

Section

w

»

NN

&b

OO OO Om

—atomstmuu:-wm-A

Y
pry

—- et -
o wN

.16

-k b ok A ek ek ok A b b mh b A ek ok ok —d b
.«

.1.19

.1.21

Introduction
Invoking the Basic debugger
Fundamental responses

Using the debugger
Symbo1l table
Trace tabile

BASIC verb

RUN verb
Errors

Debugger commands - summary
Debug commands

? or $ command

/ command

[zone command
B command

D command

DE or DEBUG command
E command

END command

G command

K command

L command

LP command

N command

OFF command

P command

PC command
command
command
command
command
command

NC—HOWXD

Debugger messages
How to ...

Glossary

Page

(3] & ww N - —

~ o

Contents / 1

MB-Guide to the Basic symbolic debugger

Introduction

The Basic debugger - also known as the symbolic debugger -
is a standard part of the Pick operating system. Its
functions are

x to signal the occurrence of a run-time error during the
execution of a Basic program, and then (possibly)

x to allow the programmer to fix the error and/or restart
the program.

% to trace the flow of processing through an executing
Basic program in order to observe the contents of the
variables.

Invoking the Basic debugger

Under normal circumstances, it is possible to interrupt any
process by pressing the <(BREAK> key on the terminal keyboard.
If you interrupt a Basic program whilst it is executing,

then you will get a display something like:

*40
*

showing that you are in the Basic symbolic debugger and you
have interrupted the program at line 40.

If you interrupt any other process, such as an Access report
or a Basic program compilation, you will get a display
something like:

I 123.45
!

showing that the process has stopped at the instruction at
byte 45 (hexadecimal 45 = decimal 69) of frame number 123,
and you are in the interactive debugger or the system
debugger. This is discussed further in the MB-Guide to the
system debugger.

In addition to entry to the Basic debugger on the detection
of an error condition within a Basic program, you may also
use the Basic

DEBUG

statement within your program as a debugging aid to force an
interrupt when a suspect piece of coding is about to be
executed.

Advanced Pick has a TCL DEBUG statement to invoke such an
interrupt. This is an alternative to the <(BREAK> key as the
(BREAK> key serves another function on Open Architecture and
Advanced Pick implementations.

Page 1

1.2

MB-Guide to the Basic symbolic debugger

Fundamental responses
Whenever the Basic debugger displays the

x
prompt, you can enter any of the following responses:

<RETURN>
used on its own, the <(RETURN> key has no effect, except
to repeat the x prompt.

In general, <RETURN> after any of the debug commands shown
below will process the command but stay in the debug mode.

<LINE FEED>
to continue the processing, if possibie. This is
identical to the G command described below.

P<RETURN>
to switch the terminal print output function ON or OFF,
and suppress the display to the terminal screen.

END<RETURN>
to terminate the processing and return to TCL, unless
your account definition prevents you from doing this.

END<LINE FEED>
to terminate the current activity and return the
processing to the calling Proc, if any.

OFF<LINE FEED>
to terminate the current activity and log off the
account.

OFF<RETURN>
to terminate the current activity and log off the
account.

<CTRL> J
to continue the processing, if possible. This is
identical to the <LINE FEED> command described above,
and is valuable if you are using a terminal with no
<LINE FEED> key.

to continue the processing, if possible. This is
identical to the <LINE FEED> command described above,
and is valuable if you are using a terminal with no
<LINE FEED> key.

The above commands are available with both the Interactive
debugger (the ! prompt) and the Basic debugger (the x
prompt).

The most powerful use of the Basic debugger is in locating
(and possibly fixing) errors in a Basic program.

Page 2

MB-Guide to the Basic symbolic debugger

Using the debugger

The Basic debugger will let you:

* abandon the execution of the program.
* go through the program instruction by instruction.
* redirect the processing to a specific statement or to

the beginning of the program.

* inspect the contents of any of the variables in the
program.

x change the contents of any of the variables in the
program.

* establish a set of break conditions. When any one of

these conditions occurs, the program execution will
interrupt and the Basic debugger will be invoked.

* specify that the program execution is to proceeds in
steps of n instructions. The program execution will
then interrupt after every nth instruction and the Basic
debugger will be invoked.

* specify a set of up to six variables which are to be
displayed whenever an interruption occurs.

x display the source statements of any program (or indeed
any item on any file).

Symbol table

Before we look at the Basic debugger, there are two entities
which you must be aware of - the symbol table and the trace
table.

The symbol table is a map used by the Basic run-time
processor and identifies the location of each variable by
name. A typical symbol table might look like this:

COOOAOOOOOOOOREFNO
C001400000000RECORD
COO1EOO0OAOO0 1NAME
CO01E00000000DOB
C002800000000FILE
L008200000000X
LOO8CO0000000REC
LO09600000000RECNO
LOOA000000000

The names of the variables can be recognised in this table.

The symbol table is produced when the program is compiled.
The following points are important:

x On most Pick implementations, the symbol table is
generated automatically at compilation time and is held

Page 3

MB-Guide to the Basic symbolic debugger

immediately behind the object code. The production of
the symbol table can be suppressed by the S option on
the Basic verb, as described below.

x On McDonnell Douglas implementations, the symbol table
is generated by the M option on the BASIC verb and is
held as a separate item (called *programname) on the
same file as the program.

The symbol table must be available in order to use the full
features of the Basic debugger, and especially those which
allow you to identify each variable by name.

