TABLE CF CONTENTS

SECTION PAGE.
1 GETTING STARTED . [] L] [] L] [L J [] [J [] . L] [] [J * 1
2 SOME MANUALS YOU WILL NEED e o & o o o o o » 2
3 CREATING AN ACCOUNT « o o ¢ o ¢ o o ¢ o o o o 3
4 CEFINING A VERB o o o ¢ o o o o ¢ o ¢ o o o o 5
5 CREATING A SCURCE MODE ® ¢ o o o o o o o o o 7
Sel GETTING A FRAME NUMBER e ¢+ o ¢ o o o o o o o 7
52 CREATING A FILE FOR YOUR MODE o o o o o o o 8
53 EFDITING YOUR MODE o o ¢ o ¢ o ¢ o ¢ ¢ o o o o 8
6 INTRODUCING THE SYSTEMS SUBROUTINES o« o o e 10
7 TCL"‘I VERBS e o o @ e © e o & o o o o o & o o 11
761 CREATING A VERB AND A MODE « o o 6 o s s o o 11
Te2 A TCL-I VERB WITH PARAMETERS &« o o ¢ o o o o 17
Ted READING INPUT o o ¢ ¢ ¢ o ¢ o o o ® e e e e e 22
Tel CHANGING THE PROMPT CHARACTER e o o o o o o ¢ 26
7e5 REMOVING EXTRA BLANKS o o o e ¢ ¢ o o » o o o 2%
8 TCL"II VERBS e e e e o o o o J ¢ o o o ¢ o o 32
8el RETRIEVING AN ITEM o o o o o © o o o« o o o o 32
8e2 RCTRIEVING MANY ITEMS o o ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o 36
8e3 USER OPTIONS e & © e e & o o o & e o o o o o 36
8e4 FETCHING ANOTHER ITEM « o o o ¢ o ¢ o ¢ o ¢ « 40
8e5 RETRIEVING FROM ANOTHER FILE ¢ ¢ o o o o o o 44
B8eb RETRIEVING FROM A DICTIONARY FILE o ¢ ¢ o ¢ o 50
9 OCUTPUTTING MESSAGES e o e o o ¢ o o o o o o o 58
Se1 QOUTPUTTING ERROR MESSAGES « o ¢ o ¢ ¢ ¢ o o o S6
Se2 PUTTING PARAMETERS INTO HS FOR WRAPUP o « o & 59
Sel OUTPUTTING OTHER MESSAGES « & o o o » ¢ o o o 64

GZITTING STARTED

The purpose of this manual is to teach you enough about the
Reality system so that you will feel comfortable writing
assembly language programse. If you follow the instructions
and ado all of the wexercisesy you will quickly Llearn the
bzsic components of the system.

Certain woros in the text will guide youe "Read" mezns to
chew anc swallow the information; Yscan" means to taste the
information: "study" means to chew well and swallow}
"review" means to recall certain flavorse

This manual assumes that you have occess “to a terminal
attached to a Reality system with the full . gomplement of
software toolse L ime .

2

1

A

Introduction to Reality Assembly Languége Programming

(fm_ 2 SOME MANUALS YOU WILL NEED

“.’ Several manuals provide most of the information you will
need to program in assembly languagee. YoOu should have a
copy of each of the following for your own use:

Manual name Mnemonic
Reality Programmerts Reference Menual PRM™
Reality CPU Reference Manual CPU
Reality Assembler Manual ASWM
Reality System Software Subroutines SSS
Reality Editor Programming Manual EDM
Reality Assembly Language Programming Manuals DER

Section "Interactive Debugger: DEBUG"
The mnemonics at the right are used in this manual for easy

referencee. For dnstancee« PRMye section 4¢3¢ refers to
section 4.3 of the Reality Programmert*s Reference Manuale.

2

Introduction to Reality Assembly Language Programming

(FF;

(&Y}

CREATING AN ACCOUNT
Firsty create an at¢tcount for your use. Read PRM,y sections
1-69 and then study sections le 2y 43 Sels 5454 10.1e and
10.25.
READ AND STUDY***READ AND STUDY***READ AND STUDY

Turn on your terminale If the "LOGON PLEASE®" message 1is not
displayeds depress the RETURN key several timese When the
message is cisplayeds type

SYSPROG
to enter the SYSPROG accounte If the system asks for a
passwords ask your supervisor for the passworde and enter
ite.
To create an accountsy type

CREATE-ACCOUNT
The CREATE-ACCOUNT PROC will ask a serjes of questionse
Except for the followingsy answer all cquestions with a
carriage return. For USER NAME reply with your Last names
When the PRIVILEGES message is outputes you must reply

SYS2 (065)

in order to perform assemblies.

After the account 1is westablisheds the system must be
informed theat you dintend +to perform assemblies 3n your

z
~

Introduction to Reality Assembly Language Programming

-

accounte Do this by typing:

SETUP=-ASSY account-name
~where account-name 1is the name that yocu gave to your
accounte The PROC will reply with a series of questionse
For simplicity type a Y in reply to each question except

this one:

ENTER *Y* 7O GIVE THE ACCOUNT SYSPROG®*S ACCESS CODES AND
SYS2(25) PRIVILEGESe ELSE *N* (Y/N)

Reply with an N Your account is now ready for use in
assembling proaramse

To enter your accountsy type:
LOGTO account-name

After TCL displays a colone you are operating 1in your own
account.

4

Introduction to Reality Assembly Language Programming

¢

DEFINING A VERB

To understand how verb definitions are createds learn tc use
the Editors especially the following commands: Ge Is Le DEs
Re F9y and FI., Read EDMy sections 2 and 3.1 througch 3.8
Alsosy review PRMsy sections 65 and 4.3

READ AND REVIEW***READ AND REVIEW**xREAD AND REVIEW
TIME is a TCL-I wverb. When invokedsy it displays the date
and time-of-day. Type

TIME
on the terminal tc see the format of the replye Following
the directions given belows create a synonym for the wverbd
TIME.
Copy the verb TIME to the terminal by typing

CT MD TIME

The system will display

001 PZ
002 3033

The P dindicates that this is a verbe Since the second
Letter of the first Liney or attributey is not a Ge TIME fis
not a PROCe The second Line contains the mode-id of the
orograme Since this value is not 2 or 354 TIME is a TCL=-I
verbe rather than a TCL-=II or ENGLISH verbe

5

Introduction to Reality Assembly Language Programming

3

As an exercise in creating verb definitionss produce a
synonym for the vert TIME. Enter the Efditor specifying file
MO and item Te Type

£ED MD T

when the Ecditor repliess use the I command to insert two
Lines:

I

000+ P2Z
000+ 3033
Co00+

Rememper to terminate the insert with & carriage return on a
null Lline.

To display the information you have inserteds type
L22

where 22 is normally used because 22 Llines can be displayed
on the terminale.

Write the item to the file by typinrg
FI

Now you can invoke the function by typing
T

The reply should have the same format as the reply for TIME.

6

Introduction to Reality Assembly Languace Programming

G1
R
your name or the name of the mode
FI

This will notify other programmers that you are using frame
337
CREATING A FILE FOR YOUR MODE

Read ASMe section 9 and review the procedure for creating a
file in PRMy section 6+2.

READ AND REVIEW#***READ AND REVIEW=x**READ AND REVIEW
Start a source mode by creating a file and editing the first
six Lines of a mode with documentation information. For
ease of reference the file name FF will be used in this
manuale To create file FF type

CREATE=-FILE (FF 141 141)
the ones are the modulo and separation for the dictionary
and data portions of the filee You <can use other values
when you Learn more about the systeme

EDITING YOUR MODE

Create the first six lines of your mode by dnveking the
Editor:

ED FF M0D1

8

Introcduction to Reality Assembly Language Programming

C

The first Line should be a FRAME statement with the FID of
your modee When you have edited these six Lliness they
should Look similar to this: -

FRAME 337
TEST MODE
11JANEO
00
co
SMITH

* % o % #

NOTE: DO NOT assemble the mode with only these six Linese.

Q
7

Introduction to Reality Assembly Language Programming

INTRODUCING THE SYSTEMS3S SUBROUTINES

Much of the system programming that is done on Reality uses
the system software subroutinese. Read SSSe¢ sections 1
through 4.

READ* xxREAD* **READ

In a sense these subroutines are the system with which you
must interface. We will Look at several of the subroutine
descriptionse but you should peruse the SSS manual each time
you design or change a modee

When one of the exercises in this manual directs you to read
the description of a subroutinee do not try to grasp every
deteil 1in the descriptions rather read for a general
uncerstanding. When you are told to concentrate on certain
elements 1in a descriptions ignore other elements because
they contain the correct data for the exercisese.

