
T !IBLE OF CONTENTS

r---
~f-., SECTION PAGE

1 GETTING STARTED • • • • • • • • • • • • • • • 1

2 SOr~E MANUALS YOU !JILL NEED • • • • • • • • • 2

3 CREA TING AN ACCOUNT • • • • • • • • • • • • • 3

if. DEFINING A VERB • • • • • • • • • • • • • • • 5

5 CREA THJG A S OURC E MODE • • • • • • • • • • • 7
5.1 GETTING A FRAME NUMBER • • • • • • • • • • • 7
5.2 CREATING A FILE FOR YOUR MODE • • • • • • • • 8
5.3 EDITING YOUR MODE • • • • • • • • • • • • • • 8

6 INTR ODUC ING THE SYSTEMS SU8 R au TINE S • • • • • 10

7 TCL-I VERBS • • • • • • • • • • • • • • • • • 11
7.1 CREA TING A VERB AND A MODE • • • • • • • • • 11
7.2 A TCL-I VERB lJ I T H PA RAME TE RS • • • • • • • • 17
7.3 READING INPUT • • • • • • • • • • ;. • • • • • 22
7.4 CHANGING THE PROMPT CHA RACTER • • • • • • • • 26
7.5 REMOVING EXTRA B LANK~ • • • • • • • • • • • • 29

.~
8 TCL- II VERBS .. • • • • • • • J • • • • • • • 32
8.1 RETRIt:VING AN ITEM • • • • • • • • • • • • • 32

\., .. 8.2 RC::TRIEVING MANY ITEMS • • • • .' • • • • • • • 36
8.3 USER OPTIONS • • • • • • • • • • • • • • • • 36
8.4 FETC HING ANO THER ITEM • • • • • • • • • • • • 40
8.5 RETRIEVING FROM ANOTHER FILE • • • • • • • • 44
8.6 RETRIEVING FROM A DIeT I ONA RY FILE • • • • • • 50

9 OUTPUTTING MESSAGES • • • • • • • • • • • • • 56
9.1 OUTPUTTING ERROR MESSAGES • • • • • • • • • • 56
9.2 PUTTING PARA METE RS INTO HS FOR WRA PUP • • • • 59
9.3 OUTP UTTI NG OfHt:R MESSAGE S .• • • • " • • • • • 64

1 GETTING STARTED

The purpose of this manual is to teach you enough about the
Reality system so that you will feel co~fortable writing
assembly language programs. If you follow the instructions
and aD alL of the exercises, you will quickly tearn the
basic components of the system.

Certain ~oros in the text will guide you. "Read" means to
chew and swallow the information; "scan" means to taste the
information; "study" means to chew well and swallow;
"review" means to recall certain flavors.

Thi s manua l assumes that you have acce-ssto ·~terminal
attached to a ReaLity system with the full,ilD-Il.,lemeht of . ,~. ' .

software tools.

1

Introduction to Reality Assembly Language PrO'gra:mlling

2 SOME MANUALS YOU WILL NEED

Several manuals provide most of the information you wiLL
need to program in assembly language. You should have a
coPy of each of the following for your own Jse:

~anual name

ReaLity Programmer's Reference ManuaL

Reality CPU Reference ManuaL

Reality Assembler Manual

Reality System Software Subroutines

Reality Editor Programming ManuaL

ReaLity AssembLy Language Programming Manual,
Section "Interactive Debugger: DEBUG"

Mnemonic

PRr

CPU

AS~

SSS

EDM

DEB

The mnemonics at the right are used in this manual for easy
reference. For instance. PRM, section 4.3, refers to
section 4.3 of the Reality Programmer's Reference ManuaL.

2

Introduction to ReaLity Assembly Language Programming

r-, 3 CREATING AN ACCOUNT
! .

•• 'f.-'

C
~

First. create an account for your use. Read PRM, sections
1-6, and then study sections 1, 2, 4, 5.1. 5.5, 10.1. and
10.25.

READ AND STUDY***READ AND STUDY***REAJ AND STUDY

Turn on your terminal. If the "LOGON PLEAS~ft message is not
dispLayed, depress the RETURN key several times. When the
message is displayed, type

S YSPR OG

to enter the
password, ask
it.

SYSPROG account. Ii the
your supervisor for the

To create an account, type

CREATE-ACCOUNT

system asks for a
password, and enter

The CREATE-ACCOUNT PROC wiLL ask a series of quest tons.
Except for the following, answer alL questions with a
carriage return. For USER NAME reply with your last name.
When the PRIVILEGES message is output, you must reply

SYS2 (065)

in order to perform assemblies.

After the account
informed that you

i s est a b Lis h ed, the s y s t em
intend to perform assemblies

3

must be
in your

Introduction to Reality Assembly 'Language Programming

account. Do this by typing:

SETUP-ASSY account-name

where account-name
account. The PROC
For simplicity type
this one:

is the name that you gave to your
will repLy with a series of Questions.
a Y in reply to each question except

ENTER 'Y' TO GIVE THE ACCOUNT SYSPROG'S ACCESS CODES AND
SYS2(25) PRIVILEGES, ELSE 'N' (YIN)

Reply with an N. Your account is now ready for use in
assembLing programs.

To enter your account, type:

LOGTO account-name

After Tel dispLays a colon, you are operating in your own
account.

4

Introduction to ReaLity AssembLy language Programming

("'. 4 DEFHJING A VERB

To understand how verb definitions are created.
the Editor, especially the folLowing commands:
R, F, and Fl. Read EOM, sections 2 and 3.1
Also. review PRM. sections 6.5 and 4.3.

learn to use
G, I, L, DE,
through 3.8.

READ AND REVIEW***READ AND REVIEW***READ AND REVIEW

TIME is a TCL-I verb.
and time-of-day. Type

When invoked, it displays the date

TIME

on the terminal to see the format of the reply. Follow1ng
the directions given below, create a synonym for the verb
TINE.

Copy the verb TIME to the terminal by typin~

CT MD TIME

The system will display

001 PZ
002 3033

The P indicates that this is aver b. Si nc e the
letter of the first line, or attribute, is not a Q,
not a PR OC. The second line contai ns the mode-id
program. S; nc e this value is not 2 or 35, TIME is
verb, rather than a TCl-II or ENGLISH verb.

5

a

Introduction to Reality Assembly Language Programming

second
TIME is
of the

TCL-I

,~.-'

~,

As an exercise in creating verb definitions. produce a
synonym for the verb TIME. Enter the Editor specifying file
MD and item T. Type

ED MD T

when the Editor repLies, use the I
lines:

I
000+ PZ
000+ 3033
000+

command to insert two

Remember to terrr.inate the insert with a carriage return on a
nuLL Line.

To display the information you have inserted, type

L22

where 22 is normally used because 22
on the terminal.

Write the item to the fiLe by typing

FI

Lines can be displayed

Now you can invoke the function by typing

T

The repLy should have the same format as the reply for TIME.

6

Introduction to Reality AssembLy Language Programming

G1
R
your name or the name of the mode
FI

This will notify other programmers that you are using frame
337.

5.2 CREATING A FILE FOR YOUR MODE

Read ASM, section 9, and review the procedure for creating a
file in PRM, section 6.2.

READ AND REVIEW***READ AND REVIEW***REAJ AND REVIEW

start a source mode by creating a file and editing the first
six lines of a mode with documentation information. For
ease of reference the file name FF will be used in this
manuaL. To create file FF type

CREATE-FILE (FF 1,1 1.1)

the ones are the modulo and separation for the dictionary
and data portions of the file. You can use other values
when you learn more about the system.

~ 5.3 EDITING YOUR MODE

(f ..
'~

Create the first six lines of your mode by invoking the
Editor:

ED FF r~OD1

8

Introduction to Reality Assembly Language Programming

\. ...•

The first Line shouLd be a FRAME statement with the FlO of
your mode. When you have edited these six Lines, they
should look simiLar to this:

FRAME 337
* TEST MODE
* llJANPO
* 00
* 00
* SMITH

NOTE: DO NOT assembLe the mode with onLy these six Lines.

9

Introduction to Reality Assembly Langua;e Programming

!~' 6 INTRODUCING THE SYSTEMS SUBROUTINES

Much of the system programming that is done on ReaLity uses
the system software subroutines. Read SSS. sections 1
through 4.

READ***READ***READ .

In a sense these subroutines are the system with which you
must interface. We wiLL look at severaL of the subroutine
descriptions, but you should peruse the SSS manuaL each time
you design or change a mode.