Trace table

The trace table is a 1list which is held and maintained by
the Basic debugger, and contains the names of

1) up to six variables which are to be displayed each time
the program execution is interrupted.

2) a set of up to four break conditions, the satisfaction
of any one of which will invoke an interruption in the
processing.

The trace table is empty when a program begins to execute.
The contents are retained throughout the execution of a
program (and its subroutines) and they are lost when the
execution ends. The appearance of the trace table (as
displayed by the D command) will then look like that in
diagram (a).

T1 T1 SALES.FIGS
T2 T2 NAME
T3 T3
T4 T4
TS5 T5
T6 T6
B1 B1 $>30
B2 B2 CODE=’YES’&NAME=""
B3 B3
B4 B4
(a) empty (b) 1in use

By means of T and B commands which you give conversationally
to the Basic debugger, you will specify the variables and the
break conditions - if any - which are to go into the trace
table. The appearance of the trace table (as displayed by
the D command) may then look like that in diagram (b).

As you add each variable name and/or break condition to the
trace table, the debugger will respond with a

+
to indicate that the entry has been accepted. If you

attempt to add to many entries to the trace table, then the
debugger will respond with the

Page 4

MB-Guide to the Basic symbolic debugger

TBL FULL
message
You may subsequently wish to remove variables break
conditions from the trace table (by means of the U and K
commands). As you remove each variable name and/or break

condition from the trace table, the debugger will respond
with a

to indicate that the entry has been removed.

BASIC verb

The options which you use when you compile your Basic program
have some impact on the use of the Basic debugger with the
compiled program.

The purpose of the BASIC verb is to compile your program (or
programs), check for and report any syntax errors and - if
there are no errors - produce an equivalent object program.

BASIC filename itemlist {(options)}

Examples:

BASIC SALES.PROGS ADD.RECORDS
BASIC STOCK.BP ADD.STOCK AMEND.STOCK DELETE-STOCK
BASIC RU.PROGS x*

SSELECT PROGS = "[AMEND]"
BASIC PROGS

Some implementations also offer the forms:
COMPILE filename itemlist {(options)}

The following options on the BASIC (and the COMPILE) verb are
important if you intend to use the Basic debugger:

[o] to produce an object program without end-of-1ine
characters. This produces a smaller object program but
any Basic debugger operations which refer to the
line-numbers will work successfully since the run-time
processor always thinks it is on 1line number 1.

You should not use this option if you wish to use the
full facilities of the Basic debugger with the program.

S to suppress the production of the debug symbol table.

You should not use this option if you wish to use the
full facilities of the Basic debugger with the program.

Page 5

MB-Guide to the Basic symbolic debugger

If you are using McDonnell Douglas implementations, the
corresponding options are:

E to produce an object program without end-of-1ine
characters. This produces a smaller object program but
any Basic debugger operations which refer to the
Tine-numbers will work successfully since the run-time
processor always thinks it is on 1ine number 1.

You should not use this option if you wish to use the
full facilities of the Basic debugger with the program.

M to produce the symbol table (for use with the interactive
debugger) and output a program map showing the names of
the variables used, the statement labels used, and the

distribution of the program statements across disk
frames.

You should use this option if you wish to use the full
facilities of the Basic debugger with the program.

Full details of the BASIC verb are given in the MB-Guide to
Basic programming.

RUN verb
The options which you use on the RUN command when you
execute your program have some impact on the use of the Basic
debugger with the program.
The format of the RUN command is:

RUN filename programname {(options)}
or, if the program has been catalogued:

programname {(options)}

Examples:

RUN SALES.PROGS ADD.RECORDS (D)

ADD.RECORDS (D,E)
The following options on the RUN verb, and with catalogued
programs, are important if you wish to use the Basic

debugger:

D to invoke the Basic debugger at the first 1ine of the
program.

E to invoke the Basic debugger when any error condition -
whether it is a fatal error or a non-fatal error -
arises. We discuss these errors below.

Page 6

MB-Guide to the Basic symbolic debugger

Errors

Many types of errors - the syntax errors - will be
highlighted by the Basic compiler. These include

% certain spelling and typing errors.
% grammatical errors in the syntax of the statements.
* missing statement labels.

A1l syntax errors must be removed before the program will
compile successfully.

If the program has compiled successfully, .there may still be
logical errors detected during the execution of the program.
Some of these errors interrupt the program execution and
call up the Basic debugger, others do not.

The fatal errors which display an error message and then
interrupt the program to invoke the Basic debugger include:

* an attempt to access an element of an array which is
outside the size limits for that array.

ARRAY SUBSCRIPT OUT-OF-RANGE

For example, the sequence

X=100
SALES(X) = 0

would generate an error if the array SALES had been
declared with fewer than 100 elements. Interestingly,
the statement

SALES(100) = 0O
would be rejected by the compiler.

* an attempt to use a file-variable to which no file has
yet been opened.

FILE HAS NOT BEEN OPENED

For example, the statement
READ RECORD FROM STOCK.FV,ITEMID ELSE STOP

would generate an error if there had been no prior
statement such as

OPEN ’'STOCK’ TO STOCK.FV ELSE STOP

opening a file to the file-variable STOCK.FV

Page 7

MB-Guide to the Basic symbolic debugger

an attempt to execute a RETURN statement without a
prior GOSUB or CALL statement.

RETURN EXECUTED WITH NO GOSUB I

an attempt to use the contents of a file-variable in an
expression.