10

Introduction to Reality Assembly Language Programming

-

P

TCL=-1 VERBS
Review PRMs sections 4ele 462 and 4¢3

REVIEW***REVIEW***xREVIEW

Generally speakinge TCL-I verbs perform utility functions
that do not reference an explicitly specified files The
verb TIME translates the system clock ' into a time and date
that it prints on the terminal. The arithmetic commands
(PRMsg Sel) are TCL-I wverbs that require parameterse
BLOCK-TERM and BLCCK=PRINT (PRMy Se4) reference a file to
translate the 1input Ltetters 1into block Llettersy but this
file is not specified by the user.

CREATING A VERB AND A MODE

Using the frame number that you recorded in file FRAM,
create a verb definition din your master dictionarye. Call
the item AGe Put a P 1in the first line and the mode-id of
your program in the seconde The mode-id must be 1in
hexadecimale Since the mode entry wWwill be the zeroeth
entrys the mode-id will be simply the FID in hexadecimale.
No leading zero is needede.

Invoke the Editor by typing
ED MD AQ

and then 1insert the two Llinese. If your FID were 337+ the
verb definition would look Like this:

11

Introduction to Reality Assembly Language Programming

AQ
001: P
0o02: 151

Do not invoke verb A3 on the terminal until after you have
developed the mode that will be called by the verbe

In SSS read section 5 and scan the descriptions of the
following subroutines: TCL-Iy CHANCE2s and WRAPUP.

READ AND SCAN***READ AND SCAN***READ AND SCAN

TCL-I 14s not a subroutine: 1its main importance Lies 1in the
initialization that it performse. We will study 1its output
interface in more detail latere.

CHANCE2 4s a simple subroutine that must be called by means
of the Branch and Stack Location (ESL) instruction. Because
the heading Line

CHANCEZ2 (Sel&T)

is not followed by an asteriskes CHANCEZ2 1is not defined in
PSYM. Hencey its mode-id must be defined in your mode with
the DEFM directivee. Use entry point 9 and FID 167 (decimal)
with the DEFM.

When a2 program haes completed its processings it must do an
External Branch (ENT) to one of WRAPUP*s entry points. We
will use entry point MD999,

Write a mode thet will be cailed by the A3 verbe In the

mode call CHANCE2 and test its output for an A. If
CHANCE2*s output is an Ay call CHANCE2 againe Otherwises go

12

Introduction to Reality Assembly Languace Programming

to WRAPUP«. The following statements exemplify the logic:

Repeat

Call CHANCE?
Until CHANCE2*s output does nct equal *AY.
Go to MDSS3,

Notice that the output 1interface section of CHANCE2's
description specifies that the <cheracter entered from the
terminal is returned in H1l and that R15 points to Hl.

Conventionally, the documentation information at the
beginning of the mode is followed by entry=-point Sranch
Local instructions into the main logic of the mode. Since a
mode may have more than one entry pointe additional branch
instructions can be acdded as they are needed. Constants and
symbol definitions follow the branch entry pointse.

Reaa ASMe section 8¢ especially about the FRAMEy DEFM and
EQU directivese.

READ* **xREAD* **READ

In CPU stucdy the following instructions:

B L - BRANCH LOCAL

BSL M - BRANCH AND STACK EXTERNAL

ENT M - BRANCH EXTERNAL

BCE N«RglL - BRANCH IMMEDIATE COMPARED TO CHARACTER

STUDY** *STUDY* *xxSTUDY

13

Introduction to Reality Assembly Language Programming

Write the code for the programs and using the E£ditores add it
toc the mode you have already startede When you enter the
datae start all Labels in the first positione. If there is
no label in the lapvel fields space one character onlye. In
other wordse do not try to Line up the fields of all the
instructionse After a labeles space onee. After the
operation mnemonics space one. Separate the operand field
and any commentary by one space. Use the Editort®s AS
function (EDMe section 3.12) to Llist +the dinstructions
aligned by fieldse

After you have editec the modes read ASMe sections 12.1
through 1243

READ***READ* **xREAD
Assemble the mode:

AS FF MOD1

List the mocde on the printer:
MLIST FF MOD1 P)

and if there are no errorss Load it into its absolute frame:
MLOAD FF MGD1

The modets Llisting should Look similar to the one in Figure
7“1.

Invoke the verb by typing

14

Introduction to Reality Assembly Language Programming

AQ
It should reply with the‘message
TYPE A (AGAIN) OR Q@ (QUIT)
If you type "A",s it should retype the messages If you enter

any other charactersy it should return to TCLes which will
prompt with a colon,.

15

Introduction to Reality Assembly Language Programming

001 000
001
9P
at
00
00
305
007
008
0609
9110
111
012
313
014
115

001

003
006
DOA
FFE
ZOF

TFF00151

1£02

M9 A7

1190A7
47410802
10100A
0241

M0oD1

*

*26JUNED

*
*

*MOORE

*

*

CHANCE?2

*

YAG

FRAME

DEFM

Eau
BSL
BCE
ENT

FRAME 337 15209224

337

TAQ

Sel67

*
CHANCE?2
C*AY9R15<1AQ
MD999

16 SEP 1981

- Te2

A TCL-I VERB WITH PARAMETERS

.In EDM read about ME 4n section 3.%e.

READ* **READ***READ

Create another verbes called DADDy in your master dictionary
by entering the Editor with

ED MD DADD

Use the ME command to merge the contents of verb AQ into
this item: :

MEGS9OmAQ®]
F

The 359 4s Jjust a large number. Inputting the F command
allows you to modify the data that you have mergede Replace
line two with a mode-id dnto entry point one of your frame.
I1f your frame were 3374 the jtem would Look Llike this when
you are finished:

DADD
601 P
002 1151

The Logic of verb DADD is simple. We want to type in the
verb DADD followed by two decimal numberss The mode will
add the numbers together and print the sum on the terminal.
The Logice in terms of system subroutineses follows:

17

Introduction to Reality Assembly Languege Programming

Call CVDIS to convert the first number to binarye.
Save the first binary number in Location FP2.
Call CVDIS to convert the second number to binarye

Add the first number to the second.

o

Call MBDSUB to convert the sum to ASCII in position six
of the output buffer.

Call WRTLIN to print the result on the terminale.
Go to MDS999.

Functional element FP2 is not used by any of the <called
subroutines or any of the secondary subroutinese.

In SSS read the descriptions of subroutines TCL=I and CVDISe

READ***READ* **READ

In the output dinterface for MD1B of TCL-I note that register
IS points one character before the beginning of the edited
input Linee. This means that if the Lline

DADD 3 4

were enteredy IS would point one character position before
the 3. In the description of CVDIS read that register IS
must be set in exactly this conditione When CVDIS returns
to the callery IS points at the <character which stopped the
conversion. In the example aboves it would point at the
space before the 44 which means that it is ready for a call
to convert the second numbere CVDIS outputs the binary

18

Introduction to Reality Assembly Language Programming

.

number in FP0y the extended accumulatore.

Use the Store Accumulator (STORE} instruction to save the
first number in FP2y and use Add Accumulator (ADD) to add
the first number to the second.

In SSS study subroutines MDBSUB and WRTLIN.

STUDY***STUDY**x*STUDY

MBDSUBs which converts a binary number in FPO to a string of
ASCII characterss expects R15 to point one prior to an area
where the string is to be storede WRTLINs on the cther
hande expects storage register OBBEG to point one prior to
the output data anc address register 0B to ooint to the Llast
character to be printede.

To gain some appreciation of the initialization done by the
system read the description of subrout ine MD0 _in SSSe.

READ*>*xREAD* *xREAD
This subroutine initializes a process before LOGON starts
the bprocesse. Notice that PINIT 4s called: Read the
description of that subroutinee.

READ* *xREAD***xREAD
PINIT calls WSINITe which initializes many of the triadse
In the output interface section of WSINIT®*s description see
that work space 0B is filled with blanks and that OBBEG and
register 0B both point to the beginning of this spacee

SEE***x SEE** *SEE

1S

Introduction to Reality Assembly Language Programming

This dnformation sugecests a method of interfacing with
subroutines MBDSUB and WRTLIN.

Increment the contents of register 0B by six since we want
to output the result starting in position sixe Wwork space
02 has been filled with blanks sc¢c do not initialize the
areae. Use the instruction

INC 0OBsS

wnich will generate a Literal for the sixe After this
instruction executesy register OB will be pointing at the
proper output location. Because MBDSUB requires its buffer
oointer in R15¢ move the <contents of 0B to R15e See the
discussion of the MOV R¢R instruction in CPUe.