When one of the exercises in this manuaL directs you to read
the description of a subroutine, do not try to grasp every
detail in the description~ rather read for a generaL
underst~nding. When you are told to concentrate on certain
eLements in a description, ignore other eLements because
they contain the correct data for the exercises.

10

Introduction to ReaLity Assembly Language Programming

7 TCL-I VERBS

Review PRM, sections 4.1,. 4.2 and 4.3.

REVIEW***REVIEW***REVIEW

Generally speaking, TCL-I verbs perform utility functions
that do not reference an explicitly specified file. The
verb TIME translates the system cLock' into a time and date
that it prints on the terminal. The arithmetic commands
(PRM, 9.1) are TCL-I verbs that req~ire parameters.
BLOCK-TERM and BLOCK-PRINT (PRr." 9.4) reference a fiLe to
translate the input Letters into block letters, but this
file is not specified by the user.

7.1 CREATING A VERB AND A MODE

Using the frame number that you recorded in file FRAM,
create a verb definition in your master dictionary. Call
the item AG. Put a P in the first Line and the mode-id of
your program in the second. The mode-id must be in
hexadecimal. Since the mode entry will be the zeroeth
entry. the mode-id will be simply the FID in hexadecimal.
No leading zero is needed.

Invoke the Editor by typing

ED MD AQ

and then insert the two lines. If your FlO were 337, the
verb definition would look Like this:

11

Introduction to Reality Assembly Language Programming

AQ
001: P
002: 151

Do not invoke verb AQ on the terminal until after you have
deveLoped the mode that wi lL be caLLed by the verb.

In SSS read section
foLlowing subroutines:

5 and scan the descriptions
Tel-I, CHANCE2, and WRAPUP.

READ AND SCAN***READ AND SCAN***READ AND SCAN

of the

TCL-I is not a subroutine: its main importance lies in the
initialization that it performs. We wiLL study its output
interface in more detail Later.

CHANCE2 is a simple subroutine that must be caLLed by means
of the 8ranch and Stack location (ESl) instruction. 8ecause
the heading Line

CHANCE2 (9tl~7)

is not foLLowed by an asterisk, CHANCE2 is not defined in
PSYM. Hence, its mode-id must be defined in your mode with
the DEFM directive. Use entry point 9 and FlO 167 (decimal)
with the DEFM.

When a program has compLeted its processing, it must do an
ExternaL Branch (ENT) to one of WRAPUP's entry poi~ts. We
will use entry point MD999.

Write a mode that will be caLled by the A~ verb. In the
mode caLL CHANCE2 and test its outout for an A. If
CHANCE2's output is an A, caLL CHANCE2 again. Otherwise, go

12

Introduction to ReaLity Assembly Language Programming

!

to WRAPUP. The folLowing statements exempLify the Logic:

Repeat
CalL CHANCE2

UntiL CHANCE2's output does not equal 'A'.
Go to MD999.

Notice that the output interface section of CHANCE2's
description specifies that the character entered from the
terminaL is returned in Hi and that R15 points to Hl.

Conventionally, the documentation information at the
beginning of the mode is foLLowed by entry-point Branch
Local instructions into the main logic of the mode. Since a
mode may have more than one entry point, additionaL branch
instructions can be added as they are needed. Constants and
symboL definitions folLow the branch entry points.

Read ASM, section 8, especialLy about the FRAME, DEFM and
EQU directives.

READ***READ***READ

In CPU study the foLLowing instructions:

B L - BRANCH LOCAL

BSL M - BRANCH AND STACK EXTERNAL

ENT M - BRANCH EXTERNAL

- BRANCH IMMEDIATE COMPARED TO CHARACTER

STUDY***STUDY***STUDY

13

Introduction to ReaLity AssembLy Language Programming

Write the code for the program, and using tneEditor, add it
to the mode you have aLready started. ~hen you enter the
data. start aLL Labels in the first position. If there is
no LabeL in the laoel field, space one character onLy. In
other words, do not try to Line up the fields of aLL the
instructions. After a Label, space one. After the
operation mnemonic, space one. Separate the operand fieLd
and any commentary by one space. Use the Editor's AS
function (EDM. section 3.12) to list the instructions
aLigned by fieLds.

After you have editec. the mode, read ASM,
through 12.3.

READ***READ***READ

AssembLe the mode:

AS FF MODI

List the mode on the printer:

MLIST FF HODI (P)

sections 12.1

and if there are no errors, load it into its absolute frame:

MLOAD FF MODI

The mode's listing shouLd look similar to the one in Figure
7-1.

Invoke the verb by typing

14

Introduction to ReaLity Assembly Language Programming

(

!\c.."

AQ

It should reply with the message

TYPE A <AGAIN) OR Q (QUIT>

If you type ".A.", it should retype the message.
any other character, it should return to Tel,
prompt with a coLon.

15

If you enter
which wiLL

Introduction to Reality AssembLy language Programming

:> AG E 1 MOD! FRAME 337 15:09:24 16 SEP 1981

001 000 7FF00151 FR M1E 337
001

O~' *
J l *26J UNBO

OO~ * 00 .
*

005 *MOORE
007 *
008 001 1E02 B ! A Q
009 *
J10 M 9 A7 CHANCE2 DEFM 9,167
011 *
012 !AG EQU *
013 003 1190A7 BSL CHANCE2
01't 006 4F410802 BCE C'A'.R15.!AQ
015 DOA lOlOOA ENT MD999

FFE 0241
::: OF

/~

(

\~

/". 7.2 A TCL-I VERB WITH PARAMETERS

. In [DM read about ME in section 3.4.

READ***READ***READ

Create another verb~ called DADO, in your master dictionary
by entering the Editor with

ED MD DADO

Use the ME command to merge the contents of verb AQ into
this item:

ME959"AQ"1
F

The 9S9 is just a large number. Inputting the F command
allows you to mOdify the data that you have merged. Replace
line two with a mode-id into entry point one of your frame.
If your frame were 337, the item would look like this when
you are finished:

DADO
001: P
002: 1151

The Logic of verb DAOD is simpLe. We want to type in the
v e r bOA DO f 0 l l owe d b y two de c i mal numb e r s • The mod e will
add the numbers together and print the sum on the terminal.
The Logic, .in terms of system subroutines. foLlows:

17

Introduction to Reality Assembly Language Programming

(
!
\

\.,

Call CVOIS to convert the first number to binary_

Save the first binary number in Location FP2.

CaLL CVDIS to convert the second number to binary.

Add the first number to the second.

Call MBDSUB to convert the sum to ASCII in position six
of the output buffer.

CaLL WRTLIN to print the resuLt on the terminaL.

Go to MD999.

Functional eLement FP2 is not used by any of the called
subroutines or any of the secondary subroutines.

In SSS read the descriptions ofsubro~tines TCL-I and CVOIS.

REA 0 * * * REA D * * *R E A 0

In the output interface for MOlB of TCL-I note that register
IS points one character before the beginning of the edited
i n put l ; n e • T his mea n s t hat i f the Line

DADO 3 4

were entered, IS wouLd point one character position before
the 3. In the description of CVOIS read that register IS
must be set in exactLy this condition. When CVDIS returns
to the caLler, IS points at the character which stopped the
conversion. In the exampLe above, it wouLd point at the
space before the 4, which means that it is ready for a calL
to convert the second number. CVDIS outputs the binary

18

Introduction to Reality Assembly Language Programming

number in FPQ, the extended accumuLator.

Use the store AccumuLator (STORE) instruction to save the
first number in FP2, and use Add AccumuLator (ADD) to add
the first number to the second.

In SSS study subroutines MDBSUB and WRTLIN.

STUDY***STUDY***STUDY

MBDSUB, which converts a binary number in FPO to a string of
ASCII characters, exoects R15 to point one prior to an area
where the string is to be stored. WRTLIN, on the ether
hand, expects storage register OBBEG to point one prior to
the output data ane address register 08 to ~oint to the Last
character to be printed.

To gain some appreciation of the initialization done by the
s y s t em rea d the des c rip t ion 0 f sub r 0 uti n e MD Q • inS S S.

READ***READ***READ

This subroutine initiaLizes a process before LOGON starts
the process. Notice that PINIT is caLled: Read the
description of that subroutine.

READ***READ***READ

PINIT calls WSINIT, which initializes many of the triads.
In the output interface section of WSINIT's description see
that work space DB is filled with blanks and that OBBEG and
register DB both point to the beginning of this space.

SEE* ** SE E** * SE E

19

Introduction to ReaLity Assembly Language Programming

This information suggests a method of interfacing with
~ subroutines MBDSU8 and WRTLIN.