FILE VARIABLE USED WHERE STRING EXPRESSION EXPECTED I

For example, the statements

PRINT STOCK.FV
TOTAL = TOTAL + STOCK.FV

would generate an error if the variable STOCK.FV had
been used as a file-variable in a prior statement such
as

OPEN ’STOCK’ TO STOCK.FV ELSE STOP

The non-fatal errors which simply display an error message
and then continue with the execution include:

*

reference to an unassigned variable in an expression.

VARIABLE HAS NOT BEEN ASSIGNED A VALUE

For example, either of the statements:

PRINT MESSAGE
TOTAL = TOTAL +1

would generate an error if there had been no prior
statements such as

CLEAR to clear all the program variables
MESSAGE = "Please enter the code number"
TOTAL = 0

If there are several unassigned variables in an
expression, such as

TOTAL = A + B + C

where all of A and B and C are unassigned, then there
will be one error message for each of the three
variables.

use of an alphanumeric string variable in an arithmetic
statement.

Page 8

MB-Guide to the Basic symbolic debugger

NON-NUMERIC DATA WHEN NUMERIC REQUIRED

For example, the statement
TOTAL = TOTAL + COUNTER

would generate an error if either TOTAL or COUNTER
contained an alphanumeric string value. An alphanumeric
string is any value which includes non-numeric
characters other than a decimal point and/or a leading
plus or minus sign; spaces are also regarded as
non-numeric characters in this context.

% use of the COL1() or COL2() functions without a FIELD
function having been executed earlier.

COL1 OR COL2 USED PRIOR TO EXECUTING A FIELD STMT

* an attempt to divide by zero. A result of 0 will be
returned.
DIVIDE BY ZERO ILLEGAL]

In all cases, the Basic debugger will indicate the 1line
number at which the error occurred.

Debugger commands - summary

We have already considered the fundamental command which may
be issued at any interruption when the Basic debugger or the
system debugger is active. The following commands are
available for use whenever the Basic debugger displays the
asterisk.

A more detailed discussion of their action is given in the
following sections. Full details are given in the reference
literature which is available for your implementation.

?

$
command for displaying the name of the program, the
current 1line number and the status of the object code.
/
command for inspecting and changing the contents of a
program variable.
[
command for specifying how much data is to be displayed
for each variable.
B

command for setting a break point when a certain

Page 9

MB-Guide to the Basic symbolic debugger

condition is reached.

D
command for displaying the trace table.
DE
DEBUG
command for passing control to the system debugger.
E
command for setting the number of statements to be
executed between break points.
END
command for terminating the execution and returning to
TCL.
G
command for passing control to a specific line number.
K
command for removing a break point from the trace table.
L
command for displaying the program source code.
LP
command for switching program output to the printer.
N
command for skipping break points.
OFF
command for terminating the program execution and
logging off the system.
]
command for cancelling display of program output.
PC
command for closing and printing the current spooler
file.
R
command for cancelling a subroutine return address.
S
command for displaying the stack of subroutine return
addresses.
T
command for adding a variable to the trace table.
u
command for removing a variable from the trace table.
Z

command for specifying the item which is to be displayed
by the L command.

.1

MB-Guide to the Basic symbolic debugger

In general, if the command is followed by

<LINE FEED> then the command will be processed and the
execution will continue to the next break
point.

<RETURN> then the command will be processed but the
execution will not continue allowing a further
command to be issued at this break point.

Debug commands

Let us look at these commands a 1ittle more closely.

Full details are given in the reference literature which is
available for your implementation.

? or $ command

Either of the commands:

?
or
$

will display a message such as

WAGES.CALC.001 L 122 OBJECT VERIFIES

showing

x the name of the program currently being executed (this
is WAGES.CALC.001 in this instance),

x the line-number at which the interrupt occurred (122)
and

* whether or not the object code verifies correctly.

It is particularly helpful to use this command whenever the
line-number, as displayed on the En message, takes a big jump
or when the line number jumps back to 1. This suggests that
you have entered an external subroutine, or that you have
returned to a previous calling routine.
This command does not use the symbol table.
/ command
The

/XXX

command will display the contents of a specific variable,
and allow you to change them.

Thus, if you enter:

Page 11

MB-Guide to the Basic symbolic debugger

/EMPNAME
the Basic debugger might respond with:

SMITH=
showing that the string SMITH is currently held in the
variable EMPNAME. If you wish to change the value held in
EMPNAME, then you will enter the new value followed by
<RETURN>. This new value will overwrite the previous
contents of EMPNAME.

If you press <RETURN> without entering a new value, then the
contents of EMPNAME will be left unchanged.

If you attempt to inspect a variable which is not in the
symbol table (or if the program has been compiled without
producing a symbol table), then the debugger will display
SYM NOT FND
If you attempt to display the contents of a variable which
has not yet been assigned a value, then the debugger will
display the message
0=
followed by
UNASGN VAR

It is possible to change the contents of a previously
unassigned variable.

If you attempt to display the contents of a file variable,
then the debugger will display

[B34] LINE n FILE VARIABLE USED WHERE STRING EXPRESSION EXPECTED
It is possible to display an individual element or all the
elements of a dimensioned array. Let us imagine that the
program contains an array by the name of SALES. If a single

element of the array is to be inspected, then this should be
entered as:

/SALES(36)

the contents of this element may then be changed, as
required.