SEE**xSEE*x**xSEE

When MBDSUB returnse R15 will pe pointing at the Llast
converted charactere Since WRTLIN expects ©0B to point to
the Last character in the buffers move the contents of R15
to OBe After calling WRTLINe 0o to MDS35,.

Rememoer to insert an entry=point branch instruction to the
new Logice It should be placed immediately after the entry
point zero branche

Use the Editor to enter your new code. Then assemblesy List
and LlLoad ite See Figure 7-2 for comparison with your codee.
The Listing in this figure was produced using the M option
so that macro expansions would be evidente

Test your mode by typing the verb DADD followed by two
decimal numberse

20

Introduction to Reality Assembly Language Programming

2 AGE 1 MOD1 FRAME 337 16216202 16 SEP 1981

301 000 7FFO0Q151 FRAME 337
001
D«Vﬂ‘\ *
ol *26JUN8D
10 *
J0 *
106 *MOORE
107 *
08 B 1AQ
109 B 1DADD
110 x
111 M S AT CHANCE2 DEFM 94167
112 *
)13 FAG EQU =+
014 003 11S90A7 BSL CHANCE2
015 006 4F410802 BCE CYA'4R15,7AQ
)16 00A 10100 ENT MD9399
FFE 0241
017 *
118 1DADD EQU =+
)15 003 115008 BSL CVDIS
)20 006 A22DD9 STORE FP2
721 009 115008 3SL CVDIS
)22 00C 422DDZ ADD FP2
)23 0OF E11058B INC 0Bs6
)24 012 15BF MOV OByR15
)25 014 110008 BSL MBDSUB
)26 017 16FB MOV R15408
)27 019 112006 3SL WRTLIN
)i 11C 10100A ENT MD99S
‘LOIF 00
020 0006
FFE 08CE
D OF
Fiec, 7->

A~ Te3

—

¢

READING INPUT
Change the Logic of the mode to solicit more addends after
adding the first two enterede The following statements
specify the new logic for DADD:
Call CVDIS to convert the first number to binarye.
Save the first binary number in Location FP2.
Repeat
Cell CVDIS to convert the next number to binarye.
Add the contents of FP2 to the binary number.

Save the sum in FP2.

Call MBDSUB to convert the sum to ASCII in position
six of the output buffer.

Call WRTLIN to print the results on the terminal.
CallL READLIN to read another number.
Until READLIN*s dinput is nulle
Go to MD939.
In SSS read the entire description of subroutine READLIN and
the functional description of subroutine GETBUF.

READ* **xREAD***xREAD

22

Introduction to Reality Assembly Language Programming

READLIN catls subroutine GETBUF to read a Line of input from
the terminale GETBUF prints a prompt cheracter and reads
the inpute When REZADLIN returns to the callers IBBEG and IB
both point one byte before where the dnput beginse Since
subroutine CVDIS expects register IS to point one byte
before dits input datas use the MOV RsR instruction to move
the contents of IB to IS

The dinput Line must be checked for no inpute Since IB
points one byte before the datas increment IB to point at
the next pyte and then test if the byte contains a segment
marke A segment mark in this position would indicate that
no data was enterede INn CPU see dnstructions INC R and BCE
N’R’L.

SEE***SEE***SEE

In PSYM there is a symbols SMe that is @ constant having the
value ocf a segment mark (X°®FF*®), This symbol should be used
in the instruction.

Assemblesy Loads and Llist your mode. Compare it with Figure
T=3e The asterisks on the right side of the Listing
indicate the new Llines. Invoke the mode by typing

DADD

followed by two decimal numberse. After the mode prints the
sume it will print a colone prompting you to enter another
number. Type another number and see the result. Continue
entering numbers as the colon prompts youe. Note that a
negative number can be entered: Just precede the number
with a minus signe

23

Introduction to Reality Assembly Language Programming

To terminate the mode enter a carriage return without 3
numbere« The next colon that prints will be TCL®*s prompte

24

Introduction to Reality Assembly Language Programming

PAGE

001 0060
01

1€

006

007

008 001

009 003

010

011

012

013

014 005

015 008

016 00C

017

018

019 00F

020 012

021

922 015

023 018

024 01B

025 D1E

026 021

027 023

02° 026

0lg 228

0 3%t 28

031 02E

032 030

033 031

034 035

035

036 037
03A
FFE

T OF

1

T7FF00151

1204
1EQE

M 9 AT

115047
47410804
101004

115008
A22DDS

115008
A22DD3
A22DDS
£11D58
1538F
110008
16FB
112006
110006
15A4
3A
4AFF0836
1714

101004
0006
1134

¥0oD1

*

*14JUL8O

*
*

*MOORE

*

*

CHANCER

*

YAQ

'DADD

AGAIN

ouT

FRAME

o

DEFM

£EQu
BSL
BCE
ENT

EGQU
BSL
STORE
EQuU
BSL
ADD
STORE
INC
MOV
BSL
MOV
BSL
BSL
MOV
INC
BCE

Eaqu
ENT

e

FRAME 337

337

YAQ
IDADD

Fele7

*
CHANCE?2
C*AY4R15,4!AQ
MDS99

*

CVvDISs
Fp2

*

CVDIS
FP2

Fp2
0Be6
OBeR15
MBDSUB
R15408B
WRTLIN
READLIN
IBoIS
I8
SMeIBeOUT
AGAIN

*

Mb999

-3

16:16:11

* Kk ¥k k %k

* Kk hkk %k

* %k k k%
%* % ¥k % %k
*h Kk k*x
*k kkk
* %k k* Kk
* % k¥ k

16 SEP 1981

- CHANGING THE PROMPT CHARACTER

Since both DADD and TCL use the colon as a prompt characters
it is difficult to know whether the colon 1is @& prompt for
another addend or for a TCL verbe In the dinput interface
sections of READLIN and GETBUF see that Location PRMPC
contains the prompt character.

SEE***SEEx*xSCE

Let us add dnstructions that will move a question mark into
fRMPC before READLIN dis callede.

In ASM read about the FRAME directive. In CPU read about
the MCC RewW instructione

READ**xREAD**+*READ

The FRAME statement sets the Llocation counter to ones
Leaving byte zero of the frame unused. This byte can be
usea to hold a frequently wused character or half word
constantey usually an attribute marke a segment marke or a
blanke In ASM read about the ORG and the CHR directivese.

READ*x*READ***READ

Just before the entry-point branch dnstructions set the
location counter to zero and define a character constant
containing &a question marke At some convenient place in
DADD*s Llogic move the <constant to PRMPCe Remember that
address register one (R1) points to byte zero of the mode so
use the instruction

26

Introduction to Reality Assembly Language Programming

MCC R14PRMPC

Assembley List and load your mocde. Compare it with the
Listing in Fiaure 7-4. DADD should now print a question
mark to prompt for inpute

27

Introduction to Reality Assembly Language Programming

101 000
001

0p

0L

30

00

006

007

108 000

003 000

010 001

711 003

012

013

014

115

116 005

017 008

018 00C

019

120

021 0OF

022 012

023 015

024

025 018

026 01B

027 01E

027~ 021

0. 324

039026

031 029

032 02B

033 02E

034 031

135 033

036 034

037 038

038

039 03A

7F00151

3F
1E04
1Z0E

M S AT

11S0A7
4F 410804
101C00A

Do0201
115008
A22DD3

115008
A22DD3
A22DDS
E11F58B
16BF
110008
15FB
112006
110006
16A4
3A
4AFF0839
1817

10100A

MOD1

*

*16JUL8O
*
*

*MOORE

*

*

CHANCE?2

*

TAQ

'DADD

AGAIN

ouT

Fle.