Increment the contents of register OB by six since we want
to output the resuLt starting in position six. work space
03 has been fiLLed with blanks so do not initialize the
area. Use the instruction

INC 08,6

wnlcn will generate a literaL for the six. After this
instruction executes, register OB wiLL be pointing at the
proper output Location. Because MBDSUB requires its buffer
oointer in R15, move the contents of OB to R15. See the
discussion of the MOV R.R instruction in cpu.

SEE***SEE***SEE

When MBDSUB returns, R15 wiLL be pointing at the Last
converted character. Since WRTLIN expects OB to point to
the Last character in the buffer. move the contents of R15
to OB. After calLing WRTLIN, go to MD999.

Rememoer to insert an entry-point branch instruction to the
new Logic. It should be placed immediateLy after the entry
point zero branch.

Use the Editor to enter your new code. Then assemble. List
and Load it. See Figure 7-2 for comparison with your code.
The Listing in this figure was produced using the M option
so that macro expansions wouLd be evident.

Test your mode by typing the verb DADD followed by two
decimal numbers.

20

Introduction to ReaLity AssembLy Language Programming

~ AGE 1 MODI FRAME 337 16:16:02 16 SEP 1981

)01 000 7FFOO151 FR AME 337
00 1

or'" * o \: .. --*26JUN80
J 01..- --*
) 0 *
006 *MOORE
007 *
)08 8 !AQ
)09 B !DADD
010 *
311 ~.~ 9 A. 7 CHANCE2 DEFM 9,167
)12 *
)13 !AQ EQU *
014 003 1190A7 BSL CHANCE2
015 006 4F410802 BCE C'A',R15,!AQ
316 OOA 10100A ENT MD999

FFE 0241
017 *
018 !DADD EQU *
)19 003 115008 BSL CVDIS
)20 006 A22DD9 STORE FP2
)21 009 115008 SSL CVDIS
322 OOC A22DD3 ADD FP2
)23 OOF E11058 INC OB,6
)24 012 15BF MOV DB, R 15
)25 014 110008 BSL MBDSUB
326 017 16FB MOV R15,OB
J ~~ 019 112006 SSL WRTLIN
d~lC lO100A ENT MD999

1F 00
020 0006
FFE DaCE

:OF

READING INPUT

Change the Logic of the mode to solicit more addends after
'. adding the first two entered. The following statements

specify the new logic for DADO:

CalL CVDIS to convert the first number to binary.

Save the first binary number in location FP2.

Repeat

CaLL CVDIS to convert the next num~er to binary.

A.dd the contents of FP2 to the binary number.

Save the sum in FP2.

CalL MBDSUB to convert the sum to ASCII in position
six of the output buffer.

CaL L lit R T LIN top r i n t the res u l t s on the t e r min a l •

CalL READLIN to read another number.

Until READLINts input is null.

Go to ~1D999.

In SSS read the entire description of subroutine READLIN and
the functional description of subroutine GETBUF.

READ***READ***READ

22

Introduction to Reality Assembly Language Programming

READLIN calls subroutine GETBUF to read a line of input from
the terminal. GETBUF prints a prompt character and reads
the input. When R[ADLIN returns to the caller, IBBEG and 18
both point one byte before where the input begins. Since
subroutine CVDIS expects register IS to point one byte
before its input data. use the MOV R,R instruction to move
the contents of IB to IS.

The input line must be checked for no input. Since IB
points one byte before the data, increment IB to point at
the next byte and then test if the byte contains a segment
mark. A segment mark in this position would indicate that
no data was entered. In CPU see instructions INC Rand BCE
N,R,L.

SEE * * * SEE * * * SE E

In PSYM there is a symboL, SM, that is a constant having the
value of a segment mark (X·FF'). This symbol should be used
in the instruction.

AssembLe, load, and List your mode. Compare it with Figure
7-3. The asterisks on the right side of the listing
indicate the new Lines. Invoke the mode by typing

DADO

folLowed by two decimal nu~bers. After the mode prints the
sum, it wiLL print a coLon, prompting you to enter another
number. Type another number and see the resuLt. Continue
entering numbers as the coLon prompts you. Note that a
negative number can be entered: Just precede the number
with a minus sign.

23

Introduction to Reality Assembly Language Programming

To terminate the mode enter a carriage return without a
(n.Jmber. The next coLon that prints wi LL be Tel's prompt.
\

24

Introduction to ReaLity AssembLy Language Programming

~AGE 1 ~OD1 FRAME 337 16:16:11 16 SEP 1981

001 000 7FFOO151 FR AME 337
001 or- *

0\ .. *14JUL80

~L *
*

005 *MOORE
007 *
008 001 1::04 B ! AQ
009 003 1E 0 E B !DAD 0
010 *
011 M 9 A7 CHANCE2 DEFM 9,167
012 *
013 !AQ EQU *
01q 005 1190A7 BSL CHANCE2
015 008 4F410804 BC E C'A',R15,!AQ
016 o OC 10100A ENT MD999
017 *
018 !DADD EQU *
019 OOF 115008 BSL CVDIS
020 012 A22009 STORE FP2
021 AGAIN EQU * *****
02.2 015 115008 BSL CVDI S
023 018 A22DD3 ADD FP2
024 o IB A22DD9 STORE FP2 *****
025 OlE E11058 INC OB,6
025 021 l:,BF MO V OB,RI5
027 023 110008 BSL MBDSU8
020. 026 16FB MOV R15,OB
O~,~28 112006 BSL WRTLIN
03 2B 110006 BSL READLIN *****
031 02E lSA4 MOV IB, I S *****
032 030 3A INC IB *****
033 031 4AFF0836 BCE 3M,IBtOUr *****
03q 035 1::14 B AGAIN *****
035 OUT EQU * *****
036 037 10100A ENT M0999

03A 0006
FFE 113A

::: OF

FI G-. ?-""\
t:>

C",7.lf.
I '
I,

(,',1 '
\~

CHANGING THE PROMPT CHARACTER

Since both DADO and Tel use the colon as a prompt character.
it ;s difficult to know whether the colon is a prompt for
another addend or for a Tel verb. In the input interface
sections of ~EADLIN and GETBUF see that location PRMPC
contains the prompt character.

SEE***SEE***SEE

Let us add instructions that will move a Q~estion mark into
PRMPC before READLIN is called.

In ASM read about the FR M1E di r ect iv e.
the MCC R,W instruction.

READ***READ***READ

In CPU read about'

The FRAME statement sets the Location counter to one,
leaving byte zero of the frame unused. This byte can be
usea to hold a frequently used character or half word
constant. usually an attribute mark, a segment mark, or a
bLank. In ASM read'about the ORG and the CHR directives.

READ***READ***READ

Just before the entry-point branch instructions set the
location counter to zero and define a character constant
containing a Question mark. At some convenient place in
DADO's logic move the constant to PRMPC. Remember that
address register one (Rl) points to byte zero of the mode so
use the instruction

26

Introduction to ReaLity Assembly Language Programming

MCC Rl,PRMPC

Assemble, List and Load your
Listing in Figure 7-4. DADO
mark to prompt for input.

27

mode. Co mp are it wit h the
should now print a question

Introduction to ReaLity Assembly Language Programming

PAGE 1 MODI FRAME 337 16:16:15 16 SEP 1981

J01 000 7~FD0151 FRAME 337
001

or-, * ,
a l . *16JULBO
oo~ *
00 *
006 *MOOR[
007 *
008 000 ORG 0 *****
009 000 3F CHR C'?' *****
010 001 1E04 B !AQ
011 003 1:::0E B !DADD
012 *
013 M 9 A7 CHANCE2 DEFM 9,167
014 *
015 !AQ EQU *
016 005 1190 A 7 BSL CHANCE2
017 008 4F'+10804 BCE CtA' ,R15,!AQ
018 OOC 10100A ENT MD999
019 *
020 !DAOO EQU *
021 o OF 000201 MCC R1,PR~iPC *****
022 012 115008 £SL CVOIS
023 015 A22DD9 STORE FP2
024 AGA I N EQU *
025 018 11500B BSL CVOIS
026 o 1B A22003 ADD FP2
027 OlE A22DD9 STORE FP2
O?--- 021 E11F5B INC OB,6
o ~~J2'+ 16BF MOV OB ,R 15
03 026 110008 BSL MBOSUB
031 029 1~F8 MOV R15,OB
032 02B 112006 BSL WRTLIN
033 02E 110006 8SL READLIN
03'+ 031 16 A'+ MOV IB,IS
033 033 3A INC 18
036 03'+ '+AFF0839 BCE SM,IB,OUT
037 038 1E17 B AGAIN
038 OUT [QU '*
039 03A 10100A ENT MD999

PAGE

/'-

i
::: 0 ...