To display the contents of all the elements of the array,
you will enter the command

/SALES

then the Basic debugger will display all the elements in the
array in turn:

Page 12

MB-Guide to the Basic symbolic debugger

SALES(1) XXX=

If you press <RETURN> after displaying - without changing
the contents - then the next element will be presented:

SALES(2) YYYYYY=

If you change any of the elements, then no further elements
will be displayed.

If you enter the form:

/%
then the current contents of all variables will be displayed
(a screen page full at a time) without any opportunity to
change the contents.

[zone command

Normally, the entire contents of each variable will be
displayed by means of either the / or the T command. The

[start, length]
command is used to restrict the amount of data which is
displayed when variables are inspected. Both brackets and
the start and the length parameters must be supplied.

For example:

[1,30]
will display only the first 30 characters of each
variable.

[20,55]

will display the 55 characters starting at the 20th
character; that is, characters 20 through to 74.

This zone will apply to all variables which are displayed.
The simple
[
command will cancel any existing zone.
B command
The
Bcondition
command will add a break condition to the trace table.
Typical examples are:

BCODE="YES’
BCODE="YES"

Page 13

MB-Guide to the Basic symbolic debugger

either of these commands will cause a break to occur
when the variable CODE is set to the value YES

BTOTAL>100
will cause a break when the variable TOTAL reaches a
value greater than 100.

BCODE=TEST
will case a break when the contents of the variable
CODE and the variable TEST are equal.

The break condition may also include the number of the 1line
which is about to be executed:

B$=30
will cause a break immediately before the execution of
Tine-number 30 of the program.

B$>30
will cause a break whenever the line number is greater
than 30, that is immediately before the execution of
line-number 31 and beyond. If the processing passes
back to a position before 1ine number 30, then the break
will not occur.

It is possible to specify that several conditions must all
be satisfied:

BCOUNTER=5&CODE=YES
will cause a break when the variable COUNTER has a
value of 5 and variable CODE has the value YES.

The effect of invoking a break at one condition or
another is achieved by adding several break points to
the trace table.

The operators used in the break condition are:

equal

not equal

greater than

less than

greater than or equal to
less than or equal to

AV AVvDII

Each new break condition will be added to the first
available space in the table. The Basic debugger will
acknowledge that each condition has been added to the trace
table by displaying a

+

sign.

If you attempt to use a variable which is not in the symbol
table (or if the program has been compiled without producing
a symbol table), then the debugger will display

SYM NOT FND

Page 14

MB-Guide to the Basic symbo]?c debugger

If you attempt to add to many entries to the trace table,
then the debugger will respond with the

TBL FULL
message

There may be up to four break conditions in the trace table
at any one time.

Break conditions may be removed from the trace table by
means of the K command.

This command requires the symbol table and end-of-1line
characters.

D command
The
D

command will display the current contents of the trace
table, showing the variables which are currently being
displayed at each break point and the break conditions which
are active.

T1 SALES.FIGS
T2 NAME

T3

T4

T5

B1 $>30
B2 CODE='YES'&NAME=""

You may need to use the D command to display the current
trace table in order to known which break condition is to be
killed (by the K command) and/or which variable is to be
removed (by the U command).
DE or DEBUG command
The

DE

DEBUG
command will pass control to the system debugger. This will
give you access to the facilities for frame inspection and
patching.
If you subsequently enter just

<LINE FEED>

Page 15

MB-Guide to the Basic symbolic debugger

at any ! prompt from the system debugger, you will be
returned back to the Basic debugger.

This is discussed in the MB-Guide to the system debugger.
E command
The

En

command will cause the Basic debugger to break after
executing n statements.

For example:

E1
will invoke a break before every statement is executed.
E10
will invoke a break before every tenth statement is
executed.
E

will cancel any previous En specification.

Note that this statement recognises executable statement
lines.

001 PRINT ’THIS IS A TEST’
002 PRINT 'MESSAGE A’
003 PRINT 'MESSAGE B’
004 PRINT 'MESSAGE C’
005 PRINT 'MESSAGE D’
006 PRINT ’MESSAGE E’
007 FOR X=1 TO 10

008 Y=X%X

008 PRINT X; PRINT Y
010 NEXT X

011 END

Thus, if we were to use a command such as

RUN filename programname (D
to execute the program in the diagram and automatically
invoke the Basic debugger (because of the D option) and then
enter the command

E3

at the first break point, then breaks would subsequently
occur as these lines were about to be executed:

4710 987 10987 1098 7 10 11

Page 16

.1.8

MB-Guide to the Basic symbolic debugger

Note especially that the line

PRINT X; PRINT Y
is considered as a single statement.
To avoid being inundated with debug output, it is suggested
that, when you are trying to locate a fault, you use a form
such as E10 (rather than E1) to monitor the execution flow in
steps of 10 or so statements.
This command does not use the symbol table, although it will
only work successfully if the Basic program has been compiled
in the normal manner (that is, without the option to
suppress the end-of-1ine characters)
END command
The

END
command is one of the fundamental commands used with the
debugger, as described earlier in this MB-Guide and will
terminate the program execution and return the user to TCL
(or to the logon Proc, if this is a closed system).
G command
The

G

command will cause the execution to continue to the next
break point.

Gn
will transfer the execution to line-number n. Whenever
a line-number is specified in a debug command, it is the
program line-number and not the Basic statement number.
G1

will go to the start of the program and not to the
statement labelled 1.

when such a jump is made, the contents of all variables in
the program (and the return address stack for internal
subroutines) will remain as they were at the break point.