FRAME

ORG
CHR

DEFM

EQU
BSL
BCE
ENT

EQU
MCC

BSL

STORE
EQU
BSL
ADD
STORE
INC
MOV
BSL
MoV
BSL
BSL
MOV
INC
BCE

EQU
ENT

FRAME 237

337

Cere
TAQ
'DADD

CHANCE?2

CYA"4R15,4!AQ

MDS99

*
R14PRMPC
CvD1IsS
FP2

*

CvDIS
FP2

FP2

OB4 6
0Bs¢R 15
mMBDSUB
R15¢ 0B
WRTLIN
READLIN
IBeIS

1B

SMeIBeOUT

AGAIN

*

MDS999

162163

* % Kk Kk
* %k Kk kX

* %k Xk k&

15

16 SEP 1981

—
ST

2 MoD1

03
0006
12D4

FRAME 337

16316216

16 SEP 1981

C)

e

Te5

REMOVING EXTRA BLANKS

The vert DADD will now handle valid dnput. If you enter
Leading blankse howevers the program will treat them as
zerose. Extra ©blanks on the wverd Line "are eliminated by
TCL-Is+ but they are not eliminated on subsequent input
Linese

In CPU read sections 9.6 through 39.6.4 ana read about the
SCD Re¢N and DEC R dnstructions. In the output interface
section of TCL-I*s MD1 routine see that SC1 and SC2 are both
set to blank when your mode is startede

READ AND SEE*»*READ AND SEE***READ AND SEE
Change the mode so that it bypasses Lleading blanks in
READLIN®s 1inpute The Llogic for this part of the mode would
be:

Call READLIN.

Scan the dnput buffer using register IB until a
non-blank is found.

If the non=-blank character is a segment marke go to
OUTe

Decrement IBe
Move IB to ISe.

Go to AGAINe

29

Introduction to Reality Assembly Language Programming

Wwe decrement IB before moving it to IS because CVDIS expects
IS to point one byte befcocre the data to be convertede.

After you change your modes assembley Llist and lLoad it. See
Figure 7-5 for comparisone.

DADD should now ignore Leading blankse

30

Introduction to Reality Assembly Language Programming

PAG

001

m

oo
001

00F
012
015

018
018
_01E

029
02B
02E
031
034
038
03°
038

1 MOD1 FRAME 337 1616226
TFF00151 FRAME 337
R *
*15JUL80
*
*
*MOORE
*
ORG 0
3F CHR Ce2¢
1704 B TAQ
1E0E B tDADD
*
M S AT CHANCE?2 DEFM 354167
*
YAQ EQU *
11S0A7 BSL CHANCE?2
4F 410804 BCE CtA*4yR154!AQ
10100A ENT MDSS99
*
'DADD EQU *
D00201 MCC R14PRMPC
115008 BSL CvDIS
A22DDS STORE FP2
AGAIN EQU *
115008 BSL CVvDIS
A22DD3 ADD FP2
A22DD9 STORE FP2
£120€E8 INC 0B s6
168F MoV 0Be¢R 15
110008 BSL MBDSUB
15FB MOV R154 0B
112006 BSL WRTLIN
110006 BSL READLIN
6A0801 SCD IBeX*01 " *ok kokk
4AFFO083C BCE SMeIBeOUT
2A DEC IB * ok ok k ok
16A4 MOV IBeIS * %k kK ok
1217 B AGAIN
ouT EQU *
Fig 2-5

16

SEP 1981

PAGE 2

040 030 10100A
040 0006
/. FFE 1344

-
~

C

RN

MOD1

(Fie

ENT -

FRAME 337

MDS9S

95

16216227

16 SEP 1981

TCL-II VERBS

Review PRMy sections 4«1 throudgh 4e.4¢ 249 and 25, In SSS
read about TCL-II.

REVIEW AND READ*x*xREVIEW AND READ***REVIEW AND READ

TCL-II verbs creates modifys and move items in files. Some
examples of TCL-I1 verbs are ¢ EDITe ASy MLOADs and MLIST.

RETRIEVING AN ITEM

Create a TCL-I1 verb in your master dictionary. Use the
same frame that you used for your TCL-I verbse Although it
is possible to add the Logic for the TCL-II verb to the mode
as it now existses replace the old mode completely and point
the verb at entry point zeroe. Call the new verb DISP., If
your frame number were 3374 the verb definition would Llook
like this:

DISP

001 P
002: 2
003: 151

The 2 in Line twos which marks the definition as a TCL-II
verbe is the mode-id of TCL-II*s MD200 entry points The
mode-~id of your mode goes into Line threes

The Logic of vert DISP is as follows:

Input an iteme.

32

Introduction to Reality Assembly Language Programming

PR

Call WRTLIN to print the itemts first Line on the
terminale

Gec to MD99S9.

The first steps dnputting an items is done by TCL-II.
Notdice in TCL-II*s output interface section that IR points
to the attribute mark following the dtem-ide that sy it
points one byte prior to the first Line of the item, SR4
ooints to the last attribute mark of the iteme The contents
of these two elements delineate the item so that we can
reference any Lline we wisha.

To print the first Line of the item move the first Line to
the buffer pointed at by OBBEG because WRTLIN expects OBBEG
to be pointing one byte prior to the output datae OB should
be pointing to the lLast character in the outpute In CPU
study the following instructions:

MOV SR - LOAD ADDRESS REGISTER

MIID RyReN -~ INCREMENT AND MOVE STRING UNDER
DELIMITER CONTROL

DEC R - DECREMENT ADDKESS REGISTER BY ONE

STUDY***STUDY***xSTU DY

Move the itemt*s first Line to work space 03 by first moving
OBBEG to register 0Be Then move the string pointed at by IR
to the buffer pointed at by 0B until an attribute mark is
encounterede Since 0B will be pointing at the attribute
marky decrement it by one because WRTLIN expects it to be
pointing at the last byte of print datae.

33

Introduction to Reality Assembly Language Programming

Edit your mode for the verb DISPs remembering to 1include a
granch Local idnstruction as an entry pointe. After
assemdlings Loadinge and Listing your mocesy compare it with
Figure 8-1.,

Invoke the verb by typing DISP followed by 2 filename and an
item-ids for exaemple:

DISP FF MQOD2

The first ULine of the 3Jtem should be displayed on the
terminale

34

Introduction to Reality Assembly Language Programming

PAGE

001 000
001
o
0L
1
00
006
007
008 001
009
010
011 003
912 006
013 009
014 0OA
015 00D

FFE
£OF

c

1

7FF00151

1£02

EOEAESB
65B0A0
23
112006
10100A
0542

MQD2 FRAME 337 16:16:2%4
FRAME 337

*

*17JULB0

+*

*

*MOORE

k¢
B tDISP

*

tDISP EQU *
MOV OBBEGsO0OR
MIIG IR¢OBeXYAQ®
DEC 0B
BSL WRTLIN
ENT MD999

—le. 8-

16 SEP 1981

/7 8e2 RETRIEVING MANY ITEMS

C Review section 44 in PRM. In SSS review the discussion of
system element RMODE in section 3.8 and in the TCL-II
descriptione

REVIEW***REVIEW***REVIEW** *

Retrieving many items 1is the same as retrieving one: TCL-11I
handles the fetchinc of each ditem specified by the user in
the terminal 1dinput statement. Hencee the mode as now
written will handle more than one iteme.

Notice in the subroutine wusage section of TCL=-II's
description that MD201+ which is called by WRAPUP through
RMODEs calls WSINIT. Each time your mode exits to WRAPUP,
before MD201 returns with the next ditemy all of the
initialization performed by WSINIT will have been done.

Invoke the DISP verb with multiple items:?
DISP FF MOD1 MOD2
DISP FF =

/

Q 5.3 user opTIONS
User options are the options that can be specified with the
verb entered at the terminale They are not related to the

options specified in Line five of a2 TCL=II verb definition,
which should be thought of as designer optionse. An

36

Introduction to Reality Assembly Lenguage Programming

-

—

explaneation of designer options 1is beyond the scope of this
introductory manual.

User options can be defined in the mode to mean anything you
want them to mean. Howeversy the following options are
historically assigned these meanings:

Option Meaning

N Suppresses the pause at the end of each page
when the Listing is output to the terminal.

P Routes output to the printer (spooler)e.

Add these two options to your modes but before doing sos
enter the following command at the terminal:

DISP MD =

The first Lline of every item in the master dictionary should
print on the terminal without pause.

In SSS note that TCL-I zeros ABIT=ZBIT in the MD1 routinee.
Also note that MD1B calls subroutine GETOPTe. Read GETOPT's
description. Note the following system elements in WRTLIN®s
inout interface section: LPBITey PAGINATEe ‘and PAGFRMT.
Read subroutine SETLPTR*s <descriptione. In CPU read about
the following instructions:

SB B - SET BIT
BBS Bl - BERANCH ON BIT SET
BBZ Bl - BRANCH ON BIT ZERGO

37

Introduction to Reality Assembly Language Programming

READ AND NOTEx*xx*READ AND NOTEx**READ AND NOTE

In your mode set bit PAGINATE to eallow bit PAGFRMT to be
operatives Since subroutine GETOPT will set NBIT if there
is an N in the option Llists test if bit NBIT is sete If it
is note set PAGFRMT. Likewisey f PBIT 1is sete call
subroutine SETLPTRs which will set LPBIT.