C3D 00
03E 0006
"7FE 12D4

~

MODl FRAME 337 16:16:16 16 SEP 1981

7.5 REMOVING EXTRA BLANKS

The ve r b DAD D wilL n 0 lot h an d leva l ; din put • I f you en t e r
Leading bLanks, however, the program wilL treat them as
zeros. Extra blanks on the ver~ Line are eliminated by
Tel-I, but they are not eLiminated on subsequent input
Lin es.

In CPU read sections 9.6 through 9.6.4 ana
SeD ~,N and DEe R instr.uctions. In ·the
section of Tel-I's MOl routine see that SCi
set t 0 b l a n kwh en you r mod e iss tart e d •

read about the
output interface
and SC2 are both

READ A.ND SEE***READ AND SEE***READ AND SEE

Change the mode
REA 0 lIN t s i np u t •
be:

so that it
T h.e Log i c for

Call READlIN.

b y pas s es Lea din g b l a n k sin
this part of the mode would

Scan the input buffer using register 18 untiL a
non-bLank is found.

If the non-bLank character is a segment mark. go to
OUT.

Decrement lB.

Move 18 to IS.

Go to AGAIN.

29

Introduction to ReaLity AssembLy Language Programming

(~

\,

We decrement IS before moving it to IS because CVOIS expects
IS to Doint one byte before the data to be converted.

After you change your mode. assemble. list and load it. See
Figure 7-5 for comparison.

DADD should now ignore leading blanks.

30

Introduction to Reality Assembly Language Programming

PAGE 1 MOD1 FRAME 337 16:16:26 16 SEP 1981

001 000 7FFOO151 FR AME 337
001 Or-···, *

o 6 ~ *15JUL80
DOl, *
OO~ *
006 *MOORE
007 *
008 000 ORG 0

309 000 3F CHR C'1'
010 001 1::04 B ! AQ
011 003 1EOE B !DADD
012 *
013 ~~ 9 A7 CHANCE2 DEFM 3,167
014 *
015 !AQ EQU *
016 005 1190A7 BSL CHANCE2
017 008 4F410804 BeE C'A',R15,!AQ
018 DOC 10100A ENT MD999
019 *
020 !OAOD EQU *
021 o OF D00201 MCC R1,PRMPC
022 012 115008 BSL CVDIS
023 015 A22DD9 ST ORE FP2
024 AGA IN EQU *
025 018 115008 BSL CVDIS
026 alB A220D3 ADD FP2
027 OlE A22DD9 ST ORE FP2
0(;7'021 E1205B INC DB ,6

0~~24 16aF MOV OB, R 15
03 26 110008 BSL MBDSUB
031 029 lSFB MO V R15, 08 i'

032 02B 112006 8S L IJRTLIN
033 02E 110006 BSL READLIN
034 031 6AOS01 SCD IB,X'Ol' *****
035 034 4AFF083C BeE SM,IB,OUT
036 038 2A DEC IB *****
037 039 16A4 MOV IB. IS *****
l38 036 1E:17 B 'AGAIN
039 OUT EQU *

Fl6-. ?'-')

PA:;E 2 MOD1 FRAME 337 16:16:27 16 SEP 1981

040 03D lO100A ENT ' MD999
040 0006

(FFE 1344
~.
>, - .

~

/'

it
",,:0:

8 TCl-II VERBS

Review PRM, sections 4.1 through 4.4, 2.4, and 2.5.
read about Tel-II.

In SSS

REVIEW AND READ***REVIEW AND READ***REVIEW AND READ

TCl-II verbs create, modify, and move items in fiLes. Some
examples of TCl-II verbs are: EDIT, AS, MlOAD, and MlIST.

8.1 RETRIEVING AN ITEM

Create a TCl-II verb in your master dictionary. Use the
same frame that you used for your TCl-I verbs. Although it
is possible to add the logic for the TCl-II verb to the mode
as it now exists. repLace the old mode completeLy and point
the verb at entry point zero. CalL the new verb DISP. If
your frame number were 337, the verb definition wouLd look
like this:

DISP
001: P
002: 2

.003: 151

The 2 in line two, which
verb, ;s the mode-id of
mode-id of your mode goes

marks the definition as a TCl-II
Tel-II's MD200 entry point. The

into line three.

The Logic of verb DISP is as foLlows:

Input an item.

32

Introduction to ReaLity AssembLy language Programming

Call WRTlIN to print the item's first Line on the
terminaL.

Go to ~m9 99.

The first step, inputting an item, is done by Tel-II.
Notice in Tel-II's output interface section that IR points
to the attribute mark foLLowing the item-id, that is, it
points one byte prior to the first Line of the item. SR4
~oints to the Last attribute mark of the item. The contents
of these two eLements delineate the item so that we can
reference any Line we wish.

To print the first Line of the item move the first line to
the buffer pointed at by OBBEG because WRTLIN expects OBBEG
to be pointing one byte prior to the output data. DB should
be pointing to the last character in the output. In CPU
study the foLlowing instructions:

MOV S.R

MIlD R,P,N

DEC R

- lOAD ADDRESS REGISTER

- INCREMENT AND MOVE STRING UNDER
DELIMITER CONTROL

- DrCREMENT ADDRESS REGISTER BY ONE

STU DY** *STU DY* * *S TU DY

Move the item's first Line to work space 08 by first moving
OBBEG to register OB. Then move the string pointed at by IR
to the buffer pointed at by DB untiL an attribute mark is
encountered. Since OB wiLL be pointing at the attribute
mark, decrement it by one because WRTLIN expects it to be
pointing at the last byte of print data.

33

Introduction to ReaLity Assembly language Programming

r
~

Edit your mode for the verb DISP, remembering to include a
Branch LocaL instruction as an entry point. After
assembling, Loading, and Listing your mode, compare it with
Figure 8-1.

Invoke the verb by typing Drsp foLlowed by a fiLename and an
item-id, for exampLe:

DISP FF MOD2

The first
terminal.

Line of the item shouLd be dispLayed on the

34

Introduction to Reality Assembly Language Programming

PAGE 1 M002 FRAME 331 16:16:3,+ 16 SEP 1981

001 000 7FFOO151 FRAME 337
001 r * 01 .

o b_' . *17JUL80

~~ *
*

006 *MOO RE
007 *
008 001 1[02 B !DISP
009 *
010 ! 0 I S P EQU *
011 003 EOEAEB MOV OBBEG,OB
012 006 6SBOAO MIlD IR,OB,X'AO'
013 009 28 DE C OB
o 1 '+ o OA 112006 BSL WR T LIN
015 000 10100A ENT MD999

FFE 0542
:: OF

~.

~

FI &-. 8. - I

8.2 RETRIEVING MANY ITEMS

8.3

Review section 4.4 in PRM.
system element RMODE in
description.

In SSS review the discussion of
section 3.8 ~nd in the Tel-II

REVIEW***REVIEW***REVIEW***

Retrieving many items is the same as retrieving one: Tel-II
handLes the fetching of each item specified by the user in
the terminal input statement. Hence, the mode as now
~ritten wiLL handLe more than one item.

~otice in the subroutine usage section of Tel-II's
description that MD201, which is calLed by WRAPUP through
RMODE. calls WSINIT. Each time your mode exits to WRAPUP,
before MD201 returns with the next item, alL of the
initialization performed by WSINI.T ~iLL have been done.

Invoke the DISP verb with muLtiple items:

DISP FF MODl MOD2

DISP FF *

USER OPTIO~S

User options are the options that can be specified with the
verb entered at the terminal. They are not reLated to the
options specified in Line five of a Tel-II verb definition,
which shouLd be thought of as designer options. An

36

Introduction to Reality AssembLy language Programming

(~.O

<",-

explanation of designer options is beyond the scope of this
introductory manual.

User options can be defined in the mode to mean anything you
want them to mean. However. the foLLowing options are
historicalLy assigned these meanings:

Option

N

P

Meaning

Suppresses the pause at the end of each page
when the listing is output to the terminaL.
Routes out~ut to the printer (spooLer).

Add these two options to your mode, °but before doing so.
enter the folLowing command at the terminal:

DISP MD *

The first Line of every item in the master dictionary shouLd
print on the terminal without pause.