This command does not use the symbol table, although it will
only work successfully if the Basic program has been compiled
in the normal manner (that is, without the option to

suppress the end-of-1ine characters)

K command

The B command is used the add break conditions to the trace
table. The

Page 17

5.1.11

MB-Guide to the Basic symbolic debugger

Kn

command will kill break condition number n by removing it
from the trace table.

For example:
K3

will remove the break condition which has been placed

in the third of the break conditions in the trace table.
You may have to use the D command to display the current
trace table in order to known which break condition is to be
killed.
The simple form:

K
will kill all the break points in the trace table.
L command
The L command is used to display a section of the current
source program. The identity of the current program is
specified by the Z command (this is not necessarily the same
as the program which is currently executing). If no Z
command has yet been issued, then the debugger will display
the

NO SOURCE
message
The simple form:

L
will display the current 1line of the source program, that is
the 1ine at which the break occurred and which is about to be
executed, and the form:

L*
will display the entire program.
The extended form:

Lstart-number
command is used to display a section of the current source
program. In this command, start is the number of the first
1line of the source code which is to be displayed, and number
is the number of lines which are to be displayed. Note that
a hyphen separates the starting position from the number of
lines to be displayed.

For example:

Page 18

5.1.12

MB-Guide to the Basic symbolic debugger

L1-30
will display 1ines 1 to 30 of the current program.

L20-55
will display the 55 lines starting at line number 20;
that is, lines 20 through to 74.

The L command (and the appropriate Z command) can be used to
inspect any item on any file. This is a useful way of
checking a data record which has been or is about to be
processed.

LP command

The debugger output is always be displayed on the screen.
this is so even if the

(P
option has been specified on the RUN command.
However, there are facilities for sending the program output
to the printer. This makes it easier to read the debugger
messages and is particularly useful if the PRINT @ statements
for cursor control and screen formatting in your program
make it difficult to follow the action.
The

LP

command directs the program output to the printer, or from
the printer back to the screen.

Note that the LP command switches the program output from
the screen to the printer, or from the printer to the screen;
the P command switches the displayed program output on or
off. Neither command affects the debugger output which is
always

displayed.

The PC command, described below, will close the spooler
output file and print the output before the end of the job.

N command
The
Ncount

command directs the debugger to ignore the next n break
points.

For example, the command
N5

will ignore the next five break points, although the debugger
messages will still be displayed. This is useful if you

Page 19

5.1.14

5.1.15

5.1.16

5.1.17

MB-Guide to the Basic symbolic debugger

simply want to watch the path of the processing through the
program.

The simple form:

N
will cancel any previous Nn specification.
OFF command
The

OFF
command is one of the fundamental commands used with the
debugger, as described earlier in this MB-Guide and will
terminate the program execution and log the user off the
system.
P command
The

P
command is one of the fundamental commands used with the
debugger, as described earlier in this MB-Guide and switches
off the display of the program output to the screen,
cancelling the program output. If a previous P command has
switched off the output, a second P command will switch on
the display of the program output.
Note that the LP command switches the program output from the
screen to the printer, or from the printer to the screen; the
P command switches the displayed program output on or off.
Neither command affects the debugger output which is always
displayed.
PC command
The

PC
command is used when the program is directing output to the
printer (under the action of the P option on the RUN command
or the LP debugger command) and you need to look at the
output before the end of the job. The action of the command
is to close the spooler job. Otherwise, the spooler output
would not be printed until the end of the job.
R command
The

R

command is used at a break point within a subroutine (whether

Page 20

5.1.18

MB-Guide to the Basic symbolic debugger

an external subroutine called via CALL statement or an
internal subroutine called via a GOSUB statement), and
removes the most recent return address from the top of the
stack of such address - as discussed for the S command - and
then causes the processing to return to the place immediately
after the most recent CALL or GOSUB statement.
S command
The

S
command is used to display the current list of statements
which represent the return address from any internal
subroutines, that is, those called by means of a GOSUB
statement.
The stack is displayed in a form such as

= 300 = 176 = 40

with the return address for the most recent GOSUB to the
left.

T command
The
Tvariable
will add a variable to the trace table, causing that
variable name and its contents to be displayed at every break
point.
Thus, the command
TSALES.FIGS
will add the variable SALES.FIGS to the symbol table and
display the contents of the variable at every subsequent

break point.

The Basic debugger will acknowledge that SALES.FIGS has been
added to the trace table by displaying a

+
sign.

There may be up to six variables in the trace table at any
one time.

If you attempt to use a variable which is not in the symbol
table (or if the program has been compiled without producing
a symbol table), then the debugger will display

SYM NOT FND

Page 21

5.1.20

5.1.21

MB-Guide to the Basic symbolic debugger

If the trace table is full, then the debugger will respond
with the message

BRK TBL FULL

vVariables may be removed from the trace table by means of
the U command.

U command

The T command is used the add variables to the trace table.
The

Uvariable

command will remove a variable which has been added to the
trace table.

Thus, if you have previously added the variable GRAND.TOT to
the trace table by means of the command

TGRAND.TOT
then the command
UGRAND.TOT
will remove GRAND.TOT from the trace table.

The Basic debugger will acknowledge that GRAND.TOT has been
removed from the trace table by displaying a

sign.
You may have to use the D command to display the current
trace table in order to known which variable entry is to be
removed.
The simple form:

8]
will remove all the variables from the trace table.

Z command

The 2 command is used to specify the source program which is
to be used by any subsequent L commands.

The simple form:
4
will cause the Basic debugger to ask for

FILE/PROG NAME?