Add the new code to your mode. Assembley loads and List ity
and compare it with Figure 8-2.

Invoke DISP with either option N or Ps and note its action:
DISP MD «

DISP MD * (N)
DISP MD MOD1 M0OD2 «(P)

38

Introduction to Reality Assembly Language Programming

PAGE

301 000
601

O'V

00

00

006

007

008 001

00S

010

011 003

012 005

013 00S

014

015 (0B

316 0O0F

017

518 012

018 015

020 018

021 019

022 01C
FFE

~OF

1

75F00151

1£02

80F7
528D000CA
80cC

928F06&11
118033

ECEAEB
66B8CAD0
23
112006
10100A
03A2

MOD2

*

*18JUL8O

*
*
*MOORE"

*

*

YDISP

DI10

DI20

FRAME

EQU
SB
BBS
SB
EQU
BBz
BSL
EQU
MOV
MIID
DEC
BSL
ENT

FRAME 337

337

IDISP

*
PAGINATE
NBIT+CI10
PAGFRMT

*
PBIT4DI20
SETLPTR

*
OBBE G+ 0B
IR9OByX *AG?
0B

WRTLIN
MDSS9

Fle. &>

16116542

* % %k %k
* %k Kk
* %k %k k %k
%* Kk Kk k
*khhk -
* * ok k ok
*k %k k %k

16 SEP 1981

(\/ N

FETCHING ANOTHER ITEM

For this next exercise create a chain of items in your filee
In the first Line of the first item put the item-id of the
second item; in the first Line of the second item put the
item-id of the third item; and so forthe Make the first
Line of the Last item nulle EDMe section 343¢ tells how to
create a null Lline with the insert and replace commandse AN
example of a chain would be:?

T1
001: T2
0012 T3
0012

CREATE A CHAIN***xCREATE A CHAIN**xCREATE A CHAIN

In SSS read about subroutine RETIXs Also in TCL-II's ocutput
interface description note that the elements BASEs MODULO
and SEPAR point to the file specified by the user on the
terminale In PRMy section 2.4¢ review the meanings of basey,
modulos and separatione.

READ AND REVIEW***READ AND REVIEWx*»READ AND REVIEW

Change your mode to <check the first Line of the ditem for a
null Linee If it is nully go to WRAPUP} otherwisey print

40

Introduction to Reality Assembly Language Programming

P

e

the Lltine and then read the 4ditem that it referencesy,
repeating the check for null. Develop & Local subroutine
(GETSYM)Y that will extract from the first Line a symbol to
be used as the item-id of the next items The Logic of the
entire mode will be:

Set PAGINATE.

If N is an optione set PAGFRMT.

If P is an optione call SETLPTR.

While the item*s first Line is not null and there'are no
errorss=:

Call WRTLIN to print first Line of item.
CALLL GETSYM to extract symbol from first Linee.
Call RETIX to read next iteme

6o to HKDSS99.

Subroutine GETSYM

Eliminate leading blankse

Move symbol to area BMS.

End symbol with an attribute marke

Returne.

The new Logic does not change the previous handling of user

41

Introduction to Reality Assembly Language Programming

options so the first part of your mode can remain the sames
Before caltlina WRTLIN (just after Label DI20 in Figure 8-2)4
move IR to IB to save it for Llater usee To test if the
first Line of the item ds nulley increment IRe Use the 8CE
NeR instruction to test if IR 1is pointing at an attribute
mark (AM)3 Jif IR ds pointing to an attribute marke go to
0UTy 3f noty decrement IR,

The code for calling WRTLIN can remain intact at this pointe
Follow it with a call to GETSYMs which will return with a
symbol in work space BMS with BMSBEG pointing one byte
before the symbole An attribute mark will follow the
symbole Call RETIX to read the item specified by BMSBEG.
If RETIX returns with RMBIT equal to zeroe go to NOITEM;S
otherwises pbranch back to print the new itemts first line
(DI20)e FoOr nowe eguate symbol NOITEM to the normal return
to WRAPUP.

In subroutine GETSYM move BMSBEG TO BMSe Using SCD ReN with
IB eliminate Leading blanks by scanning for a non=-blank
character (Remember that SC2 <contains a blank)e. Decrement
IB so that it points one byte before the non=-blank
charactery and move a string from the buffer pointed to by
IB to the pbuffer pointed to by BMS using the MIID ReRoeN

instruction until a blank or an attribute mark 1ds
encountereces Then use MCC Ne¢R to move an attribute mark
after the symbole. Return to the main routine with the RTN

instruction.

After assemblirae Lloadings and listing your modey compare it
with Figure 8-3. Test the mode by 1invoking DISP and the
first item of the chain that you created:

DISP FF T1

42

Introduction to Rezlity Assembly Language Progoramming

PAGE

001 000
001

07

OL‘

70

00

006

507

008 001

0%

310

011 0903

312 005

313 009

014

015 00B

016 0OF

017

018 012

01S 014

020 015

021 018

322 01A

023 01D

J24 020

025 021

026 024

027 026

077 029

0Lg 02D

3

031

332 02F

133

034

035 032

336 035

137 038

038 039

033 03C

1

TFF00151

1202

&OF7
92830004
80CC

S28F0811
118033

166A

36
45FE082E
25
ECEAESB
66B0AD
25
112006
1831
111007
S09ED82E
1211

101004

EO7AES
640801
2A

6A80A1
48FE2C

MobD2

*

*C2APR79

*
*

*MOORE

*

YDISP

DI10

LI20

NOITEM
ouT

*

GETSYM

FRAME

EQu
SB
BBS
SB
Equ
BB2Z
BSL
EQU
MOV
INC
BCE
DEC
MOV
MIID
OEC
BSL
BSL
BSL
BBZ

EQU
EQu
ENT

Equ
MOV
SCD
oEC
MIID
MCC

FRAME 337

337

'DISP

*

PAGINATE
NBITeLI1lU
FPAGFRMT

*

PBITsDIZ20
SETLFTR

*

IRs1IB

IR
AMeIReOUT
IR

0BBE G+ 0B
IReOBe X YAD®
0B

WRTLIN
GETSYM
RETIX
RMBITeNOITEM
DI20

*
*

MD9S9

*

BMSEEG¢BMS
IBeX*t01"*

I8

IByBMSe X*ALY
AM¢BMS

Ere 8D

1616246 16 SEP 1981

% % * % Kk
* % Kk kok
* %k % k%
* & Kk &k

* k %k k*x
* k x kX
% %k %k k
* % Kk k%
* ok Kk Kk *k
* % % %k Kk

* X k k%
* Kk kkh
* % %k kX
* %k kk Kk
* k Xk k&
* * Kk k&

PAGE 2 MOD2

040 C3F 1%
FFE 185A

—

¢

7

RTN

FRAME 337

*

16216347

%* % %k kK

16 SEP 1581

N

RETRIEVING FROM ANCTHER FILE

In the last exercise you created a chain of items 1in one
filee Extend this chain into another file by 1inserting the
file name and item=-id of the next item into the first (ine
of the Last 1item of the chain. For exampley if the chain
were to go from file FF into the MD (master dictionary) file
and back to file FFe the continuation would Llook Like this:

In file FF

T3 L f y
001: MD T4 é/& L{Ym\ o v D DLA[) b 66‘«;4/4/;/*,
In file MD di_ “£> d)

T4
001: T5 a2 Lo éJ LJ—%S/L QQ/ -_
15 Me—- N> o

001: Ts —3 Vite

iy Lt Gep el
001: FF T7

In file FF

T7
0012 T8

T8
001: T9

TS
001:

44

Introduction to Reality Assembly Language Programming

EXTEND THE CHAIN***xEXTEND THE CHAIN***EXTEND THE CHAIN

In PRM reac sections le7s 2e4s 3ele and 3e¢2e In section 3.2
note especially the discussion of item-id and attributes 1
through 4 and the discussion about Figure A. In SSS,
section 3.3y read about elements MBASEy MMODe and MSEPe.
Alsos read the descriptions of subroutines RETIXy GBMSy and
SDLID.

READ* **READ***RpAD
Change the Llogic of your mode to access an item from a file
different from the one currently being accessedes The
following statements specify what has to be dones exclusive

of initializing the print options and returning to WRAPUP:

while the first Line 4s not null and there are no
errors.

Call WRTLIN to print the 1item*s first (inee.
Call GETSYM to get a symbola
If GETSYM did not reach the end of the Line

Call RETIX to read the file®s definition item
in the master dictionarye.