In SSS note that TCL-I zeros ABIT-ZBIT in the MOl routine.
Also note that MD1B caLls subroutine GETOPT. Read GETOPT's
description. Note the following system elements in WRTLIN's
inout interface section: LPBIT. PAGINATE. 'and PAGFRMT.
Read subroutine SETLPTR's description. In CPU read about
the following instructions:

S8 B - SET BIT

88 S B,L - B RANC H ON BIT SET

SS Z B,L - B RANC H ON BIT ZER 0

37

Introduction to Reality Assembly Language Programming

READ AND NOTE***READ AND NOTE***READ AND NOTE

In your mode set bit PAGINATE to alLow bit PAGFRMT
operative. Since subroutine GETOPT will set NBIT if
is an N in the option list, test if bit NBIT is set.
;s not, set PAGFRMT. Likewise, if PBIT ;s set,
subroutine SETLPTR, which wiLL set LPBIT.

to be
there

If it
ca Ll

Add the new code to your mode. AssembLe, Load .. and List it,
and compare it with Figure 8-2.

Invoke DISP with either option N or P, and note its action:

DISP MD *
DrSp MD * (N)
DrSp MD MODl MOD2 (P)

38

Introduction to Reality AssembLy Language Programming

PAGE 1 MOD2 FRAME 337 16:16:q2 16 SEP 1981

001 000 7=FOO151 FRAME 337
001

QC: * 0\ .
*18JUL80

DOL *
00 *
006 *MOORE"
007 *
008 001 1E02 B !DISP
009 *
010 !DISP EQU *
011 003 80F7 SB PAGINATE ** ***'
012 005 928DOOOA BB S NBIT,DI10 *****
013 009 80ee SB PAGF RMT *****
011+ 0110 EQU * *****
015 OOB 928F0811 BBZ PBIT,DI20 *****
016 OOF 118033 BSL SETLPTR *****
017 D120 EQU * *****
018 012 EO E AE B MOV OBBEG,OB
019 015 66BOAO MIlD IR,OB,X-AO-
020 018 23 DEe OB
021 019 112006 BSL iJRTLIN
022 Ole 10100A ENT MD999

FFE 03 A2
::OF

(".'.

'\L'

FETCHING ANOTHER ITEM

For this next exercise create a chain of items in your file.
In the first line of the first item put the item-id of the
second item; in the first line of the second item put the
item-io of the third item; and so forth. Make the first
Line of the Last item nuLL. [OM, section 3.3, teLLs how to
create a nuLL Line with the insert and repLace commands. An
exampLe of a chain would be:

T1
001 : T2

T2
001: T3

T3
001 :

CREATE A CHAIN***CREATE A CHAIN***CREATE A CHAIN

In SSS read about subroutine RETIX. ALso in TCl-II's output
interface description note that the elements BASE, MODULO
and SEPAR point to the file specified by the user on the
terminal. In PR~, section 2.4, review the meanings of base,
modulo, and separation.

READ AND REVIEW***READ AND REVIE~***READ AND REVIEW

Change your mode to check the first line of the item for a
nuLL Line. If it is nuLL, go to WRAPUP; otherwise, print

40

Introduction to ReaLity AssembLy language Programming

/~-

\,<.;

L

the Line and then read the item that it references,
repeating the check for nulL. Develop a LocaL subroutine
<GETSYM) that wiLL extract from the first line a symboL to
b e use d a s the i t em - i d 0 f the n ext item. The log; c oft h e
entire mode wi LL be:

Set PAGINATE.

If N is an option, set PAGFRMT.

If P is an option, calL SETLPTR.

While the item's first line is not null and there are no
errors:

CaL l W R T LIN top r ; n t fir s t l; ne 0 fit em.

CALL GETSYM to extract symbol from first line.

Call RETIX to read next item.

Subroutine GETSYM

Elimin~te Leading bLanks.

Move symboL to area BMS.

End symbol with an attribute mark.

Return.

The new logic does not change the orevious handLing of user

41

Introduction to ReaLity Assembly Language Programming

CL

options so the first part of your mode can remain the same.
Before calling WRTLIN (just after labeL 0120 in Figure 8-2),
move IR to 18 to save it for Later use. To test if the
first line of the item is null, increment IR. Use the seE
~.R instruction to test if IR is pointing at an attribute
'nark (AM); if IR is pointing to an attribute mark, go to
OUTi if not, decrement IR.

The code f~r calling WRTLIN can remain intact at this point.
F 0 l low it wit hac all toG E T S Y M, w h i ch w; l l ret urn wit h a
symboL in work space BMS with BMSBEG pointing one byte
before the symbol. An attribute mark will follow the
symbol. Call RETIX to read the item specified by BMSBEG.
If RETIX returns with RMBIT equal to zero, go to NOITEM;
otherwise, Dranch back to print the new item's first Line
(D120). For now, eQuate symboL NOITEM to the normal return
to WRAPUP.

In subroutine GETSYM move BMSBEG TO BMS. Using SCD R,N with
18 eliminate leading bLanks by. scanning for a non-blank
character <Remember that SC2 contains a bLank). Decrement
18 so· that it points one byte before the non-blank
character, and move a string from the buffer pointed to by
18 to the Duffer pointed to by BMS using the MIlD R.R,N
instruction until a blank or an attribute mark is
encountered. Then use MCC N,R to move an attribute mark
after the symbol. Return to the main routine with the RTN
instruction.

After assembling, loading, and listing your mode, compare it
with Figure 8-3. Test the mode by invoking DISP and the
first item of the chain that you created:

DISP t:'F T1

42

Introduction to ReaLity AssembLy Language Programming

PAGE 1 MOD2 FR AME 337 16:16:46 16 SEP 1981

001 000 7FFOO151 FR AME 337
001

,~ or * o \. *02APR79
o DC. *
00 *
006 *MOORE
007 *
008 001 1~02 B !DISP
009 *
010 !DISP EQU *
011 003 80F7 SB PAG INA T E
012 005 928DOOOA BSS NBIT,OI1G
013 009 8JLC_C _ SB F'AGFRMT
014 011 0 EQU *
015 OOB 928F0811 BBZ PBIT,DI20
016 OOF 118033 BSL SETLPTR
017 0120 EQU *
018 012 166A MOV IR,1B *****
019 014 36 INC IR *****
020 015 4SFE082E BC E AM,IR,OUT *****
021 019 25 DEC IR *****
a 22 o lA [OEAEB MOV OBBEG,OB
023 010 66BDAO MIlD IR,OB,X'AO'
024 020 29 DEC DB
025 021 112006 BSL IJRTLIN
026 024 1831 BSL GETS YM *****
027 026 111007 BSL RETlX *****
0(- 029 909E082E SBZ RMBIT,NOITEM *****

O~02D 1[11 B 0120 *****
0 ~;OITEM EQU * *****
031 OUT EQU * *****
032 02F 10100A ENT MD999
033 *
034 GETS n1 EQU * *****
035 032 E07AE8 MOV BMSBEG,B~S *****
036 035 6AOS01 SCD IB,X'Ol' *****
037 038 2A DEC IB *****
038 039 6A 8 OA 1 MIlD IB,eMs,X'A1' *****
039 o 3C 49FE20 MCC AM, B MS *****

OAGE 2

040 03F 14
FFE 185A

,...--'~

l:/

M002 FRAME 337 16:16:47 16 SEP '1981

RTN * *****

8.5 RETRIEVING FROM ANOTHER FILE

In the last exercise you created a chain of items in one
file. Extend this chain into another file by inserting the
fiLe name and item-id of the next item into the first line
of the last item of the chain. For example, if the chain
were to go from fiLe FF into the MD (master dictionary> file
and back to file FF, the continuation would look like this:

1'1 f i l e
T3

001: MD

In file

T4
001: T5

T5
001 : T' ,,:>

T5
001 : FF

In file

T7
001: T8

T8
001: T9

T5
001:

FF

T4

MO

T7

FF

D
t~~ e(\~
~dl~~
C;2-f

44

P4+p ;-It ct~f.'!~

o
b~,~ Hr--/7

"Y"VLc~7 ~
Y1,

Introduction to Reality Assembly Language Programming

,

i~

EXTEND THE CHAIN***EXTEND THE CHAIN***EXTEND THE CHAIN

In PRM read sections 1.7, 2.4, 3.1, and 3.2. In section 3.2
note especially the discussion of item-id and attributes 1
through 4 and the discussion about FigJre A. In SSS,
section 3.3, read about elements MBASE, ~MOD, and MSEP.
Also, read the descriptions of subroutines RETIX, GBMS, and
GOLID.