Page 22

MB-Guide to the Basic symbolic debugger

to which you will enter
filename programname

The file name and the program name may be entered in one
step by means of a command of the form:

Z filename programname

If you issue an L command without having previously issued a
Z command, then the Basic debugger will respond with the

NO SOURCE
message.
The L command (and the appropriate Z command) can be used to
inspect any item on any file. This is a useful way of
checking a data record which has been or is about to be
processed.
Debugger messages
The Basic debugger displays the following messages:
*Bc n

when a break occurs as a result of satisfying break
condition number c.

*EA1
when a break occurs as a result of initiating execution
and interrupt by means of the:
RUN fffff iiiii (D)
command .
*XEn
when a break occurs as a result of an E command.
*In
when a break occurs as a result of a program execution
error or by use of the Basic DEBUG statement.
+

after a successful Tvariable or Bcondition command
indicating that the entry has been added to the trace
table.

after a successful Uvariable or Kn command indicating
that the entry has been removed from the trace table.

£ > PROGRAM LENGTH
if you issue a Gn command in which n is greater than
the number of lines in the program.

CMND?
if you enter an invalid debug command.

Page 23

MB-Guide to the Basic symbolic debugger

NO SOURCE
if an L command is issued to display a source program
and no Z command has previously been issued to identify
the source program which is to be displayed.

STK EMP
if you issue an S command to display the contents of
the stack of subroutine return address and the stack is
empty.

SYM NOT FND
after a Tvariable command of which the variable cannot
be found in the symbol table.

TBL FULL
after a Tvariable or Bcondition command if the trace
table is full.

UNASGN VAR
if you attempt to use the /variable command to change
the value of a variable which has not yet been assigned
a value.

OBJECT VERIFIES

OBJECT DOES NOT VERIFY
the ? or $ command displays the name of the program
which is currently executing and the line at which the
interrupt occurred. The Basic debugger will also
display one these two error messages to indicate whether
or not the object code verifies. If the message
indicates that there is an error in the object code and
the program should be recompiled.

In all cases, n is the number of the 1ine at which the break
occurred and which is about to be executed.

How to ...

In this section, we look at a number of specific questions
which you might ask as you are trying to debug a Basic
program, and we see how to answer these by use of the Basic
symbolic debugger.

If you have any further questions of your own, send them to
us. If we use them in a future edition of this MB-Guide will
give you a credit and send you a free copy.

My program has just stopped executing. It printed an
error-message and an asterisk. What should I do?

If you did not write the program, then you should make a note
of all the error message(s) which were displayed, and then
call your System Manager, the programmer or someone else who
is responsible for the program.

It might also be help if you were to type

Page 24

MB-Guide to the Basic symbolic debugger

?

followed by the <RETURN> key and make a note of the name of
the program which will then be displayed.

If you want to abandon the program, you should type
OFF
followed by the <RETURN> key, or
END
followed by the <RETURN> key.
In some circumstances, it may be better to wait until the
cavalry arrives in the form of the programmer who is

responsible.

If you are the cavalry, then read on.

A Basic program is executing and it seems to be in a
Toop. How can I find out which program is executing?

Interrupt the processing by means of the <BREAK> key. This
will invoke the debugger and tell you the 1ine number at
which you interrupted the processing. Then enter the
debugger command

?<RETURN>
This will tell you the name of the program which is looping.

If you want to observe the loop in action, issue a command
such as

E5<LINE FEED>

then press <LINE FEED> each time the processing is
interrupted. By noting the 1line numbers at which the
processing is interrupted you can observe the piece of code
around which it is looping.

I am testing a program and I want to know the contents
of some of the variables. How can 1 do this?

Interrupt the processing by means of the <(BREAK> key, then
issue a series of commands of the form

/XxXX<RETURN>

where xxxxx is the name of the variable. This will display
the contents of the variables.

Page 25

MB-Guide to the Basic symbolic debugger

An alternative way is to issue a series of commands of the
form:

TxXXX<RETURN>
where xxxxx is the name of the variable. This will display

the contents of the variables whenever there is a break in
the processing.

How can I change the contents of one of the variables
whilst the program is executing?

Interrupt the processing by means of the (BREAK> key, then
issue a command of the form

/XXxX<RETURN>
where xxxxx is the name of the variable. This will display
the contents of the variable. To change the contents of the
variable simply enter the new value followed by the <RETURN>
key.

For example, to change the contents of the variable COUNTER
to 0, the sequence might l1ook like this:

*/COUNTER 99=0

Your typing has been shown in italics.

To start the processing off again, just press the
<LINE FEED>

key.

I am testing a program which calls a lot of different

external subroutines. How can I tell when the program
jumps to a subroutine? Can I intercept it just before
it goes to the subroutine?

Look at a listing of the program and make a note of the line
numbers of the CALL statements which send the processing off
to the external subroutines.

Interrupt the processing by means of the <BREAK> key, then
issue a series of (up to four) commands of the form:

B$=n<RETURN>
where n is the line number of the CALL statement.
Resume the processing by means of the <(LINE FEED> key. The

processing will be interrupted immediately before the CALL
statement is executed.

Page 26

MB-Guide to the Basic symbolic debugger

You can then issue a command such as
E1<RETURN)>

followed by a series of (LINE FEED>s to observe the flow of
the processing into and out of the subroutines.

I using the Basic debugger to follow my way through a
program, but the cursor keeps jumping about all over the
place because I use the PRINT @ statement to position
the cursor. What can I do about this?