Call GBMS to get the file*s dictionary-Llevel

basey moduloys and separation from its
definitione

45

Introduction to Reality Assembly Language Programming

Call GDLID to get the file*s data-lLevel bases
modulos and separation from the ODL/ID item in
its dictionarye.

Call GETSYM to get & symbol,

Call RETIX to reaa an item.

The Logic of your mode can remeain the same wup through the
BSL to GETSYMe After thate test if the end of the Line was
reachede Use a BCE NeReL instruction to see if IB points to
an attribute marke Branch to where RETIX reads another
item.

If GETSYM did not reech the end of the Lline then assume that
a file name is present. RETIX must be used tc read the
file*s definition from the master dictionarye Since GETSYM
puts the symbol into @a buffer pointed at by BMSBEGes that
parameter is taken <care ofe but the master dictionary®s
basey moduloes and separation must be moved to elements BASE,
MCDULOs and SEPARe This dinformation s contained in
elements MBASE, MMODs and MSEP. Moving MBASE to BASE
requires one instrucione. Moving MMOD and MSEP to MODULO and
SEPAR can also be done with only one fdnstrucione. PSYM
defines a double ‘'words MMODMSEPy which dincludes the
contiguous words MMOD and MSEP. Likewisesy the definition of
MODULOSEPAR encompasses the two words MODULO and SEPAR. SOy
move MMODMSEP to MODULOSEPARe Then call RETIXe If RMBIT is
zerocey g0 to NOFILE. Call GBMSy and if RMBIT is zeroe go to
NOFILE. Call GDLID;S if RMBIT equals =zeroe co to NODATA.
Call GETSYM to get another symbol from the original itemt*s
first Linee A call to RETIX to read another item already
exists in the mode.

Fquate the symbols NOFILE and NODATA to the return to

46

Introduction to Reality Assembly Language Programming

A

"

WRAPUP .

Add the new lLogic to the modee. Assembles loadse and List dite
See Figure 8-4 for comparisone. Invoke the mode by
referencing the item chain you have built?

DISP FF T1

Tes TESr >

47

Introduction to Reality Assembly Langusage Programming

>AGE

J01 000
0c1
¥
)
)0
10
006
307
108 001
109
110
711 003
)12 005
)13 009
114
115 00B
)16 0OF
)17
118 012
119 014
)20 015
)21 019
122 01A
123 01D
)24 020
)25 021
126 024
127 026
1770 2A
). g 02E
)30 32
131 035
)32 039
)33 03C
134 040
135 043
136 047
137
)38 049
)39 04C

1

TFF00151

1£02

80F7
S28D000A
g8oCC

928F0811
118033

166A

36
45FE0851
25
EOEAEB
66BOAO
23
112006
1854
4AFED848
F0288030
FO2A8032
111007
909E0851
113003
909E0851
11p007
909E0851
1854

111007
905E0851

MoD2

*

*23JUL8D

*
*

*MOORE

*

'DISP

DIl

DI20

DI8o

FRAME

£Qu
SB
BBS
S8
EGU
BBZ
BSL
£EQu
MoV
INC
BCE
DEC
MOV
MIID
DEC
BSL
BSL
BCE
MOV
MOV
BSL
BBZ
BSL
BBZ
BSL
BBz
BSL
EQU
BStL
BB2Z

FRAME 337

337

'DISP

*

PAGINATE
NBIT«DI1lO0
PAGFRMT

*
PBITeDIZ20
SETLPTR

*

IRsIB

IR
AMeIReOUT
IR
OEBEG+0B
IR¢O0BeX*AD®
0B

WRTLIN
GETSYM
AMeIBeDIBO
MBASE¢BASE

16:17:05

% % % % %
* %k kK

MMODMSEP¢MODLLOSEPAR *%x*x»

RETIX
RMBITeNOFILE
GBMS
RMBITeNOFILE
GDLID
RMBITeNODATA
GETSYM

*

RETIX
RMBITSNOITEM

*k kkk
* Kk khkk
* %k Kk %k
% dr ok ko
*x k Kk kK
* k %k k Kk
* Kk kkk
* % Kk k%

16 SEP 1981

>AGE

)40 050

)41

)~

).

) 4

) 4 52

)45

)47

)48 055

)49 058

150 058

)51 05C

)52 05F

153 062
FFE

- OF

10100A

EOT7AES
6A0801
2A
6A80A1
48FE20
14
27C6

MOD2

NOFILE
NODATA
NOITEM
ouT

*

GETSYM

EQU
EQuU
EGU
EQU
ENT

£aqu
MOV
SCD
DEC
MIID
MCcC
RTN

FRAME 337 16:317:07
‘DI20

* ok kkk

* ok h kK

*

*

MD9S9

*

BMSBEG ¢ BMS
IBeX*01°*

1B
IB¢BMS e X*AL"
AM¢BMS

*

FP;)\ 8*‘{‘ (7=

16 SEP 1981

RETRIZVING FROM

The mode 4s now

f'.lLey
item.

It cannoty

A DICTICNARY FILE

able

dictionary Llevele.

Extend your chain of items from
into the dictionary Level:

to

howevery,

retrieve

In the FF data level file

To
001:

DICT FF T10

In the FF dictionary Level file

Tice
001¢ T11

T11
001: T12

Ti2
001¢

FF T13

In the FF data Llevel file

T13
0C1: T14

Ti4

001: T15

50

jtems

item

from the current

from

the data Llevel of the

or it can go to another filevs data level to fetch an
retrieve an

a filer*s

file

Introduction to Reality Assembly Language Procgramming

T15
go1:

Change your mode to test for the keyword DICT before a file
name. If the keyword is presents the mode should fetch
items from the dictionary level rather than from the file's
data level.

In ASM read sections 3.5 and 4¢ and in CPU read about the
following instructions:

B¢ WisWjol - BRANCH ON WORD COMPARE

SB B - SET BIT
2B B - Z2ERO BIT

IN SSSy section 2¢ recall that address register BMS is R8.
READ AND RECALL*»**xREAD AND RECALL***READ AND RECALL

The majority of the mode¥s Logic need not changee. The

following is the pertinent section with the new steps marked

by asterisks at the Llefte.

Call WRTLIN to print the item®*s first linee.

* % Zero bit DFLG (unused by any of the called
subroutinecs) to indicate date level.

* * DI30D .

Call GETSYM to get a symbole

51

Introduction to Reality Assembly Language Programming

‘C

* Kk

* %

Move BMSBEG to BMS to point to the symbol =-1.
Increment BMS to point to the symbol.

If the double word pointed at by R8 (BMS) does
not contein C*DICT's go to DI4C. (The BU
DeDsL instruction can be used with the Literal
C*DICTY as the first operand and the
combination R8iDO0 as the second.)

Set bit DOFLG to indicate dictionary Llevele.

Go to DI30.

DI40

If IR points to an attribute marky go to DIBO.

Call GBMS to get the filets dictionary-Llevel
bases¢ modulos and separatione.

If RMBIT eauals zeros go to NOFILE.
If DFLG is sets go to DI6D.

CaLL-GDLID to get the file*s data-level bases
modulos and separatione.

If RMBIT equals zeroe go to NODATA.

DI&C »

52

Introduction to Reality Assembly Language Programming

Call GETSYM to get a symbole.