READ***READ***READ

Change the logic of your mode to access an item from a file
different from the one currently being accessed. The
foLlowing statements specify what has to be done, exclusive
of initializing the print options and returning to lJRAPUP:

WhiLe the first line is not null and there are no
errors:

Call WRTLIN to print the item's first line.

Call GETSYM to get a symbol.

I f GET S Y M did not rea c h the e nd oft h eli n e

Call RETIX to read the file's definition item
in the mas t e r d i c t i 0 na r y •

Call GBMS to get the file's dictionary-leveL
base, modulo, and separation from its
definition.

In t rod u c t ion toR e ali t y Ass e m b Ly Lan g u ag e Pr 0 9 ram min 9

-

Call GDLID to get the file's data-level base,
moduLo, and seoaration from the DL/ID item in
its dictionary.

CalL GETSYM to get a symbol.

CaLL RETIX to read an item.

The logic of your mode can remain the same up through the
BSL to GETSYM. After that. test if the end of the Line was
reached. Use a BCE N,R,L instruction to ~ee if IB points to
an attribute mark. Branch to where RETIX reads another
it em.

If GETSYM did not reach the end of the line then assume that
a file name is present. RETIX must be used to read the
fiLe's definition from the master dictionary. Since GETSYM
puts the symbol into a buffer pointed at by BMSBEG, that
parameter is taken ~are of, but the master dictionary's
base, moduLo, and separation must be moved to eLements BASE,
MODULO, and SEPAR. This information is contained in
eLements MBASE, MMOD, and MSEP. Moving MBASE to BASE
requires one instrucion. Moving MMOD and HSEP to MODULO and
S EPA Rca n a L sob e don e wit h 0 n L y 0 ne ins t r u c ion. P S Y M
defines a doubLe ~ord, MMODMSEP, which includes t~e
contiguous words MMOD and MSEP. Likewise, the definition of
MODULOSEPAR encompasses the two words MODULO and SEPAR. So,
move MMODMSEP to MODuLOSEPAR. Then caLL RETIX. If RMBIT is
zero, go to NOFILE. CaLL GBMS, and if RMBIT is zero, go to
NOFILE. CalL GDLIDj if RMBIT equals zero, go to NODATA.
CaLL GETSYM to get another symboL from the original item's
first Line. A caLL to RETIX to read another item aLready
exists in the mode.

Equate the symboLs NOFILE and NODATA to the return to

46

Introduction to ReaLity AssembLy Language Programming

f,~

'::1' t~

WRAPUP.

Add the new logic to the mode. AssembLe, load, and list it.

See Figure 8-4 for comparison. Invok~ the mode by

referencing the item chain you have built:

OISP FF Tl

I

4 ~ -------2-,:!!.--

.~-----­--
~ ~~--------.--------r?..-u~, .)

47

Int roduct i on to Real i t y As semb ly Langu age Prog ramm ing

)AGE 1 MOD2 FRAME 337 16:17:05 16 SEP 1981

)01 000 7FF00151 FRAME 337
001

~J--- *
J *23JUL80
30,-" *
J 0 *
006 *MOO RE
)07 *
JOB 001 1E02 B ! DIS P
)09 *
310 !DISP EQU *
J11 003 80F7 SB PAGINATE
)12 005 92BDOOOA 8B S NBIT,DI10
)13 009 80 CC sa PAGF RMT
314 DIl 0 EQU *
J15 OOB 928F0811 BBZ PBIT,DI20
)15 OOF 118033 BSL SETLPTR
)17 0120 EQU *
)18 012 166A MOV IR, I B
)19 014 35 INC IR
)20 015 45FE0851 BC E AM,IR,OUT
) 21 019 25 DE C IR
322 o 1A EOEAE8 MOV 088EG,OB
323 010 66BOAO MIlD IR,OB,X'AO'
)24 020 23 DEC OB
)25 021 112006 BSL IJRTLIN
326 024 1854 BSL GETSYM
)27 026 4AFE0848 BCE AM,IB,DIBO *****
It-- ,.0 2A F0288030 MOV MBASE,BASE *****
)\C 2E F02A8032 MOV MMODMSEP,MODLLOSEPAR *****
) 3 32 111007 BS L RETIX ** ***
)31 035 909E0851 BB Z RMBIT,NOFILE *****
)32 039 113003 BSL GBMS *****
)33 03C 909E0851 BB Z RMBIT,NOFILE *****
334 040 11 DO 0 7 BSL GDLID ** ***
)35 043 909E0851 BBZ RMBIT,NODATA *****
) 36 047 1854 BSL GETS YM *****
)37 DISO EQU * *****
)38 049 111007 BSl RET I X
)39 04C 909E0851 BBZ RMBIT,NOITEM

'AGE 2 M002 FRAME 337 16:17:07 16 SEP 1981

)40 050 1E 11 B '0120
)41 NOFILE EQU * *****
) (' NOOA TA EQU * *****
) " NOITEM EQU *
)41..0 OUT EQU *) 4· 52 10l00A ENT MD999
)4; *
)47 GE'TSYM EQU *
)48 055 E07AE8 MOV BMSBEG,B"-S
)49 058 6A0801 seD IB,X'Ol'
)50 058 2A DE C IB
)51 o 5C 6A 8 0 A 1 MIlO IB,BMS,X t A1'
)52 o 5F 4SFE20 r~c c AM t 8 MS
)53 062 14 RTN *

FFE 27C6
: OF

8.6

,r--(,c...

(\..-

RETRIEVING FROM A DICTIONARY FILE

The mode is now abLe to retrieve items from the current
fiLe, or it can go to another file's data Level to fetch an
item. It cannot, however, retrieve an item from a fiLe's
dictionary leveL.

Extend your chain of items from the data LeveL of the f1Le
into the dictionary level:

In the FF data LeveL file

T9
001: DIeT FFT10

In the FF dictionary level fiLe

T10
001: TIl

Tll
001: T12

T12
001: FF TI3

In the FF data level file

T13
001: T14

T14
001: T15

50

Introduction to Reality Assembly Language Programming

T15
001:

C han 9 e you r mod e tot est for the key word 0 I C T be f 6 rea f ; l e
name. If the keyword is present, the mode shouLd fetch
items from the dictionary level rather than from the file's
cata level.

In ASM read sections 3.5 and 4, and
following instructions:

in CPU read about the

Bc - BRANCH ON WORD COMPARE

SB B - SET BIT

ZB B - ZERO BIT

IN SSS, section 2, recall that address register BMS is R8.

READ AND RECALL***READ AND RECALL***READ AND RECALL

The majority of the mode's logic need not change. The
foLlowing is the pertinent section with the new steps marked
by asterisks at the left.

**

Call WRTLIN to print the item's first Line.

Zero bit DFLG (unused by any of the caLled
subroutines> to indicate data level.

** 0130.

CaLL GETSYM to get a symbol.

51

Introduction to Reality AssembLy Language Programming

**

**

**

**

**

**

**

Move BMS8EG to BMS to point to the symbol -1.

Increment BMS to point to the symbol.

If the douole word pointed at by R8 (BMS) does
not contain C'OICT', go to 0140. (The BU
O,D,L instruction can be used with the literal
C'DICT' as the first operand and the
combination R8;DO as the second.)

Set bit DFLG to indicate dictionary level.

Go to DI30.

0140 •

If 18 points to an attribute mark, go to DI80.

•
•
•

CaLL GBMS to get the fiLe's dictionary-level
base, modulo, and separation.

If RMBIT equals zero, go to NOFILE.

If DFLG is set, go to D160.

CaLL GDLID to get the fiLe's data-leveL base,
modulo, and separation.

If RMBIT equals zero, go to NODATA.

DI60 •

52

Introduction to ReaLity AssembLy Language Programming

~ ~!

CaLL GETSYM to get a symboL.