Issue the command
LP<RETURN>

to direct all the program output to the printer, then carry
on using the debugger.

How can I direct all the debugger messages to the
printer so that I can check it later?

You cannot. A1l the debugger output is directed to the
screen of your terminal.

How can I change the program via the Basic debugger? 44]

The only changes you can make via the Basic debugger are

* change the contents of the variables (using the /
command),
% change the processing sequence (using the G command to

jump to another statement),

You cannot change the source code or any other item without
leaving the Basic debugger.

How can I restart the program from the beginning?

Interrupt the processing by means of the <(BREAK> key, then
issue the command

G1<LINE FEED>

How can I restart a program once I’ve interrupted it?

Press the <LINE FEED> key to resume from the place where the
interruption was caused.

Page 27

MB-Guide to the Basic symbolic debugger

If this does not succeed, then it may be best to abandon the
processing by typing

END<RETURN>

and this will return you to TCL from where you can start
again.

These debugger commands all seem very complicated. Is
there a simpler way of finding and clearing up errors
in this program I'm writing?

Like all useful pieces of software, the Basic debugger has
many more features than you may need at any one time. For
the absolute beginner, these may seem quite overpowering, but
you should give them a go.

If you don’'t have the time or need to learn all the commands,
you can lead a useful and happy 1life using just the

NN m

commands, plus the <RETURN> and <LINE FEED> keys.
Later, you may extend this to include the

L
Z

commands to look at the source program.
The really useful commands are the

B
T

commands. These allow you to create interrupts at regular
places in the processing and to inspect the contents of a
number of useful variables automatically at each interrupt.

Without even this partial use of the Basic debugger, you are
condemning yourself to a life of

PRINT 'HERE AT STATEMENT 999°':; INPUT FRED
PRINT ’THE VALUE OF GTOTAL = ’:GTOTAL

and an unnecessary round of compiling and recompiling your
program.

Page 28

MB-Guide to the Basic symbolic debugger

What’s the difference between using <RETURN> after a
debugger command and using <LINE FEED>?

In general, the difference is that

% <RETURN> sends the command to the debugger so that the
debugger will process the command and then come back to
you for another debugger command.

% <LINE FEED> sends the command to the debugger so that
the debugger will process the command and then the
debugger will attempt to continue the processing.

If you are in any doubt, use the <(RETURN> key after all the
commands and only use the <LINE FEED> key when you want the
processing to carry on without you.

I don’t have a <RETURN> key on my keyboard. What do I
do about this?

Your keyboard should have a key marked

RETURN
or ENTER

or there may be a large key with a down-back pointing arrow,

like this:
|

If you don’t have any of these, then you could try holding
down the <CTRL> key and pressing the M key at the same time.

I don’t have a <LINE FEED> key on my keyboard. What do
I do about this?

Your keyboard may have a key marked

LINE FEED
or LF

or there may be a small set of four keys with arrows pointing
up, down, left and right: the down-pointing arrow may have
the same effect as <LINE FEED>

If you don’t have any of these, then you could try holding
down the <CTRL> key and pressing the J key at the same time.

Page 29

MB-Guide to the Basic symbolic debugger

8 Glossary

The following terms are used in this MB-Guide to the Basic
debugger:

Basic debugger a standard tool for use by programmers in
identifying, locating and correcting errors in a Basic
program.

Basic symbolic debugger another name for the Basic debugger.

Break point a situation in which the normal processing action
of a program is interrupted - either by accidental error
or by design - and the Basic debugger is called into
action by the operating system.

Breakpoint table is that part of the trace table which holds
details of up to four break conditions set by means of
the B command.

Interactive debugger another name for the system debugger.

Symbol table a list of the names of the variables used in a
program and their location with the run-time storage
area. This table is generated by the compiler and used
by certain Basic debugger commands.

Symbolic debugger another name for the Basic debugger.

System debugger a standard tool for use by systems
programmers in identifying, locating and correcting
errors in an assembly language process. Its main
application by end-users is in inspecting and changing
parts of the virtual memory system.

Trace table a work table used by the Basic debugger which
consists of a list of the names of up to six variables
whose contents are to be displayed automatically at each
break point, and a list of up to four break conditions
which are to cause an interrupt.

In this and the other MB-Guides, the keyboard control keys
have been represented by their name enclosed in angle

brackets:

<BREAK> identifies the break key or the equivalent
sequence which interrupts the current process.

<CTRL> identifies the control key.

Certain characters are entered at the keyboard

as a combination of one or more of the above keys
together with other keyboard characters. For
example, the subvalue-mark (character 252) may be
entered as:

<CTRL> \

Page 30

MB-Guide to the Basic symbolic debugger

<ENTER>

<ESC>

<LINE FEED>

<RETURN>

that is, by holding down the <CTRL> key and
typing the normal \ character at the same time.
Similarly, the value-mark can be keyed in as the
sequence <CTRL>] and the attribute-mark as the
sequence <CTRL> ~

identifies the ENTER key which is used to
transmit each piece of data to the system.

This is generally represented by the <RETURN>
key in the text.

identifies the ESCAPE key.

identifies the line-feed key.. On some
keyboards, this may be the down-pointing arrow.
The sequence <CTRL> J is equivalent.

identifies the RETURN key which is used to
transmit each piece of data to the system.

On some keyboards, this may be the <(ENTER> key
or the down-left-pointing arrow key. The
sequence <CTRL> M is equivalent.