DIBD

After adding the new logcic to your modes assemble and load
ite List the mode using the M option to see the macro
expansions. Compare the Listing with Figure 8-5. Test the
mode by invoking the verb:

DISP FF T1

53

Introduction to Reality Assembly Language Programming

PAGE

001 000
001

)

0

00

006

007

008 061

009

010

011 003

012 005

013 €09

014

015 00B

016 OOF

017

018 012

015 014

020 015

921 019

022 01A

023 01D

024 020

025 021

026 024

027

0F7 026

ol.g 028

03 2B

031 02C
030

032 032

033 034

034

035 036

036 03A

037 03E

038 042

1

7F00151

80F7
5283000A
88CC

928FC811
118033

166A

36
45FE0865
25
EGCEAEB
66BOAD
23
112006
7083

1868
EQ7AES
38
F13CS9800
5035
8083
1225

4AFEORBSC
F0288030
FO2A8032
111007

mMoD2 FRAME 337 16:17:13 16
FRAME 337
*
*23JUL8BO
*
*
*MOORE
*
B IDISP
*
1DISP EQU *
SB PAGINATE
BB S NBITe¢DI10
SB PAGFRMT
CIlo EQU *
BB?Z PBIT<DIZ2C
BSL SETLPTR
0I20 EQU *
MOV IReIRB
INC IR
BCE AMgeIRsOQUT
DEC IR
‘MOV OBBEG+0B
MIID IR¢OBeXTAD®
DEC 0B
BSL WRTLIN
ZB DFLG * ok ok ok k
bI30 EQU * * ok kok ok
BSL GETSYM
MOV BMSBEG ¢ BMS *k ok k ok
INC BMS * k% k ok
BU C*DICT*4RB3;D0¢DI40 *#hws
SB DFLG hok ok hx
B DI30 *khhK
D140 EQU * hk kkk

BCE AMeIBeD IS0
MOV MBASEyBASE

MOV MMODMSEP+MODULOSEPAR

BSL RETIX

F?\ 9?3-7 Qc-«]{\(

SEP 1981

PAGE

039 045
040 049
¢ D4cC
0 050
0 054
04057
045
046
047
048
049
950
051
952
053
054
055
055
057
958
059
060
061
062
963

058

05D
050
064

065

06°
0e6C
06F
070
073
076
G77
078
FFE

=7
_c

2

909E0855
113003
S03£0865
30830054
110007
209E0855

18€8

111007
905E0865
1811

10100A

EQ7AES
6A0801
24
6A80A1
45FE20
14

00
44494354
35E2

MOD2

LIsd

DI80

NOFILE
NODATA
NOITEM
ouT

*

GETSYM

BBZ
BSL
BBZ
BBS
BSL
BBZ
EQu
BSL
EQU
BSL
BBZ

EQu
EQU
EQU
EQU
ENT

EQU
MOV
SCD
DEC
MIID
MCC
RTN

FRAME 337

KMBITeNOFILE
GBMS
RMBITsNOFILE
OFLG¢DIGO
GOLID
RMBITeNODATA

*

GETSYM

*

RETIX
RMBITeNOITEM
0I20

BMSBEGs EMS
IBeX®01"*

18
IByBMSeXT*ALY
AM¢BMS

*

16517214

%* %k %k k %k

* %k Kk %k *k

16 SEP

1981

OUTPUTTING MESSAGES

OUTPUTTING ERROR MESSAGES

Although the mode that you have developed tests for error
conditionses the Logic for each test returns to the same
point in WRAPUP. WRAPUP has several entry noints providing
different dinterfaces with the ERRMSG filee In SSS in the
functional description for WRAPUP read about entry points
MDSS5 and MD99. In PRMy APPENDIX Be note messages 1345 111,
and 201.

READ AND NOTEx+*READ AND NOTE*x+**READ AND NOTE

Entry MD995 expects a message number in Cl1 and a parameter
in a puffer pointed at by BMSBEGe. Since the mode has BMSBEG
pointing at the file name at NOFILE and at the item-id at
NOITEMy use entry MD995 to print an error message for these
two conditionse At Location NOFILE move the number 201 1into
Cl before branching to MD999; at NOITEM move 111 into C1
before branchinge.

Error message 13 does not require a parameter so to have it
printecds move 13 into REJCTR and transfer control to MD99.
The following steps specify the Logic in more detail:

NOFILE . '
* % Move 201 to Cile.
* % External branch to MD995, .

56

Introduction to Reality Assembly Language Programming

NODATA .

* * Move 13 to REJCTRe
-k External branch to MDSS,.
NOITEM T e
** Move 111 to Cil.
* % E{ternal branch to MD395.
OUT

External branch to MD299.

Add the new Logic to your mode and compare with the Listing
in Figure 9-1. To test your mode®s error checking logic add
an 1item to the chain of items. Let it reference an
non-existent items for instances

T15 _
001: FF NILITEM

Wwhen you invoke the verb DISP with the first item of the
chainey all dJtems should be printed until this one is
processeds The message

C111] ITEM *NILITEM®* IS NOT ON FILE

~should be displayed on the terminal. Likewises if a

non-existent file is referencedy

T15
001: XX T1

57

Introduction to Reality Assembly Language Programming

the following message will be displayed on the terminal:

f2C01] *XX* IS NOT A FILE NAME

To test the lack of a DL/ID item create a file:
CREATE=FILE (GG 141 141)

Edit two items in GG*s dictionary:
ED DICT GG DLID DL/ID

When the Editor presents DLID for editinge enter

MES99"DL/ID"1
FI

When the Editor presents DL/ID for editings type
FD
to delete the item.

If you change your item=-chain to reference an item in file
GG:

T15
001: GG XX

The message
[13] DATA LEVEL DESCRIPTOR MISSING

should be Listede To restore GG®*s DL/ID dJtem reverse the

58

Introduction to Reality Assembly Language Programming

PAGE

001 000
001

v

0'\' -

00

g0

006

007

008 001

009

010

011 003

012 005

013 009

214

015 00B

015 QOF

017

018 012

019 014

020 015

021 01°

022 01A

023 01D

024 D20

025 021

026 024

327

07 026
0(’ 128
03 2B

031 02C
030
032 032
033 034
034
035 036
036 03A
037 03E
038 042

1

7TFF00151

(A1

1t02

80F7
528D00CA
80CC

928F0811
118033

166A

35
45FEC8TA
26
EOEAEE
6580A0
28
112008
7083

187D
ECTAES
38
F1469800
5035
8083
1E2S

4AFED85C
F0288030
FD2A8032
111007

MoD2

*

*24 JUL8D
*
*

*MOORE

*

pISpe

DI1C

DI20

L1306

DI40

FRAME

EQU
SB
BBS
SB
EQU
BBZ
BSL
EQU
MOV
INC
BCE
DEC
MOV
MIID
DEC
BSL
28
EQU
BSL
MOV
INC
BU

SB

EQU
BCE
MOV
Mov
BSL

FRAME 337

337

IDISP

*

PAGINATE
NBITDI1O0
PAGFRMT

*
PEITsDIZ2C
SETLPTR

*

IReIB

IR
AMg IR OUT
IR
OEBEG+0B
IReOBeX*AD®
0B

WRTLIN
DFLG

*

GETSYM
BMSBEG+BMS
BMS
C*DICT*4R835D0sDI40

DFLG

DI3O0

*

AMsIBeDIBD

MBASE ¢+BASE

MMODMSEP +MODULOSEPAR
RETIX

16117221

16 SEP 1581

PAGE

039 045
040 049
0 . -.04C
0%_ 050
0“‘;%5“
04 57
945
D46 05B
047
048 05D
049 060
050 064
051
3152 066
153 06A
054
055 06D
056 071
057
058 074
059 078
060
061 078
062
0563
064 O07E
065 081
065 084
0(7'085
oLg 988
06 8B
08C
090
092
094
FFE
= OF

2

909E0855
113003
903E0865
50830054
110007
S09E086C

187D

111007
909E0873
1E£11

F2014148
103004

F058414A
10000A

F20141453
10300A

10100A

EOT7AES
6A0801
2A
6A80A1
48FE20
14
44494354
00CS
006F
000D
387F

M0D2

0I60

DIa&o

NOFILE

NODATA

NOITEM

ouT

*

GETSYM

8BZ
BSL
BBz
BBS
BSL
BBZ
EQU
BSL
EQU
BSL
BBZ

EQU
MoV
ENT
EQU
MOV
ENT
EQU
MOV
ENT
EQU
ENT

EQU
MOV
SCD
DEC
MIID
MCC
RTN

FRAME 337

RMBITeNOFILE
GBMS
RMBITeNOFILE
DFLGsDIGO
GDLID
RMBITeNODATA

*

GETSYM

*

RETIX
RMBITeNOITEM
DI20

*x

201,C1
MD995

*
134REJCTR
MD99

*

1114Cl
MD995

*

MDSS9

*
BMSBEG ¢ BMS
IByX*01*

1B

IB9yBMSe X*ALY®
AM4BMS

*

16217222

* k k k¥
%* % %k %k Kk

d* %k Kk Kk
* % Kk k%

*kkkk
* ok ok koK

16 SEP 1981

Se2

procedure used abovee. That 9sy enter the Editor with the
command

ED DICT GG DL/ID DLID

Merge the contents of DLID into DL/ID and delete DLID.

PUTTING PARAMETERS INTO HS FOR WRAPUP

In SSS in WRAPUP*s input interface section read about the

contents of HSBEG and HSEND and the contents of the buffer

to which they pointe especially the output message formate.