0180 •
•
•
•

After adding the new Logic to your mode. assembLe and Load
it. List the mode using the M option to see the macro
exoansions. Comoare the listing with Figure 8-5. Test the
mode by invoking the verb:

DISP FF T1

53

Introduction to Reality Assembly Language Programming

PAGE 1 ~lOD2 FRAME 337 16:17:13 16 SEP 1981

001 000 7=FOO151 FRAME 337
001

O' . .-c ..
*

O. *23JUL80
OO~ *
00 *
006 *~100RE

007 *
008 001 1[02 B !DISP
009 *
010 ! 01 S P EaU *
011 003 80F7 S8 PAGINATE
012 005 928JOOOA BB S NBITtDII0
013 009 80CC SB PAGFRMT
alit DII0 EQU *
015 OOB 928F0811 BBZ PBIT,DI20
016 OOF 118033 BSL SETLPTR
017 DI20 EQU *
018 012 166A MOV IRtIB
019 o lit 36 INC IR
020 015 it6FE0865 BCE AMtIRtOUT
021 019 25 DEC IR
022 01A EOEAEB ·MOV OBBEG,OB
023 OlD 66B OA 0 MIlD IRtOB,X 'AO'
o 2it 020 23 DEC OB
025 021 112006 BSL IJRTLIN
026 024 7083 ZB OFLG *****
027 0130 EQU * *****
0%7.,026 1868 BSL GETSYM

~(~C~~ E07AE8 MO V BMSBEG,BMS *****
38 INC BMS *****

031 02C F13C9800 BU C'OI CT' ,R8; D 0,0140 *****
030 5035

032 032 8083 SB OFLG *****
033 034 lE25 B 0130 *****
o 3it D140 EQU * *****
035 036 4AFE085C BCE AM,IB,OI80
036 03A F0288030 MOV MBASE, BASE
037 03E F02A8032 MOV MMOD MSE P ,MOD ULOS EPAR
038 042 111007 BSL RETIX

PAGE 2 MOD2 FRAME 337 16:17:11+- 16 SEP 1981

039 045 909[0855 BBZ RMBIT,NOFILE
040 049 113003 BSL GBMS

-----rY R MB IT, N 0 F I L E , . 04C 909[0865 BB Z
G 050 9083005A BSS DFLG ,0160 *****
O~Q54 11 DO 0 7 BSL GDLID
04 057 909E0865 BB Z RMBIT,NODATA
045 D160 EQU .. ** ***
046 058 1868 SSL GETSYM
047 0180 EQU *
048 050 111007 BSL RETIX
01+-9 060 909E0865 BS Z RMSIT,NOITEM
050 064 1E11 B [H2O
051 NOF I LE EQU *
J 52 NODATA EQU .. ---
053 NOITEM EQU ..
054 OUT EQU *
055 066 10100A ENT MD999
055 *
057 GETSYM EQU ..
058 069 E07AE8 MOV BMSBEG,BMS
059 06e 6A08D1 SCD IB,X'Ol'
060 o 6F 2A DEC IB
061 070 GA80Al MIlD IB,BMS.X'A1'
062 073 46FE20 MCC AM. B MS
063 076 ll+ RTN *

077 00
078 44494354
FFE 35E2 Er

\~

({:

'''''

9 OUTPUTTING MESSAGES

OUTPUTTING ERROR MESSAGES

Although the mode that you have developed tests for error
conditions, the logic for each test returns to the same
point in WRAPUP. WRAPUP has severaL entry ooints providing
different interfaces with the ERRMSG file. In SSS in the
functionaL description for WRAPUP read about entry points
MD995 and MD99. In PRM. APPENDIX B, note messages 13, Ill,
and 201.

READ AND NOTE***READ AND NOTE***READ AND NOTE

EntryMD995 expects a message number in C1 and a parameter
in a Duffer pointed at by BMSBEG. Since the mode has BMSBEG
pointing at the file name at NOFILE and at the item-id at
NOITEM, use entry MD995 to print an error message for these
two conditions. At location NOFILE move the number 201 into
C1 before branching to MD999; at NOITEM move 111 into C1
before branching.

Err 0 r me s sag e 13 d oe s not r e qui rea par a met e r sot 0 h a v e it
printed, move 13 into REJCTR and transfer control to MD99.
The following steps specify the Logic in more detaiL:

NOFILE •

** Move 201 to C1.

** ExternaL branch to MD995 •.

56

Introduction to ReaLity AssembLy Language Programming

NODATA •

** Move 13 to REJCTR.

** External branch to MD99.

NOITEM •

** MOVE 111 to C1.

** External branch to MD995.

OUT •

External branch to MD999.

Add the new logic to your mode and
in Figure 9-1. To test your mode's
an item to the chain of items.
non-existent item. for instance,

compare with the listing
error checking logic add

Le t ; t ref ere nee an

T15
001: FF NILITEM

When you invoke the verb
chain, all items should
processed. The message

DIS P wit h t he fir s tit e m 0 f the
be printed until this one ;s

[111J ITEM 'NILITEM' IS NOT ON FILE

should be displayed on the terminal.
non-existent file is referenced,

T15
001: XX T1

57

Likewise. if a

Introduction to Reality Assembly Language Programming

the following message wiLL be dispLayed on the terminaL:

[201] 'XX' IS NOT A FILE NAME

To test the Lack of a DL/ID item create a file:

CREATE-FILE (GG 1.1 1.1)

Edit two items in GG's dictionary:

ED DIeT GG OLIO OL/ID

When the Editor presents OLIO for editing. enter

ME999"DL/ID"1
FI

When the Editor presents DL/ID for editing. type

FD

to deLete the item.

If you change your item-chain to reference an item in file
GG:

T15
001: GG XX

The message

[13J DATA LEVEL DESCRIPTOR MISSING

should be Listed. To restore GG's DL/ID item reverse the

58

Introduction to ReaLity Assembly Language Programming

PAGE 1 M002 FRAME 337 16:17:21 16 SEP 1981

001 000 7FFOO151 FRAME 337
001

~,

(T, . * o .. ' *24 J UL80 " ~" -~

OO~ *
00 *
006 *MOORE
007 *
008 001 1::02 B ! DIS P
009 *
010 ?DISP EQU *
011 003 80F7 SB PAGINATE
012 005 928DOOOA BBS NBIT.DI10
013 009 80CC SB PAGFRMT
014 0110 EQU *
015 OOB 928F0811 BBZ PB IT.O I 2 0
016 OOF 118033 BSL SETLPTR
017 0120 EQU ,..
018 012 166A MOV IR.IS
019 014 35 INC IR
020 015 45FE087A BC E AM.IR.OUT
021 019 26 DEC IR
022 01A EOEAEB MOV OBBEG.OB
023 010 6!)BOAO MIlD IR.OB,X'AO'
024 020 2B DEC OB
025 021 112006 BSL IJRTLIN
026 024 7083 ZB DFLG
027 DI30 EQU *
O~:26 187D BSL GETSYM
o •... 128 E07AE8 MOV BMSBEG.BMS
03 2B 38 IN C BMS
031 02C F1469800 BU C • 0 I C T' , R8 ; 0 0.0 I 40

030 5035
032 032 8083 SB DFLG
033 034 1E25 B 0130
034 0140 EQU *
035 036 4AFE085C BCE AM,IB.OI80
036 o 3A F0288030 MOV MBASE,BASE
037 03E F02A8032 MOV MMOD MSE P ,MOD ULOS EPAR
038 042 111007 BSL RETIX

PAGE 2 ~10D2 FRAME 337 16:17:22 16 SEP 1981

039 045 909E0855 8BZ RMBIT,NOFILE
o 4j) 049 113003 BS L GBMS
0/ ' .. ·.04C 909E0865 SSZ RMBIT,NOFILE
o 'j;;:"" 050 9083005A BSS DFLG,OI60
04~54 110007 BSL GDLID
04 57 909E086C SB Z RMBIT,NODATA
045 D160 EQU *
046 058 187D BSL GETSYM
U 47 DI80 EQU *
048 05D 111007 BSL RETIX
049 060 909E0873 SBZ RMBIT,NOITEM
050 064 1E11 S 0120
051 NOF I LE EQU *
Cl 52 066 F2014148 MOV 201,C1 *****
G53 GbA 1030011, ENT MD995 *****
054 NODA TA EQU *
055 060 F05841lf.A MOV 13,REJCTR *****
056 071 10000A. ENT MD99 *****
057 NOITEM EQU *
058 074 F2014143 MOV 111, C1 *****
059 078 10300A ENT MD995 *****
0&0 OUT EQU *
061 078 10"100 A ENT MD999
062 *
063 GETSYM EQU *
D 64 o 7E E07AE8 MOV BMSB EG ,B MS
065 081 GAOB01 SCD 18, X' 01 '
066 084 2A DE C IB
o r~-o 85 6A8oA1 MIlD IB,BMS, X'A1'
Ol~88 48FE20 MCC AM,8 MS
06 88 14 RT N *

o 8C 4lf49lf.354
090 00C9
092 006F
094 0000
FFE 387F

E OF

.. ~

procedure used above.
command

T hat i s t en t e r the Edit 0 r w ; t h the

ED DICT GG OL/IO OLIO

Merge the contents of DLIO into OL/ID and delete OLIO.