Page 31

MB-Guide to the Basic symbolic debugger

Index
£ > PROGRAM LENGTH 23

$ command 11

*Bc n 23
*E1 23
*XEn 23
*In 23

/ command 11
/% 13

<BREAK> key 30
<CTRL> key 30
<ESC> key 31

<LINE FEED> 29
<LINE FEED> key 31
<RETURN> 29
<RETURN> key 31

? command 11

ARRAY SUBSCRIPT OUT-OF-RANGE 7
Arrays 12

B command 13
Basic debugger 30

Basic symbolic debugger 1, 30
BASIC verb 5
Break condition 3, 13

Break point 30
Breakpoint table 30

CMND? 23
COL1 OR COL2 USED PRIOR TO EXECUTING A FIELD STMT 9
Current program 18

D command 15

DE command 15

DEBUG command 15

Debug commands 11
Dimensioned arrays 12
DIVIDE BY ZERO ILLEGAL 9

E command 16
END command 17
END command. 25
Errors 7

Fatal errors 6, 7

FILE HAS NOT BEEN OPENED 7

File variable 12

FILE VARIABLE USED WHERE STRING EXPRESSION EXPECTED 8
FILE/PROG NAME? 22

Fundamental responses 2

Index / Page 1

MB-Guide to the Basic symbolic debugger

G command 17
Glossary 30

Interactive debugger 1, 30
Introduction 1
Invoking the Basic debugger 1

K command 17

L command 18
Logical errors 7
Looping programs 25
LP command 19

N command 19

NO SOURCE 18, 23, 24

Non-fatal errors 6, 8

NON-NUMERIC DATA WHEN NUMERIC REQUIRED 9

OBJECT DOES NOT VERIFY 24
OBJECT VERIFIES 24
OFF command 20, 25

P command 20

PC command 20
PROGRAM LENGTH 23
Program output 19

R command 20
RETURN EXECUTED WITH NO GOSUB 8
RUN verb 6

S command 21

STK EMP 24

SYM NOT FND 12, 14, 21, 24
Symbol table 3, 30
Symbolic debugger 1, 30
Syntax errors 7

System debugger 1, 30

T command 21

TBL FULL 5, 15, 24

Trace table 3, 4, 30

U command 22

UNASGN VAR 12, 24

Using the debugger 3

VARIABLE HAS NOT BEEN ASSIGNED A VALUE 8

Z command 18, 19, 22
Zone command 13

[zone command 13

Index / Page 2

MB-Guide beginner’s guides

MB-Guides

MB-Guides are designed to serve as introductory texts to a
range of fundamental topics within the Pick operating system.
They will be available for the following subjects:

MB-Guide to Access conversions and correlatives
MB-Guide to Access sentences

MB-Guide to Basic programming

MB-Guide to Creating and using Procs

MB-Guide to using the Editors

MB-Guide to File design

MB-Guide to File-save and file-restore
MB-Guide to Files: monitoring and sizing
MB-Guide to Group format errors

MB-Guide to Operations and systems management
MB-Guide to Pick on the PC

MB-Guide to Producing training courses
MB-Guide to Producing documentation

MB-Guide to Program design

MB-Guide to Security

MB-Guide to The Basic symbolic debugger
MB-Guide to The spooler

MB-Guide to The system debugger

MB-Guide to Using backing storage

The format of the MB-Guides is such that they may be easily
updated and amended to reflect the current state of the
operating system. In order that this and the other Mating
MB-Guides continue to meet the needs of the users, we would
appreciate your comments on this guide and your suggestions
for further titles in this series.

MB-Master self tuition courses are also available on a wide
range of topics related to the Pick operating system:

Moving to Basic - a conversion course
Pick systems management

Programming in Basic

Starting Access

Starting ACCU/PLOT

Starting CompuSheet+

Starting Jet

Starting Pick

Starting Runoff

Writing Procs

MB-Guide beginner’s guides

If you have any comments on this MB-Guide or any suggestions
for further title in the series, then please send your
suggestions to:

MALCOLM BULL
MALCOLM BULL TRAINING AND CONSULTANCY SERVICES
19 Smith House Lane
BRIGHOUSE
West Yorkshire
HD6 2JY

Telephone: 0484-713577 Fax: 0484-714112

We are particularly concerned about:

* any additional information which you would like.

x any topics which you feel are superfluous.

x* any inaccuracies which you noticed.

x any areas in which the information given in the
MB-Guide did not apply to your implementation. Please
indicate what implementation you were using.

* any other suggestions, observations and comments.

If you do write to us, please give your name and address so

that we can acknowledge your contribution in the next Edition
of this MB-Guide.

MB-Guides

The booklets in the MB-Guide series cover a
range of fundamental topics of interest to
users and those responsible for running Pick
systems.

Each MB-Guide deals with a specific aspect of
the operating system and the booklets
represent an economical introduction to the
various topics and the whole series forms an
integrated presentation of the subject matter.

The booklets are intended to be a working
document and, for this reason, space is
provided for the user’s notes, and the reader
is encouraged to amend the booklet so that it
applies to his/her own system.

It is anticipated that the series of

MB-Guides will be of special interest to new
users, and it should prove useful for training
organisations, software houses and others who
are responsible for the instruction of their
clients and staff in the fundamental aspects
of the Pick operating system.

Malcolm Bull

Training and Consultancy Publications

N

O ©
O O
i 5

O -0 L

C IO QL

~ O QO