Also read the description of subroutine PRTERR
READ*x*READ**x*READ

Copy error message 4 to the terminal by entering the command

CT ERRMSG 4

Error message 4 contains the following:

4

001 HMODE ¢
002 A

003 H*

004 S(18)

005 HCHECKSUM ERROR{ FRAME =
006 R(4)

007 H MODE =
008 R(4)

009 H ABS =
010 R({4)

59

Introduction to Reality Assembly Lenguage Programming

Study PRTERR*s functional description and the description of
TS in the input interface.

STUDY** «STUDY**x+xSTUDY

Error messzge 4 is representative of the error messages in
file ERRMSGe. When you design a program that requires error
messagesy you should review PRMy, Appendix Be for messages
that <can be used with your programe If new messages are
requireds they should be added to ERRMSG.

As an exercises write a TCL-1I mode that will set parameters
into work a2rea HS for message 4. Lines 2¢ 64 8¢ and 10 of
message 4 indicaete that four parameters are needede. Use the
item name pointed at by BMSBEG for the first parameter and
the binary contents of RECORDe SIZ2E and ACF for the second,
third and fourth parameterss respectively. The binary
values will have to be converted by calls to MBDSUBe After
the parameters are preparedy transfer control to WRAPUP at
entry MDS9%. The detailed logic should be as follows:

Branch to 'ERRT (entry point)e.
YVERRT -

Move HSBEG to R15. R15 1is used because
subsequently we are going to call MBDSUBe.

Using the MCI 1instruction with R15e move a
segment mark (SM)Ys the letter "O", an
attribute mark C(AM), the number "4"¢ and
another attribute mark to the bytes pointed at
by R15.

Move BMSBEG to BMSe.

60

Introduction to Reality Assembly Language Programming

Move the string pointed at by BMS to the area
pointed at by R1% until an attribute mark s
encountered.,

Load dnto the extended accumulator the
contents of RECORD.

Call MBDSUB to <convert the wvalue din the
extended accumulator to an ASCII string in the
area pointed at by R15.

Move an attribute merk to the byte pointed to

Load into the extended accumutator the
contents of SIZEe.

Call MBDSUB to <convert the wvalue 1din the
extended accumlator to an ASCII string in the
buffer pointed at by R15.

Move an attribute mark to the byte pointed to
by R15.

Load 1into the extended accumulator the
contents of ACFe

Call MBDSUB to convert the wvalue in the
extended accumulator to an ASCII string in the
buffer pointed to by R15e.

Move an attribute and then a segment mark to
the bytes pointed at by R1E.

Move R15 to HSENDe. !

61

Introduction to Reality Assembly Language Programming

Go to MD399.

Assembley Llists and Load your mode. Compare it with Figure
9-2+ The verb DISP cen be used to invoke the modee... For
examples

DISP FF MOD4

should result in error message 4 being printed with "MOD4"
and three numbers as parameterse.

62

Introcduction to Reality Assembly Language Programming

,
l/

Move the 1tem=3id to work space HS.
Call PRTMSG to print messagee.
Repeat

Increment 0Se.

If 0S points to a *1°*

Then
Move *1* to work space HSa

Call PRTMSG to print message.

Flse
If 0S points to a *3°*

Then
Move ®*72% to work space HS.

Call MBDSUB to convert SIZE to ASCII
work space HS.

Call PRTMSG to print message.

Else
If 0S points to a "4°

Then
Move *210°' to work space HSe

Move the string in work space O0S
work space HSe.

65

Introduction to Reality Assembly Language Programming

to

If 0S points to an attribute marke branch to
OUTe.

If 0S 4s not pointing to a *1%s branch to
0120,

Ltoad the address of Ml into Ri4.
Move the string pointed at by R14 to the area
pointed at by HS until an attribute mark is
encounterede.
Call PRTMSG to brint the messagee.
Branch to DI10.

DI20 .

If 0S i1s not pointing at a *3*y branch to
DI3C.

Load the address of M72 1into R1l4.

Move the string pointed to by R14 to the area
pointed to by HSe.

Move HS to R15. MBDSUB uses R15 to point to
jts output buffere

Load the extended accumulator with SIZE.
Message 72 needs a number 3s a parameter:?
SIZE s used as a convenience for this
exercise.

Call MBDSUB to <convert the value in the
accumulator to ASCII,.

68

Introduction to Reality Assembly Lenguage Programming

DI30

ouT

Increment R15 and move an attribute mark to
the byte pointed at by R1S5.

Move R15 to HSe.
Call PRTMSG to print message.
Branch to DI1l0e.

If 0S d9s not pointing to a *4%4 branch to
DI10.

Load the address of M201 into R1l4e.

Move the string pointed at by R14 to the area
pointed at by HS until an attribute mark is
encountered,

Move OSBEG to R14.

Move the string pointed at by R14 to the area
pointed at by HS wuntil an attribute mark is
reachede This string has no meaning 1in the
messages It s just convenient for this
exercise.

Call PRTMSG to print the message.

Branch to DI1l0.

External branch to MDS99.

59

Introduction to Reality Assembly Language Programming

PRTMSG .

Increment HS and move a segment mark to the
byte pointed at by HS.

Move HSBEG to TSe

Calt PRTERRs which will really print the
mess agee

Move HSBEG to HS to initialize ite.

Increment HS so that fnput to the buffer skips
the first two bytese

Returne
After assemblings Listings and Loading your mode <compare it
with Figure 9-3. Verb DISP cean still be used to invoke the

mode:

DISP FF ITEM1
DISP FF ITEM2 ITEM1 ITEM3

70

Introduction to Reality Assembly Language Programming

PAGE

501 000

ool

T

0.

o g

)0

)05

07

)08 001

109

110

111 003
006

112

113 007
008

)14

)15 009
0oC

116

517 00D
00F

118

019

920 010

521 013

122 016

123 019

19+ 01A

DQ!Lélo

) 280 20

027 023

128 026

129 028

)30

131 02B

132 02C

)33 030

134 034

135 037

1

7FF00151

1EQF

323233

E068ES
6650A0
E05CE3
33
E1023E
6Z30A0
E0O7AES
6830A0
186F
EC68ES

35
45FE0B86C
45310030
E1063E
6E30A0

MOD4

*

*27JUL8O
*
*

*MOORE

*

M223

M1

M201

MT2

'DISP

DIl

FRAME

EQU
TEXT

EQU
TEXT

EQu
TEXT

EQU
TEXT

EQuU
MOV
MIID
Mov
INC
SRA
MIID
MoV
MIID
BSL
MOV
EQU
INC
BCE
BCU
SRA
MIID

FRAME 337 1617346 16 SEP

337

'DISP

*=]1

Ce223%4X'FE"

*=1

Ce1%4XYFE"

*-1
CP201%y XFE?

=]
CP72%, X *FE*

*

OSBEGeOS
IR9eOSeXTAD®
HSBEGeHS

HS

R144M223
R14¢HSe X*AOQ*
BMSBEG ¢ BMS
BMSeHS ¢ X*AO*
PRTMSG
OSBEGs0S

*

0S

AMeOSeOUT
C'1'40SsDI20
R144 M1
R144HSe X*AC®

1981

PAGE

036 03A
037 03C
ol

05. 03E
o 042
029 45
042 048
043 04A
044 04D
045 050
045 053
047 055
048 057
943

050 059
051 05D
052 060
053 063
054 066
055 069
056 06B
057

058 06D
059

060

061 070
062 073
063 076

0[‘\079
oLf_37cC
0ks_ 07D

FFE.

EOF

2

186F
1Z2A

45330058
E10C3E
623040
153F
AB275C
110008
47FE40
15F3
186F
1E2A

4534002A
E1083E
6E30A0
E068EE
6E30A0
186F
1E2A

10100A

43FF40
EO5CED
11000C
EOSCE3
33

14
3B99

MOD4

CI20

DI30

ouT

*

PRTMSG

BSL

EQu
BCU
SRA
MIID
MoV
LOADX
BSL
MCI
MoV
BSL

EQu
BCU
SRA
MIID
MOV
MIID
BSL

"EQU

ENT

EQU
MCI
MOV
BStL
MoV
INC
RTN

FRAME 337

PRTMSG

DI1O

*
C*t3*40S4D130
R144M72
R14¢HS e X*AD?
HSeR15

SIzt

MBDSUB
AMg¢R15
R154HS
PRTMSG

DI1lO

*
Ce40,4,0S,DI10
R144M201
R14¢HS ¢ X*AQ®
OSBEGeR14
R14¢HSe X*AD*
PRTMSG

DI1O

*

MD9g9

*

SMeHS
HSBEGe TS
PRTERR
HSBEGe¢HS
HS

16317247

16 SEP 1981