9.2 PUTTING PARAMETERS INTO HS FOR WRAPUP

In SSS in WRAPUP's input interface section read about the
contents of HS8EG and HSEND and the contents of the buffer
to which they point. especialLy the output message format.
Also read the description of subroutine PRTERR.

REAO***READ***READ

Copy error message 4 to the terminaL by entering the command

CT ERRMSG 4

Error message 4 contains the following:

4
001 H ~10DE ,
002 A
003 H'
004 S (18)
005 HCHECKSUM ER R OR; FRAME =
006 R (4)
007 H MODE =
008 R (4)
009 H ASS =
010 R (4)

59

Introduction to ReaLity Assembly Language Programming

study PRTERR's functional description and the description of
TS in the input interface.

Error mess3ge 4 is representative of the error messages in
fiLe ERRMSG. l."hen you design a program that requires error
messages, you shouLd review PRM, Appendix B, for messages
that can be used with your program. If new messages are
required, they should be added to ERRMSG.

As an exercise, write a TCl-II mode that wiLL set parameters
into work area HS for message 4. lines 2, 6. 8. and 10 of
message 4 indicate that four parameters are needed. Use the
item name pointed at by BMSBEG for the first parameter and
the binary contents of RECORD. SIZE and ACF for the second,
third and fourth parameters. respectiveLy. The binary
values will have to be converted by caLls to MBDSUB. After
the parameters are prepared, transfer control to WRAPUP at
entry MD999. The detailed logic shouLd be as follows:

!ERRT

Branch to !ERRT (entry point).

•

Move HSBEG to R15. R15;s used because
subsequentLy we are going to caLL MBDSUB.

Using the MCI instruction with R15. move a
segment mark (SM). the letter "0", an
attribute mark (AM), the numoer "4", and
another attribute mark to the bytes pointed at
by R15.

Move BMSBEG to BMS.

60

Introduction to Reality Assembly language Programming

Move the string pointed at by BMS to the area
pointed at by R15 until an attribute mark is
encountered.

Load into the extended accumuLator the
contents of RECORD.

CaLL MBDSUB to convert the value in the
extended accumulator to an ASCII string in the
area pointed at by R1S.

Move an attribute mark to the byte pointed to
by R15.

Load into the
contents of SIZE.

extended accumulator the

CalL MBDSUB to convert the value in the
extended accumLator to an ASCII string in the
buffer pointed at by R15.

Move an attribute mark to the byte pointed to
by R15.

Load into the extended accumuLator the
contents of ACF.

CaLL MBDSUB to convert the value in the
extended accumulator to an ASCII string in the
buffer pointed t.o by R15.

Move an attribute and then a segment mark to
the bytes pointed at by R15.

Move R15 to HSEND.

61

Introduction to ReaLity AssembLy Language Programming

Go to MD999.

AssembLe, List t and load your mode. Compare it with Figure
9-2. The verb DISP can be used to invoke the mode.· For
examole,

DISP FF MOD4

should result in error message 4 being printed with "MOD4"
and three numbers as parameters.

62

Introduction to Reality Assembly Language Programming

Move the item-id to work space HS.

CalL PRTMSG to print message.

Repeat

Increment as.

If os points to a '1'

Then
Move '1' to work space HS.

Call PRTMSG to print message.

ELse
If as points to a '3'

Then
Move '72' to work space HS.

CaLL MBOSUB to convert SIZE - to ASCII in
work space HS.

Call PRTMSG to print message.

ELse
If OS points to a ' if'

Then
Move '210' to wo rk space HS.

Move the string in work space OS to
work space HS.

65

Introduction to Reality Assembly Language Programming

If as points to an attribute mark, branch to
OUT.

If as is not pointing to a '1', branch to
012.0.

Load the address of Ml into R14~

Move the string pointed at by R14 to the area
pointed at by HS until an attribute mark is
encounte red.

Call PRTMSG to print the message.

Branch to 0110.

0120 •

If as is not pointing at a '3', branch to
0130.

Load the address of M72 into R14.

Move the string pointed to by R14 to the area
pointed to by HS.

Move HS to R15. MBDSUB uses R15 to point to
its output buffer.

Load the extended accumulator
Message 72 needs a number 3S a
SIZE is used as a convenience
exercise.

with SIZE.
parameter:
for this

Call M B D SUB t 0 c 0 nv e r t the val u e i nth e
accumuLator to ASCII.

68

Introduction to Reality Assembly Language Programming

Increment R15 and move an attribute mark to
the byte pointed at by RIS.

Move R15 to HS.

Call PRTMSG to print message.

Branch to 0110.

0130 •

OUT

If OS is not pointing to a '4'. branch to
OIl o.

Load the address of M201 into R14.

Move the string pointed at by R14 to the area
pointed at by HS unti l an attribute mark is
encountered.

Move OSBEG to R14.

Move the string pointed at by R14 to the area
pointed at by HS untiL an attribute mark is
reached. This string has no meaning in the
message. It is just convenient for this
exercise.

CaLL PRTMSG to print the message.

Branch to 0110.

•

Ext ern alb ran c h toM 09 9 9 •

69

Introduction to Reality Assembly Language Programming

PRTMSG •

Increment HS and move a seg~ent mark to the
byte pointed at by HS.

Move HSBEG to TS.

Call PRTERR, which will really print the
message.

Move HSBEG to HS to initialize it.

Increment HS so that input to the buffer skips
the first two bytes.

Return.

After assembling, listing, and loading your mode compare it
with Figure 9-3. Verb DISP can still be used to invoke the
mode:

DISP FF ITEMl
Drsp FF ITEM2 ITEMl ITEM3

70

Introduction to Reality Assembly Language Programming

PAGE 1 M004 FRAME 337 16:17:46 16 SEP 1981

001 000 7FFOO151 FRAME 337
001

~

0 *
0 ... 0:.. *27JUL80

DOL *
J 0 *
J05 *MOORE
007 *
008 001 lEOF B !OISP
)09 *
)10 M223 EQU *-1
311 003 323233 TEXT C • 22 3 • , X 'F E •

006 FE
)12 "'1 EQU *-1
)13 007 31 TEXT C'1',X'FE'

008 FE
J14 M201 EQU *-1
)15 009 323031 TEXT C'201',X'FE'

OOC FE
D16 M72 EQU *--1
017 000 3732 TEXT C t 72', X 'FE t

OOF F::
018 *
019 ! 0 I S P EQU *
020 010 E068E5 MOV OSBEG.OS
021 013 6550AO MIlD I R, 0 S. X ' AO '
022 016 E05CE3 MOV HSBEG,HS
023 019 33 INC HS OrelA E1023E SRA R14.M223
D l- 110 6::30AO MIlD R14.HS,X'AO'

"

02 20 E07AE8 MOV BMSBEG,BMS
027 023 6830AO MIlD BMS.HS.X'AO'
028 026 186F BSL PRTMSG
)29 028 E068E5 MOV OSBEG.OS
)30 DUO EQU *
331 02B 35 INC as
)32 02C 45FE086C BCE AM.OS.OUT
)33 030 4531003D BCU C'l' ,OS,OI20
)34 034 EI063E SRA R14. M1
335 037 6E30AO MIlD R 14 • HS t X • A 0 '

PAGE 2 M004 FRAME 337 16:17:47 16 SEP 1981

036 o 3A 186F BS L PRTMSG
O~.2> 03C 1E:2A B 0110
o! 0120 EQU * \

o ~-' o 3E 45330058 BCU C'3',OS,DI30
0t 042 ElOC3E SR A R14,M72
O .. ~45 6::30AO MIlD R14,HS,X'AO'
042 048 1&3F MOV HS,R15
043 04A A0275C LOAOX SIZE
044 040 110008 BSL MBOSUB
045 050 4::'FE40 MCI AM,R15
045 053 1&F3 MOV R15, HS
047 055 186F BSL PRT M SG
048 057 lE2A B 0110
049 DI30 EQU *
050 059 4534002A BCU C'4' ,OS,DI10
051 05D E1083E SRA R14,M201
052 060 6E30AO MIlD R14,HS,X'AO'
053 063 E068EE MOV OSBEG,R14
054 066 6E30AO MIlD R14,HS,X'AO'
055 069 186F BS L PRTMSG
056 06B 1E2A B DI10
057 OUT EQU *
058 060 1010QA ENT M0999
059 *
060 PRTMSG EQU *
061 070 43FF40 MCI SM,HS
062 073 E05CEO MOV HSBEG,TS
063 076 lI000C BSL PRTERR

~~~~~ 
E05CE3 MOV HSBEG,HS 
33 INC HS 

o 6 07D 14 RTN 
FFE 3B99 

EOF 


